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Introduction and Motivations

We consider ill-conditioned linear systems

Ax = b

We mainly focus the attention on full-rank problems in
which the singular values of A decay gradually to zero.

We want to construct an iterative solver able to overcome
some of the typical drawback of the classical iterative solvers:

• Semi-convergence: the iterates initially approach the so-
lution but quite rapidly diverge

• Strong dependence on the parameter-choice strategy: in
order to prevent divergence a reliable stopping criterium
has to be used

• Poor accuracy: typically holds for Krylov type methods
based on the use of AT A (CGLS)

Reformulation of the problem

The basic idea is to solve the system Ax = b in two steps, first
solving in some way the regularized system

(A + λI) xλ = b

and then recovering the solution x from the system

(A + λI)−1 Ax = xλ

that is equivalent to compute

x = f(A)xλ

where
f(z) = 1 + λz−1

By the definition of f the attainable accuracy depends on the
conditioning of (A + λI)−1 A. Theoretically the best situation
is attained defining λ such that

κ(A + λI) = κ((A + λI)−1 A)

In the SPD case taking

λ =
√

λ1λN ≈ 1/
√

κ(A)

where λ1 and λN are respectively the smallest and the largest
eigenvalue of A, we obtain

κ(A + λI) = κ((A + λI)−1 A) =
√

κ(A)

The computation of the matrix function

The Arnoldi Algorithm

For the computation of f(A)xλ we use the standard Arnoldi
method projecting the matrix A onto the Krylov subspaces
generated by A and xλ

Km(A, xλ) = span{xλ, Axλ, ..., A
m−1xλ}

For the construction of the subspaces Km(A, xλ) the Arnoldi
algorithm generates an orthonormal sequence {vj}j≥1

, with
v1 = xλ/ ‖xλ‖, such that Km(A, xλ) = span {v1, v2, ..., vm}. For
every m,

AVm = VmHm + hm+1,mvm+1e
T
m.

where Vm = [v1, v2, ..., vm], Hm is an upper Hessenberg matrix
with entries hi,j = vT

i Avj and ej is the j-th vector of the
canonical basis of R

m.

The m-th Arnoldi approximation to x = f(A)xλ is defined as

xm = ‖xλ‖Vmf(Hm)e1

At each step of the Arnoldi algorithm we have to compute
the vector wj = Avj . The method theoretically converges in
a finite number of steps. For the computation of f(Hm) we
employ the Schur-Parlett algorithm (Golub and Van Loan
1983).

Extension to Tikhonov regularization

The method can be extended to problems in which the exact
right hand side b is affected by noise. We assume to work with
a perturbed right-hand side b̃ = b+eb. Given λ and H we solve
the regularized system

(AT A + λHT H)xλ = AT b̃.

and then we approximate x by computing

x =
(
AT A

)−1
(AT A + λHT H)xλ = f(Q)xλ

where Q =
(
HT H

)−1 (
AT A

)
. As before, for the computation

of f(Q)xλ we use the standard Arnoldi method projecting
the matrix Q onto the Krylov subspaces generated by Q and
xλ. Now, at each step we have to compute the vectors wj =
Qvj , j ≥ 1, with v1 = xλ/ ‖xλ‖, that is, to solve the systems(
HT H

)
wj =

(
AT A

)
vj .

Theoretical error analysis

The field of values of A is defined as

F (A) :=

{
yHAy

yHy
, y ∈ C

N\ {0}

}

THEOREM 1 Assume that F (A) ⊂ C
+. Then for the error Em :=

f(A)xλ − ‖xλ‖Vmf(Hm)e1 we have

‖Em‖ ≤ K
λ

am+1

∏m

i=1
hi+1,i ‖xλ‖ ,

where a > 0 is the leftmost point of F (A) and 2 ≤ K ≤ 11.08
(Crouzeix 2007; in the symmetric case K = 1).

The rate of convergence is almost independent of the choice
of λ, and is closely related with the rate of the decay of∏m

i=1
hi+1,i.

THEOREM 2 Let σj , j ≥ 1, be the singular values of an operator A.
If ∑

j≥1

σp
j < ∞ for a certain p > 0

then
∏m

i=1
hi+1,i ≤

(ηep

m

)m/p

where η ≤
1 + p

p

∑

j≥1

σp
j

• For discrete ill-posed problems the rate of decay
of

∏m
i=1

hi+1,i is superlinear and depends on the p-
summability of the singular values of A, i.e., on the de-
gree of ill-posedness of the problem.

• Each Arnoldi-based method (CG, FOM, GMRES) shows
the same rate of convergence

Error analysis in computer arithmetics

ASP. We assume that xλ, solution of (A + λI) xλ = b, is ap-
proximated by xλ with an accuracy depending on the choice
of λ and the method used. In this way, the Arnoldi algorithm
actually constructs the Krylov subspaces Km(A, xλ). We ob-
tain

‖Em‖ ≤ ‖f(A)xλ − ‖xλ‖Vmf(Hm)e1‖ + ‖f(A) (xλ − xλ)‖

• For small λ, f(A) ≈ I and ‖Em‖ ≈ ‖xλ − xλ‖. The
method is not able to improve the accuracy of the solu-
tion of the initial system.

• For large λ we have that xλ ≈ xλ, but even assuming that
‖f(A) (xλ − xλ)‖ ≈ 0, we have another lower bound due
the ill-conditioning of f(A).

ATP. The error is given by

Em := f(Q)xλ − pm−1(Q)xλ

(pm−1 interpolates f at the eigenvalues of Q) where (AT A +

λHT H)xλ = AT b and (AT A + λHT H)xλ = AT b̃. As before

‖Em‖ ≤ ‖f(Q)xλ − pm−1(Q)xλ‖ + ‖f(Q) (xλ − xλ)‖ .

Theoretically we may choose λ very large, thus oversmooth-
ing, in order to reduce the effect of noise. Unfortunately, as
before, f(Q) may be ill-conditioned for λ large. A compro-
mise for the selection of λ is necessary but contrary to the ASP
method, it is difficult to design a theoretical strategy.

Numerical experiments
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Figure 1 - Stability behaviour of the error for the ASP method (1a) and the
ATP method (1b) for different values of λ for the problem BAART 240.
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Figure 2 - Maximum attainable accuracy with respect to the choice of
lambda and with right-hand side affected by Gaussian noise σ = 10

−3

(2b). The dimension of each problem is N = 160.

An example of image restoration

Original Image Blurred and noisy Image

Restored Image with H
12

Restored Image with H
22

Image restoration of
a 100 × 100 subimage of coins.png

from MATLAB’s Image Processing Toolbox with λ = 100.

As filters we consider

H1,2 =

(
I ⊗ H1

H1 ⊗ I

)
, where H1 =




1 −1

. . . . . .
1 −1


 ∈ R

(n−1)×n,

H2,2 =




4 −1 −1

−1 4 −1 −1

. . . . . . . . .
−1 −1 4 −1

−1 −1 4




∈ R
N×N .

Conclusions

• Both methods are stable w.r.t. the choice of the number
of iterations, i.e. they do not require a reliable stopping
rule

• They are as fast and accurate as the most effective itera-
tive solvers

• W.r.t. classical preconditioned iterative solvers, only one
linear system with the preconditioner has to be solved

• They do not require an accurate parameter-choice strat-
egy for λ
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