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Introduction and Motivations

We consider ill-conditioned linear systems
Az =b

We mainly focus the attention on full-rank problems in
which the singular values of A decay gradually to zero.

We want to construct an iterative solver able to overcome
some of the typical drawback of the classical iterative solvers:

e Semi-convergence: the iterates initially approach the so-
lution but quite rapidly diverge

¢ Strong dependence on the parameter-choice strategy: in
order to prevent divergence a reliable stopping criterium
has to be used

e Poor accuracy: typically holds for Krylov type methods
based on the use of A7 A (CGLS)

Extension to Tikhonov regularization

The method can be extended to problems in which the exact
right hand side b is affected by noise. We assume to work with
a perturbed right-hand side b = b+e¢;. Given A and H we solve
the regularized system

(ATA+ AHTH)zy, = A"b.
and then we approximate x by computing
T = (ATA) T (ATA+ AHTH)z\ = f(Q)»

where Q = (HTH )71 (ATA). As before, for the computation
of f(Q)x) we use the standard Arnoldi method projecting
the matrix @ onto the Krylov subspaces generated by () and
zx. Now, at each step we have to compute the vectors w; =
Quj, j > 1, with v1 = x5/ ||z,||, that is, to solve the systems
(HTH) wj; = (ATA) Uj.

Reformulation of the problem

The basic idea is to solve the system Az = b in two steps, first
solving in some way the regularized system

(A+X)zy=0b
and then recovering the solution x from the system
(A4+X)7" Az =y,
that is equivalent to compute
z = f(A)x,

where
f(z) =1+

By the definition of f the attainable accuracy depends on the
conditioning of (A + AJ )y LA Theoretically the best situation
is attained defining A such that

KA+ X)) = r((A+ )" A)
In the SPD case taking

A=V Ay & 1/v/k(A)

where )\, and Ay are respectively the smallest and the largest
eigenvalue of A, we obtain

KA+ = k((A+ M) A) = Vk(A)

The computation of the matrix function

The Arnoldi Algorithm

For the computation of f(A)x) we use the standard Arnoldi
method projecting the matrix A onto the Krylov subspaces
generated by A and =z

K (A, xy) = span{zy, Azy, ..., A" a,)}

For the construction of the subspaces K,,(4,z,) the Arnoldi
algorithm generates an orthonormal sequence {v;},,, with
v1 = x5/ ||zall, such that K,,,(A4, z)) = span {v, v, ..., vy, }. For
every m,

A‘/m = ‘/mHm + h7n+1,7nvm+162~

where V,,, = [v1, Vs, ..., U], Hy, is an upper Hessenberg matrix
with entries h;; = vl Av; and ¢; is the j-th vector of the
canonical basis of R™.

The m-th Arnoldi approximation to z = f(A)x, is defined as
T = ||2Al| Vin f (Hm) €1

At each step of the Arnoldi algorithm we have to compute
the vector w; = Av;. The method theoretically converges in
a finite number of steps. For the computation of f(H,,) we
employ the Schur-Parlett algorithm (Golub and Van Loan
1983).

Theoretical error analysis

The field of values of A is defined as
H
y" Ay
F(A) := { Jty Y € (CN\{O}}

THEOREM 1 Assume that F(A) C C*. Then for the error E,, :=
f(A)xx — [Jaal| Vinf (Hm)er we have

A m
1Bl < K I_LZ1 it llzall s

where a > 0 is the leftmost point of F(A) and 2 < K < 11.08
(Crouzeix 2007; in the symmetric case K = 1).

The rate of convergence is almost independent of the choice
of A\, and is closely related with the rate of the decay of

[T P
THEOREM 2 Let 0}, j > 1, be the singular values of an operator A.
If

Z o < oo for a certain p > 0

j=1

then

m nep\ m/p 1+p »
< (2 , <-TF ;
Hi:] hiv1,; < ( - ) where n < » ZO']

Jj=1

e For discrete ill-posed problems the rate of decay
of T[X, hit1, is superlinear and depends on the p-
summability of the singular values of A, i.e., on the de-
gree of ill-posedness of the problem.

e Each Arnoldi-based method (CG, FOM, GMRES) shows
the same rate of convergence

Numerical experiments
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Figure 1 - Stability behaviour of the error for the ASP method (1a) and the
ATP method (1b) for different values of A for the problem BAART 240.

Figure 2a

Figure 2 - Maximum attainable accuracy with respect to the choice of
lambda and with right-hand side affected by Gaussian noise o = 1073
(2b). The dimension of each problem is N = 160.

An example of image restoration

Image restoration of
a 100 x 100 subimage of coins.png
from MATLAB’s Image Processing Toolbox with A = 100.

As filters we consider
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Error analysis in computer arithmetics

ASP. We assume that ), solution of (A + Al)z\ = b, is ap-
proximated by 7, with an accuracy depending on the choice
of A and the method used. In this way, the Arnoldi algorithm
actually constructs the Krylov subspaces K,,(A,T,). We ob-
tain

[Emll < [F(A)Zx = [[ZAll Vinf (Hi)es || + £ (A) (2 = ZH)|

e For small )\, f(A) ~ I and ||E.| =~ |lzx—T,|. The
method is not able to improve the accuracy of the solu-
tion of the initial system.

o For large A we have that z) ~ 7,, but even assuming that
Il (A) (xx — T))|| =~ 0, we have another lower bound due
the ill-conditioning of f(A).

ATP. The error is given by
En = f(Q)«T)\ _pm—l(Q)f)\

(pm—1 interpolates f at the eigenvalues of Q) where (ATA +
MHTH)zy = ATband (ATA + AHTH)z), = ATb. As before

[Emll < 1 F(@)Tx = pm-1(Q)ZA]l + [1/(Q) (xx =TI

Theoretically we may choose A very large, thus oversmooth-
ing, in order to reduce the effect of noise. Unfortunately, as
before, f(Q) may be ill-conditioned for A large. A compro-
mise for the selection of )\ is necessary but contrary to the ASP
method, it is difficult to design a theoretical strategy.

Conclusions

e Both methods are stable w.r.t. the choice of the number
of iterations, i.e. they do not require a reliable stopping
rule

e They are as fast and accurate as the most effective itera-
tive solvers

e W.rt. classical preconditioned iterative solvers, only one
linear system with the preconditioner has to be solved

e They do not require an accurate parameter-choice strat-
egy for A
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