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Preface

Preface to the First Edition

This textbook is an introduction to Scientific Computing. We will
illustrate several numerical methods for the computer solution of cer-
tain classes of mathematical problems that cannot be faced by paper
and pencil. We will show how to compute the zeros or the integrals
of continuous functions, solve linear systems, approximate functions by
polynomials and construct accurate approximations for the solution of
differential equations.

With this aim, in Chapter 1 we will illustrate the rules of the game
that computers adopt when storing and operating with real and complex
numbers, vectors and matrices.

In order to make our presentation concrete and appealing we will
adopt the programming environment MATLAB

� 1 as a faithful com-
panion. We will gradually discover its principal commands, statements
and constructs. We will show how to execute all the algorithms that we
introduce throughout the book. This will enable us to furnish an im-
mediate quantitative assessment of their theoretical properties such as
stability, accuracy and complexity. We will solve several problems that
will be raised through exercises and examples, often stemming from spe-
cific applications.

Several graphical devices will be adopted in order to render the read-
ing more pleasant. We will report in the margin the MATLAB command
along side the line where that command is being introduced for the first

time. The symbol will be used to indicate the presence of exercises,

the symbol to indicate the presence of a MATLAB program, while
1 MATLAB is a trademark of TheMathWorks Inc., 24 Prime Park Way, Nat-

ick, MA 01760, Tel: 001+508-647-7000, Fax: 001+508-647-7001.
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the symbol will be used when we want to attract the attention of
the reader on a critical or surprising behavior of an algorithm or a pro-
cedure. The mathematical formulae of special relevance are put within a

frame. Finally, the symbol indicates the presence of a display panel
summarizing concepts and conclusions which have just been reported
and drawn.

At the end of each chapter a specific section is devoted to mentioning
those subjects which have not been addressed and indicate the biblio-
graphical references for a more comprehensive treatment of the material
that we have carried out.

Quite often we will refer to the textbook [QSS06] where many issues
faced in this book are treated at a deeper level, and where theoretical re-
sults are proven. For a more thorough description of MATLAB we refer
to [HH05]. All the programs introduced in this text can be downloaded
from the web address

mox.polimi.it/qs
No special prerequisite is demanded of the reader, with the exception

of an elementary course of Calculus.
However, in the course of the first chapter, we recall the principal re-

sults of Calculus and Geometry that will be used extensively throughout
this text. The less elementary subjects, those which are not so neces-
sary for an introductory educational path, are highlighted by the special

symbol .
We express our thanks to Thanh-Ha Le Thi from Springer-Verlag

Heidelberg, and to Francesca Bonadei and Marina Forlizzi from Springer-
Italia for their friendly collaboration throughout this project. We grate-
fully thank Prof. Eastham of Cardiff University for editing the language
of the whole manuscript and stimulating us to clarify many points of our
text.

Milano and Lausanne Alfio Quarteroni
May 2003 Fausto Saleri

Preface to the Second Edition

In this second edition we have enriched all the Chapters by intro-
ducing several new problems. Moreover, we have added new methods
for the numerical solution of linear and nonlinear systems, the eigen-
value computation and the solution of initial-value problems. Another
relevant improvement is that we also use the Octave programming en-
vironment. Octave is a reimplementation of part of MATLAB which
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includes many numerical facilities of MATLAB and is freely distributed
under the GNU General Public License.

Throughout the book, we shall often make use of the expression
“MATLAB command”: in this case, MATLAB should be understood
as the language which is the common subset of both programs MAT-

LAB and Octave. We have striven to ensure a seamless usage of our
codes and programs under both MATLAB and Octave. In the few cases
where this does not apply, we shall write a short explanation notice at
the end of each corresponding section.

For this second edition we would like to thank Paola Causin for hav-
ing proposed several problems, Christophe Prud´homme, John W. Eaton
and David Bateman for their help with Octave, and Silvia Quarteroni
for the translation of the new sections. Finally, we kindly acknowledge
the support of the Poseidon project of the Ecole Polytechnique Fédérale
de Lausanne.

Lausanne and Milano Alfio Quarteroni
May 2006 Fausto Saleri
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1

What can’t be ignored

In this book we will systematically use elementary mathematical con-
cepts which the reader should know already, yet he or she might not
recall them immediately.

We will therefore use this chapter to refresh them, as well as to in-
troduce new concepts which pertain to the field of Numerical Analysis.
We will begin to explore their meaning and usefulness with the help of
MATLAB (MATrix LABoratory), an integrated environment for pro-
gramming and visualization in scientific computing. We shall also use
GNU Octave (in short, Octave) which is mostly compatible with MAT-

LAB. In Sections 1.6 and 1.7 we will give a quick introduction to MAT-

LAB and Octave, which is sufficient for the use that we are going to
make in this book. We also make some notes about differences between
MATLAB and Octave which are relevant for this book. However, we
refer the interested readers to the manual [HH05] for a description of
the MATLAB language and to the manual [Eat02] for a description of
Octave.

Octave is a reimplementation of part of MATLAB which includes a
large part of the numerical facilities of MATLAB and is freely distrib-
uted under the GNU General Public License.

Through the book, we shall often make use of the expression “MAT-

LAB command”: in this case, MATLAB should be understood as the
language which is the common subset of both programs MATLAB and
Octave.

We have striven to ensure a seamless usage of our codes and programs
under both MATLAB and Octave. In the few cases where this does
not apply, we will write a short explanation notice at the end of each
corresponding section.

In the present Chapter we have condensed notions which are typical
of courses in Calculus, Linear Algebra and Geometry, yet rephrasing
them in a way that is suitable for use in scientific computing.



2 1 What can’t be ignored

1.1 Real numbers

While the set R of real numbers is known to everyone, the way in which
computers treat them is perhaps less well known. On one hand, since
machines have limited resources, only a subset F of finite dimension of
R can be represented. The numbers in this subset are called floating-
point numbers. On the other hand, as we shall see in Section 1.1.2, F

is characterized by properties that are different from those of R. The
reason is that any real number x is in principle truncated by the machine,
giving rise to a new number (called the floating-point number), denoted
by fl(x), which does not necessarily coincide with the original number
x.

1.1.1 How we represent them

To become acquainted with the differences between R and F, let us make
a few experiments which illustrate the way that a computer deals with
real numbers. Note that whether we use MATLAB or Octave rather
than another language is just a matter of convenience. The results of
our calculation, indeed, depend primarily on the manner in which the
computer works, and only to a lesser degree on the programming lan-
guage. Let us consider the rational number x = 1/7, whose decimal
representation is 0.142857. This is an infinite representation, since the
number of decimal digits is infinite. To get its computer representation,
let us introduce after the prompt (the symbol >>) the ratio 1/7 and>>
obtain
>> 1/7

ans =
0.1429

which is a number with only four decimal digits, the last being different
from the fourth digit of the original number.

Should we now consider 1/3 we would find 0.3333, so the fourth dec-
imal digit would now be exact. This behavior is due to the fact that real
numbers are rounded on the computer. This means, first of all, that only
an a priori fixed number of decimal digits are returned, and moreover
the last decimal digit which appears is increased by unity whenever the
first disregarded decimal digit is greater than or equal to 5.

The first remark to make is that using only four decimal digits to
represent real numbers is questionable. Indeed, the internal representa-
tion of the number is made of as many as 16 decimal digits, and what we
have seen is simply one of several possible MATLAB output formats.
The same number can take different expressions depending upon the
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specific format declaration that is made. For instance, for the number
1/7, some possible output formats are:

format long yields 0.14285714285714,
format short e ” 1.4286e − 01,
format long e ” 1.428571428571428e − 01,
format short g ” 0.14286,
format long g ” 0.142857142857143.

Some of them are more coherent than others with the internal com-

format

puter representation. As a matter of fact, in general a computer stores
a real number in the following way

x = (−1)s · (0.a1a2 . . . at) · βe = (−1)s · m · βe−t, a1 �= 0 (1.1)

where s is either 0 or 1, β (a positive integer larger than or equal to 2)
is the basis adopted by the specific computer at hand, m is an integer
called the mantissa whose length t is the maximum number of digits ai

(with 0 ≤ ai ≤ β− 1) that are stored, and e is an integral number called
the exponent. The format long e is the one which most resembles this
representation, and e stands for exponent; its digits, preceded by the
sign, are reported to the right of the character e. The numbers whose
form is given in (1.1) are called floating-point numbers, since the position
of the decimal point is not fixed. The digits a1a2 . . . ap (with p ≤ t) are
often called the p first significant digits of x.

The condition a1 �= 0 ensures that a number cannot have multiple
representations. For instance, without this restriction the number 1/10
could be represented (in the decimal basis) as 0.1 · 100, but also as 0.01 ·
101, etc..

The set F is therefore fully characterized by the basis β, the number
of significant digits t and the range (L,U) (with L < 0 and U > 0) of
variation of the index e. Thus it is denoted as F(β, t, L, U). For instance,
in MATLAB we have F = F(2, 53,−1021, 1024) (indeed, 53 significant
digits in basis 2 correspond to the 15 significant digits that are shown
by MATLAB in basis 10 with the format long).

Fortunately, the roundoff error that is inevitably generated whenever
a real number x �= 0 is replaced by its representative fl(x) in F, is small,
since

|x − fl(x)|
|x| ≤ 1

2
εM (1.2)

where εM = β1−t provides the distance between 1 and its closest floating-
point number greater than 1. Note that εM depends on β and t. For
instance, in MATLAB εM can be obtained through the command eps, eps
and we obtain εM = 2−52 � 2.22·10−16. Let us point out that in (1.2) we
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estimate the relative error on x, which is undoubtedly more meaningful
than the absolute error |x−fl(x)|. As a matter of fact, the latter doesn’t
account for the order of magnitude of x whereas the former does.

Number 0 does not belong to F, as in that case we would have a1 = 0
in (1.1): it is therefore handled separately. Moreover, L and U being
finite, one cannot represent numbers whose absolute value is either arbi-
trarily large or arbitrarily small. Precisely, the smallest and the largest
positive real numbers of F are given respectively by

xmin = βL−1, xmax = βU (1 − β−t).

In MATLAB these values can be obtained through the commands
realmin and realmax, yieldingrealmin

realmax
xmin = 2.225073858507201 · 10−308,
xmax = 1.7976931348623158 · 10+308.

A positive number smaller than xmin produces a message of under-
flow and is treated either as 0 or in a special way (see, e.g., [QSS06],
Chapter 2). A positive number greater than xmax yields instead a mes-
sage of overflow and is stored in the variable Inf (which is the computerInf
representation of +∞).

The elements in F are more dense near xmin, and less dense while
approaching xmax. As a matter of fact, the number in F nearest to xmax

(to its left) and the one nearest to xmin (to its right) are, respectively

x−
max = 1.7976931348623157 · 10+308,

x+
min = 2.225073858507202 · 10−308.

Thus x+
min − xmin � 10−323, while xmax − x−

max � 10292 (!). However,
the relative distance is small in both cases, as we can infer from (1.2).

1.1.2 How we operate with floating-point numbers

Since F is a proper subset of R, elementary algebraic operations on
floating-point numbers do not enjoy all the properties of analogous op-
erations on R. Precisely, commutativity still holds for addition (that is
fl(x + y) = fl(y + x)) as well as for multiplication (fl(xy) = fl(yx)),
but other properties such as associativity and distributivity are violated.
Moreover, 0 is no longer unique. Indeed, let us assign the variable a the
value 1, and execute the following instructions:
>> a = 1; b=1; while a+b ~= a; b=b/2; end

The variable b is halved at every step as long as the sum of a and b
remains different (~=) from a. Should we operate on real numbers, this
program would never end, whereas in our case it ends after a finite
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number of steps and returns the following value for b: 1.1102e-16=
εM/2. There exists therefore at least one number b different from 0 such
that a+b=a. This is possible since F is made up of isolated numbers; when
adding two numbers a and b with b<a and b less than εM , we always
obtain that a+b is equal to a. The MATLAB number a+eps(a) is the
smallest number in F larger than a. Thus the sum a+b will return a for
all b < eps(a).

Associativity is violated whenever a situation of overflow or underflow
occurs. Take for instance a=1.0e+308, b=1.1e+308 and c=-1.001e+308,
and carry out the sum in two different ways. We find that

a + (b + c) = 1.0990e + 308, (a + b) + c = Inf.

This is a particular instance of what occurs when one adds two num-
bers with opposite sign but similar absolute value. In this case the result
may be quite inexact and the situation is referred to as loss, or cancel-
lation, of significant digits. For instance, let us compute ((1 + x)− 1)/x
(the obvious result being 1 for any x �= 0):
>> x = 1.e-15; ((1+x)-1)/x

ans = 1.1102

This result is rather imprecise, the relative error being larger than 11%!
Another case of numerical cancellation is encountered while evaluat-

ing the function

f(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x − 1 (1.3)

at 401 equispaced points with abscissa in [1 − 2 · 10−8, 1 + 2 · 10−8]. We
obtain the chaotic graph reported in Figure 1.1 (the real behavior is that
of (x−1)7, which is substantially constant and equal to the null function
in such a tiny neighborhood of x = 1). The MATLAB commands that
have generated this graph will be illustrated in Section 1.4.

Finally, it is interesting to notice that in F there is no place for
indeterminate forms such as 0/0 or ∞/∞. Their presence produces what
is called not a number (NaN in MATLAB or in Octave), for which the NaN
normal rules of calculus do not apply.

Remark 1.1 Whereas it is true that roundoff errors are usually small, when
repeated within long and complex algorithms, they may give rise to catastrophic
effects. Two outstanding cases concern the explosion of the Arianne missile on
June 4, 1996, engendered by an overflow in the computer on board, and the
failure of the mission of an American Patriot missile, during the Gulf War in
1991, because of a roundoff error in the computation of its trajectory.

An example with less catastrophic (but still troublesome) consequences is
provided by the sequence

z2 = 2, zn+1 = 2n−1/2
√

1 −
√

1 − 41−nz2
n, n = 2, 3, . . . (1.4)
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Fig. 1.1. Oscillatory behavior of the function (1.3) caused by cancellation
errors

which converges to π when n tends to infinity. When MATLAB is used to
compute zn, the relative error found between π and zn decreases for the 16
first iterations, then grows because of roundoff errors (as shown in Figure 1.2).
•
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Fig. 1.2. Logarithm of the relative error |π − zn|/π versus n

See the Exercises 1.1-1.2.

1.2 Complex numbers

Complex numbers, whose set is denoted by C, have the form z = x + iy,
where i =

√
−1 is the imaginary unit (that is i2 = −1), while x = Re(z)

and y = Im(z) are the real and imaginary part of z, respectively. They
are generally represented on the computer as pairs of real numbers.

Unless redefined otherwise, MATLAB variables i as well as j denote
the imaginary unit. To introduce a complex number with real part x and
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Fig. 1.3. Output of the MATLAB command compass

imaginary part y, one can just write x+i*y; as an alternative, one can
use the command complex(x,y). Let us also mention the exponential complex
and the trigonometric representations of a complex number z, that are
equivalent thanks to the Euler formula

z = ρeiθ = ρ(cos θ + i sin θ); (1.5)

ρ =
√

x2 + y2 is the absolute value of the complex number (it can be
obtained by setting abs(z)) while θ is its argument, that is the angle abs
between the x axis and the straight line issuing from the origin and
passing from the point of coordinate x, y in the complex plane. θ can be
found by typing angle(z). The representation (1.5) is therefore: angle

abs(z) ∗ (cos(angle(z)) + i ∗ sin(angle(z))).

The graphical polar representation of one or more complex numbers
can be obtained through the command compass(z), where z is either compass

a single complex number or a vector whose components are complex
numbers. For instance, by typing
>> z = 3+i*3; compass(z);

one obtains the graph reported in Figure 1.3.
For any given complex number z, one can extract its real part with

the command real(z) and its imaginary part with imag(z). Finally, the
real
imag

complex conjugate z̄ = x − iy of z, can be obtained by simply writing
conj(z). conj

In MATLAB all operations are carried out by implicitly assuming
that the operands as well as the result are complex. We may therefore
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find some apparently surprising results. For instance, if we compute the
cube root of −5 with the MATLAB command (-5)^(1/3), instead of
−1.7099 . . . we obtain the complex number 0.8550 + 1.4809i. (We antic-
ipate the use of the symbol ^ for the power exponent.) As a matter of

^ fact, all numbers of the form ρei(θ+2kπ), with k an integer, are indistin-
guishable from z = ρeiθ. By computing 3

√
z we find 3

√
ρei(θ/3+2kπ/3), that

is, the three distinct roots

z1 = 3
√

ρeiθ/3, z2 = 3
√

ρei(θ/3+2π/3), z3 = 3
√

ρei(θ/3+4π/3).

MATLAB will select the one that is encountered by spanning the com-
plex plane counterclockwise beginning from the real axis. Since the polar
representation of z = −5 is ρeiθ with ρ = 5 and θ = −π, the three roots
are (see Figure 1.4 for their representation in the Gauss plane)

z1 = 3
√

5(cos(−π/3) + i sin(−π/3)) � 0.8550 − 1.4809i,

z2 = 3
√

5(cos(π/3) + i sin(π/3)) � 0.8550 + 1.4809i,

z3 = 3
√

5(cos(−π) + i sin(−π)) � −1.7100.

The second root is the one which is selected.
Finally, by (1.5) we obtain

cos(θ) =
1
2
(
eiθ + e−iθ

)
, sin(θ) =

1
2i

(
eiθ − e−iθ

)
. (1.6)

Octave 1.1 The command compass is not available in Octave, however
it can be emulated with the following function:
function compass(z)
xx = [0 1 .8 1 .8].’;
yy = [0 0 .08 0 -.08].’;
arrow = xx + yy.*sqrt (-1);
z = arrow * z;
[th,r] = cart2pol(real(z),imag(z));
polar(th,r);
return

�

1.3 Matrices

Let n and m be positive integers. A matrix with m rows and n columns
is a set of m×n elements aij , with i = 1, . . . ,m, j = 1, . . . , n, represented
by the following table:
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Re(z)

Im(z)

z1

z2

z3

π
3

ρ

Fig. 1.4. Representation in the complex plane of the three complex cube roots
of the real number −5

A =







a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn







. (1.7)

In compact form we write A = (aij). Should the elements of A be real
numbers, we write A ∈ Rm×n, and A ∈ Cm×n if they are complex.

Square matrices of dimension n are those with m = n. A matrix
featuring a single column is a column vector, whereas a matrix featuring
a single row is a row vector.

In order to introduce a matrix in MATLAB one has to write the
elements from the first to the last row, introducing the character ; to
separate the different rows. For instance, the command
>> A = [ 1 2 3; 4 5 6]

produces

A =
1 2 3
4 5 6

that is, a 2 × 3 matrix whose elements are indicated above. The m × n
matrix zeros(m,n) has all null entries, eye(m,n) has all null entries zeros
unless aii, i = 1, . . . ,min(m,n), on the diagonal that are all equal to 1.
The n × n identity matrix is obtained with the command eye(n): its eye
elements are δij = 1 if i = j, 0 otherwise, for i, j = 1, . . . , n. Finally, by
the command A=[ ] we can initialize an empty matrix.

We recall the following matrix operations:

1. if A = (aij) and B = (bij) are m × n matrices, the sum of A and B
is the matrix A + B = (aij + bij);
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2. the product of a matrix A by a real or complex number λ is the
matrix λA = (λaij);

3. the product of two matrices is possible only for compatible sizes,
precisely if A is m× p and B is p× n, for some positive integer p. In
that case C = AB is an m × n matrix whose elements are

cij =
p∑

k=1

aikbkj , for i = 1, . . . ,m, j = 1, . . . , n.

Here is an example of the sum and product of two matrices.
>> A=[1 2 3; 4 5 6];
>> B=[7 8 9; 10 11 12];
>> C=[13 14; 15 16; 17 18];
>> A+B

ans =
8 10 12
14 16 18

>> A*C

ans =
94 100
229 244

Note that MATLAB returns a diagnostic message when one tries to
carry out operations on matrices with incompatible dimensions. For in-
stance:
>> A=[1 2 3; 4 5 6];
>> B=[7 8 9; 10 11 12];
>> C=[13 14; 15 16; 17 18];
>> A+C

??? Error using ==> +
Matrix dimensions must agree.

>> A*B

??? Error using ==> *
Inner matrix dimensions must agree.

If A is a square matrix of dimension n, its inverse (provided it exists)
is a square matrix of dimension n, denoted by A−1, which satisfies the
matrix relation AA−1 = A−1A = I. We can obtain A−1 through the
command inv(A). The inverse of A exists iff the determinant of A, ainv
number denoted by det(A), is non-zero. The latter condition is satisfied
iff the column vectors of A are linearly independent (see Section 1.3.1).
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The determinant of a square matrix is defined by the following recursive
formula (Laplace rule):

det(A) =






a11 if n = 1,

n∑

j=1

∆ijaij , for n > 1, ∀i = 1, . . . , n,
(1.8)

where ∆ij = (−1)i+jdet(Aij) and Aij is the matrix obtained by elim-
inating the i-th row and j-th column from matrix A. (The result is
independent of the row index i.) In particular, if A ∈ R2×2 one has

det(A) = a11a22 − a12a21,

while if A ∈ R3×3 we obtain

det(A) = a11a22a33 + a31a12a23 + a21a13a32

−a11a23a32 − a21a12a33 − a31a13a22.

We recall that if A = BC, then det(A) = det(B)det(C).
To invert a 2×2 matrix and compute its determinant we can proceed

as follows:
>> A=[1 2; 3 4];
>> inv(A)

ans =
-2.0000 1.0000
1.5000 -0.5000

>> det(A)

ans =
-2

Should a matrix be singular, MATLAB returns a diagnostic message,
followed by a matrix whose elements are all equal to Inf, as illustrated
by the following example:
>> A=[1 2; 0 0];
>> inv(A)

Warning: Matrix is singular to working precision.
ans =

Inf Inf
Inf Inf
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For special classes of square matrices, the computation of inverses and
determinants is rather simple. In particular, if A is a diagonal matrix, i.e.
one for which only the diagonal elements akk, k = 1, . . . , n, are non-zero,
its determinant is given by det(A) = a11a22 · · · ann. In particular, A is
non-singular iff akk �= 0 for all k. In such a case the inverse of A is still
a diagonal matrix with elements a−1

kk .
Let v be a vector of dimension n. The command diag(v) producesdiag

a diagonal matrix whose elements are the components of vector v. The
more general command diag(v,m) yields a square matrix of dimension
n+abs(m) whose m-th upper diagonal (i.e. the diagonal made of elements
with indices i, i + m) has elements equal to the components of v, while
the remaining elements are null. Note that this extension is valid also
when m is negative, in which case the only affected elements are those of
lower diagonals.
For instance if v = [1 2 3] then:
>> A=diag(v,-1)

A =
0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

Other special cases are the upper triangular and lower triangular
matrices. A square matrix of dimension n is lower (respectively, upper)
triangular if all elements above (respectively, below) the main diagonal
are zero. Its determinant is simply the product of the diagonal elements.

Through the commands tril(A) and triu(A), one can extract fromtril
triu the matrix A of dimension n its lower and upper triangular part. Their

extensions tril(A,m) or triu(A,m), with m ranging from -n and n, allow
the extraction of the triangular part augmented by, or deprived of, m
extradiagonals.
For instance, given the matrix A =[3 1 2; -1 3 4; -2 -1 3], by the
command L1=tril(A) we obtain

L1 =
3 0 0
-1 3 0
-2 -1 3

while, by L2=tril(A,1), we obtain

L2 =
3 1 0

-1 3 4
-2 -1 3
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We recall that if A ∈ Rm×n its transpose AT ∈ Rn×m is the matrix
obtained by interchanging rows and columns of A. When n = m and A =
AT the matrix A is called symmetric. Finally, A’ denotes the transpose A’
of A if A is real, or its conjugate transpose (that is, AH) if A is complex. A
square complex matrix that coincides with its conjugate transpose AH

is called hermitian.
A similar notation, v’, is used for the transpose conjugate vH of the v’

vector v. If vi denote the components of v, the adjoint vector vH is a
row-vector whose components are the complex conjugate v̄i of vi.

Octave 1.2 Also Octave returns a diagnostic message when one tries
to carry out operations on matrices having non-compatible dimensions.
If we repeat the previous MATLAB examples we obtain:
octave:1> A=[1 2 3; 4 5 6];
octave:2> B=[7 8 9; 10 11 12];
octave:3> C=[13 14; 15 16; 17 18];
octave:4> A+C

error: operator +: nonconformant arguments (op1 is
2x3, op2 is 3x2)
error: evaluating binary operator ‘+’ near line 2,
column 2

octave:5> A*B

error: operator *: nonconformant arguments (op1 is
2x3, op2 is 2x3)
error: evaluating binary operator ‘*’ near line 2,
column 2

If A is singular, Octave returns a diagnostic message followed by the
matrix to be inverted, as illustrated by the following example:
octave:1> A=[1 2; 0 0];
octave:2> inv(A)

warning: inverse: matrix singular to machine
precision, rcond = 0
ans =
1 2
0 0

�
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1.3.1 Vectors

Vectors will be indicated in boldface; precisely, v will denote a column
vector whose i-th component is denoted by vi. When all components are
real numbers we can write v ∈ Rn.

In MATLAB, vectors are regarded as particular cases of matrices.
To introduce a column vector one has to insert between square brackets
the values of its components separated by semi-colons, whereas for a row
vector it suffices to write the component values separated by blanks or
commas. For instance, through the instructions v = [1;2;3] and w =
[1 2 3] we initialize the column vector v and the row vector w, both
of dimension 3. The command zeros(n,1) (respectively, zeros(1,n))zeros
produces a column (respectively, row) vector of dimension n with null
elements, which we will denote by 0. Similarly, the command ones(n,1)ones
generates the column vector, denoted with 1, whose components are all
equal to 1.

A system of vectors {y1, . . . ,ym} is linearly independent if the rela-
tion

α1y1 + . . . + αmym = 0

implies that all coefficients α1, . . . , αm are null. A system B = {y1, . . . ,
yn} of n linearly independent vectors in Rn (or Cn) is a basis for Rn (or
Cn), that is, any vector w in Rn can be written as a linear combination
of the elements of B,

w =
n∑

k=1

wkyk,

for a unique possible choice of the coefficients {wk}. The latter are called
the components of w with respect to the basis B. For instance, the canon-
ical basis of Rn is the set of vectors {e1, . . . , en}, where ei has its i-th
component equal to 1, and all other components equal to 0 and is the
one which is normally used.

The scalar product of two vectors v,w ∈ Rn is defined as

(v,w) = wT v =
n∑

k=1

vkwk,

{vk} and {wk} being the components of v and w, respectively. The
corresponding command is w’*v or else dot(v,w), where now the apexdot
denotes transposition of a vector. The length (or modulus) of a vector v
is given by

‖v‖ =
√

(v,v) =

√√√√
n∑

k=1

v2
k
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and can be computed through the command norm(v).norm
The vector product between two vectors v,w ∈ Rn, n ≥ 3 ,v×w or

v∧w, is the vector u ∈ Rn orthogonal to both v and w whose modulus
is |u| = |v| |w| sin(α), where α is the angle formed by v and w. It can
be obtained by the command cross(v,w).

The visualization of a vector can be obtained by the MATLAB com-
mand quiver in R2 and quiver3 in R3.

cross

quiver

quiver3The MATLAB command x.*y or x.^2 indicates that these opera-
.*
. ˆ

tions should be carried out component by component. For instance if we
define the vectors
>> v = [1; 2; 3]; w = [4; 5; 6];

the instruction
>> w’*v

ans =
32

provides their scalar product, while
>> w.*v

ans =
4

10
18

returns a vector whose i-th component is equal to xiyi.
Finally, we recall that a vector v ∈ Cn, with v �= 0, is an eigenvector

of a matrix A ∈ Cn×n associated with the complex number λ if

Av = λv.

The complex number λ is called eigenvalue of A. In general, the com-
putation of eigenvalues is quite difficult. Exceptions are represented by
diagonal and triangular matrices, whose eigenvalues are their diagonal
elements.

See the Exercises 1.3-1.6.

1.4 Real functions

This chapter will deal with manipulation of real functions defined on an
interval (a, b). The command fplot(fun,lims) plots the graph of the fplot
function fun (which is stored as a string of characters) on the interval
(lims(1),lims(2)). For instance, to represent f(x) = 1/(1 + x2) on the
interval (−5, 5), we can write
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>> fun =’1/(1+x.^2)’; lims =[-5,5]; fplot(fun ,lims);

or, more directly,
>> fplot(’1/(1+x.^2)’,[-5 5]);

In MATLAB the graph is obtained by sampling the function on a
set of non-equispaced abscissae and reproduces the true graph of f with
a tolerance of 0.2%. To improve the accuracy we could use the command
>> fplot(fun ,lims ,tol ,n,’LineSpec ’,P1,P2 ,...)

where tol indicates the desired tolerance and the parameter n(≥ 1)
ensures that the function will be plotted with a minimum of n+1 points.
LineSpec is a string specifying the style or the color of the line used for
plotting the graph. For example, LineSpec=’--’ is used for a dashed
line, LineSpec=’r-.’ for a red dashed-dotted line, etc. To use default
values for tol, n or LineSpec one can pass empty matrices ([ ]).

To evaluate a function fun at a point x we write y=eval(fun), aftereval
having initialized x. The corresponding value is stored in y. Note that x,
and correspondingly y, can be a vector. When using this command, the
restriction is that the argument of the function fun must be x. When
the argument of fun has a different name (this is often the case when
this argument is generated at the interior of a program) the command
eval would be replaced by feval (see Remark 1.2).

Finally, we point out that if we write grid on after the commandgrid
fplot, we can obtain the background-grid as that in Figure 1.1.

Octave 1.3 In Octave, using the command fplot(fun,lims,n) the
graph is obtained by sampling the function defined in fun (that is the
name of a function or an expression containing x) on a set of non-
equispaced abscissae. The optional parameter n (≥ 1) ensures that the
function will be plotted with a minimum of n+1 points. For instance, to
represent f(x) = 1/(1 + x2) we use the following commands:
>> fun =’1./(1+x.^2)’; lims =[-5,5];
>> fplot(fun ,lims)

�

1.4.1 The zeros

We recall that if f(α) = 0, α is called zero of f or root of the equation
f(x) = 0. A zero is simple if f ′(α) �= 0, multiple otherwise.

From the graph of a function one can infer (within a certain tolerance)
which are its real zeros. The direct computation of all zeros of a given
function is not always possible. For functions which are polynomials with
real coefficients of degree n, that is, of the form
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pn(x) = a0 + a1x + a2x
2 + . . . + anxn =

n∑

k=0

akxk, ak ∈ R, an �= 0,

we can obtain the only zero α = −a0/a1, when n = 1 (i.e. p1 represents
a straight line), or the two zeros, α+ and α−, when n = 2 (this time p2

represents a parabola) α± = (−a1 ±
√

a2
1 − 4a0a2)/(2a2).

However, there are no explicit formulae for the zeros of an arbitrary
polynomial pn when n ≥ 5.

In the sequel we will denote with Pn the space of polynomials of
degree less than or equal to n,

pn(x) =
n∑

k=0

akxk (1.9)

where the ak are given coefficients, real or complex.
Also the number of zeros of a function cannot in general be deter-

mined a priori. An exception is provided by polynomials, for which the
number of zeros (real or complex) coincides with the polynomial degree.
Moreover, should α = x + iy with y �= 0 be a zero of a polynomial with
degree n ≥ 2, its complex conjugate ᾱ = x − iy is also a zero.

To compute in MATLAB one zero of a function fun, near a given
value x0, either real or complex, the command fzero(fun,x0) can be fzero
used. The result is an approximate value of the desired zero, and also the
interval in which the search was made. Alternatively, using the command
fzero(fun,[x0 x1]), a zero of fun is searched for in the interval whose
extremes are x0,x1, provided f changes sign between x0 and x1.

Let us consider, for instance, the function f(x) = x2−1+ex. Looking
at its graph we see that there are two zeros in (−1, 1). To compute them
we need to execute the following commands:
fun=inline(’x^2 - 1 + exp(x)’,’x’)
fzero(fun ,1)

ans =
5.4422e-18

fzero(fun ,-1)

ans =
-0.7146

Alternatively, after noticing from the function plot that one zero is
in the interval [−1,−0.2] and another in [−0.2, 1], we could have written
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fzero(fun ,[-0.2 1])

ans =
-5.2609e-17

fzero(fun ,[-1 -0.2])

ans =
-0.7146

The result obtained for the first zero is slightly different than the one
obtained previously, due to a different initialization of the algorithm
implemented in fzero.

In Chapter 2 we will introduce and investigate several methods for
the approximate computation of the zeros of an arbitrary function.

Octave 1.4 In Octave, fzero accepts only functions defined using the
keyword function and its corresponding syntax as follows:
function y = fun(x)

y = x.^2 - 1 + exp(x);
end

fzero ("fun", 1)

ans = 2.3762e-17

fzero ("fun",-1)

ans = -0.71456

�

1.4.2 Polynomials

Polynomials are very special functions and there is a special MATLAB

toolbox1 polyfun for their treatment. The command polyval is apt topolyval
evaluate a polynomial at one or several points. Its input arguments are
a vector p and a vector x, where the components of p are the polynomial
coefficients stored in decreasing order, from an down to a0, and the
components of x are the abscissae where the polynomial needs to be
evaluated. The result can be stored in a vector y by writing
>> y = polyval(p,x)

1 A toolbox is a collection of special-purpose MATLAB functions
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For instance, the values of p(x) = x7+3x2−1, at the equispaced abscissae
xk = −1+k/4 for k = 0, . . . , 8, can be obtained by proceeding as follows:
>> p = [1 0 0 0 0 3 0 -1]; x = [ -1:0.25:1];
>> y = polyval(p,x)

y =
Columns 1 through 5:

1.00000 0.55402 -0.25781 -0.81256 -1.00000
Columns 6 through 9:

-0.81244 -0.24219 0.82098 3.00000

Alternatively, one could use the command feval. However, in such
case one should provide the entire analytic expression of the polynomial
in the input string, and not simply its coefficients.

The program roots provides an approximation of the zeros of a poly- roots
nomial and requires only the input of the vector p.

For instance, we can compute the zeros of p(x) = x3 − 6x2 + 11x− 6
by writing
>> p = [1 -6 11 -6]; format long;
>> roots(p)

ans =
3.00000000000000
2.00000000000000
1.00000000000000

Unfortunately, the result is not always that accurate. For instance,
for the polynomial p(x) = (x + 1)7, whose unique zero is α = −1 with
multiplicity 7, we find (quite surprisingly)
>> p = [1 7 21 35 35 21 7 1];
>> roots(p)

ans =
-1.0101
-1.0063 + 0.0079i
-1.0063 - 0.0079i
-0.9977 + 0.0099i
-0.9977 - 0.0099i
-0.9909 + 0.0044i
-0.9909 - 0.0044i

In fact, numerical methods for the computation of the polynomial
roots with multiplicity larger than one are particularly subject to round-
off errors (see Section 2.5.2).
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The command p=conv(p1,p2) returns the coefficients of the poly-conv
nomial given by the product of two polynomials whose coefficients are
contained in the vectors p1 and p2.
Similarly, the command [q,r]=deconv(p1,p2) provides the coefficientsdeconv
of the polynomials obtained on dividing p1 by p2, i.e. p1 = conv(p2,q)
+ r. In other words, q and r are the quotient and the remainder of the
division.

Let us consider for instance the product and the ratio between the
two polynomials p1(x) = x4 − 1 and p2(x) = x3 − 1 :
>> p1 = [1 0 0 0 -1];
>> p2 = [1 0 0 -1];
>> p=conv(p1,p2)

p =
1 0 0 -1 -1 0 0 1

>> [q,r]= deconv(p1 ,p2)

q =
1 0

r =
0 0 0 1 -1

We therefore find the polynomials p(x) = p1(x)p2(x) = x7 −x4 −x3 +1,
q(x) = x and r(x) = x − 1 such that p1(x) = q(x)p2(x) + r(x).

The commands polyint(p) and polyder(p) provide respectively thepolyint

polyder coefficients of the primitive (vanishing at x = 0) and those of the deriv-
ative of the polynomial whose coefficients are given by the components
of the vector p.

If x is a vector of abscissae and p (respectively, p1 and p2) is a vector
containing the coefficients of a polynomial p (respectively, p1 and p2),
the previous commands are summarized in Table 1.1.

command yields

y=polyval(p,x) y = values of p(x)

z=roots(p) z = roots of p such that p(z) = 0

p=conv(p1,p2) p = coefficients of the polynomial p1p2

[q,r]=deconv(p1,p2) q = coefficients of q, r = coefficients of r
such that p1 = qp2 + r

y=polyder(p) y = coefficients of p′(x)

y=polyint(p) y = coefficients of

x∫

0

p(t) dt

Table 1.1. MATLAB commands for polynomial operations
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A further command, polyfit, allows the computation of the n+1 poly- polyfit
nomial coefficients of a polynomial p of degree n once the values attained
by p at n + 1 distinct nodes are available (see Section 3.1.1).

Octave 1.5 The commands polyderiv and polyinteg have the same polyderiv

polyintegfunctionality of polyder and polyint, respectively. Notice that the com-
mand polyder is available as well from the Octave repository, see Section
1.6. �

1.4.3 Integration and differentiation

The following two results will often be invoked throughout this book.

1. the fundamental theorem of integration: if f is a continuous function
in [a, b), then

F (x) =

x∫

a

f(t) dt ∀x ∈ [a, b),

is a differentiable function, called a primitive of f , which satisfies,

F ′(x) = f(x) ∀x ∈ [a, b);

2. the first mean-value theorem for integrals: if f is a continuous func-
tion in [a, b) and x1, x2 ∈ [a, b) with x1 < x2, then ∃ξ ∈ (x1, x2) such
that

f(ξ) =
1

x2 − x1

x2∫

x1

f(t) dt.

Even when it does exist, a primitive might be either impossible to
determine or difficult to compute. For instance, knowing that ln |x| is a
primitive of 1/x is irrelevant if one doesn’t know how to efficiently com-
pute the logarithms. In Chapter 4 we will introduce several methods to
compute the integral of an arbitrary continuous function with a desired
accuracy, irrespectively of the knowledge of its primitive.

We recall that a function f defined on an interval [a, b] is differentiable
in a point x̄ ∈ (a, b) if the following limit exists and is finite

f ′(x̄) = lim
h→0

1
h

(f(x̄ + h) − f(x̄)). (1.10)

The value of f ′(x̄) provides the slope of the tangent line to the graph
of f at the point x̄.
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We say that a function which is continuous together with its deriva-
tive at any point of [a, b] belongs to the space C1([a, b]). More generally,
a function with continuous derivatives up to the order p (a positive in-
teger) is said to belong to Cp([a, b]). In particular, C0([a, b]) denotes the
space of continuous functions in [a, b].

A result that will be often used is the mean-value theorem, according
to which, if f ∈ C1([a, b]), there exists ξ ∈ (a, b) such that

f ′(ξ) = (f(b) − f(a))/(b − a).

Finally, it is worth recalling that a function that is continuous with
all its derivatives up to the order n in a neighborhood of x0, can be
approximated in such a neighborhood by the so-called Taylor polynomial
of degree n at the point x0:

Tn(x) = f(x0) + (x − x0)f ′(x0) + . . . +
1
n!

(x − x0)nf (n)(x0)

=
n∑

k=0

(x − x0)k

k!
f (k)(x0).

The MATLAB toolbox symbolic provides the commands diff, intdiff
int and taylor which allow us to obtain the analytical expression of the

taylor derivative, the indefinite integral (i.e. a primitive) and the Taylor poly-
nomial, respectively, of a given function. In particular, having defined in
the string f the function on which we intend to operate, diff(f,n)
provides its derivative of order n, int(f) its indefinite integral, and
taylor(f,x,n+1) the associated Taylor polynomial of degree n in a
neighborhood of x0 = 0. The variable x must be declared symbolic by
using the command syms x. This will allow its algebraic manipulationsyms
without specifying its value.

In order to do this for the function f(x) = (x2 +2x+2)/(x2 − 1), we
proceed as follows:
>> f = ’(x^2+2*x+2)/(x^2-1)’;
>> syms x
>> diff(f)

(2*x+2)/(x^2-1)-2*(x^2+2*x+2)/(x^2-1)^2*x

>> int(f)

x+5/2*log(x-1)-1/2*log(1+x)

>> taylor(f,x,6)

-2-2*x-3*x^2-2*x^3-3*x^4-2*x^5
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Fig. 1.5. Graphical interface of the command funtool

We observe that using the command simple it is possible to simplifysimple
the expressions generated by diff, int and taylor in order to make
them as simple as possible. The command funtool, by the graphicalfuntool
interface illustrated in Fig. 1.5, allows a very easy symbolic manipulation
of arbitrary functions.

Octave 1.6 Symbolic calculations are not yet available in Octave, al-
though it is work in progress.2 �

See the Exercises 1.7-1.8.

1.5 To err is not only human

As a matter of fact, by re-phrasing the Latin motto errare humanum est,
we might say that in numerical computation to err is even inevitable.

As we have seen, the simple fact of using a computer to represent real
numbers introduces errors. What is therefore important is not to strive
to eliminate errors, but rather to be able to control their effect.

Generally speaking, we can identify several levels of errors that oc-
cur during the approximation and resolution of a physical problem (see
Figure 1.6).

At the highest level stands the error em which occurs when forcing
the physical reality (PP stands for physical problem and xph denotes
its solution) to obey some mathematical model (MP , whose solution is
x). Such errors will limit the applicability of the mathematical model to
certain situations and are beyond the control of Scientific Computing.
2 http://www.octave.org
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xn =
∑

k

φ(tk)αk

x =

T∫

0

φ(t)dt

x̂

MP

PP

NP

xph

em

et ea

ec

Fig. 1.6. Types of errors in a computational process

The mathematical model (whether expressed by an integral as in the
example of Figure 1.6, an algebraic or differential equation, a linear or
nonlinear system) is generally not solvable in explicit form. Its resolu-
tion by computer algorithms will surely involve the introduction and
propagation of roundoff errors at least. Let’s call these errors ea.

On the other hand, it is often necessary to introduce further errors
since any procedure of the mathematical model involving an infinite
sequence of arithmetic operations cannot be performed by the computer
unless approximately. For instance the computation of the sum of a series
will necessarily be accomplished in an approximate way by considering
a suitable truncation.

It will therefore be necessary to introduce a numerical problem, NP ,
whose solution xn differs from x by an error et which is called trunca-
tion error. Such errors do not only occur in mathematical models that
are already set in finite dimension (for instance, when solving a linear
system). The sum of the errors ea and et constitutes the computational
error ec, the quantity we are interested in.

The absolute computational error is the difference between x, the
exact solution of the mathematical model, and x̂, the solution obtained
at the end of the numerical process,

eabs
c = |x − x̂|,

while (if x �= 0) the relative computational error is

erel
c = |x − x̂|/|x|,

where | · | denotes the modulus, or other measure of size, depending on
the meaning of x.
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The numerical process is generally an approximation of the math-
ematical model obtained as a function of a discretization parameter,
which we will refer to as h and suppose positive. If, as h tends to 0,
the numerical process returns the solution of the mathematical model,
we will say that the numerical process is convergent. Moreover, if the
(absolute or relative) error can be bounded as a function of h as

ec ≤ Chp (1.11)

where C is independent of h and p is a positive number, we will say
that the method is convergent of order p. It is sometimes even possible
to replace the symbol ≤ with �, in the case where, besides the upper
bound (1.11), a lower bound C ′hp ≤ ec is also available (C ′ being another
constant independent from h and p).

Example 1.1 Suppose we approximate the derivative of a function f at a
point x̄ with the incremental ratio that appears in (1.10). Obviously, if f is
differentiable at x̄, the error committed by replacing f ′ by the incremental
ratio tends to 0 as h → 0. However, as we will see in Section 4.1, the error can
be considered as Ch only if f ∈ C2 in a neighborhood of x̄. �

While studying the convergence properties of a numerical procedure
we will often deal with graphs reporting the error as a function of h in a
logarithmic scale, which shows log(h) on the abscissae axis and log(ec)
on the ordinates axis. The purpose of this representation is easy to see:
if ec = Chp then log ec = log C + p log h. In logarithmic scale therefore
p represents the slope of the straight line log ec, so if we must compare
two methods, the one presenting the greater slope will be the one with
a higher order. To obtain graphs in a logarithmic scale one just needs to
type loglog(x,y), x and y being the vectors containing the abscissae loglog
and the ordinates of the data to be represented.

As an instance, in Figure 1.7 we report the straight lines relative to
the behavior of the errors in two different methods. The continuous line
represents a first-order approximation, while the dashed line represents
a second-order one.

There is an alternative to the graphical way of establishing the order
of a method when one knows the errors ei relative to some given values
hi of the parameter of discretization, with i = 1, . . . , N : it consists in
supposing that ei is equal to Chp

i , where C does not depend on i. One
can then approach p with the values:

pi = log(ei/ei−1)/ log(hi/hi−1), i = 2, . . . , N. (1.12)

Actually the error is not a computable quantity since it depends on
the unknown solution. Therefore it is necessary to introduce computable
quantities that can be used to estimate the error itself, the so called error
estimator. We will see some examples in Sections 2.2.1, 2.3 and 4.4.
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Fig. 1.7. Plot in logarithmic scales

1.5.1 Talking about costs

In general a problem is solved on the computer by an algorithm, which
is a precise directive in the form of a finite text specifying the execution
of a finite series of elementary operations. We are interested in those
algorithms which involve only a finite number of steps.

The computational cost of an algorithm is the number of floating-
point operations that are required for its execution. Often, the speed
of a computer is measured by the maximum number of floating-point
operations which the computer can execute in one second (flops). In
particular, the following abridged notations are commonly used: Mega-
flops, equal to 106 flops, Giga-flops equal to 109 flops, Tera-flops equal
to 1012 flops. The fastest computers nowadays reach as many as 40 of
Tera-flops.

In general, the exact knowledge of the number of operations required
by a given algorithm is not essential. Rather, it is useful to determine
its order of magnitude as a function of a parameter d which is related to
the problem dimension. We therefore say that an algorithm has constant
complexity if it requires a number of operations independent of d, i.e.
O(1) operations, linear complexity if it requires O(d) operations, or,
more generally, polynomial complexity if it requires O(dm) operations,
for a positive integer m. Other algorithms may have exponential (O(cd)
operations) or even factorial (O(d!) operations) complexity. We recall
that the symbol O(dm) means “it behaves, for large d, like a constant
times dm”.

Example 1.2 (matrix-vector product) Le A be a square matrix of order
n and let v be a vector of Rn. The j − th component of the product Av is
given by

aj1v1 + aj2v2 + . . . + ajnvn,
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and requires n products and n − 1 additions. One needs therefore n(2n − 1)
operations to compute all the components. Thus this algorithm requires O(n2)
operations, so it has a quadratic complexity with respect to the parameter n.
The same algorithm would require O(n3) operations to compute the product
of two matrices of order n. However, there is an algorithm, due to Strassen,
which requires “only” O(nlog2 7) operations and another, due to Winograd and
Coppersmith, requiring O(n2.376) operations. �

Example 1.3 (computation of a matrix determinant) As already men-
tioned, the determinant of a square matrix of order n can be computed us-
ing the recursive formula (1.8). The corresponding algorithm has a factorial
complexity with respect to n and would be usable only for matrices of small
dimension. For instance, if n = 24, a computer capable of performing as many
as 1 Peta-flops (i.e. 1015 floating-point operations per second) would require 20
years to carry out this computation. One has therefore to resort to more effi-
cient algorithms. Indeed, there exists an algorithm allowing the computation of
determinants through matrix-matrix products, with henceforth a complexity
of O(nlog2 7) operations by applying the Strassen algorithm previously men-
tioned (see [BB96]). �

The number of operations is not the sole parameter which matters
in the analysis of an algorithm. Another relevant factor is represented
by the time that is needed to access the computer memory (which de-
pends on the way the algorithm has been coded). An indicator of the
performance of an algorithm is therefore the CPU time (CPU stands
for central processing unit), and can be obtained using the MATLAB

command cputime. The total elapsed time between the input and output cputime
phases can be obtained by the command etime. etime

Example 1.4 In order to compute the time needed for a matrix-vector mul-
tiplication we set up the following program:

>> n = 4000; step = 50; A = rand(n,n); v = rand(n); T=[];
>> sizeA = [ ]; count = 1;
>> for k = 50: step:n

AA = A(1:k,1:k); vv = v(1:k)’;
t = cputime; b = AA*vv; tt = cputime - t;
T = [T, tt]; sizeA = [sizeA ,k];

end

The instruction a:step:b appearing in the for cycle generates all numbers
having the form a+step*k where k is an integer ranging from 0 to the largest
value kmax for which a+step*kmax is not greater than b (in the case at hand,
a=50, b=4000 and step=50). The command rand(n,m) defines an n×m matrix rand
of random entries. Finally, T is the vector whose components contain the CPU
time needed to carry out every single matrix-vector product, whereas cputime
returns the CPU time in seconds that has been used by the MATLAB process
since MATLAB started. The time necessary to execute a single program is
therefore the difference between the actual CPU time and the one computed
before the execution of the current program which is stored in the variable
t. Figure 1.8, which is obtained by the command plot(sizeA,T,’o’), shows
that the CPU time grows like the square of the matrix order n. �
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Fig. 1.8. Matrix-vector product: the CPU time (in seconds) versus the di-
mension n of the matrix (on a PC at 2.53 GHz)

1.6 The MATLAB and Octave environments

MATLAB and Octave, the programs, are integrated environments for
scientific computing and visualization. They are written in C and C++
languages.

MATLAB is distributed by The MathWorks (see the website www.
mathworks.com). The name stands for MATrix LABoratory since origi-
nally it was developed for matrix computation.

Octave, also known as GNU Octave (see the website www.octave.
org), is a freely redistributable software. You may redistribute it and/or
modify it under the terms of the GNU General Public License (GPL) as
published by the Free Software Foundation.

As mentioned in the introduction of this chapter, there are differences
between MATLAB and Octave environments, languages and toolboxes.
However, there is a level of compatibility that allows us to write most
programs of this book and run them seamlessly both in MATLAB and
Octave. When this is not possible, either because some commands are
spelt differently, or because they operate in a different way, or merely
because they are just not implemented, a note has been and will be writ-
ten at the end of each section; it provides an explanation and indicates
what could be done.

Just as MATLAB has its toolboxes, Octave has a rich set of func-
tions available through a project called Octave-forge (see the website
octave.sourceforge.net). This function repository grows steadily in
many different areas such as linear algebra, sparse matrices support or
optimization, to name but a few. In order to run properly all programs
and examples in this book under Octave, it is mandatory to install
Octave-forge.

Once installed, the execution of MATLAB and Octave allow ac-
cess to a working environment characterized by the prompt >> and>>
octave:1>, respectively. For instance, when executing MATLAB onoctave:1>
our personal computer we see
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< M A T L A B >

Copyright 1984-2004 The MathWorks, Inc.

Version 7.0.0.19901 (R14)

May 06, 2004

To get started, select MATLAB Help or Demos from the Help

menu.

>>

When executing Octave on our personal computer we see

GNU Octave, version 2.1.72 (x86_64-pc-linux-gnu).

Copyright (C) 2005 John W. Eaton.

This is free software; see the source code for copying conditions.

There is ABSOLUTELY NO WARRANTY; not even for MERCHANTIBILITY or

FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘warranty’.

Additional information about Octave is available at

http://www.octave.org.

Please contribute if you find this software useful.

For more information, visit http://www.octave.org/help-wanted.html

Report bugs to <bug@octave.org> (but first, please read

http://www.octave.org/bugs.html to learn how to write a helpful

report).

octave:1>

1.7 The MATLAB language

After the introductory remarks of the previous section, we are now ready
to work in either the MATLAB or Octave environments. And from now
on MATLAB should be understood as the subset of commands which
are common to both MATLAB and Octave.

After pressing the enter key (or else return), all what is written af-
ter the prompt will be interpreted.3 Precisely, MATLAB will first check
whether what is written corresponds either to variables which have al-
ready been defined or to the name of one of the programs or commands
defined in MATLAB. Should all those checks fail, MATLAB returns
an error warning. Otherwise, the command is executed and an output
will possibly be displayed. In all cases, the system eventually returns the
prompt to acknowledge that it is ready for a new command. To close a
MATLAB session one should write the command quit (or else exit) quit

exit3 Thus a MATLAB program does not necessarily have to be compiled as
other languages do, e.g. Fortran or C.
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and press the enter key. From now it will be understood that to execute
a program or a command one has to press the enter key. Moreover, the
terms program, function or command will be used in an equivalent man-
ner. When our command coincides with one of the elementary structures
characterizing MATLAB (e.g. a number or a string of characters that
are put between apices) they are immediately returned in output in the
default variable ans (abbreviation of answer). Here is an example:ans
>> ’home’

ans =
home

If we now write a different string (or number), ans will assume this
new value.

We can turn off the automatic display of the output by writing a
semicolon after the string. Thus if we write ’home’; MATLAB will
simply return the prompt (yet assigning the value ’home’ to the variable
ans).

More generally, the command = allows the assignment of a value (or=
a string of characters) to a given variable. For instance, to assign the
string ’Welcome to Milan’ to the variable a we can write
>> a=’Welcome to Milan ’;

Thus there is no need to declare the type of a variable, MATLAB

will do it automatically and dynamically. For instance, should we write
a=5, the variable a will now contain a number and no longer a string
of characters. This flexibility is not cost-free. If we set a variable named
quit equal to the number 5 we are inhibiting the use of the MATLAB

command quit. We should therefore try to avoid using variables having
the name of MATLAB commands. However, by the command clearclear
followed by the name of a variable (e.g. quit), it is possible to cancel
this assignment and restore the original meaning of the command quit.

By the command save all the session variables (that are stored insave
the so-called base workspace) are saved in the binary file matlab.mat.
Similarly, the command load restores in the current session all variablesload
stored in matlab.mat. A file name can be specified after save or load.
One can also save only selected variables, say v1, v2 and v3, in a given
file named, e.g., area.mat, using the command save area v1 v2 v3.

By the command help one can see the whole family of commandshelp
and pre-defined variables, including the so-called toolboxes which are sets
of specialized commands. Among them let us recall those which define
the elementary functions such as sine (sin(a)), cosine (cos(a)), squaresin cos

sqrt exp root (sqrt(a)), exponential (exp(a)).
There are special characters that cannot appear in the name of a

variable or in a command, for instance the algebraic operators (+, -,+ -
* / & | * and /), the logical operators and (&), or (|), not (˜), the relational
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operators greater than (>), greater than or equal to (>=), less than (<), ~ > >= <
<= ==less than or equal to (<=), equal to (==). Finally, a name can never begin

with a digit, a bracket or with any punctuation mark.

1.7.1 MATLAB statements

A special programming language, the MATLAB language, is also avail-
able enabling the users to write new programs. Although its knowledge
is not required for understanding how to use the several programs which
we will introduce throughout this book, it may provide the reader with
the capability of modifying them as well as producing new ones.

The MATLAB language features standard statements, such as con-
ditionals and loops.

The if-elseif-else conditional has the following general form:
if condition (1)

statement (1)
elseif condition (2)

statement (2)
.
.
.

else
statement(n)

end

where condition(1), condition(2), ... represent MATLAB sets of log-
ical expressions, with values 0 or 1 (false or true) and the entire construc-
tion allows the execution of that statement corresponding to the condi-
tion taking value equal to 1. Should all conditions be false, the execution
of statement(n) will take place. In fact, if the value of condition(k)
is zero, the control moves on.

For instance, to compute the roots of a quadratic polynomial ax2 +
bx + c one can use the following instructions (the command disp(.)
simply displays what is written between brackets):

>> if a ~= 0
sq = sqrt(b*b - 4*a*c);
x(1) = 0.5*(-b + sq)/a;
x(2) = 0.5*(-b - sq)/a;

elseif b ~= 0
x(1) = -c/b;

elseif c ~= 0
disp(’ Impossible equation’);

else
disp(’ The given equation is an identity’);

end

(1.13)

Note that MATLAB does not execute the entire construction until the
statement end is typed.
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MATLAB allows two types of loops, a for-loop (comparable to a
Fortran do-loop or a C for-loop) and a while-loop. A for-loop repeats the
statements in the loop as the loop index takes on the values in a given
row vector. For instance, to compute the first six terms of the Fibonacci
sequence fi = fi−1 + fi−2, for i ≥ 3, with f1 = 0 and f2 = 1, one can
use the following instructions:
>> f(1) = 0; f(2) = 1;
>> for i = [3 4 5 6]

f(i) = f(i-1) + f(i-2);
end

Note that a semicolon can be used to separate several MATLAB instruc-
tions typed on the same line. Also, note that we can replace the second
instruction by the equivalent >> for i = 3:6. The while-loop repeats
as long as the given condition is true. For instance, the following set of
instructions can be used as an alternative to the previous set:
>> f(1) = 0; f(2) = 1; k = 3;
>> while k <= 6

f(k) = f(k-1) + f(k-2); k = k + 1;
end

Other statements of perhaps less frequent use exist, such as switch, case,
otherwise. The interested reader can have access to their meaning by the
help command.

1.7.2 Programming in MATLAB

Let us now explain briefly how to write MATLAB programs. A new
program must be put in a file with a given name with extension m, which
is called m-file. They must be located in one of the directories in which
MATLAB automatically searches for m-files; their list can be obtained
by the command path (see help path to learn how to add a directorypath
to this list). The first directory scanned by MATLAB is the current
working directory.

It is important at this level to distinguish between scripts and func-
tions. A script is simply a collection of MATLAB commands in an m-file
and can be used interactively. For instance, the set of instructions (1.13)
can give rise to a script (which we could name equation) by copying it
in the file equation.m. To launch it, one can simply write the instruc-
tion equation after the MATLAB prompt >>. We report two examples
below:
>> a = 1; b = 1; c = 1;
>> equation

ans =
-0.5000 + 0.8660i -0.5000 - 0.8660i
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>> a = 0; b = 1; c = 1;
>> equation

ans =
-1

Since we have no input/output interface, all variables used in a script
are also the variables of the working session and are therefore cleared
only upon an explicit command (clear). This is not at all satisfactory
when one intends to write complex programs involving many temporary
variables and comparatively fewer input and output variables, which are
the only ones that can be effectively saved once the execution of the
program is terminated. Much more flexible than scripts are functions.

A function is still defined in a m-file, e.g. name.m, but it has a
well defined input/output interface that is introduced by the command
function function
function [out1 ,..., outn]=name(in1 ,...,inm)

where out1,...,outn are the output variables and in1,...,inm are the
input variables.

The following file, called det23.m, defines a new function called det23
which computes, according to the formulae given in Section 1.3, the
determinant of a matrix whose dimension could be either 2 or 3:
function det=det23(A)
%DET23 computes the determinant of a square matrix
% of dimension 2 or 3
[n,m]=size(A);
if n==m

if n==2
det = A(1,1)*A(2,2)-A(2,1)*A(1,2);

elseif n == 3
det = A(1,1)* det23(A([2 ,3] ,[2 ,3])) -...

A(1,2)* det23(A([2 ,3] ,[1 ,3]))+...
A(1,3)* det23(A([2 ,3] ,[1 ,2]));

else
disp(’ Only 2x2 or 3x3 matrices ’);

end
else

disp(’ Only square matrices ’);
end
return

Notice the use of the continuation characters ... meaning that the in- ...
struction is continuing on the next line and the character % to begin

%comments. The instruction A([i,j],[k,l]) allows the construction of
a 2 × 2 matrix whose elements are the elements of the original matrix
A lying at the intersections of the i-th and j-th rows with the k-th and
l-th columns.

When a function is invoked, MATLAB creates a local workspace (the
function’s workspace). The commands in the function cannot refer to
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variables from the global (interactive) workspace unless they are passed
as input. In particular, variables used in a function are erased when the
execution terminates, unless they are returned as output parameters.

Functions usually terminate when the end of the function is reached,
however a return statement can be used to force an early return (uponreturn
the fulfillment of a certain condition).

For instance, in order to approximate the golden section number α =
1.6180339887 . . ., which is the limit for k → ∞ of the quotient of two
consecutive Fibonacci numbers fk/fk−1, by iterating until the difference
between two consecutive ratios is less than 10−4, we can construct the
following function:
function [golden ,k]= fibonacci0
f(1) = 0; f(2) = 1; goldenold = 0;
kmax = 100; tol = 1.e-04;
for k = 3:kmax

f(k) = f(k-1) + f(k-2);
golden = f(k)/f(k-1);
if abs(golden - goldenold) <= tol

return
end
goldenold = golden;

end
return

Its execution is interrupted either after kmax=100 iterations or when
the absolute value of the difference between two consecutive iterates is
smaller than tol=1.e-04. Then, we can write
[alpha ,niter ]= fibonacci0

alpha =
1.61805555555556

niter =
14

After 14 iterations the function has returned an approximate value which
shares with α the first 5 significant digits.

The number of input and output parameters of a MATLAB function
can vary. For instance, we could modify the Fibonacci function as follows:
function [golden ,k]= fibonacci1(tol ,kmax)
if nargin == 0

kmax = 100; tol = 1.e-04; % default values
elseif nargin == 1

kmax = 100; % default value only for kmax
end
f(1) = 0; f(2) = 1; goldenold = 0;
for k = 3:kmax

f(k) = f(k-1) + f(k-2);
golden = f(k)/f(k-1);
if abs(golden - goldenold) <= tol

return
end
goldenold = golden;

end
return
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The nargin function counts the number of input parameters. In the nargin
new version of the fibonacci function we can prescribe the maximum
number of inner iterations allowed (kmax) and a specific tolerance tol.
When this information is missing the function must provide default val-
ues (in our case, kmax = 100 and tol = 1.e-04). A possible use of it is
as follows:
[alpha ,niter ]= fibonacci1 (1.e-6 ,200)

alpha =
1.61803381340013

niter =
19

Note that using a stricter tolerance we have obtained a new approximate
value that shares with α as many as 8 significant digits.
The nargin function can be used externally to a given function to obtain
the number of input parameters. Here is an example:
nargin(’fibonacci1 ’)

ans =
2

Remark 1.2 (inline functions) The command inline, whose most sim- inline
ple syntax reads g=inline(expr,arg1,arg2,...,argn), declares a function
g which depends on the strings arg1,arg2,...,argn. The string expr con-
tains the expression of g. For instance, g=inline(’sin(r)’,’r’) declares the
function g(r) = sin(r). The shorthand command g=inline(expr) implicitly
assumes that expr is a function of the default variable x. Once an inline func-
tion has been declared, it can be evaluated at any set of variables through
the command feval. For instance, to evaluate g at the points z=[0 1] we can
write

>> feval(’g’,z);

We note that, contrarily to the case of the eval command, with feval

the name of the variable (z) needs not coincide with the symbolic name (r)
assigned by the inline command. •

After this quick introduction, our suggestion is to explore MATLAB

using the command help, and get acquainted with the implementation of
various algorithms by the programs described throughout this book. For
instance, by typing help for we get not only a complete description on
the command for but also an indication on instructions similar to for,
such as if, while, switch, break and end. By invoking their help we
can progressively improve our knowledge of MATLAB.
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Octave 1.7 Generally speaking, one area with little commonalities is
that of the plotting facilities of MATLAB and Octave. We checked that
most plotting commands in the book are reproducible in both programs,
but there are in fact many fundamental differences. By default, Octave’s
plotting framework is gnuplot; however the plotting command set is dif-
ferent and operates differently than MATLAB does. At the time of
writing this section, there are other plotting libraries in Octave such as
octaviz (see, the website http://octaviz.sourceforge.net/), epstk
(http://www.epstk.de/) and octplot (http://octplot.sourceforge.
net). The last is an attempt to reproduce MATLAB plotting commands
in Octave. �

See Exercises 1.9-1.14.

1.7.3 Examples of differences between MATLAB and Octave
languages

As already mentioned, what has been written in the previous section
about the MATLAB language applies to both MATLAB and Octave
environments without changes. However, some differences exist for the
language itself. So programs written in Octave may not run in MATLAB

and viceversa. For example, Octave supports strings with single and
double quotes
octave:1> a=" Welcome to Milan"
a = Welcome to Milan
octave:2> a=’Welcome to Milan ’
a = Welcome to Milan

whereas MATLAB supports only single quotes, double quotes will result
in parsing errors.

Here we provide a list of few other incompatibilities between the two
languages:

- MATLAB does not allow a blank before the transpose operator. For
instance, [0 1]’ works in MATLAB, but [0 1] ’ does not. Octave
properly parses both cases;

- MATLAB always requires ...,
rand (1, ...

2)

while both
rand (1,

2)

and
rand (1, \

2)

work in Octave in addition to ...;
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- for exponentiation, Octave can use ^ or **; MATLAB requires ^;
- for ends, Octave can use end but also endif, endfor, . . .; MATLAB

requires end.

1.8 What we haven’t told you

A systematic discussion on floating-point numbers can be found in
[Übe97], [Hig02] and in [QSS06].

For matters concerning the issue of complexity, we refer, e.g., to
[Pan92].

For a more systematic introduction to MATLAB the interested
reader can refer to the MATLAB manual [HH05] as well as to specific
books such as [HLR01], [Pra02], [EKM05], [Pal04] or [MH03].

For Octave we recommend the manual book mentioned at the begin-
ning of this chapter.

1.9 Exercises

Exercise 1.1 How many numbers belong to the set F(2, 2,−2, 2)? What is
the value of εM for such set?

Exercise 1.2 Show that the set F(β, t, L, U) contains precisely 2(β−1)βt−1(U−
L + 1) elements.

Exercise 1.3 Prove that ii is a real number, then check this result using
MATLAB.

Exercise 1.4 Write the MATLAB instructions to build an upper (respec-
tively, lower) triangular matrix of dimension 10 having 2 on the main diagonal
and −3 on the upper (respectively, lower) diagonal.

Exercise 1.5 Write the MATLAB instructions which allow the interchange
of the third and seventh row of the matrices built up in Exercise 1.3, and
then the instructions allowing the interchange between the fourth and eighth
column.

Exercise 1.6 Verify whether the following vectors in R4 are linearly indepen-
dent:

v1 = [0 1 0 1], v2 = [1 2 3 4], v3 = [1 0 1 0], v4 = [0 0 1 1].

Exercise 1.7 Write the following functions and compute their first and sec-
ond derivatives, as well as their primitives, using the symbolic toolbox of MAT-

LAB:

f(x) =
√

x2 + 1, g(x) = sin(x3) + cosh(x).
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Exercise 1.8 For any given vector v of dimension n, using the command
c=poly(v) one can construct the n + 1 coefficients of the polynomial p(x) =poly ∑n+1

k=1 c(k)xn+1−k which is equal to Πn
k=1(x − v(k)). In exact arithmetics,

one should find that v = roots(poly(c)). However, this cannot occur due to
roundoff errors, as one can check by using the command roots(poly([1:n])),
where n ranges from 2 to 25.

Exercise 1.9 Write a program to compute the following sequence:

I0 =
1

e
(e − 1),

In+1 = 1 − (n + 1)In, for n = 0, 1, . . . .

Compare the numerical result with the exact limit In → 0 for n → ∞.

Exercise 1.10 Explain the behavior of the sequence (1.4) when computed in
MATLAB.

Exercise 1.11 Consider the following algorithm to compute π. Generate n
couples {(xk, yk)} of random numbers in the interval [0, 1], then compute the
number m of those lying inside the first quarter of the unit circle. Obviously,
π turns out to be the limit of the sequence πn = 4m/n. Write a MATLAB

program to compute this sequence and check the error for increasing values of
n.

Exercise 1.12 Since π is the sum of the series

π =
∞∑

m=0

16−m

(
4

8m + 1
− 2

8m + 4
+

1

8m + 5
+

1

8m + 6

)

we can compute an approximation of π by summing up to the n-th term, for
a sufficiently large n. Write a MATLAB function to compute finite sums of
the above series. How large should n be in order to obtain an approximation
of π at least as accurate as the one stored in the variable π?

Exercise 1.13 Write a program for the computation of the binomial coef-
ficient (n

k
) = n!/(k!(n − k)!), where n and k are two natural numbers with

k ≤ n.

Exercise 1.14 Write a recursive MATLAB function that computes the n-th
element fn of the Fibonacci sequence. Noting that

[
fi

fi−1

]
=

[
1 1
1 0

] [
fi−1

fi−2

]
(1.14)

write another function that computes fn based on this new recursive form.
Finally, compute the related CPU-time.
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Nonlinear equations

Computing the zeros of a real function f (equivalently, the roots of the
equation f(x) = 0) is a problem that we encounter quite often in scien-
tific computing. In general, this task cannot be accomplished in a finite
number of operations. For instance, we have already seen in Section 1.4.1
that when f is a generic polynomial of degree greater than four, there
do not exist explicit formulae for the zeros. The situation is even more
difficult when f is not a polynomial.

Iterative methods are therefore adopted. Starting from one or several
initial data, the methods build up a sequence of values x(k) that hopefully
will converge to a zero α of the function f at hand.

Problem 2.1 (Investment fund) At the beginning of every year a
bank customer deposits v euros in an investment fund and withdraws,
at the end of the n-th year, a capital of M euros. We want to compute
the average yearly rate of interest r of this investment. Since M is related
to r by the relation

M = v

n∑

k=1

(1 + r)k = v
1 + r

r
[(1 + r)n − 1] ,

we deduce that r is the root of the algebraic equation:

f(r) = 0, where f(r) = M − v
1 + r

r
[(1 + r)n − 1].

This problem will be solved in Example 2.1. �

Problem 2.2 (State equation of a gas) We want to determine the
volume V occupied by a gas at temperature T and pressure p. The state
equation (i.e. the equation that relates p, V and T ) is

[
p + a(N/V )2

]
(V − Nb) = kNT, (2.1)
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where a and b are two coefficients that depend on the specific gas, N is
the number of molecules which are contained in the volume V and k is
the Boltzmann constant. We need therefore to solve a nonlinear equation
whose root is V (see Exercise 2.2). �

Problem 2.3 (Rods system) Let us consider the mechanical system
represented by the four rigid rods ai of Figure 2.1. For any admissible
value of the angle β, let us determine the value of the corresponding
angle α between the rods a1 and a2. Starting from the vector identity

a1 − a2 − a3 − a4 = 0

and noting that the rod a1 is always aligned with the x-axis, we can
deduce the following relationship between β and α:

a1

a2
cos(β) − a1

a4
cos(α) − cos(β − α) = −a2

1 + a2
2 − a2

3 + a2
4

2a2a4
, (2.2)

where ai is the known length of the i-th rod. This is called the Freuden-
stein equation, and we can rewrite it as f(α) = 0, where

f(x) = (a1/a2) cos(β) − (a1/a4) cos(x) − cos(β − x) +
a2
1 + a2

2 − a2
3 + a2

4

2a2a4
.

A solution in explicit form is available only for special values of β. We
would also like to mention that a solution does not exist for all values of
β, and may not even be unique. To solve the equation for any given β
lying between 0 and π we should invoke numerical methods (see Exercise
2.9). �

a1

a2

a3

a4

βα

x

y

Fig. 2.1. System of four rods of Problem 2.3
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Problem 2.4 (Population dynamics) In the study of populations
(e.g. bacteria), the equation x+ = φ(x) = xR(x) establishes a link be-
tween the number of individuals in a generation x and the number of
individuals in the following generation. Function R(x) models the vari-
ation rate of the considered population and can be chosen in different
ways. Among the most known, we can mention:

1. Malthus’s model (Thomas Malthus, 1766-1834),

R(x) = RM (x) = r, r > 0;

2. the growth with limited resources model (by Pierre Francois Ver-
hulst, 1804-1849),

R(x) = RV (x) =
r

1 + xK
, r > 0,K > 0, (2.3)

which improves on Malthus’s model in considering that the growth
of a population is limited by the available resources;

3. the predator/prey model with saturation,

R(x) = RP =
rx

1 + (x/K)2
, (2.4)

which represents the evolution of Verhulst’s model in the presence
of an antagonist population.

The dynamics of a population is therefore defined by the iterative process

x(k) = φ(x(k−1)), k ≥ 1, (2.5)

where x(k) represents the number of individuals present k generations
later than the initial generation x(0). Moreover, the stationary (or equi-
librium) states x∗ of the considered population are the solutions of prob-
lem

x∗ = φ(x∗),

or, equivalently, x∗ = x∗R(x∗) i.e. R(x∗) = 1. Equation (2.5) is an
instance of a fixed point method (see Section 2.3). �

2.1 The bisection method

Let f be a continuous function in [a, b] which satisfies f(a)f(b) < 0. Then
necessarily f has at least one zero in (a, b). Let us assume for simplicity
that it is unique, and let us call it α.

(In the case of several zeros, by the help of the command fplot we
can locate an interval which contains only one of them.)
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The strategy of the bisection method is to halve the given inter-
val and select that subinterval where f features a sign change. More
precisely, having named I(0) = (a, b) and, more generally, I(k) the sub-
interval selected at step k, we choose as I(k+1) the sub-interval of I(k)

at whose end-points f features a sign change. Following such procedure,
it is guaranteed that every I(k) selected this way will contain α. The se-
quence {x(k)} of the midpoints of these subintervals I(k) will inevitably
tend to α since the length of the subintervals tends to zero as k tends to
infinity.

I(0)

I(1)

I(2)

I(3)

a(0)
x(0) x(1)

x(2)

x

y

b(0)

f

Fig. 2.2. A few iterations of the bisection method

Precisely, the method is started by setting

a(0) = a, b(0) = b, I(0) = (a(0), b(0)), x(0) = (a(0) + b(0))/2.

At each step k ≥ 1 we select the subinterval I(k) = (a(k), b(k)) of the
interval I(k−1) = (a(k−1), b(k−1)) as follows:

given x(k−1) = (a(k−1) + b(k−1))/2, if f(x(k−1)) = 0 then α = x(k−1)

and the method terminates;

otherwise,

if f(a(k−1))f(x(k−1)) < 0 set a(k) = a(k−1), b(k) = x(k−1);

if f(x(k−1))f(b(k−1)) < 0 set a(k) = x(k−1), b(k) = b(k−1).

Then we define x(k) = (a(k) + b(k))/2 and increase k by 1.
For instance, in the case represented in Figure 2.2, which corresponds

to the choice f(x) = x2 − 1, by taking a(0) = −0.25 and b(0) = 1.25, we
would obtain
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I(0) = (−0.25, 1.25), x(0) = 0.5,
I(1) = (0.5, 1.25), x(1) = 0.875,
I(2) = (0.875, 1.25), x(2) = 1.0625,
I(3) = (0.875, 1.0625), x(3) = 0.96875.

Notice that each subinterval I(k) contains the zero α. Moreover, the
sequence {x(k)} necessarily converges to α since at each step the length
|I(k)| = b(k) − a(k) of I(k) halves. Since |I(k)| = (1/2)k|I(0)|, the error at
step k satisfies

|e(k)| = |x(k) − α| <
1
2
|I(k)| =

(
1
2

)k+1

(b − a).

In order to guarantee that |e(k)| < ε, for a given tolerance ε it suffices to
carry out kmin iterations, kmin being the smallest integer satisfying the
inequality

kmin > log2

(
b − a

ε

)
− 1 (2.6)

Obviously, this inequality makes sense in general, and is not confined to
the specific choice of f that we have made previously.

The bisection method is implemented in Program 2.1: fun is a func-
tion (or an inline function) specifying the function f , a and b are the
endpoints of the search interval, tol is the tolerance ε and nmax is the
maximum number of allotted iterations. Besides the first argument which
represents the independent variable, the function fun can accept other
auxiliary parameters.

Output parameters are zero, which contains the approximate value
of α, the residual res which is the value of f in zero and niter which
is the total number of iterations that are carried out. The command
find(fx==0) finds those indices of the vector fx corresponding to null find
components.

Program 2.1. bisection: bisection method

function [zero ,res ,niter ]= bisection(fun ,a,b,tol ,...
nmax ,varargin)

%BISECTION Find function zeros.
% ZERO=BISECTION(FUN ,A,B,TOL ,NMAX) tries to find a zero
% ZERO of the continuous function FUN in the interval
% [A,B] using the bisection method. FUN accepts real
% scalar input x and returns a real scalar value. If
% the search fails an errore message is displayed. FUN
% can also be an inline object.
% ZERO=BISECTION(FUN ,A,B,TOL ,NMAX ,P1,P2 ,...) passes
% parameters P1 ,P2 ,... to the function FUN(X,P1,P2 ,...).
% [ZERO ,RES ,NITER]= BISECTION(FUN ,...) returns the value
% of the residual in ZERO and the iteration number at
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% which ZERO was computed.
x = [a, (a+b)*0.5 , b]; fx = feval(fun ,x,varargin {:});
if fx(1)*fx(3) > 0

error([’ The sign of the function at the ’ ,...
’endpoints of the interval must be different ’]);

elseif fx(1) == 0
zero = a; res = 0; niter = 0; return

elseif fx(3) == 0
zero = b; res = 0; niter = 0; return

end
niter = 0;
I = (b - a)*0.5;
while I >= tol & niter <= nmax
niter = niter + 1;
if fx(1)*fx(2) < 0

x(3) = x(2); x(2) = x(1)+(x(3)-x(1))*0.5;
fx = feval(fun ,x,varargin {:}); I = (x(3)-x(1))*0.5;

elseif fx(2)*fx(3) < 0
x(1) = x(2); x(2) = x(1)+(x(3)-x(1))*0.5;
fx = feval(fun ,x,varargin {:}); I = (x(3)-x(1))*0.5;

else
x(2) = x(find(fx ==0)); I = 0;

end
end
if niter > nmax

fprintf ([’bisection stopped without converging ’ ,...
’to the desired tolerance because the ’ ,...
’maximum number of iterations was ’ ,...
’reached\n’]);

end
zero = x(2); x = x(2); res = feval(fun ,x,varargin {:});
return

Example 2.1 (Investment fund) Let us apply the bisection method to
solve Problem 2.1, assuming that v is equal to 1000 euros and that after 5
years M is equal to 6000 euros. The graph of the function f can be obtained
by the following instructions

f=inline(’M-v*(1+r).*((1+r).^5 - 1)./r’,’r’,’M’,’v’);
plot ([0.01 ,0.3] , feval(f ,[0.01 ,0.3] ,6000 ,1000));

We see that f has a unique zero in the interval (0.01, 0.1), which is approx-
imately equal to 0.06. If we execute Program 2.1 with tol= 10−12, a= 0.01
and b= 0.1 as follows

[zero ,res ,niter ]= bisection(f ,0.01 ,0.1 ,1.e-12 ,1000 ,...
6000 ,1000);

after 36 iterations the method converges to the value 0.06140241153618, in
perfect agreement with the estimate (2.6) according to which kmin = 36.
Thus, we conclude that the interest rate r is approximately equal to 6.14%. �

In spite of its simplicity, the bisection method does not guarantee a
monotone reduction of the error, but simply that the search interval is
halved from one iteration to the next. Consequently, if the only stopping
criterion adopted is the control of the length of I(k), one might discard
approximations of α which are quite accurate.
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Fig. 2.3. The first iterations generated by the Newton method with initial
guess x(0) for the function f(x) = x + ex + 10/(1 + x2) − 5

As a matter of fact, this method does not take into proper account
the actual behavior of f . A striking fact is that it does not converge in
a single iteration even if f is a linear function (unless the zero α is the
midpoint of the initial search interval).

See Exercises 2.1-2.5.

2.2 The Newton method

The sign of the given function f at the endpoints of the subintervals is
the only information exploited by the bisection method. A more efficient
method can be constructed by exploiting the values attained by f and
its derivative (in the case that f is differentiable). In that case,

y(x) = f(x(k)) + f ′(x(k))(x − x(k))

provides the equation of the tangent to the curve (x, f(x)) at the point
x(k).

If we pretend that x(k+1) is such that y(x(k+1)) = 0, we obtain:

x(k+1) = x(k) − f(x(k))
f ′(x(k))

, k ≥ 0 (2.7)

provided f ′(x(k)) �= 0. This formula allows us to compute a sequence of
values x(k) starting from an initial guess x(0). This method is known as
Newton’s method and corresponds to computing the zero of f by locally
replacing f by its tangent line (see Figure 2.3).

As a matter of fact, by developing f in Taylor series in a neighborhood
of a generic point x(k) we find

f(x(k+1)) = f(x(k)) + δ(k)f ′(x(k)) + O((δ(k))2), (2.8)
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where δ(k) = x(k+1) − x(k). Forcing f(x(k+1)) to be zero and neglecting
the term O((δ(k))2), we can obtain x(k+1) as a function of x(k) as stated
in (2.7). In this respect (2.7) can be regarded as an approximation of
(2.8).

Obviously, (2.7) converges in a single step when f is linear, that is
when f(x) = a1x + a0.

Example 2.2 Let us solve Problem 2.1 by Newton’s method, taking as initial
data x(0) = 0.3. After 6 iterations the difference between two subsequent
iterates is less than or equal to 10−12. �

The Newton method in general does not converge for all possible
choices of x(0), but only for those values of x(0) which are sufficiently
close to α. At first glance, this requirement looks meaningless: indeed,
in order to compute α (which is unknown), one should start from a value
sufficiently close to α!

In practice, a possible initial value x(0) can be obtained by resorting
to a few iterations of the bisection method or, alternatively, through
an investigation of the graph of f . If x(0) is properly chosen and α is
a simple zero (that is, f ′(α) �= 0) then the Newton method converges.
Furthermore, in the special case where f is continuously differentiable
up to its second derivative one has the following convergence result (see
Exercise 2.8),

lim
k→∞

x(k+1) − α

(x(k) − α)2
=

f ′′(α)
2f ′(α)

(2.9)

Consequently, if f ′(α) �= 0 Newton’s method is said to converge quadrat-
ically, or with order 2, since for sufficiently large values of k the error at
step (k + 1) behaves like the square of the error at step k multiplied by
a constant which is independent of k.

In the case of zeros with multiplicity m larger than 1, the order of
convergence of Newton’s method downgrades to 1 (see Exercise 2.15). In
such case one could recover the order 2 by modifying the original method
(2.7) as follows:

x(k+1) = x(k) − m
f(x(k))
f ′(x(k))

, k ≥ 0 (2.10)

provided that f ′(x(k)) �= 0. Obviously, this requires the a-priori knowl-
edge of m. If this is not the case, one could develop an adaptive Newton
method, still of order 2, as described in [QSS06, Section 6.6.2].

Example 2.3 The function f(x) = (x − 1) log(x) has a single zero α = 1 of
multiplicity m = 2. Let us compute it by both Newton’s method (2.7) and by
its modified version (2.10). In Figure 2.4 we report the error obtained using the
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Fig. 2.4. Error versus iteration number for the function of Example 2.3. The
dashed line corresponds to Newton’s method (2.7), solid line to the modified
Newton’s method (2.10) (with m = 2)

two methods versus the iteration number. Note that for the classical version
of Newton’s method the convergence is only linear. �

2.2.1 How to terminate Newton’s iterations

In theory, a convergent Newton’s method returns the zero α only after an
infinite number of iterations. In practice, one requires an approximation
of α up to a prescribed tolerance ε. Thus the iterations can be terminated
at the smallest value of kmin for which the following inequality holds:

|e(kmin)| = |α − x(kmin)| < ε.

This is a test on the error. Unfortunately, since the error is unknown, one
needs to adopt in its place a suitable error estimator, that is, a quantity
that can be easily computed and through which we can estimate the
real error. At the end of Section 2.3, we will see that a suitable error
estimator for Newton’s method is provided by the difference between
two successive iterates. This means that one terminates the iterations at
step kmin as soon as

|x(kmin) − x(kmin−1)| < ε (2.11)

This is a test on the increment.
We will see in Section 2.3.1 that the test on the increment is satis-

factory when α is a simple zero of f . Alternatively, one could use a test
on the residual at step k, r(k) = f(x(k)) (note that the residual is null
when x(k) is a zero of the function f).

Precisely, we could stop the iteration at the first kmin for which

|r(kmin)| =|f(x(kmin))| < ε (2.12)
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The test on the residual is satisfactory only when |f ′(x)| � 1 in a neigh-
borhood Iα of the zero α (see Figure 2.5). Otherwise, it will produce
an over estimation of the error if |f ′(x)| � 1 for x ∈ Iα and an under
estimation if |f ′(x)| � 1 (see also Exercise 2.6).

f(x(k))

f(x(k))

x(k)x(k) αα

x x

yy

f

f

e(k) e(k)

Fig. 2.5. Two situations in which the residual is a poor error estimator:
|f ′(x)| � 1 (left), |f ′(x)| � 1 (right), with x belonging to a neighborhood of
α

In Program 2.2 we implement Newton’s method (2.7). Its modified
form can be obtained simply by replacing f ′ with f ′/m. The input pa-
rameters fun and dfun are the strings which define function f and its
first derivative, while x0 is the initial guess. The method will be termi-
nated when the absolute value of the difference between two subsequent
iterates is less than the prescribed tolerance tol, or when the maximum
number of iterations nmax has been reached.

Program 2.2. newton: Newton method

function [zero ,res ,niter ]= newton(fun ,dfun ,x0,tol ,...
nmax ,varargin)

%NEWTON Find function zeros.
% ZERO=NEWTON(FUN ,DFUN ,X0,TOL ,NMAX) tries to find the
% zero ZERO of the continuous and differentiable
% function FUN nearest to X0 using the Newton method.
% FUN and its derivative DFUN accept real scalar input
% x and returns a real scalar value. If the search fails
% an errore message is displayed. FUN and DFUN can also
% be inline objects.
% ZERO=NEWTON(FUN ,DFUN ,X0,TOL ,NMAX ,P1,P2 ,...) passes
% parameters P1 ,P2 ,... to functions: FUN(X,P1,P2 ,...)
% and DFUN(X,P1 ,P2 ,...).
% [ZERO ,RES ,NITER ]= NEWTON(FUN ,...) returns the value of
% the residual in ZERO and the iteration number at which
% ZERO was computed.
x = x0;
fx = feval(fun ,x,varargin {:});
dfx = feval(dfun ,x,varargin {:});
niter = 0; diff = tol +1;
while diff >= tol & niter <= nmax
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niter = niter + 1; diff = - fx/dfx;
x = x + diff; diff = abs(diff);
fx = feval(fun ,x,varargin {:});
dfx = feval(dfun ,x,varargin {:});

end
if niter > nmax

fprintf ([’newton stopped without converging to ’ ,...
’the desired tolerance because the maximum ’ ,...
’number of iterations was reached\n’]);

end
zero = x; res = fx;
return

2.2.2 The Newton method for systems of nonlinear equations

Let us consider a system of nonlinear equations of the form





f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0,

(2.13)

where f1, . . . , fn are nonlinear functions. Setting f = (f1, . . . , fn)T and
x = (x1, . . . , xn)T , system (2.13) can be written in a compact way as

f(x) = 0. (2.14)

An example is given by the following nonlinear system
{

f1(x1, x2) = x2
1 + x2

2 = 1,

f2(x1, x2) = sin(πx1/2) + x3
2 = 0.

(2.15)

In order to extend Newton’s method to the case of a system, we replace
the first derivative of the scalar function f with the Jacobian matrix Jf

of the vectorial function f whose components are

(Jf )ij =
∂fi

∂xj
, i, j = 1, . . . , n.

The symbol ∂fi/∂xj represents the partial derivative of fi with respect
to xj (see definition 8.3). With this notation, Newton’s method for (2.14)
then becomes: given x(0) ∈ Rn, for k = 0, 1, . . ., until convergence

solve Jf (x(k))δx(k) = −f(x(k))

set x(k+1) = x(k) + δx(k)
(2.16)
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Therefore, Newton’s method applied to a system requires at each step
the solution of a linear system with matrix Jf (x(k)).

Program 2.3 implements this method by using the MATLAB com-
mand \ (see Section 5.6) to solve the linear system with the jacobian ma-
trix. In input we must define a column vector x0 representing the initial
datum and two functions, Ffun and Jfun, which compute (respectively)
the column vector F containing the evaluations of f for a generic vector
x and the jacobian matrix J, also evaluated for a generic vector x. The
method stops when the difference between two consecutive iterates has
an euclidean norm smaller than tol or when nmax, the maximal number
of allowed iterations, has been reached.

Program 2.3. newtonsys: Newton method for nonlinear systems

function [x,F,iter] = newtonsys(Ffun ,Jfun ,x0,tol ,...
nmax , varargin)

%NEWTONSYS find a zero of a nonlinear system
% [ZERO ,F,ITER]= NEWTONSYS(FFUN ,JFUN ,X0 ,TOL ,NMAX)
% tries to find the vector ZERO , zero of a nonlinear
% system defined in FFUN with jacobian matrix defined
% in the function JFUN , nearest to the vector X0.
iter = 0; err = tol + 1; x = x0;
while err > tol & iter <= nmax

J = feval(Jfun ,x,varargin {:});
F = feval(Ffun ,x,varargin {:});
delta = - J\F;
x = x + delta;
err = norm(delta);
iter = iter + 1;

end
F = norm(feval(Ffun ,x,varargin {:}));
if iter >= nmax
fprintf(’ Fails to converge within maximum ’ ,...

’number of iterations\n ’);
fprintf(’ The iterate returned has relative ’ ,...

’residual %e\n’,F);
else
fprintf(’ The method converged at iteration ’ ,...

’%i with a residual %e\n’,iter ,F);
end
return

Example 2.4 Let us consider the nonlinear system (2.15) which allows the
two (graphically detectable) solutions (0.4761,−0.8794) and (−0.4761, 0.8794)
(where we only report the four first significant digits). In order to use Program
2.3 we define the following functions

function J=Jfun(x)
pi2 = 0.5*pi;
J(1,1) = 2*x(1);
J(1,2) = 2*x(2);
J(2,1) = pi2*cos(pi2*x(1));
J(2,2) = 3*x(2)^2;
return
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function F=Ffun(x)
F(1,1) = x(1)^2 + x(2)^2 - 1;
F(2,1) = sin(pi*x(1)/2) + x(2)^3;
return

Starting from an initial datum of x0=[1;1] Newton’s method, launched
with the command

x0 =[1;1]; tol=1e-5; maxiter =10;
[x,F,iter] = newtonsys(@Ffun ,@Jfun ,x0,tol ,maxiter );

converges in 8 iterations to the values

4.760958225338114e-01
-8.793934089897496e-01

(The special character @ tells newtonsys that Ffun and Jfun are functions.)
Notice that the method converges to the other root starting from x0=[-1,-1].

In general, exactly as in the case of scalar functions, convergence of Newton’s
method will actually depend on the choice of the initial datum x(0) and in
particular we should guarantee that det(Jf (x

(0))) �= 0. �

Let us summarize

1. Methods for the computation of the zeros of a function f are usually
of iterative type;

2. the bisection method computes a zero of a function f by generating
a sequence of intervals whose length is halved at each iteration. This
method is convergent provided that f is continuous in the initial
interval and has opposite signs at the endpoints of this interval;

3. Newton’s method computes a zero α of f by taking into account
the values of f and of its derivative. A necessary condition for con-
vergence is that the initial datum belongs to a suitable (sufficiently
small) neighborhood of α;

4. Newton’s method is quadratically convergent only when α is a simple
zero of f , otherwise convergence is linear;

5. the Newton method can be extended to the case of a nonlinear system
of equations.

See Exercises 2.6-2.14.

2.3 Fixed point iterations

Playing with a pocket calculator, one may verify that by applying repeat-
edly the cosine key to the real value 1, one gets the following sequence
of real numbers:
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x(1) = cos(1) = 0.54030230586814,
x(2) = cos(x(1)) = 0.85755321584639,
...
x(10) = cos(x(9)) = 0.74423735490056,
...
x(20) = cos(x(19)) = 0.73918439977149,

which should tend to the value α = 0.73908513 . . .. Since, by construc-
tion, x(k+1) = cos(x(k)) for k = 0, 1, . . . (with x(0) = 1), the limit α
satisfies the equation cos(α) = α. For this reason α is called a fixed
point of the cosine function. We may wonder how such iterations could
be exploited in order to compute the zeros of a given function. In the
previous example, α is not only a fixed point for the cosine function,
but also a zero of the function f(x) = x − cos(x), hence the previously
proposed method can be regarded as a method to compute the zeros of
f . On the other hand, not every function has fixed points. For instance,
by repeating the previous experiment using the exponential function and
x(0) = 1 one encounters a situation of overflow after 4 steps only (see
Figure 2.6).
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Fig. 2.6. The function φ(x) = cos x admits one and only one fixed point (left),
whereas the function φ(x) = ex does not have any (right)

Let us clarify the intuitive idea above by considering the following
problem. Given a function φ : [a, b] → R, find α ∈ [a, b] such that

α = φ(α).

If such an α exists it will be called a fixed point of φ and it could be
computed by the following algorithm:

x(k+1) = φ(x(k)), k ≥ 0 (2.17)
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where x(0) is an initial guess. This algorithm is called fixed point itera-
tions and φ is said to be the iteration function. The introductory example
is therefore an instance of fixed point iterations with φ(x) = cos(x).

A geometrical interpretation of (2.17) is provided in Figure 2.7 (left).
One can guess that if φ is a continuous function and the limit of the
sequence {x(k)} exists, then such limit is a fixed point of φ. We will
make this result more precise in Propositions 2.1 and 2.2.

Example 2.5 The Newton method (2.7) can be regarded as an algorithm of
fixed point iterations whose iteration function is

φ(x) = x − f(x)

f ′(x)
. (2.18)

From now on this function will be denoted by φN (where N stands for Newton).
This is not the case for the bisection method since the generic iterate x(k+1)

depends not only on x(k) but also on x(k−1). �
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Fig. 2.7. Representation of a few fixed point iterations for two different itera-
tion functions. To the left, the iterations converge to the fixed point α, whereas
the iterations on the right produce a divergence sequence

As shown in Figure 2.7 (right), fixed point iterations may not con-
verge. Indeed, the following result holds.

Proposition 2.1 Assume that the iteration function in (2.17) sat-
isfies the following properties:

1. φ(x) ∈ [a, b] for all x ∈ [a, b];
2. φ is differentiable in [a, b];
3. ∃K < 1 such that |φ′(x)| ≤ K for all x ∈ [a, b].
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Fig. 2.8. Two fixed points for two different population dynamics: Verhulst’s
model (solid line) and predator/prey model (dashed line)

Then φ has a unique fixed point α ∈ [a, b] and the sequence defined in
(2.17) converges to α, whatever choice is made for the initial datum
x(0) in [a, b]. Moreover

lim
k→∞

x(k+1) − α

x(k) − α
= φ′(α) (2.19)

From (2.19) one deduces that the fixed point iterations converge at least
linearly, that is, for k sufficiently large the error at step k+1 behaves like
the error at step k multiplied by a constant φ′(α) which is independent
of k and whose absolute value is strictly less than 1.

Example 2.6 The function φ(x) = cos(x) satisfies all the assumptions of
Proposition 2.1. Indeed, |φ′(α)| = | sin(α)| 	 0.67 < 1, and thus by continuity
there exists a neighborhood Iα of α such that |φ′(x)| < 1 for all x ∈ Iα. The
function φ(x) = x2 − 1 has two fixed points α± = (1 ±

√
5)/2, however it

does not satisfy the assumption for either since |φ′(α±)| = |1 ±
√

5| > 1. The
corresponding fixed point iterations will not converge. �

Example 2.7 (Population dynamics) Let us apply the fixed point itera-
tions to the function φV (x) = rx/(1 + xK) of Verhulst’s model (2.3) and to
the function φP (x) = rx2/(1 + (x/K)2), for r = 3 and K = 1, of the preda-
tor/prey model (2.4). Starting from the initial point x(0) = 1, we find the fixed
point α = 2 in the first case and α = 2.6180 in the second case (see Figure
2.8). The fixed point α = 0, common to either φV and φP , can be obtained
using the fixed point iterations on φP but not those on φV . In fact, φ′

P (α) = 0,
while φ′

V (α) = r > 1. The third fixed point of φP , α = 0.3820 . . ., cannot be
obtained by fixed point iterations since φ′

P (α) > 1. �
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The Newton method is not the only iterative procedure featuring
quadratic convergence. Indeed, the following general property holds.

Proposition 2.2 Assume that all hypotheses of Proposition 2.1 are
satisfied. In addition assume that φ is differentiable twice and that

φ′(α) = 0, φ′′(α) �= 0.

Then the fixed point iterations (2.17) converge with order 2 and

lim
k→∞

x(k+1) − α

(x(k) − α)2
=

1
2
φ′′(α) (2.20)

Example 2.5 shows that the fixed point iterations (2.17) could also be
used to compute the zeros of the function f . Clearly for any given f the
function φ defined in (2.18) is not the only possible iteration function.
For instance, for the solution of the equation log(x) = γ, after setting
f(x) = log(x) − γ, the choice (2.18) could lead to the iteration function

φN (x) = x(1 − log(x) + γ).

Another fixed point iteration algorithm could be obtained by adding
x to both sides of the equation f(x) = 0. The associated iteration func-
tion is now φ1(x) = x+log(x)−γ. A further method could be obtained by
choosing the iteration function φ2(x) = x log(x)/γ. Not all these meth-
ods are convergent. For instance, if γ = −2, the methods corresponding
to the iteration functions φN and φ2 are both convergent, whereas the
one corresponding to φ1 is not since |φ′

1(x)| > 1 in a neighborhood of
the fixed point α.

2.3.1 How to terminate fixed point iterations

In general, fixed point iterations are terminated when the absolute value
of the difference between two consecutive iterates is less than a prescribed
tolerance ε.

Since α = φ(α) and x(k+1) = φ(x(k)), using the mean value theorem
(see Section 1.4.3) we find

α − x(k+1) = φ(α) − φ(x(k)) = φ′(ξ(k)) (α − x(k)) with ξ(k) ∈ Iα,x(k) ,

Iα,x(k) being the interval with endpoints α and x(k). Using the identity

α − x(k) = (α − x(k+1)) + (x(k+1) − x(k)),

it follows that
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α − x(k) =
1

1 − φ′(ξ(k))
(x(k+1) − x(k)). (2.21)

Consequently, if φ′(x) � 0 in a neighborhood of α, the difference between
two consecutive iterates provides a satisfactory error estimator. This
is the case for methods of order 2, including Newton’s method. This
estimate becomes the more unsatisfactory the more φ′ approaches 1.

Example 2.8 Let us compute with Newton’s method the zero α = 1 of the
function f(x) = (x− 1)m−1 log(x) for m = 11 and m = 21, whose multiplicity
is equal to m. In this case Newton’s method converges with order 1; moreover,
it is possible to prove (see Exercise 2.15) that φ′

N (α) = 1− 1/m, φN being the
iteration function of the method, regarded as a fixed point iteration algorithm.
As m increases, the accuracy of the error estimate provided by the difference
between two consecutive iterates decreases. This is confirmed by the numerical
results in Figure 2.9 where we compare the behavior of the true error with that
of our estimator for both m = 11 and m = 21. The difference between these
two quantities is greater for m = 21. �
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Fig. 2.9. Absolute values of the errors (solid line) and absolute values of the
difference between two consecutive iterates (dashed line), plotted versus the
number of iterations for the case of Example 2.8. Graphs (1) refer to m = 11,
graphs (2) to m = 21

2.4 Acceleration using Aitken method

In this paragraph we will illustrate a technique which allows to accel-
erate the convergence of a sequence obtained via fixed point iterations.
Therefore, we suppose that x(k) = φ(x(k−1)), k ≥ 1. If the sequence
{x(k)} converges linearly to a fixed point α of φ, we have from (2.19)
that, for a given k, there must be a value λ (to be determined) such that

φ(x(k)) − α = λ(x(k) − α), (2.22)
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where we have deliberately avoided to identify φ(x(k)) with x(k+1). In-
deed, the idea underlying Aitken’s method consists in defining a new
value for x(k+1) (and thus a new sequence) which is a better approxima-
tion for α than that given by φ(x(k)). As a matter of fact, from (2.22)
we have that

α =
φ(x(k)) − λx(k)

1 − λ
=

φ(x(k)) − λx(k) + x(k) − x(k)

1 − λ

or

α = x(k) + (φ(x(k)) − x(k))/(1 − λ) (2.23)

We must now compute λ. To do so, we introduce the following sequence

λ(k) =
φ(φ(x(k))) − φ(x(k))

φ(x(k)) − x(k)
(2.24)

and verify that the following property holds:

Lemma 2.1 If the sequence of elements x(k+1) = φ(x(k)) converges
to α, then lim

k→∞
λ(k) = φ′(α).

Proof 2.1 If x(k+1) = φ(x(k)), then x(k+2) = φ(φ(x(k))) and from (2.24), we
obtain that λ(k) = (x(k+2) − x(k+1))/(x(k+1) − x(k)) or

λ(k) =
x(k+2) − α − (x(k+1) − α)

x(k+1) − α − (x(k) − α)
=

x(k+2) − α

x(k+1) − α
− 1

1 − x(k) − α

x(k+1) − α

from which, computing the limit and recalling (2.19), we find

lim
k→∞

λ(k) =
φ′(α) − 1

1 − 1/φ′(α)
= φ′(α).

Thanks to Lemma 2.1 we can conclude that, for a given k, λ(k) can be
considered as an approximation of the previously introduced unknown
value λ. Thus, we use (2.24) in (2.23) and define a new x(k+1) as follows:

x(k+1) = x(k) − (φ(x(k)) − x(k))2

φ(φ(x(k))) − 2φ(x(k)) + x(k)
, k ≥ 0 (2.25)

This expression is known as Aitken’s extrapolation formula and, by
(2.25), it can be considered as a new fixed point iteration for the new
iteration function
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φ∆(x) =
xφ(φ(x)) − [φ(x)]2

φ(φ(x)) − 2φ(x) + x
.

This method is sometimes called Steffensen’s method. Clearly, function
φ∆ is undetermined for x = α as the numerator and denominator vanish.
However, by applying de l’Hôpital’s formula and assuming that φ is
differentiable with φ′(α) �= 1 one finds

lim
x→α

φ∆(x) =
φ(φ(α)) + αφ′(φ(α))φ′(α) − 2φ(α)φ′(α)

φ′(φ(α))φ′(α) − 2φ′(α) + 1

=
α + α[φ′(α)]2 − 2αφ′(α)

[φ′(α)]2 − 2φ′(α) + 1
= α.

Consequently, φ∆(x) can be extended by continuity to x = α by setting
φ∆(α) = α.

When φ(x) = x − f(x), the case φ′(α) = 1 corresponds to a root
with multiplicity of at least 2 for f (since φ′(α) = 1 − f ′(α)). In such
situation however, we can once again prove by evaluating the limit that
φ∆(α) = α. Moreover, we can also verify that the fixed points of φ∆ are
all and exclusively the fixed points of φ.

Aitken’s method can thus be applied for any fixed point method.
Indeed, the following theorem holds:

Theorem 2.1 Consider the fixed point iterations (2.17) with
φ(x) = x − f(x) for computing the roots of f . Then if f is suffi-
ciently regular we have:

- if the fixed point iterations converge linearly to a simple root of f ,
then Aitken’s method converges quadratically to the same root;

- if the fixed point iterations converge with order p ≥ 2 to a simple
root of f , then Aitken’s method converges to the same root with
order 2p − 1;

- if the fixed point iterations converge linearly to a root with multi-
plicity m ≥ 2 of f , then Aitken’s method converges linearly to the
same root with an asymptotic convergence factor of C = 1−1/m.

In particular, if p = 1 and the root of f is simple, Aitken’s extrapola-
tion method converges even if the corresponding fixed point iterations
diverge.

In Program 2.4 we report an implementation of Aitken’s method.
Here phi is a function (or an inline function) which defines the expres-
sion of the iteration function of the fixed point method to which Aitken’s
extrapolation technique is applied. The initial datum is defined by the
variable x0, while tol and nmax are the stopping criterion tolerance (on
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the absolute value of the difference between two consecutive iterates) and
the maximal number of iterations allowed, respectively. If undefined, de-
fault values nmax=100 and tol=1.e-04 are assumed.

Program 2.4. aitken: Aitken method

function [x,niter ]= aitken(phi ,x0 ,tol ,nmax ,varargin)
%AITKEN Aitken ’s method.
% [ALPHA ,NITER ]= AITKEN(PHI ,X0) computes an
% approximation of a fixed point ALPHA of function PHI
% starting from the initial datum X0 using Aitken ’s
% extrapolation method. The method stops after 100
% iterations or after the absolute value of the
% difference between two consecutive iterates is
% smaller than 1.e-04. PHI must be defined as a
% function or an inline function.
% [ALPHA ,NITER ]= AITKEN(PHI ,X0 ,TOL ,NMAX) allows to
% define the tolerance on the stopping criterion and
% the maximum number of iterations.
if nargin == 2

tol = 1.e-04; nmax = 100;
elseif nargin == 3

nmax = 100;
end
x = x0;
diff = tol + 1;
niter = 0;
while niter <= nmax & diff >= tol

gx = feval(phi ,x,varargin {:});
ggx = feval(phi ,gx,varargin {:});
xnew = (x*ggx -gx^2)/(ggx -2*gx+x);
diff = abs(x-xnew);
x = xnew;
niter = niter + 1;

end
if niter >= nmax

fprintf(’ Fails to converge within maximum ’ ,...
’number of iterations\n ’);

end
return

Example 2.9 In order to compute the single root α = 1 for function f(x) =
ex(x − 1) we apply Aitken’s method starting from the two following iteration
functions

φ0(x) = log(xex), φ1(x) =
ex + x

ex + 1
.

We use Program 2.4 with tol=1.e-10, nmax=100, x0=2 and we define the two
iteration functions as follows:

phi0 = inline(’log(x*exp(x))’,’x’);
phi1 = inline(’(exp(x)+x)/( exp(x)+1)’,’x’);

We now run Program 2.4 as follows:

[alpha ,niter ]= aitken(phi0 ,x0,tol ,nmax)
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alpha =

1.0000 + 0.0000i

niter =

10

[alpha ,niter ]= aitken(phi1 ,x0,tol ,nmax)

alpha =

1

niter =

4

As we can see, the convergence is extremely rapid. For comparison the fixed
point method with iteration function φ1 and the same stopping criterion would
have required 18 iterations, while the method corresponding to φ0 would not
have been convergent as |φ′

0(1)| = 2. �

Let us summarize

1. A number α satisfying φ(α) = α is called a fixed point of φ. For its
computation we can use the so-called fixed point iterations: x(k+1) =
φ(x(k));

2. fixed point iterations converge under suitable assumptions on the
iteration function φ and its first derivative. Typically, convergence is
linear, however, in the special case when φ′(α) = 0, the fixed point
iterations converge quadratically;

3. fixed point iterations can also be used to compute the zeros of a
function;

4. given a fixed point iteration x(k+1) = φ(x(k)), it is always possible to
construct a new sequence using Aitken’s method, which in general
converges faster.

See Exercises 2.15-2.18.

2.5 Algebraic polynomials

In this section we will consider the case where f is a polynomial of
degree n ≥ 0 of the form (1.9). As already anticipated, the space of all
polynomials (1.9) is denoted by the symbol Pn. When n ≥ 2 and all the
coefficients ak are real, if α ∈ C is a complex root of pn ∈ Pn (i.e. with
Im(α) �= 0), then ᾱ (the complex conjugate of α) is a root of pn too.

Abel’s theorem guarantees that there does not exist an explicit form
to compute all the zeros of a generic polynomial pn, when n ≥ 5. This
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fact further motivates the use of numerical methods for computing the
roots of pn.

As we have previously seen for such methods it is important to choose
an appropriate initial datum x(0) or a suitable search interval [a, b] for
the root. In the case of polynomials this is sometimes possible on the
basis of the following results.

Theorem 2.2 (Descartes’s sign rule) Let us denote by ν the
number of sign changes of the coefficients {aj} and with k the num-
ber of real positive roots of pn, each counted with its own multiplicity.
Then k ≤ ν and ν − k is even.

Example 2.10 The polynomial p6(x) = x6 − 2x5 + 5x4 − 6x3 + 2x2 + 8x− 8
has zeros {±1,±2i, 1 ± i} and thus has 1 real positive root (k = 1). Indeed,
the number of sign changes ν of its coefficients is 5 and thereafter k ≤ ν and
ν − k = 4 is even. �

Theorem 2.3 (Cauchy) All of the zeros of pn are included in the
circle Γ in the complex plane

Γ = {z ∈ C : |z| ≤ 1 + η}, where η = max
0≤k≤n−1

|ak/an|. (2.26)

This property is barely useful when η � 1 (for polynomial p6 in Example
2.10 for instance, we have η = 8, while all of the roots are in circles with
clearly smaller radii).

2.5.1 Hörner’s algorithm

In this paragraph we will illustrate a method for the effective evaluation
of a polynomial (and its derivative) in a given point z. Such algorithm
allows to generate an automatic procedure, called deflation method, for
the progressive approximation of all the roots of a polynomial.

From an algebraic point of view, (1.9) is equivalent to the following
representation

pn(x) = a0 + x(a1 + x(a2 + . . . + x(an−1 + anx) . . .)). (2.27)

However, while (1.9) requires n sums and 2n − 1 products to evaluate
pn(x) (for a given x), (2.27) only requires n sums and n products. The
expression (2.27), also known as the nested product algorithm, is the
basis for Hörner’s algorithm. This method allows to effectively evaluate
the polynomial pn in a point z by using the following synthetic division
algorithm
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bn = an,

bk = ak + bk+1z, k = n − 1, n − 2, ..., 0
(2.28)

In (2.28) all of the coefficients bk with k ≤ n − 1 depend on z and we
can verify that b0 = pn(z). The polynomial

qn−1(x; z) = b1 + b2x + ... + bnxn−1 =
n∑

k=1

bkxk−1, (2.29)

of degree n−1 in x, depends on the z parameter (via the bk coefficients)
and is called the associated polynomial of pn. Algorithm (2.28) is im-
plemented in Program 2.5. The aj coefficients of the polynomial to be
evaluated are stored in vector a starting from an up to a0.

Program 2.5. horner: synthetic division algorithm

function [y,b] = horner(a,z)
%HORNER Horner algorithm
% Y=HORNER(A,Z) computes
% Y = A(1)*Z^N + A(2)*Z^(N-1) + ... + A(N)*Z + A(N+1)
% using Horner ’s synthetic division algorithm.
n = length(a)-1;
b = zeros(n+1,1);
b(1) = a(1);
for j=2:n+1

b(j) = a(j)+b(j-1)*z;
end
y = b(n+1);
b = b(1:end -1);
return

We now want to introduce an effective algorithm which, knowing the
root of a polynomial (or its approximation), is able to remove it and
then to allow the computation of the following one until all roots are
determinated.

In order to do this we should recall the following property of polyno-
mial division:

Proposition 2.3 Given two polynomials hn ∈ Pn and gm ∈ Pm

with m ≤ n, there are a unique polynomial δ ∈ Pn−m and a unique
polynomial ρ ∈ Pm−1 such that

hn(x) = gm(x)δ(x) + ρ(x). (2.30)

Thus, by dividing a polynomial pn ∈ Pn by x− z, one deduces by (2.30)
that

pn(x) = b0 + (x − z)qn−1(x; z),
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having denoted by qn−1 the quotient and by b0 the remainder of the
division. If z is a root of pn, then we have b0 = pn(z) = 0 and therefore
pn(x) = (x−z)qn−1(x; z). In this case the algebric equation qn−1(x; z) =
0 provides the n − 1 remaining roots of pn(x). This remark suggests to
adopt the following deflation criterion to compute all the roots of pn.

For m = n, n − 1, . . . , 1:

1. find a root rm for pm with an appropriate approximation method;
2. compute qm−1(x; rm) using (2.28)-(2.29) (having set z = rm);
3. set pm−1 = qm−1.

In the following paragraph we propose the most widely known
method in this group, which uses Newton’s method for the approxi-
mation of the roots.

2.5.2 The Newton-Hörner method

As its name suggests, the Newton-Hörner method implements the defla-
tion procedure using Newton’s method to compute the roots rm. The
advantage lies in the fact that the implementation of Newton’s method
conveniently exploits Hörner’s algorithm (2.28).

As a matter of fact, if qn−1 is the polynomial associated to pn defined
in (2.29), since

p′n(x) = qn−1(x; z) + (x − z)q′n−1(x; z),

one has

p′n(z) = qn−1(z; z).

Thanks to this identity, the Newton-Hörner method for the approxima-
tion of a (real or complex) root rj of pn (j = 1, . . . , n) takes the following
form:
given an initial estimation r

(0)
j of the root, compute for each k ≥ 0 until

convergence

r
(k+1)
j = r

(k)
j −

pn(r(k)
j )

p′n(r(k)
j )

= r
(k)
j −

pn(r(k)
j )

qn−1(r
(k)
j ; r(k)

j )
(2.31)

We now use the deflation technique, exploiting the fact that pn(x) =
(x− rj)pn−1(x). We can then proceed to the approximation of a zero of
pn−1 and so on until all the roots of pn are processed.

Consider that when rj ∈ C, it is necessary to perform the computa-
tion in complex arithmetics, taking r

(0)
j as the non-null imaginary part.

Otherwise, the Newton-Hörner method would generate a sequence {r(k)
j }

of real numbers.
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The Newton-Hörner method is implemented in Program 2.6. The co-
efficients aj of the polynomial for which we intend to compute the roots
are stored in vector a starting from an up to a0. The other input parame-
ters, tol and nmax, are the stopping criterion tolerance (on the absolute
value of the difference between two consecutive iterates) and the maximal
number of iterations allowed, respectively. If undefined, the default val-
ues nmax=100 and tol=1.e-04 are assumed. As an output, the program
returns in vectors roots and iter the computed roots and the number
of iterations required to compute each of the values, respectively.

Program 2.6. newtonhorner: Newton-Hörner method

function [roots ,iter]= newtonhorner(a,x0,tol ,nmax)
%NEWTONHORNER Newton -Horner method
% [roots ,ITER]= NEWTONHORNER(A,X0) computes the roots of
% polynomial
% P(X) = A(1)*X^N + A(2)*X^(N-1) + ... + A(N)*X +
% A(N+1)
% using the Newton -Horner method starting from the
% initial datum X0. The method stops for each root
% after 100 iterations or after the absolute value of
% the difference between two consecutive iterates is
% smaller than 1.e-04.
% [roots ,ITER]= NEWTONHORNER(A,X0 ,TOL ,NMAX) allows to
% define the tolerance on the stopping criterion and
% the maximal number of iterations.
if nargin == 2

tol = 1.e-04; nmax = 100;
elseif nargin == 3

nmax = 100;
end
n=length(a)-1; roots = zeros(n,1); iter = zeros(n,1);
for k = 1:n

% Newton iterations
niter = 0; x = x0; diff = tol + 1;
while niter <= nmax & diff >= tol

[pz ,b] = horner(a,x); [dpz ,b] = horner(b,x);
xnew = x - pz/dpz; diff = abs(xnew -x);
niter = niter + 1; x = xnew;

end
if niter >= nmax

fprintf(’ Fails to converge within maximum ’ ,...
’number of iterations\n ’);

end
% Deflation
[pz ,a] = horner(a,x); roots(k) = x; iter(k) = niter;

end
return

Remark 2.1 In order to minimize the propagation of roundoff errors, during
the deflation process it is better to first approximate the root r1 with minimal
absolute value and then to proceed to the computation of the following roots
r2, r3, . . ., until the one with the maximal absolute value is reached (to learn
more, see for instance [QSS06]). •
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Example 2.11 To compute the roots {1, 2, 3} of the polynomial p3(x) =
x3 − 6x2 + 11x − 6 we use Program 2.6

a=[1 -6 11 -6]; [x,niter ]= newtonhorner(a,0,1.e-15 ,100)

x =

1

2

3

niter =

8

8

2

The method computes all three roots accurately and in few iterations. As
pointed out in Remark 2.1 however, the method is not always so effective. For
instance, if we consider the polynomial p4(x) = x4 − 7x3 + 15x2 − 13x + 4
(which has the root 1 of multiplicity 3 and a single root with value 4) we find
the following results

a=[1 -7 15 -13 4]; format long;
[x,niter ]= newtonhorner(a,0,1.e-15 ,100)

x =

1.00000693533737

0.99998524147571

1.00000782324144

3.99999999994548

niter =

61

101

6

2

The loss of accuracy is quite evident for the computation of the multiple
root, and becomes as more relevant as the multiplicity increases (see [QSS06]).
�

2.6 What we haven’t told you

The most sophisticated methods for the computation of the zeros of
a function combine different algorithms. In particular, the MATLAB

function fzero (see Section 1.4.1) adopts the so called Dekker-Brent fzero
method (see [QSS06], Section 6.2.3). In its basic form fzero(fun,x0)
computes the zero of the function fun, where fun can be either a string
which is a function of x, the name of an inline function, or the name of
a m-file.

For instance, we could solve the problem in Example 2.1 also by
fzero, using the initial value x0=0.3 (as done by Newton’s method) via
the following instructions:
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function y=Rfunc(r)
y=6000 - 1000*(1+r)/r*((1+r)^5 - 1);
end

x0=0.3;
[alpha ,res ,flag]= fzero(’Rfunc ’,x0);

We obtain alpha=0.06140241153653 with residual res=9.0949e-13 in
iter=29 iterations. When flag is negative it means that fzero cannot
find the zero. The Newton method converges in 6 iterations to the value
0.06140241153652 with a residual equal to 2.3646e-11.

In order to compute the zeros of a polynomial, in addition to the
Newton-Hörner method, we can cite the methods based on Sturm se-
quences, Müller’s method, (see [Atk89] or [QSS06]) and Bairstow’s
method ([RR85], page 371 and following). A different approach con-
sists in characterizing the zeros of a function as the eigenvalues of a
special matrix (called the companion matrix ) and then using appropri-
ate techniques for their computation. This approach is adopted by the
MATLAB function roots which has been introduced in Section 1.4.2.

We have mentioned in Section 2.2.2 how to set up a Newton method
for a nonlinear system, like (2.13). More in general, any fixed point iter-
ation can be easily extended to compute the roots of nonlinear systems.
Other methods exist as well, such as the Broyden and quasi-Newton
methods, which can be regarded as generalizations of Newton’s method
(see [DS83], [Deu04], [SM03] and [QSS06, Chapter 7]).

The MATLAB instructionfsolve

zero=fsolve(’fun’,x0)

allows the computation of one zero of a nonlinear system defined via
the user function fun starting from the vector x0 as initial guess. The
function fun returns the n values fi(x̄1, . . . , x̄n), i = 1, . . . , n, for any
given input vector (x̄1, . . . , x̄n)T .

For instance, in order to solve the nonlinear system (2.15) us-
ing fsolve the corresponding MATLAB user function, which we call
systemnl, is defined as follows:
function fx=systemnl(x)
fx(1) = x(1)^2+x(2)^2 -1;
fx(2) = sin(pi*0.5*x(1))+x(2)^3;

The MATLAB instructions to solve this system are therefore:
x0 = [1 1];
alpha=fsolve(’systemnl ’,x0)

alpha =
0.4761 -0.8794

Using this procedure we have found only one of the two roots. The other
can be computed starting from the initial datum -x0.
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Octave 2.1 The commands fzero and fsolve have exactly the same
purpose in MATLAB and Octave, however there interface differ slightly
between MATLAB and Octave in the optional arguments. We encourage
the reader to study the help documentation of both commands in each
environment. �

2.7 Exercises

Exercise 2.1 Given the function f(x) = cosh x+cos x−γ, for γ = 1, 2, 3 find
an interval that contains the zero of f . Then compute the zero by the bisection
method with a tolerance of 10−10.

Exercise 2.2 (State equation of a gas) For carbon dioxide (CO2) the co-
efficients a and b in (2.1) take the following values: a = 0.401Pa m6, b =
42.7 · 10−6m3 (Pa stands for Pascal). Find the volume occupied by 1000 mole-
cules of CO2 at a temperature T = 300K and a pressure p = 3.5 · 107 Pa by
the bisection method, with a tolerance of 10−12 (the Boltzmann constant is
k = 1.3806503 · 10−23 Joule K−1).

Exercise 2.3 Consider a plane whose slope varies with constant rate ω, and
a dimensionless object which is steady at the initial time t = 0. At time t > 0
its position is

s(t, ω) =
g

2ω2
[sinh(ωt) − sin(ωt)],

where g = 9.8 m/s2 denotes the gravity acceleration. Assuming that this object
has moved by 1 meter in 1 second, compute the corresponding value of ω with
a tolerance of 10−5.

Exercise 2.4 Prove inequality (2.6).

Exercise 2.5 Motivate why in Program 2.1 the instruction x(2) = x(1)+

(x(3)- x(1))*0.5 has been used instead of the more natural one x(2)=(x(1)+
x(3))*0.5 in order to compute the midpoint.

Exercise 2.6 Apply Newton’s method to solve Exercise 2.1. Why is this
method not accurate when γ = 2?

Exercise 2.7 Apply Newton’s method to compute the square root of a pos-
itive number a. Proceed in a similar manner to compute the cube root of
a.

Exercise 2.8 Assuming that Newton’s method converges, show that (2.9)
is true when α is a simple root of f(x) = 0 and f is twice continuously
differentiable in a neighborhood of α.
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Exercise 2.9 (Rods system) Apply Newton’s method to solve Problem 2.3
for β ∈ [0, 2π/3] with a tolerance of 10−5. Assume that the lengths of the rods
are a1 = 10 cm, a2 = 13 cm, a3 = 8 cm and a4 = 10 cm. For each value of β
consider two possible initial data, x(0) = −0.1 and x(0) = 2π/3.

Exercise 2.10 Notice that the function f(x) = ex − 2x2 has 3 zeros, α1 < 0,
α2 and α3 positive. For which value of x(0) does Newton’s method converge
to α1?

Exercise 2.11 Use Newton’s method to compute the zero of f(x) = x3 −
3x22−x + 3x4−x − 8−x in [0, 1] and explain why convergence is not quadratic.

Exercise 2.12 A projectile is ejected with velocity v0 and angle α in a tunnel
of height h and reaches its maximum range when α is such that sin(α) =√

2gh/v2
0 , where g = 9.8 m/s2 is the gravity acceleration. Compute α using

Newton’s method, assuming that v0 = 10 m/s and h = 1 m.

Exercise 2.13 (Investment fund) Solve Problem 2.1 by Newton’s method
with a tolerance of 10−12, assuming M = 6000 euros, v = 1000 euros and
n = 5. As an initial guess take the result obtained after 5 iterations of the
bisection method applied on the interval (0.01, 0.1).

Exercise 2.14 A corridor has the form indicated in Figure 2.10. The maxi-
mum length L of a rod that can pass from one extreme to the other by sliding
on the ground is given by

L = l2/(sin(π − γ − α)) + l1/ sin(α),

where α is the solution of the nonlinear equation

l2
cos(π − γ − α)

sin2(π − γ − α)
− l1

cos(α)

sin2(α)
= 0. (2.32)

Compute α by Newton’s method when l2 = 10, l1 = 8 and γ = 3π/5.

L

l2

l1

γ

α

Fig. 2.10. The problem of a rod sliding in a corridor
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Exercise 2.15 Let φN be the iteration function of Newton’s method when
regarded as a fixed point iteration. Show that φ′

N (α) = 1 − 1/m where α
is a zero of f with multiplicity m. Deduce that Newton’s method converges
quadratically if α is a simple root of f(x) = 0, and linearly otherwise.

Exercise 2.16 Deduce from the graph of f(x) = x3 + 4x2 − 10 that this
function has a unique real zero α. To compute α use the following fixed point
iterations: given x(0), define x(k+1) such that

x(k+1) =
2(x(k))3 + 4(x(k))2 + 10

3(x(k))2 + 8x(k)
, k ≥ 0

and analyze its convergence to α.

Exercise 2.17 Analyze the convergence of the fixed point iterations

x(k+1) =
x(k)[(x(k))2 + 3a]

3(x(k))2 + a
, k ≥ 0,

for the computation of the square root of a positive number a.

Exercise 2.18 Repeat the computations carried out in Exercise 2.11 this time
using the stopping criterion based on the residual. Which result is the more
accurate?
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Approximation of functions and data

Approximating a function f consists of replacing it by another function
f̃ of simpler form that may be used as its surrogate. This strategy is
used frequently in numerical integration where, instead of computing∫ b

a
f(x)dx, one carries out the exact computation of

∫ b

a
f̃(x)dx, f̃ being

a function simple to integrate (e.g. a polynomial), as we will see in the
next chapter. In other instances the function f may be available only
partially through its values at some selected points. In these cases we
aim at constructing a continuous function f̃ that could represent the
empirical law which is behind the finite set of data. We provide some
examples which illustrate this kind of approach.

Problem 3.1 (Climatology) The air temperature near the ground de-
pends on the concentration K of the carbon acid (H2CO3) therein. In
Table 3.1 (taken from Philosophical Magazine 41, 237 (1896)) we report
for different latitudes on the Earth and for four different values of K,
the variation δK = θK − θK̄ of the average temperature with respect
to the average temperature corresponding to a reference value K̄ of K.
Here K̄ refers to the value measured in 1896, and is normalized to one.
In this case we can generate a function that, on the basis of the available
data, provides an approximate value of the average temperature at any
possible latitude and for other values of K (see Example 3.1). �

Problem 3.2 (Finance) In Figure 3.1 we report the price of a stock
at the Zurich stock exchange over two years. The curve was obtained by
joining with a straight line the prices reported at every day’s closure. This
simple representation indeed implicitly assumes that the prices change
linearly in the course of the day (we anticipate that this approximation
is called composite linear interpolation). We ask whether from this graph
one could predict the stock price for a short time interval beyond the
time of the last quotation. We will see in Section 3.4 that this kind of
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δK

Latitude K = 0.67 K = 1.5 K = 2.0 K = 3.0

65 -3.1 3.52 6.05 9.3
55 -3.22 3.62 6.02 9.3
45 -3.3 3.65 5.92 9.17
35 -3.32 3.52 5.7 8.82
25 -3.17 3.47 5.3 8.1
15 -3.07 3.25 5.02 7.52
5 -3.02 3.15 4.95 7.3
-5 -3.02 3.15 4.97 7.35
-15 -3.12 3.2 5.07 7.62
-25 -3.2 3.27 5.35 8.22
-35 -3.35 3.52 5.62 8.8
-45 -3.37 3.7 5.95 9.25
-55 -3.25 3.7 6.1 9.5

Table 3.1. Variation of the average yearly temperature on the Earth for four
different values of the concentration K of carbon acid at different latitudes

prediction could be guessed by resorting to a special technique known as
least-squares approximation of data (see Example 3.9). �
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Fig. 3.1. Price variation of a stock over two years

Problem 3.3 (Biomechanics) We consider a mechanical test to es-
tablish the link between stresses (MPa= 100 N/cm2) and deformations of
a sample of biological tissue (an intervertebral disc, see Figure 3.2). Start-
ing from the data collected in Table 3.2 (taken from P.Komarek, Chapt.
2 of Biomechanics of Clinical Aspects of Biomedicine, 1993, J.Valenta
ed., Elsevier) in Example 3.10 we will estimate the deformation corre-
sponding to a stress σ = 0.9 MPa. �
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σ = F/A
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Fig. 3.2. A schematic representation of an intervertebral disc

test stress σ stress ε test stress σ stress ε

1 0.00 0.00 5 0.31 0.23
2 0.06 0.08 6 0.47 0.25
3 0.14 0.14 7 0.60 0.28
4 0.25 0.20 8 0.70 0.29

Table 3.2. Values of the deformation for different values of a stress applied
on an intervertebral disc

Problem 3.4 (Robotics) We want to approximate the planar trajec-
tory followed by a robot (idealized as a material point) during a working
cycle in an industry. The robot should satisfy a few constraints: it must
be steady at the point (0, 0) in the plane at the initial time (say, t = 0),
transit through the point (1, 2) at t = 1, get the point (4, 4) at t = 2,
stop and restart immediately and reach the point (3, 1) at t = 3, return
to the initial point at time t = 5, stop and restart a new working cycle.
In Example 3.7 we will solve this problem using the splines functions. �

A function f can be replaced in a given interval by its Taylor polyno-
mial, which was introduced in Section 1.4.3. This technique is computa-
tionally expensive since it requires the knowledge of f and its derivatives
up to the order n (the polynomial degree) at a given point x0. More-
over, the Taylor polynomial may fail to accurately represent f far enough
from the point x0. For instance, in Figure 3.3 we compare the behav-
ior of f(x) = 1/x with that of its Taylor polynomial of degree 10 built
around the point x0 = 1. This picture also shows the graphical interface
of the MATLAB function taylortool which allows the computation of taylortool
Taylor’s polynomial of arbitrary degree for any given function f . The
agreement between the function and its Taylor polynomial is very good
in a small neighborhood of x0 = 1 while it becomes unsatisfactory when
x−x0 gets large. Fortunately, this is not the case of other functions such
as the exponential function which is approximated quite nicely for all
x ∈ R by its Taylor polynomial related to x0 = 0, provided that the
degree n is sufficiently large.

In the course of this chapter we will introduce approximation methods
that are based on alternative approaches.
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Fig. 3.3. Comparison between the function f(x) = 1/x (solid line) and its
Taylor polynomial of degree 10 related to the point x0 = 1 (dashed line). The
explicit form of the Taylor polynomial is also reported

3.1 Interpolation

As seen in Problems 3.1, 3.2 and 3.3, in several applications it may
happen that a function is known only through its values at some given
points. We are therefore facing a (general) case where n + 1 couples
{xi, yi}, i = 0, . . . , n, are given; the points xi are all distinct and are
called nodes.

For instance in the case of Table 3.1, n is equal to 12, the nodes xi are
the values of the latitude reported in the first column, while the yi are
the corresponding values (of the temperature) in the remaining columns.

In such a situation it seems natural to require the approximate func-
tion f̃ to satisfy the set of relations

f̃(xi) = yi, i = 0, 1, . . . , n (3.1)

Such an f̃ is called interpolant of the set of data {yi} and equations (3.1)
are the interpolation conditions.

Several kinds of interpolants could be envisaged, such as:

- polynomial interpolant :

f̃(x) = a0 + a1x + a2x
2 + . . . + anxn;

- trigonometric interpolant :

f̃(x) = a−Me−iMx + . . . + a0 + . . . + aMeiMx
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where M is an integer equal to n/2 if n is even, (n− 1)/2 if n is odd,
and i is the imaginary unit;

- rational interpolant :

f̃(x) =
a0 + a1x + . . . + akxk

ak+1 + ak+2x + . . . +ak+n+1xn
.

For simplicity we only consider those interpolants which depend lin-
early on the unknown coefficients ai. Both polynomial and trigonometric
interpolation fall into this category, whereas the rational interpolant does
not.

3.1.1 Lagrangian polynomial interpolation

Let us focus on the polynomial interpolation. The following result holds:

Proposition 3.1 For any set of couples {xi, yi}, i = 0, . . . , n, with
distinct nodes xi, there exists a unique polynomial of degree less
than or equal to n, which we indicate by Πn and call interpolating
polynomial of the values yi at the nodes xi, such that

Πn(xi) = yi, i = 0, . . . , n (3.2)

In the case where the {yi, i = 0, . . . , n} represent the values of a
continuous function f , Πn is called interpolating polynomial of f
(in short, interpolant of f) and will be denoted by Πnf .

To verify uniqueness we proceed by contradiction and suppose that
there exist two distinct polynomials of degree n, Πn and Π∗

n, both sat-
isfying the nodal relation (3.2). Their difference, Πn − Π∗

n, would be a
polynomial of degree n which vanishes at n + 1 distinct points. Owing
to a well known theorem of Algebra, such a polynomial should vanish
identically, and then Π∗

n must coincide with Πn.
In order to obtain an expression for Πn, we start from a very special

case where yi vanishes for all i apart from i = k (for a fixed k) for which
yk = 1. Then setting ϕk(x) = Πn(x), we must have (see Figure 3.4)

ϕk ∈ Pn, ϕk(xj) = δjk =
{

1 if j = k,
0 otherwise,

where δjk is the Kronecker symbol.
The functions ϕk have the following expression:

ϕk(x) =
n∏

j=0
j �=k

x − xj

xk − xj
, k = 0, . . . , n. (3.3)
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Fig. 3.4. The polynomial ϕ2 ∈ P4 associated with a set of 5 equispaced nodes

We move now to the general case where {yi, i = 0, . . . , n} is a set of
arbitrary values. Using an obvious superposition principle we can obtain
the following expression for Πn

Πn(x) =
n∑

k=0

ykϕk(x) (3.4)

Indeed, this polynomial satisfies the interpolation conditions (3.2), since

Πn(xi) =
n∑

k=0

ykϕk(xi) =
n∑

k=0

ykδik = yi, i = 0, . . . , n.

Due to their special role, the functions ϕk are called Lagrange char-
acteristic polynomials, and (3.4) is the Lagrange form of the interpolant.
In MATLAB we can store the n+1 couples {(xi, yi)} in the vectors x
and y, and then the instruction c=polyfit(x,y,n) will provide the coef-polyfit
ficients of the interpolating polynomial. Precisely, c(1) will contain the
coefficient of xn, c(2) that of xn−1, . . . and c(n+1) the value of Πn(0).
(More on this command can be found in Section 3.4.) As already seen
in Chapter 1, we can then use the instruction p=polyval(c,z) to com-
pute the value p(j) attained by the interpolating polynomial at z(j),
j=1,...,m, the latter being a set of m arbitrary points.

In the case when the explicit form of the function f is available, we
can use the instruction y=eval(f) in order to obtain the vector y of
values of f at some specific nodes (which should be stored in a vector x).

Example 3.1 (Climatology) To obtain the interpolating polynomial for the
data of Problem 3.1 relating to the value K = 0.67 (first column of Table 3.1),
using only the values of the temperature for the latitudes 65, 35, 5, -25, -55,
we can use the following MATLAB instructions:
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x=[-55 -25 5 35 65]; y=[ -3.25 -3.2 -3.02 -3.32 -3.1];
format short e; c=polyfit(x,y,4)

c =

8.2819e-08 -4.5267e-07 -3.4684e-04 3.7757e-04 -3.0132e+00

The graph of the interpolating polynomial can be obtained as follows:

z=linspace(x(1),x(end ) ,100);
p=polyval(c,z);
plot(z,p);hold on;plot(x,y,’o’);grid on;

In order to get a smooth curve we have evaluated our polynomial at 101
equispaced points in the interval [−55, 65] (as a matter of fact, MATLAB plots
are always constructed on piecewise linear interpolation between neighboring
points). Note that the instruction x(end) picks up directly the last component
of the vector x, without specifying the length of the vector. In Figure 3.5 the
filled circles correspond to those values which have been used to construct the
interpolating polynomial, whereas the empty circles correspond to values that
have not been used. We can appreciate the qualitative agreement between the
curve and the data distribution. �
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Fig. 3.5. The interpolating polynomial of degree 4 introduced in Example 3.1

Using the following result we can evaluate the error obtained by re-
placing f with its interpolating polynomial Πnf :

Proposition 3.2 Let I be a bounded interval, and consider n + 1
distinct interpolation nodes {xi, i = 0, . . . , n} in I. Let f be contin-
uously differentiable up to order n + 1 in I.
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Then ∀x ∈ I ∃ξ ∈ I such that

Enf(x) = f(x) − Πnf(x) =
f (n+1)(ξ)
(n + 1)!

n∏

i=0

(x − xi) (3.5)

Obviously, Enf(xi) = 0, i = 0, . . . , n.
Result (3.5) can be better specified in the case of a uniform distrib-

ution of nodes, that is when xi = xi−1 + h for i = 1, . . . , n, for a given
h > 0 and a given x0. As stated in Exercise 3.1, ∀x ∈ (x0, xn) one can
verify that

∣∣∣∣∣

n∏

i=0

(x − xi)

∣∣∣∣∣
≤ n!

hn+1

4
, (3.6)

and therefore

max
x∈I

|Enf(x)| ≤
max
x∈I

|f (n+1)(x)|

4(n + 1)
hn+1. (3.7)

Unfortunately, we cannot deduce from (3.7) that the error tends to
0 when n → ∞, in spite of the fact that hn+1/[4(n + 1)] tends to 0. In
fact, as shown in Example 3.2, there exist functions f for which the limit
can even be infinite, that is

lim
n→∞

max
x∈I

|Enf(x)| = ∞.

This striking result indicates that by increasing the degree n of the
interpolating polynomial we do not necessarily obtain a better recon-
struction of f . For instance, should we use all data of the second column
of Table 3.1, we would obtain the interpolating polynomial Π12f repre-
sented in Figure 3.6, whose behavior in the vicinity of the left-hand of
the interval is far less satisfactory than that obtained in Figure 3.5 using
a much smaller number of nodes. An even worse result may arise for a
special class of functions, as we report in the next example.

Example 3.2 (Runge) If the function f(x) = 1/(1 + x2) is interpolated
at equispaced nodes in the interval I = (−5, 5), the error maxx∈I |Enf(x)|
tends to infinity when n → ∞. This is due to the fact that if n → ∞ the
order of magnitude of maxx∈I |f (n+1)(x)| outweighs the infinitesimal order of
hn+1/[4(n+1)]. This conclusion can be verified by computing the maximum of
f and its derivatives up to the order 21 by means of the following MATLAB

instructions:

syms x; n=20; f=1/(1+x^2); df=diff(f,1);
cdf = char(df);
for i = 1:n+1, df = diff(df ,1); cdfn = char(df);
x = fzero(cdfn ,0); M(i) = abs(eval(cdf )); cdf = cdfn;

end
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The maximum of the absolute values of the functions f (n), n = 1, . . . , 21,
are stored in the vector M. Notice that the command char converts the symbolic
expression df into a string that can be evaluated by the function fzero. In
particular, the absolute values of f (n) for n = 3, 9, 15, 21 are:

>> M([3,9,15,21]) =

ans =

4.6686e+00 3.2426e+05 1.2160e+12 4.8421e+19

while the corresponding values of the maximum of
n∏

i=0

(x − xi)/(n + 1)! are

z = linspace ( -5 ,5 ,10000);
for n=0:20; h=10/(n+1); x=[-5:h:5];

c=poly(x);
r(n+1)= max(polyval(c,z));
r(n+1)=r(n+1)/ prod ([1:n+2]);

end
r([3 ,9 ,15 ,21])

ans =

2.8935e+00 5.1813e-03 8.5854e-07 2.1461e-11

c=poly(x) is a vector whose components are the coefficients of that polynomial poly
whose roots are the elements of the vector x. It follows that maxx∈I |Enf(x)|
attains the following values:

>> format short e;

1.3509e+01 1.6801e+03 1.0442e+06 1.0399e+09

for n = 3, 9, 15, 21, respectively.
The lack of convergence is also indicated by the presence of severe oscilla-

tions in the graph of the interpolating polynomial with respect to the graph
of f , especially near the endpoints of the interval (see Figure 3.6, right). This
behavior is known as Runge’s phenomenon. �

Besides (3.7), the following inequality can also be proved:

max
x∈I

|f ′(x) − (Πnf)′(x)| ≤ Chnmax
x∈I

|f (n+1)(x)|,

where C is a constant independent of h. Therefore, if we approximate
the first derivative of f by the first derivative of Πnf , we loose an order
of convergence with respect to h.

In MATLAB, (Πnf)′ can be computed using the instruction [d]=
polyder(c), where c is the input vector in which we store the coefficients polyder
of the interpolating polynomial, while d is the output vector where we
store the coefficients of its first derivative (see Section 1.4.2).

Octave 3.1 The analogous command in Octave is [d]=polyderiv (c).
�

See the Exercises 3.1-3.4.
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Fig. 3.6. Two examples of Runge’s phenomenon: to the left, Π12 computed
for the data of Table 3.1, column K = 0.67; to the right, Π12f (solid line)
computed on 13 equispaced nodes for the function f(x) = 1/(1 + x2) (dashed
line)

3.1.2 Chebyshev interpolation

Runge’s phenomenon can be avoided if a suitable distribution of nodes
is used. In particular, in an arbitrary interval [a, b], we can consider the
so called Chebyshev nodes (see Figure 3.7, right):

xi =
a + b

2
+

b − a

2
x̂i, where x̂i = − cos(πi/n), i = 0, . . . , n (3.8)

Obviously, xi = x̂i, i = 0, . . . , n, when [a, b] = [−1, 1].
Indeed, for this special distribution of nodes it is possible to prove that,
if f is a continuous and differentiable function in [a, b], Πnf converges
to f as n → ∞ for all x ∈ [a, b].

The Chebyshev nodes, which are the abscissas of equispaced nodes
on the unit semi-circumference, lie inside [a, b] and are clustered near the
endpoints of this interval (see Figure 3.7).

Another non-uniform distribution of nodes in the interval (a, b), shar-
ing the same convergence properties of Chebyshev nodes, is provided by:

xi =
a + b

2
− b − a

2
cos

(
2i + 1
n + 1

π

2

)
, i = 0, . . . , n (3.9)

Example 3.3 We consider anew the function f of Runge’s example and com-
pute its interpolating polynomial 1at Chebyshev nodes. The latter can be ob-
tained through the following MATLAB instructions:

xc = -cos(pi*[0:n]/n); x = (a+b)*0.5+(b-a)*xc*0.5;



3.1 Interpolation 81

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−1 = x̂0 x̂n = 1x̂i

π/n

0

Fig. 3.7. The left side picture shows the comparison between the function
f(x) = 1/(1 + x2) (thin solid line) and its Chebyshev interpolating polynomi-
als of degree 8 (dashed line) and 12 (solid line). Note that the amplitude of
spurious oscillations decreases as the degree increases. The right side picture
shows the distribution of Chebyshev nodes in the interval [−1, 1]

where n+1 is the number of nodes, while a and b are the endpoints of the
interpolation interval (in the sequel we choose a=-5 and b=5). Then we compute
the interpolating polynomial by the following instructions:

f= ’1./(1+x.^2)’; y = eval(f); c = polyfit(x,y,n);

Now let us compute the absolute values of the differences between f and
its Chebyshev interpolant at as many as 1001 equispaced points in the interval
[−5, 5] and take the maximum error values:

x = linspace (-5,5 ,1000); p=polyval(c,x);
fx = eval(f); err = max(abs(p-fx));

As we see in Table 3.3, the maximum of the error decreases when n in-
creases. �

n 5 10 20 40

En 0.6386 0.1322 0.0177 0.0003

Table 3.3. The Chebyshev interpolation error for Runge’s function f(x) =
1/(1 + x2)

3.1.3 Trigonometric interpolation and FFT

We want to approximate a periodic function f : [0, 2π] → C, i.e. one sat-
isfying f(0) = f(2π), by a trigonometric polynomial f̃ which interpolates
f at the n + 1 nodes xj = 2πj/(n + 1), j = 0, . . . , n, i.e.

f̃(xj) = f(xj), for j = 0, . . . , n. (3.10)
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The trigonometric interpolant f̃ is obtained by a linear combination of
sines and cosines.

In particular, if n is even, f̃ will have the form

f̃(x) =
a0

2
+

M∑

k=1

[ak cos(kx) + bk sin(kx)] , (3.11)

where M = n/2 while, if n is odd,

f̃(x) =
a0

2
+

M∑

k=1

[ak cos(kx) + bk sin(kx)] + aM+1 cos((M + 1)x),
(3.12)

where M = (n − 1)/2. We can rewrite (3.11) as

f̃(x) =
M∑

k=−M

ckeikx, (3.13)

i being the imaginary unit. The complex coefficients ck are related to
the coefficients ak and bk (complex too) as follows:

ak = ck + c−k, bk = i(ck − c−k), k = 0, . . . ,M. (3.14)

Indeed, from (1.5) it follows that eikx = cos(kx) + i sin(kx) and

M∑

k=−M

ckeikx =
M∑

k=−M

ck (cos(kx) + i sin(kx))

=
M∑

k=1

[ck(cos(kx) + i sin(kx)) + c−k(cos(kx) − i sin(kx))] + c0.

Therefore we derive (3.11), thanks to the relations (3.14).
Analogously, when n is odd, (3.12) becomes

f̃(x) =
M+1∑

k=−(M+1)

ckeikx, (3.15)

where the coefficients ck for k = 0, . . . ,M are the same as before, while
cM+1 = c−(M+1) = aM+1/2. In both cases, we could write

f̃(x) =
M+µ∑

k=−(M+µ)

ckeikx, (3.16)

with µ = 0 if n is even and µ = 1 if n is odd. Should f be real valued, its
coefficients ck satisfy c−k = c̄k; from (3.14) it follows that the coefficients
ak and bk are all real.
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Because of its analogy with Fourier series, f̃ is called a discrete
Fourier series. Imposing the interpolation condition at the nodes xj =
jh, with h = 2π/(n + 1), we find that

M+µ∑

k=−(M+µ)

ckeikjh = f(xj), j = 0, . . . , n. (3.17)

For the computation of the coefficients {ck} let us multiply equations
(3.17) by e−imxj = e−imjh, where m is an integer between 0 and n, and
then sum with respect to j:

n∑

j=0

M+µ∑

k=−(M+µ)

ckeikjhe−imjh =
n∑

j=0

f(xj)e−imjh. (3.18)

We now require the following identity:
n∑

j=0

eijh(k−m) = (n + 1)δkm.

This identity is obviously true if k = m. When k �= m, we have
n∑

j=0

eijh(k−m) =
1 − (ei(k−m)h)n+1

1 − ei(k−m)h
.

The numerator on the right hand side is null, since

1 − ei(k−m)h(n+1) = 1 − ei(k−m)2π

= 1 − cos((k − m)2π) − i sin((k − m)2π).

Therefore, from (3.18) we get the following explicit expression for the
coefficients of f̃ :

ck =
1

n + 1

n∑

j=0

f(xj)e−ikjh, k = −(M + µ), . . . ,M + µ (3.19)

The computation of all the coefficients {ck} can be accomplished with
an order n log2 n operations by using the fast Fourier transform (FFT),
which is implemented in the MATLAB program fft (see Example 3.4). fft

ifftSimilar conclusions hold for the inverse transform through which we
obtain the values {f(xj)} from the coefficients {ck}. The inverse fast
Fourier transform is implemented in the MATLAB program ifft.

Example 3.4 Consider the function f(x) = x(x − 2π)e−x for x ∈ [0, 2π]. To
use the MATLAB program fft we first compute the values of f at the nodes
xj = jπ/5 for j = 0, . . . , 9 by the following instructions (recall that .* is the
component-by-component vector product):
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Fig. 3.8. The function f(x) = x(x − 2π)e−x (dashed line) and the corre-
sponding trigonometric interpolant (continuous line) relative to 10 equispaced
nodes

x=pi /5*[0:9]; y=x.*(x-2*pi).* exp(-x);

Now by the FFT we compute the vector of the Fourier coefficients, Y=
(n + 1)[c0, . . . , cM+µ, c−M , . . . , c−1], by the following instructions:

Y=fft(y);

Y =
Columns 1 and 2:
-6.52032 + 0.00000i -0.46728 + 4.20012i

Columns 3 and 4:
1.26805 + 1.62110i 1.09849 + 0.60080i

Columns 5 and 6:
0.92585 + 0.21398i 0.87010 + 0.00000i

Columns 7 and 8:
0.92585 - 0.21398i 1.09849 - 0.60080i

Columns 9 and 10:
1.26805 - 1.62110i -0.46728 - 4.20012i

Note that the program ifft achieves the maximum efficiency when n is a
power of 2, even though it works for any value of n. �

The command interpft provides the trigonometric interpolant of ainterpft
set of data. It requires in input an integer m and a vector of values which
represent the values taken by a function (periodic with period p) at the
set of points xj = jp/(n + 1), j = 0, . . . , n. interpft returns the m val-
ues of the trigonometric interpolant, obtained by the Fourier transform,
at the nodes ti = ip/m, i = 0, . . . , m − 1. For instance, let us reconsider
the function of Example 3.4 in [0, 2π] and take its values at 10 equi-
spaced nodes xj = jπ/5, j = 0, . . . , 9. The values of the trigonometric
interpolant at, say, the 100 equispaced nodes ti = iπ/100, i = 0, . . . , 99
can be obtained as follows (see Figure 3.8)
x=pi /5*[0:9]; y=x.*(x-2*pi).* exp(-x); z=interpft(y ,100);

In some cases the accuracy of trigonometric interpolation can dra-
matically downgrade, as shown in the following example.
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Fig. 3.9. The effects of aliasing: comparison between the function f(x) =
sin(x)+sin(5x) (solid line) and its trigonometric interpolant (3.11) with M = 3
(dashed line)

Example 3.5 Let us approximate the function f(x) = f1(x) + f2(x), with
f1(x) = sin(x) and f2(x) = sin(5x), using nine equispaced nodes in the interval
[0, 2π]. The result is shown in Figure 3.9. Note that in some intervals the
trigonometric approximant shows even a phase inversion with respect to the
function f . �

This lack of accuracy can be explained as follows. At the nodes consid-
ered, the function f2 is indistinguishable from f3(x) = − sin(3x) which
has a lower frequency (see Figure 3.10). The function that is actually
approximated is therefore F (x) = f1(x) + f3(x) and not f(x) (in fact,
the dashed line of Figure 3.9 does coincide with F ).

This phenomenon is known as aliasing and may occur when the func-
tion to be approximated is the sum of several components having differ-
ent frequencies. As soon as the number of nodes is not enough to resolve
the highest frequencies, the latter may interfere with the low frequen-
cies, giving rise to inaccurate interpolants. To get a better approximation
for functions with higher frequencies, one has to increase the number of
interpolation nodes.

A real life example of aliasing is provided by the apparent inversion
of the sense of rotation of spoked wheels. Once a certain critical velocity
is reached the human brain is no longer able to accurately sample the
moving image and, consequently, produces distorted images.

Let us summarize

1. Approximating a set of data or a function f in [a, b] consists of finding
a suitable function f̃ that represents them with enough accuracy;

2. the interpolation process consists of determining a function f̃ such
that f̃(xi) = yi, where the {xi} are given nodes and {yi} are either
the values {f(xi)} or a set of prescribed values;



86 3 Approximation of functions and data

1 2 3 4 5 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 3.10. The phenomenon of aliasing: the functions sin(5x) (dashed line)
and − sin(3x) (dotted line) take the same values at the interpolation nodes.
This circumstance explains the severe loss of accuracy shown in Figure 3.9

3. if the n+1 nodes {xi} are distinct, there exists a unique polynomial
of degree less than or equal to n interpolating a set of prescribed
values {yi} at the nodes {xi};

4. for an equispaced distribution of nodes in [a, b] the interpolation
error at any point of [a, b] does not necessarily tend to 0 as n tends
to infinity. However, there exist special distributions of nodes, for
instance the Chebyshev nodes, for which this convergence property
holds true for all continuous functions;

5. trigonometric interpolation is well suited to approximate periodic
functions, and is based on choosing f̃ as a linear combination of sine
and cosine functions. The FFT is a very efficient algorithm which
allows the computation of the Fourier coefficients of a trigonometric
interpolant from its node values and admits an equally fast inverse,
the IFFT.

3.2 Piecewise linear interpolation

The Chebyshev interpolant provides an accurate approximation of
smooth functions f whose expression is known. In the case when f is
nonsmooth or when f is only known by its values at a set of given points
(which do not coincide with the Chebyshev nodes), one can resort to a
different interpolation method which is called linear composite interpo-
lation.

More precisely, given a distribution (not necessarily uniform) of nodes
x0 < x1 < . . . < xn, we denote by Ii the interval [xi, xi+1]. We approx-
imate f by a continuous function which, on each interval, is given by
the segment joining the two points (xi, f(xi)) and (xi+1, f(xi+1)) (see
Figure 3.11). This function, denoted by ΠH

1 f , is called piecewise linear
interpolation polynomial of f and its expression is:
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ΠH
1 f(x) = f(xi) +

f(xi+1) − f(xi)
xi+1 − xi

(x − xi) for x ∈ Ii.
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Fig. 3.11. The function f(x) = x2 + 10/(sin(x) + 1.2) (solid line) and its
piecewise linear interpolation polynomial ΠH

1 f (dashed line)

The upper-index H denotes the maximum length of the intervals Ii.
The following result can be inferred from (3.7) setting n = 1 and

h = H:

Proposition 3.3 If f ∈ C2(I), where I = [x0, xn], then

max
x∈I

|f(x) − ΠH
1 f(x)| ≤ H2

8
max
x∈I

|f ′′(x)|.

Consequently, for all x in the interpolation interval, ΠH
1 f(x) tends to

f(x) when H → 0, provided that f is sufficiently smooth.
Through the instruction s1=interp1(x,y,z) one can compute the interp1

values at arbitrary points, which are stored in the vector z, of the piece-
wise linear polynomial that interpolates the values y(i) at the nodes
x(i), for i = 1,...,n+1. Note that z can have arbitrary dimension. If
the nodes are in increasing order (i.e. x(i+1) > x(i), for i=1,...,n)
then we can use the quicker version interp1q (q stands for quickly). interp1q
Notice that interp1q is quicker than interp1 on non-uniformly spaced
data because it does not make any input checking.

It is worth mentioning that the command fplot, which is used to
display the graph of a function f on a given interval [a, b], does in-
deed replace the function by its piecewise linear interpolant. The set of
interpolating nodes is generated automatically from the function, follow-
ing the criterion of clustering these nodes around points where f shows
strong variations. A procedure of this type is called adaptive.
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Octave 3.2 interp1q is not available in Octave. �

3.3 Approximation by spline functions

As done for piecewise linear interpolation, piecewise polynomial interpo-
lation of degree n ≥ 2 can be defined as well. For instance, the piece-
wise quadratic interpolation ΠH

2 f is a continuous function that on each
interval Ii replaces f by its quadratic interpolation polynomial at the
endpoints of Ii and at its midpoint. If f ∈ C3(I), the error f − ΠH

2 f in
the maximum norm decays as H3 if H tends to zero.

The main drawback of this piecewise interpolation is that ΠH
k f with

k ≥ 1, is nothing more than a global continuous function. As a matter of
fact, in several applications, e.g. in computer graphics, it is desirable to
get approximation by smooth functions which have at least a continuous
derivative.

With this aim, we can construct a function s3 with the following
properties:

1. on each interval Ii = [xi, xi+1], for i = 0, . . . , n−1, s3 is a polynomial
of degree 3 which interpolates the pairs of values (xj , f(xj)) for j =
i, i + 1;

2. s3 has continuous first and second derivatives in the nodes xi, i =
1, . . . , n − 1.

For its complete determination, we need four conditions on each in-
terval, therefore a total of 4n equations, which we can provide as follows:

- n + 1 conditions arise from the interpolation requirement at the nodes
xi, i = 0, . . . , n;

- n − 1 further equations follow from the requirement of continuity of
the polynomial at the internal nodes x1, . . . , xn−1;

- 2(n − 1) new equations are obtained by requiring that both first and
second derivatives be continuous at the internal nodes.

We still lack two further equations, which we can e.g. choose as

s′′3(x0) = 0, s′′3(xn) = 0. (3.20)

The function s3 which we obtain in this way, is called a natural interpo-
lating cubic spline.

By choosing suitably the unknowns (see [QSS06, Section 8.6.1]) to
represent s3 we arrive at a (n + 1) × (n + 1) system with a tridiagonal
matrix whose solution can be accomplished by a number of operations
proportional to n (see Section 5.4) whose solutions are the values s′′(xi)
for i = 0, . . . , n.
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Using Program 3.1, this solution can be obtained with a number of
operations equal to the dimension of the system itself (see Section 5.4).
The input parameters are the vectors x and y of the nodes and the data
to interpolate, plus the vector zi of the abscissae where we want the
spline s3 to be evaluated.

Other conditions can be chosen in place of (3.20) in order to close
the system of equations; for instance we could prescribe the value of the
first derivative of s3 at both endpoints x0 and xn.

Unless otherwise specified, Program 3.1 computes the natural inter-
polation cubic spline. The optimal parameters type and der (a vec-
tor with two components) serve the purpose of selecting other types
of splines. With type=0 Program 3.1 computes the interpolating cubic
spline whose first derivative is given by der(1) at x0 and der(2) at
xn. With type=1 we obtain the interpolating cubic spline whose values
of the second derivative at the endpoints is given by der(1) at x0 and
der(2) at xn.

Program 3.1. cubicspline: interpolating cubic spline

function s=cubicspline(x,y,zi ,type ,der)
%CUBICSPLINE compute a cubic spline
% S=CUBICSPLINE(X,Y,ZI) computes the value at the
% abscissae ZI of the natural interpolating cubic
% spline that interpolates the values Y at the nodes X.
% S=CUBICSPLINE(X,Y,ZI,TYPE ,DER) if TYPE=0 computes the
% values at the abscissae ZI of the cubic spline
% interpolating the values Y with first derivative at
% the endpoints equal to the values DER (1) and DER (2).
% If TYPE=1 the values DER (1) and DER (2) are those of
% the second derivative at the endpoints.
[n,m]=size(x);
if n == 1

x = x’; y = y’; n = m;
end
if nargin == 3

der0 = 0; dern = 0; type = 1;
else

der0 = der (1); dern = der (2);
end
h = x(2: end)-x(1:end -1);
e = 2*[h(1); h(1:end -1)+h(2: end); h(end )];
A = spdiags ([[h; 0] e [0; h]],-1:1,n,n);
d = (y(2: end)-y(1:end -1))./h;
rhs = 3*(d(2: end)-d(1:end -1));
if type == 0

A(1,1) = 2*h(1); A(1,2) = h(1);
A(n,n) = 2*h(end); A(end ,end -1) = h(end);
rhs = [3*(d(1)-der0); rhs; 3*(dern -d(end ))];

else
A(1,:) = 0; A(1,1) = 1;
A(n,:) = 0; A(n,n) = 1;
rhs = [der0; rhs; dern];

end
S = zeros(n,4);
S(:,3) = A\rhs;
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Fig. 3.12. Comparison between the interpolating cubic spline and the La-
grange interpolant for the case considered in Example 3.6

for m = 1:n-1
S(m,4) = (S(m+1,3)-S(m ,3))/3/h(m);
S(m,2) = d(m) - h(m)/3*(S(m + 1 ,3)+2*S(m,3));
S(m,1) = y(m);

end
S = S(1:n-1, 4: -1:1); pp = mkpp(x,S); s = ppval(pp ,zi);
return

The MATLAB command spline (see also the toolbox splines) en-spline
forces the third derivative of s3 to be continuous at x1 and xn−1. To this
condition is given the curious name of not-a-knot condition. The input
parameters are the vectors x and y and the vector zi (same meaning as
before). The commands mkpp and ppval that are used in Program 3.1mkpp

ppval are useful to build up and evaluate a composite polynomial.

Example 3.6 Let us reconsider the data of Table 3.1 corresponding to the
column K = 0.67 and compute the associated interpolating cubic spline s3.
The different values of the latitude provide the nodes xi, i = 0, . . . , 12. If we are
interested in computing the values s3(zi), where zi = −55 + i, i = 0, . . . , 120,
we can proceed as follows:

x = [ -55:10:65];
y = [-3.25 -3.37 -3.35 -3.2 -3.12 -3.02 -3.02 ...

-3.07 -3.17 -3.32 -3.3 -3.22 -3.1];
z = [ -55:1:65];
s = spline(x,y,z);

The graph of s3, which is reported in Figure 3.12, looks more plausible than
that of the Lagrange interpolant at the same nodes. �

Example 3.7 (Robotics) To find the trajectory of the robot satisfying the
given constraints, we split the time interval [0, 5] in the two subintervals [0, 2]
and [2, 5]. Then in each subinterval we look for two splines, x = x(t) and
y = y(t), that interpolate the given values and have null derivative at the
endpoints. Using Program 3.1 we obtain the desired result by the following
instructions:
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Fig. 3.13. The trajectory in the xy plane of the robot described in Problem
3.4. Circles represent the position of the control points through which the
robot should pass during its motion

x1 = [0 1 4]; y1 = [0 2 4];
t1 = [0 1 2]; ti1 = [0:0.01:2];
x2 = [0 3 4]; y2 = [0 1 4];
t2 = [0 2 3]; ti2 = [0:0.01:3]; d=[0 ,0];
six1 = cubicspline(t1 ,x1 ,ti1 ,0,d);
siy1 = cubicspline(t1 ,y1 ,ti1 ,0,d);
six2 = cubicspline(t2 ,x2 ,ti2 ,0,d);
siy2 = cubicspline(t2 ,y2 ,ti2 ,0,d);

The trajectory obtained is drawn in Figure 3.13. �

The error that we obtain in approximating a function f (continuously
differentiable up to its fourth derivative) by the natural interpolating
cubic spline satisfies the following inequalities:

max
x∈I

|f (r)(x) − s
(r)
3 (x)| ≤ CrH

4−rmax
x∈I

|f (4)(x)|, r = 0, 1, 2, 3,

where I = [x0, xn] and H = maxi=0,...,n−1(xi+1 − xi), while Cr is a
suitable constant depending on r, but independent of H. It is then clear
that not only f , but also its first, second and third derivatives are well
approximated by s3 when H tends to 0.

Remark 3.1 In general cubic splines do not preserve monotonicity between
neighbouring nodes. For instance, by approximating the unitary circumference
in the first quarter using the points (xk = sin(kπ/6), yk = cos(kπ/6)), for
k = 0, . . . , 3, we would obtain an oscillatory spline (see Figure 3.14). In these
cases, other approximation techniques can be better suited. For instance, the
MATLAB command pchip provides the Hermite piecewise cubic interpolant pchip
which is locally monotone and interpolates the function as well as its first
derivative at the nodes {xi, i = 1, . . . , n − 1} (see Figure 3.14). The Hermite
interpolant can be obtained by using the following instructions:

t = linspace(0,pi/2,4)
x = cos(t); y = sin(t);
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xx = linspace (0,1 ,40);
plot(x,y,’o’,xx ,[pchip(x,y,xx); spline(x,y,xx)])
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Fig. 3.14. Approximation of the first quarter of the circumference of the
unitary circle using only 4 nodes. The dashed line is the cubic spline, while
the continuous line is the piecewise cubic Hermite interpolant

See the Exercises 3.5-3.8.

3.4 The least-squares method

As already noticed, a Lagrange interpolation does not guarantee a bet-
ter approximation of a given function when the polynomial degree gets
large. This problem can be overcome by composite interpolation (such
as piecewise linear polynomials or splines). However, neither are suitable
to extrapolate information from the available data, that is, to generate
new values at points lying outside the interval where interpolation nodes
are given.

Example 3.8 (Finance) On the basis of the data reported in Figure 3.1,
we would like to predict whether the stock price will increase or diminish in
the coming days. The Lagrange polynomial interpolation is impractical, as it
would require a (tremendously oscillatory) polynomial of degree 719 which
will provide a completely erroneous prediction. On the other hand, piecewise
linear interpolation, whose graph is reported in Figure 3.1, provides extrapo-
lated results by exploiting only the values of the last two days, thus completely
neglecting the previous history. To get a better result we should avoid the in-
terpolation requirement, by invoking least-squares approximation as indicated
below. �
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Assume that the data {(xi, yi), i = 0, . . . , n} are available, where now
yi could represent the values f(xi) attained by a given function f at the
nodes xi. For a given integer m ≥ 1 (usually, m � n) we look for a
polynomial f̃ ∈ Pm which satisfies the inequality

n∑

i=0

[yi − f̃(xi)]2 ≤
n∑

i=0

[yi − pm(xi)]2 (3.21)

for every polynomial pm ∈ Pm. Should it exist, f̃ will be called the least-
squares approximation in Pm of the set of data {(xi, yi), i = 0, . . . , n}.
Unless m ≥ n, in general it will not be possible to guarantee that f̃(xi) =
yi for all i = 0, . . . , n.

Setting

f̃(x) = a0 + a1x + . . . + amxm, (3.22)

where the coefficients a0, . . . , am are unknown, the problem (3.21) can
be restated as follows: find a0, a1, . . . , am such that

Φ(a0, a1, . . . , am) = min
{bi, i=0,...,m}

Φ(b0, b1, . . . , bm)

where

Φ(b0, b1, . . . , bm) =
n∑

i=0

[yi − (b0 + b1xi + . . . + bmxm
i )]2 .

We solve this problem in the special case when m = 1. Since

Φ(b0, b1) =
n∑

i=0

[
y2

i + b2
0 + b2

1x
2
i + 2b0b1xi − 2b0yi − 2b1xiy

2
i

]
,

the graph of Φ is a convex paraboloid. The point (a0, a1) at which Φ
attains its minimum satisfies the conditions

∂Φ

∂b0
(a0, a1) = 0,

∂Φ

∂b1
(a0, a1) = 0,

where the symbol ∂Φ/∂bj denotes the partial derivative (that is, the rate
of variation) of Φ with respect to bj , after having frozen the remaining
variable (see the definition 8.3).
By explicitly computing the two partial derivatives we obtain

n∑

i=0

[a0 + a1xi − yi] = 0,
n∑

i=0

[a0xi + a1x
2
i − xiyi] = 0,

which is a system of two equations for the two unknowns a0 and a1:
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a0(n + 1) + a1

n∑

i=0

xi =
n∑

i=0

yi,

a0

n∑

i=0

xi + a1

n∑

i=0

x2
i =

n∑

i=0

yixi.

(3.23)

Setting D = (n + 1)
∑n

i=0 x2
i − (

∑n
i=0 xi)2, the solution reads:

a0 =
1
D

(
n∑

i=0

yi

n∑

j=0

x2
j −

n∑

j=0

xj

n∑

i=0

xiyi),

a1 =
1
D

((n + 1)
n∑

i=0

xiyi −
n∑

j=0

xj

n∑

i=0

yi).
(3.24)

The corresponding polynomial f̃(x) = a0 +a1x is known as the least-
squares straight line, or regression line.

The previous approach can be generalized in several ways. The first
generalization is to the case of an arbitrary m. The associated (m+1)×
(m + 1) linear system, which is symmetric, will have the form:

a0(n + 1) +a1

n∑

i=0

xi + . . . + am

n∑

i=0

xm
i =

n∑

i=0

yi,

a0

n∑

i=0

xi +a1

n∑

i=0

x2
i + . . . + am

n∑

i=0

xm+1
i =

n∑

i=0

xiyi,

...
...

...
...

a0

n∑

i=0

xm
i +a1

n∑

i=0

xm+1
i + . . . + am

n∑

i=0

x2m
i =

n∑

i=0

xm
i yi.

When m = n, the least-squares polynomial must coincide with the
Lagrange interpolating polynomial Πn (see Exercise 3.9).

The MATLAB command c=polyfit(x,y,m) computes by default
the coefficients of the polynomial of degree m which approximates n+1
pairs of data (x(i),y(i)) in the least-squares sense. As already no-
ticed in Section 3.1.1, when m is equal to n it returns the interpolating
polynomial.

Example 3.9 (Finance) In Figure 3.15 we draw the graphs of the least-
squares polynomials of degree 1, 2 and 4 that approximate in the least-squares
sense the data of Figure 3.1. The polynomial of degree 4 reproduces quite
reasonably the behavior of the stock price in the considered time interval and
suggests that in the near future the quotation will increase. �

Example 3.10 (Biomechanics) Using the least-squares method we can an-
swer the question in Problem 3.3 and discover that the line which better ap-
proximates the given data has equation ε(σ) = 0.3471σ + 0.0654 (see Figure



3.4 The least-squares method 95

nov00 may01 nov01 may02

0

5

10

15

Fig. 3.15. Least-squares approximation of the data of Problem 3.2 of degree
1 (dashed-dotted line), degree 2 (dashed line) and degree 4 (thick solid line).
The exact data are represented by the thin solid line

3.16); when σ = 0.9 it provides the estimate ε = 0.2915 for the deformation.
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Fig. 3.16. Linear least-squares approximation of the data of Problem 3.3

A further generalization of the least-squares approximation consists
of using in (3.21) f̃ and pm that are no-longer polynomials but func-
tions of a space Vm obtained by linearly combining m + 1 independent
functions {ψj , j = 0, . . . , m}. Special instances are provided, e.g., by the
trigonometric functions ψj(x) = cos(γjx) (for a given parameter γ �= 0),
by the exponential functions ψj(x) = eδjx (for some δ > 0), or by a
suitable set of spline functions.

The choice of the functions {ψj} is actually dictated by the conjec-
tured behavior of the law underlying the given data distribution. For
instance, in Figure 3.17 we draw the graph of the least-squares approxi-
mation of the data of the Example 3.1 computed using the trigonometric
functions ψj(x) = cos(jt(x)), j = 0, . . . , 4, with t(x) = 120(π/2)(x+55).
We assume that the data are periodic with period 120(π/2).
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Fig. 3.17. The least-squares approximation of the data of the Problem 3.1
using a cosine basis. The exact data are represented by the small circles

The reader can verify that the unknown coefficients of

f̃(x) =
m∑

j=0

ajψj(x),

can be obtained by solving the following system (of normal equations)

BT Ba = BT y (3.25)

where B is the rectangular matrix (n+1)×(m+1) of entries bij = ψj(xi),
a is the vector of the unknown coefficients, while y is the vector of the
data.

Let us summarize

1. The composite piecewise linear interpolant of a function f is a piece-
wise continuous linear function f̃ , which interpolates f at a given
set of nodes {xi}. With this approximation we avoid Runge’s type
phenomena when the number of nodes increases;

2. interpolation by cubic splines allows the approximation of f by a
piecewise cubic function f̃ which is continuous together with its first
and second derivatives;

3. in least-squares approximation we look for an approximant f̃ which
is a polynomial of degree m (typically, m � n) that minimizes the
mean-square error

∑n
i=0[yi − f̃(xi)]2. The same minimization cri-

terium can be applied for a class of functions that are not polyno-
mials.

See the Exercises 3.9-3.14.
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3.5 What we haven’t told you

For a more general introduction to the theory of interpolation and ap-
proximation the reader is referred to, e.g., [Dav63], [Mei67] and [Gau97].

Polynomial interpolation can also be used to approximate data and
functions in several dimensions. In particular, composite interpolation,
based on piecewise linear or spline functions, is well suited when the
region Ω at hand is partitioned into polygons in 2D (triangles or quadri-
laterals) and polyhedra in 3D (tetrahedra or prisms).

A special situation occurs when Ω is a rectangle or a parallelepiped
in which case the MATLAB commands interp2, and interp3, respec- interp2

interp3tively, can be used. In both cases it is assumed that we want to represent
on a regular, fine lattice (or grid) a function whose values are available
on a regular, coarser lattice.

Consider for instance the values of f(x, y) = sin(2πx) cos(2πy) on
a (coarse) 6 × 6 lattice of equispaced nodes on the square [0, 1]2; these
values can be obtained using the commands:
[x,y]= meshgrid (0:0.2:1 ,0:0.2:1);
z=sin(2*pi*x).* cos (2*pi*y);

By the command interp2 a cubic spline is first computed on this coarse
grid, then evaluated at the nodal points of a finer grid of 21 × 21 equi-
spaced nodes:
xi = [0:0.05:1]; yi =[0:0.05:1];
[xf,yf]= meshgrid(xi,yi);
pi3=interp2(x,y,z,xf,yf);

The command meshgrid transforms the set of the couples (xi(k),yi(j)) meshgrid
into two matrices xf and yf that can be used to evaluate functions of
two variables and to plot three dimensional surfaces. The rows of xf are
copies of the vector xi, the columns of yf are copies of yi. Alternatively
to the above procedure we can use the command griddata, available griddata
also for three-dimensional data (griddata3) and for the approximation
of n-dimensional surfaces (griddatan).

The commands described below are for MATLAB only.
When Ω is a two-dimensional domain of arbitrary shape, it can be

partitioned into triangles using the graphical interface pdetool. pdetool
For a general presentation of spline functions see, e.g., [Die93] and

[PBP02]. The MATLAB toolbox splines allows one to explore several
applications of spline functions. In particular, the spdemos command spdemos
gives the user the possibility to investigate the properties of the most
important type of spline functions. Rational splines, i.e. functions which
are the ratio of two splines functions, are accessible through the com-
mands rpmak and rsmak. Special instances are the so-called NURBS rpmak

rsmaksplines, which are commonly used in CAGD (Computer Assisted Geo-
metric Design).
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In the same context of Fourier approximation, we mention the ap-
proximation based on wavelets. This type of approximation is largely
used for image reconstruction and compression and in signal analysis
(for an introduction, see [DL92], [Urb02]). A rich family of wavelets (and
their applications) can be found in the MATLAB toolbox wavelet.wavelet

3.6 Exercises

Exercise 3.1 Prove inequality (3.6).

Exercise 3.2 Provide an upper bound of the Lagrange interpolation error for
the following functions:

f1(x) = cosh(x), f2(x) = sinh(x), xk = −1 + 0.5k, k = 0, . . . , 4,
f3(x) = cos(x) + sin(x), xk = −π/2 + πk/4, k = 0, . . . , 4.

Exercise 3.3 The following data are related to the life expectation of citizens
of two European regions:

1975 1980 1985 1990

Western Europe 72.8 74.2 75.2 76.4
Eastern Europe 70.2 70.2 70.3 71.2

Use the interpolating polynomial of degree 3 to estimate the life expectation in
1970, 1983 and 1988. Then extrapolate a value for the year 1995. It is known
that the life expectation in 1970 was 71.8 years for the citizens of the West
Europe, and 69.6 for those of the East Europe. Recalling these data, is it
possible to estimate the accuracy of life expectation predicted in the 1995?

Exercise 3.4 The price (in euros) of a magazine has changed as follows:

Nov.87 Dec.88 Nov.90 Jan.93 Jan.95 Jan.96 Nov.96 Nov.00

4.5 5.0 6.0 6.5 7.0 7.5 8.0 8.0

Estimate the price in November 2002 by extrapolating these data.

Exercise 3.5 Repeat the computations carried out in Exercise 3.3, using now
the cubic interpolating spline computed by the function spline. Then compare
the results obtained with the two approaches.

Exercise 3.6 In the table below we report the values of the sea water density
ρ (in Kg/m3) corresponding to different values of the temperature T (in degrees
Celsius):

T 4o 8o 12o 16o 20o

ρ 1000.7794 1000.6427 1000.2805 999.7165 998.9700
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Compute the associated cubic interpolating spline on 4 subintervals of the
temperature interval [4, 20]. Then compare the results provided by the spline
interpolant with the following ones (which correspond to further values of T ):

T 6o 10o 14o 18o

ρ 1000.74088 1000.4882 1000.0224 999.3650

Exercise 3.7 The Italian production of citrus fruit has changed as follows:

year 1965 1970 1980 1985 1990 1991

production (×105 Kg) 17769 24001 25961 34336 29036 33417

Use interpolating cubic splines of different kinds to estimate the production
in 1962, 1977 and 1992. Compare these results with the real values: 12380,
27403 and 32059, respectively. Compare the results with those that would be
obtained using the Lagrange interpolating polynomial.

Exercise 3.8 Evaluate the function f(x) = sin(2πx) at 21 equispaced nodes
in the interval [−1, 1]. Compute the Lagrange interpolating polynomial and
the cubic interpolating spline. Compare the graphs of these two functions with
that of f on the given interval. Repeat the same calculation using the following
perturbed set of data: f(xi) = sin(2∗π∗xi) + (−1)i+110−4, and observe that
the Lagrange interpolating polynomial is more sensitive to small perturbations
than the cubic spline.

Exercise 3.9 Verify that if m = n the least-squares polynomial of a function
f at the nodes x0, . . . , xn coincides with the interpolating polynomial Πnf at
the same nodes.

Exercise 3.10 Compute the least-squares polynomial of degree 4 that ap-
proximates the values of K reported in the different columns of Table 3.1.

Exercise 3.11 Repeat the computations carried out in Exercise 3.7 using
now a least-squares approximation of degree 3.

Exercise 3.12 Express the coefficients of system (3.23) in terms of the aver-
age M = 1

(n+1)

∑n
i=0 xi and the variance v = 1

(n+1)

∑n
i=0(xi −M)2 of the set

of data {xi, i = 0, . . . , n}.

Exercise 3.13 Verify that the regression line passes through the point whose
abscissa is the average of {xi} and ordinate is the average of {f(xi)}.

Exercise 3.14 The following values

flow rate 0 35 0.125 5 0 5 1 0.5 0.125 0

represent the measured values of the blood flow-rate in a cross-section of the
carotid artery during a heart beat. The frequency of acquisition of the data is
constant and is equal to 10/T , where T = 1 s is the beat period. Represent
these data by a continuous function of period equal to T .





4

Numerical differentiation and integration

In this chapter we propose methods for the numerical approximation of
derivatives and integrals of functions. Concerning integration, quite often
for a generic function it is not possible to find a primitive in an explicit
form. Even when a primitive is known, its use might not be easy. This
is, e.g., the case of the function f(x) = cos(4x) cos(3 sin(x)), for which
we have

π∫

0

f(x)dx = π

(
3
2

)4 ∞∑

k=0

(−9/4)k

k!(k + 4)!
;

the task of computing an integral is transformed into the equally trou-
blesome one of summing a series. In other circumstances the function
that we want to integrate or differentiate could only be known on a
set of nodes (for instance, when the latter represent the results of an
experimental measurement), exactly as happens in the case of function
approximation, which was discussed in Chapter 3.

In all these situations it is necessary to consider numerical methods
in order to obtain an approximate value of the quantity of interest, in-
dependently of how difficult is the function to integrate or differentiate.

Problem 4.1 (Hydraulics) The height q(t) reached at time t by a
fluid in a straight cylinder of radius R = 1 m with a circular hole of
radius r = 0.1 m on the bottom, has been measured every 5 seconds
yielding the following values

t 0 5 10 15 20
q(t) 0.6350 0.5336 0.4410 0.3572 0.2822

We want to compute an approximation of the emptying velocity q′(t)
of the cylinder, then compare it with the one predicted by Torricelli’s
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law: q′(t) = −γ(r/R)2
√

2gq(t), where g is the gravity acceleration and
γ = 0.6 is a correction factor. For the solution of this problem, see
Example 4.1. �

Problem 4.2 (Optics) In order to plan a room for infrared beams we
are interested in calculating the energy emitted by a black body (that
is, an object capable of irradiating in all the spectrum to the ambient
temperature) in the (infrared) spectrum comprised between 3µm and
14µm wavelength. The solution of this problem is obtained by computing
the integral

E(T ) = 2.39 · 10−11

14·10−4∫

3·10−4

dx

x5(e1.432/(Tx) − 1)
, (4.1)

which is the Planck equation for the energy E(T ), where x is the wave-
length (in cm) and T the temperature (in Kelvin) of the black body. For
its computation see Exercise 4.17. �

Problem 4.3 (Electromagnetism) Consider an electric wire sphere
of arbitrary radius r and conductivity σ. We want to compute the density
distribution of the current j as a function of r and t (the time), knowing
the initial distribution of the current density ρ(r). The problem can be
solved using the relations between the current density, the electric field
and the charge density and observing that, for the symmetry of the
problem, j(r, t) = j(r, t)r/|r|, where j = |j|. We obtain

j(r, t) = γ(r)e−σt/ε0 , γ(r) =
σ

ε0r2

r∫

0

ρ(ξ)ξ2 dξ, (4.2)

where ε0 = 8.859 · 10−12 farad/m is the dielectric constant of the void.
For the computation of this integral, see Exercise 4.16. �

Problem 4.4 (Demography) We consider a population of a very large
number M of individuals. The distribution N(h) of their height can be
represented by a ”bell” function characterized by the mean value h̄ of
the height and the standard deviation σ

N(h) =
M

σ
√

2π
e−(h−h̄)2/(2σ2).

Then
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Fig. 4.1. Height distribution of a population of M = 200 individuals

N =

h+∆h∫

h

N(h) dh (4.3)

represents the number of individuals whose height is between h and
h+∆h (for a positive ∆h). An instance is provided in Figure 4.1, which
corresponds to the case M = 200, h̄ = 1.7 m, σ = 0.1 m, and the area of
the shadowed region gives the number of individuals whose height is in
the range 1.8÷1.9 m. For the solution of this problem see Example 4.2.
�

4.1 Approximation of function derivatives

Consider a function f : [a, b] → R continuously differentiable in [a, b].
We seek an approximation of the first derivative of f at a generic point
x̄ in (a, b).

In view of the definition (1.10), for h sufficiently small and positive,
we can assume that the quantity

(δ+f)(x̄) =
f(x̄ + h) − f(x̄)

h
(4.4)

is an approximation of f ′(x̄) which is called the forward finite difference.
To estimate the error, it suffices to expand f in a Taylor series; if f ∈
C2(a, b), we have

f(x̄ + h) = f(x̄) + hf ′(x̄) +
h2

2
f ′′(ξ), (4.5)

where ξ is a suitable point in the interval (x̄, x̄ + h). Therefore
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(δ+f)(x̄) = f ′(x̄) +
h

2
f ′′(ξ), (4.6)

and thus (δ+f)(x̄) provides a first-order approximation to f ′(x̄) with
respect to h. Still assuming f ∈ C2(a, b), with a similar procedure we
can derive from the Taylor expansion

f(x̄ − h) = f(x̄) − hf ′(x̄) +
h2

2
f ′′(η) (4.7)

with η ∈ (x̄ − h, x̄), the backward finite difference

(δ−f)(x̄) =
f(x̄) − f(x̄ − h)

h
(4.8)

which is also first-order accurate. Note that formulae (4.4) and (4.8) can
also be obtained by differentiating the linear polynomial interpolating f
at the points {x̄, x̄+h} and {x̄−h, x̄}, respectively. In fact, these schemes
amount to approximating f ′(x̄) by the slope of the straight line passing
through the two points (x̄, f(x̄)) and (x̄+h, f(x̄+h)), or (x̄−h, f(x̄−h))
and (x̄, f(x̄)), respectively (see Figure 4.2).

x̄x̄ − h x̄ + h

m1
m2

m3

f

Fig. 4.2. Finite difference approximation of f ′(x̄): backward (solid line), for-
ward (dotted line) and centered (dashed line). m1 = (δ−f)(x̄), m2 = (δ+f)(x̄)
and m3 = (δf)(x̄) denote the slopes of the three straight lines

Finally, we introduce the centered finite difference formula

(δf)(x̄) =
f(x̄ + h) − f(x̄ − h)

2h
(4.9)

If f ∈ C3(a, b), this formula provides a second-order approximation to
f ′(x̄) with respect to h. Indeed, by expanding f(x̄ + h) and f(x̄ − h)
at the third order around x̄ and summing up the two expressions, we
obtain
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f ′(x̄) − (δf)(x̄) =
h2

12
[f ′′′(ξ) + f ′′′(η)], (4.10)

where η and ξ are suitable points in the intervals (x̄−h, x̄) and (x̄, x̄+h),
respectively (see Exercise 4.2).

By (4.9) f ′(x̄) is approximated by the slope of the straight line pass-
ing through the points (x̄ − h, f(x̄ − h)) and (x̄ + h, f(x̄ + h)).

Example 4.1 (Hydraulics) Let us solve Problem 4.1, using formulae (4.4),
(4.8) and (4.9), with h = 5, to approximate q′(t) at five different points. We
obtain:

t 0 5 10 15 20

q′(t) −0.0212 −0.0194 −0.0176 −0.0159 −0.0141
δ+q −0.0203 −0.0185 −0.0168 −0.0150 −−
δ−q −− −0.0203 −0.0185 −0.0168 −0.0150
δq −− −0.0194 −0.0176 −0.0159 −−

The agreement between the exact derivative and the one computed from the
finite difference formulae is more satisfactory when using formula (4.9) rather
than (4.8) or (4.4). �

In general, we can assume that the values of f are available at n + 1
equispaced points xi = x0 + ih, i = 0, . . . , n, with h > 0. In this case in
the numerical derivation f ′(xi) can be approximated by taking one of
the previous formulae (4.4), (4.8) or (4.9) with x̄ = xi.

Note that the centered formula (4.9) cannot be used at the extrema
x0 and xn. For these nodes we could use the values

1
2h

[−3f(x0) + 4f(x1) − f(x2)] at x0,

1
2h

[3f(xn) − 4f(xn−1) + f(xn−2)] at xn,

(4.11)

which are also second-order accurate with respect to h. They are ob-
tained by computing at the point x0 (respectively, xn) the first deriva-
tive of the polynomial of degree 2 interpolating f at the nodes x0, x1, x2

(respectively, xn−2, xn−1, xn).

See Exercises 4.1-4.4.

4.2 Numerical integration

In this section we introduce numerical methods suitable for approximat-
ing the integral

I(f) =

b∫

a

f(x)dx,
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where f is an arbitrary continuous function in [a, b]. We start by intro-
ducing some simple formulae, which are indeed special instances of the
family of Newton-Cotes formulae. Then we will introduce the so-called
Gaussian formulae, that feature the highest possible degree of exactness
for a given number of evaluations of the function f .

4.2.1 Midpoint formula

A simple procedure to approximate I(f) can be devised by partitioning
the interval [a, b] into subintervals Ik = [xk−1, xk], k = 1, . . . ,M , with
xk = a + kH, k = 0, . . . ,M and H = (b − a)/M . Since

I(f) =
M∑

k=1

∫

Ik

f(x)dx, (4.12)

on each sub-interval Ik we can approximate the exact integral of f by
that of a polynomial f̄ approximating f on Ik. The simplest solution
consists in choosing f̄ as the constant polynomial interpolating f at the
middle point of Ik:

x̄k =
xk−1 + xk

2
.

In such a way we obtain the composite midpoint quadrature formula

Ic
mp(f) = H

M∑

k=1

f(x̄k) (4.13)

The symbol mp stands for midpoint, while c stands for composite. This
formula is second-order accurate with respect to H. More precisely, if f
is continuously differentiable up to its second derivative in [a, b], we have

I(f) − Ic
mp(f) =

b − a

24
H2f ′′(ξ), (4.14)

where ξ is a suitable point in [a, b] (see Exercise 4.6). Formula (4.13) is
also called the composite rectangle quadrature formula because of its geo-
metrical interpretation, which is evident from Figure 4.3. The classical
midpoint formula (or rectangle formula) is obtained by taking M = 1 in
(4.13), i.e. using the midpoint rule directly on the interval (a, b):

Imp(f) = (b − a)f [(a + b)/2] (4.15)

The error is now given by
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ff

a b(a + b)/2x̄0 x̄k x̄M

xx

Fig. 4.3. The composite midpoint formula (left); the midpoint formula (right)

I(f) − Imp(f) =
(b − a)3

24
f ′′(ξ), (4.16)

where ξ is a suitable point in [a, b]. Relation (4.16) follows as a special
case of (4.14), but it can also be proved directly. Indeed, setting x̄ =
(a + b)/2, we have

I(f) − Imp(f) =

b∫

a

[f(x) − f(x̄)]dx

=

b∫

a

f ′(x̄)(x − x̄)dx +
1
2

b∫

a

f ′′(η(x))(x − x̄)2dx,

where η(x) is a suitable point in the interval whose endpoints are x and
x̄. Then (4.16) follows because

∫ b

a
(x − x̄)dx = 0 and, by the mean value

theorem for integrals, there exists ξ ∈ [a, b] such that

1
2

b∫

a

f ′′(η(x))(x − x̄)2dx =
1
2
f ′′(ξ)

b∫

a

(x − x̄)2dx =
(b − a)3

24
f ′′(ξ).

The degree of exactness of a quadrature formula is the maximum in-
teger r ≥ 0 for which the approximate integral (produced by the quadra-
ture formula) of any polynomial of degree r is equal to the exact integral.
We can deduce from (4.14) and (4.16) that the midpoint formula has de-
gree of exactness 1, since it integrates exactly all polynomials of degree
less than or equal to 1 (but not all those of degree 2).

The midpoint composite quadrature formula is implemented in Pro-
gram 4.1. Input parameters are the endpoints of the integration interval
a and b, the number of subintervals M and the MATLAB function f to
define the function f .

Program 4.1. midpointc: composite midpoint quadrature formula

function Imp=midpointc(a,b,M,f,varargin)
%MIDPOINTC Composite midpoint numerical integration.
% IMP = MIDPOINTC(A,B,M,FUN) computes an approximation



108 4 Numerical differentiation and integration

% of the integral of the function FUN via the midpoint
% method (with M equispaced intervals ). FUN accepts a
% real vector input x and returns a real vector value.
% FUN can also be an inline object.
% IMP=MIDPOINT(A,B,M,FUN ,P1,P2 ,...) calls the function
% FUN passing the optional parameters P1 ,P2 ,... as
% FUN(X,P1 ,P2 ,...).
H=(b-a)/M;
x = linspace(a+H/2,b-H/2,M);
fmp=feval(f,x,varargin {:}).* ones(1,M);
Imp=H*sum(fmp);
return

See the Exercises 4.5-4.8.

4.2.2 Trapezoidal formula

Another formula can be obtained by replacing f on Ik by the linear poly-
nomial interpolating f at the nodes xk−1 and xk (equivalently, replacing
f by ΠH

1 f , see Section 3.2, on the whole interval (a, b)). This yields

Ic
t (f) =

H

2

M∑

k=1

[f(xk) + f(xk−1)]

=
H

2
[f(a) + f(b)] + H

M−1∑

k=1

f(xk)

(4.17)

This formula is called the composite trapezoidal formula, and is second-
order accurate with respect to H. In fact, one can obtain the expression

I(f) − Ic
t (f) = −b − a

12
H2f ′′(ξ) (4.18)

for the quadrature error for a suitable point ξ ∈ [a, b], provided that
f ∈ C2([a, b]). When (4.17) is used with M = 1, we obtain

It(f) =
b − a

2
[f(a) + f(b)] (4.19)

x0 = ax0 = a xk xM = b
xx

ff

x1 = b

Fig. 4.4. Composite trapezoidal formula (left); trapezoidal formula (right)
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which is called the trapezoidal formula because of its geometrical inter-
pretation. The error induced is given by

I(f) − It(f) = − (b − a)3

12
f ′′(ξ), (4.20)

where ξ is a suitable point in [a, b]. We can deduce that (4.19) has degree
of exactness equal to 1, as is the case of the midpoint rule.

The composite trapezoidal formula (4.17) is implemented in the
MATLAB programs trapz and cumtrapz. If x is a vector whose com- trapz

cumtrapzponents are the abscissae xk, k = 0, . . . , M (with x0 = a and xM = b),
and y that of the values f(xk), k = 0, . . . ,M , z=cumtrapz(x,y) returns
the vector z whose components are zk �

∫ xk

a
f(x)dx, the integral be-

ing approximated by the composite trapezoidal rule. Thus z(M+1) is an
approximation of the integral of f on (a, b).

See the Exercises 4.9-4.11.

4.2.3 Simpson formula

The Simpson formula can be obtained by replacing the integral of f over
each Ik by that of its interpolating polynomial of degree 2 at the nodes
xk−1, x̄k = (xk−1 + xk)/2 and xk,

Π2f(x) =
2(x − x̄k)(x − xk)

H2
f(xk−1)

+
4(xk−1 − x)(x − xk)

H2
f(x̄k) +

2(x − x̄k)(x − xk−1)
H2

f(xk).

The resulting formula is called the composite Simpson quadrature
formula, and reads

Ic
s(f) =

H

6

M∑

k=1

[f(xk−1) + 4f(x̄k) + f(xk)] (4.21)

One can prove that it induces the error

I(f) − Ic
s(f) = −b − a

180
H4

16
f (4)(ξ), (4.22)

where ξ is a suitable point in [a, b], provided that f ∈ C4([a, b]). It
is therefore fourth-order accurate with respect to H. When (4.21) is
applied to only one interval, say (a, b), we obtain the so-called Simpson
quadrature formula
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Is(f) =
b − a

6
[f(a) + 4f((a + b)/2) + f(b)] (4.23)

The error is now given by

I(f) − Is(f) = − 1
16

(b − a)5

180
f (4)(ξ), (4.24)

for a suitable ξ ∈ [a, b]. Its degree of exactness is therefore equal to 3.
The composite Simpson rule is implemented in Program 4.2.

Program 4.2. simpsonc: composite Simpson quadrature formula

function [Isic]= simpsonc(a,b,M,f,varargin)
%SIMPSONC Composite Simpson numerical integration.
% ISIC = SIMPSONC(A,B,M,FUN) computes an approximation
% of the integral of the function FUN via the Simpson
% method (using M equispaced intervals ). FUN accepts
% real vector input x and returns a real vector value.
% FUN can also be an inline object.
% ISIC = SIMPSONC(A,B,M,FUN ,P1,P2 ,...) calls the
% function FUN passing the optional parameters
% P1 ,P2 ,... as FUN(X,P1 ,P2 ,...).
H=(b-a)/M;
x=linspace(a,b,M+1);
fpm=feval(f,x,varargin {:}).* ones(1,M+1);
fpm (2:end -1) = 2*fpm (2:end -1);
Isic=H*sum(fpm )/6;
x=linspace(a+H/2,b-H/2,M);
fpm=feval(f,x,varargin {:}).* ones(1,M);
Isic = Isic +2*H*sum(fpm )/3;
return

Example 4.2 (Demography) Let us consider Problem 4.4. To compute the
number of individuals whose height is between 1.8 and 1.9 m, we need to solve
the integral (4.3) for h = 1.8 and ∆h = 0.1. For that we use the composite
Simpson formula with 100 sub-intervals

N = inline ([’M/(sigma*sqrt (2*pi))* exp(-(h-hbar ).^2’...
’./(2* sigma ^2))’], ’h’, ’M’, ’hbar’, ’sigma ’)

N =

Inline function:

N(h,M,hbar,sigma) = M/(sigma * sqrt(2*pi)) * exp(-(h -

hbar).^2./(2*sigma^2))

M = 200; hbar = 1.7; sigma = 0.1;
int = simpsonc (1.8, 1.9, 100, N, M, hbar , sigma)

int =

27.1810

We therefore estimate that the number of individuals in this range of height
is 27.1810, corresponding to the 15.39 % of all individuals. �
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Fig. 4.5. Logarithmic representation of the errors versus H for Simpson (solid
line with circles), midpoint (solid line) and trapezoidal (dashed line) composite
quadrature formulae

Example 4.3 We want to compare the approximations of the integral I(f) =∫ 2π

0
xe−x cos(2x)dx = −1/25(10π − 3 + 3e2π)/e2π 	 −0.122122604618968 ob-

tained by using the composite midpoint, trapezoidal and Simpson formulae. In
Figure 4.5 we plot on the logarithmic scale the errors versus H. As pointed out
in Section 1.5, in this type of plot the greater the slope of the curve, the higher
the order of convergence of the corresponding formula. As expected from the
theoretical results, the midpoint and trapezoidal formulae are second-order
accurate, whereas the Simpson formula is fourth-order accurate. �

4.3 Interpolatory quadratures

All (non-composite) quadrature formulae introduced in the previous sec-
tions are remarkable instances of a more general quadrature formula of
the form:

Iappr(f) =
n∑

j=0

αjf(yj) (4.25)

The real numbers {αj} are the quadrature weights, while the points {yj}
are the quadrature nodes. In general, one requires that (4.25) integrates
exactly at least a constant function: this property is ensured if

∑n
j=0 αj =

b − a. We can get a degree of exactness equal to (at least) n taking

Iappr(f) =

b∫

a

Πnf(x)dx ,

where Πnf ∈ Pn is the Lagrange interpolating polynomial of the function
f at the nodes yi, i = 0, . . . , n, given by (3.4). This yields the following
expression for the weights
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αi =

b∫

a

ϕi(x)dx, i = 0, . . . , n,

where ϕi ∈ Pn is the i-th characteristic Lagrange polynomial such that
ϕi(yj) = δij , for i, j = 0, . . . , n, that was introduced in (3.3).

Example 4.4 For the trapezoidal formula (4.19) we have n = 1, y0 = a,
y1 = b and

α0 =

b∫

a

ϕ0(x)dx =

b∫

a

x − b

a − b
dx =

b − a

2
,

α1 =

b∫

a

ϕ1(x)dx =

b∫

a

x − a

b − a
dx =

b − a

2
.

�

The question that arises is whether suitable choices of the nodes
exist such that the degree of exactness is greater than n, more precisely,
equal to r = n + m for some m > 0. We can simplify our discussion by
restricting ourselves to a reference interval, say (−1, 1). Indeed, once a
set of quadrature nodes {ȳj} and weights {ᾱj} are available on [−1, 1],
then owing to the change of variable (3.8) we can immediately obtain
the corresponding nodes and weights,

yj =
a + b

2
+

b − a

2
ȳj , αj =

b − a

2
ᾱj

on an arbitrary integration interval [a, b ].
The answer to the previous question is furnished by the following

result (see, [QSS06, Chapter 10]):

Proposition 4.1 For a given m > 0, the quadrature formula∑n
j=0 ᾱjf(ȳj) has degree of exactness n + m iff it is of interpola-

tory type and the nodal polynomial ωn+1 = Πn
i=0(x − ȳi) associated

with the nodes {ȳi} is such that

1∫

−1

ωn+1(x)p(x)dx = 0, ∀p ∈ Pm−1. (4.26)

The maximum value that m can take is n + 1 and is achieved pro-
vided ωn+1 is proportional to the so-called Legendre polynomial of degree
n+1, Ln+1(x). The Legendre polynomials can be computed recursively,
through the following three-term relation
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n {ȳj} {ᾱj}
1

{
±1/

√
3
}1

1
{1}

2
{
±
√

15/5, 0
}1

1
{5/9, 8/9}

3
{
±(1/35)

√
525 − 70

√
30,

{
(1/36)(18 +

√
30),

1

1

±(1/35)
√

525 + 70
√

30
}1

1
(1/36)(18 −

√
30)

}

4
{

0,±(1/21)
√

245 − 14
√

70
1

1

{
128/225, (1/900)(322 + 13

√
70)

±(1/21)
√

245 + 14
√

70
}1

1
(1/900)(322 − 13

√
70)

}

Table 4.1. Nodes and weights for some quadrature formulae of Gauss-
Legendre on the interval (−1, 1). Weights corresponding to symmetric couples
of nodes are reported only once

L0(x) = 1, L1(x) = x,

Lk+1(x) =
2k + 1
k + 1

xLk(x) − k

k + 1
Lk−1(x), k = 1, 2, . . . .

For every n = 0, 1, . . . , every polynomial in Pn can be obtained by a
linear combination of the polynomials L0, L1, . . . , Ln. Moreover, Ln+1 is
orthogonal to all the polynomials of degree less than or equal to n, i.e.,∫ 1

−1
Ln+1(x)Lj(x)dx = 0 for all j = 0, . . . , n. This explains why (4.26) is

true with m less than or equal to n + 1.
The maximum degree of exactness is therefore equal to 2n+1, and is

obtained for the so-called Gauss-Legendre formula (IGL in short), whose
nodes and weights are given by:






ȳj = zeros of Ln+1(x),

ᾱj =
2

(1 − ȳ2
j )[L′

n+1(ȳj)]2
, j = 0, . . . , n.

(4.27)

The weights ᾱj are all positive and the nodes are internal to the interval
(−1, 1). In Table 4.1 we report nodes and weights for the Gauss-Legendre
quadrature formulae with n = 1, 2, 3, 4. If f ∈ C(2n+2)([−1, 1]), the cor-
responding error is

I(f) − IGL(f) =
22n+3((n + 1)!)4

(2n + 3)((2n + 2)!)3
f (2n+2)(ξ),

where ξ is a suitable point in (−1, 1).
It is often useful to include also the endpoints of the interval among

the quadrature nodes. By doing so, the Gauss formula with the highest
degree of exactness (2n−1) is the one that employs the so-called Gauss-
Legendre-Lobatto nodes (briefly, GLL): for n ≥ 1

y0 = −1, yn = 1, yj = zeros of L′
n(x), j = 1, . . . , n − 1, (4.28)
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n {ȳj} {ᾱj}
1 {±1} {1}
2 {±1, 0} {1/3, 4/3}
3 {±1,±

√
5/5} {1/6, 5/6}

4 {±1,±
√

21/7, 0} {1/10, 49/90, 32/45}
Table 4.2. Nodes and weights for some quadrature formulae of Gauss-
Legendre-Lobatto on the interval (−1, 1). Weights corresponding to symmetric
couples of nodes are reported only once

αj =
2

n(n + 1)
1

[Ln(ȳj)]2
, j = 0, . . . , n.

If f ∈ C(2n)([−1, 1]), the corresponding error is given by

I(f) − IGLL(f) = − (n + 1)n322n+1((n − 1)!)4

(2n + 1)((2n)!)3
f (2n)(ξ),

for a suitable ξ ∈ (−1, 1). In Table 4.2 we give a table of nodes and
weights on the reference interval (−1, 1) for n = 1, 2, 3, 4. (For n = 1 we
recover the trapezoidal rule.)

Using the MATLAB instruction quadl(fun,a,b) it is possible toquadl
compute an integral with a composite Gauss-Legendre-Lobatto quadra-
ture formula. The function fun can be an inline object. For instance, to
integrate f(x) = 1/x over [1, 2], we must first define the function

fun=inline(’1./x’,’x’);

then call quadl(fun,1,2). Note that in the definition of function f we
have used an element by element operation (indeed MATLAB will evalu-
ate this expression component by component on the vector of quadrature
nodes).

The specification of the number of subintervals is not requested as it
is automatically computed in order to ensure that the quadrature error is
below the default tolerance of 10−3. A different tolerance can be provided
by the user through the extended command quadl(fun,a,b,tol). In
Section 4.4 we will introduce a method to estimate the quadrature error
and, consequently, to change H adaptively.

Let us summarize

1. A quadrature formula is a formula to approximate the integral of
continuous functions on an interval [a, b];

2. it is generally expressed as a linear combination of the values of the
function at specific points (called nodes) with coefficients which are
called weights;
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3. the degree of exactness of a quadrature formula is the highest degree
of the polynomials which are integrated exactly by the formula. It
is one for the midpoint and trapezoidal rules, three for the Simpson
rule, 2n + 1 for the Gauss-Legendre formula using n + 1 quadrature
nodes, and 2n − 1 for the Gauss-Legendre-Lobatto formula using
n + 1 nodes;

4. the order of accuracy of a composite quadrature formula is its order
with respect to the size H of the subintervals. The order of accuracy
is two for composite midpoint and trapezoidal formulae, four for
composite Simpson formula.

See the Exercises 4.12-4.18.

4.4 Simpson adaptive formula

The integration step-length H of a quadrature composite formula can
be chosen in order to ensure that the quadrature error is less than a pre-
scribed tolerance ε > 0. For instance, when using the Simpson composite
formula, thanks to (4.22) this goal can be achieved if

b − a

180
H4

16
max

x∈[a,b]
|f (4)(x)| < ε, (4.29)

where f (4) denotes the fourth-order derivative of f . Unfortunately, when
the absolute value of f (4) is large only in a small part of the integra-
tion interval, the maximum H for which (4.29) holds true can be too
small. The goal of the adaptive Simpson quadrature formula is to yield
an approximation of I(f) within a fixed tolerance ε by a nonuniform
distribution of the integration step-sizes in the interval [a, b]. In such a
way we retain the same accuracy of the composite Simpson rule, but
with a lower number of quadrature nodes and, consequently, a reduced
number of evaluations of f .

To this end, we must find an error estimator and an automatic proce-
dure to modify the integration step-length H, according to the achieve-
ment of the prescribed tolerance. We start by analyzing this procedure,
which is independent of the specific quadrature formula that one wants
to apply.

In the first step of the adaptive procedure, we compute an approx-
imation Is(f) of I(f) =

∫ b

a
f(x)dx. We set H = b − a and we try to

estimate the quadrature error. If the error is less than the prescribed
tolerance, the adaptive procedure is stopped; otherwise the step-size H

is halved until the integral
∫ a+H

a
f(x)dx is computed with the prescribed

accuracy. When the test is passed, we consider the interval (a + H, b)
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and we repeat the previous procedure, choosing as the first step-size the
length b − (a + H) of that interval.

We use the following notations:

1. A: the active integration interval, i.e. the interval where the integral
is being computed;

2. S: the integration interval already examined, for which the error is
less than the prescribed tolerance;

3. N : the integration interval yet to be examined.

At the beginning of the integration process we have N = [a, b], A = N
and S = ∅, while the situation at the generic step of the algorithm is
depicted in Figure 4.6. Let JS(f) indicate the computed approximation
of
∫ α

a
f(x)dx, with JS(f) = 0 at the beginning of the process; if the algo-

rithm successfully terminates, JS(f) yields the desired approximation of
I(f). We also denote by J(α,β)(f) the approximate integral of f over the
active interval [α, β]. This interval is drawn in gray in Figure 4.6. The
generic step of the adaptive integration method is organized as follows:

1. if the estimation of the error ensures that the prescribed tolerance is
satisfied, then:
(i) JS(f) is increased by J(α,β)(f), that is JS(f) ← JS(f) +

J(α,β)(f);
(ii) we let S ← S ∪ A,A = N (corresponding to the path (I) in

Figure 4.6) and α ← β and β ← b;
2. if the estimation of the error fails the prescribed tolerance, then:

(j) A is halved, and the new active interval is set to A = [α, α′] with
α′ = (α + β)/2 (corresponding to the path (II) in Figure 4.6);

(jj) we let N ← N ∪ [α′, β], β ← α′;
(jjj) a new error estimate is provided.

Fig. 4.6. Distribution of the integration intervals at the generic step of the
adaptive algorithm and updating of the integration grid
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Of course, in order to prevent the algorithm from generating too small
step-sizes, it is convenient to monitor the width of A and warn the user,
in case of an excessive reduction of the step-length, about the presence
of a possible singularity in the integrand function.

The problem now is to find a suitable estimator of the error. To this
end, it is convenient to restrict our attention to a generic subinterval
[α, β] in which we compute Is(f): of course, if on this interval the error
is less than ε(β − α)/(b − a), then the error on the interval [a, b] will be
less than the prescribed tolerance ε. Since from (4.24) we get

Es(f ;α, β) =

β∫

α

f(x)dx − Is(f) = − (β − α)5

2880
f (4)(ξ),

to ensure the achievement of the tolerance, it will be sufficient to ver-
ify that Es(f ;α, β) < ε(β − α)/(b − a). In practical computation, this
procedure is not feasible since the point ξ ∈ [α, β] is unknown.

To estimate the error Es(f ;α, β) without using explicitly the value
f (4)(ξ), we employ again the composite Simpson formula to compute∫ β

α
f(x)dx, but with a step-length (β − α)/2. From (4.22) with a = α

and b = β, we deduce that

β∫

α

f(x)dx − Ic
s(f) = − (β − α)5

46080
f (4)(η), (4.30)

where η is a suitable point different from ξ. Subtracting the last two
equations, we get

∆I = Ic
s(f) − Is(f) = − (β − α)5

2880
f (4)(ξ) +

(β − α)5

46080
f (4)(η). (4.31)

Let us now make the assumption that f (4)(x) is approximately a con-
stant on the interval [α, β]. In this case f (4)(ξ) � f (4)(η). We can com-
pute f (4)(η) from (4.31) and, putting this value in the equation (4.30),
we obtain the following estimation of the error:

β∫

α

f(x)dx − Ic
s(f) � 1

15
∆I.

The step-length (β −α)/2 (that is the step-length employed to com-
pute Ic

s(f)) will be accepted if |∆I|/15 < ε(β−α)/[2(b−a)]. The quadra-
ture formula that uses this criterion in the adaptive procedure described
previously, is called adaptive Simpson formula. It is implemented in Pro-
gram 4.3. Among the input parameters, f is the string in which the func-
tion f is defined, a and b are the endpoints of the integration interval,



118 4 Numerical differentiation and integration

tol is the prescribed tolerance on the error and hmin is the minimum
admissible value for the integration step-length (in order to ensure that
the adaptation procedure always terminates).

Program 4.3. simpadpt: adaptive Simpson formula

function [JSf ,nodes ]= simpadpt(f,a,b,tol ,hmin ,varargin)
%SIMPADPT Numerically evaluate integral , adaptive
% Simpson quadrature.
%
% JSF = SIMPADPT(FUN ,A,B,TOL ,HMIN) tries to approximate
% the integral of function FUN from A to B to within an
% error of TOL using recursive adaptive Simpson
% quadrature. The inline function Y = FUN(V) should
% accept a vector argument V and return a vector result
% Y, the integrand evaluated at each element of X.
% JSF = SIMPADPT(FUN ,A,B,TOL ,HMIN ,P1,P2 ,...) calls the
% function FUN passing the optional parameters
% P1 ,P2 ,... as FUN(X,P1 ,P2 ,...).
% [JSF ,NODES] = SIMPADPT (...) returns the distribution
% of nodes used in the quadrature process.
A=[a,b]; N=[]; S=[]; JSf = 0; ba = b - a; nodes =[];
while ~isempty(A),

[deltaI ,ISc]= caldeltai(A,f,varargin {:});
if abs(deltaI) <= 15* tol*(A(2)-A(1))/ ba;

JSf = JSf + ISc; S = union(S,A);
nodes = [nodes , A(1) (A(1)+A(2))*0.5 A(2)];
S = [S(1), S(end )]; A = N; N = [];

elseif A(2)-A(1) < hmin
JSf=JSf+ISc; S = union(S,A);
S = [S(1), S(end )]; A=N; N=[];
warning(’Too small integration -step’);

else
Am = (A(1)+A(2))*0.5;
A = [A(1) Am];
N = [Am, b];

end
end
nodes=unique(nodes );
return

function [deltaI ,ISc]= caldeltai(A,f,varargin)
L=A(2)-A(1);
t=[0; 0.25; 0.5; 0.5; 0.75; 1];
x=L*t+A(1);
L=L/6;
w=[1; 4; 1];
fx=feval(f,x,varargin {:}).* ones (6 ,1);
IS=L*sum(fx([1 3 6]).*w);
ISc =0.5*L*sum(fx.*[w;w]);
deltaI=IS-ISc;
return

Example 4.5 Let us compute the integral I(f) =
∫ 1

−1
e−10(x−1)2dx by using

the adaptive Simpson formula. Using Program 4.3 with

>> fun=inline(’exp(-10*(x-1).^2)’); tol = 1.e-04; hmin = 1.e-03;
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we find the approximate value 0.28024765884708, instead of the exact value
0.28024956081990. The error is less than the prescribed tolerance tol=10−5.

To obtain this result it was sufficient to use only 10 nonuniform subinter-
vals. Note that the corresponding composite formula with uniform step-size
would have required 22 subintervals to ensure the same accuracy. �

4.5 What we haven’t told you

The midpoint, trapezoidal and Simpson formulae are particular cases of
a larger family of quadrature rules known as Newton-Cotes formulae. For
an introduction, see [QSS06, Chapter 10]. Similarly, the Gauss-Legendre
and the Gauss-Legendre-Lobatto formulae that we have introduced in
Section 4.3 are special cases of a more general family of Gaussian quadra-
ture formulae. These are optimal in the sense that they maximize the
degree of exactness for a prescribed number of quadrature nodes. For an
introduction to Gaussian formulae, see [QSS06, Chapter 10] or [RR85].
Further developments on numerical integration can be found, e.g., in
[DR75] and [PdDKÜK83].

Numerical integration can also be used to compute integrals on un-
bounded intervals. For instance, to approximate

∫∞
0

f(x)dx, a first pos-
sibility is to find a point α such that the value of

∫∞
α

f(x)dx can be
neglected with respect to that of

∫ α

0
f(x)dx. Then we compute by a

quadrature formula this latter integral on a bounded interval. A second
possibility is to resort to Gaussian quadrature formulae for unbounded
intervals (see [QSS06, Chapter 10]).

Finally, numerical integration can also be used to compute multidi-
mensional integrals. In particular, we mention the MATLAB instruction
dblquad(’f’,xmin,xmax,ymin,ymax) by which it is possible to com- dblquad
pute the integral of a function contained in the MATLAB file f.m over
the rectangular domain [xmin,xmax] × [ymin,ymax]. Note that the
function f must have at least two input parameters corresponding to the
variables x and y with respect to which the integral is computed.

Octave 4.1 In Octave, dblquad is not available; however there are some
Octave functions featuring the same functionalities:

1. quad2dg for two-dimensional integration, which uses a Gaussian quad2dg
quadrature integration scheme;

2. quad2dc for two-dimensional integration, which uses a Gaussian- quad2dc
Chebyshev quadrature integration scheme.

�
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4.6 Exercises

Exercise 4.1 Verify that, if f ∈ C3 in a neighborhood I0 of x0 (respectively,
In of xn) the error of formula (4.11) is equal to − 1

3
f ′′′(ξ0)h

2 (respectively,
− 1

3
f ′′′(ξn)h2), where ξ0 and ξn are two suitable points belonging to I0 and In,

respectively.

Exercise 4.2 Verify that if f ∈ C3 in a neighborhood of x̄ the error of the
formula (4.9) is equal to (4.10).

Exercise 4.3 Compute the order of accuracy with respect to h of the follow-
ing formulae for the numerical approximation of f ′(xi):

a.
−11f(xi) + 18f(xi+1) − 9f(xi+2) + 2f(xi+3)

6h
,

b.
f(xi−2) − 6f(xi−1) + 3f(xi) + 2f(xi+1)

6h
,

c.
−f(xi−2) − 12f(xi) + 16f(xi+1) − 3f(xi+2)

12h
.

Exercise 4.4 (Demography) The following values represent the time evo-
lution of the number n(t) of individuals of a given population whose birth rate
is constant (b = 2) and mortality rate is d(t) = 0.01n(t):

t (months) 0 0.5 1 1.5 2 2.5 3

n 100 147 178 192 197 199 200
.

Use this data to approximate as accurately as possible the rate of variation
of this population. Then compare the obtained results with the exact rate
n′(t) = 2n(t) − 0.01n2(t).

Exercise 4.5 Find the minimum number M of subintervals to approximate
with an absolute error less than 10−4 the integrals of the following functions:

f1(x) =
1

1 + (x − π)2
in [0, 5],

f2(x) = ex cos(x) in [0, π],

f3(x) =
√

x(1 − x) in [0, 1],

using the composite midpoint formula. Verify the results obtained using the
Program 4.1.

Exercise 4.6 Prove (4.14) starting from (4.16).

Exercise 4.7 Why does the midpoint formula lose one order of convergence
when used in its composite mode?
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Exercise 4.8 Verify that, if f is a polynomial of degree less than or equal 1,
then Imp(f) = I(f) i.e. the midpoint formula has degree of exactness equal to
1.

Exercise 4.9 For the function f1 in Exercise 4.5, compute (numerically) the
values of M which ensure that the quadrature error is less than 10−4 when the
integral is approximated by the composite trapezoidal and Gauss quadrature
formulae.

Exercise 4.10 Let I1 and I2 be two values obtained by the composite trape-
zoidal formula applied with two different step-lengths, H1 and H2, for the
approximation of I(f) =

∫ b

a
f(x)dx. Verify that, if f (2) has a mild variation

on (a, b), the value

IR = I1 + (I1 − I2)/(H2
2/H2

1 − 1) (4.32)

is a better approximation of I(f) than I1 and I2. This strategy is called the
Richardson extrapolation method. Derive (4.32) from (4.18).

Exercise 4.11 Verify that, among all formulae of the form Iappx(f) =
αf(x̄) + βf(z̄) where x̄, z̄ ∈ [a, b] are two unknown nodes and α and β two
undetermined weights, the Gauss formula with n = 1 of Table 4.1 features the
maximum degree of exactness.

Exercise 4.12 For the first two functions of Exercise 4.5, compute the min-
imum number of intervals such that the quadrature error of the composite
Simpson quadrature formula is less than 10−4.

Exercise 4.13 Compute
∫ 2

0
e−x2/2dx using the Simpson formula (4.23) and

the Gauss-Legendre formula of Table 4.1 for n = 1, then compare the obtained
results.

Exercise 4.14 To compute the integrals Ik =
∫ 1

0
xkex−1dx for k = 1, 2, . . .,

one can use the following recursive formula: Ik = 1 − kIk−1, with I1 = 1/e.
Compute I20 using the composite Simpson formula in order to ensure that the
quadrature error is less than 10−3. Compare the Simpson approximation with
the result obtained using the above recursive formula.

Exercise 4.15 Apply the Richardson extrapolation formula (4.32) for the

approximation of the integral I(f) =
∫ 2

0
e−x2/2dx, with H1 = 1 and H2 = 0.5

using first the Simpson formula (4.23), then the Gauss-Legendre formula for
n = 1 of Table 4.1. Verify that in both cases IR is more accurate than I1 and
I2.

Exercise 4.16 (Electromagnetism) Compute using the composite Simp-
son formula the function j(r) defined in (4.2) for r = k/10 m with k =
1, . . . , 10, with ρ(ξ) = eξ and σ = 0.36 W/(mK). Ensure that the quadra-
ture error is less than 10−10. (Recall that: m=meters, W=watts, K=degrees
Kelvin.)
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Exercise 4.17 (Optics) By using the composite Simpson and Gauss-
Legendre with n = 1 formulae compute the function E(T ), defined in (4.1),
for T equal to 213 K, up to at least 10 exact significant digits.

Exercise 4.18 Develop a strategy to compute I(f) =
∫ 1

0
|x2 − 0.25|dx by the

composite Simpson formula such that the quadrature error is less than 10−2.
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Linear systems

In applied sciences, one is quite often led to face a linear system of the
form

Ax = b, (5.1)

where A is a square matrix of dimension n × n whose elements aij are
either real or complex, while x and b are column vectors of dimen-
sion n with x representing the unknown solution and b a given vector.
Component-wise, (5.1) can be written as

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

...
...

...

an1x1 + an2x2 + . . . + annxn = bn.

We present three different problems that give rise to linear systems.

Problem 5.1 (Hydraulic network) Let us consider the hydraulic net-
work made of the 10 pipelines in Figure 5.1, which is fed by a reservoir of
water at constant pressure pr = 10 bar. In this problem, pressure values
refer to the difference between the real pressure and the atmospheric
one. For the j-th pipeline, the following relationship holds between the
flow-rate Qj (in m3/s) and the pressure gap ∆pj at pipe-ends:

Qj = kL∆pj , (5.2)

where k is the hydraulic resistance (in m2 /(bar s)) and L is the length
(in m) of the pipeline. We assume that water flows from the outlets
(indicated by a black dot) at atmospheric pressure, which is set to 0 bar
for coherence with the previous convention.
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A typical problem consists in determining the pressure values at each
internal node 1, 2, 3, 4. With this aim, for each j = 1, 2, 3, 4 we can
supplement the relationship (5.2) with the statement that the algebraic
sum of the flow-rates of the pipelines which meet at node j must be null
(a negative value would indicate the presence of a seepage).

Denoting by p = (p1, p2, p3, p4)T the pressure vector at the internal
nodes, we get a 4 × 4 system of the form Ap = b.

In the following table we report the relevant characteristics of the
different pipelines:

pipeline k L pipeline k L pipeline k L
1 0.01 20 2 0.005 10 3 0.005 14
4 0.005 10 5 0.005 10 6 0.002 8
7 0.002 8 8 0.002 8 9 0.005 10
10 0.002 8

Correspondingly, A and b take the following values (only the first 4
significant digits are provided):

A =






−0.370 0.050 0.050 0.070
0.050 −0.116 0 0.050
0.050 0 −0.116 0.050
0.070 0.050 0.050 −0.202




 , b =






−2
0
0
0




 .

The solution of this system is postponed to Example 5.5. �

1

2

4

3

Q1

Q4

Q2

Q5

Q10

Q6
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Fig. 5.1. The pipeline network of Problem 5.1

Problem 5.2 (Spectrometry) Let us consider a gas mixture of n non-
reactive unknown components. Using a mass spectrometer the compound
is bombarded by low-energy electrons: the resulting mixture of ions is
analyzed by a galvanometer which shows peaks corresponding to specific
ratios mass/charge. We only consider the n most relevant peaks. One
may conjecture that the height hi of the i-th peak is a linear combination
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of {pj , j = 1, . . . , n}, pj being the partial pressure of the j-th component
(that is the pressure exerted by a single gas when it is part of a mixture),
yielding

n∑

j=1

sijpj = hi, i = 1, . . . , n, (5.3)

where the sij are the so-called sensitivity coefficients. The determination
of the partial pressures demands therefore the solution of a linear system.
For its solution, see Example 5.3. �

Problem 5.3 (Economy: input-output analysis) We want to de-
termine the situation of equilibrium between demand and offer of certain
goods. In particular, let us consider a production model in which m ≥ n
factories (or production lines) produce n different products. They must
face the internal demand of goods (the input) necessary to the facto-
ries for their own production, as well as the external demand (the out-
put) from the consumers. The main assumption of the Leontief model
(1930)1 is that the production model is linear, that is, the amount of
a certain output is proportional to the quantity of input used. Under
this assumption the activity of the factories is completely described by
two matrices, the input matrix C= (cij) ∈ Rn×m and the output matrix
P= (pij) ∈ Rn×m. (“C” stands for consumables and “P” for products.)
The coefficient cij (respectively, pij) represent the quantity of the i-th
good absorbed (respectively, produced) by the j-th factory for a fixed
period of time. The matrix A=P−C is called input-output matrix : aij

positive (respectively, negative) denotes the quantity of the i-th good
produced (respectively, absorbed) by the j-th factory. Finally, it is rea-
sonable to assume that the production system satisfies the demand of
goods from the market, that can be represented by a vector b= (bi) ∈ Rn

(the vector of the final demand). The component bi represents the quan-
tity of the i-th good absorbed by the market. The equilibrium is reached
when the vector x= (xi) ∈ Rm of the total production equals the total
demand, that is,

Ax = b, where A = P − C. (5.4)

For the solution of this linear system see Exercise 5.17. �

The solution of system (5.1) exists iff A is nonsingular. In principle,
the solution might be computed using the so-called Cramer rule:

xi =
det(Ai)
det(A)

, i = 1, . . . , n,

1 On 1973 Wassily Leontief was arwarded the Nobel prize in economy for his
studies.
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Fig. 5.2. The interaction scheme between three factories and the market

where Ai is the matrix obtained from A by replacing the i-th column by
b and det(A) denotes the determinant of A. If the n+1 determinants are
computed by the Laplace expansion (see Exercise 5.1), a total number
of approximately 2(n+1)! operations is required. As usual, by operation
we mean a sum, a subtraction, a product or a division. For instance,
a computer capable of carrying out 109 flops (i.e. 1 giga flops), would
require about 12 hours to solve a system of dimension n = 15, 3240 years
if n = 20 and 10143 years if n = 100. The computational cost can be
drastically reduced to the order of about n3.8 operations if the n + 1
determinants are computed by the algorithm quoted in Example 1.3.
Yet, this cost is still too high for large values of n, which often arise in
practical applications.

Two alternative approaches will be pursued: they are called direct
methods if they yield the solution of the system in a finite number of
steps, iterative methods if they require (in principle) an infinite number
of steps. Iterative methods will be addressed in Section 5.7. We warn
the reader that the choice between direct and iterative methods may
depend on several factors: primarily, the predicted theoretical efficiency
of the scheme, but also the particular type of matrix, the memory storage
requirements and, finally, the computer architecture (see, Section 5.11
for more details).

Finally, we note that a system with full matrix cannot be solved
by less than n2 operations. Indeed, if the equations are fully coupled,
we should expect that every one of the n2 matrix coefficients would be
involved in an algebraic operation at least once.

5.1 The LU factorization method

Let A be a square matrix of order n. Assume that there exist two suitable
matrices L and U, lower triangular and upper triangular, respectively,
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such that
A = LU (5.5)

We call (5.5) an LU-factorization (or decomposition) of A. If A is non-
singular, so are both L and U, and thus their diagonal elements are
nonnull (as observed in Section 1.3).

In such a case, solving Ax = b leads to the solution of the two
triangular systems

Ly = b, Ux = y (5.6)

Both systems are easy to solve. Indeed, L being lower triangular, the
first row of the system Ly = b takes the form:

l11y1 = b1,

which provides the value of y1 since l11 �= 0. By substituting this value
of y1 in the subsequent n − 1 equations we obtain a new system whose
unknowns are y2, . . . , yn, on which we can proceed in a similar manner.
Proceeding forward, equation by equation, we can compute all unknowns
with the following forward substitutions algorithm:

y1 =
1
l11

b1,

yi =
1
lii



bi −
i−1∑

j=1

lijyj



 , i = 2, . . . , n

(5.7)

Let us count the number of operations required by (5.7). Since i − 1
sums, i− 1 products and 1 division are needed to compute the unknown
yi, the total number of operations required is

n∑

i=1

1 + 2
n∑

i=1

(i − 1) = 2
n∑

i=1

i − n = n2.

The system Ux = y can be solved by proceeding in a similar manner.
This time, the first unknown to be computed is xn, then, by proceeding
backward, we can compute the remaining unknowns xi, for i = n− 1 to
i = 1:

xn =
1

unn
yn,

xi =
1

uii



yi −
n∑

j=i+1

uijxj



 , i = n − 1, . . . , 1
(5.8)
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This is called backward substitutions algorithm and requires n2 opera-
tions too. At this stage we need an algorithm that allows an effective
computation of the factors L and U of the matrix A. We illustrate a
general procedure starting from a couple of examples.

Example 5.1 Let us write the relation (5.5) for a generic matrix A ∈ R2×2

[
l11 0
l21 l22

] [
u11 u12

0 u22

]
=

[
a11 a12

a21 a22

]
.

The 6 unknown elements of L and U must satisfy the following (nonlinear)
equations:

(e1) l11u11 = a11, (e2) l11u12 = a12,
(e3) l21u11 = a21, (e4) l21u12 + l22u22 = a22.

(5.9)

System (5.9) is underdetermined as it features less equations than un-
knowns. We can complete it by assigning arbitrarily the diagonal elements of
L, for instance setting l11 = 1 and l22 = 1. Now system (5.9) can be solved by
proceeding as follows: we determine the elements u11 and u12 of the first row
of U using (e1) and (e2). If u11 is nonnull then from (e3) we deduce l21 (that is
the first column of L, since l11 is already available). Now we can obtain from
(e4) the only nonzero element u22 of the second row of U. �

Example 5.2 Let us repeat the same computations in the case of a 3 × 3
matrix. For the 12 unknown coefficients of L and U we have the following 9
equations:

(e1) l11u11 = a11, (e2) l11u12 = a12, (e3) l11u13 = a13,
(e4) l21u11 = a21, (e5) l21u12 + l22u22 = a22, (e6) l21u13 + l22u23 = a23,
(e7) l31u11 = a31, (e8) l31u12 + l32u22 = a32, (e9) l31u13+l32u23+l33u33 =a33.

Let us complete this system by setting lii = 1 for i = 1, 2, 3. Now, the
coefficients of the first row of U can be obtained by using (e1), (e2) and (e3).
Next, using (e4) and (e7), we can determine the coefficients l21 and l31 of the
first column of L. Using (e5) and (e6) we can now compute the coefficients u22

and u23 of the second row of U. Then, using (e8), we obtain the coefficient l32
of the second column of L. Finally, the last row of U (which consists of the
only element u33) can be determined by solving (e9). �

On a matrix of arbitrary dimension n we can proceed as follows:

1. the elements of L and U satisfy the system of nonlinear equations

min(i,j)∑

r=1

lirurj = aij , i, j = 1, . . . , n; (5.10)

2. system (5.10) is underdetermined; indeed there are n2 equations and
n2 + n unknowns, thus the factorization LU cannot be unique;
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3. By forcing the n diagonal elements of L to be equal to 1, (5.10) turns
into a determined system which can be solved by the following Gauss
algorithm: set A(1) = A i.e. a

(1)
ij = aij for i, j = 1, . . . , n;

for k = 1, . . . , n − 1
for i = k + 1, . . . , n

lik =
a
(k)
ik

a
(k)
kk

,

for j = k + 1, . . . , n

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

(5.11)

The elements a
(k)
kk must all be different from zero and are called pivot

elements. For every k = 1, . . . , n − 1 the matrix A(k+1) = (a(k+1)
ij ) has

n − k rows and columns.

At the end of this procedure the elements of the upper triangular
matrix U are given by uij = a

(i)
ij for i = 1, . . . , n and j = i, . . . , n,

whereas those of L are given by the coefficients lij generated by this
algorithm. In (5.11) there is no computation of the diagonal elements of
L, as we already know that their value is equal to 1.

This factorization is called the Gauss factorization; determining the
elements of the factors L and U requires about 2n3/3 operations (see
Exercise 5.4).

Example 5.3 (Spectrometry) For the Problem 5.2 we consider a gas mix-
ture that, after a spectroscopic inspection, presents the following seven most
relevant peaks: h1 = 17.1, h2 = 65.1, h3 = 186.0, h4 = 82.7, h5 = 84.2,
h6 = 63.7 and h7 = 119.7. We want to compare the measured total pressure,
equal to 38.78 µm of Hg (which accounts also for those components that we
might have neglected in our simplified model) with that obtained using rela-
tions (5.3) with n = 7, where the sensitivity coefficients are given in Table 5.1
(taken from [CLW69, p.331]). The partial pressures can be computed solving
the system (5.3) for n = 7 using the LU factorization. We obtain

partpress=

0.6525

2.2038

0.3348

6.4344

2.9975

0.5505

25.6317

Using these values we compute an approximate total pressure (given by
sum(partpress)) of the gas mixture which differs from the measured value
by 0.0252 µm of Hg. �
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Components and indices

Peak Hydrogen Methane Etilene Ethane Propylene Propane n-Pentane
index 1 2 3 4 5 6 7

1 16.87 0.1650 0.2019 0.3170 0.2340 0.1820 0.1100
2 0.0 27.70 0.8620 0.0620 0.0730 0.1310 0.1200
3 0.0 0.0 22.35 13.05 4.420 6.001 3.043
4 0.0 0.0 0.0 11.28 0.0 1.110 0.3710
5 0.0 0.0 0.0 0.0 9.850 1.1684 2.108
6 0.0 0.0 0.0 0.0 0.2990 15.98 2.107
7 0.0 0.0 0.0 0.0 0.0 0.0 4.670

Table 5.1. The sensitivity coefficients for a gas mixture

0 20 40 60 80 100
0

1

2

3

4

5

6

7
x 10

5

Fig. 5.3. The number of floating-point operations necessary to generate the
Gauss factorization LU of the Vandermonde matrix, as a function of the matrix
dimension n. This function is a cubic polynomial obtained by approximating
in the least-squares sense the values (represented by circles) corresponding to
n = 10, 20, . . . , 100

Example 5.4 Consider the Vandermonde matrix

A = (aij) with aij = xn−j
i , i, j = 1, . . . , n, (5.12)

where the xi are n distinct abscissae. It can be constructed using the MAT-

LAB command vander. In Figure 5.3 we report the number of floating-pointvander
operations required to compute the Gauss factorization of A, versus n. Several
values of n (precisely, n = 10, 20, . . . , 100) are considered and the correspond-
ing number of operations are indicated with circles. The curve reported in the
picture is a polynomial in n of third degree representing the least-squares ap-
proximation of the above data. The computation of the number of operations
was made using a MATLAB command (flops) that was present in MATLABflops
version 5.3.1 and earlier.

�

Storing the matrices A(k) in the algorithm (5.11) is not necessary; ac-
tually we can overlap the (n − k) × (n − k) elements of A(k+1) on the
corresponding last (n − k) × (n − k) elements of the original matrix A.
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Moreover, since at step k, the subdiagonal elements of the k-th column
don’t have any effect on the final U, they can be replaced by the entries
of the k-th column of L, as done in Program 5.1. Then, at step k of the
process the elements stored at location of the original entries of A are








a
(1)
11 a

(1)
12 . . .

l21 a
(2)
22

...
. . . . . .

. . . . . . a
(1)
1n

a
(2)
2n
...

lk1 . . . lk,k−1

...
...

ln1 . . . ln,k−1

a
(k)
kk . . . a

(k)
kn

...
...

a
(k)
nk . . . a

(k)
nn








,

where the boxed submatrix is A(k). The Gauss factorization is the basis
of several MATLAB commands:

- [L,U]=lu(A) whose mode of use will be discussed in Section 5.2; lu
- inv that allows the computation of the inverse of a matrix; inv

\- \ by which it is possible to solve a linear system with matrix A and
right hand side b by simply writing A\b (see Section 5.6).

Remark 5.1 (Computing a determinant) By means of the LU factoriza-
tion one can compute the determinant of A with a computational cost of O(n3)
operations, noting that (see Sect.1.3)

det(A) = det(L) det(U) =

n∏

k=1

ukk.

As a matter of fact, this procedure is also at the basis of the MATLAB com-
mand det. • det

In Program 5.1 we implement the algorithm (5.11). The factor L is stored
in the (strictly) lower triangular part of A and U in the upper triangular
part of A (for the sake of storage saving). After the program execu-
tion, the two factors can be recovered by simply writing: L = eye(n) +
tril(A,-1) and U = triu(A), where n is the size of A.

Program 5.1. lugauss: Gauss factorization

function A=lugauss(A)
%LUGAUSS LU factorization without pivoting.
% A = LUGAUSS(A) stores an upper triangular matrix in
% the upper triangular part of A and a lower triangular
% matrix in the strictly lower part of A (the diagonal
% elements of L are 1).
[n,m]=size(A);
if n ~= m; error(’A is not a square matrix ’); else
for k = 1:n-1
for i = k+1:n
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A(i,k) = A(i,k)/A(k,k);
if A(k,k) == 0, error(’Null diagonal element ’); end
j = [k+1:n]; A(i,j) = A(i,j) - A(i,k)*A(k,j);

end
end

end
return

Example 5.5 Let us compute the solution of the system encountered in Prob-
lem 5.1 by using the LU factorization, then applying the backward and forward
substitution algorithms. We need to compute the matrix A and the right-hand
side b and execute the following instructions:

A=lugauss(A);
y(1)=b(1);
for i=2:4; y=[y; b(i)-A(i,1:i-1)*y(1:i-1)]; end
x(4)=y(4)/A(4,4);
for i=3: -1:1;x(i)=(y(i)-A(i,i+1:4)*x(i+1:4) ’)/A(i,i);end

The result is p = (8.1172, 5.9893, 5.9893, 5.7779)T . �

Example 5.6 Suppose that we solve Ax = b with

A =







1 1 − ε 3

2 2 2

3 6 4







, b =







5 − ε

6

13







, ε ∈ R, (5.13)

whose solution is x = (1, 1, 1)T (independently of the value of ε).
Let us set ε = 1. The Gauss factorization of A obtained by the Program

5.1 yields

L =




1 0 0
2 1 0
3 3 1



 , U =




1 0 3
0 2 −4
0 0 7



 .

If we set ε = 0, despite the fact that A is non singular, the Gauss factoriza-
tion cannot be carried out since the algorithm (5.11) would involve divisions
by 0. �

The previous example shows that, unfortunately, the Gauss factor-
ization A=LU does not necessarily exist for every nonsingular matrix A.
In this respect, the following result can be proven:

Proposition 5.1 For a given matrix A ∈ Rn×n, its Gauss factor-
ization exists and is unique iff the principal submatrices Ai of A of
order i = 1, . . . , n − 1 (that is those obtained by restricting A to its
first i rows and columns) are nonsingular.

Going back to Example 5.6, we can notice that when ε = 0 the second
principal submatrix A2 of the matrix A is singular.
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We can identify special classes of matrices for which the hypotheses
of Proposition 5.1 are fulfilled. In particular, we mention:

1. symmetric and positive definite matrices. A matrix A ∈ Rn×n is
positive definite if

∀x ∈ Rn with x �= 0, xT Ax > 0;

2. diagonally dominant matrices. A matrix is diagonally dominant by
row if

|aii| ≥
n∑

j=1
j �=i

|aij |, i = 1, . . . , n,

by column if

|aii| ≥
n∑

j=1
j �=i

|aji|, i = 1, . . . , n.

A special case occurs when in the previous inequalities we can replace
≥ by >. Then the matrix A is called strictly diagonally dominant
(by row or by column, respectively).

If A is symmetric and positive definite, it is moreover possible to
construct a special factorization:

A = HHT (5.14)

where H is a lower triangular matrix with positive diagonal elements.
This is the so-called Cholesky factorization and requires about n3/3 op-
erations (half of those required by the Gauss LU factorization). Further,
let us note that, due to the symmetry, only the lower part of A is stored,
and H can be stored in the same area.

The elements of H can be computed by the following algorithm: we
set h11 =

√
a11 and for i = 2, . . . , n,

hij =
1

hjj

(

aij −
j−1∑

k=1

hikhjk

)

, j = 1, . . . , i − 1,

hii =

√√
√√aii −

i−1∑

k=1

h2
ik

(5.15)

Cholesky factorization is available in MATLAB by setting R=chol(A), chol
where R is the triangular upper factor HT .

See Exercises 5.1-5.5.
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5.2 The pivoting technique

We are going to introduce a special technique that allows us to achieve
the LU factorization for every nonsingular matrix, even if the hypotheses
of Proposition 5.1 are not fulfilled.

Let us go back to the case described in Example 5.6 and take ε =
0. Setting A(1) = A after carrying out the first step (k = 1) of the
procedure, the new entries of A are




1 1 3
2 0 -4
3 3 -5



 . (5.16)

Since the pivot a22 is equal to zero, this procedure cannot be continued
further. On the other hand, should we interchange the second and third
rows beforehand, we would obtain the matrix




1 1 3
3 3 -5
2 0 -4





and thus the factorization could be accomplished without involving a
division by 0.

We can state that permutation in a suitable manner of the rows of the
original matrix A would make the entire factorization procedure feasible
even if the hypotheses of Proposition 5.1 are not verified, provided that
det(A) �= 0. Unfortunately, we cannot know a priori which rows should
be permuted. However, this decision can be made at every step k at
which a null diagonal element a

(k)
kk is generated.

Let us return to the matrix in (5.16): since the coefficient in position
(2, 2) is null, let us interchange the third and second row of this matrix
and check whether the new generated coefficient in position (2, 2) is
still null. By executing the second step of the factorization procedure
we find the same matrix that we would have generated by an a priori
permutation of the same two rows of A.

We can therefore perform a row permutation as soon as this becomes
necessary, without carrying out any a priori transformation on A. Since
a row permutation entails changing the pivot element, this technique is
given the name of pivoting by row. The factorization generated in this
way returns the original matrix up to a row permutation. Precisely we
obtain

PA = LU (5.17)

P is a suitable permutation matrix initially set equal to the identity
matrix. If in the course of the procedure the rows r and s of A are
permuted, the same permutation must be performed on the homologous
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rows of P. Correspondingly, we should now solve the following triangular
systems

Ly = Pb, Ux = y. (5.18)

From the second equation of (5.11) we see that not only null pivot
elements a

(k)
kk are troublesome, but so are those which are very small.

Indeed, should a
(k)
kk be near zero, possible roundoff errors affecting the

coefficients a
(k)
kj will be severely amplified.

Example 5.7 Consider the nonsingular matrix

A =




1 1 + 0.5 · 10−15 3
2 2 20
3 6 4



 .

During the factorization procedure by Program 5.1 no null pivot elements are
obtained. Yet, the factors L and U turn out to be quite inaccurate, as one can
realize by computing the residual matrix A − LU (which should be the null
matrix if all operations were carried out in exact arithmetic):

A − LU =




0 0 0
0 0 0
0 0 4



 .

�

It is therefore recommended to carry out the pivoting at every step
of the factorization procedure, by searching among all virtual pivot el-
ements a

(k)
ik with i = k, . . . , n, the one with maximum modulus. The

algorithm (5.11) with pivoting by row carried out at each step takes the
following form:

for k = 1, . . . , n
for i = k + 1, . . . , n

find r̄ such that |a(k)
r̄k | = max

r=k,...,n
|a(k)

rk |,

exchange row k with row r̄,

lik =
a
(k)
ik

a
(k)
kk

,

for j = k + 1, . . . , n

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

(5.19)

The MATLAB program lu that we have mentioned previously computes
the Gauss factorization with pivoting by row. Its complete syntax is
indeed [L,U,P]=lu(A), P being the permutation matrix. When called in
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the shorthand mode [L,U]=lu(A), the matrix L is equal to P*M, where
M is lower triangular and P is the permutation matrix generated by the
pivoting by row. The program lu activates automatically the pivoting
by row when a null (or very small) pivot element is computed.

See Exercises 5.6-5.8.

5.3 How accurate is the LU factorization?

We have already noticed in Example 5.7 that, due to roundoff errors,
the product LU does not reproduce A exactly. Even though the pivoting
strategy damps these errors, yet the result could sometimes be rather
unsatisfactory.

Example 5.8 Consider the linear system Anxn = bn, where An ∈ Rn×n is
the so-called Hilbert matrix whose elements are

aij = 1/(i + j − 1), i, j = 1, . . . , n,

while bn is chosen in such a way that the exact solution is xn = (1, 1, . . . , 1)T .
The matrix An is clearly symmetric and one can prove that it is also positive
definite.

For different values of n we use the MATLAB function lu to get the Gauss
factorization of An with pivoting by row. Then we solve the associated linear
systems (5.18) and denote by x̂n the computed solution. In Figure 5.4 we
report (in logarithmic scale) the relative errors

En = ‖xn − x̂n‖/‖xn‖, (5.20)

having denoted by ‖ · ‖ the Euclidean norm introduced in the Section 1.3.1.
We have En ≥ 10 if n ≥ 13 (that is a relative error on the solution higher
than 1000%!), whereas Rn = LnUn −PnAn is the null matrix (up to machine
accuracy) for any given value of n. �

On the ground of the previous remark, we could speculate by saying
that, when a linear system Ax = b is solved numerically, one is indeed
looking for the exact solution x̂ of a perturbed system

(A + δA)x̂ = b + δb, (5.21)

where δA and δb are respectively a matrix and a vector which depend
on the specific numerical method which is being used. We start by con-
sidering the case where δA = 0 and δb �= 0 which is simpler than the
most general case. Moreover, for simplicity we will also assume that A
is symmetric and positive definite.

By comparing (5.1) and (5.21) we find x − x̂ = −A−1δb, and thus

‖x − x̂‖ = ‖A−1δb‖. (5.22)
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Fig. 5.4. Behavior versus n of En (solid line) and of maxi,j=1,...,n |rij | (dashed
line) in logarithmic scale, for the Hilbert system of Example 5.8. The rij are
the coefficients of the matrix R

In order to find an upper bound for the right-hand side of (5.22), we
proceed as follows. Since A is symmetric and positive definite, the set of
its eigenvectors {vi}n

i=1 provides an orthonormal basis of Rn (see [QSS06,
Chapter 5]). This means that

Avi = λivi, i = 1, . . . , n,

vT
i vj = δij , i, j = 1, . . . , n,

where λi is the eigenvalue of A associated with vi and δij is the Kronecker
symbol. Consequently, a generic vector w ∈ Rn can be written as

w =
n∑

i=1

wivi,

for a suitable (and unique) set of coefficients wi ∈ R. We have

‖Aw‖2 = (Aw)T (Aw)
= [w1(Av1)T + . . . + wn(Avn)T ][w1Av1 + . . . + wnAvn]
= (λ1w1vT

1 + . . . + λnwnvT
n )(λ1w1v1 + . . . + λnwnvn)

=
n∑

i=1

λ2
i w

2
i .

Denote by λmax the largest eigenvalue of A. Since ‖w‖2 =
∑n

i=1 w2
i , we

conclude that

‖Aw‖ ≤ λmax‖w‖ ∀w ∈ Rn. (5.23)

In a similar manner, we obtain

‖A−1w‖ ≤ 1
λmin

‖w‖,
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upon recalling that the eigenvalues of A−1 are the reciprocals of those
of A. This inequality enables us to draw from (5.22) that

‖x − x̂‖
‖x‖ ≤ 1

λmin

‖δb‖
‖x‖ . (5.24)

Using (5.23) once more and recalling that Ax = b, we finally obtain

‖x − x̂‖
‖x‖ ≤ λmax

λmin

‖δb‖
‖b‖ (5.25)

We can conclude that the relative error in the solution depends on
the relative error in the data through the following constant (≥ 1)

K(A) =
λmax

λmin
(5.26)

which is called spectral condition number of the matrix A. K(A) can
be computed in MATLAB using the command cond. Other definitionscond
for the condition number are available for nonsymmetric matrices, see
[QSS06, Chapter 3].

Remark 5.2 The MATLAB command cond(A) allows the computation of
the condition number of any type of matrix A, even those which are not sym-
metric and positive definite. A special MATLAB command condest(A) iscondest
available to compute an approximation of the condition number of a sparse ma-
trix A, and one rcond(A) for its reciprocal, with a substantial saving of floatingrcond
point operations. If the matrix A is ill-conditioned (i.e. K(A) � 1), the compu-
tation of its condition number can be very inaccurate. Consider for instance
the tridiagonal matrices An = tridiag(−1, 2,−1) for different values of n. An

is symmetric and positive definite, its eigenvalues are λj = 2 − 2 cos(jθ), for
j = 1, . . . , n, with θ = π/(n+1), hence K(An) can be computed exactly. In Fig-
ure 5.5 we report the value of the error EK(n) = |K(An)−cond(An)|/K(An).
Note that EK(n) increases when n increases. •

A more involved proof would lead to the following more general result
in the case where δA is an arbitrary symmetric and positive definite
matrix “small enough” to satisfy λmax(δA) < λmin(A):

‖x − x̂‖
‖x‖ ≤ K(A)

1 − λmax(δA)/λmin

(
λmax(δA)

λmax
+

‖δb‖
‖b‖

)
(5.27)

If K(A) is “small”, that is of the order of the unity, A is said to be
well conditioned. In that case, small errors in the data will lead to errors
of the same order of magnitude in the solution. This would not occur in
the case of ill conditioned matrices.



5.3 How accurate is the LU factorization? 139

0 1000 2000 3000 4000 5000
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

Fig. 5.5. Behavior of EK(n) as a function of n (in logarithmic scale)

Example 5.9 For the Hilbert matrix introduced in Example 5.8, K(An) is a
rapidly increasing function of n. One has K(A4) > 15000, while if n > 13 the
condition number is so high that MATLAB warns that the matrix is “close to
singular”. Actually, K(An) grows at an exponential rate: K(An) 	 e3.5n (see,
[Hig02]). This provides an indirect explanation of the bad results obtained in
Example 5.8. �

Inequality (5.25) can be reformulated by the help of the residual r:

r = b − Ax̂. (5.28)

Should x̂ be the exact solution, the residual would be the null vector.
Thus, in general, r can be regarded as an estimator of the error x − x̂.
The extent to which the residual is a good error estimator depends on
the size of the condition number of A. Indeed, observing that δb =
A(x̂ − x) = Ax̂ − b = −r, we deduce from (5.25) that

‖x − x̂‖
‖x‖ ≤ K(A)

‖r‖
‖b‖ (5.29)

Thus if K(A) is “small”, we can be sure that the error is small pro-
vided that the residual is small, whereas this might not be true when
K(A) is “large”.

Example 5.10 The residuals associated with the computed solution of the
linear systems of Example 5.8 are very small (their norms vary between 10−16

and 10−11); however the computed solutions differ remarkably from the exact
solution. �

See Exercises 5.9-5.10.
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5.4 How to solve a tridiagonal system

In many applications (see for instance Chapter 8), we have to solve a
system whose matrix has the form

A =







a1 c1 0

e2 a2
. . .

. . . cn−1

0 en an







.

This matrix is called tridiagonal since the only elements that can be
nonnull belong to the main diagonal and to the first super and sub
diagonals.

If the Gauss LU factorization of A exists, the factors L and U must
be bidiagonals (lower and upper, respectively), more precisely:

L =







1 0
β2 1

. . . . . .
0 βn 1







, U =







α1 c1 0

α2
. . .
. . . cn−1

0 αn







.

The unknown coefficients αi and βi can be determined by requiring that
the equality LU = A holds. This yields the following recursive relations
for the computation of the L and U factors:

α1 = a1, βi =
ei

αi−1
, αi = ai − βici−1, i = 2, . . . , n. (5.30)

Using (5.30), we can easily solve the two bidiagonal systems Ly = b and
Ux = y, to obtain the following formulae:

(Ly = b) y1 = b1, yi = bi − βiyi−1, i = 2, . . . , n, (5.31)

(Ux = y) xn =
yn

αn
, xi = (yi − cixi+1) /αi, i = n − 1, . . . , 1. (5.32)

This is known as the Thomas algorithm and allows the solution of the
original system with a computational cost of the order of n operations.

The MATLAB command spdiags allows the construction of a tridi-spdiags
agonal matrix. For instance, the commands
b=ones (10 ,1); a=2*b; c=3*b;
T=spdiags ([b a c],-1:1,10,10);
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compute the tridiagonal matrix T ∈ R10×10 with elements equal to 2 on
the main diagonal, 1 on the first subdiagonal and 3 on the first super-
diagonal.

Note that T is stored in a sparse mode, according to which the only
elements stored are those different than 0. A matrix A∈ Rn×n is sparse
if it has a number of nonzero entries of the order of n (and not n2). We
call pattern of a sparse matrix the set of its nonzero coefficients.

When a system is solved by invoking the command \, MATLAB is
able to recognize the type of matrix (in particular, whether it has been
generated in a sparse mode) and select the most appropriate solution
algorithm. In particular, when A is a tridiagonal matrix generated in
sparse mode, the Thomas algorithm is the selected algorithm.

5.5 Overdetermined systems

A linear system Ax=b with A∈ Rm×n is called overdetermined if m > n,
underdetermined if m < n.

An overdetermined system generally has no solution unless the right
side b is an element of range(A), where

range(A) = {y ∈ Rm : y = Ax for x ∈ Rn}. (5.33)

In general, for an arbitrary right-hand side b we can search a vector
x∗ ∈ Rn that minimizes the Euclidean norm of the residual, that is,

Φ(x∗) = ‖Ax∗ − b‖2
2 ≤ min

x∈Rn
‖Ax − b‖2

2 = min
x∈Rn

Φ(x). (5.34)

Such a vector x∗ is called least-squares solution of the overdetermined
system Ax=b.

Similarly to what was done in Section 3.4, the solution of (5.34) can
be found by imposing the condition that the gradient of the function Φ
must be equal to zero at x∗. With similar calculations we find that x∗ is
in fact the solution of the square linear system

AT Ax∗ = AT b (5.35)

which is called the system of normal equations. This system is nonsin-
gular if A has full rank (that is rank(A) = min(m,n), where the rank
of A, rank(A), is the maximum order of the nonvanishing determinants
extracted from A). In such a case B = AT A is a symmetric and positive
definite matrix, then the least-squares solution exists and is unique.

To compute it one could use the Cholesky factorization (5.14). How-
ever, due to roundoff errors, the computation of AT A may be affected
by a loss of significant digits, with a consequent loss of the positive def-
initeness of the matrix itself. Instead, it is more convenient to use the



142 5 Linear systems

so-called QR factorization. Any full rank matrix A ∈ Rm×n, with m ≥ n,
admits a unique QR factorization, that is, that is there exist a matrix
Q ∈ Rm×m with the orthogonal property QT Q = I, and an upper trape-
zoidal matrix R ∈ Rm×n with null rows from the n + 1-th one on, such
that

A = QR (5.36)

Then the unique solution of (5.34) is given by

x∗ = R̃−1Q̃T b, (5.37)

where R̃ ∈ Rn×n and Q̃ ∈ Rm×n are the following matrices

Q̃ = Q(1 : m, 1 : n), R̃ = R(1 : n, 1 : n).

Notice that R̃ is not singular.

Example 5.11 Consider an alternative approach to the problem of finding
the regression line ε(σ) = a1σ + a0 (see Section 3.4) of the data of Problem
3.3. Using the data of Table 3.2 and imposing the interpolating conditions we
obtain the overdetermined system Aa = b, where a = (a1, a0)

T and

A =












0 1
0.06 1
0.14 1
0.25 1
0.31 1
0.47 1
0.60 1
0.70 1












, b =












0
0.08
0.14
0.20
0.23
0.25
0.28
0.29












.

In order to compute its least-squares solution we use the following instructions

[Q,R]=qr(A);
Qt=Q(: ,1:2); Rt=R(1:2 ,:);
xstar = Rt \ (Qt ’*b)

xstar =

0.3741

0.0654

These are precisely the same coefficients for the regression line computed in
the Example 3.10. Notice that this procedure is directly implemented in the
command \: in fact, the instruction xstar = A\b produces the same xstar

vector. �
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5.6 What is hidden behind the command �

It is useful to know that the specific algorithm used by MATLAB when
the \ command is invoked depends upon the structure of the matrix A.
To determine the structure of A and select the appropriate algorithm,
MATLAB follows this precedence (in the case of a real A):

1. if A is sparse and banded, then banded solvers are used (like the
Thomas algorithm of Section 5.4). We say that a matrix A ∈ Rm×n

(or in Cm×n) has lower band p if aij = 0 when i > j + p and upper
band q if aij = 0 when j > i + q. The maximum between p and q is
called the bandwidth of the matrix;

2. if A is an upper or lower triangular matrix (or else a permutation
of a triangular matrix), then the system is solved by a backward
substitution algorithm for upper triangular matrices, or by a forward
substitution algorithm for lower triangular matrices. The check for
triangularity is done for full matrices by testing for zero elements
and for sparse matrices by accessing the sparse data structure;

3. if A is symmetric and has real positive diagonal elements (which does
not imply that A is positive definite), then a Cholesky factorization
is attempted (chol). If A is sparse, a preordering algorithm is applied
first;

4. if none of previous criteria are fulfilled, then a general triangular fac-
torization is computed by Gaussian elimination with partial pivoting
(lu);

5. if A is sparse, then the UMFPACK library is used to compute the
solution of the system;

6. if A is not square, proper methods based on the QR factorization
for undetermined systems are used (for the overdetermined case, see
Section 5.5).

The command \ is available also in Octave. For a system with dense
matrix, Octave only uses the LU or the QR factorization. When the
matrix is sparse Octave follows this procedure:

1. if the matrix is upper (with column permutations) or lower (with
row permutations) triangular, perform a sparse forward or backward
substitution;

2. if the matrix is square, symmetric with a positive diagonal, attempt
sparse Cholesky factorization;

3. if the sparse Cholesky factorization failed or the matrix is not sym-
metric with a positive diagonal, factorize using the UMFPACK li-
brary;

4. if the matrix is square, banded and if the band density is “small
enough” continue, else goto 3;
a) if the matrix is tridiagonal and the right-hand side is not sparse

continue, else goto b);
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i. if the matrix is symmetric, with a positive diagonal, attempt
Cholesky factorization;

ii. if the above failed or the matrix is not symmetric with a
positive diagonal use Gaussian elimination with pivoting;

b) if the matrix is symmetric with a positive diagonal, attempt
Cholesky factorization;

c) if the above failed or the matrix is not symmetric with a positive
diagonal use Gaussian elimination with pivoting;

5. if the matrix is not square, or any of the previous solvers flags a
singular or near singular matrix, find a solution in the least-squares
sense.

Let us summarize

1. The LU factorization of A consists in computing a lower triangular
matrix L and an upper triangular matrix U such that A = LU;

2. the LU factorization, provided it exists, is not unique. However, it can
be determined unequivocally by providing an additional condition
such as, e.g., setting the diagonal elements of L equal to 1. This is
called Gauss factorization;

3. the Gauss factorization exists and is unique if and only if the princi-
pal submatrices of A of order 1 to n − 1 are nonsingular (otherwise
at least one pivot element is null);

4. if a null pivot element is generated, a new pivot element can be
obtained by exchanging in a suitable manner two rows (or columns)
of our system. This is the pivoting strategy;

5. the computation of the Gauss factorization requires about 2n3/3 op-
erations, and only an order of n operations in the case of tridiagonal
systems;

6. for symmetric and positive definite matrices we can use the Cholesky
factorization A = HHT , where H is a lower triangular matrix, and
the computational cost is of the order of n3/3 operations;

7. the sensitivity of the result to perturbation of data depends on the
condition number of the system matrix; more precisely, the accuracy
of the computed solution can be low for ill conditioned matrices;

8. the solution of an overdetermined linear system can be intended in
the least-squares sense and can be computed using the QR factor-
ization.

5.7 Iterative methods

An iterative method for the solution of the linear system (5.1) consists
in setting up a sequence of vectors {x(k), k ≥ 0} of Rn that converges to
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the exact solution x, that is

lim
k→∞

x(k) = x, (5.38)

for any given initial vector x(0) ∈ Rn. A possible strategy able to realize
this process can be based on the following recursive definition

x(k+1) = Bx(k) + g, k ≥ 0, (5.39)

where B is a suitable matrix (depending on A) and g is a suitable vector
(depending on A and b), which must satisfy the relation

x = Bx + g. (5.40)

Since x = A−1b this yields g = (I − B)A−1b.
Let e(k) = x − x(k) define the error at step k. By subtracting (5.39)

from (5.40), we obtain

e(k+1) = Be(k).

For this reason B is called the iteration matrix associated with (5.39). If
B is symmetric and positive definite, by (5.23) we have

‖e(k+1)‖ = ‖Be(k)‖ ≤ ρ(B)‖e(k)‖, ∀k ≥ 0.

We have denoted by ρ(B) the spectral radius of B, that is, the max-
imum modulus of eigenvalues of B. By iterating the same inequality
backward, we obtain

‖e(k)‖ ≤ [ρ(B)]k‖e(0)‖, k ≥ 0. (5.41)

Thus e(k) → 0 as k → ∞ for every possible e(0) (and henceforth x(0))
provided that ρ(B) < 1. Actually, this property is also necessary for
convergence.

Should, by any chance, an approximate value of ρ(B) be available,
(5.41) would allow us to deduce the minimum number of iterations kmin

that are needed to damp the initial error by a factor ε. Indeed, kmin

would be the lowest positive integer for which [ρ(B)]kmin ≤ ε.
In conclusion, for a generic matrix the following result holds:

Proposition 5.2 For an iterative method of the form (5.39) whose
iteration matrix satisfies (5.40), convergence for any x(0) holds iff
ρ(B) < 1. Moreover, the smaller ρ(B), the fewer the number of iter-
ations necessary to reduce the initial error by a given factor.
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5.7.1 How to construct an iterative method

A general technique to devise an iterative method is based on a splitting
of the matrix A, A = P− (P−A), being P a suitable nonsingular matrix
(called the preconditioner of A). Then

Px = (P − A)x + b,

has the form (5.40) provided that we set B = P−1(P − A) = I − P−1A
and g = P−1b. Correspondingly, we can define the following iterative
method:

P(x(k+1) − x(k)) = r(k), k ≥ 0,

where

r(k) = b − Ax(k) (5.42)

denotes the residual vector at iteration k. A generalization of this itera-
tive method is the following

P(x(k+1) − x(k)) = αkr(k), k ≥ 0 (5.43)

where αk �= 0 is a parameter that may change at every iteration k and
which, a priori, will be useful to improve the convergence properties of
the sequence {x(k)}.

The method (5.43) requires to find at each step the so-called precon-
ditioned residual z(k) which is the solution of the linear system

Pz(k) = r(k), (5.44)

then the new iterate is defined by x(k+1) = x(k)+αkz(k). For that reason
the matrix P ought to be chosen in such a way that the computational
cost for the solution of (5.44) be quite low (e.g., every P either diagonal
or triangular or tridiagonal will serve the purpose). Let us now consider
some special instance of iterative methods which take the form (5.43).

The Jacobi method

If the diagonal entries of A are nonzero, we can set P = D =
diag(a11, a22, . . . , ann), where D is the diagonal matrix containing the
diagonal entries of A. The Jacobi method corresponds to this choice
with the assumption αk = 1 for all k. Then from (5.43) we obtain

Dx(k+1) = b − (A − D)x(k), k ≥ 0,

or, componentwise,
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x
(k+1)
i =

1
aii



bi −
n∑

j=1,j �=i

aijx
(k)
j



 , i = 1, . . . , n (5.45)

where k ≥ 0 and x(0) = (x(0)
1 , x

(0)
2 , . . . , x

(0)
n )T is the initial vector.

The iteration matrix is therefore

B = D−1(D − A) =







0 −a12/a11 . . . −a1n/a11

−a21/a22 0 −a2n/a22

...
. . .

...

−an1/ann −an2/ann . . . 0







. (5.46)

The following result allows the verification of Proposition 5.2 without
explicitly computing ρ(B):

Proposition 5.3 If the matrix A is strictly diagonally dominant by
row, then the Jacobi method converges.

As a matter of fact, we can verify that ρ(B) < 1, where B is given in
(5.46). To start with, we note that the diagonal elements of A are nonnull
owing to the strict diagonal dominance. Let λ be a generic eigenvalue of
B and x an associated eigenvector. Then

n∑

j=1

bijxj = λxi, i = 1, . . . , n.

Assume for simplicity that maxk=1,...,n |xk| = 1 (this is not restrictive
since an eigenvector is defined up to a multiplicative constant) and let
xi be the component whose modulus is equal to 1. Then

|λ| =

∣∣∣
∣∣∣

n∑

j=1

bijxj

∣∣∣
∣∣∣
=

∣∣∣
∣∣∣

n∑

j=1,j �=i

bijxj

∣∣∣
∣∣∣
≤

n∑

j=1,j �=i

∣∣
∣∣
aij

aii

∣∣
∣∣ ,

having noticed that B has only null diagonal elements. Therefore |λ| < 1
thanks to the assumption made on A.

The Jacobi method is implemented in the Program 5.2 setting in the
input parameter P=’J’. Input parameters are: the system matrix A, the
right hand side b, the initial vector x0 and the maximum number of
iterations allotted, nmax. The iterative procedure is terminated as soon
as the ratio between the Euclidean norm of the current residual and
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that of the initial residual is less than a prescribed tolerance tol (for a
justification of this stopping criterion, see Section 5.10).

Program 5.2. itermeth: general iterative method

function [x,iter]= itermeth(A,b,x0,nmax ,tol ,P)
%ITERMETH General iterative method
% X = ITERMETH(A,B,X0 ,NMAX ,TOL ,P) attempts to solve the
% system of linear equations A*X=B for X. The N-by-N
% coefficient matrix A must be non -singular and the
% right hand side column vector B must have length
% N. If P=’J’ the Jacobi method is used , if P=’G’ the
% Gauss -Seidel method is selected. Otherwise , P is a
% N-by-N matrix that plays the role of a preconditioner
% for the dynamic Richardson method. TOL specifies the
% tolerance of the method. NMAX specifies the maximum
% number of iterations.
[n,n]=size(A);
if nargin == 6

if ischar(P)==1
if P==’J’

L = diag(diag(A));
U = eye(n);
beta = 1;
alpha = 1;

elseif P == ’G’
L = tril(A);
U = eye(n);
beta = 1;
alpha = 1;

end
else

[L,U]=lu(P);
beta = 0;

end
else

L = eye(n);
U = L;
beta = 0;

end
iter = 0;
r = b - A * x0;
r0 = norm(r);
err = norm (r);
x = x0;
while err > tol & iter < nmax

iter = iter + 1;
z = L\r;
z = U\z;
if beta == 0

alpha = z’*r/(z’*A*z);
end
x = x + alpha*z;
r = b - A * x;
err = norm (r) / r0;

end
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The Gauss-Seidel method

When applying the Jacobi method, each component of the new vec-
tor, say x

(k+1)
i , is computed independently of the others. This may sug-

gest that a faster convergence could be (hopefully) achieved if the new
components already available x

(k+1)
j , j = 1, . . . , i − 1, together with the

old ones x
(k)
j , j ≥ i, are used for the calculation of x

(k+1)
i . This would

lead to modifying (5.45) as follows: for k ≥ 0 (still assuming that aii �= 0
for i = 1, . . . , n)

x
(k+1)
i =

1
aii



bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j



 , i = 1, .., n (5.47)

The updating of the components is made in sequential mode, whereas
in the original Jacobi method it is made simultaneously (or in parallel).
The new method, which is called the Gauss-Seidel method, corresponds
to the choice P = D−E and αk = 1, k ≥ 0, in (5.43), where E is a lower
triangular matrix whose non null entries are eij = −aij , i = 2, . . . , n,
j = 1, . . . , i − 1. The corresponding iteration matrix is then

B = (D − E)−1(D − E − A).

A possible generalization is the so-called relaxation method in which
P = 1

ω D − E, where ω �= 0 is the relaxation parameter, and αk = 1,
k ≥ 0 (see Exercise 5.13).

Also for the Gauss-Seidel method there exist special matrices A whose
associated iteration matrices satisfy the assumptions of Proposition 5.2
(those guaranteeing convergence). Among them let us mention:

1. matrices which are strictly diagonally dominant by row;
2. matrices which are symmetric and positive definite.

The Gauss-Seidel method is implemented in Program 5.2 setting the
input parameter P equal to ’G’.

There are no general results stating that the Gauss-Seidel method
converges faster than Jacobi’s. However, in some special instances this
is the case, as stated by the following proposition:

Proposition 5.4 Let A be a tridiagonal n × n nonsingular matrix
whose diagonal elements are all nonnull. Then the Jacobi method
and the Gauss-Seidel method are either both divergent or both con-
vergent. In the latter case, the Gauss-Seidel method is faster than
Jacobi’s; more precisely the spectral radius of its iteration matrix is
equal to the square of that of Jacobi.
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Example 5.12 Let us consider a linear system Ax = b, where b is chosen in
such a way that the solution is the unit vector (1, 1, . . . , 1)T and A is the 10×10
tridiagonal matrix whose diagonal entries are all equal to 3, the entries of the
first lower diagonal are equal to −2 and those of the upper diagonal are all equal
to −1. Both Jacobi and Gauss-Seidel methods converge since the spectral radii
of their iteration matrices are strictly less than 1. More precisely, by starting
from a null initial vector and setting tol =10−12, the Jacobi method converges
in 277 iterations while only 143 iterations are requested from Gauss-Seidel’s.
To get this result we have used the following instructions:

n=10;
A=3* eye(n)-2*diag(ones(n-1,1),1)- diag(ones(n-1,1),-1);
b=A*ones(n,1);
[x,iter]= itermeth(A,b,zeros(n,1) ,400 ,1.e-12,’J’); iter

iter =

277

[x,iter]= itermeth(A,b,zeros(n,1) ,400 ,1.e-12,’G’); iter

iter =

143

�

See Exercises 5.11-5.14.

5.8 Richardson and gradient methods

Let us now consider methods (5.43) for which the acceleration parame-
ters αk are nonnull. We call stationary the case when αk = α (a given
constant) for any k ≥ 0, dynamic the case in which αk may change along
the iterations. In this framework the nonsingular matrix P is still called
a preconditioner of A.

The crucial issue is the way the parameters are chosen. In this respect,
the following result holds (see, e.g., [QV94, Chapter 2], [Axe94]).
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Proposition 5.5 If both P and A are symmetric and positive defi-
nite, the stationary Richardson method converges for every possible
choice of x(0) iff 0 < α < 2/λmax, where λmax(> 0) is the maxi-
mum eigenvalue of P−1A. Moreover, the spectral radius ρ(Bα) of the
iteration matrix Bα = I − αP−1A is minimal when α = αopt, where

αopt =
2

λmin + λmax
(5.48)

λmin being the minimum eigenvalue of P−1A.
Under the same assumption on P and A, the dynamic Richardson
method converges if for instance αk is chosen in the following way:

αk =
(z(k))T r(k)

(z(k))T Az(k)
∀k ≥ 0 (5.49)

where z(k) = P−1r(k) is the preconditioned residual defined in (5.44).
The method (5.43) with this choice of αk is called the preconditioned
gradient method, or simply the gradient method when the precondi-
tioner P is the identity matrix.
For both choices, (5.48) and (5.49), the following convergence esti-
mate holds:

‖e(k)‖A ≤
(

K(P−1A) − 1
K(P−1A) + 1

)k

‖e(0)‖A, k ≥ 0, (5.50)

where ‖v‖A =
√

vT Av, ∀v ∈ Rn, is the so-called energy norm as-
sociated with the matrix A.

The dynamic version should therefore be preferred to the stationary
one since it does not require the knowledge of the extreme eigenvalues
of P−1A. Rather, the parameter αk is determined in terms of quantities
which are already available from the previous iteration.

We can rewrite the preconditioned gradient method more efficiently
through the following algorithm (derivation is left as an exercise): given
x(0), r(0) = b − Ax(0), do
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for k = 0, 1, . . .

Pz(k) = r(k),

αk =
(z(k))T r(k)

(z(k))T Az(k)
,

x(k+1) = x(k) + αkz(k),

r(k+1) = r(k) − αkAz(k)

(5.51)

The same algorithm can be used to implement the stationary Richard-
son method by simply replacing αk with the constant value α.

From (5.50), we deduce that if P−1A is ill conditioned the convergence
rate will be very low even for α = αopt (as in that case ρ(Bαopt

) � 1).
This circumstance can be avoided provided that a convenient choice of
P is made. This is the reason why P is called the preconditioner or the
preconditioning matrix.

If A is a generic matrix it may be a difficult task to find a pre-
conditioner which guarantees an optimal trade-off between damping the
condition number and keeping the computational cost for the solution
of the system (5.44) reasonably low.

The dynamic Richardson method is implemented in Program 5.2
where the input parameter P stands for the preconditioning matrix (when
not prescribed, the program implements the unpreconditioned method
by setting P=I).

Example 5.13 This example, of theoretical interest only, has the purpose
of comparing the convergence behavior of Jacobi, Gauss-Seidel and gradient
methods applied to solve the following (mini) linear system:

2x1 + x2 = 1, x1 + 3x2 = 0 (5.52)

with initial vector x(0) = (1, 1/2)T . Note that the system matrix is symmetric
and positive definite, and that the exact solution is x = (3/5,−1/5)T . We
report in Figure 5.6 the behavior of the relative residual E(k) = ‖r(k)‖/‖r(0)‖
(versus k) for the three methods above. Iterations are stopped at the first
iteration kmin for which E(kmin) ≤ 10−14. The gradient method appears to
converge the fastest. �

Example 5.14 Let us consider a system Ax = b, where A ∈ R100×100 is a
pentadiagonal matrix whose main diagonal has all entries equal to 4, while
the first and third lower and upper diagonals have all entries equal to −1. As
customary, b is chosen in such a way that x = (1, . . . , 1)T is the exact solution
of our system. Let P be the tridiagonal matrix whose diagonal elements are all
equal to 2, while the elements on the lower and upper diagonal are all equal
to −1. Both A and P are symmetric and positive definite. With such a P as
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Fig. 5.6. Convergence history for Jacobi, Gauss-Seidel and gradient methods
applied to system (5.52)

preconditioner, Program 5.2 can be used to implement the dynamic precondi-
tioner Richardson method. We fix tol=1.e-05, nmax=5000, x0=zeros(100,1).
The method converges in 18 iterations. The same Program 5.2, used with
P=’G’, implements the Gauss-Seidel method; this time as many as 2421 itera-
tions are required before satisfying the same stopping criterion. �

5.9 The conjugate gradient method

In iterative schemes like (5.51) the new iterate x(k+1) is obtained by
adding to the old iterate x(k) a vector z(k) that is either the residual or
the preconditioned residual. A natural question is whether it is possi-
ble to find instead of z(k) an optimal sequence of vectors, say p(k), that
ensure the convergence of the method in a minimum number of itera-
tions.

When the matrix A is symmetric and positive definite, the conjugate
gradient method (in short, CG) makes use of a sequence of vectors that
are A-orthogonal (or A-conjugate), that is, ∀k ≥ 1,

(Ap(j))T p(k) = 0, j = 0, 1, . . . , k − 1. (5.53)

Then, setting r(0) = b − Ax(0) and p(0) = r(0), the k-th iteration of the
conjugate gradient method takes the following form:
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for k = 0, 1, . . .

αk =
p(k)T

r(k)

p(k)T Ap(k)
,

x(k+1) = x(k) + αkp(k),

r(k+1) = r(k) − αkAp(k),

βk =
(Ap(k))T r(k+1)

(Ap(k))T p(k)
,

p(k+1) = r(k+1) − βkp(k)

(5.54)

The constant αk guarantees that the error is minimized along the descent
direction p(k), while βk is chosen to ensure that the new direction p(k+1)

is A-conjugate with p(k). For a complete derivation of the method, see
for instance [QSS06, Chapter 4] or [Saa96]. It is possible to prove the
following important result:

Proposition 5.6 Let A be a symmetric and positive definite ma-
trix. The conjugate gradient method for solving (5.1) converges after
at most n steps (in exact arithmetic). Moreover, the error e(k) at the
k-th iteration (with k < n) is orthogonal to p(j), for j = 0, . . . , k−1
and

‖e(k)‖A ≤ 2ck

1 + c2k
‖e(0)‖A, with c =

√
K2(A) − 1

√
K2(A) + 1

. (5.55)

Therefore, in absence of rounding errors, the CG method can be
regarded as a direct method, since it terminates after a finite number
of steps. However, for matrices of large size, it is usually employed as
an iterative scheme, where the iterations are stopped when the error
gets below a fixed tolerance. In this respect, the dependence of the error
reduction factor on the condition number of the matrix is more favorable
than for the gradient method (thanks to the presence of the square root
of K2(A)).

Also for the CG method it is possible to consider a precondi-
tioned version (the PCG method), with a preconditioner P symmet-
ric and positive definite, which reads as follows: given x(0) and setting
r(0) = b − Ax(0), z(0) = P−1r(0) and p(0) = z(0),
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for k = 0, 1, . . .

αk =
p(k)T

r(k)

p(k)T Ap(k)
,

x(k+1) = x(k) + αkp(k),

r(k+1) = r(k) − αkAp(k),

Pz(k+1) = r(k+1),

βk =
(Ap(k))T z(k+1)

(Ap(k))T p(k)
,

p(k+1) = z(k+1) − βkp(k)

(5.56)

The PCG method is implemented in the MATLAB function pcg pcg

Example 5.15 (Factorization vs iterative methods on the Hilbert system)
Let us go back to Example 5.8 on the Hilbert matrix and solve the system
(for different values of n) by the preconditioned gradient (PG) and the pre-
conditioned conjugate gradient (PCG) methods, using as preconditioner the
diagonal matrix D made of the diagonal entries of the Hilbert matrix. We fix
x(0) to be the null vector and iterate untill the relative residual is less than
10−6. In Table 5.2 we report the absolute errors (with respect to the exact
solution) obtained with PG and PCG methods and the errors obtained using
the MATLAB command \. In the latter case the error degenerates when n
gets large. On the other hand, we can appreciate the beneficial effect that a
suitable iterative method such as the PCG scheme can have on the number of
iterations. �

\ PG PCG

n K(An) Error Error Iter. Error Iter.

4 1.55e+04 2.96e-13 1.74-02 995 2.24e-02 3
6 1.50e+07 4.66e-10 8.80e-03 1813 9.50e-03 9
8 1.53e+10 4.38e-07 1.78e-02 1089 2.13e-02 4
10 1.60e+13 3.79e-04 2.52e-03 875 6.98e-03 5
12 1.79e+16 0.24e+00 1.76e-02 1355 1.12e-02 5
14 4.07e+17 0.26e+02 1.46e-02 1379 1.61e-02 5

Table 5.2. Errors obtained using the preconditioned gradient method (PG),
the preconditioned conjugate gradient method (PCG) and the direct method
implemented in the MATLAB command \ for the solution of the Hilbert
system. For the iterative methods we report also the number of iterations
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Remark 5.3 (Non-symmetric systems) The CG method is a special in-
stance of the so-called Krylov (or Lanczos) methods that can be used for the
solution of systems which are not necessarily symmetric. Some of them share
with the CG method the notable property of finite termination, that is, in
exact arithmetic they provide the exact solution in a finite number of itera-
tions also for nonsymmetric systems. A remarkable example is the GMRES
(Generalized Minimum RESidual) method.

Their description is provided, e.g., in [Axe94], [Saa96] and [vdV03]. They
are available in the MATLAB toolbox sparfun under the name of gmres. An-gmres
other method of this family without the property of finite termination, which
however requires a less computational effort than GMRES, is the conjugate
gradient squared (CGS) method and its variant, the Bi-CGStab method, that
is characterized by a more regular convergence than CGS. All these methods
are available in the MATLAB toolbox sparfun. •

Octave 5.1 Octave provides only an implementation of the precondi-
tioned conjuguate gradient (PCG) method through the command pcg
and the preconditioned conjuguate residuals (PCR/Richardson) through
the command pcr. Other iterative methods such as GMRES, CGS, Bi-
CGStab are not yet implemented. �

See Exercises 5.15-5.17.

5.10 When should an iterative method be stopped?

In theory iterative methods require an infinite number of iterations to
converge to the exact solution of a linear system. In practice, this is
neither reasonable nor necessary. Indeed we do not really need to achieve
the exact solution, but rather an approximation x(k) for which we can
guarantee that the error be lower than a desired tolerance ε. On the
other hand, since the error is itself unknown (as it depends on the exact
solution), we need a suitable a posteriori error estimator which predicts
the error starting from quantities that have already been computed.

The first type of estimator is represented by the residual at the k-th
iteration, see (5.42). More precisely, we could stop our iterative method
at the first iteration step kmin for which

‖r(kmin)‖ ≤ ε‖b‖.

Setting x̂ = x(kmin) and r = r(kmin) in (5.29) we would obtain

‖e(kmin)‖
‖x‖ ≤ εK(A),
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which is an estimate for the relative error. We deduce that the control
on the residual is meaningful only for those matrices whose condition
number is reasonably small.

Example 5.16 Let us consider the linear system (5.1) where A=A20 is the
Hilbert matrix of dimension 20 introduced in Example 5.8 and b is constructed
in such a way that the exact solution is x = (1, 1, . . . , 1)T . Since A is sym-
metric and positive definite the Gauss-Seidel method surely converges. We use
Program 5.2 to solve this system taking x0 to be the null initial vector and
setting a tolerance on the residual equal to 10−5. The method converges in
472 iterations; however the relative error is very large and equals 0.26. This
is due to the fact that A is extremely ill conditioned, having K(A) 	 1017. In
Figure 5.7 we show the behavior of the residual (normalized to the initial one)
and that of the error as the number of iterations increases. �
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Fig. 5.7. Behavior of the normalized residual ‖r(k)‖/‖r(0)‖ (dashed line) and
of the error ‖x − x(k)‖ (solid line) for Gauss-Seidel iterations applied to the
system of Example 5.16

An alternative approach is based on the use of a different error es-
timator, namely the increment δ(k) = x(k+1) − x(k). More precisely, we
can stop our iterative method at the first iteration step kmin for which

‖δ(kmin)‖ ≤ ε‖b‖.

In the special case where B is symmetric and positive definite, we have

‖e(k)‖ = ‖e(k+1) − δ(k)‖ ≤ ρ(B)‖e(k)‖ + ‖δ(k)‖.

Since ρ(B) should be less than 1 in order for the method to converge, we
deduce

‖e(k)‖ ≤ 1
1 − ρ(B)

‖δ(k)‖ (5.57)
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From the last inequality we see that the control on the increment is
meaningful only if ρ(B) is much smaller than 1 since in that case the
error will be of the same size as the increment.

In fact, the same conclusion holds even if B is not symmetric and
positive definite (as it occurs for the Jacobi and Gauss-Seidel methods);
however in that case (5.57) is no longer true.

Example 5.17 Let us consider a system whose matrix A∈ R50×50 is tridiago-
nal and symmetric with entries equal to 2.001 on the main diagonal and equal
to 1 on the two other diagonals. As usual, the right hand side b is chosen in
such a way that the unit vector (1, . . . , 1)T is the exact solution. Since A is
tridiagonal with strict diagonal dominance, the Gauss-Seidel method will con-
verge about twice as fast as the Jacobi method (in view of Proposition 5.4).
Let us use Program 5.2 to solve our system in which we replace the stopping
criterion based on the residual by that based on the increment. Using a null
initial vector and setting the tolerance tol= 10−5, after 1604 iterations the
program returns a solution whose error 0.0029 is quite large. The reason is
that the spectral radius of the iteration matrix is equal to 0.9952, which is
very close to 1. Should the diagonal entries be set equal to 3, after only 17
iterations we would have obtained an error equal to 10−5. In fact in that case
the spectral radius of the iteration matrix would be equal to 0.428. �

Let us summarize

1. An iterative method for the solution of a linear system starts from
a given initial vector x(0) and builds up a sequence of vectors x(k)

which we require to converge to the exact solution as k → ∞;
2. an iterative method converges for every possible choice of the initial

vector x(0) iff the spectral radius of the iteration matrix is strictly
less than 1;

3. classical iterative methods are those of Jacobi and Gauss-Seidel. A
sufficient condition for convergence is that the system matrix be
strictly diagonally dominant by row (or symmetric and definite pos-
itive in the case of Gauss-Seidel);

4. in the Richardson method convergence is accelerated thanks to the
introduction of a parameter and (possibly) a convenient precondi-
tioning matrix;

5. with the conjugate gradient method the exact solution of a symmet-
ric positive definite system can be computed in a finite number of
iterations (in exact arithmetic). This method can be generalized to
the nonsymmetric case;

6. there are two possible stopping criteria for an iterative method:
controlling the residual or controlling the increment. The former is
meaningful if the system matrix is well conditioned, the latter if the
spectral radius of the iteration matrix is not close to 1.
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5.11 To wrap-up: direct or iterative?

In this section we compare direct and iterative methods on several simple
test cases. For a linear system of small size, it doesn’t really matter since
every method will make the job. Instead, for large scale systems, the
choice will depend primarily on the matrix properties (such as symmetry,
positive definiteness, sparsity pattern, condition number), but also on the
kind of available computer resources (memory access, fast processors,
etc.). We must admit that in our tests the comparison will not be fully
loyal. One direct solver that we will in fact use is the MATLAB built-in
function \ which is compiled and optimized, whereas the iterative solvers
are not. Our computations were carried out on a processor Intel Pentium
M 1.60 GHz with 2048KB cache and 1GByte RAM.

A sparse, banded linear system with small bandwidth

The first test case concerns linear systems arising from the 5-point
finite difference discretizations of the Poisson problem on the square
(−1, 1)2 (see Section 8.1.3). Uniform grids of step h = 1/N in both spa-
tial coordinates are considered, for several values of N . The correspond-
ing finite difference matrices, with N2 rows and columns, are generated
using Program 8.2. On Figure 5.8, left, we plot the matrix structure
corresponding to the value N2 = 256: it is sparse, banded, with only
5 nonnull entries per row. Any such matrix is symmetric and positive
definite but ill conditioned: its spectral condition number behaves like
a constant time h−2 for all values of h. To solve the associated linear
systems we will use the Cholesky factorization, the preconditioned con-
jugate gradient method (PCG) with preconditioner given by the incom-
plete Cholesky factorization (available through the command cholinc)
and the MATLAB command \ that, in the current case, is in fact an
ad hoc algorithm for pentadiagonal symmetric matrices. The stopping
criterion for the PCG method is that the norm of the relative residual be
lower than 10−14; the CPU time is also inclusive of the time necessary
to construct the preconditioner.

In Figure 5.8, right, we compare the CPU time for the three differ-
ent methods versus the matrix size. The direct method hidden by the
command \ is by far the cheapest: in fact, it is based on a variant of
the Gaussian elimination that is particularly effective for sparse banded
matrices with small bandwith.

The PCG method, in its turn, is more convenient than the Cholesky
factorization, provided a suitable preconditioner is used. For instance,
if N2 = 4096 the PCG method requires 19 iterations, whereas the CG
method (with no preconditioning) would require 325 iterations, resulting
in fact less convenient than the simple Cholesky factorization.
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Fig. 5.8. The structure of the matrix for the first test case (left), and the
CPU time needed for the solution of the associated linear system (right): the
solid line refers to the command \, the dashed-dotted line to the use of the
Cholesky factorization, the dashed line to the PCG iterative method

The case of a wide band

We still consider the same Poisson equation, however this time the
discretization is based on spectral methods with quadrature formulae
of Gauss-Lobatto-Legendre (see, for instance, [CHQZ06]). Even though
the number of grid-nodes is the same as for the finite differences, with
spectral methods the derivatives are approximated using many more
nodes (in fact, at any given node the x-derivatives are approximated
using all the nodes sitting on the same row, whereas all those on the same
column are used to compute y-derivatives). The corresponding matrices
are still sparse and structured, however the number of non-null entries
is definitely higher. This is clear from the example in Figure 5.9, left,
where the spectral matrix has still N2 = 256 rows and columns, but
the number of nonzero entries is 7936 instead of the 1216 of the finite
difference matrix of Figure 5.8.

The CPU time reported in Figure 5.9, right, shows that for this ma-
trix the PCG algorithm, using the incomplete Cholesky factorization as
preconditioner, performs much better than the other two methods.

A first conclusion to draw is that for sparse symmetric and pos-
itive definite matrices with large bandwidth, PCG is more efficient
than the direct method implemented in MATLAB (which does not use
the Cholesky factorization since the matrix is stored with the format
sparse). We point out that a suitable preconditioner is however crucial
in order for the PCG method to become competitive.

Finally, we shoud keep in mind that direct methods require more
memory storage than iterative methods, a difficulty that could become
insurmontable in large scale applications.
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Fig. 5.9. The structure of the matrix used in the second test case (left), and
the CPU time needed to solve the associated linear system (right): the solid
line refers to the command \, the dashed-dotted line to the use of the Cholesky
factorization, the dashed line to the PCG iterative method

Systems with full matrices

With the MATLAB command gallery we can get access to a col- gallery
lection of matrices featuring different structure and properties. In partic-
ular for our third test case, by the command A=gallery(’riemann’,n)
we select the so-called Riemannn matrix of dimension n, that is a n× n
full, non symmetric matrix whose determinant behaves like det(A) =
O(n!n−1/2+ε) for all ε > 0. The associated linear system is solved by
the iterative GMRES method (see section 5.3) and the iterations will be
stopped as soon as the norm of the relative residual is less than 10−14.
Alternatively, we will use the MATLAB command \ that, in the case
at hand, implements the LU factorization.

Octave 5.2 The gallery command is not available in Octave. However
a few are available such as the Hilbert, Hankel or Vandermonde matrices,
see the commands hankel, hilb, invhilb sylvester_matrix, toeplitz and
vander. Moreover if you have access to MATLAB, you can save a matrix

For several values of n we will solve the corresponding linear system

puted accordingly. The GMRES iterations are obtained without pre-
conditioning and with a special diagonal preconditioner. The latter is
obtained by the command luinc(A,1.e0) based on the so-called in- luinc
complete LU factorization, a matrix that is generated from an algebraic
manipulation of the entries of the L and U factors of A, see [QSS06]. In
Figure 5.10, right, we report the CPU time for n ranging between 100
and 1000. On the left we report the condition number of A, cond(A). As
we can see, the direct factorization method is far less expensive than the
un-preconditioned GMRES method, however it becomes more expensive
for large n when a suitable preconditioner is used.

whose exact solution is the unitary vector: the right-hand side is com-
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Fig. 5.10. On the left, the condition number of the Riemann matrix A. On
the right, the comparison between the CPU times for the solution of the linear
system: the solid line refers to the command \,the dashed line refers to the
GMRES iterative method with no preconditioning. The values in abscissa refer
to the matrix dimension

defined in the gallery using the save command and then load it in Octave
using load. Here is an example:
In MATLAB:

riemann10=gallery(’riemann ’ ,10);
save ’riemann10 ’ riemann10

In Octave:
load ’riemann10 ’ riemann10

Note that only Octave version 2.9 can load Mat-files properly from
MATLAB version 7. �

Systems with sparse, nonsymmetric matrices

We consider linear systems that are generated by the finite element
discretization of diffusion-transport-reaction boundary-value problems in
two dimensions. These problems are similar to the one reported in (8.17)
which refers to a one-dimensional case. Its finite element approximation,
that is illustrated at the end of Section 8.17 in the one-dimensional case,
makes use of piecewise linear polynomials to represent the solution in
each triangular element of a grid that partitions the region where the
boundary-value problem is set up. The unknowns of the associated alge-
braic system is the set of values attained by the solution at the vertices
of the internal triangles. We refer to, e.g., [QV94] for a description of
this method, as well as for the determination of the entries of the ma-
trix. Let us simply point out that this matrix is sparse, but not banded
(its sparsity pattern depends on the way the vertices are numbered) and
nonsymmetric, due to the presence of the transport term. The lack of
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Fig. 5.11. The structure of one of the matrices used for the fourth test case
(left), and the CPU time needed for the solution of the associated linear system
(right): the solid line refers to the command \,the dashed line to the Bi-CGStab
iterative method

symmetry, however, is not evident from the representation of its struc-
ture in Figure 5.11, left.

The smaller the diameter h of the triangles (i.e. the lengths of their
longest edge), the higher the matrix size. We have compared the CPU
time necessary to solve the linear system corresponding to the case
h = 0.1, 0.05, 0.025, 0.0125 and 0.0063. We have used the MATLAB

command \, that in this case use the UMFPACK library and the (MAT-

LAB implementation of the) iterative method Bi-CGStab which can be
regarded as a generalization to nonsymmetric systems of the conjugate
gradient method. In abscissae we have reported the number of unknowns
that range from 64 (for h = 0.1) and 101124 (for h = 0.0063). Also in this
case, the direct method is less expensive than the iterative one. Should
we use as preconditioner for the Bi-CGStab method the incomplete LU
factorization, the number of iterations would reduce, however the CPU
time would be higher than the one for the unpreconditioned case.

In conclusion

The comparisons that we have carried out, although very limited,
outlines a few relevant aspects. In general, direct methods (especially
if implemented in their most sophisticated versions, such as in the \
MATLAB command) are more efficient than iterative methods when the
latter are used without efficient preconditioners. However, they are more
sensitive to the matrix ill conditioning (see for instance the Example
5.15) and may require a substantial amount of storage.

A further aspect that is worth mentioning is that direct methods
require the knowledge of the matrix entries, whereas iterative methods
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don’t. In fact, what is nedeed at each iteration is the computation of
matrix-vector products for given vectors. This aspect makes iterative
methods especially interesting for those problems in which the matrix is
not explicitely generated.

5.12 What we haven’t told you

Several efficient variants of the Gauss LU factorization are available for
sparse systems of large dimension. Among the most advanced, we quote
the so-called multifrontal method which makes use of a suitable reorder-
ing of the system unknowns in order to keep the triangular factors L and
U as sparse as possible. The multifrontal method is implemented in the
software package UMFPACK. More on this issue is available on [GL96]
and [DD99].

Concerning iterative methods, both the conjugate gradient method
and the GMRES method are special instances of Krylov methods. For a
description of Krylov methods see e.g. [Axe94], [Saa96] and [vdV03].

As it was pointed out, iterative methods converge slowly if the system
matrix is severely ill conditioned. Several preconditioning strategies have
been developed (see, e.g., [dV89] and [vdV03]). Some of them are purely
algebraic, that is, they are based on incomplete (or inexact) factoriza-
tions of the given system matrix, and are implemented in the MATLAB

functions luinc or the already quoted cholinc. Other strategies are de-luinc
cholinc veloped ad hoc by exploiting the physical origin and the structure of the

problem which has generated the linear system at hand.
Finally it is worthwhile to mention the multigrid methods which are

based on the sequential use of a hierarchy of systems of variable dimen-
sions that “resemble” the original one, allowing a clever error reduction
strategy (see, e.g., [Hac85], [Wes04] and [Hac94]).

Octave 5.3 In Octave, cholinc is not yet available. Only luinc has
been implemented. �

5.13 Exercises

Exercise 5.1 For a given matrix A ∈ Rn×n find the number of operations (as
a function of n) that are needed for computing its determinant by the recursive
formula (1.8).

Exercise 5.2 Use the MATLAB command magic(n), n=3, 4, . . . , 500, to con-magic
struct the magic squares of order n, that is, those matrices having entries for
which the sum of the elements by rows, columns or diagonals are identical.
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Then compute their determinants by the command det introduced in Section
1.3 and the CPU time that is needed for this computation using the cputime

command. Finally, approximate this data by the least-squares method and
deduce that the CPU time scales approximately as n3.

Exercise 5.3 Find for which values of ε the matrix defined in (5.13) does not
satisfy the hypotheses of Proposition 5.1. For which value of ε does this matrix
become singular? Is it possible to compute the LU factorization in that case?

Exercise 5.4 Verify that the number of operations necessary to compute the
LU factorization of a square matrix A of dimension n is approximately 2n3/3.

Exercise 5.5 Show that the LU factorization of A can be used for computing
the inverse matrix A−1. (Observe that the j-th column vector of A−1 satisfies
the linear system Ayj = ej , ej being the vector whose components are all null
except the j-th component which is 1.)

Exercise 5.6 Compute the factors L and U of the matrix of Example 5.7 and
verify that the LU factorization is inaccurate.

Exercise 5.7 Explain why partial pivoting by row is not convenient for sym-
metric matrices.

Exercise 5.8 Consider the linear system Ax = b with

A =




2 −2 0

ε − 2 2 0
0 −1 3



 ,

and b such that the corresponding solution is x = (1, 1, 1)T and ε is a positive
real number. Compute the Gauss factorization of A and note that l32 → ∞
when ε → 0. In spite of that, verify that the computed solution is accurate.

Exercise 5.9 Consider the linear systems Aixi = bi, i = 1, 2, 3, with

A1 =






15 6 8 11
6 6 5 3
8 5 7 6
11 3 6 9




 , Ai = (A1)

i, i = 2, 3,

and bi such that the solution is always xi = (1, 1, 1, 1)T . Solve the system by
the Gauss factorization using partial pivoting by row, and comment on the
obtained results.

Exercise 5.10 Show that for a symmetric and positive definite matrix A we
have K(A2) = (K(A))2.
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Exercise 5.11 Analyse the convergence properties of the Jacobi and Gauss-
Seidel methods for the solution of a linear system whose matrix is

A =




α 0 1
0 α 0
1 0 α



 , α ∈ R.

Exercise 5.12 Provide a sufficient condition on β so that both the Jacobi
and Gauss-Seidel methods converge when applied for the solution of a system
whose matrix is

A =

[
−10 2
β 5

]
. (5.58)

Exercise 5.13 For the solution of the linear system Ax = b with A ∈ Rn×n,
consider the relaxation method : given x(0) = (x

(0)
1 , . . . , x

(0)
n )T , for k = 0, 1, . . .

compute

r
(k)
i = bi −

i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j , x

(k+1)
i = (1 − ω)x

(k)
i + ω

r
(k)
i

aii
,

for i = 1, . . . , n, where ω is a real parameter. Find the explicit form of the
corresponding iterative matrix, then verify that the condition 0 < ω < 2 is
necessary for the convergence of this method. Note that if ω = 1 this method
reduces to the Gauss-Seidel method. If 1 < ω < 2 the method is known as
SOR (successive over-relaxation).

Exercise 5.14 Consider the linear system Ax = b with A =

[
3 2
2 6

]
and say

whether the Gauss-Seidel method converges, without explicitly computing the
spectral radius of the iteration matrix.

Exercise 5.15 Compute the first iteration of the Jacobi, Gauss-Seidel and
preconditioned gradient method (with preconditioner given by the diagonal of
A) for the solution of system (5.52) with x(0) = (1, 1/2)T .

Exercise 5.16 Prove (5.48), then show that

ρ(Bαopt) =
λmax − λmin

λmax + λmin
=

K(P−1A) − 1

K(P−1A) + 1
. (5.59)

Exercise 5.17 Let us consider a set of n = 20 factories which produce 20
different goods. With reference to the Leontief model introduced in Problem
5.3, suppose that the matrix C has the following integer entries: cij = i+ j−1
for i, j = 1, . . . , n, while bi = i, for i = 1, . . . , 20. Is it possible to solve this
system by the gradient method? Propose a method based on the gradient
method noting that, if A is nonsingular, the matrix AT A is symmetric and
positive definite.
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Eigenvalues and eigenvectors

Given a square matrix A ∈ Cn×n, the eigenvalue problem consists in
finding a scalar λ (real or complex) and a nonnull vector x such that

Ax = λx (6.1)

Any such λ is called an eigenvalue of A, while x is the associated eigen-
vector. The latter is not unique; indeed all its multiples αx with α �= 0,
real or complex, are also eigenvectors associated with λ. Should x be
known, λ can be recovered by using the Rayleigh quotient xHAx/‖x‖2,
xH being the vector whose i-th component is equal to x̄i.

A number λ is an eigenvalue of A if it is a root of the following
polynomial of degree n (called the characteristic polynomial of A):

pA(λ) = det(A − λI).

Consequently, a square matrix of dimension n has exactly n eigen-
values (real or complex), not necessarily distinct. Also, if A has real
entries, pA(λ) has real coefficients, and therefore complex eigenvalues of
A necessarily occur in complex conjugate pairs.

A matrix A∈ Cn×n is diagonalizable if there exists a nonsingular
matrix U∈ Cn×n such that

U−1AU = Λ = diag(λ1, . . . , λn). (6.2)

The columns of U are the eigenvectors of A and form a basis for Cn.
If A∈ Cm×n, there exist two unitary matrices U∈ Cm×m and V∈

Cn×n such that

U∗AV = Σ = diag(σ1, . . . , σp) ∈ Rm×n, (6.3)

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. (A matrix U is called
unitary if AHA = AAH = I.)

Formula (6.3) is called singular value decomposition (SVD) of A and
the numbers σi (or σi(A)) are called singular values of A.
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Problem 6.1 (Elastic springs) Consider the system of Figure 6.1
made of two pointwise bodies P1 and P2 of mass m, connected by two
springs and free to move along the line joining P1 and P2. Let xi(t) de-
note the position occupied by Pi at time t for i = 1, 2. Then from the
second law of dynamics we obtain

m
..
x1= K(x2 − x1) − Kx1, m

..
x2= K(x1 − x2),

where K is the elasticity coefficient of both springs. We are interested
in free oscillations whose corresponding solution is xi = ai sin(ωt + φ),
i = 1, 2, with ai �= 0. In this case we find that

−ma1ω
2 = K(a2 − a1) − Ka1, −ma2ω

2 = K(a1 − a2). (6.4)

This is a 2 × 2 homogeneous system which has a non-trivial solution
a1, a2 iff the number λ = mω2/K is an eigenvalue of the matrix

A =
[

2 −1
−1 1

]
.

With this definition of λ, (6.4) becomes Aa = λa. Since pA(λ) = (2 −
λ)(1 − λ) − 1, the two eigenvalues are λ1 � 2.618 and λ2 � 0.382 and
correspond to the frequencies of oscillation ωi =

√
Kλi/m which are

admitted by our system. �

x

x1(t)

x2(t)

P1 P2

Fig. 6.1. The system of two pointwise bodies of equal mass connected by
springs

Problem 6.2 (Population dynamics) Several mathematical models
have been proposed in order to predict the evolution of certain species
(either human or animal). The simplest population model, which was
introduced in 1920 by Lotka and formalized by Leslie 20 years later, is
based on the rate of mortality and fecundity for different age intervals,
say i = 0, . . . , n. Let x

(t)
i denote the number of females (males don’t
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matter in this context) whose age at time t falls in the i-th interval. The
values of x

(0)
i are given. Moreover, let si denote the rate of survival of

the females belonging to the i-th interval, and mi the average number
of females generated from a female in the i-th interval.

The model by Lotka and Leslie is described by the set of equations

x
(t+1)
i+1 = x

(t)
i si i = 0, . . . , n − 1,

x
(t+1)
0 =

n∑

i=0

x
(t)
i mi.

The n first equations describe the population development, the last its
reproduction. In matrix form we have

x(t+1) = Ax(t),

where x(t) = (x(t)
0 , . . . , x

(t)
n )T and A is the Leslie matrix :

A =






m0 m1 . . . . . . mn

s0 0 . . . . . . 0

0 s1
. . .

...
...

. . . . . . . . .
...

0 0 0 sn−1 0






.

We will see in Section 6.1 that the dynamics of this population is de-
termined by the eigenvalue of maximum modulus of A, say λ1, whereas
the distribution of the individuals in the different age intervals (normal-
ized with respect to the whole population), is obtained as the limit of
x(t) for t → ∞ and satisfies Ax = λ1x. This problem will be solved in
Exercise 6.2. �

Problem 6.3 (Interurban viability) For n given cities, let A be the
matrix whose entry aij is equal to 1 if the i-th city is directly connected to
the j-th city, and 0 otherwise. One can show that the components of the
eigenvector x (of unit length) associated with the maximum eigenvalue
provides the accessibility rate (which is a measure of the ease of access)
to the various cities. In Example 6.2 we will compute this vector for
the case of the railways system of the eleven most important cities in
Lombardy (see Figure 6.2). �

Problem 6.4 (Image compression) The problem of image compres-
sion can be faced using the singular-value decomposition of a matrix.
Indeed, a black and white image can be represented by a real m×n rec-
tangular matrix A where m and n represent the number of pixels that



170 6 Eigenvalues and eigenvectors

9
8

7
6

5
41

3
2 10 11

1 Milan
2 Pavia
3 Lodi
4 Brescia
5 Bergamo
6 Como
7 Varese
8 Lecco
9 Sondrio
10 Cremona
11 Mantua

Fig. 6.2. A schematic representation of the railway network between the main
cities of Lombardy

are present in the horizontal and vertical direction, respectively, and the
coefficient aij represents the intensity of gray of the (i, j)-th pixel. Con-
sidering the singular value decomposition (6.3) of A, and denoting by ui

and vi the i-th column vectors of U and V, respectively, we find

A = σ1u1vT
1 + σ2u2vT

2 + . . . + σpupvT
p . (6.5)

We can approximate A by the matrix Ak which is obtained by truncating
the sum (6.5) to the first k terms, for 1 ≤ k ≤ p. If the singular values σi

are in decreasing order, σ1 ≥ σ2 ≥ . . . ≥ σp, disregarding the latter p−k
should not significantly affect the quality of the image. To transfer the
“compressed” image Ak (for instance from one computer to another) we
simply need to transfer the vectors ui, vi and the singular values σi for
i = 1, . . . , k and not all the entries of A. In Example 6.9 we will see this
technique in action. �

In the special case where A is either diagonal or triangular, its eigen-
values are nothing but its diagonal entries. However, if A is a general
matrix and its dimension n is sufficiently large, seeking the zeros of pA(λ)
is not a convenient approach. Ad hoc algorithms are better suited, and
one of them is described in the next section.

6.1 The power method

As noticed in Problems 6.2 and 6.3, the knowledge of the whole spectrum
of A (that is the the set of all its eigenvalues) is not always required.
Often, only the extremal eigenvalues matter, that is, those having largest
and smallest modulus.
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Suppose that A is a square matrix of dimension n, with real entries,
and assume that its eigenvalues are ordered as follows

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|. (6.6)

Note, in particular, that |λ1| is distinct from the other moduli of the
eigenvalues of A. Let us indicate by x1 the eigenvector (with unit length)
associated with λ1. If the eigenvectors of A are linearly independent, λ1

and x1 can be computed by the following iterative procedure, commonly
known as the power method:

given an arbitrary initial vector x(0) ∈ Cn and setting y(0) =
x(0)/‖x(0)‖, compute

for k = 1, 2, . . .

x(k) = Ay(k−1), y(k) =
x(k)

‖x(k)‖ , λ(k) = (y(k))HAy(k)
(6.7)

Note that, by recursion, one finds y(k) = β(k)Aky(0) where β(k) =
(Πk

i=1‖x(i)‖)−1 for k ≥ 1. The presence of the powers of A justifies the
name given to this method.

In the next section we will see that this method generates a sequence
of vectors {y(k)} with unit length which, as k → ∞, align themselves
along the direction of the eigenvector x1. The error ‖λ(k) − λ1‖ is pro-
portional to the ratio |λ2/λ1|k in the case of a generic matrix, and to
|λ2/λ1|2k when the matrix A is hermitian. Consequently one obtains
that λ(k) → λ1 for k → ∞.

An implementation of the power method is given in the Program 6.1.
The iterative procedure is stopped at the first iteration k when

|λ(k) − λ(k−1)| < ε|λ(k)|,

where ε is a desired tolerance. The input parameters are the real matrix
A, the initial vector x0, the tolerance tol for the stopping test and the
maximum admissible number of iterations nmax. Output parameters are
the maximum modulus eigenvalue lambda, the associated eigenvector
and the actual number of iterations which have been carried out.

Program 6.1. eigpower: power method

function [lambda ,x,iter]= eigpower(A,tol ,nmax ,x0)
%EIGPOWER Numerically evaluate one eigenvalue of a real
% matrix.
% LAMBDA=EIGPOWER(A) computes with the power method the
% eigenvalue of A of maximum modulus from an initial
% guess which by default is an all one vector.
% LAMBDA=EIGPOWER(A,TOL ,NMAX ,X0) uses an absolute error
% tolerance TOL (the default is 1.e-6) and a maximum
% number of iterations NMAX (the default is 100),
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% starting from the initial vector X0.
% [LAMBDA ,V,ITER]= EIGPOWER(A,TOL ,NMAX ,X0) also returns
% the eigenvector V such that A*V=LAMBDA*V and the
% iteration number at which V was computed.
[n,m] = size(A);
if n ~= m, error(’Only for square matrices ’); end
if nargin == 1

tol = 1.e-06;
x0 = ones(n,1);
nmax = 100;

end
x0 = x0/norm(x0);
pro = A*x0;
lambda = x0 ’*pro;
err = tol*abs(lambda) + 1;
iter = 0;
while err >tol*abs(lambda )&abs(lambda )~=0& iter <=nmax

x = pro; x = x/norm(x);
pro = A*x; lambdanew = x’*pro;
err = abs(lambdanew - lambda );
lambda = lambdanew;
iter = iter + 1;

end
return

Example 6.1 Consider the family of matrices

A(α) =







α 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1





 , α ∈ R.

We want to approximate the eigenvalue with largest modulus by the power
method. When α = 30, the eigenvalues of the matrix are given by λ1 = 39.396,
λ2 = 17.8208, λ3 = −9.5022 and λ4 = 0.2854 (only the first four significant
digits are reported). The method approximates λ1 in 22 iterations with a
tolerance ε = 10−10 and x(0) = 1. However, if α = −30 we need as many
as 708 iterations. The different behavior can be explained by noting that in
the latter case one has λ1 = −30.643, λ2 = 29.7359, λ3 = −11.6806 and
λ4 = 0.5878. Thus, |λ2|/|λ1| = 0.9704, close to unity. �

Example 6.2 (Interurban viability) We denote by A∈ R11×11 the matrix
associated to the railways system of Figure 6.2, i.e. the matrix whose entry
aij is equal to one if there is a direct connection between the i-th and the
j-th cities, zero otherwise. Setting tol=1.e-12 and x0=ones(11,1), after 26
iterations Program 6.1 returns the following approximation of the eigenvector
(of unitary length) associated to the eigenvalue of maximum modulus of A:

x’ =

Columns 1 through 8

0.5271 0.1590 0.2165 0.3580 0.4690 0.3861 0.1590 0.2837

Columns 9 through 11

0.0856 0.1906 0.0575
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The most reachable city is Milan, which is the one associated to the first
component of x (the highest in modulus), the least one is Mantua, which is
associated to the last component of x, that of minimum modulus. Of course
our analysis accounts solely for the existence of connections among the cities
but not on how frequent these connections are. �

6.1.1 Convergence analysis

Since we have assumed that the eigenvectors x1, . . . ,xn of A are linearly
independent, these eigenvectors form a basis for Cn. Thus the vectors
x(0) and y(0) can be written as

x(0) =
n∑

i=1

αixi, y(0) = β(0)
n∑

i=1

αixi, with β(0) = 1/‖x(0)‖ and αi ∈ C.

At the first step the power method gives

x(1) = Ay(0) = β(0)A
n∑

i=1

αixi = β(0)
n∑

i=1

αiλixi

and, similarly,

y(1) = β(1)

n∑

i=1

αiλixi, β(1) =
1

‖x(0)‖ ‖x(1)‖ .

At a given step k we will have

y(k) = β(k)

n∑

i=1

αiλ
k
i xi, β(k) =

1
‖x(0)‖ · · · ‖x(k)‖

and therefore

y(k) = λk
1β(k)

(

α1x1 +
n∑

i=2

αi
λk

i

λk
1

xi

)

.

Since |λi/λ1| < 1 for i = 2, . . . , n, the vector y(k) tends to align along the
same direction as the eigenvector x1 when k tends to +∞, provided α1 �=
0. The condition on α1, which is impossible to ensure in practice since
x1 is unknown, is in fact not restrictive. Actually, the effect of roundoff
errors is the appearance of a non-null component along the direction of
x1, even though this was not the case for the initial vector x(0). (We can
say that this is one of the rare circumstances where roundoff errors help
us!)
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Example 6.3 Consider the matrix A(α) of Example 6.1, with α = 16. The
eigenvector x1 of unit length associated with λ1 is (1/2, 1/2, 1/2, 1/2)T . Let us
choose (on purpose!) the initial vector (2,−2, 3,−3)T , which is orthogonal to
x1. We report in Figure 6.3 the quantity cos(θ(k)) = (y(k))T x1/(‖y(k)‖ ‖x1‖).
We can see that after about 30 iterations of the power method the cosine
tends to −1 and the angle tends to π, while the sequence λ(k) approaches
λ1 = 34. The power method has therefore generated, thanks to the roundoff
errors, a sequence of vectors y(k) whose component along the direction of x1

is increasingly relevant. �
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Fig. 6.3. The value of (y(k))T x1/(‖y(k)‖ ‖x1‖) (left) and that of λ(k) (right),
for k = 1, . . . , 44

It is possible to prove that the power method converges even if λ1

is a multiple root of pA(λ). On the contrary it does not converge when
there exist two distinct eigenvalues both with maximum modulus. In
that case the sequence λ(k) does not converge to any limit, rather it
oscillates between two values.

See Exercises 6.1-6.3.

6.2 Generalization of the power method

A first possible generalization of the power method consists in applying
it to the inverse of the matrix A (provided A is non singular!). Since the
eigenvalues of A−1 are the reciprocals of those of A, the power method
in that case allows us to approximate the eigenvalue of A of minimum
modulus. In this way we obtain the so-called inverse power method :

given an initial vector x(0), we set y(0) = x(0)/‖x(0)‖ and compute

for k = 1, 2, . . .

x(k) = A−1y(k−1), y(k) =
x(k)

‖x(k)‖ , µ(k) = (y(k))HA−1y(k)
(6.8)
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If A admits linearly independent eigenvectors, and if also the eigen-
value λn of minimum modulus is distinct from the others, then

lim
k→∞

µ(k) = 1/λn,

i.e. (µ(k))−1 tends to λn for k → ∞.
At each step k we have to solve a linear system of the form Ax(k) =

y(k−1). It is therefore convenient to generate the LU factorization of A
(or its Cholesky factorization if A is symmetric and positive definite)
once for all, and then solve two triangular systems at each iteration.

It is worth noticing that the lu command (in MATLAB and in
Octave) can generate the LU decomposition even for complex matrices.

Example 6.4 When applied to the matrix A(30) of Example 6.1, after 7 iter-
ations the inverse power method yields the value 3.5037. Thus the eigenvalue of
A(30) of minimum modulus will be approximately equal to 1/3.5037 	 0.2854.
�

A further generalization of the power method stems from the follow-
ing consideration. Let λµ denote the (unknown) eigenvalue of A nearest
to a given number (real or complex) µ. In order to approximate λµ, we
can at first approximate the minimum length eigenvalue, say λmin(Aµ),
of the shifted matrix Aµ = A−µI, and then set λµ = λmin(Aµ)+µ. We
can therefore apply the inverse power method to Aµ to obtain an ap-
proximation of λmin(Aµ). This technique is known as the power method
with shift, and the number µ is called the shift.

In Program 6.2 we implement the inverse power method with shift.
The inverse power method is recovered by simply setting µ = 0. The
first four input parameters are the same as in Program 6.1, while mu is
the shift. Output parameters are the eigenvalue λµ of A, its associated
eigenvector x and the actual number of iterations that have been carried
out.

Program 6.2. invshift: inverse power method with shift

function [lambda ,x,iter]= invshift(A,mu ,tol ,nmax ,x0)
%INVSHIFT Numerically evaluate one eigenvalue of a
% matrix.
% LAMBDA=INVSHIFT(A) compute the eigenvalue of A of
% minimum modulus with the inverse power method.
% LAMBDA=INVSHIFT(A,MU) computes the eigenvalue of A
% closest to the given number (real or complex) MU.
% LAMBDA=INVSHIFT(A,MU,TOL ,NMAX ,X0) uses an absolute
% error tolerance TOL (the default is 1.e-6) and a
% maximum number of iterations NMAX (the default is
% 100), starting from the initial vector X0.
% [LAMBDA ,V,ITER]= INVSHIFT(A,MU ,TOL ,NMAX ,X0) also
% returns the eigenvector V such that A*V=LAMBDA*V and
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% the iteration number at which V was computed.
[n,m]=size(A);
if n ~= m, error(’Only for square matrices ’); end
if nargin == 1

x0 = rand(n,1); nmax = 100; tol = 1.e-06; mu = 0;
elseif nargin == 2

x0 = rand(n,1); nmax = 100; tol = 1.e-06;
end
[L,U]=lu(A-mu*eye(n));
if norm(x0) == 0

x0 = rand(n,1);
end
x0=x0/norm(x0);
z0=L\x0;
pro=U\z0;
lambda=x0 ’*pro;
err=tol*abs(lambda )+1; iter =0;
while err >tol*abs(lambda )&abs(lambda )~=0& iter <=nmax

x = pro; x = x/norm(x);
z=L\x; pro=U\z;
lambdanew = x’*pro;
err = abs(lambdanew - lambda );
lambda = lambdanew;
iter = iter + 1;

end
lambda = 1/ lambda + mu;
return

Example 6.5 For the matrix A(30) of Example 6.1 we seek the eigen-
value closest to the value 17. For that we use Program 6.2 with mu=17, tol
=10−10 and x0=[1;1;1;1]. After 8 iterations the Program returns the value
lambda=17.82079703055703. A less accurate knowledge of the shift would in-
volve more iterations. For instance, if we set mu=13 the program returns the
value 17.82079703064106 after 11 iterations. �

The value of the shift can be modified during the iterations, by setting
µ = λ(k). This yields a faster convergence; however the computational
cost grows substantially since now at each iteration the matrix Aµ does
change.

See Exercises 6.4-6.6.

6.3 How to compute the shift

In order to successfully apply the power method with shift we need to
locate (more or less accurately) the eigenvalues of A in the complex
plane. To this end let us introduce the following definition.

Let A be a square matrix of dimension n. The Gershgorin circles C
(r)
i

and C
(c)
i associated with its i-th row and i-th column are respectively

defined as
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C
(r)
i = {z ∈ C : |z − aii| ≤

n∑

j=1,j �=i

|aij |},

C
(c)
i = {z ∈ C : |z − aii| ≤

n∑

j=1,j �=i

|aji|}.

C
(r)
i is called the i-th row circle and C

(c)
i the i-th column circle.

By the Program 6.3 we can visualize in two different windows (that
are opened by the command figure) the row circles and the column figure
circles of a matrix. The command hold on allows the overlapping of

hold on/offsubsequent pictures (in our case, the different circles that have been
computed in sequential mode). This command can be neutralized by the
command hold off. The commands title, xlabel and ylabel have

title
xlabel
ylabelthe scope of visualizing the title and the axis labels in the figure.

The command patch was used in order to color the circles, while the patch
command axis sets scaling for the x- and y-axes on the current plot. axis

Program 6.3. gershcircles: Gershgorin circles

function gershcircles(A)
%GERSHCIRCLES plots the Gershgorin circles
% GERSHCIRCLES(A) draws the Gershgorin circles for
% the square matrix A and its transpose.
n = size(A);
if n(1) ~= n(2)

error(’Only square matrices ’);
else

n = n(1); circler = zeros(n ,201); circlec = circler;
end
center = diag(A);
radiic = sum(abs(A-diag(center )));
radiir = sum(abs(A’-diag(center )));
one = ones (1 ,201); cosisin = exp(i*[0:pi /100:2* pi]);
figure (1); title(’Row circles ’);
xlabel(’Re’); ylabel(’Im’);
figure (2); title(’Column circles ’);
xlabel(’Re’); ylabel(’Im’);
for k = 1:n

circlec(k,:) = center(k)*one + radiic(k)* cosisin;
circler(k,:) = center(k)*one + radiir(k)* cosisin;
figure (1);
patch(real(circler(k,:)), imag(circler(k,:)),’red’);
hold on
plot(real(circler(k,:)), imag(circler(k,:)),’k-’ ,...

real(center(k)),imag(center(k)),’kx’);
figure (2);
patch(real(circlec(k,:)), imag(circlec(k,:)),’green ’);
hold on
plot(real(circlec(k,:)), imag(circlec(k,:)),’k-’ ,...

real(center(k)),imag(center(k)),’kx’);
end
for k = 1:n

figure (1);
plot(real(circler(k,:)), imag(circler(k,:)),’k-’ ,...
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real(center(k)),imag(center(k)),’kx’);
figure (2);
plot(real(circlec(k,:)), imag(circlec(k,:)),’k-’ ,...

real(center(k)),imag(center(k)),’kx’);
end
figure (1); axis image; hold off;
figure (2); axis image; hold off
return

Example 6.6 In Figure 6.4 we have plotted the Gershgorin circles associated
with the matrix

A =







30 1 2 3
4 15 −4 −2
−1 0 3 5
−3 5 0 −1





 .

The centers of the circles have been identified by a cross. �
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Fig. 6.4. Row circles (left) and column circles (right) for the matrix of Ex-
ample 6.6

As previously anticipated, Gershgorin circles may be used to locate the
eigenvalues of a matrix, as stated in the following proposition.

Proposition 6.1 All eigenvalues of a given matrix A∈ Cn×n belong
to the region of the complex plane which is the intersection of the
two regions formed respectively by the union of the row circles and
the union of the column circles.
Moreover, should m row circles (or column circles), with 1 ≤ m ≤ n,
be disconnected from the union of the remaining n−m circles, then
their union contains exactly m eigenvalues.

There is no guarantee that a circle should contain eigenvalues, unless
it is isolated from the others. The previous result can be applied in order
to obtain a preliminary guess of the shift, as we show in the following
example.
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Example 6.7 From the analysis of the row circles of the matrix A(30) of
Example 6.1 we deduce that the real parts of the eigenvalues of A lie between
−32 and 48. Thus we can use Program 6.2 to compute the maximum modulus
eigenvalue by setting the value of the shift µ equal to 48. The convergence
is achieved in 16 iterations, whereas 24 iterations would be required using
the power method with the same initial guess x0=[1;1;1;1] and the same
tolerance tol=1.e-10. �

Let us summarize

1. The power method is an iterative procedure to compute the eigen-
value of maximum modulus of a given matrix;

2. the inverse power method allows the computation of the eigenvalue of
minimum modulus; it requires the factorization of the given matrix;

3. the power method with shift allows the computation of the eigenvalue
closest to a given number; its effective application requires some a-
priori knowledge of the location of the eigenvalues of the matrix,
which can be achieved inspecting the Gershgorin circles.

See Exercises 6.7-6.8.

6.4 Computation of all the eigenvalues

Two square matrices A and B having the same dimension are called
similar if there exists a non singular matrix P such that

P−1AP = B.

Similar matrices share the same eigenvalues. Indeed, if λ is an eigenvalue
of A and x �= 0 is an associated eigenvector, we have

BP−1x = P−1Ax = λP−1x,

that is, λ is also an eigenvalue of B and its associated eigenvector is now
y = P−1x.

The methods which allow a simultaneous approximation of all the
eigenvalues of a matrix are generally based on the idea of transforming
A (after an infinite number of steps) into a similar matrix with diagonal
or triangular form, whose eigenvalues are therefore given by the entries
lying on its main diagonal.

Among these methods we mention the QR method which is imple-
mented in MATLAB in the function eig. More precisely, the command eig
D=eig(A) returns a vector D containing all the eigenvalues of A. However,
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by setting [X,D]=eig(A), we obtain two matrices: the diagonal matrix
D formed by the eigenvalues of A, and a matrix X whose column vectors
are the eigenvectors of A. Thus, A*X=X*D.

The method of QR iterations is called in this way since it makes a re-
peated use of the QR factorization introduced in Section 5.5 to compute
the eigenvalues of the matrix A. Here we present the QR method only
for real matrices and in its most elementary form (whose convergence is
not always guaranteed). For a more complete description of this method
we refer to [QSS06, Chapter 5], whereas for its extension to the complex
case we refer to [GL96, Section 5.2.10] and [Dem97, Section 4.2.1].

The idea consists in building a sequence of matrices A(k), each of
them similar to A. After setting A(0) = A, at each k = 1, 2, . . ., using the
QR factorization we compute the matrices Q(k+1) and R(k+1) such that

Q(k+1)R(k+1) = A(k),

whence we set A(k+1) = R(k+1)Q(k+1).
The matrices A(k), k = 0, 1, 2, . . . are all similar, thus they share

with A their eigenvalues (see Exercise 6.9). Moreover, if A ∈ Rn×n and
its eigenvalues satisfy |λ1| > |λ2| > . . . > |λn|, then

lim
k→+∞

A(k) = T =







λ1 t12 . . . t1n

0
. . . . . .

...

... λn−1 tn−1,n

0 . . . 0 λn







. (6.9)

The rate of decay to zero of the lower triangular coefficients, a
(k)
i,j for

i > j, when k tends to infinity, depends on maxi |λi+1/λi|. In practice,
the iterations are stopped when maxi>j |a(k)

i,j | ≤ ε, ε > 0 being a given
tolerance.

Under the further assumption that A is symmetric, the sequence
{A(k)} converges to a diagonal matrix.

Program 6.4 implements the QR iteration method. The input para-
meters are the matrix A, the tolerance tol and the maximum number of
iterations allowed, nmax.

Program 6.4. qrbasic: method of QR iterations

function D=qrbasic(A,tol ,nmax)
%QRBASIC computes the eigenvalues of a matrix A.
% D=QRBASIC(A,TOL ,NMAX) computes by QR iterations all
% the eigenvalues of A within a tolerance TOL and a
% maximum number of iteration NMAX. The convergence of
% this method is not always guaranteed.
[n,m]=size(A);
if n ~= m, error(’The matrix must be squared ’); end
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T = A; niter = 0; test = norm(tril(A,-1),inf);
while niter <= nmax & test >= tol

[Q,R]=qr(T); T = R*Q;
niter = niter + 1;
test = norm(tril(T,-1),inf);

end
if niter > nmax

warning ([’The method does not converge ’
’in the maximum number of iterations ’]);

else
fprintf ([’The method converges in ’ ...

’%i iterations\n’],niter );
end
D = diag(T);
return

Example 6.8 Let us consider the matrix A(30) of Example 6.1 and call Pro-
gram 6.4 to compute its eigenvalues. We obtain

D=qrbasic(A(30) ,1.e-14 ,100)

The method converges in 56 iterations

D =

39.3960

17.8208

-9.5022

0.2854

These eigenvalues are in good agreement with those reported in Example 6.1,
that were obtained with the command eig. The convergence rate decreases
when there are eigenvalues whose moduli are almost the same. This is the
case of the matrix corresponding to α = −30: two eigenvalues have about the
same modulus and the method requires as many as 1149 iterations to converge
within the same tolerance

D=qrbasic(A(-30),1.e-14 ,2000)

The method converges in 1149 iterations

D =

-30.6430

29.7359

-11.6806

0.5878

�

A special case is the one of large sparse matrices. In this case, if A is
stored in a sparse mode the command eigs(A,k) allows the computation eigs
of the k first eigenvalues of modulus larger than A.

Finally, let us mention how to compute the singular values of a rec-
tangular matrix. Two MATLAB functions are available: svd and svds. svd

svdsThe former computes all the singular values of a matrix, the latter only
the first largest k. The integer k must be fixed as input (by default, k=6).
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Fig. 6.5. The original image (left) and those obtained using the first 20 (cen-
ter) and 40 (right) singular values, respectively

We refer to [ABB+99] for a thorough description of the algorithm that
is actually used.

Example 6.9 (Image compression) With the MATLAB command A=

imread(’pout.tif’) we upload a black and white image which is present in
the MATLAB toolbox Image Processing. The variable A is a matrix of 291 by
240 eight bit integer numbers (uint8) that represent the intensity of gray.imread

The command imshow(A) produces the image on the left hand of Figureimshow
6.5. To compute the SVD of A we must first convert A in a double precision
matrix (the floating-point numbers usually used by MATLAB), through the
command A=double(A). Now, we set [U,S,V]=svd(A). In the middle of Figure
6.5 we report the image that is obtained by using only the first 20 singular
values of S, through the commands

X=U(: ,1:20)*S(1:20 ,1:20)*(V(: ,1:20)) ’; imshow(uint8(X));

The image on the right-hand side of Figure 6.5 is obtained using the first
40 singular values. It requires the storage of 21280 coefficients (two matrices
of 291×40 and 240×40 plus the first 40 singular values) instead of 69840 that
would be required to store the whole original image. �

Octave 6.1 svds and eigs for computing the singular values and the
eigenvalues of sparse matrices are not yet available in Octave. �

Let us summarize

1. The method of QR iterations allows the approximation of all the
eigenvalues of a given matrix A;

2. in its basic version, this method is guaranteed to converge if A has
real coefficients and distinct eigenvalues;

3. its asymptotic rate of convergence depends on the largest modulus
of the ratio of two successive eigenvalues.
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See Exercises 6.9-6.10.

6.5 What we haven’t told you

We have not analyzed the issue of the condition number of the eigen-
value problem, which measures the sensitivity of the eigenvalues to the
variation of the entries of the matrix. The interested reader is advised
to refer to, for instance, [Wil65], [GL96] and [QSS06, Chapter 5].

Let us just remark that the eigenvalue computation is not necessarily
an ill conditioned problem when the condition number of the matrix is
large. An instance of this is provided by the Hilbert matrix (see Example
5.9): although its condition number is extremely large, the eigenvalue
computation of the Hilbert matrix is well conditioned thanks to the fact
that the matrix is symmetric and positive definite.

Besides the QR method, for computing simultaneously all the eigen-
values we can use the Jacobi method which transforms a symmetric ma-
trix into a diagonal matrix, by eliminating, step-by-step, through sim-
ilarity transformations, every off-diagonal element. This method does
not terminate in a finite number of steps since, while a new off-diagonal
element is set to zero, those previously treated can reassume non-zero
values.

Other methods are the Lanczos method and the method which uses
the so-called Sturm sequences. For a survey of all these methods see
[Saa92].

The MATLAB library ARPACK (available through the command
arpackc) can be used to compute the eigenvalues of large matrices. The arpackc
MATLAB function eigs is a command that uses this library.

Let us mention that an appropriate use of the deflation technique
(which consists in a successive elimination of the eigenvalues already
computed) allows the acceleration of the convergence of the previous
methods and hence the reduction of their computational cost.

6.6 Exercises

Exercise 6.1 Upon setting the tolerance equal to ε = 10−10, use the power
method to approximate the maximum modulus eigenvalue for the following
matrices, starting from the initial vector x(0) = (1, 2, 3)T :

A1 =




1 2 0
1 0 0
0 1 0



 , A2 =




0.1 3.8 0
1 0 0
0 1 0



 , A3 =




0 −1 0
1 0 0
0 1 0



 .

Then comment on the convergence behavior of the method in the three differ-
ent cases.
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Exercise 6.2 (Population dynamics) The features of a population of fishes
are described by the following Leslie matrix introduced in Problem 6.2:

Age interval (months) x(0) mi si

0-3 6 0 0.2
3-6 12 0.5 0.4
6-9 8 0.8 0.8
9-12 4 0.3 –

Find the vector x of the normalized distribution of this population for different
age intervals, according to what we have seen in Problem 6.2.

Exercise 6.3 Prove that the power method does not converge for matrices
featuring an eigenvalue of maximum modulus λ1 = γeiϑ and another eigen-
value λ2 = γe−iϑ, where i =

√
−1 and γ, ϑ ∈ R.

Exercise 6.4 Show that the eigenvalues of A−1 are the reciprocals of those
of A.

Exercise 6.5 Verify that the power method is unable to compute the maxi-
mum modulus eigenvalue of the following matrix, and explain why:

A =







1
3

2
3

2 3
1 0 −1 2
0 0 − 5

3
− 2

3

0 0 1 0





 .

Exercise 6.6 By using the power method with shift, compute the largest
positive eigenvalue and the largest negative eigenvalue of

A =











3 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 3











.

A is the so-called Wilkinson matrix and can be generated by the command
wilkinson(7).wilkinson

Exercise 6.7 By using the Gershgorin circles, provide an estimate of the
maximum number of the complex eigenvalues of the following matrices:

A =







2 − 1
2

0 − 1
2

0 4 0 2
− 1

2
0 6 1

2

0 0 1 9





 , B =







−5 0 1
2

1
2

1
2

2 1
2

0
0 1 0 1

2

0 1
4

1
2

3





 .
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Exercise 6.8 Use the result of Proposition 6.1 to find a suitable shift for the
computation of the maximum modulus eigenvalue of

A =







5 0 1 −1
0 2 0 − 1

2

0 1 −1 1
−1 −1 0 0





 .

Then compare the number of iterations as well the computational cost of the
power method both with and without shift by setting the tolerance equal to
10−14.

Exercise 6.9 Show that the matrices A(k) generated by the QR iteration
method are all similar to the matrix A.

Exercise 6.10 Use the command eig to compute all the eigenvalues of the
two matrices given in Exercise 6.7. Then check how accurate are the conclu-
sions drawn on the basis of Proposition 6.1.
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Ordinary differential equations

A differential equation is an equation involving one or more derivatives
of an unknown function. If all derivatives are taken with respect to a
single independent variable we call it an ordinary differential equation,
whereas we have a partial differential equation when partial derivatives
are present.

The differential equation (ordinary or partial) has order p if p is the
maximum order of differentiation that is present. The next chapter will
be devoted to the study of partial differential equations, whereas in the
present chapter we will deal with ordinary differential equations of first
order.

Ordinary differential equations describe the evolution of many phe-
nomena in various fields, as we can see from the following four examples.

Problem 7.1 (Thermodynamics) Consider a body having internal
temperature T which is set in an environment with constant temperature
Te. Assume that its mass m is concentrated in a single point. Then the
heat transfer between the body and the external environment can be
described by the Stefan-Boltzmann law

v(t) = εγS(T 4(t) − T 4
e ),

where t is the time variable, ε the Boltzmann constant (equal to 5.6 ·
10−8J/m2K4s where J stands for Joule, K for Kelvin and, obviously, m
for meter, s for second), γ is the emissivity constant of the body, S the
area of its surface and v is the rate of the heat transfer. The rate of
variation of the energy E(t) = mCT (t) (where C denotes the specific
heat of the material constituting the body) equals, in absolute value,
the rate v. Consequently, setting T (0) = T0, the computation of T (t)
requires the solution of the ordinary differential equation

dT

dt
= −v(t)

mC
. (7.1)
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See Exercise 7.15. �

Problem 7.2 (Population dynamics) Consider a population of bac-
teria in a confined environment in which no more than B elements can
coexist. Assume that, at the initial time, the number of individuals is
equal to y0 � B and the growth rate of the bacteria is a positive con-
stant C. In this case the rate of change of the population is proportional
to the number of existing bacteria, under the restriction that the total
number cannot exceed B. This is expressed by the differential equation

dy

dt
= Cy

(
1 − y

B

)
, (7.2)

whose solution y = y(t) denotes the number of bacteria at time t.
Assuming that two populations y1 and y2 be in competition, instead

of (7.2) we would have

dy1

dt
= C1y1 (1 − b1y1 − d2y2) ,

dy2

dt
= −C2y2 (1 − b2y2 − d1y1) ,

(7.3)

where C1 and C2 represent the growth rates of the two populations.
The coefficients d1 and d2 govern the type of interaction between the
two populations, while b1 and b2 are related to the available quantity
of nutrients. The above equations (7.3) are called the Lotka-Volterra
equations and form the basis of various applications. For their numerical
solution, see Example 7.7. �

Problem 7.3 (Baseball trajectory) We want to simulate the trajec-
tory of a ball from the pitcher to the catcher. By adopting the reference
frame of Figure 7.1, the equations describing the ball motion are (see
[Ada90], [Gio97])

dx
dt

= v,
dv
dt

= F,

where x(t) = (x(t), y(t), z(t))T designates the position of the ball at time
t, v = (vx, vy, vz)T its velocity, while F is the vector whose components
are

Fx = −F (v)vvx + Bω(vz sinφ − vy cos φ),

Fy = −F (v)vvy + Bωvx cos φ,

Fz = −g − F (v)vvz − Bωvx sin φ.

(7.4)
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Fig. 7.1. The reference frame adopted for Problem 7.3

v is the modulus of v, B = 4.1 10−4, φ is the pitching angle, ω is the
modulus of the angular velocity impressed to the ball from the pitcher.
F (v) is a friction coefficient, normally defined as

F (v) = 0.0039 +
0.0058

1 + e(v−35)/5
.

The solution of this system of ordinary differential equations is post-
poned to Exercise 7.20. �

Problem 7.4 (Electrical circuits) Consider the electrical circuit of
Figure 7.2. We want to compute the function v(t) representing the po-
tential drop at the ends of the capacitor C starting from the initial time
t = 0 at which the switch I has been turned off. Assume that the induc-
tance L can be expressed as an explicit function of the current intensity
i, that is L = L(i). The Ohm law yields

e − d(i1L(i1))
dt

= i1R1 + v,

where R1 is a resistance. By assuming the current fluxes to be directed
as indicated in Figure 7.2, upon differentiating with respect to t both
sides of the Kirchoff law i1 = i2 + i3 and noticing that i3 = Cdv/dt and
i2 = v/R2, we find the further equation

di1
dt

= C
d2v

dt2
+

1
R2

dv

dt
.
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We have therefore found a system of two differential equations whose
solution allows the description of the time variation of the two unknowns
i1 and v. The second equation has order two. For its solution see Example
7.8. �

R1

R2

L

I

i1

i3

i2

e C

Fig. 7.2. The electrical circuit of Problem 7.4

7.1 The Cauchy problem

We confine ourselves to first order differential equations, as an equation
of order p > 1 can always be reduced to a system of p equations of order
1. The case of first order systems will be addressed in Section 7.8.

An ordinary differential equation in general admits an infinite num-
ber of solutions. In order to fix one of them we must impose a further
condition which prescribes the value taken by this solution at a given
point of the integration interval. For instance, the equation (7.2) admits
the family of solutions y(t) = Bψ(t)/(1 + ψ(t)) with ψ(t) = eCt+K , K
being an arbitrary constant. If we impose the condition y(0) = 1, we pick
up the unique solution corresponding to the value K = ln[1/(B − 1)].

We will therefore consider the solution of the so-called Cauchy prob-
lem which takes the following form:

find y : I → R such that
{

y′(t) = f(t, y(t)) ∀t ∈ I,

y(t0) = y0,
(7.5)

where I is an interval of R, f : I × R → R is a given function and y′

denotes the derivative of y with respect to t. Finally, t0 is a point of I
and y0 a given value which is called the initial data.

In the following proposition we report a classical result of Analysis.
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Proposition 7.1 Assume that the function f(t, y) is

1. continuous with respect to both arguments;
2. Lipschitz-continuous with respect to its second argument, that is,

there exists a positive constant L such that

|f(t, y1) − f(t, y2)| ≤ L|y1 − y2|, ∀t ∈ I, ∀y1, y2 ∈ R.

Then the solution y = y(t) of the Cauchy problem (7.5) exists, is
unique and belongs to C1(I).

Unfortunately, explicit solutions are available only for very special
types of ordinary differential equations. In some other cases, the solution
is available only in implicit form. This is, for instance, the case with the
equation y′ = (y− t)/(y + t) whose solution satisfies the implicit relation

1
2

ln(t2 + y2) + arctg
y

t
= C,

where C is an arbitrary constant. In some other circumstances the solu-
tion is not even representable in implicit form, as in the case of the equa-
tion y′ = e−t2 whose general solution can only be expressed through a
series expansion. For all these reasons, we seek numerical methods capa-
ble of approximating the solution of every family of ordinary differential
equations for which solutions do exist.

The common strategy of all these methods consists of subdividing
the integration interval I = [t0, T ], with T < +∞, into Nh intervals
of length h = (T − t0)/Nh; h is called the discretization step. Then, at
each node tn (0 ≤ n ≤ Nh − 1) we seek the unknown value un which
approximates yn = y(tn). The set of values {u0 = y0, u1, . . . , uNh

} is our
numerical solution.

7.2 Euler methods

A classical method, the forward Euler method, generates the numerical
solution as follows

un+1 = un + hfn, n = 0, . . . , Nh − 1 (7.6)

where we have used the shorthand notation fn = f(tn, un). This method
is obtained by considering the differential equation (7.5) at every node
tn, n = 1, . . . , Nh and replacing the exact derivative y′(tn) by means of
the incremental ratio (4.4).

In a similar way, using this time the incremental ratio (4.8) to ap-
proximate y′(tn+1), we obtain the backward Euler method
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un+1 = un + hfn+1, n = 0, . . . , Nh − 1 (7.7)

Both methods provide an instance of a one-step method since for
computing the numerical solution un+1 at the node tn+1 we only need
the information related to the previous node tn. More precisely, in the
forward Euler method un+1 depends exclusively on the value un previ-
ously computed, whereas in the backward Euler method it depends also
on itself through the value fn+1. For this reason the first method is called
the explicit Euler method and the second the implicit Euler method.

For instance, the discretization of (7.2) by the forward Euler method
requires at every step the simple computation of

un+1 = un + hCun (1 − un/B) ,

whereas using the backward Euler method we must solve the nonlinear
equation

un+1 = un + hCun+1 (1 − un+1/B) .

Thus, implicit methods are more costly than explicit methods, since at
every time-level tn+1 we must solve a nonlinear problem to compute
un+1. However, we will see that implicit methods enjoy better stability
properties than explicit ones.

The forward Euler method is implemented in the Program 7.1; the
integration interval is tspan = [t0,tfinal], odefun is a string which
contains the function f(t, y(t)) which depends on the variables t and y,
or an inline function whose first two arguments stand for t and y.

Program 7.1. feuler: forward Euler method

function [t,y]= feuler(odefun ,tspan ,y,Nh ,varargin)
%FEULER Solve differential equations using the forward
% Euler method.
% [T,Y]= FEULER(ODEFUN ,TSPAN ,Y0,NH) with TSPAN =[T0,TF]
% integrates the system of differential equations
% y’=f(t,y) from time T0 to TF with initial condition
% Y0 using the forward Euler method on an equispaced
% grid of NH intervals.Function ODEFUN(T,Y) must return
% a column vector corresponding to f(t,y). Each row in
% the solution array Y corresponds to a time returned
% in the column vector T.
% [T,Y] = FEULER(ODEFUN ,TSPAN ,Y0 ,NH ,P1 ,P2 ,...) passes
% the additional parameters P1,P2 ,... to the function
% ODEFUN as ODEFUN(T,Y,P1,P2...).
h=(tspan (2)-tspan (1))/ Nh;
tt=linspace(tspan(1),tspan (2),Nh+1);
for t = tt(1:end -1)

y=[y;y(end ,:)+h*feval(odefun ,t,y(end ,:), varargin {:})];
end
t=tt;
return



7.2 Euler methods 193

The backward Euler method is implemented in the Program 7.2. Note
that we have used the function fsolve for the solution of the non-linear
problem at each step. As initial data for fsolve we use the last computed
value of the numerical solution.

Program 7.2. beuler: backward Euler method

function [t,u]= beuler(odefun ,tspan ,y0 ,Nh ,varargin)
%BEULER Solve differential equations using the backward
% Euler method.
% [T,Y]= BEULER(ODEFUN ,TSPAN ,Y0,NH) with TSPAN =[T0,TF]
% integrates the system of differential equations
% y’=f(t,y) from time T0 to TF with initial condition
% Y0 using the backward Euler method on an equispaced
% grid of NH intervals.Function ODEFUN(T,Y) must return
% a column vector corresponding to f(t,y). Each row in
% the solution array Y corresponds to a time returned
% in the column vector T.
% [T,Y] = BEULER(ODEFUN ,TSPAN ,Y0 ,NH ,P1 ,P2 ,...) passes
% the additional parameters P1,P2 ,... to the function
% ODEFUN as ODEFUN(T,Y,P1,P2...).
tt=linspace(tspan(1),tspan (2),Nh+1);
y=y0(:); % always create a vector column
u=y.’;
global glob_h glob_t glob_y glob_odefun;
glob_h=(tspan (2)-tspan (1))/ Nh;
glob_y=y;
glob_odefun=odefun;
glob_t=tt(2);

if ( ~exist(’OCTAVE_VERSION ’) )
options=optimset;
options.Display=’off’;
options.TolFun =1.e-06;
options.MaxFunEvals =10000;
end

for glob_t=tt(2: end)
if ( exist(’OCTAVE_VERSION ’) )

[w info] = fsolve(’beulerfun ’,glob_y );
else

w = fsolve(@(w) beulerfun(w),glob_y ,options );
end

u = [u; w.’];
glob_y = w;

end
t=tt;
clear glob_h glob_t glob_y glob_odefun;
end

function [z]= beulerfun(w)
global glob_h glob_t glob_y glob_odefun;
z=w-glob_y -glob_h*feval(glob_odefun ,glob_t ,w);

end



194 7 Ordinary differential equations

7.2.1 Convergence analysis

A numerical method is convergent if

∀n = 0, . . . , Nh, |yn − un| ≤ C(h) (7.8)

where C(h) is infinitesimal with respect to h when h tends to zero. If
C(h) = O(hp) for some p > 0, then we say that the method converges
with order p. In order to verify that the forward Euler method converges,
we write the error as follows:

en = yn − un = (yn − u∗
n) + (u∗

n − un), (7.9)

where

u∗
n = yn−1 + hf(tn−1, yn−1)

denotes the numerical solution at time tn which we would obtain starting
from the exact solution at time tn−1; see Figure 7.3. The term yn − u∗

n

in (7.9) represents the error produced by a single step of the forward
Euler method, whereas the term u∗

n−un represents the propagation from
tn−1 to tn of the error accumulated at the previous time-level tn−1. The
method converges provided both terms tend to zero as h → 0. Assuming
that the second order derivative of y exists and is continuous, thanks to
(4.6) we find

yn − u∗
n =

h2

2
y′′(ξn), for a suitable ξn ∈ (tn−1, tn). (7.10)

The quantity

τn(h) = (yn − u∗
n)/h

is named local truncation error of the forward Euler method. More in
general, the local truncation error of a given method represents the error
that would be generated by forcing the exact solution to satisfy that
specific numerical scheme, whereas the global truncation error is defined
as

τ(h) = max
n=0,...,Nh

|τn(h)|.

In view of (7.10), the truncation error for the forward Euler method
takes the following form

τ(h) = Mh/2, (7.11)

where M = maxt∈[t0,T ] |y′′(t)|.
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yn−1

un−1

u∗
n

un

tntn−1

yn

en

y = y(t)

hτn(h)

Fig. 7.3. Geometrical representation of a step of the forward Euler method

From (7.10) we deduce that limh→0 τ(h) = 0, and a method for which
this happens is said to be consistent. Further, we say that it is consistent
with order p if τ(h) = O(hp) for a suitable integer p ≥ 1.

Consider now the other term in (7.9). We have

u∗
n − un = en−1 + h [f(tn−1, yn−1) − f(tn−1, un−1)] . (7.12)

Since f is Lipschitz continuous with respect to its second argument, we
obtain

|u∗
n − un| ≤ (1 + hL)|en−1|.

If e0 = 0, the previous relations yield

|en| ≤ |yn − u∗
n| + |u∗

n − un|
≤ h|τn(h)| + (1 + hL)|en−1|
≤
[
1 + (1 + hL) + . . . + (1 + hL)n−1

]
hτ(h)

=
(1 + hL)n − 1

L
τ(h) ≤ eL(tn−t0) − 1

L
τ(h).

We have used the identity

n−1∑

k=0

(1 + hL)k = [(1 + hL)n − 1]/hL,

the inequality 1 + hL ≤ ehL and we have observed that nh = tn − t0.
Therefore we find
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|en| ≤
eL(tn−t0) − 1

L

M

2
h, ∀n = 0, . . . , Nh, (7.13)

and thus we can conclude that the forward Euler method converges with
order 1. We can note that the order of this method coincides with the
order of its local truncation error. This property is shared by many
numerical methods for the numerical solution of ordinary differential
equations.

The convergence estimate (7.13) is obtained by simply requiring f to
be Lipschitz continuous. A better estimate, precisely

|en| ≤ Mh(tn − t0)/2, (7.14)

holds if ∂f/∂y exists and satisfies the further requirement ∂f(t, y)/∂y ≤
0 for all t ∈ [t0, T ] and all −∞ < y < ∞. Indeed, in that case, using
Taylor expansion, from (7.12) we obtain

u∗
n − un = (1 + h∂f/∂y(tn−1, ηn))en−1,

where ηn belongs to the interval whose extrema are yn−1 and un−1, thus
|u∗

n − un| ≤ |en−1|, provided the inequality

h < 2/ max
t∈[t0,T ]

|∂f/∂y(t, y(t))| (7.15)

holds. Then |en| ≤ |yn − u∗
n| + |en−1| ≤ nhτ(h) + |e0|, whence (7.14)

owing to (7.11) and to the fact that e0 = 0. The limitation (7.15) on the
step h is in fact a stability restriction, as we will see in the sequel.

Remark 7.1 (Consistency) The property of consistency is necessary in or-
der to get convergence. Actually, should it be violated, at each step the numer-
ical method would generate an error which is not infinitesimal with respect to
h. The accumulation with the previous errors would inhibit the global error to
converge to zero when h → 0. •

For the backward Euler method the local truncation error reads

τn(h) =
1
h

[yn − yn−1 − hf(tn, yn)].

Still using the Taylor expansion one obtains

τn(h) = −h

2
y′′(ξn)

for a suitable ξn ∈ (tn−1, tn), provided y ∈ C2. Thus also the backward
Euler method converges with order 1 with respect to h.

Example 7.1 Consider the Cauchy problem
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y′(t) = cos(2y(t)) t ∈ (0, 1],

y(0) = 0,
(7.16)

whose solution is y(t) = 1
2
arcsin((e4t − 1)/(e4t + 1)). We solve it by the for-

ward Euler method (Program 7.1) and the backward Euler method (Pro-
gram 7.2). By the following commands we use different values of h, 1/2,
1/4, 1/8, . . . , 1/512:

tspan =[0 ,1]; y0=0; f=inline(’cos (2*y)’,’t’,’y’);
u=inline(’0.5* asin((exp (4*t) -1)./( exp (4*t)+1)) ’,’t’);
Nh=2;
for k=1:10

[t,ufe]= feuler(f,tspan ,y0 ,Nh);
fe(k)=abs(ufe(end)-feval(u,t(end )));
[t,ube]= beuler(f,tspan ,y0 ,Nh);
be(k)=abs(ube(end)-feval(u,t(end )));
Nh = 2*Nh;

end

The errors committed at the point t = 1 are stored in the variable fe (forward
Euler) and be (backward Euler), respectively. Then we apply formula (1.12)
to estimate the order of convergence. Using the following commands

p=log(abs(fe(1:end -1)./fe(2: end )))/ log (2); p(1:2: end)

1.2898 1.0349 1.0080 1.0019 1.0005

p=log(abs(be(1:end -1)./be(2: end )))/ log (2); p(1:2: end)

0.90703 0.97198 0.99246 0.99808 0.99952

we can verify that both methods are convergent with order 1. �

Remark 7.2 The error estimate (7.13) was derived by assuming that the
numerical solution {un} is obtained in exact arithmetic. Should we account
for the (inevitable) roundoff-errors, the error might blow up like O(1/h) as h
approaches 0 (see, e.g., [Atk89]). This circumstance suggests that it might be
unreasonable to go below a certain threshold h∗ (which is actually extremely
tiny) in practical computations. •

See the Exercises 7.1-7.3.

7.3 The Crank-Nicolson method

Adding together the generic steps of the forward and backward Euler
methods we find the so-called Crank-Nicolson method

un+1 = un +
h

2
[fn + fn+1], n = 0, . . . , Nh − 1 (7.17)
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It can also be derived by applying the fundamental theorem of integra-
tion (which we recalled in Section 1.4.3) to the Cauchy problem (7.5),
obtaining

yn+1 = yn +

tn+1∫

tn

f(t, y(t)) dt, (7.18)

and then approximating the integral on [tn, tn+1] by the trapezoidal rule
(4.19).

The local truncation error of the Crank-Nicolson method satisfies

τn(h) =
1
h

[y(tn) − y(tn−1)] −
1
2

[f(tn, y(tn)) + f(tn−1, y(tn−1))]

=
1
h

tn∫

tn−1

f(t, y(t)) dt − 1
2

[f(tn, y(tn)) + f(tn−1, y(tn−1))] .

The last equality follows from (7.18) and expresses the error associated
with the trapezoidal rule for numerical integration (4.19). If we assume
that y ∈ C3 and use (4.20), we deduce that

τn(h) = −h2

12
y′′′(ξn) for a suitable ξn ∈ (tn−1, tn). (7.19)

Thus the Crank-Nicolson method is consistent with order 2, i.e. its lo-
cal truncation error tends to 0 as h2. Using a similar approach to that
followed for the forward Euler method, we can show that the Crank-
Nicolson method is convergent with order 2 with respect to h.

The Crank-Nicolson method is implemented in the Program 7.3. In-
put and output parameters are the same as in the Euler methods.

Program 7.3. cranknic: Crank-Nicolson method

function [t,u]= cranknic(odefun ,tspan ,y0 ,Nh ,varargin)
%CRANKNIC Solve differential equations using the
% Crank -Nicolson method.
% [T,Y]= CRANKNIC(ODEFUN ,TSPAN ,Y0,NH) with TSPAN=[T0 ,TF]
% integrates the system of differential equations
% y’=f(t,y) from time T0 to TF with initial condition
% Y0 using the Crank -Nicolson method on an equispaced
% grid of NH intervals.Function ODEFUN(T,Y) must return
% a column vector corresponding to f(t,y). Each row in
% the solution array Y corresponds to a time returned
% in the column vector T.
% [T,Y] = CRANKNIC(ODEFUN ,TSPAN ,Y0 ,NH ,P1 ,P2 ,...) passes
% the additional parameters P1,P2 ,... to the function
% ODEFUN as ODEFUN(T,Y,P1,P2...).
tt=linspace(tspan(1),tspan (2),Nh+1);
y=y0(:); % always create a vector column
u=y.’;
global glob_h glob_t glob_y glob_odefun;
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glob_h =(tspan (2)-tspan (1))/ Nh;
glob_y=y;
glob_odefun=odefun;

if( ~exist(’OCTAVE_VERSION ’) )
options=optimset;
options.Display=’off’;
options.TolFun =1.e-06;
options.MaxFunEvals =10000;

end

for glob_t=tt(2: end)
if ( exist(’OCTAVE_VERSION ’) )

[w info msg] = fsolve(’cranknicfun ’,glob_y );
else

w = fsolve(@(w) cranknicfun(w),glob_y ,options );
end

u = [u; w.’];
glob_y = w;

end
t=tt;
clear glob_h glob_t glob_y glob_odefun;
end

function z=cranknicfun(w)
global glob_h glob_t glob_y glob_odefun;
z=w - glob_y - ...

0.5* glob_h *(feval(glob_odefun ,glob_t ,w) + ...
feval(glob_odefun ,glob_t ,glob_y ));

end

Example 7.2 Let us solve the Cauchy problem (7.16) by using the Crank-
Nicolson method with the same values of h as used in Example 7.1. As we
can see, the results confirm that the estimated error tends to zero with order
p = 2:

y0=0; tspan =[0 1]; N=2; f=inline(’cos (2*y)’,’t’,’y’);
y=’0.5* asin((exp (4*t) -1)./( exp (4*t)+1)) ’;
for k=1:10

[tt,u]= cranknic(f,tspan ,y0,N);
t=tt(end); e(k)=abs(u(end)-eval(y)); N=2*N;

end
p=log(abs(e(1:end -1)./e(2: end )))/ log (2); p(1:2: end)

1.7940 1.9944 1.9997 2.0000 2.0000

�

7.4 Zero-stability

There is a concept of stability, called zero-stability, which guarantees
that, in a fixed bounded interval, small perturbations of data yield
bounded perturbations of the numerical solution when h → 0.
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More precisely, a numerical method for the approximation of problem
(7.5), where I = [t0, T ], is zero-stable if ∃h0 > 0, ∃C > 0 such that
∀h ∈ (0, h0],∀ε > 0 sufficiently small, if |ρn| ≤ ε, 0 ≤ n ≤ Nh, then

|zn − un| ≤ Cε, 0 ≤ n ≤ Nh, (7.20)

where C is a constant which might depend on the length of the integra-
tion interval I, zn is the solution that would be obtained by applying
the numerical method at hand to a perturbed problem, ρn denotes the
size of the perturbation introduced at the n-th step and ε indicates the
maximum size of the perturbation. Obviously, ε must be small enough
to guarantee that the perturbed problem still has a unique solution on
the interval of integration.

For instance, in the case of the forward Euler method un satisfies
{

un+1 = un + hf(tn, un),

u0 = y0,
(7.21)

whereas zn satisfies
{

zn+1 = zn + h [f(tn, zn) + ρn+1] ,

z0 = y0 + ρ0

(7.22)

for 0 ≤ n ≤ Nh − 1, under the assumption that |ρn| ≤ ε, 0 ≤ n ≤ Nh.
For a consistent one-step method it can be proved that zero-stability

is a consequence of the fact that f is Lipschitz-continuous with respect to
its second argument (see, e.g. [QSS06]). In that case, the constant C that
appears in (7.20) depends on exp((T − t0)L), where L is the Lipschitz
constant.

However, this is not necessarily true for other families of methods.
Assume for instance that the numerical method can be written in the
general form

un+1 =
p∑

j=0

ajun−j + h

p∑

j=0

bjfn−j + hb−1fn+1, n = p, p + 1, . . .

(7.23)
for suitable coefficients {ak} and {bk} and for an integer p ≥ 0. This is
a linear multistep method and p + 1 denotes the number of steps. The
initial values u0, u1, . . . ,up must be provided. Apart from u0, which is
equal to y0, the other values u1, . . . , up can be generated by suitable
accurate methods such as e.g., the Runge-Kutta methods that we will
address in Section 7.6.

We will see some examples of multistep methods in Section 7.6. The
polynomial
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π(r) = rp+1 −
p∑

j=0

ajr
p−j

is called the first characteristic polynomial associated with the numerical
method (7.23), and we denote its roots by rj , j = 0, . . . , p. The method
(7.23) is zero-stable iff the following root condition is satisfied:

{
|rj | ≤ 1 for all j = 0, . . . , p,

furthermore π′(rj) �= 0 for those j such that |rj | = 1.
(7.24)

For example, for the forward Euler method we have p = 0, a0 = 1,
b−1 = 0, b0 = 1. For the backward Euler method we have p = 0, a0 = 1,
b−1 = 1, b0 = 0 and for the Crank-Nicolson method we have p = 0,
a0 = 1, b−1 = 1/2, b0 = 1/2. In all cases there is only one root of π(r)
which is equal to 1 and therefore all these methods are zero-stable.

The following property, known as Lax-Ritchmyer equivalence the-
orem, is most crucial in the theory of numerical methods (see, e.g.,
[IK66]), and highlights the fundamental role played by the property of
zero-stability:

Any consistent method is convergent iff it is zero-stable. (7.25)

Coherently with what done before, the local truncation error for the
multistep method (7.23) is defined as follows

τn(h) =
1
h





yn+1 −

p∑

j=0

ajyn−j

−h

p∑

j=0

bjf(tn−j , yn−j) − hb−1f(tn+1, yn+1)





.

(7.26)

The method is said to be consistent if τ(h) = max |τn(h)| tends to zero
when h tends to zero. We can prove that this condition is equivalent to
require that

p∑

j=0

aj = 1, −
p∑

j=0

jaj +
p∑

j=−1

bj = 1 (7.27)

which in turns amounts to say that r = 1 is a root of the polynomial
π(r) (see, e.g., [QSS06, Chapter 11]).

See the Exercises 7.4-7.5.
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7.5 Stability on unbounded intervals

In the previous section we considered the solution of the Cauchy problem
on bounded intervals. In that context, the number Nh of subintervals
becomes infinite only if h goes to zero.
On the other hand, there are several situations in which the Cauchy
problem needs to be integrated on very large (virtually infinite) time
intervals. In this case, even if h is fixed, Nh tends to infinity, and then
results like (7.13) become meaningless as the right hand side of the in-
equality contains an unbounded quantity. We are therefore interested in
methods that are able to approximate the solution for arbitrarily long
time-intervals, even with a step-size h relatively “large”.

Unfortunately, the economical forward Euler method does not enjoy
this property. To see this, let us consider the following model problem

{
y′(t) = λy(t), t ∈ (0,∞),

y(0) = 1,
(7.28)

where λ is a negative real number. The exact solution is y(t) = eλt, which
tends to 0 as t tends to infinity. Applying the forward Euler method to
(7.28) we find that

u0 = 1, un+1 = un(1 + λh) = (1 + λh)n+1, n ≥ 0. (7.29)

Thus limn→∞ un = 0 iff

−1 < 1 + hλ < 1, i.e. h < 2/|λ| (7.30)

This condition expresses the requirement that, for fixed h, the numer-
ical solution should reproduce the behavior of the exact solution when tn
tends to infinity. If h > 2/|λ|, then limn→∞ |un| = +∞; thus (7.30) is a
stability condition. The property that limn→∞ un = 0 is called absolute
stability.

Example 7.3 Let us apply the forward Euler method to solve problem (7.28)
with λ = −1. In that case we must have h < 2 for absolute stability. In Figure
7.4 we report the solutions obtained on the interval [0, 30] for 3 different values
of h: h = 30/14 (which violates the stability condition), h = 30/16 (which
satisfies, although by a little amount only, the stability condition) and h = 1/2.
We can see that in the first two cases the numerical solution oscillates. However
only in the first case (which violates the stability condition) the absolute value
of the numerical solution does not vanish at infinity (and actually it diverges).
�

Similar conclusions hold when λ is either a complex number (see Section
7.5.1) or a negative function of t in (7.28). However in this case, |λ|
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Fig. 7.4. Solutions of problem (7.28), with λ = −1, obtained by the forward
Euler method, corresponding to h = 30/14(> 2) (dashed line), h = 30/16(< 2)
(solid line) and h = 1/2 (dashed-dotted line)

must be replaced by maxt∈[0,∞) |λ(t)| in the stability condition. This
condition could however be relaxed to one which is less strict by using
a variable step-size hn which accounts for the local behavior of |λ(t)| in
every interval (tn, tn+1).

In particular, the following adaptive forward Euler method could be
used:

choose u0 = y0 and h0 = 2α/|λ(t0)|; then

for n = 0, 1, . . . , do

tn+1 = tn + hn,

un+1 = un + hnλ(tn)un,

hn+1 = 2α/|λ(tn+1)|,

(7.31)

where α is a constant which must be less than 1 in order to have an
absolutely stable method.

For instance, consider the problem

y′(t) = −(e−t + 1)y(t), t ∈ (0, 10),

with y(0) = 1. Since |λ(t)| is decreasing, the most restrictive condition
for absolute stability of the forward Euler method is h < h0 = 2/|λ(0)| =
1. In Figure 7.5, left, we compare the solution of the forward Euler
method with that of the adaptive method (7.31) for three values of α.
Note that, although every α < 1 is admissible for stability purposes,
to get an accurate solution requires choosing α sufficiently small. In
Figure 7.5, right, we also plot the behaviour of hn on the interval (0, 10]
corresponding to the three values of α. This picture clearly shows that
the sequence {hn} increases monotonically with n.
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Fig. 7.5. Left: the numerical solution on the time interval (0.5, 2) obtained
by the forward Euler method with h = αh0 (dashed line) and by the adaptive
variable stepping forward Euler method (7.31) (solid line) for three different
values of α. Right: the behavior of the variable step-size h for the adaptive
method (7.31)

In contrast to the forward Euler method, neither the backward Euler
method nor the Crank-Nicolson method require limitations on h for
absolute stability. In fact, with the backward Euler method we obtain
un+1 = un + λhun+1 and therefore

un+1 =
(

1
1 − λh

)n+1

, n ≥ 0,

which tends to zero as n → ∞ for all values of h > 0. Similarly, with
the Crank-Nicolson method we obtain

un+1 =
[(

1 +
hλ

2

)/(
1 − hλ

2

)]n+1

, n ≥ 0,

which still tends to zero as n → ∞ for all possible values of h > 0. We
can conclude that the forward Euler method is conditionally absolutely
stable, while both the backward Euler and Crank-Nicolson methods are
unconditionally absolutely stable.

7.5.1 The region of absolute stability

Let us suppose now that in (7.28) λ be a complex number with negative
real part. In such a case, the solution u(t) = eλt still tends to 0 when
t tends to infinity. We call region of absolute stability A of a numerical
method the set of complex numbers z = hλ for which the method turns
out to be absolutely stable (that is, limn→∞ un = 0). The region of
absolute stability of forward Euler method is given by those numbers
hλ ∈ C such that |1 + hλ| < 1, thus it coincides with the circle of
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radius one and with centre (−1, 0). For the backward Euler method the
property of absolute stability is instead satisfied by all values of hλ which
are exterior to the circle of radius one centered in (1, 0) (see Figure
7.6). Finally, the region of absolute stability of Crank-Nicolson method
coincides with the left hand complex plane of numbers with negative real
part.

Methods that are unconditionally absolutely stable for all complex
number λ in (7.28) with negative real part are called A-stable. Backward
Euler and Crank-Nicolson method are therefore A-stable, and so are
many other implicit methods. This property makes implicit methods
attractive in spite of being computationally more expensive than explicit
methods.

1−1

Im(λ)Im(λ) Im(λ)

Re(λ)Re(λ)Re(λ)

Fig. 7.6. The absolute stability regions (in cyan) of the forward Euler method
(left), backward Euler method (centre) and Crank-Nicolson method (right)

Example 7.4 Let us compute the restriction on h when using the forward
Euler method to solve the Cauchy problem y′(t) = λy with λ = −1 + i. This
λ stands on the boundary of the absolute stability region A of the forward
Euler method. Thus, any h such that h ∈ (0, 1) will suffice to guarantee that
hλ ∈ A. If it were λ = −2 + 2i we should choose h ∈ (0, 1/2) in order to bring
hλ within the stability region A. �

7.5.2 Absolute stability controls perturbations

Consider now the following generalized model problem
{

y′(t) = λ(t)y(t) + r(t), t ∈ (0,+∞),

y(0) = 1,
(7.32)

where λ and r are two continuous functions and −λmax ≤ λ(t) ≤ −λmin

with 0 < λmin ≤ λmax < +∞. In this case the exact solution does not
necessarily tend to zero as t tends to infinity; for instance if both r and
λ are constants we have

y(t) =
(
1 +

r

λ

)
eλt − r

λ
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whose limit when t tends to infinity is −r/λ. Thus, in general, it does
not make sense to require a numerical method to be absolutely stable
when applied to problem (7.32). However, we are going to show that
a numerical method which is absolutely stable on the model problem
(7.28), if applied to the generalized problem (7.32), guarantees that the
perturbations are kept under control as t tends to infinity (possibly under
a suitable constraint on the time-step h).

For the sake of simplicity we will confine our analysis to the forward
Euler method; when applied to (7.32) it reads

{
un+1 = un + h(λnun + rn), n ≥ 0,

u0 = 1

and its solution is (see Exercise 7.9)

un = u0

n−1∏

k=0

(1 + hλk) + h

n−1∑

k=0

rk

n−1∏

j=k+1

(1 + hλj), (7.33)

where λk = λ(tk) and rk = r(tk), with the convention that the last
product is equal to one if k + 1 > n − 1. Let us consider the following
“perturbed” method

{
zn+1 = zn + h(λnzn + rn + ρn+1), n ≥ 0,

z0 = u0 + ρ0,
(7.34)

where ρ0, ρ1, . . . are given perturbations which are introduced at every
time step. This is a simple model in which ρ0 and ρn+1, respectively,
account for the fact that neither u0 nor rn can be determined exactly.
(Should we account for all roundoff errors which are actually introduced
at any step, our perturbed model would be far more involved and diffi-
cult to analyze.) The solution of (7.34) reads like (7.33) provided uk is
replaced by zk and rk by rk + ρk+1, for all k = 0, . . . , n − 1. Then

zn − un = ρ0

n−1∏

k=0

(1 + hλk) + h

n−1∑

k=0

ρk+1

n−1∏

j=k+1

(1 + hλj). (7.35)

The quantity |zn − un| is called the perturbation error at step n. It is
worth noticing that this quantity does not depend on the function r(t).

i. For the sake of exposition, let us consider first the special case where
λk and ρk are two constants equal to λ and ρ, respectively. Assume that
h < h0(λ) = 2/|λ|, which is the condition on h that ensures the absolute
stability of the forward Euler method applied to the model problem
(7.28). Then, using the following identity for the geometric sum
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n−1∑

k=0

ak =
1 − an

1 − a
, if |a| �= 1, (7.36)

we obtain

zn − un = ρ

{
(1 + hλ)n

(
1 +

1
λ

)
− 1

λ

}
. (7.37)

It follows that the perturbation error satisfies (see Exercise 7.10)

|zn − un| ≤ ϕ(λ)|ρ|, (7.38)

with ϕ(λ) = 1 if λ ≤ −1, while ϕ(λ) = |1 + 2/λ| if −1 ≤ λ < 0. The
conclusion that can be drawn is that the perturbation error is bounded
by |ρ| times a constant which is independent of n and h. Moreover,

lim
n→∞

|zn − un| =
ρ

|λ| .

Figure 7.7 corresponds to the case where ρ = 0.1, λ = −2 (left) and λ =
−0.5 (right). In both cases we have taken h = h0(λ) − 0.01. Obviously,
the perturbation error blows up when n increases if the stability limit
h < h0(λ) is violated.
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Fig. 7.7. The perturbation error when ρ = 0.1: λ = −2 (left) and λ = −0.5
(right). In both cases h = h0(λ) − 0.01

ii. In the general case where λ and r are non-constant, let us require
h to satisfy the restriction h < h0(λ), where this time h0(λ) = 2/λmax.
Then,

|1 + hλk| ≤ a(h) = max{|1 − hλmin|, |1 − hλmax|}.

Since a(h) < 1, we can still use the identity (7.36) in (7.35) and obtain
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|zn − un| ≤ ρmax

(
[a(h)]n + h

1 − [a(h)]n

1 − a(h)

)
, (7.39)

where ρmax = max |ρk|. Notice that a(h) = |1 − hλmin| if h ≤ h∗ while
a(h) = |1− hλmax| if h∗ ≤ h < h0(λ), having set h∗ = 2/(λmin + λmax).
When h ≤ h∗, a(h) > 0 and it follows that

|zn − un| ≤
ρmax

λmin
[1 − [a(h)]n(1 − λmin)] , (7.40)

thus

lim
n→∞

sup |zn − un| ≤
ρmax

λmin
, (7.41)

from which we still conclude that the perturbation error is bounded by
ρmax times a constant which is independent of n and h (although the
oscillations are no longer damped as in the previous case).

In fact, similar conclusion holds also when h∗ ≤ h ≤ h0(λ), although
this does not follow from our upper bound (7.40) which is too pessimistic
in this case.

In Figure 7.8 we report the perturbation errors computed on the
problem (7.32), where λk = λ(tk) = −2−sin(tk), ρk = ρ(tk) = 0.1 sin(tk)
with h < h∗ (left) and with h∗ ≤ h < h0(λ) (right).
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Fig. 7.8. The perturbation error when ρ(t) = 0.1 sin(t) and λ(t) = −2−sin(t)
for t ∈ (0, nh) with n = 500: the step-size is h = h∗ − 0.1 = 0.4 (left) and
h = h∗ + 0.1 = 0.6 (right)

iii. We consider now the general Cauchy problem (7.5). We claim that
this problem can be related to the generalized model problem (7.32), in
those cases where

−λmax < ∂f/∂y(t, y) < −λmin,∀t ≥ 0, ∀y ∈ (−∞,∞),
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for suitable values λmin, λmax ∈ (0,+∞). To this end, for every t in the
generic interval (tn, tn+1), we subtract (7.6) from (7.22) to obtain the
following equation for the perturbation error:

zn − un = (zn−1 − un−1) + h{f(tn−1, zn−1) − f(tn−1, un−1)} + hρn.

By applying the mean-value theorem we obtain

f(tn−1, zn−1) − f(tn−1, un−1) = λn−1(zn−1 − un−1),

where λn−1 = fy(tn−1, ξn−1), fy = ∂f/∂y and ξn−1 is a suitable point
in the interval whose endpoints are un−1 and zn−1. Thus

zn − un = (1 + hλn−1)(zn−1 − un−1) + hρn.

By a recursive application of this formula we obtain the identity (7.35),
from which we derive the same conclusions drawn in ii., provided the
stability restriction 0 < h < 2/λmax holds.

Example 7.5 Let us consider the Cauchy problem

y′(t) = arctan(3y) − 3y + t, t > 0, y(0) = 1. (7.42)

Since fy = 3/(1+9y2)−3 is negative, we can choose λmax = max |fy| = 3 and
set h < 2/3. Thus, we can expect that the perturbations on the forward Euler
method are kept under control provided that h < 2/3. This is confirmed by
the results which are reported in Figure 7.9. Note that in this example, taking
h = 2/3 + 0.01 (thus violating the previous stability limit) the perturbation
error blows up as t increases. �
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Fig. 7.9. The perturbation errors when ρ(t) = sin(t) with h = 2/λmax − 0.01
(thick line) and h = 2/λmax + 0.01 (thin line) for the Cauchy problem (7.42)



210 7 Ordinary differential equations

Example 7.6 We seek a limit on h that guarantees stability for the forward
Euler method applied to approximate the Cauchy problem

y′ = 1 − y2, t > 0, (7.43)

with y(0) =
e − 1

e + 1
. The exact solution is y(t) = (e2t+1 − 1)/(e2t+1 + 1) and

fy = −2y. Since fy ∈ (−2,−0.9) for all t > 0, we can take h less than h0 = 1.
In Figure 7.10, left, we report the solutions obtained on the interval (0, 35)
with h = 0.95 (thick line) and h = 1.05 (thin line). In both cases the solution
oscillates, but remains bounded. Moreover in the first case, which satisfies the
stability constraint, the oscillations are damped and the numerical solution
tends to the exact one as t increases. In Figure 7.10, right, we report the
perturbation errors corresponding to ρ(t) = sin(t) with h = 0.95 (thick line)
and h = h∗ + 0.1 (thin line). In both cases the perturbation errors remain
bounded; moreover, in the former case the upper bound (7.41) is satisfied. �

0 5 10 15 20 25 30 35
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 7.10. On the left, numerical solutions of problem (7.43) obtained by
the forward Euler method with h = 20/19 (thin line) and h = 20/21 (thick
line). The values of the exact solution are indicated by circles. On the right,
perturbation errors corresponding to ρ(t) = sin(t) with h = 0.95 (thick line)
and h = h∗ (thin line)

In those cases where no information on y is available, finding the
value λmax = max |fy| is not a simple matter. A more heuristic approach
could be pursued in these situations, by adopting a variable stepping
procedure. Precisely, one could take tn+1 = tn + hn, where

hn < 2
α

|fy(tn, un)| ,

for suitable values of α strictly less than 1. Note that the denominator
depends on the value un which is known. In Figure 7.11 we report the
perturbation errors corresponding to the Example 7.6 for two different
values of α.
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Fig. 7.11. The perturbation errors corresponding to ρ(t) = sin(t) with α = 0.8
(thick line) and α = 0.9 (thin line) for the Example 7.6, using the adaptive
strategy

The previous analysis can be carried out also for other kind of one-
step methods, in particular for the backward Euler and Crank-Nicolson
methods. For these methods which are A-stable, the same conclusions
about the perturbation error can be drawn without requiring any limita-
tion on the time-step. In fact, in the previous analysis one should replace
each term 1 + hλn by (1 − hλn)−1 in the backward Euler case and by
(1 + hλn/2)/(1 − hλn/2) in the Crank-Nicolson case.

Let us summarize

1. An absolutely stable method is one which generates a solution un of
the model problem (7.28) which tends to zero as tn tends to infinity;

2. a method is said A-stable if it is absolutely stable for any possible
choice of the time-step h (otherwise a method is called conditionally
stable, and h should be lower than a constant depending on λ);

3. when an absolutely stable method is applied to a generalized model
problem (like (7.32)), the perturbation error (that is the absolute
value of the difference between the perturbed and unperturbed solu-
tion) is uniformly bounded (with respect to h). In short we can say
that absolutely stable methods keep the perturbation controlled;

4. the analysis of absolute stability for the linear model problem can be
exploited to find stability conditions on the time-step when consider-
ing the nonlinear Cauchy problem (7.5) with a function f satisfying
∂f/∂y < 0. In that case the stability restriction requires the step-size
to be chosen as a function of ∂f/∂y. Precisely, the new integration
interval [tn, tn+1] is chosen in such a way that hn = tn+1−tn satisfies
hn < 2α/|∂f(tn, un)/∂y| for a suitable α ∈ (0, 1).

See the Exercises 7.6-7.13.
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7.6 High order methods

All methods presented so far are elementary examples of one-step meth-
ods. More sophisticated schemes, which allow the achievement of a higher
order of accuracy, are the Runge-Kutta methods and the multistep meth-
ods. (whose general form was already introduced in (7.23)). Runge-Kutta
(briefly, RK) methods are still one-step methods; however, they involve
several evaluations of the function f(t, y) on every interval [tn, tn+1]. In
its most general form, a RK method can be written as

un+1 = un + h
s∑

i=1

biKi, n ≥ 0 (7.44)

where

Ki = f(tn + cih, un + h
s∑

j=1

aijKj), i = 1, 2, . . . , s

and s denotes the number of stages of the method. The coefficients {aij},
{ci} and {bi} fully characterize a RK method and are usually collected
in the so-called Butcher array

c A
bT T ,

where A = (aij) ∈ Rs×s, b = (b1, . . . , bs)T ∈ Rs and c = (c1, . . . , cs)T ∈
Rs. If the coefficients aij in A are equal to zero for j ≥ i, with i =
1, 2, . . . , s, then each Ki can be explicitly computed in terms of the i− 1
coefficients K1, . . . ,Ki−1 that have already been determined. In such a
case the RK method is explicit. Otherwise, it is implicit and solving a
nonlinear system of size s is necessary for computing the coefficients Ki.

One of the most celebrated Runge-Kutta methods reads

un+1 = un +
h

6
(K1 + 2K2 + 2K3 + K4) (7.45)

where

K1 = fn,

K2 = f(tn + h
2 , un + h

2 K1),

K3 = f(tn + h
2 , un + h

2 K2),

K4 = f(tn+1, un + hK3),

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

T 1
3

1
3

1
6

.

This method can be derived from (7.18) by using the Simpson quadrature
rule (4.23) to evaluate the integral between tn and tn+1. It is explicit,
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of fourth order with respect to h; at each time step, it involves four
new evaluations of the function f . Other Runge-Kutta methods, either
explicit or implicit, with arbitrary order can be constructed. For instance,
an implicit RK method of order 4 with 2 stages is defined by the following
Butcher array

3−
√

3
6

1
4

3−2
√

3
12

3+
√

3
6

3+2
√

3
12

1
4

1
2

T 1
2

.

The absolute stability region A of the RK methods, including explicit
RK methods, can grow in surface with the order: an example is pro-
vided by the left graph in Figure 7.13, where A has been reported for
some explicit RK methods of increasing order: RK1 is the forward Euler
method, RK2 is the improved Euler method, (7.52), RK3 represents the
following Butcher array

0
1
2

1
2

1 −1 2
1
6

T 2
3

1
6

(7.46)

and RK4 represents method (7.45) introduced previously.
The RK methods stand at the base of a family of MATLAB pro-

grams whose names contain the root ode followed by numbers and letters. ode
In particular, ode45 is based on a pair of explicit Runge-Kutta methods ode45
(the so-called Dormand-Prince pair) of order 4 and 5, respectively. ode23 ode23
is the implementation of another pair of explicit Runge-Kutta methods
(the Bogacki and Shampine pair). In these methods the integration step
varies in order to guarantee that the error remains below a given toler-
ance (the default scalar relative error tolerance RelTol is equal to 10−3).
The program ode23tb is an implementation of an implicit Runge-Kutta ode23tb
formula whose first stage is the trapezoidal rule, while the second stage
is a backward differentiation formula of order two (see (7.49)).

Multistep methods (see (7.23)) achieve a high order of accuracy by
involving the values un, un−1, . . . , un−p for the determination of un+1.
They can be derived by applying first the formula (7.18) and then ap-
proximating the integral by a quadrature formula which involves the in-
terpolant of f at a suitable set of nodes. A notable example of multistep
method is the three-step (p = 2), third order (explicit) Adams-Bashforth
formula (AB3)

un+1 = un +
h

12
(23fn − 16fn−1 + 5fn−2) (7.47)
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which is obtained by replacing f in (7.18) by its interpolating polynomial
of degree two at the nodes tn−2, tn−1, tn. Another important example is
the three-step, fourth order (implicit) Adams-Moulton formula (AM4)

un+1 = un +
h

24
(9fn+1 + 19fn − 5fn−1 + fn−2) (7.48)

which is obtained by replacing f in (7.18) by its interpolating polynomial
of degree three at the nodes tn−2, tn−1, tn, tn+1.

Another family of multistep methods can be obtained by writing the
differential equation at time tn+1 and replacing y′(tn+1) by a one-sided
incremental ratio of high order. An instance is provided by the two-step,
second order (implicit) backward difference formula (BDF2)

un+1 =
4
3
un − 1

3
un−1 +

2h

3
fn+1 (7.49)

or by the following three-step, third order (implicit) backward difference
formula (BDF3)

un+1 =
18
11

un − 9
11

un−1 +
2
11

un−2 +
6h

11
fn+1 (7.50)

All these methods can be recasted in the general form (7.23). It is easy to
verify that for all of them the relations (7.27) are satisfied, thus they are
consistent. Moreover, they are zero-stable. Indeed, in both cases (7.47)
and (7.48), the first characteristic polynomial is π(r) = r3 − r2 and its
roots are r0 = 1, r1 = r2 = 0, while the first characteristic polynomial
of (7.50) is π(r) = r3 − 18/11r2 + 9/11r − 2/11 and its roots are r0 = 1,
r1 = 0.3182 + 0.2839i, r2 = 0.3182 − 0.2839i, where i is the imaginary
unit. In all cases, the root condition (7.24) is satisfied.

When applied to the model problem (7.28), AB3 is absolutely stable if
h < 0.545/|λ|, while AM4 is absolutely stable if h < 3/|λ|. The method
BDF3 is unconditionally absolutely stable (i.e., A-stable) for all real
negative λ. However, this is no longer true if λ ∈ C (with negative real
part). In other words, BDF3 fails to be A-stable (see, Figure 7.13). More
generally, according to the second Dahlquist barrier there is no multistep
A-stable method of order strictly greater than two.

In Figures 7.12 the regions of absolute stability of several Adams-
Bashfort and Adams-Moulton methods are drawn. Note that their size
reduces as far as the order increases. In the right-hand side graphs of
Figure 7.13 we report the (unlimited) absolute stability regions of some
BDF methods: these cover a surface in the complex plane which re-
duces when the order increases, as opposed to those of the Runge-Kutta
methods (reported on the left) which increase in surface when the order
increases.
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Fig. 7.12. The absolute stability regions of several Adams-Basforth (left) and
Adams-Moulton (right) methods

Fig. 7.13. The absolute stability regions of several explicit RK (left) and
BDF methods (right). In this case the regions are unlimited and span in the
direction shown by the arrows

Remark 7.3 (Computing absolute stability regions) It is possible to
compute the boundary ∂A of the absolute stability region A of a multistep
method with a simple trick. The boundary is in fact composed by the complex
numbers hλ such that

hλ =

(

rp+1 −
p∑

j=0

ajr
p−j

)

�

(
p∑

j=−1

bjr
p−j

)

, (7.51)

with r as a complex number of module one. Therefore, to obtain with MAT-

LAB an approximate representation of ∂A it is sufficient to evaluate the second
member of (7.51) with different values of r on the unit circle (for instance, by
setting r = exp(i*pi*(0:2000)/1000), where i is the imaginary unit). The
graphs in Figures 7.12 and 7.13 have been obtained in this way. •

According to the first Dahlquist barrier the maximum order q of a
p + 1-step method satisfying the root condition is q = p + 1 for explicit
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methods and, for implicit methods q = p + 2 if p + 1 is odd, q = p + 3 if
p + 1 is even.

Remark 7.4 (Cyclic composite methods) It is possible to overcome the
Dahlquist barriers by appropriately combining several multistep methods. For
instance, the two following methods

un+1 = − 8

11
un +

19

11
un−1 +

h

33
(30fn+1 + 57fn + 24fn−1 − fn−2),

un+1 =
449

240
un +

19

30
un−1 −

361

240
un−2

+
h

720
(251fn+1 + 456fn − 1347fn−1 − 350fn−2),

have order five, but are unstable. However, by using them in a combined way
(the former if n is even, the latter if n is odd) they produce an A-stable 3-step
method of order five. •

Multistep methods are implemented in several MATLAB programs,
for instance in ode15s.ode15s

Octave 7.1 ode23 and ode45 are also available in Octave-forge. The
optional arguments however differ from MATLAB. Note that ode45 in
Octave-forge offers two possible strategies: the default one based on the
Dormand and Prince method produces generally more accurate results
than the other option that is based on the Fehlberg method. �

7.7 The predictor-corrector methods

In Section 7.2 it was pointed out that implicit methods yield at each
step a nonlinear problem for the unknown value un+1. For its solution
we can use one of the methods introduced in Chapter 2, or else apply
the function fsolve as we have done with the Programs 7.2 and 7.3.

Alternatively, we can carry out fixed point iterations at every time-
step. For example, for the Crank-Nicolson method (7.17), for k = 0, 1, . . .,
we compute until convergence

u
(k+1)
n+1 = un +

h

2

[
fn + f(tn+1, u

(k)
n+1)

]
.

It can be proved that if the initial guess u
(0)
n+1 is chosen conveniently,

a single iteration suffices in order to obtain a numerical solution u
(1)
n+1

whose accuracy is of the same order as the solution un+1 of the original
implicit method. More precisely, if the original implicit method has order
p, then the initial guess u

(0)
n+1 must be generated by an explicit method

of order (at least) p − 1.
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For instance, if we use the first order (explicit) forward Euler method
to initialize the Crank-Nicolson method, we get the Heun method (also
called improved Euler method), which is a second order explicit Runge-
Kutta method:

u∗
n+1 = un + hfn,

un+1 = un +
h

2
[
fn + f(tn+1, u

∗
n+1)

] (7.52)

The explicit step is called a predictor, whereas the implicit one is called a
corrector. Another example combines the (AB3) method (7.47) as predic-
tor with the (AM4) method (7.48) as corrector. These kinds of methods
are therefore called predictor-corrector methods. They enjoy the order
of accuracy of the corrector method. However, being explicit, they un-
dergo a stability restriction which is typically the same as that of the
predictor method (see, for instance, the regions of absolute stability of
Figure 7.14). Thus they are not adequate to integrate a Cauchy problem
on unbounded intervals.

Fig. 7.14. The absolute stability regions of the predictor-corrector methods
obtained by combining the explicit Euler (EE) and Crank-Nicolson methods
(left) and AB3 and AM4 (right). Notice the reduced surface of the region when
compared to the corresponding implicit methods (in the first case the region
of the Crank-Nicolson method hasn’t been reported as it coincides with all the
complex half-plane Re(hλ) < 0)

In Program 7.4 we implement a general predictor-corrector method.
The strings predictor and corrector identify the type of method
that is chosen. For instance, if we use the functions eeonestep and
cnonestep, which are defined in Program 7.5, we can call predcor as
follows:

>> [t,u]=predcor(t0,y0,T,N,f,’eeonestep’,’cnonestep’);
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and obtain the Heun method.
Program 7.4. predcor: predictor-corrector method

function [t,u]= predcor(odefun ,tspan ,y,Nh ,...
predictor ,corrector ,varargin)

%PREDCOR Solve differential equations using a
% predictor -corrector method
% [T,Y]= PREDCOR(ODEFUN ,TSPAN ,Y0 ,NH ,PRED ,CORR) with
% TSPAN =[T0 TF] integrates the system of differential
% equations y’ = f(t,y) from time T0 to TF with initial
% condition Y0 using a general predictor corrector
% method on an equispaced grid of NH intervals.
% Function ODEFUN(T,Y) must return a column -vector
% corresponding to f(t,y). Each row in the solution
% array Y corresponds to a time returned in the column
% vector T. Functions PRED and CORR identify the type
% of method that is chosen.
% [T,Y]= PREDCOR(ODEFUN ,TSPAN ,Y0 ,NH ,PRED ,CORR ,P1 ,..)
% passes the additional parameters P1 ,... to the
% functions ODEFUN ,PRED and CORR as ODEFUN(T,Y,P1 ,...),
% PRED(T,Y,P1 ,P2...), CORR(T,Y,P1,P2 ...).
h=( tspan (2)- tspan (1))/ Nh; tt=[ tspan (1):h:tspan (2)];
u=y; [n,m]=size(u); if n < m, u=u’; end
for t=tt(1:end -1)

y = u(:,end); fn = feval(odefun ,t,y,varargin {:});
upre = feval(predictor ,t,y,h,fn);
ucor = feval(corrector ,t+h,y,upre ,h,odefun ,...

fn,varargin {:});
u = [u, ucor];

end
t = tt;
end

Program 7.5. onestep: one step of forward Euler (eeonestep), one step of
backward Euler (eionestep), one step of Crank-Nicolson (cnonestep)

function [u]= feonestep(t,y,h,f)
u = y + h*f;
return

function [u]= beonestep(t,u,y,h,f,fn ,varargin)
u = u + h*feval(f,t,y,varargin {:});
return

function [u]= cnonestep(t,u,y,h,f,fn ,varargin)
u = u + 0.5*h*(feval(f,t,y,varargin {:})+ fn);
return

The MATLAB program ode113 implements a combined Adams-ode113
Moulton-Bashforth scheme with variable step-size.

See the Exercises 7.14-7.17.
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7.8 Systems of differential equations

Let us consider the following system of first-order ordinary differential
equations whose unknowns are y1(t), . . . , ym(t):






y′
1 = f1(t, y1, . . . , ym),

...

y′
m = fm(t, y1, . . . , ym),

where t ∈ (t0, T ], with the initial conditions

y1(t0) = y0,1, . . . , ym(t0) = y0,m.

For its solution we could apply to each individual equation one of the
methods previously introduced for a scalar problem. For instance, the
n-th step of the forward Euler method would read






un+1,1 = un,1 + hf1(tn, un,1, . . . , un,m),

...

un+1,m = un,m + hfm(tn, un,1, . . . , un,m).

By writing the system in vector form y′(t) = F(t,y(t)), with obvious
choice of notation, the extension of the methods previously developed
for the case of a single equation to the vector case is straightforward.
For instance, the method

un+1 = un + h(ϑF(tn+1,un+1) + (1 − ϑ)F(tn,un)), n ≥ 0,

with u0 = y0, 0 ≤ ϑ ≤ 1, is the vector form of the forward Euler method
if ϑ = 0, the backward Euler method if ϑ = 1 and the Crank-Nicolson
method if ϑ = 1/2.

Example 7.7 (Population dynamics) Let us apply the forward Euler me-
thod to solve the Lotka-Volterra equations (7.3) with C1 = C2 = 1, b1 = b2 = 0
and d1 = d2 = 1. In order to use Program 7.1 for a system of ordinary
differential equations, let us create a function f which contains the component
of the vector function F, which we save in the file f.m. For our specific system
we have:

function y = f(t,y)
C1=1; C2=1; d1=1; d2=1; b1=0; b2=0;
yy(1)=C1*y(1)*(1 -b1*y(1)-d2*y(2)); % first equation
y(2)=-C2*y(2)*(1 -b2*y(2)-d1*y(1)); % second equation
y(1)=yy(1);
return
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Now we execute Program 7.1 with the following instructions

[t,u]= feuler(’fsys’ ,[0,0.1],[0 0] ,100);

They correspond to solving the Lotka-Volterra system on the time interval
[0, 10] with a time-step h = 0.005.

The graph in Figure 7.15, left, represents the time evolution of the two
components of the solution. Note that they are periodic with period 2π. The
second graph in Figure 7.15, right, shows the trajectory issuing from the initial
value in the so-called phase plane, that is, the Cartesian plane whose coordinate
axes are y1 and y2. This trajectory is confined within a bounded region of the
(y1, y2) plane. If we start from the point (1.2, 1.2), the trajectory would stay
in an even smaller region surrounding the point (1, 1). This can be explained
as follows. Our differential system admits 2 points of equilibrium at which
y′
1 = 0 and y′

2 = 0, and one of them is precisely (1, 1) (the other being (0, 0)).
Actually, they are obtained by solving the nonlinear system






y′
1 = y1 − y1y2 = 0,

y′
2 = −y2 + y2y1 = 0.

If the initial data coincide with one of these points, the solution remains con-
stant in time. Moreover, while (0, 0) is an unstable equilibrium point, (1, 1) is
stable, that is, all trajectories issuing from a point near (1, 1) stay bounded in
the phase plane. �
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Fig. 7.15. Numerical solutions of system (7.3). On the left, we represent y1

and y2 on the time interval (0, 10), the solid line refers to y1, the dashed line to
y2. Two different initial data are considered: (2, 2) (thick lines) and (1.2, 1.2)
(thin lines). On the right, we report the corresponding trajectories in the phase
plane

When we use an explicit method, the step-size h should undergo a
stability restriction similar to the one encountered in Section 7.5. When
the real part of the eigenvalues λk of the Jacobian A(t) = [∂F/∂y](t,y)
of F are all negative, we can set λ = −maxt ρ(A(t)), where ρ(A(t)) is the
spectral radius of A(t). This λ is a candidate to replace the one entering
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in the stability conditions (such as, e.g., (7.30)) that were derived for the
scalar Cauchy problem.

Remark 7.5 The MATLAB programs (ode23, ode45, ...) that we have men-
tioned before can be used also for the solution of systems of ordinary differential
equations. The syntax is odeXX(’f’,[t0 tf],y0), where y0 is the vector of
the initial conditions, f is a function to be specified by the user and odeXX is
one of the methods available in MATLAB. •

Now consider the case of an ordinary differential equation of order m

y(m)(t) = f(t, y, y′, . . . , y(m−1)) (7.53)

for t ∈ (t0, T ], whose solution (when existing) is a family of functions de-
fined up to m arbitrary constants. The latter can be fixed by prescribing
m initial conditions

y(t0) = y0, y′(t0) = y1, . . . , y(m−1)(t0) = ym−1.

Setting

w1(t) = y(t), w2(t) = y′(t), . . . , wm(t) = y(m−1)(t),

the equation (7.53) can be transformed into a first-order system of m
differential equations






w′
1 = w2,

w′
2 = w3,

...

w′
m−1 = wm,

w′
m = f(t, w1, . . . , wm),

with initial conditions

w1(t0) = y0, w2(t0) = y1, . . . , wm(t0) = ym−1.

Thus we can always approximate the solution of a differential equation
of order m > 1 by resorting to the equivalent system of m first-order
equations, and then applying to this system a convenient discretization
method.

Example 7.8 (Electrical circuits) Consider the circuit of Problem 7.4 and
suppose that L(i1) = L is constant and that R1 = R2 = R. In this case v can
be obtained by solving the following system of two differential equations:






v′(t) = w(t),

w′(t) = − 1

LC

(
L

R
+ RC

)
w(t) − 2

LC
v(t) +

e

LC
,

(7.54)
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with initial conditions v(0) = 0, w(0) = 0. The system has been obtained from
the second-order differential equation

LC
d2v

dt2
+

(
L

R2
+ R1C

)
dv

dt
+

(
R1

R2
+ 1

)
v = e. (7.55)

We set L = 0.1 Henry, C = 10−3 Farad, R = 10 Ohm and e = 5 Volt, where
Henry, Farad, Ohm and Volt are respectively the unit measure of inductance,
capacitance, resistance and voltage. Now we apply the forward Euler method
with h = 0.01 seconds in the time interval [0, 0.1], by the Program 7.1:

[t,u]= feuler(’fsys’ ,[0,0.1],[0 0] ,100);

where fsys is contained in the file fsys.m:

function y=fsys(t,y)
L=0.1; C=1.e-03; R=10; e=5; LC = L*C;
yy=y(2); y(2)=-(L/R+R*C)/(LC)*y(2) -2/(LC)*y(1)+e/(LC);
y(1)=yy;
return

In Figure 7.16 we report the approximated values of v and w. As expected, v(t)
tends to e/2 = 2.5 Volt for large t. In this case the real part of the eigenvalues
of A(t) = [∂F/∂y](t,y) is negative and λ can be set equal to −141.4214. Then
a condition for absolute stability is to take h < 2/|λ| = 0.0282. �
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Fig. 7.16. Numerical solutions of system (7.54). The potential drop v(t) is
reported on the left, its derivative w on the right: the dashed line represents the
solution obtained for h = 0.001 with the forward Euler method, the continuous
line is for the one generated via the same method with h = 0.004, and the
dotted line is for the one produced via the Newmark method (7.59) (with
θ = 1/2 and ζ = 1/4) with h = 0.004

Sometimes numerical approximations can be directly derived on the
high order equation without passing through the equivalent first order
system. Consider for instance the case of the 2nd order Cauchy problem

{
y′′(t) = f(t, y(t), y′(t)) t ∈ (t0, T ],
y(t0) = α0, y′(t0) = β0.

(7.56)
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A simple numerical scheme can be constructed as follows: find un for
1 ≤ n ≤ Nh such that

un+1 − 2un + un−1

h2
= f(tn, un, vn) (7.57)

with u0 = α0 and v0 = β0. The quantity vk represents a second order
approximation of y′(tk) (since (yn+1 − 2yn + yn−1)/h2 is a second order
approximation of y′′(tn)). One possibility is to take

vn =
un+1 − un−1

2h
, with v0 = β0. (7.58)

The leap-frog method (7.57)-(7.58) is accurate of order 2 with respect to
h.

A more general method is the Newmark method, in which we build
two sequences

un+1 = un + hvn + h2 [ζf(tn+1, un+1, vn+1) + (1/2 − ζ)f(tn, un, vn)] ,

vn+1 = vn + h [(1 − θ)f(tn, un, vn) + θf(tn+1, un+1, vn+1)] ,
(7.59)

with u0 = α0 and v0 = β0, where ζ and θ are two non-negative real
numbers. This method is implicit unless ζ = θ = 0, second order if
θ = 1/2, whereas it is first order accurate if θ �= 1/2. The condition
θ ≥ 1/2 is necessary to ensure stability. For θ = 1/2 and ζ = 1/4 we
find a rather popular method that is unconditionally stable. However,
this method is not suitable for simulations on long time intervals as
it introduces oscillatory spurious solutions. For these simulations it is
preferable to use θ > 1/2 and ζ > (θ + 1/2)2/4 even though the method
degenerates to a first order one.

In Program 7.6 we implement the Newmark method. The vector
param allows to specify the values of the coefficients (param(1)=ζ,
param(2)=θ).

Program 7.6. newmark: Newmark method

function [tt ,u]= newmark(odefun ,tspan ,y,Nh,param ,varargin)
%NEWMARK Solve second order differential equations using
% the Newmark method
% [T,Y]= NEWMARK(ODEFUN ,TSPAN ,Y0 ,NH ,PARAM) with TSPAN =
% [T0 TF] integrates the system of differential
% equations y’’=f(t,y,y’) from time T0 to TF with
% initial conditions Y0=(y(t0),y’(t0)) using the
% Newmark method on an equispaced grid of NH intervals.
% Function ODEFUN(T,Y) must return a scalar value
% corresponding to f(t,y,y’).
tt=linspace(tspan(1),tspan (2),Nh+1);
u(1,:)=y;

global glob_h glob_t glob_y glob_odefun;
global glob_zeta glob_theta glob_varargin glob_fn;
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glob_h =(tspan (2)-tspan (1))/ Nh;
glob_y=y;
glob_odefun=odefun;
glob_t=tt(2);
glob_zeta = param (1);
glob_theta = param (2);
glob_varargin=varargin;

if ( ~exist( ’OCTAVE_VERSION ’ ) )
options=optimset;
options.TolFun =1.e-12;
options.MaxFunEvals =10000;

end

glob_fn =feval(odefun ,tt(1),u(1,:), varargin {:});
for glob_t=tt(2: end)
if ( exist( ’OCTAVE_VERSION ’ ) )

w = fsolve(’newmarkfun ’, glob_y )
else

w = fsolve(@(w) newmarkfun(w),glob_y ,options );
end

glob_fn =feval(odefun ,glob_t ,w,varargin {:});
u = [u; w];
y = w;

end
t=tt;
clear glob_h glob_t glob_y glob_odefun;
clear glob_zeta glob_theta glob_varargin glob_fn;
end

function z=myfun(w)
global glob_h glob_t glob_y glob_odefun;
global glob_zeta glob_theta glob_varargin glob_fn;
fn1 = feval(glob_odefun ,glob_t ,glob_w ,glob_varargin {:});
z=w - glob_y -...

glob_h *[ glob_y(1,2), ...
(1-glob_theta )* glob_fn+glob_theta*fn1]-...

glob_h ^2*[ glob_zeta*fn1 +(0.5- glob_zeta )*glob_fn ,0];
end

Example 7.9 (Electrical circuits) We consider again the circuit of Prob-
lem 7.4 and we solve the second order equation (7.55) with the Newmark
scheme. In Figure 7.16 we compare the numerical approximations of the func-
tion v computed using the Euler scheme (dashed line and continuous line)
and the Newmark scheme with θ = 1/2 and ζ = 1/4 (dotted line), with the
time-step h = 0.04. The better accuracy of the latter solution is due to the
fact that the method (7.57)-(7.58) is second order accurate with respect to h.
�

See the Exercises 7.18-7.20.
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7.9 Some examples

We end this chapter by considering and solving three non-trivial exam-
ples of systems of ordinary differential equations.

7.9.1 The spherical pendulum

The motion of a point x(t) = (x1(t), x2(t), x3(t))T with mass m sub-
ject to the gravity force F = (0, 0,−gm)T (with g = 9.8 m/s2)
and constrained to move on the spherical surface of equation Φ(x) =
x2

1 + x2
2 + x2

3 − 1 = 0 is described by the following system of ordinary
differential equations

..
x =

1
m

(

F − m
.
xT H

.
x +∇ΦT F

|∇Φ|2 ∇Φ

)

for t > 0. (7.60)

We denote by
.
x the first derivative with respect to t, with

..
x the second

derivative, with ∇Φ the spatial gradient of Φ, equal to 2xT , with H
the Hessian matrix of Φ whose components are Hij = ∂2Φ/∂xi∂xj for
i, j = 1, 2, 3. In our case H is a diagonal matrix with coefficients equal to
2. System (7.60) must be provided with the initial conditions x(0) = x0

and
.
x (0) = v0.

To numerically solve (7.60) let us transform it into a system of dif-
ferential equations of order 1 in the new variable y, a vector with 6
components. Having set yi = xi and yi+3 =

.
xi with i = 1, 2, 3, and

λ =
(
m(y4, y5, y6)T H(y4, y5, y6) + ∇ΦT F

)
/|∇Φ|2,

we obtain, for i = 1, 2, 3,
.
yi= y3+i,
.
y3+i=

1
m

(
Fi − λ

∂Φ

∂yi

)
.

(7.61)

We apply the Euler and Crank-Nicolson methods. Initially it is
necessary to define a MATLAB function (fvinc in Program 7.7)
which yields the expressions of the right-hand terms (7.61). Further-
more, let us suppose that the initial conditions are given by vector
y0=[0,1,0,.8,0,1.2] and that the integration interval is tspan=[0,25].
We recall the explicit Euler method in the following way
[t,y]= feuler(’fvinc ’,tspan ,y0 ,nt);

(and analogously for the backward Euler beuler and Crank-Nicolson
cranknic methods), where nt is the number of intervals (of constant
width) used to discretize the interval [tspan(1),tspan(2)]. In the
graphs in Figure 7.17 we report the trajectories obtained with 10000
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Fig. 7.17. The trajectories obtained with the explicit Euler method with
h = 0.0025 (on the left) and h = 0.00025 (on the right). The blackened point
shows the initial datum
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Fig. 7.18. The trajectories obtained using the implicit Euler method with
h = 0.00125 (on the left) and using the Crank-Nicolson method with h = 0.025
(on the right)

and 100000 discretization nodes. In the second case, the solution looks
reasonably accurate. As a matter of fact, although we do not know the
exact solution to the problem, we can have an idea of the accuracy by
noticing that the solution satisfies r(y) ≡ y2

1 + y2
2 + y2

3 − 1 = 0 and by
consequently measuring the maximal value of the residual r(yn) when
n varies, yn being the approximation of the exact solution generated at
time tn. By using 10000 discretization nodes we find r = 1.0578, while
with 100000 nodes we have r = 0.1111, in accordance with the theory
requiring the explicit Euler method to converge with order 1.

By using the implicit Euler method with 20000 steps we obtain the
solution reported in Figure 7.18, while the Crank-Nicolson method (of
order 2) with only 2000 steps provides the solution reported in the same
figure on the right, which is undoubtedly more accurate. Indeed, we find
r = 0.5816 for the implicit Euler method and r = 0.0966 for the Crank-
Nicolson method.
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Fig. 7.19. The trajectories obtained using methods ode23 (left) and ode45

(right) with the same accuracy criteria. In the second case the error control
fails and the solution obtained is less accurate

As a comparison, let us solve the same problem using the explicit
adaptive methods of type Runge-Kutta ode23 and ode45, featured in
MATLAB. These (unless differently specified) modify the integration
step in order to guarantee that the relative error on the solution is less
than 10−3 and the absolute error is less than 10−6. We run them using
the following commands
[t1,y1]=ode23(’fvinc’,tspan ,y0 ’);
[t2,y2]=ode45(’fvinc’,tspan ,y0 ’);

obtaining the solutions in Figure 7.19.
The two methods used 783, respectively 537, non-uniformly distrib-

uted discretization nodes. The residual r is equal to 0.0238 for ode23
and 3.2563 for ode45. Surprisingly, the result obtained with the highest-
order method is thus less accurate and this warns us as to using the ode
programs available in MATLAB. An explanation of this behavior is in
the fact that the error estimator implemented in ode45 is less constrain-
ing than that in ode23. By slightly decreasing the relative tolerance (it
is sufficient to set options=odeset(’RelTol’,1.e-04)) and renaming
the program to [t,y]=ode45(@fvinc,tspan,y0,options); we can in
fact find comparable results.

Program 7.7. fvinc: forcing term for the spherical pendulum problem

function [f]=fvinc(t,y)
[n,m]=size(y); phix=’2*y(1)’;
phiy=’2*y(2)’; phiz=’2*y(3)’; H=2* eye (3);
mass =1; % Mass
F1=’0*y(1)’; F2=’0*y(2)’; F3=’-mass *9.8’; % Weight
f=zeros(n,m); xpunto=zeros (3 ,1); xpunto (1:3)=y(4:6);
F=[eval(F1);eval(F2);eval(F3)];
G=[eval(phix);eval(phiy);eval(phiz )];
lambda=(m*xpunto ’*H*xpunto+F’*G)/(G’*G);
f(1:3)=y(4:6);
for k=1:3; f(k+3)=(F(k)-lambda*G(k))/ mass; end
return
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Fig. 7.20. The trajectories obtained using methods ode23 (left) and ode45

(right) with the same accuracy criteria.

Octave 7.2 ode23 requires 924 steps while ode45 requires 575 steps for
the same accuracy.

Note that ode45 gives results similar to ode23 as opposed to ode45
in MATLAB, see Figure 7.20. �

7.9.2 The three-body problem

We want to compute the evolution of a system composed by three bodies,
knowing their initial positions and velocities and their masses under the
influence of their reciprocal gravitational attraction. The problem can
be formulated by using Newton’s laws of motion. However, as opposed
to the case of two bodies, there are no known closed form solutions.
We suppose that one of the three bodies has considerably larger mass
than the two remaining, and in particular we study the case of the Sun-
Earth-Mars system, a problem studied by celeber mathematicians such
as Lagrange in the eighteenth century, Poincaré towards the end of the
nineteenth century and Levi-Civita in the twentieth century.

We denote by Ms the mass of the Sun, by Me that of the Earth and
by Mm that of Mars. The Sun’s mass being about 330000 times that of
the Earth and the mass of Mars being about one tenth of the Earth’s, we
can imagine that the center of gravity of the three bodies approximately
coincides with the center of the Sun (which will therefore remain still in
this model) and that the three objects remain in the plane described by
their initial positions. In such case the total force exerted on the Earth
will be for instance

Fe = Fes + Fem = Me
d2xe

dt2
, (7.62)

where xe = (xe, ye)T denote the Earth’s position, while Fes and Fem

denote the force exerted by the Sun and Mars, respectively, on the Earth.
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By applying the universal gravitational law, (7.62) becomes (xm denotes
the position of Mars)

Me
d2xe

dt2
= −GMeMs

xe

|xe|3
+ GMeMm

xm − xe

|xm − xe|3
.

By adimensionalizing the equations and scaling the lengths with re-
spect to the length of the Earth orbit’s semi-major axis, the following
equation is obtained

Me
d2xe

dt2
= 4π2

(
Mm

Ms

xm − xe

|xm − xe|3
− xe

|xe|3
)

. (7.63)

The analogous equation for planet Mars can be obtained with a similar
computation

Mm
d2xm

dt2
= 4π2

(
Me

Ms

xe − xm

|xe − xm|3 − xm

|xm|3
)

. (7.64)

The second-order system (7.63)-(7.64) immediately reduces to a system
of eight equations of order one. Program 7.8 allows to evaluate a function
containing the right-hand side terms of system (7.63)-(7.64).

Program 7.8. threebody: forcing term for the simplified three body system

function f=threebody(t,y)
f=zeros (8,1);
Ms =330000;
Me=1;
Mm=0.1;
D1 = ((y(5)-y(1))^2+(y(7)-y(3))^2)^(3/2);
D2 = (y(1)^2+y(3)^2)^(3/2);
f(1)=y(2);
f(2)=4* pi^2*(Me/Ms*(y(5)-y(1))/D1-y(1)/D2);
f(3)=y(4);
f(4)=4* pi^2*(Me/Ms*(y(7)-y(3))/D1-y(3)/D2);
D2 = (y(5)^2+y(7)^2)^(3/2);
f(5)=y(6);
f(6)=4* pi^2*(Mm/Ms*(y(1)-y(5))/D1-y(5)/D2);
f(7)=y(8);
f(8)=4* pi^2*(Mm/Ms*(y(3)-y(7))/D1-y(7)/D2);
return

Let us compare the Crank-Nicolson method (implicit) and the adap-
tive Runge-Kutta method implemented in ode23 (explicit). Having set
the Earth to be 1 unit away from the Sun, Mars will be located at about
1.52 units: the initial position will therefore be (1, 0) for the Earth and
(1.52, 0) for Mars. Let us further suppose that the two planets initially
have null horizontal velocity and vertical velocity equal to −5.1 units
(Earth) and −4.6 units (Mars): this way they should move along reason-
ably stable orbits around the Sun. For the Crank-Nicolson method we
choose 2000 discretization steps.



230 7 Ordinary differential equations

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

S

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

S

Fig. 7.21. The Earth’s (inmost) and Mars’s orbit with respect to the Sun as
computed with the adaptive method ode23 (on the left) (with 564 steps) and
with the Crank-Nicolson method (on the right) (with 2000 steps)

[t23 ,u23]=ode23(’threebody ’ ,[0 10] ,...
[1.52 0 0 -4.6 1 0 0 -5.1]);

[tcn ,ucn]= cranknic(’threebody ’ ,[0 10] ,...
[1.52 0 0 -4.6 1 0 0 -5.1] ,2000);

The graphs in Figure 7.21 show that the two methods are both able to
reproduce the elliptical orbits of the two planets around the Sun. Method
ode23 only required 543 (non-uniform) steps to generate a more accurate
solution than that generated by an implicit method with the same order
of accuracy, but which does not use step adaptivity.

Octave 7.3 ode23 requires 847 steps to generate a solution with a tol-
erance of 1e-6. �

7.9.3 Some stiff problems

Let us consider the following differential problem, proposed by [Gea71],
as a variant of the model problem (7.28):

{
y′(t) = λ(y(t) − g(t)) + g′(t), t > 0,

y(0) = y0,
(7.65)

where g is a regular function and λ � 0, whose solution is

y(t) = (y0 − g(0))eλt + g(t), t ≥ 0. (7.66)

It has two components, (y0 − g(0))eλt and g(t), the first being neg-
ligible with respect to the second one for t large enough. In partic-
ular, we set g(t) = t, λ = −100 and solve problem (7.65) over the
interval (0, 100) using the explicit Euler method: since in this case
f(t, y) = λ(y(t) − g(t)) + g′(t) we have ∂f/∂y = λ, and the stability
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Fig. 7.22. Solutions obtained using method (7.47) for problem (7.65) violating
the stability condition (h = 0.0055, left) and respecting it (h = 0.0054, right)

analysis performed in Section 7.4 suggests we choose h < 2/100. This
restriction is dictated by the presence of the component behaving like
e−100t and appears completely unjustified when we think of its weight
with respect to the whole solution (to get an idea, for t = 1 we have
e−100 ≈ 10−44). The situation gets worse using a higher order explicit
method, such as for instance the Adams-Bashforth (7.47) method of or-
der 3: the absolute stability region reduces (see Figure 7.12) and, conse-
quently, the restriction on h becomes even stricter, h < 0.00545. Violat-
ing – even slightly – such restriction produces completely unacceptable
solutions (as shown in Figure 7.22 on the left).

We thus face an apparently simple problem, but one that becomes
difficult to solve with an explicit method (and more generally with a
method which is not A-stable) due to the presence in the solution of
two components having a dramatically different behavior for t tending
to infinity: such a problem is said to be stiff.

More precisely, we say that a system of differential equations of the
form

y′(t) = Ay(t) + ϕ(t), A ∈ Rn×n, ϕ(t) ∈ Rn, (7.67)

where A has n distinct eigenvalues λj , j = 1, . . . , n, with Re(λj) < 0,
j = 1, . . . , n, is stiff if

rs =
maxj |Re(λj)|
minj |Re(λj)|

� 1.

The exact solution to (7.67) is

y(t) =
n∑

j=1

Cje
λjtvj + ψ(t), (7.68)

where C1, . . . , Cn are n constants and {vj} is a base formed by the eigen-
vectors of A, while ψ(t) is a given solution of the differential equation.



232 7 Ordinary differential equations

If rs � 1 we observe once again the presence of components of the so-
lution y which tend to zero with different speed. The component which
tends to zero fastest for t tending to infinity (the one associated to the
eigenvalue having maximal value) will be the one involving the strictest
restriction on the integration step, unless of course we use a method
which is absolutely stable under any condition.

Example 7.10 Let us consider the system y′ = Ay with t ∈ (0, 100) with
initial condition y(0) = y0, where y = (y1, y2)

T , y0 = (y1,0, y2,0)
T and

A =




0 1

−λ1λ2 λ1 + λ2



 ,

where λ1 and λ2 are two different negative numbers such that |λ1| � |λ2|.
Matrix A has eigenvalues λ1 and λ2 and eigenvectors v1 = (1, λ1)

T , v2 =
(1, λ2)

T . Thanks to (7.68) the system’s solution is

y(t) =




C1e

λ1t + C2e
λ2t

C1λ1e
λ1t + C2λ2e

λ2t





T

. (7.69)

The constants C1 and C2 are obtained by fulfilling the initial condition:

C1 =
λ2y1,0 − y2,0

λ2 − λ1
, C2 =

y2,0 − λ1y1,0

λ2 − λ1
.

Based on the remarks made earlier, the integration step of an explicit method
used for the resolution of such a system will depend uniquely on the eigenvalue
having maximal module, λ1. Let us assess this experimentally using the explicit
Euler method and choosing λ1 = −100, λ2 = −1, y1,0 = y2,0 = 1. In Figure
7.23 we report the solutions computed by violating (left) or respecting (right)
the stability condition h < 1/50. �

The definition of stiff problem can be extended, by exerting some
precautions, to the nonlinear case (see for instance [QSS06, Chapter
11]). One of the most studied nonlinear stiff problems is given by the
Van der Pol equation

d2x

dt2
= µ(1 − x2)

dx

dt
− x, (7.70)

proposed in 1920 and used in the study of circuits containing thermoionic
valves, the so-called vacuum tubes, such as cathodic tubes in television
sets or magnetrons in microwave ovens.

If we set y = (x, y)T , (7.70) is equivalent to the following nonlinear
first order system

y′ =

[
0 1

−1 µ(1 − x2)

]

y. (7.71)
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Fig. 7.24. Behavior of the components of the solutions y to system (7.71) for
µ = 1 (left) and µ = 10 (right)

Such system becomes increasingly stiff with the increase of the µ pa-
rameter. In the solution we find in fact two components which denote
totally different dynamics with the increase of µ. The one having the
fastest dynamics imposes a limitation on the integration step which gets
more and more prohibitive with the increase of µ’s value.

If we solve (7.70) using ode23 and ode45, we realize that these are too
costly when µ is large. With µ = 100 and initial condition y = (1, 1)T ,
ode23 requires 7835 steps and ode45 23473 steps to integrate between
t = 0 and t = 100. Reading the MATLAB help we discover that these
methods are not recommended for stiff problems: for these, other pro-
cedures are suggested, such as for instance the implicit methods ode23s
or ode15s. The difference in terms of number of steps is remarkable, as
shown in Table 7.1. Notice however that the number of steps for ode23s
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µ ode23 ode45 ode23s ode15s

0.1 471 509 614 586
1 775 1065 838 975
10 1220 2809 1005 1077
100 7835 23473 299 305
1000 112823 342265 183 220

Table 7.1. Behavior of the number of integration steps for various approxi-
mation methods with growing µ parameter

is smaller than that for ode23 only for large enough values of µ (thus for
very stiff problems).

7.10 What we haven’t told you

For a complete derivation of the whole family of the Runge-Kutta meth-
ods we refer to [But87], [Lam91] and [QSS06, Chapter 11].

For derivation and analysis of multistep methods we refer to [Arn73]
and [Lam91].

7.11 Exercises

Exercise 7.1 Apply the backward Euler and forward Euler methods for the
solution of the Cauchy problem

y′ = sin(t) + y, t ∈ (0, 1], with y(0) = 0, (7.72)

and verify that both converge with order 1.

Exercise 7.2 Consider the Cauchy problem

y′ = −te−y, t ∈ (0, 1], with y(0) = 0. (7.73)

Apply the forward Euler method with h = 1/100 and estimate the number of
exact significant digits of the approximate solution at t = 1 (use the property
that the value of the exact solution is included between −1 and 0).

Exercise 7.3 The backward Euler method applied to problem (7.73) re-
quires at each step the solution of the nonlinear equation: un+1 = un −
htn+1e

−un+1 = φ(un+1). The solution un+1 can be obtained by the follow-

ing fixed-point iteration: for k = 0, 1, . . . , compute u
(k+1)
n+1 = φ(u

(k)
n+1), with

u
(0)
n+1 = un. Find under which restriction on h these iterations converge.

Exercise 7.4 Repeat Exercise 7.1 for the Crank-Nicolson method.



7.11 Exercises 235

Exercise 7.5 Verify that the Crank-Nicolson method can be derived from the
following integral form of the Cauchy problem (7.5)

y(t) − y0 =

∫ t

t0

f(τ, y(τ))dτ

provided that the integral is approximated by the trapezoidal formula (4.19).

Exercise 7.6 Solve the model problem (7.28) with λ = −1+ i by the forward
Euler method and find the values of h for which we have absolute stability.

Exercise 7.7 Show that the Heun method defined in (7.52) is consistent.
Write a MATLAB program to implement it for the solution of the Cauchy
problem (7.72) and verify experimentally that the method has order of con-
vergence equal to 2 with respect to h.

Exercise 7.8 Prove that the Heun method (7.52) is absolutely stable if −2 ≤
hλ ≤ 0 where λ is real and negative.

Exercise 7.9 Prove formula (7.33).

Exercise 7.10 Prove the inequality (7.38).

Exercise 7.11 Prove the inequality (7.39).

Exercise 7.12 Verify the consistency of the method (7.46). Write a MAT-

LAB program to implement it for the solution of the Cauchy problem (7.72)
and verify experimentally that the method has order of convergence equal to
3 with respect to h. The methods (7.52) and (7.46) stand at the base of the
MATLAB program ode23 for the solution of ordinary differential equations.

Exercise 7.13 Prove that the method (7.46) is absolutely stable if −2.5 ≤
hλ ≤ 0 where λ is real and negative.

Exercise 7.14 The modified Euler method is defined as follows:

u∗
n+1 = un + hf(tn, un), un+1 = un + hf(tn+1, u

∗
n+1). (7.74)

Find under which condition on h this method is absolutely stable.

Exercise 7.15 (Thermodynamics) Solve equation (7.1) by the Crank-
Nicolson method and the Heun method when the body in question is a cube
with side equal to 1 m and mass equal to 1 Kg. Assume that T0 = 180K,
Te = 200K, γ = 0.5 and C = 100J/(Kg/K). Compare the results obtained by
using h = 20 and h = 10, for t ranging from 0 to 200 seconds.

Exercise 7.16 Use MATLAB to compute the region of absolute stability of
the Heun method.
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Exercise 7.17 Solve the Cauchy problem (7.16) by the Heun method and
verify its order.

Exercise 7.18 The displacement x(t) of a vibrating system represented by a
body of a given weight and a spring, subjected to a resistive force proportional
to the velocity, is described by the second-order differential equation x′′+5x′+
6x = 0. Solve it by the Heun method assuming that x(0) = 1 and x′(0) = 0,
for t ∈ [0, 5].

Exercise 7.19 The motion of a frictionless Foucault pendulum is described
by the system of two equations

x′′ − 2ω sin(Ψ)y′ + k2x = 0, y′′ + 2ω cos(Ψ)x′ + k2y = 0,

where Ψ is the latitude of the place where the pendulum is located, ω =
7.29 · 10−5 sec−1 is the angular velocity of the Earth, k =

√
g/l with g = 9.8

m/sec2 and l is the length of the pendulum. Apply the forward Euler method
to compute x = x(t) and y = y(t) for t ranging between 0 and 300 seconds
and Ψ = π/4.

Exercise 7.20 (Baseball trajectory) Using ode23, solve Problem 7.3 by
assuming that the initial velocity of the ball be v(0) = v0(cos(θ), 0, sin(θ))T ,
with v0 = 38 m/s, θ = 1 degree and an angular velocity equal to 180 ·1.047198
radiants per second. If x(0) = 0, after how many seconds (approximately) will
the ball touch the ground (i.e., z = 0)?
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Numerical methods for
(initial-)boundary-value problems

Boundary-value problems are differential problems set in an interval
(a, b) of the real line or in an open multidimensional region Ω ⊂ Rd

(d = 2, 3) for which the value of the unknown solution (or its deriva-
tives) is prescribed at the end-points a and b of the interval, or on the
boundary ∂Ω of the multidimensional region.

In the multidimensional case the differential equation will involve
partial derivatives of the exact solution with respect to the space co-
ordinates. Equations depending on time (denoted with t), like the heat
equation and the wave equation, are called initial-boundary-value prob-
lems. In that case initial conditions at t = 0 need to be prescribed as
well.

Some examples of boundary-value problems are reported below.

1. Poisson equation:

−u′′(x) = f(x), x ∈ (a, b), (8.1)

or (in several dimensions)

−∆u(x) = f(x), x = (x1, . . . , xd)T ∈ Ω, (8.2)

where f is a given function and ∆ is the so-called Laplace operator :

∆u =
d∑

i=1

∂2u

∂x2
i

.

The symbol ∂ · /∂xi denotes partial derivative with respect to the xi

variable, that is, for every point x0

∂u

∂xi
(x0) = lim

h→0

u(x0 + hei) − u(x0)
h

, (8.3)

where ei is i-th unitary vector of Rd.
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2. Heat equation:

∂u(x, t)
∂t

− µ
∂2u(x, t)

∂x2
= f(x, t), x ∈ (a, b), t > 0, (8.4)

or (in several dimensions)

∂u(x, t)
∂t

− µ∆u(x, t) = f(x, t), x ∈ Ω, t > 0, (8.5)

where µ > 0 is a given coefficient representing the thermal conduc-
tivity, and f is again a given function.

3. Wave equation:

∂2u(x, t)
∂t2

− c
∂2u(x, t)

∂x2
= 0, x ∈ (a, b), t > 0,

or (in several dimensions)

∂2u(x, t)
∂t2

− c∆u(x, t) = 0, x ∈ Ω, t > 0,

where c is a given positive constant.

For more general partial differential equations, the reader is referred for
instance to [QV94], [EEHJ96] or [Lan03].

Problem 8.1 (Hydrogeology) The study of filtration in groundwater
can lead, in some cases, to an equation like (8.2). Consider a portion Ω
occupied by a porous medium (like ground or clay). According to the
Darcy law, the water velocity filtration q = (q1, q2, q3)T is equal to the
variation of the water level φ in the medium, precisely

q = −K∇φ, (8.6)

where K is the constant hydraulic conductivity of the porous medium
and ∇φ denotes the spatial gradient of φ. Assume that the fluid density
is constant; then the mass conservation principle yields the equation
divq = 0, where divq is the divergence of the vector q and is defined as

divq =
3∑

i=1

∂qi

∂xi
.

Thanks to (8.6) we therefore find that φ satisfies the Poisson problem
∆φ = 0 (see Exercise 8.9). �
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Problem 8.2 (Thermodynamics) Let Ω ⊂ Rd be a volume occupied
by a fluid. Denoting by J(x, t) and T (x, t) the heat flux and the flow
temperature, respectively, the Fourier law states that heat flux is pro-
portional to the variation of the temperature T , that is

J(x, t) = −k∇T (x, t),

where k is a positive constant expressing the thermal conductivity coef-
ficient. Imposing the conservation of energy, that is, the rate of change of
energy of a volume equals the rate at which heat flows into it, we obtain
the heat equation

ρc
∂T

∂t
= k∆T, (8.7)

where ρ is the mass density of the fluid and c is the specific heat capacity
(per unit mass). If, in addition, heat is produced at the rate f(x, t) by
some other means (e.g., electrical heating), (8.7) becomes

ρc
∂T

∂t
= k∆T + f. (8.8)

For the solution of this problem see Example 8.4. �

L dxR dx

C dx 1/(G dx)

x x + dx

Fig. 8.1. An element of cable of length dx

Problem 8.3 (Communications) We consider a telegraph wire with
resistance R and self-inductance L per unit length. Assuming that the
current can drain away to ground through a capacitance C and a conduc-
tance G per unith length (see Figure 8.1), the equation for the voltage
v is

∂2v

∂t2
− c2 ∂2v

∂x2
= −α

∂v

∂t
− βv, (8.9)

where c2 = 1/(LC), α = R/L+G/C and β = RG/(LC). Equation (8.9)
is an example of a second order hyperbolic equation. The solution of this
problem is given in Example 8.7. �
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8.1 Approximation of boundary-value problems

The differential equations presented so far feature an infinite number of
solutions. With the aim of obtaining a unique solution we must impose
suitable conditions on the boundary ∂Ω of Ω and, for the time-dependent
equations, suitable initial conditions at time t = 0.

In this section we consider the Poisson equations (8.1) or (8.2). In
the one-dimensional case (8.1), to fix the solution one possibility is to
prescribe the value of u at x = a and x = b, obtaining

−u′′(x) = f(x) for x ∈ (a, b),

u(a) = α, u(b) = β
(8.10)

where α and β are two given real numbers. This is a Dirichlet boundary-
value problem, and is precisely the problem that we will face in the next
section.
Performing double integration it is easily seen that if f ∈ C0([a, b]), the
solution u exists and is unique; moreover it belongs to C2([a, b]).

Although (8.10) is an ordinary differential problem, it cannot be cast
in the form of a Cauchy problem for ordinary differential equations since
the value of u is prescribed at two different points.

In the two-dimensional case, the Dirichlet boundary-value problem
takes the following form: being given two functions f = f(x) and g =
g(x), find a function u = u(x) such that

−∆u(x) = f(x) for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω
(8.11)

Alternatively to the boundary condition on (8.11), we can prescribe a
value for the partial derivative of u with respect to the normal direction
to the boundary ∂Ω, in which case we will get a Neumann boundary-
value problem.

It can be proven that if f and g are two continuous functions and
the region Ω is regular enough, then the Dirichlet boundary-value prob-
lem (8.11) has a unique solution (while the solution of the Neumann
boundary-value problem is unique up to an additive constant).

The numerical methods which are used for its solution are based on
the same principles used for the approximation of the one-dimensional
boundary-value problem. This is the reason why in Sections 8.1.1 and
8.1.2 we will make a digression on the numerical solution of problem
(8.10).

With this aim we introduce on [a, b] a partition into intervals Ij =
[xj , xj+1] for j = 0, . . . , N with x0 = a and xN+1 = b. We assume for
simplicity that all intervals have the same length h.
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8.1.1 Approximation by finite differences

The differential equation must be satisfied in particular at any point xj

(which we call nodes from now on) internal to (a, b), that is

−u′′(xj) = f(xj), j = 1, . . . , N.

We can approximate this set of N equations by replacing the second
derivative with a suitable finite difference as we have done in Chapter 4
for the first derivatives. In particular, we observe that if u : [a, b] → R

is a sufficiently smooth function in a neighborhood of a generic point
x̄ ∈ (a, b), then the quantity

δ2u(x̄) =
u(x̄ + h) − 2u(x̄) + u(x̄ − h)

h2
(8.12)

provides an approximation to u′′(x̄) of order 2 with respect to h (see
Exercise 8.3). This suggests the use of the following approximation to
problem (8.10): find {uj}N

j=1 such that

−uj+1 − 2uj + uj−1

h2
= f(xj), j = 1, . . . , N (8.13)

with u0 = α and uN+1 = β. Equations (8.13) provide a linear system

Auh = h2f , (8.14)

where uh = (u1, . . . , uN )T is the vector of unknowns, f = (f(x1) +
α/h2, f(x2), . . . , f(xN−1), f(xN )+β/h2)T , and A is the tridiagonal ma-
trix

A = tridiag(−1, 2,−1) =







2 −1 0 . . . 0

−1 2
. . .

...

0
. . . . . . −1 0

... −1 2 −1
0 . . . 0 −1 2







. (8.15)

This system admits a unique solution since A is symmetric and positive
definite (see Exercise 8.1). Moreover, it can be solved by the Thomas
algorithm introduced in Section 5.4. We note however that, for small
values of h (and thus for large values of N), A is ill-conditioned. Indeed,
K(A) = λmax(A)/λmin(A) = Ch−2, for a suitable constant C indepen-
dent of h (see Exercise 8.2). Consequently, the numerical solution of sys-
tem (8.14), by either direct or iterative methods, requires special care. In
particular, when using iterative methods a suitable preconditioner ought
to be employed.
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It is possible to prove (see, e.g., [QSS06, Chapter 12]) that if f ∈
C2([a, b]) then

max
j=0,...,N+1

|u(xj) − uj | ≤
h2

96
max

x∈[a,b]
|f ′′(x)| (8.16)

that is, the finite difference method (8.13) converges with order two with
respect to h.

In Program 8.1 we solve the boundary-value problem
{−u′′(x) + δu′(x) + γu(x) = f(x) for x ∈ (a, b),

u(a) = α u(b) = β,
(8.17)

which is a generalization of problem (8.10). For this problem the finite
difference method, which generalizes (8.13), reads:




−uj+1 − 2uj + uj−1

h2
+ δ

uj+1 − uj−1

2h
+ γuj = f(xj), j = 1, . . . , N,

u0 = α, uN+1 = β.

The input parameters of Program 8.1 are the end-points a and b of
the interval, the number N of internal nodes, the constant coefficients
δ and γ and the function bvpfun specifying the function f . Finally,
ua and ub represent the values that the solution should attain at x=a
and x=b, respectively. Output parameters are the vector of nodes x and
the computed solution uh. Notice that the solutions can be affected by
spurious oscillations if h ≥ 2/|δ| (see Exercise 8.6).

Program 8.1. bvp: approximation of a two-point boundary-value problem by
the finite difference method

function [x,uh]=bvp(a,b,N,delta ,gamma ,bvpfun ,ua,ub ,...
varargin)

%BVP Solve two -point boundary value problems.
% [X,UH]=BVP(A,B,N,DELTA ,GAMMA ,BVPFUN ,UA ,UB) solves
% with the centered finite difference method the
% boundary -value problem
% -D(DU/DX)/DX+DELTA*DU/DX+GAMMA*U=BVPFUN
% on the interval (A,B) with boundary conditions
% U(A)=UA and U(B)=UB. BVPFUN can be an inline
% function.
h = (b-a)/(N+1);
z = linspace(a,b,N+2);
e = ones(N,1);
h2 = 0.5*h*delta;
A = spdiags([-e-h2 2*e+gamma*h^2 -e+h2],-1:1,N,N);
x = z(2:end -1);
f = h^2* feval(bvpfun ,x,varargin {:});
f=f’; f(1) = f(1) + ua; f(end) = f(end) + ub;
uh = A\f;
uh=[ua; uh; ub];
x = z;
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8.1.2 Approximation by finite elements

The finite element method represents an alternative to the finite differ-
ence method and is derived from a suitable reformulation of the differ-
ential problem.

Let us consider again (8.10) and multiply both sides of the differen-
tial equation by a generic function v ∈ C1([a, b]). Integrating the corre-
sponding equality on the interval (a, b) and using integration by parts
we obtain

b∫

a

u′(x)v′(x) dx − [u′(x)v(x)]ba =

b∫

a

f(x)v(x) dx.

By making the further assumption that v vanishes at the end-points
x = a and x = b, problem (8.10) becomes: find u ∈ C1([a, b]). such that
u(a) = α, u(b) = β and

b∫

a

u′(x)v′(x) dx =

b∫

a

f(x)v(x) dx (8.18)

for each v ∈ C1([a, b]) such that v(a) = v(b) = 0. This is called weak
formulation of problem (8.10). (Indeed, both u and the test function v
can be less regular than C1([a, b]), see, e.g. [QSS06], [QV94].)

Its finite element approximation is defined as follows:

find uh ∈ Vh such that uh(a) = α, uh(b) = β and

N∑

j=0

xj+1∫

xj

u′
h(x)v′

h(x) dx =

b∫

a

f(x)vh(x) dx, ∀vh ∈ V 0
h

(8.19)

where

Vh =
{
vh ∈ C0([a, b]) : vh|Ij

∈ P1, j = 0, . . . , N
}

,

i.e. Vh is the space of continuous functions on (a, b) whose restrictions
on every sub-interval Ij are linear polynomials. Moreover, V 0

h is the sub-
space of Vh of those functions vanishing at the end-points a and b. Vh is
called space of finite elements of degree 1.

The functions in V 0
h are piecewise linear polynomials (see Figure 8.2,

left). In particular, every function vh of V 0
h admits the representation

vh(x) =
N∑

j=1

vh(xj)ϕj(x),
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a bx1 x2 xN−1 xN

vh

xj−2 xj−1 xj+1 xj+2xj

ϕj

1

Fig. 8.2. To the left, a generic function vh ∈ V 0
h . To the right, the basis

function of V 0
h associated with the k-th node

where for j = 1, . . . , N,

ϕj(x) =






x − xj−1

xj − xj−1
if x ∈ Ij−1,

x − xj+1

xj − xj+1
if x ∈ Ij ,

0 otherwise.

Thus, ϕj is null at every node xi except at xj where ϕj(xj) = 1 (see Fig-
ure 8.2, right). The functions ϕj , j = 1, . . . , N are called shape functions
and provide a basis for the vector space V 0

h .
Consequently, we can limit ourselves to fulfill (8.19) only for the

shape functions ϕj , j = 1, . . . , N . By exploiting the fact that ϕj vanishes
outside the intervals Ij−1 and Ij , from (8.19) we obtain

∫

Ij−1∪Ij

u′
h(x)ϕ′

j(x) dx =
∫

Ij−1∪Ij

f(x)ϕj(x) dx, j = 1, . . . , N. (8.20)

On the other hand, we can write uh(x) =
∑N

j=1 ujϕj(x) + αϕ0(x) +
βϕN+1(x), where uj = uh(xj), ϕ0(x) = (a + h− x)/h for a ≤ x ≤ a + h,
and ϕN+1(x) = (x − b + h)/h for b − h ≤ x ≤ b, while both ϕ0(x) and
ϕN+1(x) are zero otherwise. By substituting this expression in (8.20),
we find that for all j = 1, . . . , N

uj−1

∫

Ij−1

ϕ′
j−1(x)ϕ′

j(x) dx + uj

∫

Ij−1∪Ij

ϕ′
j(x)ϕ′

j(x) dx

+uj+1

∫

Ij

ϕ′
j+1(x)ϕ′

j(x) dx =
∫

Ij−1∪Ij

f(x)ϕj(x) dx + B1,j + BN,j ,

where
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B1,j =






−α

∫

I0

ϕ′
0(x)ϕ′

1(x) dx = − α

x1 − a
if j = 1,

0 otherwise,

while

BN,j =






−β

∫

IN

ϕ′
N+1(x)ϕ′

j(x) dx = − β

b − xN
if j = N,

0 otherwise.

In the special case where all intervals have the same length h, then
ϕ′

j−1 = −1/h in Ij−1, ϕ′
j = 1/h in Ij−1 and ϕ′

j = −1/h in Ij , ϕ′
j+1 = 1/h

in Ij . Consequently, we obtain for j = 1, . . . , N

−uj−1 + 2uj − uj+1 = h

∫

Ij−1∪Ij

f(x)ϕj(x) dx + B1,j + BN,j .

This linear system has the same matrix as the finite difference system
(8.14), but a different right-hand side (and a different solution too, in
spite of coincidence of notation). Finite difference and finite element
solutions share however the same accuracy with respect to h when the
nodal maximum error is computed.

Obviously the finite element approach can be generalized to prob-
lems like (8.17) (also in the case when δ and γ depend on x). A further
generalization consists of using piecewise polynomials of degree greater
than 1, allowing the achievement of higher convergence orders. In these
cases, the finite element matrix does not coincide anymore with that of
finite differences, and the convergence order is greater than when using
piecewise linear polynomials.

See Exercises 8.1-8.8.

8.1.3 Approximation by finite differences of two-dimensional
problems

Let us consider a partial differential equation, for instance equation (8.2),
in a two-dimensional region Ω.

The idea behind finite differences relies on approximating the partial
derivatives that are present in the PDE again by incremental ratios com-
puted on a suitable grid (called the computational grid) made of a finite
number of nodes. Then the solution u of the PDE will be approximated
only at these nodes.

The first step therefore consists of introducing a computational grid.
Assume for simplicity that Ω is the rectangle (a, b) × (c, d). Let us in-
troduce a partition of [a, b] in subintervals (xk, xk+1) for k = 0, . . . , Nx,
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with x0 = a and xNx+1 = b. Let us denote by ∆x = {x0, . . . , xNx+1}
the set of end-points of such intervals and by hx = max

k=0,...,Nx

(xk+1 − xk)

their maximum length.
In a similar manner we introduce a discretization of the y-axis ∆y =

{y0, . . . , yNy+1} with y0 = c and yNy+1 = d. The cartesian product
∆h = ∆x × ∆y provides the computational grid on Ω (see Figure 8.3),
and h = max{hx, hy} is a characteristic measure of the grid-size. We
are looking for values ui,j which approximate u(xi, yj). We will assume
for the sake of simplicity that the nodes be uniformly spaced, that is,
xi = x0+ihx for i = 0, . . . , Nx+1 and yj = y0+jhy for j = 0, . . . , Ny+1.

x

y

x0 = a x1 x2 x3 x4 = b

y0 = c

y1

y2

y3

y4

y5

y6 = d

hx

hy

Fig. 8.3. The computational grid ∆h with only 15 internal nodes on a rec-
tangular domain

The second order partial derivatives of a function can be approxi-
mated by a suitable incremental ratio, as we did for ordinary deriva-
tives. In the case of a function of two variables, we define the following
incremental ratios:

δ2
xui,j =

ui−1,j − 2ui,j + ui+1,j

h2
x

,

δ2
yui,j =

ui,j−1 − 2ui,j + ui,j+1

h2
y

.
(8.21)

They are second order accurate with respect to hx and hy, respectively,
for the approximation of ∂2u/∂x2 and ∂2u/∂y2 at the node (xi, yj). If
we replace the second order partial derivatives of u with the formula



8.1 Approximation of boundary-value problems 247

(8.21), by requiring that the PDE is satisfied at all internal nodes of ∆h,
we obtain the following set of equations:

−(δ2
xui,j + δ2

yui,j) = fi,j , i = 1, . . . , Nx, j = 1, . . . , Ny. (8.22)

We have set fi,j = f(xi, yj). We must add the equations that enforce
the Dirichlet data at the boundary, which are

ui,j = gi,j ∀i, j such that (xi, yj) ∈ ∂∆h, (8.23)

where ∂∆h indicates the set of nodes belonging to the boundary ∂Ω of
Ω. These nodes are indicated by small squares in Figure 8.3. If we make
the further assumption that the computational grid is uniform in both
cartesian directions, that is, hx = hy = h, instead of (8.22) we obtain

− 1
h2

(ui−1,j + ui,j−1 − 4ui,j + ui,j+1 + ui+1,j) = fi,j ,

i = 1, . . . , Nx, j = 1, . . . , Ny

(8.24)

The system given by equations (8.24) (or (8.22)) and (8.23) allows the
computation of the nodal values ui,j at all nodes of ∆h. For every fixed
pair of indices i and j, equation (8.24) involves five unknown nodal values
as we can see in Figure 8.4. For that reason this finite difference scheme
is called the five-point scheme for the Laplace operator. We note that
the unknowns associated with the boundary nodes can be eliminated
using (8.23) (or (8.22)), and therefore (8.24) involves only N = NxNy

unknowns.

(i, j) (i + 1, j)(i − 1, j)

(i, j − 1)

(i, j + 1)

Fig. 8.4. The stencil of the five point scheme for the Laplace operator

The resulting system can be written in a more interesting form if
we adopt the lexicographic order according to which the nodes (and,
correspondingly, the unknown components) are numbered by proceeding
from left to right, from the top to the bottom. We obtain a system of the
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form (8.14), with a matrix A ∈ RN×N which takes the following block
tridiagonal form:

A = tridiag(D,T,D). (8.25)

There are Ny rows and Ny columns, and every entry (denoted by a
capital letter) consists of a Nx×Nx matrix. In particular, D ∈ RNx×Nx is
a diagonal matrix whose diagonal entries are −1/h2

y, while T ∈ RNx×Nx

is a symmetric tridiagonal matrix

T = tridiag(− 1
h2

x

,
2
h2

x

+
2
h2

y

,− 1
h2

x

).

A is symmetric since all diagonal blocks are symmetric. It is also positive
definite, that is vT Av > 0 ∀v ∈ RN , v �= 0. Actually, by partitioning v
in Ny vectors vi of length Nx we obtain

vT Av =
Ny∑

k=1

vT
k Tvk − 2

h2
y

Ny−1∑

k=1

vT
k vk+1. (8.26)

We can write T = 2/h2
yI + 1/h2

xK where K is the (symmetric and
positive definite) matrix given in (8.15). Consequently, (8.26) becomes

(vT
1 Kv1 + vT

2 Kv2 + . . . + vT
Ny

KvNy
)/h2

x

which is a strictly positive real number since K is positive definite and
at least one vector vi is non-null.

0 20 40 60 80

0

10

20

30

40

50

60

70

80

Fig. 8.5. Pattern of the matrix associated with the five-point scheme using
the lexicographic ordering of the unknowns
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Having proven that A is non-singular we can conclude that the finite
difference system admits a unique solution uh.

The matrix A is sparse; as such, it will be stored in the format sparse
of MATLAB (see Section 5.4). In Figure 8.5 (obtained by using the
command spy(A)) we report the structure of the matrix corresponding
to a uniform grid of 11× 11 nodes, after having eliminated the rows and
columns associated to the nodes of ∂∆h. It can be noted that the only
nonzero elements lie on five diagonals.

Since A is symmetric and positive definite, the associated system can
be solved efficiently by either direct or iterative methods, as illustrated
in Chapter 5. Finally, it is worth pointing out that A shares with its one-
dimensional analog the property of being ill-conditioned: indeed, its con-
dition number grows like h−2 as h tends to zero, where h = max(hx, hy).

In the Program 8.2 we construct and solve the system (8.22)-(8.23)
(using the command \, see Section 5.6). The input parameters a, b, c
and d denote the corners of the rectangular domain Ω = (a, c) × (b, d),
while nx and ny denote the values of Nx and Ny (the case Nx �= Ny is ad-
mitted). Finally, the two strings fun and bound represent the right-hand
side f = f(x, y) (otherwise called the source term) and the boundary
data g = g(x, y). The output is a two-dimensional array u whose i, j-th
entry is the nodal value ui,j . The numerical solution can be visualized
by the command mesh(x,y,u). The (optional) string uex represents the
exact solution of the original problem for those cases (of theoretical in-
terest) where this solution is known. In such cases the output parameter
error contains the nodal relative error between the exact and numerical
solution, which is computed as follows:

error = max
i,j

|u(xi, yj) − ui,j |
/
max

i,j
|u(xi, yj)|.

Program 8.2. poissonfd: approximation of the Poisson problem with Dirichlet
data by the five-point finite difference method

function [u,x,y,error ]= poissonfd(a,c,b,d,nx ,ny ,fun ,...
bound ,uex ,varargin)

%POISSONFD two -dimensional Poisson solver
% [U,X,Y]= POISSONFD(A,C,B,D,NX,NY,FUN ,BOUND) solves by
% the five -point finite difference scheme the problem
% -LAPL(U) = FUN in the rectangle (A,C)X(B,D) with
% Dirichlet boundary conditions U(X,Y)=BOUND(X,Y) for
% any (X,Y) on the boundary of the rectangle.
%
% [U,X,Y,ERROR ]= POISSONFD(A,C,B,D,NX ,NY ,FUN ,BOUND ,UEX)
% computes also the maximum nodal error ERROR with
% respect to the exact solution UEX. FUN ,BOUND and UEX
% can be online functions.
if nargin == 8

uex = inline(’0’,’x’,’y’);
end
nx=nx+1; ny=ny+1; hx=(b-a)/nx; hy=(d-c)/ny;
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nx1=nx+1; hx2=hx^2; hy2=hy^2;
kii =2/ hx2 +2/ hy2; kix=-1/hx2; kiy=-1/hy2;
dim=(nx+1)*( ny+1); K=speye(dim ,dim);
rhs=zeros(dim ,1);
y = c;
for m = 2:ny

x = a; y = y + hy;
for n = 2:nx

i = n+(m-1)*( nx+1);
x = x + hx;
rhs(i) = feval(fun ,x,y,varargin {:});
K(i,i) = kii; K(i,i-1) = kix;
K(i,i+1) = kix; K(i,i+nx1) = kiy;
K(i,i-nx1) = kiy;

end
end
rhs1 = zeros(dim ,1);
x = [a:hx:b];
rhs1 (1: nx1) = feval(bound ,x,c,varargin {:});
rhs1(dim -nx:dim) = feval(bound ,x,d,varargin {:});
y = [c:hy:d];
rhs1 (1: nx1:dim -nx) = feval(bound ,a,y,varargin {:});
rhs1(nx1:nx1:dim) = feval(bound ,b,y,varargin {:});
rhs = rhs - K*rhs1;
nbound = [[1: nx1],[dim -nx:dim],...

[1: nx1:dim -nx],[nx1:nx1:dim ]];
ninternal = setdiff ([1: dim],nbound );
K = K(ninternal ,ninternal );
rhs = rhs(ninternal );
utemp = K\rhs;
uh = rhs1;
uh (ninternal) = utemp;
k = 1; y = c;
for j = 1:ny+1

x = a;
for i = 1:nx1

u(i,j) = uh(k);
k = k + 1;
ue(i,j) = feval(uex ,x,y,varargin {:});
x = x + hx;

end
y = y + hy;

end
x = [a:hx:b];
y = [c:hy:d];
if nargout == 4

if nargin == 8
warning(’Exact solution not available ’);
error = [ ];

else
error = max(max(abs(u-ue)))/ max(max(abs(ue)));

end
end
return

Example 8.1 The transverse displacement u of an elastic membrane from
a reference plane Ω = (0, 1)2 under a load whose intensity is f(x, y) =
8π2 sin(2πx) cos(2πy) satisfies a Poisson problem like (8.2) in the domain Ω.
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The Dirichlet value of the displacement is prescribed on ∂Ω as follows: g = 0
on the sides x = 0 and x = 1, and g(x, 0) = g(x, 1) = sin(2πx), 0 < x < 1.
This problem admits the exact solution u(x, y) = sin(2πx) cos(2πy). In Figure
8.6 we show the numerical solution obtained by the five-point finite difference
scheme on a uniform grid. Two different values of h have been used: h = 1/10
(left) and h = 1/20 (right). When h decreases the numerical solution im-
proves, and actually the nodal relative error is 0.0292 for h = 1/10 and 0.0081
for h = 1/20. �

Fig. 8.6. Transverse displacement of an elastic membrane computed on two
uniform grids. On the horizontal plane we report the isolines of the numer-
ical solution. The triangular partition of Ω only serves the purpose of the
visualization of the results

Also the finite element method can be easily extended to the two-
dimensional case. To this end the problem (8.2) must be reformulated in
an integral form and the partition of the interval (a, b) in one dimension
must be replaced by a decomposition of Ω by polygons (typically, trian-
gles) called elements. The shape function ϕk will still be a continuous
function, whose restriction on each element is a polynomial of degree 1
on each element, which is equal to 1 at the k-th vertex (or node) of the
triangulation and 0 at all other vertices. For its implementation one can
use the MATLAB toolbox pde.

pde

8.1.4 Consistency and convergence

In the previous section we have shown that the solution of the finite
difference problem exists and is unique. Now we investigate the approx-
imation error. We will assume for simplicity that hx = hy = h. If

max
i,j

|u(xi, yj) − ui,j | → 0 as h → 0 (8.27)

the method is called convergent.
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As we have already pointed out, consistency is a necessary condition
for convergence. A method is consistent if the residual that is obtained
when the exact solution is plugged into the numerical scheme tends to
zero when h tends to zero. If we consider the five point finite difference
scheme, at every internal node (xi, yj) of ∆h we define

τh(xi, yj) = −f(xi, yj)

− 1
h2

[u(xi−1, yj) + u(xi, yj−1) − 4u(xi, yj) + u(xi, yj+1) + u(xi+1, yj)] .

This is the local truncation error at the node (xi, yj). By (8.2) we obtain

τh(xi, yj) =
{

∂2u

∂x2
(xi, yj) −

u(xi−1, yj) − 2u(xi, yj) + u(xi+1, yj)
h2

}

+
{

∂2u

∂y2
(xi, yj) −

u(xi, yj−1) − 2u(xi, yj) + u(xi, yj+1)
h2

}
.

Thanks to the analysis that was carried out in Section 8.1.3 we can
conclude that both terms vanish as h tends to 0. Thus

lim
h→0

τh(xi, yj) = 0, ∀(xi, yj) ∈ ∆h \ ∂∆h,

that is, the five-point method is consistent. It is also convergent, as stated
in the following Proposition (for its proof, see, e.g., [IK66]):

Proposition 8.1 Assume that the exact solution u ∈ C4(Ω̄), i.e.
all its partial derivatives up to the fourth order are continuous in
the closed domain Ω̄. Then there exists a constant C > 0 such that

max
i,j

|u(xi, yj) − ui,j | ≤ CMh2 (8.28)

where M is the maximum absolute value attained by the fourth order
derivatives of u in Ω̄.

Example 8.2 Let us verify that the five-point scheme applied to solve the
Poisson problem of Example 8.1 converges with order two with respect to h.
We start from h = 1/4 and, then we halve subsequently the value of h, until
h = 1/64, through the following instructions:

a=0;b=1;c=0;d=1;
f=inline(’8*pi^2* sin (2*pi*x).* cos(2*pi*y)’,’x’,’y’);
g=inline(’sin (2*pi*x).* cos (2*pi*y)’,’x’,’y’);
uex=g; nx=4; ny=4;
for n=1:5

[u,x,y,error(n)]= poissonfd(a,c,b,d,nx ,ny ,f,g,uex);
nx = 2*nx; ny = 2*ny;

end
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The vector containing the error is

format short e; error

1.3565e-01 4.3393e-02 1.2308e-02 3.2775e-03 8.4557e-04

As we can verify using the following commands

p=log(abs(error (1:end -1)./ error (2: end )))/ log (2)

1.6443e+00 1.8179e+00 1.9089e+00 1.9546e+00

this error decreases as h2 when h → 0. �

Let us summarize

1. Boundary-value problems are differential equations set in a spatial
domain Ω ⊂ Rd (which is an interval if d = 1) that require informa-
tion on the solution on the domain boundary;

2. finite difference approximations are based on the discretization of
the given differential equation at selected points (called nodes) where
derivatives are replaced by finite difference formulae;

3. the finite difference method provides a nodal vector whose compo-
nents converge to the corresponding nodal values of the exact solu-
tion quadratically with respect to the grid-size;

4. the finite element method is based on a suitable integral reformu-
lation of the original differential equation, then on the assumption
that the approximate solution is a piecewise polynomial;

5. matrices arising from both finite difference and finite element ap-
proximations are sparse and ill-conditioned.

8.2 Finite difference approximation of the heat
equation

We consider the one-dimensional heat equation (8.4) with homogeneous
Dirichlet boundary conditions u(a, t) = u(b, t) = 0 for any t > 0 and
initial condition u(x, 0) = u0(x) for x ∈ [a, b].

To solve this equation numerically we have to discretize both the x
and t variables. We can start by dealing with the x-variable, following the
same approach as in Section 8.1.1. We denote by uj(t) an approximation
of u(xj , t), j = 0, . . . , N , and approximate the Dirichlet problem (8.4)
by the scheme: for all t > 0

duj

dt
(t) − µ

h2
(uj−1(t) − 2uj(t) + uj+1(t)) = fj(t), j = 1, . . . , N − 1,

u0(t) = uN (t) = 0,
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where fj(t) = f(xj , t) and, for t = 0,

uj(0) = u0(xj), j = 0, . . . , N.

This is actually a semi-discretization of the heat equation, yielding a
system of ordinary differential equations of the following form






du
dt

(t) = − µ

h2
Au(t) + f(t), ∀t > 0,

u(0) = u0,

(8.29)

where u(t) = (u1(t), . . . , uN−1(t))T is the vector of unknowns, f(t) =
(f1(t), . . . , fN−1(t))T , u0 = (u0(x1), . . . , u0(xN−1))T and A is the tridi-
agonal matrix introduced in (8.15). Note that for the derivation of (8.29)
we have assumed that u0(x0) = u0(xN ) = 0, which is coherent with the
homogeneous Dirichlet boundary conditions.

A popular scheme for the integration of (8.29) with respect to time is
the so-called θ−method. Let ∆t > 0 be a constant time-step, and denote
by vk the value of a variable v referred at the time level tk = k∆t. Then
the θ-method reads

uk+1 − uk

∆t
= − µ

h2
A(θuk+1 + (1 − θ)uk) + θfk+1 + (1 − θ)fk,

k = 0, 1, . . .
u0 = u0

(8.30)
or, equivalently,

(
I +

µ

h2
θ∆tA

)
uk+1 =

(
I − µ

h2
∆t(1 − θ)A

)
uk + gk+1, (8.31)

where gk+1 = ∆t(θfk+1 +(1−θ)fk) and I is the identity matrix of order
N − 1.

For suitable values of the parameter θ, from (8.31) we can recover
some familiar methods that have been introduced in Chapter 7. For
example, if θ = 0 the method (8.31) coincides with the forward Euler
scheme and we can obtain uk+1 explicitly; otherwise, a linear system
(with constant matrix I + µθ∆tA/h2) needs to be solved at each time-
step.

Regarding stability, when f = 0 the exact solution u(x, t) tends to
zero for every x as t → ∞. Then we would expect the discrete solution to
have the same behaviour, in which case we would call our scheme (8.31)
asymptotically stable, this being coherent with what we did in Section
7.5 for ordinary differential equations.

If θ = 0, from (8.31) it follows that
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uk = (I − µ∆tA/h2)ku0, k = 1, 2, . . .

whence uk → 0 as k → ∞ iff

ρ(I − µ∆tA/h2) < 1. (8.32)

On the other hand, the eigenvalues λj of A are given by (see Exercise
8.2) λj = 2 − 2 cos(jπ/N), j = 1, . . . , N − 1. Then (8.32) is satisfied iff

∆t <
1
2µ

h2.

As expected, the forward Euler method is conditionally stable, and the
time-step ∆t should decay as the square of the grid spacing h.

In the case of the backward Euler method (θ = 1), we would have
from (8.31)

uk =
[
(I + µ∆tA/h2)−1

]k
u0, k = 1, 2, . . .

Since all the eigenvalues of the matrix (I+µ∆tA/h2)−1 are real, positive
and strictly less than 1 for every value of ∆t, this scheme is uncondition-
ally stable. More generally, the θ-scheme is unconditionally stable for all
the values 1/2 ≤ θ ≤ 1, and conditionally stable if 0 ≤ θ < 1/2 (see, for
instance, [QSS06, Chapter 13]).

As far as the accuracy of the θ-method is concerned, its local trun-
cation error is of the order of ∆t + h2 if θ �= 1

2 while it is of the order of
∆t2 + h2 if θ = 1

2 . The latter is the Crank-Nicolson method (see Section
7.3) and is therefore unconditionally stable and second-order accurate
with respect to both ∆t and h.

The same conclusions hold for the heat equation in a two-dimensional
domain. In this case in the scheme (8.30) one must substitute to the
matrix A/h2 the finite difference matrix defined in (8.25).

Program 8.3 solves numerically the heat equation on the time interval
(0, T ) and on the square domain Ω = (a, b) × (c, d) using the θ-method.
The input parameters are the vector xspan=[a,b], yspan=[c,d] and
tspan=[0,T], the number of discretization intervals in space (nstep(1))
and in time (nstep(2)), the string fun which contains the function
f(t, x1(t), x2(t)), g which contains the Dirichlet function and u0 that
defines the initial function u0(x1, x2). Finally, the real number theta is
the coefficient θ.
Program 8.3. heattheta: θ-method for the heat equation in a square domain

function [x,u]= heattheta(xspan ,tspan ,nstep ,theta ,mu ,...
u0,g,f,varargin)

%HEATTHETA solve the heat equation with the
% theta -method.
% [X,U]= HEATTHETA(XSPAN ,TSPAN ,NSTEP ,THETA ,MU,U0,G,F)
% solve the heat equation D U/DT - MU D^2U/DX^2 = F in
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% (XSPAN (1), XSPAN (2)) X (TSPAN (1), TSPAN (2)) using the
% theta -method with initial condition U(X,0)=U0(X) and
% Dirichlet boundary conditions U(X,T)=G(X,T) for
% X=XSPAN (1) and X=XSPAN (2). MU is a positive constant ,
% F, G and U0 are inline functions. NSTEP (1) is the
% number of space integration intervals , NSTEP (2)+1 is
% the number of time -integration intervals.
h = (xspan (2)- xspan (1))/ nstep (1);
dt = (tspan (2)- tspan (1))/ nstep (2);
N = nstep (1)+1;
e = ones(N,1);
D = spdiags([-e 2*e -e],[-1,0,1],N,N);
I = speye(N);
A = I+mu*dt*theta*D/h^2;
An = I-mu*dt*(1-theta )*D/h^2;
A(1,:) = 0; A(1,1) = 1;
A(N,:) = 0; A(N,N) = 1;
x = linspace(xspan (1),xspan (2),N);
x = x’;
fn = feval(f,x,tspan(1), varargin {:});
un = feval(u0,x,varargin {:});
[L,U]=lu(A);
for t = tspan (1)+dt:dt:tspan (2)

fn1 = feval(f,x,t,varargin {:});
rhs = An*un+dt*(theta*fn1+(1-theta )*fn);
temp = feval(g,[ xspan (1), xspan (2)],t,varargin {:});
rhs([1,N]) = temp;
u = L\rhs;
u = U\u;
fn = fn1;
un = u;

end
return

Example 8.3 We consider the heat equation (8.4) in (a, b) = (0, 1) with
µ = 1, f(x, t) = − sin(x) sin(t)+sin(x) cos(t), initial condition u(x, 0) = sin(x)
and boundary conditions u(0, t) = 0 and u(1, t) = sin(1) cos(t). In this case
the exact solution is u(x, t) = sin(x) cos(t). In Figure 8.7 we compare the
behavior of the errors maxi=0,...,N |u(xi, 1) − uM

i | with respect to the time-
step on a uniform grid in space with h = 0.002. {uM

i } are the values of the
finite difference solution computed at time tM = 1. As expected, for θ = 0.5
the θ-method is second order accurate until when the time-step is so small that
the spatial error dominates over the error due to the temporal discretization.
�

Example 8.4 (Thermodynamics) We consider an aluminum bar (whose
density is ρ = 2700 Kg/m3), of three meters length, with thermal conductivity
k = 273 W/mK (Watt per meters-Kelvin). We are interested to the evolution
of the temperature in the bar starting from the initial condition T (x, 0) = 500
K if x ∈ (1, 2), 250 K otherwise and subject to the following Dirichlet boundary
conditions: T (0, t) = T (3, t) = 250 K. In Figure 8.8 we report the evolution
of the temperature starting from the initial data computed with the Euler
method (θ = 1, left) and the Crank-Nicolson method (θ = 0.5, right). The
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Fig. 8.7. The error versus ∆t for the θ-method (for θ = 1, solid line, and
θ = 0.5 dashed line), for three different values of h: 0.008 (�), 0.004 (◦) and
0.002 (no symbols)

results show that the Crank-Nicolson method suffers a clear instability due
to the low smoothness of the initial datum (about this point, see also [QV94,
Chapter 11]). On the contrary, the implicit Euler method provides a stable
solution which decays correctly to 250 K as t grows since the source term f is
null. �
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Fig. 8.8. Temperature profiles in an aluminum bar at different time-steps
(from t = 0 to t = 2 seconds with steps of 0.25 seconds), obtained with the
backward Euler method (left) and the Crank-Nicolson method (right)

8.3 The wave equation

We consider the second-order hyperbolic equation in one dimension

∂2u

∂t2
− c

∂2u

∂x2
= f (8.33)
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When f = 0, the general solution of (8.33) is the d’Alembert traveling-
wave solution

u(x, t) = ψ1(
√

ct − x) + ψ2(
√

ct + x), (8.34)

for arbitrary functions ψ1 and ψ2.
In the sequel we consider problem (8.33) for x ∈ (a, b) and t > 0.

Therefore, we complete the differential equation with the initial data

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = v0(x), x ∈ (a, b),

and the boundary data

u(a, t) = 0 and u(b, t) = 0, t > 0. (8.35)

In this case, u may represent the transverse displacement of an elastic
vibrating string of length b−a, fixed at the endpoints, and c is a positive
coefficient depending on the specific mass of the string and on its tension.
The string is subjected to a vertical force of density f . The functions
u0(x) and v0(x) denote respectively the initial displacement and the
initial velocity of the string.

The change of variables

ω1 =
∂u

∂x
, ω2 =

∂u

∂t
,

transforms (8.33) into the first-order system

∂ω

∂t
+ A

∂ω

∂x
= f , x ∈ (a, b), t > 0 (8.36)

where

ω =
[

ω1

ω2

]
, A =

[
0 −1
−c 0

]
, f =

[
0
f

]
,

and the initial conditions are ω1(x, 0) = u′
0(x) and ω2(x, 0) = v0(x) for

x ∈ (a, b).
In general, we can consider systems of the form (8.36) where ω, f :

R × [0,∞) → Rp and A ∈ Rp×p is a matrix with constant coefficients.
This system is said hyperbolic if A is diagonalizable and has real eigen-
values, that is, if there exists a nonsingular matrix T ∈ Rp×p such that

A = TΛT−1,

where Λ = diag(λ1, ..., λp) is the diagonal matrix of the real eigenvalues
of A, while T = (ω1,ω2, . . . ,ωp) is the matrix whose column vectors are
the right eigenvectors of A. Thus
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Aωk = λkωk, k = 1, . . . , p.

Introducing the characteristic variables w = T−1ω, system (8.36) be-
comes

∂w
∂t

+ Λ
∂w
∂x

= g,

where g = T−1f . This is a system of p independent scalar equations of
the form

∂wk

∂t
+ λk

∂wk

∂x
= gk, k = 1, . . . , p.

When gk = 0, its solution is given by wk(x, t) = wk(x − λkt, 0), k =
1, . . . , p and thus the solution ω = Tw of problem (8.36) with f = 0 can
be written as

ω(x, t) =
p∑

k=1

wk(x − λkt, 0)ωk.

The curve (xk(t), t) in the plane (x, t) that satisfies x′
k(t) = λk is the k-th

characteristic curve and wk is constant along it. Then ω(x, t) depends
only on the initial datum at the points x−λkt. For this reason, the set of
p points that form the feet of the characteristics issuing from the point
(x, t),

D(t, x) = {x ∈ R : x = x − λkt , k = 1, ..., p}, (8.37)

is called the domain of dependence of the solution ω(x, t).
If (8.36) is set on a bounded interval (a, b) instead of on the whole real

line, the inflow point for each characteristic variable wk is determined
by the sign of λk. Correspondingly, the number of positive eigenvalues
determines the number of boundary conditions that can be assigned at
x = a, whereas at x = b it is admissible to assign a number of conditions
which equals the number of negative eigenvalues.

Example 8.5 System (8.36) is hyperbolic since A is diagonalizable with ma-
trix

T =




− 1√

c

1√
c

1 1





and presents two distinct real eigenvalues ±√
c (representing the propagation

velocities of the wave). Moreover, one boundary condition needs to be pre-
scribed at every end-point, as in (8.35). �
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Remark 8.1 Notice that replacing ∂2u
∂t2

by t2, ∂2u
∂x2 by x2 and f by one, the

wave equation becomes t2−cx2 = 1 which represents an hyperbola in the (x, t)
plane. Proceeding analogously in the case of the heat equation (8.4), we end
up with t−µx2 = 1 which represents a parabola in the (x, t) plane. Finally, for

the Poisson equation in two dimensions, replacing ∂2u
∂x2

1
by x2

1,
∂2u
∂x2

2
by x2

2 and f

by one, we get x2
1+x2

2 = 1 which represents an ellipse in the (x1, x2) plane. Due
to the geometric interpretation above, the corresponding differential operators
are classified as hyperbolic, parabolic and elliptic, respectively. •

8.3.1 Approximation by finite differences

To discretize in time the wave equation we use the Newmark method
(7.59) proposed in Chapter 7. Still denoting by ∆t the (uniform) time-
step and using in space the classical finite difference method on a grid
with nodes xj = x0 + jh, j = 0, . . . , N , x0 = a and xN = b, we obtain
the following scheme: for any n ≥ 1 find {un

j , vn
j , j = 1, . . . , N − 1} such

that

un+1
j = un

j + ∆tvn
j

+∆t2
[
ζ(cwn+1

j + f(tn+1, xj)) + (1/2 − ζ)(cwn
j + f(tn, xj))

]
,

vn+1
j = vn

j + ∆t
[
(1 − θ)(cwn

j + f(tn, xj)) + θ(cwn+1
j + f(tn+1, xj))

]
,

(8.38)

with u0
j = u0(xj) and v0

j = v0(xj) and wk
j = (uk

j+1 − 2uk
j + uk

j−1)/h2

for k = n or k = n + 1. System (8.38) must be completed imposing the
boundary conditions (8.35).

This method is implemented in Program 8.4. The input parameters
are the vectors xspan=[a,b] and tspan=[0,T], the number of discretiza-
tion intervals in space (nstep(1)) and in time (nstep(2)), the string fun
which contains the function f(t, x(t)) and the strings u0 and v0 to de-
fine the initial data. Finally, the vector param allows to specify the values
of the coefficients (param(1)=θ, param(2)=ζ). The Newmark method is
second order accurate with respect to ∆t if θ = 1/2, whereas it is first
order if θ �= 1/2. Moreover, the condition θ ≥ 1/2 is necessary to ensure
stability (see Section 7.8).

Program 8.4. newmarkwave: Newmark method for the wave equation

function [x,u]= newmarkwave(xspan ,tspan ,nstep ,param ,c,...
u0,v0,g,f,varargin)

%NEWMARKWAVE solve the wave equation with the Newmark
% method.
% [X,U]= NEWMARKWAVE(XSPAN ,TSPAN ,NSTEP ,PARAM ,C,U0,V0,G,F)
% solve the wave equation D^2 U/DT^2 - C D^2U/DX^2 = F
% in (XSPAN (1), XSPAN (2)) X (TSPAN (1), TSPAN (2)) using the
% Newmark method with initial conditions U(X,0)=U0(X),
% DU/DX(X,0)=V0(X) and Dirichlet boundary conditions
% U(X,T)=G(X,T) for X=XSPAN (1) and X=XSPAN (2). C is a
% positive constant , F,G,U0 and V0 are inline functions.
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% NSTEP (1) is the number of space integration intervals ,
% NSTEP (2)+1 is the number of time -integration intervals.
% PARAM (1)= THETA and PARAM (2)= ZETA.
% [X,U]= NEWMARKWAVE(XSPAN ,TSPAN ,NSTEP ,PARAM ,C,U0,V0,G,F,
% P1 ,P2 ,...) passes the additional parameters P1,P2 ,...
% to the functions U0 ,V0 ,G,F.
h = (xspan (2)- xspan (1))/ nstep (1);
dt = (tspan (2)- tspan (1))/ nstep (2);
theta = param (1); zeta = param (2);
N = nstep (1)+1;
e = ones(N,1); D = spdiags ([e -2*e e],[-1,0,1],N,N);
I = speye(N);
lambda = dt/h;
A = I-c*lambda ^2* zeta*D;
An = I+c*lambda ^2*(0.5 - zeta)*D;
A(1,:) = 0; A(1,1) = 1; A(N,:) = 0; A(N,N) = 1;
x = linspace(xspan (1),xspan (2),N);
x = x’;
fn = feval(f,x,tspan(1), varargin {:});
un = feval(u0,x,varargin {:});
vn = feval(v0,x,varargin {:});
[L,U]=lu(A);
alpha = dt^2* zeta; beta = dt^2*(0.5 - zeta);
theta1 = 1-theta;
for t = tspan (1)+dt:dt:tspan (2)

fn1 = feval(f,x,t,varargin {:});
rhs = An*un+dt*I*vn+alpha*fn1+beta*fn;
temp = feval(g,[ xspan (1), xspan (2)],t,varargin {:});
rhs([1,N]) = temp;
u = L\rhs; u = U\u;
v = vn + dt*((1- theta )*(c*D*un/h^2+fn)+...

theta *(c*D*u/h^2+ fn1 ));
fn = fn1; un = u; vn = v;

end
return

Example 8.6 Using Program 8.4 we study the evolution of the initial con-

dition u0(x) = e−10x2
for x ∈ (−2, 2). We assume v0 = 0 and homogeneous

Dirichlet boundary conditions. In Figure 8.9 we compare the solutions ob-
tained at time t = 3 using h = 0.04 and time-steps equal to 0.15 (dashed line),
to 0.075 (continuous line) and to 0.0375 (dashed-dotted line). The parameters
of the Newmark method are θ = 1/2 and ζ = 0.25, that ensure a second order
unconditionally stable method. �

Example 8.7 (Communications) In this example we use the equation
(8.9) to model how a telegraph wire transmits a pulse of voltage. The equation
is a combination of diffusion and wave equations, and accounts for effects of
finite velocity in a standard mass transport equation. In Figure 8.10 we com-
pare the evolution of a sinusoidal pulse using the wave equation (8.33) (dotted
line) and the telegraph equation (8.9) with c = 1, α = 2 and β = 1 (continuous
line). The presence of the diffusion effect is evident. �

An alternative approach to the Newmark method is to discretize the
first order equivalent system (8.36). We consider for simplicity the case
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Fig. 8.9. Comparison between the solutions obtained using the Newmark
method for a discretization with h = 0.04 and ∆t = 0.154 (dashed line),
∆t = 0.075 (continuous line) and ∆t = 0.0375 (dashed-dotted line)
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Fig. 8.10. Propagation of a pulse of voltage using the wave equation (dotted
line) and the telegraph equation (continuous line)

(a, b) = R and f = 0. Then, the half-plane {(x, t) : −∞ < x < ∞, t > 0}
is discretized by choosing a spatial grid size h, a temporal step ∆t and
the grid points (xj , t

n) as follows

xj = jh, j ∈ Z, tn = n∆t, n ∈ N.

By setting λ = ∆t/h, some popular schemes for the discretization of
(8.36) are:

1. the upwind (or forward Euler/uncentred) method

ωn+1
j = ωn

j − λ

2
A(ωn

j+1 − ωn
j−1)

+
λ

2
|A|(ωn

j+1 − 2ωn
j + ωn

j−1),
(8.39)

where |A| = T|Λ|T−1 and |Λ| is the diagonal matrix of the moduli
of the eigenvalues of A;
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2. the Lax-Wendroff method

ωn+1
j = ωn

j − λ

2
A(ωn

j+1 − ωn
j−1)

+
λ2

2
A2(ωn

j+1 − 2ωn
j + ωn

j−1).
(8.40)

The upwind method is first order accurate (in time and in space),
while the Lax-Wendroff scheme is second order.

About stability, since all these schemes are explicit, they can only
be conditionally stable. In particular, the upwind and the Lax-Wendroff
schemes satisfy ‖ωn‖∆ ≤ ‖ω0‖∆, where

‖v‖∆ =

√√
√√h

∞∑

j=−∞
v2

j , v = (vj),

is a discrete norm under the following condition

∆t <
h

ρ(A)
, (8.41)

known as the CFL or Courant, Friedrichs and Lewy condition. As usual
ρ(A) denotes the spectral radius of A. For the proof, see, e.g., [QV94],
[LeV02], [GR96], [QSS06, Chapter 13].

See Exercises 8.9-8.10.

8.4 What we haven’t told you

We could simply say that we have told you almost nothing, since the field
of numerical analysis which is devoted to the numerical approximation
of partial differential equations is so broad and multifaceted to deserve
an entire monograph simply for addressing the most essential concepts
(see, e.g., [TW98], [EEHJ96]).

We would like to mention that the finite element method is nowadays
probably the most widely diffused method for the numerical solution
of partial differential equations (see, e.g., [QV94], [Bra97], [BS01]). As
already mentioned the MATLAB toolbox pde allows the solution of a
broad family of partial differential equations by the linear finite element
method.

Other popular techniques are the spectral methods (see, [CHQZ06],
[Fun92], [BM92], [KS99]) and the finite volume method (see, [Krö98],
[Hir88] and [LeV02]).

Octave 8.1 Neither Octave nor Octave-forge feature a pde toolbox.
However, several Octave programs for partial differential equations can
be found surfing on the web. �



264 8 Numerical methods for (initial-)boundary-value problems

8.5 Exercises

Exercise 8.1 Verify that matrix (8.15) is positive definite.

Exercise 8.2 Verify that the eigenvalues of the matrix A∈ R(N−1)×(N−1),
defined in (8.15), are

λj = 2(1 − cos(jθ)), j = 1, . . . , N − 1,

while the corresponding eigenvectors are

qj = (sin(jθ), sin(2jθ), . . . , sin((N − 1)jθ))T ,

where θ = π/N . Deduce that K(A) is proportional to h−2.

Exercise 8.3 Prove that the quantity (8.12) provides a second order approx-
imation of u′′(x̄) with respect to h.

Exercise 8.4 Compute the matrix and the right-hand side of the numerical
scheme that we have proposed to approximate problem (8.17).

Exercise 8.5 Use the finite difference method to approximate the boundary-
value problem





−u′′ +

k

T
u =

w

T
in (0, 1),

u(0) = u(1) = 0,

where u = u(x) represents the vertical displacement of a string of length 1,
subject to a transverse load of intensity w per unit length. T is the tension and
k is the elastic coefficient of the string. For the case in which w = 1+sin(4πx),
T = 1 and k = 0.1, compute the solution corresponding to h = 1/i, i =
10, 20, 40, and deduce the order of accuracy of the method.

Exercise 8.6 We consider problem (8.17) on the interval (0, 1) with γ = 0,
f = 0, α = 0 and β = 1. Using the Program 8.1 find the maximum value hcrit

of h for which the numerical solution is monotone (as is the exact solution)
when δ = 100. What happens if δ = 1000? Suggest an empirical formula for
hcrit(δ) as a function of δ, and verify it for several values of δ.

Exercise 8.7 Use the finite difference method to solve problem (8.17) in the
case where the following Neumann boundary conditions are prescribed at the
endpoints

u′(a) = α, u′(b) = β.

Use the formulae given in (4.11) to discretize u′(a) and u′(b).
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Exercise 8.8 Verify that, when using a uniform grid, the right-hand side
of the system associated with the centered finite difference scheme coincides
with that of the finite element scheme provided that the composite trapezoidal
formula is used to compute the integrals on the elements Ik−1 and Ik.

Exercise 8.9 Verify that div∇φ = ∆φ, where ∇ is the gradient operator
that associates to a function u the vector whose components are the first
order partial derivatives of u.

Exercise 8.10 (Thermodynamics) Consider a square plate whose side
length is 20 cm and whose thermal conductivity is k = 0.2 cal/sec·cm·C.
Denote by Q = 5 cal/cm3·sec the heat production rate per unit area. The
temperature T = T (x, y) of the plate satisfies the equation −∆T = Q/k. As-
suming that T is null on three sides of the plate and is equal to 1 on the fourth
side, determine the temperature T at the center of the plate.
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Solutions of the exercises

9.1 Chapter 1

Solution 1.1 Only the numbers of the form ±0.1a2 · 2e with a2 = 0, 1 and
e = ±2,±1, 0 belong to the set F(2, 2,−2, 2). For a given exponent, we can
represent in this set only the two numbers 0.10 and 0.11, and their opposites.
Consequently, the number of elements belonging to F(2, 2,−2, 2) is 20. Finally,
εM = 1/2.

Solution 1.2 For any fixed exponent, each of the digits a2, . . . , at can assume
β different values, while a1 can assume only β−1 values. Therefore 2(β−1)βt−1

different numbers can be represented (the 2 accounts for the positive and
negative sign). On the other hand, the exponent can assume U −L+1 values.
Thus, the set F(β, t, L, U) contains 2(β−1)βt−1(U −L+1) different elements.

Solution 1.3 Thanks to the Euler formula i = eiπ/2; we obtain ii = e−π/2,
that is, a real number. In MATLAB

>> exp(-pi/2)

ans =

0.2079

>> i^i

ans =

0.2079

Solution 1.4 Use the instruction U=2*eye(10)-3*diag(ones(8,1),2) (re-
spectively, L=2*eye(10)-3*diag(ones(8,1),-2)).

Solution 1.5 We can interchange the third and seventh rows of the previous
matrix using the instructions: r=[1:10]; r(3)=7; r(7)=3; Lr=L(r,:). Notice
that the character : in L(r,:) ensures that all columns of L are spanned in the L(r,:)
usual increasing order (from the first to the last). To interchange the fourth
column with the eighth column we can write c=[1:10]; c(8)=4; c(4)=8;

Lc=L(:,c). Similar instructions can be used for the upper triangular matrix.
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Solution 1.6 We can define the matrix A = [v1;v2;v3;v4] where v1, v2,
v3 and v4 are the 4 given row vectors. They are linearly independent iff the
determinant of A is different from 0, which is not true in our case.

Solution 1.7 The two given functions f and g have the symbolic expression:

>> syms x

>> f=sqrt(x^2+1); pretty(f)

(x2+1)1/2

>> g=sin(x^3)+cosh(x); pretty(g)

sin(x3) + cosh(x)

The command pretty(f) prints the symbolic expression f in a format thatpretty
resembles type-set mathematics. At this stage, the symbolic expression of the
first and second derivatives and the integral of f can be obtained with the
following instructions:

>> diff(f,x)

ans =

1/(x^2+1)^(1/2)*x

>> diff(f,x,2)

ans =

-1/(x^2+1)^(3/2)*x^2+1/(x^2+1)^(1/2)

>> int(f,x)

ans =

1/2*x*(x^2+1)^(1/2)+1/2*asinh(x)

Similar instructions can be used for the function g.

Solution 1.8 The accuracy of the computed roots downgrades as the polyno-
mial degree increases. This experiment reveals that the accurate computation
of the roots of a polynomial of high degree can be troublesome.

Solution 1.9 Here is a possible program to compute the sequence:

function I=sequence(n)
I = zeros(n+2 ,1); I(1) = (exp (1) -1)/ exp (1);
for i = 0:n, I(i+2) = 1 - (i+1)*I(i+1); end

The sequence computed from this program doesn’t tend to zero (as n in-
creases), but it diverges with alternating sign.

Solution 1.10 The anomalous behavior of the computed sequence is due to
the propagation of roundoff errors from the innermost operation. In particular,
when 41−nz2

n is less than εM/2, the elements of the sequence are equal to 0.
This happens for n ≥ 29.

Solution 1.11 The proposed method is a special instance of the Monte Carlo
method and is implemented by the following program:
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function mypi=pimontecarlo(n)
x = rand(n,1); y = rand(n,1);
z = x.^2+y.^2;
v = (z <= 1);
m=sum(v); mypi =4*m/n;

The command rand generates a sequence of pseudo-random numbers. The
instruction v = (z <= 1) is a shortand version of the following procedure: we
check whether z(k) <= 1 for any component of the vector z. If the inequality
is satisfied for the k-th component of z (that is, the point (x(k),y(k)) belongs
to the interior of the unit circle) v(k) is set equal to 1, and to 0 otherwise.
The command sum(v) computes the sum of all components of v, that is, the sum
number of points falling in the interior of the unit circle.

By launching the program as mypi=pimontecarlo(n) for different values
of n, when n increases, the approximation mypi of π becomes more accurate.
For instance, for n=1000 we obtain mypi=3.1120, whilst for n=300000 we have
mypi=3.1406.

Solution 1.12 To answer the question we can use the following function:

function pig=bbpalgorithm(n)
pig = 0;
for m=0:n

m8 = 8*m;
pig = pig + (1/16)^m*(4/( m8+1) -(2/(m8+4)+ ...

1/(m8 +5)+1/( m8 +6)));
end
return

For n=10 we obtain an approximation pig of π that coincides (in the MATLAB

precision) with the persistent MATLAB variable pi. In fact, this algorithm is
extremely efficient and allows the rapid computation of hundreds of significant
digits of π.

Solution 1.13 The binomial coefficient can be computed by the following
program (see also the MATLAB function nchoosek): nchoosek
function bc=bincoeff(n,k)
k = fix(k); n = fix(n);
if k > n, disp(’k must be between 0 and n’);

break; end
if k > n/2, k = n-k; end
if k <= 1, bc = n^k; else

num = (n-k+1):n; den = 1:k; el = num./den;
bc = prod(el);

end

The command fix(k) rounds k to the nearest integer smaller than k. fix
The command disp(string) displays the string, without printing its name. disp
In general, the command break terminates the execution of for and while break
loops. If break is executed in an if, it terminates the statement at that point.
Finally, prod(el) computes the product of all elements of the vector el. prod

Solution 1.14 The following functions compute fn using the form fi = fi−1+
fi−2 (fibrec) or using the form (1.14) (fibmat):
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function f=fibrec(n)
if n == 0

f = 0;
elseif n == 1

f = 1;
else

f = fibrec(n-1)+ fibrec(n-2);
end
return

function f=fibmat(n)
f = [0;1];
A = [1 1; 1 0];
f = A^n*f;
f = f(1);
return

For n=20 we obtain the following results:

>> t=cputime; fn=fibrec(20), cpu=cputime-t

fn =

6765

cpu =

1.3400

>> t=cputime; fn=fibmat(20), cpu=cputime-t

fn =

6765

cpu =

0

The recursive function fibrec requires much more CPU time than fibmat.
The latter requires to compute only the power of a matrix, an easy operation
in MATLAB.

9.2 Chapter 2

Solution 2.1 The command fplot allows us to study the graph of the given
function f for various values of γ. For γ = 1, the corresponding function does
not have real zeros. For γ = 2, there is only one zero, α = 0, with multiplicity
equal to four (that is, f(α) = f ′(α) = f ′′(α) = f ′′′(α) = 0, while f (4)(α) �= 0).
Finally, for γ = 3, f has two distinct zeros, one in the interval (−3,−1) and
the other one in (1, 3). In the case γ = 2, the bisection method cannot be
used since it is impossible to find an interval (a, b) in which f(a)f(b) < 0.
For γ = 3, starting from the interval [a, b] = [−3,−1], the bisection method
(Program 2.1) converges in 34 iterations to the value α = −1.85792082914850
(with f(α) 	 −3.6 · 10−12), using the following instructions:

>> f=inline(’cosh(x)+cos(x)-3’); a=-3; b=-1; tol=1.e-10; nmax=200;

>> [zero,res,niter]=bisection(f,a,b,tol,nmax)

zero =

-1.8579
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res =

-3.6872e-12

niter =

34

Similarly, choosing a=1 and b=3, for γ = 3 the bisection method converges after
34 iterations to the value α = 1.8579208291485 with f(α) 	 −3.6877 · 10−12.

Solution 2.2 We have to compute the zeros of the function f(V ) = pV +
aN2/V − abN3/V 2 − pNb − kNT . Plotting the graph of f , we see that this
function has just a simple zero in the interval (0.01, 0.06) with f(0.01) < 0 and
f(0.06) > 0. We can compute this zero using the bisection method as follows:

>> f=inline(’35000000*x+401000./x-17122.7./x.^2-1494500’);

>> [zero,res,niter]=bisection(f,0.01,0.06,1.e-12,100)

zero =

0.0427

res =

-6.3814e-05

niter =

35

Solution 2.3 The unknown value of ω is the zero of the function f(ω) =
s(1, ω)−1 = 9.8[sinh(ω)− sin(ω)]/(2ω2)−1. From the graph of f we conclude
that f has a unique real zero in the interval (0.5, 1). Starting from this interval,
the bisection method computes the value ω = 0.61214447021484 with the
desired tolerance in 15 iterations as follows:

>> f=inline(’9.8/2*(sinh (omega)- sin(omega))./omega.^2 -1’,’omega’);

>> [zero,res,niter]=bisection(f,0.5,1,1.e-05,100)

zero =

6.1214e-01

res =

3.1051e-06

niter =

15

Solution 2.4 The inequality (2.6) can be derived by observing that |e(k)| <
|I(k)|/2 with |I(k)| < 1

2
|I(k−1)| < 2−k−1(b − a). Consequently, the error at the

iteration kmin is less than ε if kmin is such that 2−kmin−1(b − a) < ε, that is,
2−kmin−1 < ε/(b − a), which proves (2.6).

Solution 2.5 The first formula is less sensitive to the roundoff error.

Solution 2.6 In Solution 2.1 we have analyzed the zeros of the given function
with respect to different values of γ. Let us consider the case when γ = 2.
Starting from the initial guess x(0) = 1, the Newton method (Program 2.2)
converges to the value ᾱ = 0.0056 in 18 iterations with tol=1.e-10 while the
exact zero of f is equal to 0. This discrepancy is due to the fact that f is almost
a constant in a neighborhood of its zero. Actually, the corresponding residual
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computed by MATLAB is 0. Let us set now γ = 3. The Newton method with
tol=1.e-16 converges to the value 1.85792082915020 in 9 iterations starting
from x(0) = 1, while if x(0) = −1 after 10 iterations it converges to the value
−1.85792082915020 (in both cases the residuals are zero in MATLAB).

Solution 2.7 The square and the cube roots of a number a are the solutions
of the equations x2 = a and x3 = a, respectively. Thus, the corresponding
algorithms are: for a given x(0) compute

x(k+1) =
1

2

(
x(k) +

a

x(k)

)
, k ≥ 0 for the square root,

x(k+1) =
1

3

(
2x(k) +

a

(x(k))2

)
, k ≥ 0 for the cube root.

Solution 2.8 Setting δx(k) = x(k) − α, from the Taylor expansion of f we
find:

0 = f(α) = f(x(k)) − δx(k)f ′(x(k)) +
1

2
(δx(k))2f ′′(x(k)) + O((δx(k))3). (9.1)

The Newton method yields

δx(k+1) = δx(k) − f(x(k))/f ′(x(k)). (9.2)

Combining (9.1) with (9.2), we have

δx(k+1) =
1

2
(δx(k))2

f ′′(x(k))

f ′(x(k))
+ O((δx(k))3).

After division by (δx(k))2 and letting k → ∞ we prove the convergence result.

Solution 2.9 For certain values of β the equation (2.2) can have two roots
that correspond to different configurations of the rods system. The two initial
values that are suggested have been chosen conveniently to allow the Newton
method to converge toward one or the other root, respectively. We solve the
problem for β = kπ/100 with k = 0, . . . , 80 (if β > 2.6389 the Newton method
does not converge since the system has no admissible configuration). We use
the following instructions to obtain the solution of the problem (shown in
Figure 9.1):

>> a1=10; a2=13; a3=8; a4=10;

>> ss = num2str((a1^2 + a2^2 - a3^2+ a4^2)/(2*a2*a4),15);

>> n=100; x01=-0.1; x02=2*pi/3; nmax=100;

>> for i=0:80

w = i*pi/n; k=i+1; beta(k) = w;

ws = num2str(w,15);

f = inline([’10/13*cos(’,ws,’)-cos(x)

-cos(’,ws,’-x)+’,ss],’x’);

df = inline([’sin(x)-sin(’,ws,’-x)’],’x’);

[zero,res,niter]=newton(f,df,x01,1e-12,nmax);



9.2 Chapter 2 273

alpha1(k) = zero; niter1(k) = niter;

[zero,res,niter]=newton(f,df,x02,1e-12,nmax);

alpha2(k) = zero; niter2(k) = niter;

end

The components of the vectors alpha1 and alpha2 are the angles computed for
different values of β, while the components of the vectors niter1 and niter2

are the number of Newton iterations (5-7) necessary to compute the zeros with
the requested tolerance.
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Fig. 9.1. The two curves representing the two possible configurations which
correspond to the choice of the parameter β ∈ [0, 2π/3]

Solution 2.10 From an inspection of its graph we see that f has two positive
real zeros (α2 	 1.5 and α3 	 2.5) and one negative (α1 	 −0.5). The Newton
method converges in 4 iterations (having set x(0) = −0.5 and tol = 1.e-10)
to the value α1:

>> f=inline(’exp(x)-2*x^2’); df=inline(’exp(x)-4*x’);

>> x0=-0.5; tol=1.e-10; nmax=100;

>> format long; [zero,res,niter]=newton(f,df,x0,tol,nmax)

zero =

-0.53983527690282

res =

0

niter =

4

The given function has a maximum at x̄ 	 0.3574 (which can be obtained
by applying the Newton method to the function f ′): for x(0) < x̄ the method
converges to the negative zero. If x(0) = x̄ the Newton method cannot be
applied since f ′(x̄) = 0. For x(0) > x̄ the method converges to the positive
zero.

Solution 2.11 Let us set x(0) = 0 and tol= 10−17. The Newton method
converges in 39 iterations to the value 0.64118239763649, which we identify
with the exact zero α. We can observe that the (approximate) errors x(k) −α,
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for k = 0, 1, . . . , 29, decrease only linearly when k increases. This behavior is
due to the fact that α has multiplicity greater than 1 (see Figure 9.2). To
recover a second-order method we can use the modified Newton method.
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Fig. 9.2. Error vs iteration number of the Newton method for the computation
of the zero of the function f(x) = x3 − 3x22−x + 3x4−x − 8−x

Solution 2.12 We should compute the zero of the function f(x) = sin(x) −√
2gh/v2

0 . From an inspection of its graph, we can conclude that f has one zero
in the interval (0, π/2). The Newton method with x(0) = π/4 and tol= 10−10

converges in 5 iterations to the value 0.45862863227859.

Solution 2.13 Using the data given in the exercise, the solution can be ob-
tained with the following instructions:

>> f=inline(’6000-1000*(1+x).*((1+x).^5 - 1)./x’);

>> df=inline(’1000*((1+x).^5.*(1-5*x) - 1)./(x.^2)’);

>> [zero,res,niter]=bisection(f,0.01,0.1,1.e-12,4);

>> [zero,res,niter]=newton(f,df,zero,1.e-12,100);

The Newton method converges to the desired result in 3 iterations.

Solution 2.14 By a graphical study, we see that (2.32) is satisfied for a value
of α in (π/6, π/4). Using the following instructions:

>> f=inline(’-l2*cos(g+a)/sin(g+a)^2-l1*cos(a)/sin(a)^2’,...

’a’,’g’,’l1’,’l2’);

>> df=inline(’l2/sin(g+a)+2*l2*cos(g+a)^2/sin(g+a)^3+...

l1/sin(a)+2*l1*cos(a)^2/sin(a)^3’,’a’,’g’,’l1’,’l2’)

>> [zero,res,niter]=newton(f,df,pi/4,1.e-15,100,3*pi/5,8,10);

the Newton method provides the approximate value 0.59627992746547 in 6
iterations, starting from x(0) = π/4. We deduce that the maximum length of
a rod that can pass in the corridor is L = 30.84.



9.2 Chapter 2 275

Solution 2.15 If α is a zero of f with multiplicity m, then there exists a
function h such that h(α) �= 0 and f(x) = h(x)(x − α)m. By computing the
first derivative of the iteration function of the Newton method, we have

φ′
N (x) = 1 − [f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2
=

f(x)f ′′(x)

[f ′(x)]2
.

By replacing f , f ′ and f ′′ with the corresponding expressions as functions of
h(x) and (x − α)m, we obtain limx→α φ′

N (x) = 1 − 1/m, hence φ′
N (α) = 0

if and only if m = 1. Consequently, if m = 1 the method converges at least
quadratically, according to (2.9). If m > 1 the method converges with order 1
following Proposition 2.1.

Solution 2.16 Let us inspect the graph of f by using the following com-
mands:

>> f= ’x.^3+4*x.^2-10’; fplot(f,[-10,10]); grid on;

>> fplot(f,[-5,5]); grid on;

>> fplot(f,[0,5]); grid on

We can see that f has only one real zero, equal approximately to 1.36 (see
Figure 9.3). The iteration function and its derivative are:

φ(x) =
2x3 + 4x2 + 10

3x2 + 8x
= − f(x)

3x2 + 8x
+ x,

φ′(x) =
(6x2 + 8x)(3x2 + 8x) − (6x + 8)(2x3 + 4x2 + 10)

(3x2 + 8x)2
,

and φ(α) = α. We easily deduce that φ′(α) = 0 by noting that φ′(x) =
(6x + 8)f(x)/(3x2 + 8x)2. Consequently, the proposed method converges (at
least) quadratically.
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Fig. 9.3. Graph of f(x) = x3 + 4x2 − 10 for x ∈ [0, 2]

Solution 2.17 The proposed method is convergent at least with order 2 since
φ′(α) = 0.
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Solution 2.18 By keeping the remaining parameters unchanged, the method
converges after only 3 iterations to the value 0.64118573649623 which differs by
less than 10−9 from the result previously computed. However, the behavior of
the function, which is quite flat near x = 0, suggests that the result computed
previously could be more accurate. In Figure 9.4 we show the graph of f in
(0.5, 0.7), obtained with the following instructions:

>> f=’x^3-3*x^2*2^(-x) + 3*x*4^(-x) - 8^(-x)’;

>> fplot(f,[0.5 0.7]); grid on
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Fig. 9.4. Graph of f(x) = x3 − 3x22−x + 3x4−x − 8−x for x ∈ [0.5, 0.7]

9.3 Chapter 3

Solution 3.1 Since x ∈ (x0, xn), there exists an interval Ii = (xi−1, xi) such
that x ∈ Ii. We can easily see that maxx∈Ii |(x − xi−1)(x − xi)| = h2/4. If
we bound |x − xi+1| above by 2h, |x − xi−2| by 3h and so on, we obtain the
inequality (3.6).

Solution 3.2 In all cases we have n = 4 and thus we should estimate the fifth
derivative of each function in the given interval. We find: maxx∈[−1,1] |f (5)

1 | <

1.18, maxx∈[−1,1] |f (5)
2 | < 1.54, maxx∈[−π/2,π/2] |f (5)

3 | < 1.41. The correspond-
ing errors are therefore bounded by 0.0018, 0.0024 and 0.0211, respectively.

Solution 3.3 Using the command polyfit we compute the interpolating
polynomials of degree 3 in the two cases:

>> years=[1975 1980 1985 1990];

>> east=[70.2 70.2 70.3 71.2];

>> west=[72.8 74.2 75.2 76.4];

>> ceast=polyfit(years,east,3);

>> cwest=polyfit(years,west,3);

>> esteast=polyval(ceast,[1970 1983 1988 1995])
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esteast =

69.6000 70.2032 70.6992 73.6000

>> estwest=polyval(cwest,[1970 1983 1988 1995])

estwest =

70.4000 74.8096 75.8576 78.4000

Thus, for Western Europe the life expectation in the year 1970 is equal to
70.4 years (estwest(1)), with a discrepancy of 1.4 years from the real value.
The symmetry of the graph of the interpolating polynomial suggests that the
estimation for the life expectation of 78.4 years for the year 1995, can be
overestimated by the same quantity (in fact, the real life expectation is equal
to 77.5 years). A different conclusion holds concerning Eastern Europe. Indeed,
in that case the estimation for 1970 coincides exactly with the real value, while
the estimation for 1995 is largely overestimated (73.6 years instead of 71.2).

Solution 3.4 We choose the month as time-unit. The initial time t0 = 1
corresponds to November 1987, while t7 = 157 to November 2000. With the
following instructions we compute the coefficients of the polynomial interpo-
lating the given prices:

>> time = [1 14 37 63 87 99 109 157];

>> price = [4.5 5 6 6.5 7 7.5 8 8];

>> [c] = polyfit(time,price,7);

Setting [price2002]= polyval(c,181) we find that the estimated price of the
magazine in November 2002 is approximately 11.2 euros.

Solution 3.5 The interpolatory cubic spline, computed by the command
spline in this special case, coincides with the interpolating polynomial. This
wouldn’t be true for the natural interpolating cubic spline.

Solution 3.6 We use the following instructions:

>> T = [4:4:20];

>> rho=[1000.7794,1000.6427,1000.2805,999.7165,998.9700];

>> Tnew = [6:4:18]; format long e;

>> rhonew = spline(T,rho,Tnew)

rhonew =

Columns 1 through 2

1.000740787500000e+03 1.000488237500000e+03

Columns 3 through 4

1.000022450000000e+03 9.993649250000000e+02

The comparison with the further measures shows that the approximation is
extremely accurate. Note that the state equation for the sea-water (UNESCO,
1980) assumes a fourth-order dependence of the density on the temperature.
However, the coefficient of the fourth power of T is of order of 10−9.

Solution 3.7 We compare the results computed using the interpolatory cubic
spline obtained using the MATLAB command spline (denoted with s3), the
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1960 1965 1970 1975 1980 1985 1990 1995
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Fig. 9.5. The cubic splines s3 (continuous line), s3d (dashed line) and s3n

(dotted line) for the data of Exercise 3.7. The circles denote the values used in
the interpolation

interpolatory natural spline (s3n) and the interpolatory spline with null first
derivatives at the endpoints of the interpolatory interval (s3d) (computed with
Program 3.1). We use the following instructions:

>> year=[1965 1970 1980 1985 1990 1991];

>> production=[17769 24001 25961 34336 29036 33417];

>> z=[1962:0.1:1992];

>> s3 = spline(year,production,z);

>> s3n = cubicspline(year,production,z);

>> s3d = cubicspline(year,production,z,0,[0 0]);

In the following table we resume the computed values (expressed in thousands
of tons of goods):

year 1962 1977 1992

s3 514.6 2264.2 4189.4
s3n 1328.5 2293.4 3779.8
s3d 2431.3 2312.6 2216.6

The comparison with the real data (1238, 2740.3 and 3205.9 thousands of tons,
respectively) shows that the values predicted by the natural spline are accurate
also outside the interpolation interval (see Figure 9.5). On the contrary, the
interpolating polynomial introduces large oscillations near this end-point and
underestimates the production of as many as −7768.5 ×106 Kg for 1962.

Solution 3.8 The interpolating polynomial p and the spline s3 can be eval-
uated by the following instructions:

>> pert = 1.e-04;

>> x=[-1:2/20:1]; y=sin(2*pi*x)+(-1).^[1:21]*pert; z=[-1:0.01:1];

>> c=polyfit(x,y,20); p=polyval(c,z); s3=spline(x,y,z);

When we use the unperturbed data (pert=0) the graphs of both p and s3

are indistinguishable from that of the given function. The situation changes
dramatically when the perturbed data are used (pert=1.e-04). In particular,
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the interpolating polynomial shows strong oscillations at the end-points of the
interval, whereas the spline remains practically unchanged (see Figure 9.6).
This example shows that approximation by splines is in general more stable
with respect to perturbation errors.
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Fig. 9.6. The interpolating polynomial (dotted line) and the interpolatory
cubic spline (continuous line) corresponding to the perturbed data. Note the
severe oscillations of the interpolating polynomial near the end-points of the
interval

Solution 3.9 If n = m, setting f̃ = Πnf we find that the first member of
(3.21) is null. Thus in this case Πnf is the solution of the least-squares problem.
Since the interpolating polynomial is unique, we deduce that this is the only
solution to the least-squares problem.

Solution 3.10 The coefficients (obtained by the command polyfit) of the
requested polynomials are (only the first 4 significant digits are shown):

K = 0.67, a4 = 6.301 10−8, a3 = −8.320 10−8, a2 = −2.850 10−4, a1 =
9.718 10−4, a0 = −3.032;

K = 1.5, a4 = −4.225 10−8, a3 = −2.066 10−6, a2 = 3.444 10−4, a1 =
3.36410−3, a0 = 3.364;

K = 2, a4 = −1.012 10−7, a3 = −1.431 10−7, a2 = 6.988 10−4, a1 =
−1.060 10−4, a0 = 4.927;

K = 3, a4 = −2.323 10−7, a3 = 7.980 10−7, a2 = 1.420 10−3, a1 =
−2.605 10−3, a0 = 7.315.

In Figure 9.7 we show the graph of the polynomial computed using the
data in the column with K = 0.67 of Table 3.1.

Solution 3.11 By repeating the first 3 instructions reported in Solution 3.7
and using the command polyfit, we find the following values (in 105 Kg):
15280.12 in 1962; 27407.10 in 1977; 32019.01 in 1992, which represent good
approximations to the real ones (12380, 27403 and 32059, respectively).
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Fig. 9.7. Least-squares polynomial of degree 4 (continuous line) compared
with the data in the first column of Table 3.1

Solution 3.12 We can rewrite the coefficients of the system (3.23) in terms
of mean and variance by noting that the variance can be expressed as v =

1
n+1

∑n
i=0 x2

i − M2.

Solution 3.13 The desired property is deduced from the first equation of the
system that provides the coefficients of the least-squares straight line.

Solution 3.14 We can use the command interpft as follows:

>> discharge = [0 35 0.125 5 0 5 1 0.5 0.125 0];

>> y =interpft(discharge,100);

The graph of the obtained solution is reported in Figure 9.8.
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Fig. 9.8. The trigonometric interpolant obtained using the instructions in
Solution 3.14. Dots refer to the experimental data available

9.4 Chapter 4

Solution 4.1 Using the following third-order Taylor expansions of f at the
point x0, we obtain
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f(x1) = f(x0) + hf ′(x0) + h2

2
f ′′(x0) + h3

6
f ′′′(ξ1),

f(x2) = f(x0) + 2hf ′(x0) + 2h2f ′′(x0) + 4h3

3
f ′′′(ξ2),

with ξ1 ∈ (x0, x1) and ξ2 ∈ (x0, x2) as two suitable points. Summing this two
expressions yields

1

2h
[−3f(x0) + 4f(x1) − f(x2)] = f ′(x0) +

h2

3
[f ′′′(ξ1) − 2f ′′′(ξ2)],

then the thesis follows for a suitable ξ0 ∈ (x0, x2). A similar procedure can be
used for the formula at xn.

Solution 4.2 Taylor expansions yield

f(x̄ + h) = f(x̄) + hf ′(x̄) +
h2

2
f ′′(x̄) +

h3

6
f ′′′(ξ),

f(x̄ − h) = f(x̄) − hf ′(x̄) +
h2

2
f ′′(x̄) − h3

6
f ′′′(η),

where ξ and η are suitable points. Subtracting these two expressions and di-
viding by 2h we obtain the result (4.10).

Solution 4.3 Assuming that f ∈ C4 and proceeding as in Solution 4.2 we
obtain the following errors (for suitable points ξ1, ξ2 and ξ3):

a. − 1

4
f (4)(ξ1)h

3, b. − 1

12
f (4)(ξ2)h

3, c.
1

30
f (4)(ξ3)h

4.

Solution 4.4 Using the approximation (4.9), we obtain the following values:

t (months) 0 0.5 1 1.5 2 2.5 3

δn −− 78 45 19 7 3 −−
n′ −− 77.91 39.16 15.36 5.91 1.99 −−

By comparison with the exact values of n′(t) we can conclude that the com-
puted values are sufficiently accurate.

Solution 4.5 The quadrature error can be bounded by

(b − a)3/(24M2) max
x∈[a,b]

|f ′′(x)|,

where [a, b] is the integration interval and M the (unknown) number of subin-
tervals.

The function f1 is infinitely differentiable. From the graph of f ′′
1 we infer

that |f ′′
1 (x)| ≤ 2 in the integration interval. Thus the integration error for f1

is less than 10−4 provided that 53/(24M2)2 < 10−4, that is M > 322.
Also the function f2 is differentiable to any order. Since maxx∈[0,π] |f ′′

2 (x)| =√
2e3/4π, the integration error is less than 10−4 provided that M > 439. These

inequalities actually provide an over estimation of the integration errors. In-
deed, the (effective) minimum number of intervals which ensures that the error
is below the fixed tolerance of 10−4 is much lower than that predicted by our
result (for instance, for the function f1 this number is 51). Finally, we note
that since f3 is not differentiable in the integration interval, our theoretical
error estimate doesn’t hold.
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Solution 4.6 On each interval Ik, k = 1, . . . , M , the error is equal to
H3/24f ′′(ξk) with ξk ∈ (xk−1, xk) and hence the global error will be H3/24∑M

k=1 f ′′(ξk). Since f ′′ is a continuous function in (a, b) there exists a point

ξ ∈ (a, b) such that f ′′(ξ) = 1
M

∑M
k=1 f ′′(ξk). Using this result and the fact

that MH = b − a, we derive equation (4.14).

Solution 4.7 This effect is due to the accumulation of local errors on each
sub-interval.

Solution 4.8 By construction, the mid-point formula integrates exactly the
constants. To verify that the linear polynomials also are exactly integrated, it
is sufficient to verify that I(x) = IPM (x). As a matter of fact we have

I(x) =

b∫

a

x dx =
b2 − a2

2
, IPM (x) = (b − a)

b + a

2
.

Solution 4.9 For the function f1 we find M = 71 if we use the trapezoidal
formula and only M = 7 for the Gauss formula. Indeed, the computational
advantage of this latter formula is evident.

Solution 4.10 Equation (4.18) states that the quadrature error for the com-
posite trapezoidal formula with H = H1 is equal to CH2

1 , with C =

− b − a

12
f ′′(ξ). If f ′′ does not vary “too much”, we can assume that also the

error with H = H2 behaves like CH2
2 . Then, by equating the two expressions

I(f) 	 I1 + CH2
1 , I(f) 	 I2 + CH2

2 , (9.3)

we obtain C = (I1 − I2)/(H2
2 −H2

1 ). Using this value in one of the expressions
(9.3), we obtain equation (4.32), that is, a better approximation than the one
produced by I1 or I2.

Solution 4.11 We seek the maximum positive integer p such that Iapprox(xp)
= I(xp). For p = 0, 1, 2, 3 we find the following nonlinear system with 4 equa-
tions in the 4 unknowns α, β, x̄ and z̄:

p = 0 → α + β = b − a,

p = 1 → αx̄ + βz̄ =
b2 − a2

2
,

p = 2 → αx̄2 + βz̄2 =
b3 − a3

3
,

p = 3 → αx̄3 + βz̄3 =
b4 − a4

4
.

From the first two equations we can eliminate α and z̄ and reduce the system
to a new one in the unknowns β and x̄. In particular, we find a second-order
equation in β from which we can compute β as a function of x̄. Finally, the
nonlinear equation in x̄ can be solved by the Newton method, yielding two
values of x̄ that are the abscissae of the Gauss quadrature points.
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Solution 4.12 Since

f
(4)
1 (x) =

24

(1 + (x − π)2)5(2x − 2π)4
− 72

(1 + (x − π)2)4(2x − 2π)2

+
24

(1 + (x − π)2)3
,

f
(4)
2 (x) = −4ex cos(x),

we find that the maximum of |f (4)
1 (x)| is bounded by M1 	 25, while that of

|f (4)
2 (x)| by M2 	 93. Consequently, from (4.22) we obtain H < 0.21 in the

first case and H < 0.16 in the second case.

Solution 4.13 Using the command int(’exp(-x^2/2)’,0,2) we obtain for
the integral at hand the value 1.19628801332261.

The Gauss formula applied to the same interval would provide the value
1.20278027622354 (with an absolute error equal to 6.4923e-03), while the
Simpson formula gives 1.18715264069572 with a slightly larger error (equal
to 9.1354e-03).

Solution 4.14 We note that Ik > 0 ∀k, since the integrand is non-negative.
Therefore, we expect that all the values produced by the recursive formula
should be non-negative. Unfortunately, the recursive formula is unstable to
the propagation of roundoff errors and produces negative elements:

>> I(1)=1/exp(1); for k=2:20, I(k)=1-k*I(k-1); end

>> I(20)

-30.1924

Using the composite Simpson formula, with H < 0.25, we can compute the
integral with the desired accuracy.

Solution 4.15 For the Simpson formula we obtain

I1 = 1.19616568040561, I2 = 1.19628173356793, ⇒ IR = 1.19628947044542,

with an absolute error in IR equal to -1.4571e-06 (we gain two orders of mag-
nitude with respect to I1 and a factor 1/4 with respect to I2). Using the Gauss
formula we obtain (the errors are reported between parentheses):

I1 = 1.19637085545393 (−8.2842e − 05),
I2 = 1.19629221796844 (−4.2046e − 06),
IR = 1.19628697546941 (1.0379e − 06).

The advantage of using the Richardson extrapolation method is evident.

Solution 4.16 We must compute by the Simpson formula the values j(r) =
σ/(ε0r

2)
∫ r

0
f(ξ)dξ with r = k/10, for k = 1, . . . , 10 and f(ξ) = eξξ2.

In order to estimate the integration error we need the fourth derivative
f (4)(ξ) = eξ(ξ2 + 8ξ + 12). The maximum of f (4) in the integration interval
(0, r) is attained at ξ = r since f (4) is monotonically increasing. Then we
obtain the following values:
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>> r=[0.1:0.1:1];

>> maxf4=exp(r).*(r.^2+8*r+12);

maxf4 =

Columns 1 through 6

14.1572 16.6599 19.5595 22.9144 26.7917 31.2676

Columns 7 through 10

36.4288 42.3743 49.2167 57.0839

For a given r the error is below 10−10 provided that H4
r < 10−102880/(rf (4)(r)).

For r = k/10 with k = 1, . . . , 10 by the following instructions we can compute
the minimum numbers of subintervals which ensure that the previous inequal-
ities are satisfied. The components of the vector M contain these numbers:

>> x=[0.1:0.1:1]; f4=exp(x).*(x.^2+8*x+12);

>> H=(10^(-10)*2880./(x.*f4)).^(1/4); M=fix(x./H)

M =

4 11 20 30 41 53 67 83 100 118

Therefore, the values of j(r) are:

>> sigma=0.36; epsilon0 = 8.859e-12;

f = inline(’exp(x).*x.^2’);

for k = 1:10

r = k/10;

j(k)=simpsonc(0,r,M(k),f);

j(k) = j(k)*sigma/r*epsilon0;

end

Solution 4.17 We compute E(213) using the Simpson composite formula by
increasing the number of intervals until the difference between two consecutive
approximations (divided by the last computed value) is less than 10−11:

>> f=inline(’2.39e-11./((x.^5).*(exp(1.432./(T*x))-1))’,’x’,’T’);

>> a=3.e-04; b=14.e-04; T=213;

>> i=2; err = 1; Iold = 0; while err >= 1.e-11

I=simpsonc(a,b,i,f,T);

err = abs(I-Iold)/abs(I);

Iold=I;

i=i+1;

end

The procedure returns the value i = 59. Therefore, using 58 equispaced in-
tervals we can compute the integral E(213) with ten exact significant digits.
The same result could be obtained by the Gauss formula using 53 intervals.
Note that as many as 1609 intervals would be nedeed if using the composite
trapezoidal formula.

Solution 4.18 On the whole interval the given function is not regular enough
to allow the application of the theoretical convergence result (4.22). One pos-
sibility is to decompose the integral into the sum of two intervals, (0, 0.5) and
(0.5, 1), in which the function is regular (it is actually a polynomial of degree
3). In particular, if we use the Simpson rule on each interval we can even
integrate f exactly.
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9.5 Chapter 5

Solution 5.1 The number rk of algebraic operations (sums, subtractions and
multiplications) required to compute a determinant of a matrix of order k ≥ 2
with the Laplace rule (1.8), satisfies the following difference equation:

rk − krk−1 = 2k − 1,

with r1 = 0. Multiplying both side of this equation by 1/k!, we obtain

rk

k!
− rk−1

(k − 1)!
=

2k − 1

k!
.

Summing both sides from 2 to n gives the solution:

rn = n!
n∑

k=2

2k − 1

k!
= n!

n−1∑

k=1

2k + 1

(k + 1)!
, n ≥ 1.

Solution 5.2 We use the following MATLAB commands to compute the
determinants and the corresponding CPU-times:

>> t = [ ]; for i = 3:500

A = magic(i); tt = cputime; d=det(A); t=[t, cputime-tt];

end

The coefficients of the cubic least-squares polynomial that approximate the
data n=[3:500] and t are

>> format long; c=polyfit(n,t,3)

c =

Columns 1 through 3

0.00000002102187 0.00000171915661 -0.00039318949610

Column 4

0.01055682398911

The first coefficient (that multiplies n3), is small, but not small enough with
respect to the second one to be neglected. Indeed, if we compute the fourth
degree least-squares polynomial we obtain the following coefficients:

>> c=polyfit(i,t,4)

c =

Columns 1 through 3

-0.00000000000051 0.00000002153039 0.00000155418071

Columns 4 through 6

-0.00037453657810 -0.00037453657810 0.01006704351509

From this result, we can conclude that the computation of a determinant of a
matrix of dimension n requires approximately n3 operations.

Solution 5.3 We have: detA1 = 1, detA2 = ε, detA3 = detA = 2ε + 12.
Consequently, if ε = 0 the second principal submatrix is singular and the
Proposition 5.1 cannot be applied. The matrix is singular if ε = −6. In this
case the Gauss factorization yields
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L =




1 0 0
2 1 0
3 1.25 1



 , U =




1 7 3
0 −12 −4
0 0 0



 .

Note that U is singular (as we could have predicted since A is singular).

Solution 5.4 At step 1, n− 1 divisions were used to calculate the l1k entries
for i = 2, . . . , n. Then (n − 1)2 multiplications and (n − 1)2 additions were

used to create the new entries a
(2)
ij , for j = 2, . . . , n. At step 2, the numbers of

divisions is (n− 2), while the numbers of multiplications and additions will be
(n− 2)2. At final step n− 1 only 1 addition, 1 multiplication and 1 division is
required. Thus, using the identies

q∑

s=1

s =
q(q + 1)

2
,

q∑

s=1

s2 =
q(q + 1)(2q + 1)

6
, q ≥ 1,

we can conclude that to complete the Gaussian factorization 2(n − 1)n(n +
1)/3+n(n−1) operations are required. Neglecting the lower order terms, we can
state that the Gaussian factorization process has a cost of 2n3/3 operations.

Solution 5.5 By definition, the inverse X of a matrix A ∈ Rn×n satisfies
XA = AX = I. Therefore, for j = 1, . . . , n the column vector yj of X is the
solution of the linear system Ayj = ej , where ej is the j-th vector of the
canonical basis of Rn with all components equal to zero except the j-th that
is equal to 1. After computing the LU factorization of A, the computation of
the inverse of A requires the solution of n linear systems with the same matrix
and different right-hand sides.

Solution 5.6 Using the Program 5.1 we compute the L and U factors:

L =




1 0 0
2 1 0
3 −3.38 · 1015 1



 , U =




1 1 3
0 −8.88 · 10−16 14
0 0 4.73 · 10−16



 .

If we compute their product we obtain the matrix

>> L*U

ans =

1.0000 1.0000 3.0000

2.0000 2.0000 20.0000

3.0000 6.0000 -2.0000

which differs from A since the entry in position (3,3) is equal to −2 while in
A it is equal to 4.

Solution 5.7 Usually, only the triangular (upper or lower) part of a sym-
metric matrix is stored. Therefore, any operation that does not respect the
symmetry of the matrix is not optimal in view of the memory storage. This
is the case when row pivoting is carried out. A possibility is to exchange si-
multaneously rows and columns having the same index, limiting therefore the
choice of the pivot only to the diagonal elements. More generally, a pivoting
strategy involving exchange of rows and columns is called complete pivoting
(see, e.g., [QSS06, Chap. 3]).
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Solution 5.8 The L and U factors are:

L =




1 0 0

(ε − 2)/2 1 0
0 −1/ε 1



 , U =




2 −2 0
0 ε 0
0 0 3



 .

When ε → 0 l32 → ∞. In spite of that, the solution of the system is accurate
also when ε tends to zero as confirmed by the following instructions:

>> e=1; for k=1:10

b=[0; e; 2];

L=[1 0 0; (e-2)*0.5 1 0; 0 -1/e 1]; U=[2 -2 0; 0 e 0; 0 0 3];

y=L\b; x=U\y; err(k)=max(abs(x-ones(3,1))); e=e*0.1;

end

>> err

err =

0 0 0 0 0 0 0 0 0 0

Solution 5.9 The computed solutions become less and less accurate when
i increases. Indeed, the error norms are equal to 2.63 · 10−14 for i = 1, to
9.89 · 10−10 for i = 2 and to 2.10 · 10−6 for i = 3. This can be explained by
observing that the condition number of Ai increases as i increases. Indeed,
using the command cond we find that the condition number of Ai is 	 103 for
i = 1, 	 107 for i = 2 and 	 1011 for i = 3.

Solution 5.10 If (λ,v) are an eigenvalue-eigenvector pair of a matrix A, then
λ2 is an eigenvalue of A2 with the same eigenvector. Indeed, from Av = λv
follows A2v = λAv = λ2v. Consequently, if A is symmetric and positive
definite K(A2) = (K(A))2.

Solution 5.11 The iteration matrix of the Jacobi method is:

BJ =




0 0 −α−1

0 0 0
−α−1 0 0



 .

Its eigenvalues are {0, α−1,−α−1}. Thus the method converges if |α| > 1.
The iteration matrix of the Gauss-Seidel method is

BGS =




0 0 −α−1

0 0 0
0 0 α−2





with eigenvalues {0, 0, α−2}. Therefore, the method converges if |α| > 1. In
particular, since ρ(BGS) = [ρ(BJ)]2, the Gauss-Seidel converges more rapidly
than the Jacobi method.

Solution 5.12 A sufficient condition for the convergence of the Jacobi and
the Gauss-Seidel methods is that A is strictly diagonally dominant. The second
row of A satisfies the condition of diagonal dominance provided that |β| < 5.
Note that if we require directly that the spectral radii of the iteration matrices
are less than 1 (which is a sufficient and necessary condition for convergence),
we find the (less restrictive) limitation |β| < 25 for both methods.
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Solution 5.13 The relaxation method in vector form is

(I − ωD−1E)x(k+1) = [(1 − ω)I + ωD−1F]x(k) + ωD−1b

where A = D−E−F, D being the diagonal of A, and E and F the lower (resp.
upper) part of A. The corresponding iteration matrix is

B(ω) = (I − ωD−1E)−1[(1 − ω)I + ωD−1F].

If we denote by λi the eigenvalues of B(ω), we obtain
∣
∣∣
∣
∣

n∏

i=1

λi

∣
∣∣
∣
∣
=
∣∣det

[
(1 − ω)I + ωD−1F

]∣∣ = |1 − ω|n.

Therefore, at least one eigenvalue must satisfy the inequality |λi| ≥ |1 − ω|.
Thus, a necessary condition to ensure convergence is that |1− ω| < 1, that is,
0 < ω < 2.

Solution 5.14 The given matrix is symmetric. To verify whether it is also
definite positive, that is, zT Az > 0 for all z �= 0 of R2, we use the following
instructions:

>> syms z1 z2 real

>> z=[z1;z2]; A=[3 2; 2 6];

>> pos=z’*A*z; simple(pos)

ans =

3*z1^2+4*z1*z2+6*z2^2

The command syms z1 z2 real is necessary to declare that the symbolic
variables z1 and z2 are real numbers, while the command simple(pos) tries
several algebraic simplifications of pos and returns the shortest. It is easy to see
that the computed quantity is positive since it can be rewritten as 2*(z1+z2)^2
+z1^2+4*z2^2. Thus, the given matrix is symmetric and positive definite, and
the Gauss-Seidel method is convergent.

Solution 5.15 We find:

for the Jacobi method:

{
x

(1)
1 = 1

2
(1 − x

(0)
2 ),

x
(1)
2 = − 1

3
(x

(0)
1 );

⇒
{

x
(1)
1 = 1

4
,

x
(1)
2 = − 1

3
;

for the Gauss-Seidel method:

{
x

(1)
1 = 1

2
(1 − x

(0)
2 ),

x
(1)
2 = − 1

3
x

(1)
1 ,

⇒
{

x
(1)
1 = 1

4
,

x
(1)
2 = − 1

12
;

for the gradient method, we first compute the initial residual

r(0) = b − Ax(0) =

[
1
0

]
−
[

2 1
1 3

]
x(0) =

[
−3/2
−5/2

]
.

Then, since

P−1 =

[
1/2 0
0 1/3

]
,
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we have z(0) = P−1r(0) = (−3/4,−5/6)T . Therefore

α0 =
(z(0))T r(0)

(z(0))T Az(0)
=

77

107
,

and

x(1) = x(0) + α0z
(0) = (197/428,−32/321)T .

Solution 5.16 In the stationary case, ρ(Bα) = min
λ

|1 − αλ|, where λ are the

eigenvalues of P−1A. The optimal value of α is obtained solving the equation
|1 − αλmin| = |1 − αλmax|, that is 1 − αλmin = −1 + αλmax, which yields
(5.48). Since,

ρ(Bα) = 1 − αλmin ∀α ≤ αopt,

for α = αopt we obtain (5.59).

Solution 5.17 In this case the matrix associated to the Leontieff model is
not positive definite. Indeed, using the following instructions:

>> for i=1:20; for j=1:20; c(i,j)=i+j; end; end; A=eye(20)-c;

>> min(eig(A))

ans =

-448.5830

>> max(eig(A))

ans =

30.5830

we can see that the minimum eigenvalue is a negative number and the maxi-
mum eigenvalue is a positive number. Therefore, the convergence of the gra-
dient method is not guaranteed. However, since A is nonsingular, the given
system is equivalent to the system AT Ax = AT b, where AT A is symmetric
and positive definite. We solve the latter by the gradient method requiring
that the norm of the residual be less than 10−10 and starting from the initial
data x(0) = 0:

>> b = [1:20]’; aa=A’*A; b=A’*b; x0 = zeros(20,1);

>> [x,iter]=itermeth(aa,b,x0,100,1.e-10);

The method converges in 15 iterations. A drawback of this approach is that the
condition number of the matrix AT A is, in general, larger than the condition
number of A.

9.6 Chapter 6

Solution 6.1 A1: the power method converges in 34 iterations to the value
2.00000000004989. A2: starting from the same initial vector, the power method
requires now 457 iterations to converge to the value 1.99999999990611. The
slower convergence rate can be explained by observing that the two largest
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eigenvalues are very close one another. Finally, for the matrix A3 the method
doesn’t converge since A3 features two distinct eigenvalues (i and −i) of max-
imum modulus.

Solution 6.2 The Leslie matrix associated with the values in the table is

A =






0 0.5 0.8 0.3
0.2 0 0 0
0 0.4 0 0
0 0 0.8 0




 .

Using the power method we find λ1 	 0.5353. The normalized distribution of
this population for different age intervals is given by the components of the cor-
responding unitary eigenvector, that is, x1 	 (0.8477, 0.3167, 0.2367, 0.3537)T .

Solution 6.3 We rewrite the initial guess as

y(0) = β(0)

(

α1x1 + α2x2 +

n∑

i=3

αixi

)

,

with β(0) = 1/‖x(0)‖. By calculations similar to those carried out in Section
6.1, at the generic step k we find:

y(k) = γkβ(k)

(

α1x1e
ikϑ + α2x2e

−ikϑ +
n∑

i=3

αi
λk

i

γk
xi

)

.

The first two terms don’t vanish and, due to the opposite sign of the exponents,
the sequence of the y(k) oscillates and cannot converge.

Solution 6.4 From the eigenvalue equation Ax = λx, we deduce A−1Ax =
λA−1x, and therefore A−1x = (1/λ)x.

Solution 6.5 The power method applied to the matrix A generates an oscil-
lating sequence of approximations of the maximum modulus eigenvalue (see,
Figure 9.9). This behavior is due to the fact that this eigenvalue is not unique.

Solution 6.6 To compute the eigenvalue of maximum modulus of A we use
Program 6.1:

>> A=wilkinson(7);

>> x0=ones(7,1); tol=1.e-15; nmax=100;

>> [lambda,x,iter]=eigpower(A,tol,nmax,x0);

After 35 iterations we obtain lambda=3.76155718183189. To find the largest
negative eigenvalue of A, we can use the power method with shift and, in
particular, we can choose a shift equal to the largest positive eigenvalue that
we have just computed. We find:

>> [lambda2,x,iter]=eigpower(A-lambda*eye(7),tol,nmax,x0);

>> lambda2+lambda

ans =

-1.12488541976457
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Fig. 9.9. The approximations of the maximum modulus eigenvalue of the
matrix of Solution 6.5 computed by the power method

after iter = 33 iterations. These results are satisfactory approximations of
the largest (positive and negative) eigenvalues of A.

Solution 6.7 Since all the coefficients of A are real, eigenvalues occur in con-
jugate pairs. Note that in this situation conjugate eigenvalues must belong to
the same Gershgorin circle. The matrix A presents 2 column circles isolated
from the others (see Figure 9.10 on the left). Each of them must contain only
one eigenvalue that must therefore be real. Then A admits at least 2 real
eigenvalues.

Let us consider now the matrix B that admits only one isolated column
circle (see Figure 9.10 on the right). Then, thanks to the previous consideration
the corresponding eigenvalue must be real. The remaining eigenvalues can be
either all real, or one real and 2 complex.

2 4 6 8 10 12
−3

−2

−1

0

1

2

3
Column circles

Re

Im

−5 −4 −3 −2 −1 0 1 2 3 4

−1

0

1

Column circles

Re

Im

Fig. 9.10. On the left, column circles of the matrix A of Solution 6.7. On the
right, column circles of the matrix B of Solution 6.7

Solution 6.8 The row circles of A feature an isolated circle of center 5 and
radius 2 the maximum modulus eigenvalue must belong to. Therefore, we can
set the value of the shift equal to 5. The comparison between the number of
iterations and the computational cost of the power method with and without
shift can be found using the following commands:
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A=[5 0 1 -1; 0 2 0 -1/2; 0 1 -1 1; -1 -1 0 0];
tol=1e-14; x0=[1 2 3 4]’; nmax =1000;
tic; [lambda1 ,x1 ,iter1 ]= eigpower(A,tol ,nmax ,x0);
toc , iter1

Elapsed time is 0.033607 seconds.

iter1 = 35

tic; [lambda2 ,x2 ,iter2 ]= invshift(A,5,tol ,nmax ,x0);
toc , iter2

Elapsed time is 0.018944 seconds.

iter2 = 12

The power method with shift requires in this case a lower number of iterations
(1 versus 3) and almost half the cost than the usual power method (also
accounting for the extra time needed to compute the Gauss factorization of A
off-line).

Solution 6.9 Using the qr command we have immediately:

>> A=[2 -1/2 0 -1/2; 0 4 0 2; -1/2 0 6 1/2; 0 0 1 9];

>> [Q,R]=qr(A)

Q =

-0.9701 0.0073 -0.2389 -0.0411

0 -0.9995 -0.0299 -0.0051

0.2425 0.0294 -0.9557 -0.1643

0 0 -0.1694 0.9855

R =

-2.0616 0.4851 1.4552 0.6063

0 -4.0018 0.1764 -1.9881

0 0 -5.9035 -1.9426

0 0 0 8.7981

To verify that RQ is similar to A, we observe that

QT A = QT QR = R

thanks to the orhogonality of Q. Thus C = QT AQ = RQ , since QT = Q−1,
and we conclude that C is similar to A.

Solution 6.10 We can use the command eig in the following way: [X,D]=eig
(A), where X is the matrix whose columns are the unit eigenvectors of A and D

is a diagonal matrix whose elements are the eigenvalues of A. For the matrices
A and B of Exercise 6.7 we should execute the following instructions:

>> A=[2 -1/2 0 -1/2; 0 4 0 2; -1/2 0 6 1/2; 0 0 1 9];

>> sort(eig(A))

ans =

2.0000

4.0268
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5.8003

9.1728

>> B=[-5 0 1/2 1/2; 1/2 2 1/2 0; 0 1 0 1/2; 0 1/4 1/2 3];

>> sort(eig(B))

ans =

-4.9921

-0.3038

2.1666

3.1292

9.7 Chapter 7

Solution 7.1 Let us approximate the exact solution y(t) = 1
2
[et − sin(t) −

cos(t)] of the Cauchy problem (7.72) by the forward Euler method using dif-
ferent values of h: 1/2, 1/4, 1/8, . . . , 1/512. The associated error is computed
by the following instructions:

>> y0=0; f=inline(’sin(t)+y’,’t’,’y’);

>> y=’0.5*(exp(t)-sin(t)-cos(t))’;

>> tspan=[0 1]; N=2; for k=1:10

[tt,u]=feuler(f,tspan,y0,N);t=tt(end);e(k)=abs(u(end)-eval(y));

N=2*N;end

>> e

e =

Columns 1 through 6

0.4285 0.2514 0.1379 0.0725 0.0372 0.0189

Columns 7 through 10

0.0095 0.0048 0.0024 0.0012

Now we apply formula (1.12) to estimate the order of convergence:

>> p=log(abs(e(1:end-1)./e(2:end)))/log(2)

p =

Columns 1 through 6

0.7696 0.8662 0.9273 0.9620 0.9806 0.9902

Columns 7 through 9

0.9951 0.9975 0.9988

As expected the order of convergence is one. With the same instructions (sub-
stituting the program feuler with the program beuler) we obtain an estimate
of the convergence order of the backward Euler method:

>> p=log(abs(e(1:end-1)./e(2:end)))/log(2)

p =

Columns 1 through 6

1.5199 1.1970 1.0881 1.0418 1.0204 1.0101

Columns 7 through 9

1.0050 1.0025 1.0012

Solution 7.2 The numerical solution of the given Cauchy problem by the
forward Euler method can be obtained as follows:
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>> tspan=[0 1]; N=100;f=inline(’-t*exp(-y)’,’t’,’y’);y0=0;

>> [t,u]=feuler(f,tspan,y0,N);

To compute the number of exact significant digits we can estimate the
constants L and M which appear in (7.13). Note that, since f(t, y(t)) < 0 in
the given interval, y(t) = log(1− t2/2) is a monotonically decreasing function,
vanishing at t = 0. Since f is continuous together with its first derivative, we
can approximate L as L = max0≤t≤1 |L(t)| with L(t) = ∂f/∂y = te−y. Note
that L(0) = 0 and L(t) > 0 for all t ∈ (0, 1]. Thus, L = e.

Similarly, in order to compute M = max0≤t≤1 |y′′(t)| with y′′ = −e−y −
t2e−2y, we can observe that this function has its maximum at t = 1, and then
M = e + e2. From (7.13) we deduce

|u100 − y(1)| ≤ eL − 1

L

M

200
= 0.26.

Therefore, there is no guarantee that more than one significant digit be exact.
Indeed, we find u(end)=-0.6785, while the exact solution at t = 1 is y(1) =
−0.6931.

Solution 7.3 The iteration function is φ(u) = u − htn+1e
−u and the fixed-

point iteration converges if |φ′(u)| < 1. This property is ensured if h(t0 +
(n + 1)h) < eu. If we substitute u with the exact solution, we can provide
an a priori estimate of the value of h. The most restrictive situation occurs
when u = −1 (see Solution 7.2). In this case the solution of the inequality
(n + 1)h2 < e−1 is h <

√
e−1/(n + 1).

Solution 7.4 We repeat the same set of instructions of Solution 7.1, however
now we use the program cranknic (Program 7.3) instead of feuler. According
to the theory, we obtain the following result that shows second-order conver-
gence:

>> p=log(abs(e(1:end-1)./e(2:end)))/log(2)

p =

Columns 1 through 6

2.0379 2.0092 2.0023 2.0006 2.0001 2.0000

Columns 7 through 9

2.0000 2.0000 2.0000

Solution 7.5 Consider the integral formulation of the Cauchy problem (7.5)
in the interval [tn, tn+1]:

y(tn+1) − y(tn) =

tn+1∫

tn

f(τ, y(τ))dτ

	 h

2
[f(tn, y(tn)) + f(tn+1, y(tn+1))] ,

where we have approximated the integral by the trapezoidal formula (4.19).
By setting u0 = y(t0) and replacing y(tn) by the approximate value un and
the symbol 	 by =, we obtain
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un+1 = un +
h

2
[f(tn, un) + f(tn+1, un+1)] , ∀n ≥ 0,

which is the Crank-Nicolson method.

Solution 7.6 We must impose the limitation |1 − h + ih| < 1, which yields
0 < h < 1.

Solution 7.7 Let us rewrite the Heun method in the following (Runge-Kutta
like) form:

un+1 = un +
1

2
(k1 + k2), k1 = hf(tn, un), k2 = hf(tn+1, un + k1).(9.4)

We have hτn+1(h) = y(tn+1) − y(tn) − (k̂1 + k̂2)/2, with k̂1 = hf(tn, y(tn))

and k̂2 = hf(tn+1, y(tn) + k̂1). Therefore, the method is consistent since

lim
h→0

τn+1 = y′(tn) − 1

2
[f(tn, y(tn)) + f(tn, y(tn))] = 0.

The Heun method is implemented in Program 9.1. Using this program,
we can verify the order of convergence as in Solution 7.1. By the following
instructions, we find that the Heun method is second-order with respect to h

>> p=log(abs(e(1:end-1)./e(2:end)))/log(2)

p =

Columns 1 through 6

1.7642 1.8796 1.9398 1.9700 1.9851 1.9925

Columns 7 through 9

1.9963 1.9981 1.9991

Program 9.1. rk2: Heun method

function [t,u]=rk2(odefun ,tspan ,y0 ,Nh ,varargin)
h=( tspan (2)- tspan (1)-t0)/Nh; tt=[ tspan (1):h:tspan (2)];
u(1)=y0;
for s=tt(1:end -1)

t = s; y = u(end);
k1=h*feval(odefun ,t,y,varargin {:});
t = t + h;
y = y + k1; k2=h*feval(odefun ,t,y,varargin {:});
u = [u, u(end) + 0.5*( k1+k2)];

end
t=tt;
return

Solution 7.8 Applying the method (9.4) to the model problem (7.28) we
obtain k1 = hλun and k2 = hλun(1 + hλ). Therefore un+1 = un[1 + hλ +
(hλ)2/2] = unp2(hλ). To ensure absolute stability we must require that
|p2(hλ)| < 1, which is equivalent to 0 < p2(hλ) < 1, since p2(hλ) is posi-
tive. Solving the latter inequality, we obtain −2 < hλ < 0, that is, h < 2/|λ|.
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Solution 7.9 Note that

un = un−1(1 + hλn−1) + hrn−1.

Then proceed recursively on n.

Solution 7.10 The inequality (7.38) follows from (7.37) by setting

ϕ(λ) =

∣
∣∣
∣1 +

1

λ

∣
∣∣
∣ +

∣
∣∣
∣
1

λ

∣
∣∣
∣ .

The conclusion follows easily.

Solution 7.11 From (7.35) we have

|zn − un| ≤ ρmaxan + hρmax

n−1∑

k=0

δ(h)n−k−1.

The result follows using (7.36).

Solution 7.12 We have

hτn+1(h) = y(tn+1) − y(tn) − 1

6
(k̂1 + 4k̂2 + k̂3),

k̂1 = hf(tn, y(tn)), k̂2 = hf(tn + h
2
, y(tn) + k̂1

2
),

k̂3 = hf(tn+1, y(tn) + 2k̂2 − k̂1).

This method is consistent since

lim
h→0

τn+1 = y′(tn) − 1

6
[f(tn, y(tn)) + 4f(tn, y(tn)) + f(tn, y(tn))] = 0.

This method is an explicit Runge-Kutta method of order 3 and is imple-
mented in Program 9.2. As in Solution 7.7, we can derive an estimate of its
order of convergence by the following instructions:

>> p=log(abs(e(1:end-1)./e(2:end)))/log(2)

p =

Columns 1 through 6

2.7306 2.8657 2.9330 2.9666 2.9833 2.9916

Columns 7 through 9

2.9958 2.9979 2.9990

Solution 7.13 From Solution 7.8 we obtain the relation

un+1 = un[1 + hλ +
1

2
(hλ)2 +

1

6
(hλ)3] = unp3(hλ).

By inspection of the graph of p3, obtained with the instruction

>> c=[1/6 1/2 1 1]; z=[-3:0.01:1]; p=polyval(c,z); plot(z,abs(p))

we deduce that |p3(hλ)| < 1 for −2.5 < hλ < 0.
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Program 9.2. rk3: explicit Runge-Kutta method of order 3

function [t,u]=rk3(odefun ,tspan ,y0 ,Nh ,varargin)
h=( tspan (2)- tspan (1))/ Nh; tt=[tspan (1):h:tspan (2)];
u(1)=y0;
for s=tt(1:end -1)
t = s; y = u(end);
k1=h*feval(odefun ,t,y,varargin {:});
t = t + h*0.5; y = y + 0.5*k1;
k2=h*feval(odefun ,t,y,varargin {:});
t = s + h; y = u(end) + 2*k2 -k1;
k3=h*feval(odefun ,t,y,varargin {:});
u = [u, u(end) + (k1+4*k2+k3)/6];

end
t=tt;

Solution 7.14 The method (7.74) applied to the model problem (7.28) gives
the equation un+1 = un(1 + hλ + (hλ)2). From the graph of 1 + z + z2 with
z = hλ, we deduce that the method is absolutely stable if −1 < hλ < 0.

Solution 7.15 To solve Problem 7.1 with the given values, we repeat the
following instructions with N=10 and N=20:

>> f=inline(’-1.68*10^(-9)*y^4+2.6880’,’t’,’y’);

>> [t,uc]=cranknic(f,[0,200],180,N);

>> [t,u]=predcor(f,[0 200],180,N,’feonestep’,’cnonestep’);

The graphs of the computed solutions are shown in Figure 9.11. The solutions
obtained by the Crank-Nicolson method are more accurate than those obtained
by the Heun method.
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Fig. 9.11. Computed solutions with N = 10 (left) and N = 20 (right) for
the Cauchy problem of Solution 7.15: the solutions computed by the Crank-
Nicolson method (continuous line), and by the Heun method (dashed line)

Solution 7.16 Heun method applied to the model problem (7.28), gives
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un+1 = un

(
1 + hλ +

1

2
h2λ2

)
.

In the complex plane the boundary of its region of absolute stability satisfies
|1 + hλ + h2λ2/2|2 = 1, having set hλ = x + iy. This equation is satisfied by
the pairs (x, y) such that f(x, y) = x4 +y4 +2x2y2 +4x3 +4xy2 +8x2 +8x = 0.
We can represent this curve as the level curve f(x, y) = z (corresponding to
the level z = 0). This can be done by means of the following instructions:

>> f=’x.^4+y.^4+2*(x.^2).*(y.^2)+4*x.*y.^2+4*x.^3+8*x.^2+8*x’;

>> [x,y]=meshgrid([-2.1:0.1:0.1],[-2:0.1:2]);

>> contour(x,y,eval(f),[0 0])

The command meshgrid draws in the rectangle [−2.1, 0.1] × [−2, 2] a gridmeshgrid
with 23 equispaced nodes in the x-direction, and 41 equispaced nodes in the
y-direction. With the command contour we plot the level curve of f(x, y) (eval-contour
uated with the command eval(f)) corresponding to the value z = 0 (made
precise in the input vector [0 0] of contour). In Figure 9.12 the continuous
line delimitates the region of absolute stability of the Heun method. This region
is larger than the corresponding region of the forward Euler method (which
corresponds to the interior of the dashed circle). Both curves are tangent to
the imaginary axis at the origin (0, 0).
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Fig. 9.12. Boundaries of the regions of absolute stability for the Heun method
(continuous line) and the forward Euler method (dashed line). The correspond-
ing regions lie at the interior of the boundaries

Solution 7.17 We use the following instructions:

>> tspan=[0 1]; y0=0; f=inline(’cos(2*y)’,’t’,’y’);

>> y=’0.5*asin((exp(4*t)-1)./(exp(4*t)+1))’;

>> N=2; for k=1:10

[tt,u]=predcor(f,tspan,y0,N,’feonestep’,’cnonestep’);

t=tt(end); e(k)=abs(u(end)-eval(y)); N=2*N; end

>> p=log(abs(e(1:end-1)./e(2:end)))/log(2)

p =

Columns 1 through 6
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2.4733 2.2507 2.1223 2.0601 2.0298 2.0148

Columns 7 through 9

2.0074 2.0037 2.0018

As expected, we find that the order of convergence of the method is 2. However,
the computational cost is comparable with that of the forward Euler method,
which is first-order accurate only.

Solution 7.18 The second-order differential equation of this exercise is equiv-
alent to the following first-order system:

x′ = z, z′ = −5z − 6x,

with x(0) = 1, z(0) = 0. We use the Heun method as follows:

>> tspan=[0 5]; y0=[1 0];

>> [tt,u]=predcor(’fspring’,tspan,y0,N,’feonestep’,’cnonestep’);

where N is the number of nodes and fspring.m is the following function:

function y=fspring(t,y)

b=5; k=6;

yy=y; y(1)=yy(2); y(2)=-b*yy(2)-k*yy(1);

In Figure 9.13 we show the graphs of the two components of the solution,
computed with N=20,40 and compare them with the graph of the exact solution
x(t) = 3e−2t − 2e−3t and that of its first derivative.
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Fig. 9.13. Approximations of x(t) (continuous line) and x′(t) (dashed line)
computed with N=20 (thin line) and N=40 (thick line). Small circles and squares
refer to the exact functions x(t) and x′(t), respectively

Solution 7.19 The second-order system of differential equations is reduced
to the following first-order system:






x′ = z,
y′ = v,
z′ = 2ω sin(Ψ) − k2x,
v′ = −2ω sin(Ψ)z − k2y.

(9.5)
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If we suppose that the pendulum at the initial time t0 = 0 is at rest in the
position (1, 0), the system (9.5) must be given the following initial conditions:

x(0) = 1, y(0) = 0, z(0) = 0, v(0) = 0.

Setting Ψ = π/4, which is the average latitude of the Northern Italy, we use
the forward Euler method as follows:

>> [t,y]=feuler(’ffocault’,[0 300],[1 0 0 0],Nh);

where Nh is the number of steps and ffocault.m is the following function:

function y=ffocault(t,y)

l=20; k2=9.8/l; psi=pi/4; omega=7.29*1.e-05;

yy=y; y(1)=yy(3); y(2)=yy(4);

y(3)=2*omega*sin(psi)*yy(4)-k2*yy(1);

y(4)=-2*omega*sin(psi)*yy(3)-k2*yy(2);

By some numerical experiments we conclude that the forward Euler method
cannot produce acceptable solutions for this problem even for very small h. For
instance, on the left of Figure 9.14 we show the graph, in the phase plane (x, y),
of the motion of the pendulum computed with N=30000, that is, h = 1/100. As
expected, the rotation plane changes with time, but also the amplitude of the
oscillations increases. Similar results can be obtained for smaller h and using
the Heun method. In fact, the model problem corresponding to the problem at
hand has a coefficient λ that is purely imaginary. The corresponding solution
(a sinusoid) is bounded for t that tends to infinity, however it doesn’t tend to
zero.

Unfortunately, both the forward Euler and Heun methods feature a region
of absolute stability that doesn’t include any point of the imaginary axis (with
the exception of the origin). Thus, to ensure the absolute stability one should
choose the prohibited value h = 0.

To get an acceptable solution we should use a method whose region of
absolute stability includes a portion of the imaginary axis. This is the case,
for instance, for the adaptive Runge-Kutta method of order 3, implemented in
the MATLAB function ode23. We can invoke it by the following command:

>> [t,u]=ode23(’ffocault’,[0 300],[1 0 0 0]);

In Figure 9.14 (right) we show the solution obtained using only 1022 integration
steps. Note that the numerical solution is in good agreement with the analytical
one.

Octave 7.1 In Octave, ode23 returns after 1419 iterations. Moreover ode23

returns a different final result. �

Solution 7.20 We fix the right hand side of the problem in the following
function
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Fig. 9.14. Trajectories on the phase plane for the Foucault pendulum of
Solution 7.19 computed by the forward Euler method (left) and the third-
order adaptive Runge-Kutta method (right)

function y=baseball(t,y)
phi = 0; omega = 1800*1.047198e-01;
B = 4.1*1.e-4; yy=y;
g = 9.8;
vmodulo = sqrt(y(4)^2+y(5)^2+y(6)^2);
Fv = 0.0039+0.0058/(1+ exp((vmodulo -35)/5));
y(1)=yy(4);
y(2)=yy(5);
y(3)=yy(6);
y(4)=-Fv*vmodulo*y(4)+B*omega *(yy(6)* sin(phi)-yy(5)

*cos(phi ));
y(5)=-Fv*vmodulo*y(5)+B*omega*yy(4)* cos(phi);
y(6)=-g-Fv*vmodulo*y(6)-B*omega*yy(4)* sin(phi);
return

At this point we only need to recall ode23 as follows:

>> [t,u]=ode23(’baseball’,[0 0.4],...

[0 0 0 38*cos(1*pi/180) 0 38*sin(1*pi/180)]);

Using command find we approximately compute the time at which the altitude
becomes negative, which corresponds to the exact time of impact with the
ground:

>> n=max(find(u(:,3)>=0));

t(n)

ans = 0.1066

In Figure 7.1 we report the trajectories of the baseball with an inclination of
1 and 3 degrees represented on the plane x1x3 and on the x1x2x3 space.

9.8 Chapter 8

Solution 8.1 We can verify directly that xT Ax > 0 for all x �= 0. Indeed,
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Fig. 9.15. The trajectories followed by a baseball launched with an initial
angle of 1 degree (solid line), respectively, 3 degrees (dashed line)
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= 2x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + . . . − 2xN−1xN + 2x2
N .

The last expression is equivalent to (x1−x2)
2+. . .+(xN−1−xN )2+x2

1+x2
N ,

which is, positive provided that at least one xi is non-null.

Solution 8.2 We verify that Aqj = λjqj . Computing the matrix-vector prod-
uct w = Aqj and requiring that w is equal to the vector λjqj , we find:






2 sin(jθ) − sin(2jθ) = 2(1 − cos(jθ)) sin(jθ),

− sin(jkθ) + 2 sin(j(k + 1)θ) − sin(j(k + 2)θ) = 2(1 − cos(jθ)) sin(2jθ),
k = 1, . . . , N − 2

2 sin(Njθ) − sin((N − 1)jθ) = 2(1 − cos(jθ)) sin(Njθ).

The first equation is an identity since sin(2jθ) = 2 sin(jθ) cos(jθ). The other
equations can be simplified since

sin(jkθ) = sin((k + 1)jθ) cos(jθ) − cos((k + 1)jθ) sin(jθ),

sin(j(k + 2)θ) = sin((k + 1)jθ) cos(jθ) + cos((k + 1)jθ) sin(jθ).

Since A is symmetric and positive definite, its condition number is K(A) =
λmax/λmin, that is, K(A) = λ1/λN = (1−cos(Nπ/(N +1)))/(1−cos(π/(N +
1))). Using the Taylor expansion of order 2 of the cosine function, we obtain
K(A) 	 N2, that is, K(A) 	 h−2.

Solution 8.3 We note that
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u(x̄ + h) = u(x̄) + hu′(x̄) +
h2

2
u′′(x̄) +

h3

6
u′′′(x̄) +

h4

24
u(4)(ξ+),

u(x̄ − h) = u(x̄) − hu′(x̄) +
h2

2
u′′(x̄) − h3

6
u′′′(x̄) +

h4

24
u(4)(ξ−),

where ξ+ ∈ (x, x + h) and ξ− ∈ (x − h, x). Summing the two expression we
obtain

u(x̄ + h) + u(x̄ − h) = 2u(x̄) + h2u′′(x̄) +
h4

24
(u(4)(ξ+) + u(4)(ξ−)),

which is the desired property.

Solution 8.4 The matrix is again tridiagonal with entries ai,i−1 = −1 − h δ
2
,

aii = 2+h2γ, ai,i+1 = −1+h δ
2
. The right-hand side, accounting for the bound-

ary conditions, becomes f = (f(x1)+α(1+hδ/2)/h2, f(x2), . . . , f(xN−1), f(xN )
+β(1 − hδ/2)/h2)T .

Solution 8.5 With the following instructions we compute the corresponding
solutions to the three given values of h:

>> fbvp=inline(’1+sin(4*pi*x)’,’x’);

>> [z,uh10]=bvp(0,1,9,0,0.1,fbvp,0,0);

>> [z,uh20]=bvp(0,1,19,0,0.1,fbvp,0,0);

>> [z,uh40]=bvp(0,1,39,0,0.1,fbvp,0,0);

Since we don’t know the exact solution, to estimate the convergence order we
compute an approximate solution on a very fine grid (for instance h = 1/1000),
then we use this latter as a surrogate for the exact solution. We find:

>> [z,uhex]=bvp(0,1,999,0,0.1,fbvp,0,0);

>> max(abs(uh10-uhex(1:100:end)))

ans =

8.6782e-04

>> max(abs(uh20-uhex(1:50:end)))

ans =

2.0422e-04

>> max(abs(uh40-uhex(1:25:end)))

ans =

5.2789e-05

Halving h, the error is divided by 4, proving that the convergence order with
respect to h is 2.

Solution 8.6 To find the largest hcrit which ensures a monotonic solution (as
the analytical one) we execute the following cycle:

>> fbvp=inline(’1+0.*x’,’x’); for k=3:1000

[z,uh]=bvp(0,1,k,100,0,fbvp,0,1); if sum(diff(uh)>0)==length(uh)

-1, break, end, end
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We let h(= 1/(k+1)) vary till the forward incremental ratios of the numerical
solution uh are all positive. Then we compute the vector diff(uh) whose com-
ponents are 1 if the corresponding incremental ratio is positive, 0 otherwise. If
the sum of all components equals the vector length of uh diminished by 1, then
all incremental ratios are positive. The cycle stops when k=499, that is, when
h = 1/500 if δ = 1000, and when h = 1/1000 if δ = 2000. We can therefore
guess that one should require h < 2/δ = hcrit in order to get a monotonically
increasing numerical solution. Indeed, this restriction on h is precisely what
can be proven theoretically (see, for instance, [QV94]). In Figure 9.16 we show
the numerical solutions obtained when δ = 100 for two values of h.
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Fig. 9.16. Numerical solution for Problem 8.6 obtained for h = 1/10 (dashed
line) and h = 1/60 (continuous line)

Solution 8.7 We should modify the Program 8.1 in order to impose Neumann
boundary conditions. In the Program 9.3 we show one possible implementation.

Program 9.3. neumann: approximation of a Neumann boundary-value problem

function [x,uh]= neumann(a,b,N,delta ,gamma ,bvpfun ,...
ua,ub,varargin)

h = (b-a)/(N+1); x = [a:h:b]; e = ones(N+2,1);
A = spdiags([-e-0.5*h*delta 2*e+gamma*h^2 ...

-e+0.5*h*delta], -1:1, N+2, N+2);
f = h^2* feval(bvpfun ,’x’,varargin {:}); f=f’;
A(1 ,1)= -3/2*h; A(1 ,2)=2*h; A(1 ,3)= -1/2*h;
f(1)=h^2*ua;
A(N+2,N+2)=3/2*h; A(N+2,N+1)= -2*h; A(N+2,N)=1/2*h;
f(N+2)=h^2*ub;
uh = A\f;
return

Solution 8.8 The trapezoidal integration formula, used on the two subinter-
vals Ik−1 and Ik, produces the following approximation
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∫

Ik−1∪Ik

f(x)ϕk(x) dx 	 h

2
f(xk) +

h

2
f(xk) = hf(xk),

since ϕk(xj) = δjk, ∀j, k. Thus, we obtain the same right-hand side of the
finite difference method.

Solution 8.9 We have ∇φ = (∂φ/∂x, ∂φ/∂y)T and therefore div∇φ =
∂2φ/∂x2 + ∂2φ/∂y2, that is, the Laplacian of φ.

Solution 8.10 To compute the temperature at the center of the plate, we
solve the corresponding Poisson problem for various values of ∆x = ∆y, using
the following instructions:

>> k=0; fun=inline(’25’,’x’,’y’); bound=inline(’(x==1)’,’x’,’y’);

>> for N = [10,20,40,80,160],

[u,x,y]=poissonfd(0,0,1,1,N,N,fun,bound);

k=k+1; uc(k) = u(N/2+1,N/2+1); end

The components of the vector uc are the values of the computed temperature
at the center of the plate as the step-size h of the grid decreases. We have

>> uc

2.0168 2.0616 2.0789 2.0859 2.0890

We can therefore conclude that at the center of the plate the temperature is
about 2.08◦C. In Figure 9.17 we show the isolines of the temperature for two
different values of h.
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Fig. 9.17. The isolines of the computed temperature for ∆x = ∆y = 1/10
(dashed lines) and for ∆x = ∆y = 1/80 (continuous lines)
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