Interactive Computing with Matlab

Gerald W. Recktenwald
Department of Mechanical Engineering
Portland State University gerry@me.pdx.edu

Starting Matlab

- Double click on the MatlaB icon, or on unix systems type "matlab" at the command line.
- After startup Matlab displays a command window that is used to enter commands and display text-only results.
- Enter Commands at the command prompt:
>> for full version
EDU> for educational version
- Matlab responds to commands by printing text in the command window, or by opening a figure window for graphical output.
- Toggle between windows by clicking on them with the mouse.

Matlab as a Calculator (1)

Enter formulas at the command prompt

```
>> 2 + 6 - 4
    (press return after "4")
ans =
    4
>> ans/2
ans =
    2
```


Matlab as a Calculator (2)

Define and use variables

$$
\begin{aligned}
& \gg a=5 \\
& a=5 \\
& \gg b=6 \\
& b=6 \\
& b=c=b / a \\
& c=1.2000
\end{aligned}
$$

Built-in Variables

pi $(=\pi)$ and ans are a built-in variables

```
>> pi
ans =
            3.1416
    >> sin(ans/4)
    ans =
        0.7071
```

Note: There is no "degrees" mode. All angles are measured in radians.

Built-in Functions

Many standard mathematical functions, such as sin, cos, log, and $\log 10$, are built-in

```
>> log(256)
ans =
    5.5452
>> log10(256)
ans =
    2.4082
>> log2(256)
ans =
    8
```


Ways to Get Help

- Use on-line help to request info on a specific function

```
>> help sqrt
```

- In Matlab version 6 and later the doc function opens the on-line version of the manual. This is very helpful for more complex commands.

```
>> doc plot
```

- Use lookfor to find functions by keywords
>> lookfor functionName

On-line Help (1)

Syntax:

```
help functionName
```


Example:

```
    >> help log
```

produces
LOG Natural logarithm.
LOG(X) is the natural logarithm of the elements of X. Complex results are produced if X is not positive.

See also LOG2, LOG10, EXP, LOGM.
The help function provides a compact summary of how to use a command. Use the doc function to get more in-depth information.

On-line Help (2)

The help browser opens when you type a doc command:

```
>> doc plot
```


Looking for Functions

Syntax:

lookfor string
searches first line of function descriptions for "string".

Example:

>> lookfor cosine
produces

```
ACOS Inverse cosine.
ACOSH Inverse hyperbolic cosine.
COS Cosine.
COSH Hyperbolic cosine.
```


Strategies for Interactive Computing

- Use the command window for short sequences of calculations
- Later we'll learn how to build reusable functions for more complex tasks.
- The command window is good for testing ideas and running sequences of operations contained in functions
- Any command executed in the command window can also be used in a function.

Let's continue with a tour of interactive computing.

Suppress Output with Semicolon ${ }_{(1)}$

Results of intermediate steps can be suppressed with semicolons.
Example: Assign values to x, y, and z , but only display the value of z in the command window:

```
>> x = 5;
>> y = sqrt(59);
>> z = log(y) + x^0.25
    z =
        3.5341
```


Suppress Output with Semicolon (2)

Type variable name and omit the semicolon to print the value of a variable (that is already defined)

```
>> x = 5;
>> y = sqrt(59);
>> z = log(y) + x^0.25
    z =
        3.5341
>> y
    y =
        7.6811
```

$$
\left(=\log (\operatorname{sqrt}(59))+5^{\wedge} 0.25\right)
$$

Multiple Statements per Line

Use commas or semicolons to enter more than one statement at once. Commas allow multiple statements per line without suppressing output.

```
>> a = 5; b = sin(a), c = cosh(a)
b =
    -0.9589
c =
    74.2099
```


Matlab Variables Names

Legal variable names:

- Begin with one of a-z or $A-Z$
- Have remaining characters chosen from a-z, $A-Z, 0-9$, or -
- Have a maximum length of 31 characters
- Should not be the name of a built-in variable, built-in function, or user-defined function

Examples:

xxxxxxxxx
pipeRadius
widgets_per_box
mySum
mysum

Note: mySum and mysum are different variables. Matlab is case sensitive.

Built-in Matlab Variables (1)

Name	Meaning
ans	value of an expression when that expression is not assigned to a variable
eps	floating point precision
pi	$\pi, \quad(3.141492 \ldots)$
realmax	largest positive floating point number realmin
smallest positive floating point number Inf	∞, a number larger than realmax, the result of evaluating $1 / 0$.
NaN	not a number, the result of evaluating $0 / 0$

Built-in Matlab Variables (2)

Rule: Only use built-in variables on the right hand side of an expression. Reassigning the value of a built-in variable can create problems with built-in functions.

Exception: i and j are preassigned to $\sqrt{-1}$. One or both of i or j are often reassigned as loop indices. More on this later.

Matrices and Vectors

All Matlab variables are matrices

- A vector is a matrix with one row or one column.
- A scalar is a matrix with one row and one column.
- A character string is a row of column vector of characters.

Consequences:

- Rules of linear algebra apply to addition, subtraction and multiplication.
- Elements in the vectors and matrices are addressed with Fortran-like subscript notation, e.g.,, $x(2), A(4,5)$. Usually this notation is clear from context, but it can be confused with a function call,

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{sqrt}(5) & \text { sqrt is a built-in function } \\
\mathrm{z}=\mathrm{f}(3) & \text { Is } \mathrm{f} \text { a function or variable? }
\end{array}
$$

Creating Matlab Variables

Matlab variables are created with an assignment statement

```
>> x = expression
```

where expression is a legal combinations of numerical values, mathematical operators, variables, and function calls.

The expression can involve:

- Manual entry
- Built-in functions that return matrices
- Custom (user-written) functions that return matrices
- Loading matrices from text files or "mat" files

Element-by-Element Creation of Matrices and Vectors (1)

A matrix, a column vector, and a row vector:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 2 \\
3 & 1 \\
1 & 4
\end{array}\right] \\
x=\left[\begin{array}{l}
5 \\
7 \\
9 \\
2
\end{array}\right] \\
v=\left[\begin{array}{lll}
9 & -3 & 4
\end{array}\right]
\end{gathered}
$$

As Matlab variables:

```
>> A = [3 2; 3 1; 1 4]
```

$\mathrm{A}=$

5
7
9
2

$$
\gg \mathrm{v}=\left[\begin{array}{llll}
9 & -3 & 4 & 1
\end{array}\right]
$$

$$
\mathrm{v}=
$$

$$
\begin{array}{llll}
9 & -3 & 4 & 1
\end{array}
$$

Element-by-Element Creation of Matrices and Vectors (2)

For manual entry, the elements in a vector are enclosed in square brackets. When creating a row vector, separate elements with a space.

```
>> v = [lllll
v =
    7 3 9
```

Separate columns with a semicolon

```
>> w = [2; 6; 1]
W =
    2
    6
    1
```


Element-by-Element Creation of Matrices and Vectors (3)

When assigning elements to matrix, row elements are separated by spaces, and columns are separated by semicolons

```
>> A = [1 2 3; 5 7 11; 13 17 19]
A =
    1 2
    5 7 11
    13 17 19
```


Transpose Operator (1)

Once it is created, a variable can be transformed with other operators. The transpose operator converts a row vector to a column vector (and vice versa), and it changes the rows of a matrix to columns.

```
>> v = [2 [4 4 1 7
v =
    2 4
>> W = v,
w =
    2
    4
    1
    7
```


Transpose Operator (2)

$$
\begin{aligned}
& \text { >> } A=\left[\begin{array}{llllllll}
1 & 2 & 3 ; & 4 & 5 & 7 & 8 & 9
\end{array}\right] \\
& \mathrm{A}= \\
& 123 \\
& 4 \quad 5 \quad 6 \\
& \begin{array}{ll}
7 & 8
\end{array} \\
& \text { >> } \mathrm{B}=\mathrm{A}^{\prime} \\
& \text { B = }
\end{aligned}
$$

Overwriting Variables

Once a variable has been created, it can be reassigned

```
>> x = 2;
>> x = x + 2
x =
        4
>> y = [lllll
y =
    1 2 3 4
>> y = y'
y =
    1
    2
    3
    4
```


Using Functions to Create Matrices and Vectors

Create vectors with built-in functions:

```
linspace and logspace
```

Create matrices with built-in functions:

```
ones, zeros, eye, diag,...
```

Note that ones and zeros can also be used to create vectors.

Creating vectors with linspace (1)

The linspace function creates vectors with elements having uniform linear spacing.

Syntax:

```
x = linspace(startValue,endValue)
x = linspace(startValue,endValue,nelements)
```


Examples:

```
>> u = linspace ( \(0.0,0.25,5\) )
u =
    \(\begin{array}{lllll}0 & 0.0625 & 0.1250 & 0.1875 & 0.2500\end{array}\)
>> u = linspace(0.0,0.25);
```

Remember: Ending a statement with semicolon suppresses the output.

Creating vectors with linspace (2)

Column vectors are created by appending the transpose operator to linspace

```
>> v = linspace(0,9,4)'
v =
    0
    3
    6
    9
```


Example: A Table of Trig Functions

```
>> \(\mathrm{x}=\operatorname{linspace(0,2*pi,6)';~(note~transpose)~}\)
\(\gg y=\sin (x) ;\)
>> \(z=\cos (x) ;\)
>> [x y z]
ans =
\begin{tabular}{rrr}
0 & 0 & 1.0000 \\
1.2566 & 0.9511 & 0.3090 \\
2.5133 & 0.5878 & -0.8090 \\
3.7699 & -0.5878 & -0.8090 \\
5.0265 & -0.9511 & 0.3090 \\
6.2832 & 0 & 1.0000
\end{tabular}
```

The expressions $\mathrm{y}=\sin (\mathrm{x})$ and $\mathrm{z}=\cos (\mathrm{x})$ take advantage of vectorization. If the input to a vectorized function is a vector or matrix, the output is often a vector or matrix having the same shape. More on this later.

Functions to Create Matrices (2)

Use ones and zeros to set intial values of a matrix or vector. Syntax:

```
A = ones(nrows,ncols)
A = zeros(nrows,ncols)
```


Examples:

```
>> D = ones (3,3)
D =
    1 1
    1 1 1
    1 1 1
>> E = ones (2,4)
E =
    1 1 1 1
    1 1 1 1
```


Functions to Create Matrices (3)

ones and zeros are also used to create vectors. To do so, set either nrows or ncols to 1.

```
>> s = ones(1,4)
S =
    1 1 1 1
>> t = zeros(3,1)
t =
        0
        0
        0
```


Functions to Create Matrices (4)

The eye function creates identity matrices of a specified size. It can also create non-square matrices with ones on the main diagonal.

Syntax:

```
A = eye(n)
A = eye(nrows,ncols)
```


Examples:

```
>> \(C=\) eye(5)
C =
\begin{tabular}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{tabular}
```


Functions to Create Matrices (5)

The optional second input argument to eye allows non-square matrices to be created.

```
>> D = eye(3,5)
```

D =

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0

where $D_{i, j}=1$ whenever $i=j$.

Functions to Create Matrices (6)

The diag function can either create a matrix with specified diagonal elements, or extract the diagonal elements from a matrix

Syntax:

$$
\begin{aligned}
& A=\operatorname{diag}(V) \\
& V=\operatorname{diag}(A)
\end{aligned}
$$

Example: Use diag to create a matrix

```
>> v = [1 2 3];
>> A = diag(v)
A =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{tabular}
```


Functions to Create Matrices (7)

Example: Use diag to extract the diagonal of a matrix

```
>> B = [1:4; 5:8; 9:12]
B =
\begin{tabular}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{tabular}
>> w = diag(B)
W =
    1
    6
    1 1
```


Functions to Create Matrices (8)

The action of the diag function depends on the characteristics and number of the input(s). This polymorphic behavior of Matlab functions is common. Refer to the on-line documentation for the possible variations.

```
>> A = diag([lllll
A =
\begin{tabular}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{tabular}
>> B = [4 2 2; 3 6 9; 1 1 7];
>> v = diag(B)
v =
    4
    6
    7
```


Subscript Notation (1)

If A is a matrix, $A(i, j)$ selects the element in the ith row and j th column. Subscript notation can be used on the right hand side of an expression to refer to a matrix element.

```
>> A = [1 2 3; 4 5 6; 7 8 9];
>> b = A (3,2)
b =
    8
>> c = A(1,1)
c =
    1
```


Subscript Notation (1)

Subscript notation is also used to assign matrix elements

$$
\begin{aligned}
& \text { > } A(1,1)=c / b \\
& \mathrm{~A}=
\end{aligned}
$$

Referring to elements beyond the dimensions the matrix results in an error

```
>>A = [1 2 3; 4 5 6; 7 8 9];
>> A(1,4)
??? Index exceeds matrix dimensions.
```


Subscript Notation (1)

Assigning an element that is beyond the existing dimensions of the matrix causes the matrix to be resized!

```
>> \(A=[123 ; 456 ; 7\) 8 9];
\(\mathrm{A}=\)
    123
    \(4 \quad 5 \quad 6\)
    \(\begin{array}{ll}7 & 8\end{array}\)
>> \(A(4,4)=11\)
A =
\begin{tabular}{rrrr}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
0 & 0 & 0 & 11
\end{tabular}
```

In other words, Matlab automatically resizes matrices on the fly.

Colon Notation (1)

Colon notation is very powerful and very important in the effective use of Matlab. The colon is used as both an operator and as a wildcard.

Use colon notation to:

- create vectors
- refer to or extract ranges of matrix elements

Colon Notation (2)

Syntax:

startValue: endValue
startValue:increment: endValue

Note: startValue, increment, and endValue do not need to be integers

Colon Notation (3)

Creating row vectors:

```
>> \(s=1: 4\)
s =
    \(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\)
>> \(t=0: 0.1: 0.4\)
\(\mathrm{t}=\)
    \(\begin{array}{lllll}0 & 0.1000 & 0.2000 & 0.3000 & 0.4000\end{array}\)
```


Colon Notation (4)

Creating column vectors:

```
>> \(u=(1: 5)^{\prime}\)
u =
        1
        2
        3
        4
        5
>> \(v=1: 5^{\prime}\)
\(\mathrm{v}=\)
    \(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\)
```

v is a row vector because 1:5' creates a vector between 1 and the transpose of 5 .

Colon Notation (5)

Use colon as a wildcard to refer to an entire column or row

```
>>A = [1 2 3; 4 5 6; 7 8 9];
>> A(:,1)
ans =
        1
        4
        7
>> A(2,:)
ans =
    4 5 6
```


Colon Notation (6)

Or use colon notation to refer to subsets of columns or rows

```
>> A(2:3,1)
ans =
        4
        7
    >> A(1:2,2:3)
    ans =
    ans =
        2 3
        5 6
```


Colon Notation (7)

Colon notation is often used in compact expressions to obtain results that would otherwise require several steps.

Example:

```
>> A = ones (8,8);
>> A(3:6,3:6) = zeros(4,4)
A =
\begin{tabular}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
```


Colon Notation (8)

Finally, colon notation is used to convert any vector or matrix to a column vector.

Example:

$$
\begin{aligned}
& \gg \mathrm{x}=1: 4 ; \\
& \gg \mathrm{y}=\mathrm{x}(:) \\
& \mathrm{y}= \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}
$$

Colon Notation (9)

Colon notation converts a matrix to a column vector by appending the columns of the input matrix

```
>> A = rand (2,3);
>> v = A(:)
v =
    0.9501
    0.2311
    0.6068
    0.4860
    0.8913
    0.7621
    0.4565
```

Note: The rand function generates random elements between zero and one.
Repeating the preceding statements will, in all likelihood, produce different numerical values for the elements of v .

A Quick Overview of Linear Algebra in Matlab

The name "Matlab" is a shortened form of "MATrix LABoratory".
Matlab data types and syntax make it easy to perform standard operations of linear algebra including addition, subtraction, and multiplication of vectors and matrices.
Chapter 7 provides a detailed review of linear algebra. Here we provide a simple introduction to some operations that are necessary for routine calculation.

- Vector addition and subtraction
- Inner and outer products
- Vectorization
- Array operators

Vector Addition and Subtraction

Vector and addition and subtraction are element-by-element operations.

Example:

```
>> u = [10 9 8];
    (u and v are row vectors)
>> v = [1 2 3];
>> u+v
ans =
    11 11 11
>> u-v
ans =
    9
```


Vector Inner and Outer Products

The inner product combines two vectors to form a scalar

$$
\sigma=u \cdot v=u v^{T} \Longleftrightarrow \sigma=\sum u_{i} v_{i}
$$

The outer product combines two vectors to form a matrix

$$
A=u^{T} v \Longleftrightarrow a_{i, j}=u_{i} v_{j}
$$

Inner and Outer Products in Matlab

Inner and outer products are supported in Matlab as natural extensions of the multiplication operator

```
>> u = [llllll
    (u and v are row vectors)
>> v = [1 2 3 3];
>> u*v'
ans =
    5 2
>> u'*v
(outer product)
```


Vectorization

- Vectorization is the use of single, compact expressions that operate on all elements of a vector without explicitly writing the code for a loop. The loop is executed by the Matlab kernel, which is much more efficient at evaluating a loop in interpreted Matlab code.
- Vectorization allows calculations to be expressed succintly so that programmers get a high level (as opposed to detailed) view of the operations being performed.
- Vectorization is important to make Matlab operate efficiently ${ }^{2}$.

[^0]
Vectorization of Built-in Functions

Most built-in function support vectorized operations. If the input is a scalar the result is a scalar. If the input is a vector or matrix, the output is a vector or matrix with the same number of rows and columns as the input.

Example:

```
>> x = 0:pi/4:pi (define a row vector)
x =
        0 0.7854 1.5708 2.3562 3.1416
>> y = cos(x) (evaluate cosine of each x(i))
y =
    1.0000 0.7071
    0-0.7071 -1.0000
```


Contrast with FORTRAN Implementation

The Matlab statements

$$
\begin{aligned}
& x=0: p i / 4: p i \\
& y=\cos (x)
\end{aligned}
$$

are equivalent to the following FORTRAN code

```
    real x(5),y(5)
    pi = 3.14159624
    dx = pi/4.0
    do 10 i=1,5
    x(i) = (i-1)*dx
    y(i) = sin(x(i))
10 continue
```

No explicit loop is necessary in Matlab.

Vectorized Calculations (6)

More examples

$$
\begin{aligned}
& \text { >> A = pi*[} 12 \text { 2; } 3 \text { 4] } \\
& \mathrm{A}= \\
& 3.1416 \quad 6.2832 \\
& 9.424812 .5664 \\
& \text { >> } S=\sin (A) \\
& \text { S = } \\
& \begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} \\
& \text { >> } B=A / 2 \\
& \text { B = } \\
& 1.5708 \quad 3.1416 \\
& 4.7124 \quad 6.2832 \\
& \text { >> } T=\sin (B) \\
& \mathrm{T}= \\
& \begin{array}{rr}
1 & 0 \\
-1 & 0
\end{array}
\end{aligned}
$$

Array Operators

Array operators support element-by-element operations that are not defined by the rules of linear algebra.

Array operators have a period prepended to a standard operator.

Symbol	Operation
.*	element-by-element multiplication
./	element-by-element "right" division
.\} $&{\text { element-by-element "left" division }} \\ {\text {.- }} &{\text { element-by-element exponentiation }} \\ {\hline}$	

Array operators are a very important tool for writing vectorized code.

Using Array Operators (1)

Examples: Element-by-element multiplication and division

```
    >> u = [llll
    >> v = [4 5 6];
Use .* and ./ for element-by-element multiplication and division
>> w = u.*v
W =
    4 10}1
>> x = u./v
x =
    0.2500 0.4000 0.5000
```


Using Array Operators (1)

Examples: Element-by-element multiplication and division

```
>> u = [llll}12 3]
>> v = [4 5 6];
>> y = sin(pi*u/2) .* cos(pi*v/2)
y =
    1 0 1
>> z = sin(pi*u/2) ./ cos(pi*v/2)
Warning: Divide by zero.
z =
    1 NaN 1
```


Using Array Operators (2)

Examples: Application to matrices

```
>> A = [1 1 2 3 4 4; 5 6 7 7 8];
>> B = [8 7 6 6 5; 4 3 2 1 1];
>> A.*B
ans =
            8 14 18 20
    20}181
>> A*B
??? Error using ==> *
Inner matrix dimensions must agree.
```

The last statement causes an error because the number of columns in A is not equal to the number of rows in B - a requirement for A and B to be compatible for matrix multiplication.

Using Array Operators (3)

```
>> A = [1 1 2 3 3 4; 5 6 7 7 8];
>> B = [8 7 6 5; 4 3 2 1];
>> A*B'
ans =
            60 20
    164 60
```

The number of columns in A is equal to the number of rows in B^{T}, so $\mathrm{A} * \mathrm{~B}$, is a legal matrix-matrix multiplication.

Array operators also apply to matrix powers.

```
>> A. ^2
ans =
    1 4 9 16
    25 36 49 64
```


Plotting

- Plotting (x, y) data
- Axis scaling and annotation
- 2D (contour) and 3D (surface) plotting

Plotting (x, y) Data (1)

Two dimensional plots are created with the plot function

Syntax:

```
plot(x,y)
plot(xdata,ydata,symbol)
plot(x1,y1,x2,y2,...)
plot(x1,y1,symbol1,x2,y2,symbol2,...)
```

Note: x and y must have the same shape, x 1 and y 1 must have the same shape, x 2 and y 2 must have the same shape, etc.

Plotting (x, y) Data (2)

Example: A simple line plot >> x = linspace(0,2*pi);
>> $\mathrm{y}=\sin (\mathrm{x})$;
>> plot(x, y);

Line and Symbol Types (1)

The curves for a data set are drawn from combinations of the color, symbol, and line types in the following table.

Color		Symbols				Line	
y	yellow	\cdot	point	-	triangle (up)	-	solid
m	magenta	\circ	circle	$<$	triangle (left)	$:$	dotted
c	cyan	x	x-mark	$>$	triangle (right)	-	dashdot
r	red	+	plus	p	pentagram	--	dashed
g	green	$*$	star	h	hexagram		
b	blue	S	square				
w	white	d	diamond				
k	black	v					
	triangle						
(down)							

To choose a color/symbol/line style, chose one entry from each column.

Line and Symbol Types (2)

Examples:

Put yellow circles at the data points:
plot(x,y,'yo')

Plot a red dashed line with no symbols:
plot(x,y,'r--')

Put black diamonds at each data point and connect the diamonds with black dashed lines:
plot(x,y,'kd--')

Alternative Axis Scaling (1)

Combinations of linear and logarithmic scaling are obtained with functions that, other than their name, have the same syntax as the plot function.

Name	Axis scaling
loglog	$\log _{10}(y)$ versus $\log _{10}(x)$
plot	linear y versus x
semilogx	linear y versus $\log _{10}(x)$
semilogy	$\log _{10}(y)$ versus linear x

Note: As expected, use of logarithmic axis scaling for data sets with negative or zero values results in a error. Matlab will complain and then plot only the positive (nonzero) data.

Alternative Axis Scaling (2)

Example:

$$
\begin{aligned}
& \gg x=\operatorname{linspace}(0,3) \\
& \gg y=10 * \exp (-2 * x) \\
& \gg \operatorname{plot}(x, y)
\end{aligned}
$$

>> semilogy (x,y);

Multiple plots per figure window (1)

The subplot function is used to create a matrix of plots in a single figure window.

Syntax:

subplot(nrows, ncols,thisPlot)
Repeat the values of nrows and ncols for all plots in a single figure window. Increment thisPlot for each plot

Multiple plots per figure window (1)

Example:

```
>> x = linspace(0,2*pi);
>> subplot(2,2,1);
>> plot(x,sin(x)); axis([0 2*pi -1.5 1.5]); title('sin(x)');
>> subplot(2,2,2);
>> plot(x,sin(2*x)); axis([0 2*pi -1.5 1.5]); title('sin(2x)');
>> subplot(2,2,3);
>> plot(x,sin(3*x)); axis([0 2*pi -1.5 1.5]); title('sin(3x)');
>> subplot(2,2,4);
>> plot(x,sin(4*x)); axis([0 2*pi -1.5 1.5]); title('sin(4x)');
```

(See next slide for the plot.)

Multiple plots per figure window (2)

Plot Annotation

Name	Operation(s) performed
axis	Reset axis limits
grid	Draw grid lines at the major ticks marks on the x and y axes
gtext	Add text to a location determined by a mouse click
legend	Create a legend to identify symbols and line types when multiple curves are drawn on the same plot
text	Add text to a specified (x, y) location
xlabel	Label the x-axis
ylabel	Label the y-axis
title	Add a title above the plot

[^0]: ${ }^{2}$ Recent versions of Matlab have improved the efficiency for some non-vectorized code.

