Lesson 1

Floating Point System

Youndé – 6 August 2013 Proff. R. Bertelle – MR. Russo

A problem

A problem \mathcal{P} has inputs $x \in X$ and outputs $y \in Y$ where X and Y are some, normed, spaces for data x and solutions y, respectively. In an abstract manner, the problem \mathcal{P} may be seen as a function $f: X \mapsto Y$.

(a) A problem P with inputs x and outputs y.

Conditioning of a problem

We say that the problem \mathcal{P} with input x_0 is well-conditioned if <u>all</u> small, allowable, perturbations δx lead to small perturbations δy . Otherwise, if there is at least one small perturbation δx which leads to a large perturbation δy we say that the problem \mathcal{P} with input x_0 is *ill-conditioned*.

(b) A problem P with perturbed inputs $x + \delta x$ and the corresponding perturbed outputs $y + \delta y$.

One of the most useful, thought not the unique, measure for the conditioning of a problem \mathcal{P} at x_0 is the *relative condition number* K. It is defined as

$$K = \sup_{\delta x} \frac{\left| \frac{\delta y}{y_0} \right|}{\left| \frac{\delta x}{x_0} \right|}$$

where the supremum is taken over all the allowable, small (infinitesimal from a mathematical point of view), perturbations δx . We say that the problem is well-conditioned if K is small, for example less than, about, 10^2 ; the problem is ill-conditioned if K is large, for example greater than 10^6 .

Well-conditioned linear system

ill-conditioned linear system

Conditioning of a function evaluation

Example 1.2 (Evaluation of a function) Consider the computation of $y_0 = f(x_0)$ where f is a differentiable given function. Using Taylor expansion, we have

 $f(x_0 + \delta x) = f(x_0) + f'(x_0) \cdot \delta x + o(\delta x) \qquad \Rightarrow \qquad \delta y = f(x_0 + \delta x) - f(x_0) \approx f'(x_0) \cdot \delta x$

and so, recalling that $y_0 = f(x_0)$, we find

$$\frac{\delta y}{y_0} = \frac{x_0 \cdot f'(x_0)}{f(x_0)} \cdot \frac{\delta x}{x_0} \qquad \Rightarrow \qquad K = \left| \begin{array}{c} x_0 \cdot f'(x_0) \\ \hline f(x_0) \end{array} \right|$$

As an example, consider $f(x) = \sqrt{x+1} - \sqrt{x}$, $x \ge 0$. Since the first derivative of f may be rewritten as

$$f'(x) = \frac{-f(x)}{2\sqrt{x \cdot (x+1)}}$$

we obtain

$$K = \frac{|x_0|}{2\sqrt{x_0 \cdot (x_0 + 1)}}$$

and so the problem is well-conditioned for all $x_0 \ge 0$ since $K \le 1/2$ with $K \approx 1/2$ for $x_0 \to +\infty$.

Conditioning of Eigenvalues Computation

Example 1.6 (Computation of the eigenvalues) The computation of the eigenvalues of a non symmetric matrix is often an ill-conditioned problem. To see this, consider the matrices A and its perturbed version \hat{A} defined as

$$A = \begin{bmatrix} 101 & 110 \\ -90 & -98 \end{bmatrix} \qquad \hat{A} = \begin{bmatrix} 100 & 110 \\ -90 & -98 \end{bmatrix}$$

Note that the only difference among A and \hat{A} is that $a_{11} = 101$ and $\hat{a}_{11} = 100$. That is, a fairy small change, of the order of 1%. However, the eigenvalues of the two matrices are

$$\begin{array}{ll} \lambda_1 = 1 & \lambda_2 = 2 & \text{for matrix } A \\ \hat{\lambda}_1 \approx 1 + 10i & \hat{\lambda}_2 \approx 1 - 10i & \text{for matrix } \hat{A} \end{array}$$

So, we have a large change in the eigenvalues a front of a small change in the matrix. Thus, according to our definition, the problem is ill-conditioned.

As a note, which we do not prove, the computation of the eigenvalues of a symmetric matrix is a well-conditioned problem. \Box

Floating Point Numbers #1

$$\mathbb{F}(\beta, t, L, U) = \{ 0 \} + \left\{ x \in \mathbb{R} \mid x = (-1)^s \cdot \beta^p \sum_{k=1}^t a_k \beta^{-k} \right\}$$

- β , the base, is an integer with $\beta \geq 2$. Common used bases are $\beta = 10$, $\beta = 2$ and $\beta = 16$.
- L and U are two integer numbers. Typically we have L < 0 < U. The scaling factor p is an integer satisfying $L \le p \le U$.
- t is a positive integer representing the number of figures a_k , $k = 1, \ldots, t$ of each floating point number. The unique representation of each floating point number requires $a_1 > 0$. Let us show what happens if this is not the case. Consider, as an example, the number x = 1 and $\mathbb{F}(10, 5, -6, 6)$. Then, the number x = 1 have different representations: 0.1×10^1 , 0.01×10^2 , 0.001×10^3 and many others.
- s = 0 for positive numbers and s = -1 for negative numbers.

Floating Point Numbers #2

$$\mathbb{F}(\beta,t,L,U) = \left\{ 0 \right\} + \left\{ x \in \mathbb{R} \mid x = (-1)^s \cdot \beta^p \sum_{k=1}^t a_k \beta^{-k} \right\}$$

Theorem 1.1 The set of floating point numbers $\mathbb{F}(\beta, t, L, U)$ has the following properties.

(a) $\mathbb{F} \subset \mathbb{R}$.

- (b) if $x \in \mathbb{F}$ then also $-x \in \mathbb{F}$.
- (c) \mathbb{F} has $1 + 2 \cdot (\beta 1) \cdot \beta^{t-1} \cdot (U L + 1)$ numbers.
- (d) The lower and the larger positive floating point numbers are, respectively, x_{min} and x_{max} defined as

$$x_{min} = \beta^{L-1}, \qquad \qquad x_{max} = \beta^U \cdot \left(1 - \beta^{-t}\right)$$

Floating Point Numbers #3

Example 1.7 Let us explicitly write $\mathbb{F}(10, 1, -1, 2)$. It is $\beta = 10, t = 1, L = -1, U = 2$. Thus, for the positive floating point numbers, we have the 36 numbers shown in Table 1.1.

p = -1	p = 0	p = 1	p=2
$0.1 \cdot 10^{-1} = 0.01$	$0.1 \cdot 10^0 = 0.1$	$0.1 \cdot 10^1 = 1$	$0.1 \cdot 10^2 = 10$
$0.2 \cdot 10^{-1} = 0.02$	$0.2 \cdot 10^0 = 0.2$	$0.2 \cdot 10^1 = 2$	$0.2 \cdot 10^2 = 20$
$0.3 \cdot 10^{-1} = 0.03$	$0.3 \cdot 10^0 = 0.3$	$0.3 \cdot 10^1 = 3$	$0.3 \cdot 10^2 = 30$
$0.4 \cdot 10^{-1} = 0.04$	$0.4 \cdot 10^0 = 0.4$	$0.4 \cdot 10^1 = 4$	$0.4 \cdot 10^2 = 40$
$0.5 \cdot 10^{-1} = 0.05$	$0.5 \cdot 10^0 = 0.5$	$0.5 \cdot 10^1 = 5$	$0.5 \cdot 10^2 = 50$
$0.6 \cdot 10^{-1} = 0.06$	$0.6 \cdot 10^0 = 0.6$	$0.6 \cdot 10^1 = 6$	$0.6 \cdot 10^2 = 60$
$0.7 \cdot 10^{-1} = 0.07$	$0.7 \cdot 10^0 = 0.7$	$0.7 \cdot 10^1 = 7$	$0.7 \cdot 10^2 = 70$
$0.8 \cdot 10^{-1} = 0.08$	$0.8 \cdot 10^0 = 0.8$	$0.8 \cdot 10^1 = 8$	$0.8 \cdot 10^2 = 80$
$0.9 \cdot 10^{-1} = 0.09$	$0.9 \cdot 10^0 = 0.9$	$0.9 \cdot 10^1 = 9$	$0.9 \cdot 10^2 = 90$

Considering also the negative ones and the zero we have

 $1 + 2 \cdot (U - L + 1) \cdot (\beta - 1) \cdot \beta^{t-1} = 1 + 2 \cdot [2 - (-1) + 1] \cdot (10 - 1) \cdot 10^{1-1} = 73$

floating point numbers. Also, we have

$$x_{min} = 10^{L-1} = 10^{-1-1} = 0.01, \quad x_{max} = 10^U \cdot (1 - 10^{-t}) = 10^2 \cdot (1 - 10^{-1}) = 90$$

The difference between two consecutive numbers is not a constant. It is if they have the same value of p. \Box

Converting real numbers into F #1

The positive real number x may be written, using the base β , as

$$x = \beta^p \sum_{k=1}^{+\infty} a_k \, \beta^{-k}$$

for some integer p and some non negative integers a_k with $a_1 \neq 0$. When this number has to be <u>represented</u> using a floating point number in the set $\mathbb{F}(\beta, t, L, U)$, one of the following cases may occur.

Converting real numbers into F #2

- If p < L the number is less than the smallest representable floating point number. An *underflow* occurs.
- If $L \leq p \leq U$ the number can be represented on \mathbb{F} . There are, however, two cases
 - $-a_k = 0$ for $k \ge t$. The number $x \in \mathbb{F}$ and so it can be exactly represented.
 - $-a_k \neq 0$ for at least one k > t. The number $x \notin \mathbb{F}$. In this case, the better we can do is to represent the number x with the floating point number fl(x) (read: "the float of x") defined as

$$fl(x) = \begin{cases} \beta^p \sum_{k=1}^t a_k \beta^{-k} & \text{if } a_t \in \{0, \dots, \frac{\beta}{2} - 1\} \\ \beta^p \sum_{k=1}^t a_k \beta^{-k} + \beta^{-t} & \text{if } a_t \in \{\frac{\beta}{2}, \dots, \beta - 1\} \end{cases}$$

The representation of fl(x) instead of x leads to an error called *rounding* error.

• p > U. The real number x is beyond the capacity of our floating point set \mathbb{F} . An *overflow* occurs and, usually, the computation stops with an error message.

Converting real numbers into F #3

Remark 1.2 (denormalized numbers) Consider $\mathbb{F}(\beta, t, L, U)$. We have said that the first figure a_1 of each floating point number has to fulfill the condition $a_1 > 0$ in order to avoid multiple representations.

However if, and only if, e = L it is usual to remove this condition allowing a_1 to be equal to zero. The real numbers obtained for e = L, $a_1 = 0$ and $a_k \neq 0$ for at least one k = 2, ..., t, are considered as new floating point numbers of \mathbb{F} . We call them <u>denormalized numbers</u>. The other numbers of \mathbb{F} for which $a_1 > 0$ (regardless of L) are called <u>normalized numbers</u>.

(Picture taken from book: M. Redivo Zaglia, "Calcolo Numerico, Metodi ed Algoritmi, 4 Edition")

Roundoff Error #1

Theorem 1.2 Let

$$x = \beta^p \sum_{k=1}^{+\infty} a_k \, \beta^{-k}$$

be a positive, real number with $a_1 \neq 0$. Then, assuming that there is non overflow, using the floating point system $\mathbb{F}(\beta, t, L, U)$, the following inequality holds

$$\left|\frac{fl(x) - x}{x}\right| \le \frac{\beta^{1-t}}{2} \tag{1.2}$$

Proof. Clearly, if $x \in \mathbb{F}$, we have fl(x) = x and thus |fl(x) - x| = 0. So, the inequality is trivially fulfilled. Otherwise, the number x lies between two consecutive floating point numbers (blue circles in the next figure). The representative of x in \mathbb{F} is the nearest to x of this two floating point numbers. As a consequence, it is $|fl(x) - x| \leq \beta^{p-t}/2$.

Roundoff Error #2

Thus, recalling that x > 0 and so |x| = x, we have

$$\frac{\mathrm{fl}(x) - x}{x} = \frac{|\mathrm{fl}(x) - x|}{x} \le \frac{|\mathrm{fl}(x) - x|}{\beta^p \cdot \beta^{-1}} \le \frac{\frac{1}{2}\beta^p \cdot \beta^{-t}}{\beta^p \cdot \beta^{-1}} = \frac{\beta^{1-t}}{2}$$

where inequality (1) holds since (recall that $a_k \in \{0, 1, \dots, \beta - 1\}$ and $a_1 > 0$)

$$x = \beta^p \sum_{k=1}^{+\infty} a_k \beta^{-k} = \beta^p \left(a_1 \cdot \beta^{-1} + a_2 \cdot \beta^{-2} + a_3 \cdot \beta^{-3} + \cdots \right)$$
$$\geq \beta^p \left(1 \cdot \beta^{-1} + 0 \cdot \beta^{-2} + 0 \cdot \beta^{-3} + \cdots \right)$$
$$= \beta^p \cdot \beta^{-1}$$

This ends the proof. \Box

Machine precision #1

Definition 1.1 (machine precision) Let $\mathbb{F}(\beta, t, L, U)$ be a floating point system. The number

$$eps = \frac{\beta^{1-t}}{2} \tag{1.3}$$

is called the machine precision of the floating point system \mathbb{F} .

Machine precision #2

Note that 1 belongs to any floating point system since

$$1 = \beta^1 \cdot \beta^{-1} = \beta^1 \cdot \sum_{k=1}^t a_k \beta^{-k}$$

with $a_1 = 1$ and $a_k = 0, k = 2, \ldots, t$. The next floating point number is

$$x_{+} = \beta^{1} \cdot \left(1 \cdot \beta^{-1} + 0 \cdot \beta^{-2} + \dots + 0 \cdot \beta^{-t+1} + 1 \cdot \beta^{-t} \right) = \beta^{1} \cdot \left(1 \cdot \beta^{-1} + 1 \cdot \beta^{-t} \right)$$

which differs from 1 by $x_{+} - 1 = \beta^{1-t} = 2 \text{ eps.}$ So, the real number x = 1 + eps lies exactly in the middle between 1 and x_{+} ; thus, it is rounded to $\text{fl}(1 + \text{eps}) = x_{+}$. Note also that each real number x satisfying 1 < x < 1 + eps is rounded to the floating number 1.

From equation (1.2), for some $\bar{\epsilon}$ with $0 \leq \bar{\epsilon} \leq eps$, we can write

$$\left| \frac{\mathrm{fl}(x) - x}{x} \right| = \bar{\epsilon} \quad \Leftrightarrow \quad \frac{\mathrm{fl}(x) - x}{x} = \pm \bar{\epsilon} \quad \Leftrightarrow \quad \mathrm{fl}(x) = x \pm \bar{\epsilon} x = x(1 \pm \bar{\epsilon})$$

Taking into account the sign, i.e. assuming $\epsilon \in [-eps, eps]$, $|\epsilon| = \bar{\epsilon}$, we have the following equation

$$fl(x) = x (1 + \epsilon), \quad \epsilon \in [-eps, eps]$$
 (1.4)

(a)
$$x \oplus y = fl(x + y)$$

(b) $x \ominus y = fl(x - y)$
(c) $x \otimes y = fl(x \times y)$
(d) $x \oslash y = fl(x - y)$
 $x, y \in \mathbb{F}(\beta, t, L, U)$

So, each floating point operation require two steps: (i) execute the operation in \mathbb{R} ; (ii) represent the obtained result in \mathbb{F} . As an example, consider $x \oplus y$.

- (i) We first compute x + y as an operation between the real numbers x and y.
- (ii) We represent the result x + y in \mathbb{F} (considering, if the case, over and under flow).

Example 1.8 Consider $\mathbb{F}(10, -1, 2, 1)$ and the three floating point numbers x = 0.1, y = 0.2, z = 0.7. Then, we have

$$x \oplus y = f(x+y) = f(0.1+0.2) = f(0.3) = 0.3$$

since $0.3 \in \mathbb{F}$. Also, we have

$$x \otimes z = f(x/y) = f(0.1/0.7) = f(0.14285714285714\cdots) = 0.1$$

Finally, $1 \oslash (x \otimes x)$ gives an overflow; first, we compute

$$x \otimes x = fl(x \times x) = fl(0.1 \times 0.1) = fl(0.01) = 0.01$$

next, we compute $1 \otimes 0.01 = f(1/0.01) = f(100)$; since 100 is greater then the maximum representable floating point number in \mathbb{F} , an overflow is produced. \Box

It is interesting to point out that most of the common properties of the operations

 $x \oplus y = x$

if y is less then half of the distance between x and the next floating point number x_+ .

Example 1.9 Consider again $\mathbb{F}(10, -1, 2, 1)$ and the three floating point numbers x = 0.1, y = 2, z = 80. Using exact arithmetic, it is known that $(x \times y) \times z = x \times (y \times z) = 16$. Using floating point arithmetic, we have

$$x \otimes y = f(x \times y) = f(0.1 \times 2) = f(0.2) = 0.2$$

and

$$(x \otimes y) \otimes z = fl(0.2 \times 80) = fl(16) = 20$$

This is the best result we can have with our floating point system since $fl(x \times y \times z) = fl(16) = 20$. On the other hand, $x \otimes (y \otimes z)$ returns an overflow since $y \times z = 160$ which is greater then the maximum representable number in \mathbb{F} . So, the executing order of the operations may be important.

Example 1.10 (Smearing effect) Consider the floating point system $\mathbb{F}(10, 3, -2, 2)$ and the three floating point numbers x = 0.123, y = 45.6, z = -45.5. The computation of x + y + z = 0.223 may be done in two ways.

(i) We compute $w = x \oplus y$ and then $w \oplus z$. We have

 $w = x \oplus y = f(0.123 + 45.6) = f(45.723) = 45.7$

and

$$w \oplus y = fl(45.7 - 45.5) = 0.200$$

(ii) We compute $u = y \oplus z$ and then $x \oplus u$. We have

$$u = y \oplus z = fl(45.6 - 45.5) = 0.100$$

and

$$x \oplus u = fl(0.123 + 0.100) = 0.223$$

So, in the first case the absolute value of the error is 0.10 = 10% whereas in the second case we have no error.

Example 1.11 Let $f(x) = \sqrt{1+x} - \sqrt{x}$. Consider the computation of f(49). In exact arithmetic, we have $f(49) = \sqrt{50} - \sqrt{49} = 0.07106781186548...$ Using $\mathbb{F}(10, -1, 2, 1)$ and assuming that $\sqrt{\xi}$ is computed in a floating point system as $f(\sqrt{\xi})$, we obtain

$$f(\sqrt{50}) = f(7.07106781186548) = 7$$
 and $f(\sqrt{49}) = f(7) = 7$.

Thus, using $\mathbb{F}(10, -1, 2, 1)$, the obtained result is 7 - 7 = 0; the absolute value of the relative error is |0.07106781186548... - 0|/0.07106781186548... = 1 = 100%.

Noting that

$$f(x) = \sqrt{1+x} - \sqrt{x} = \frac{\left(\sqrt{1+x} - \sqrt{x}\right) \cdot \left(\sqrt{1+x} + \sqrt{x}\right)}{\sqrt{1+x} + \sqrt{x}} = \frac{1}{\sqrt{1+x} + \sqrt{x}}$$

we obtain

$$f(49) = fl\left(\frac{1}{\sqrt{50} + \sqrt{49}}\right) = fl\left(\frac{1}{7+7}\right) = fl(0.07142857142857...) = 0.07$$

which is the best possible result using this floating point system. The absolute value of the relative error is now

$$\frac{|0.07106781186548...-0.07|}{0.07106781186548...} \approx 0.015 = 1.5\%$$

which is quite lower than the previous one.

Definition 1.2 (Stability of an algorithm) An algorithm is <u>stable</u> if and only if small errors in the data and in the floating point operations does not grow up too much. Otherwise, the algorithm is <u>instable</u>.

Example 1.13 Consider the computation of the positive integrals

$$I_n = \frac{1}{e} \int_0^1 x^n e^x dx, \quad n \in \mathbb{N} = \{0, 1, 2, \cdots\}$$

It is easy to see that $I_0 = 1 - e^{-1} = 0.6321205588285577...$ Moreover, integrating by parts, we get the recursive relation

$$I_n = \frac{1}{e} \left\{ \left[x^n e^x \right]_0^1 - \int_0^1 n x^{n-1} e^x \right\} = 1 - n I_{n-1}.$$

Finally, it is easy to check that $\lim_{n\to+\infty} I_n = 0$ since we have (recall that $1 \le e^x \le e$, $x \in [0,1]$)

$$0 \le \frac{1}{e} \int_0^1 x^n e^x dx \le \frac{1}{e} \cdot e \int_0^1 x^n dx = \frac{1}{n+1}$$

Now, consider the computation of I_n for some given n > 1 with the following two algorithms:

How to rewrite some unstable formulas in a stable way

unstable per large x $\sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}},$

unstable for x near zero

$$1 - \cos x = \frac{\sin^2 x}{1 + \cos x} = 2\sin^2 \frac{x}{2},$$