Lesson 1

Floating Point System

Youndé — 6 August 2013
Proff. R. Bertelle — MR. Russo

A problem

A problem P has inputs # € X and outputs y € Y where X and Y are some, normed,
spaces for data = and solutions y, respectively. In an abstract manner, the problem
P may be seen as a function f : X — Y.

X P y

(a) A problem P with inputs and out-
puts y.

Conditioning of a problem

We say that the problem P with input g is well-conditioned if all small, allowable,
perturbations dx lead to small perturbations dy. Otherwise, if there is at least one
small perturbation dx which leads to a large perturbation dy we say that the problem
P with input g is ill-conditioned.

X+ox xX+oy

> P e

(b) A problem P with perturbed inputs
r 4+ dx and the corresponding perturbed
outputs y + dy.

One of the most useful, thought not the unique, measure for the conditioning of a
problem P at xq is the relative condition number IC. Tt is defined as

oy

- Yo
K =sup ——

o o

Irn

where the supremum is taken over all the allowable, small (infinitesimal from a
mathematical point of view), perturbations dx. We say that the problem is well-
conditioned if K is small, for example less than, about, 10°%; the problem is ill-
conditioned if K is large, for example greater than 10°.

Well-conditioned linear system

A

y

a, X+a,y=b
Ay X +\a“22y =h,

0
.
.
.
.
.
.
.
.
.
.
.
.
o*
.

03
.
.
.
.
.
.
.
.
3
.
03
.
.
o*
.

""""" Perturbed
: second equation

\ 4

Ill-conditioned linear system

+ = y
a,X+a,y=b—— 7
a21)\\(+a22y:b2

.
3
.
03
.
.
.
o*
.

.
*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
03
.
.
.
.
3
.
o*
.

We have a great variation
of the solution

\ 4

Conditioning of a function evaluation

Example 1.2 (Evaluation of a function) Consider the computation of yo = f(x0)
where f is a differentiable given function. Using Taylor expansion, we have

f(zo+ox) = f(xo)+f (x0)-0x+o(dz) = dy = f(zo+dz)—f(x0) ~ f'(x0)-0z
and so, recalling that yo = f(xq), we find

oy _ @0~ f'(xo) b zo - (o) ‘

Yo flzo) o f(xo)
As an example, consider f(x) =z +1— \/z, > 0. Since the first derivative of f

may be rewritten as
f(z)

- 2\/:1:-(;1:—%1)

_ BN

2v/zq - (zg + 1)
and so the problem is well-conditioned for all xo > 0 since K < 1/2 with K ~ 1/2
for xyp — +o0.

= K =

/(@)

we obtain

K

Conditioning of Eigenvalues Computation

Example 1.6 (Computation of the eigenvalues) The computation of the eigen-
values of a non symmetric matriz is often an ill-conditioned problem. To see this,
consider the matrices A and its perturbed version A defined as

,_ [101 110 i _ [100 110
7] —00 —08 7 —90 —98

Note that the only difference among A and A is that ap; = 101 and a1 = 100. That
is, a fairy small change, of the order of 1%. However, the eigenvalues of the two

matrices are
A =1 Ay = 2 for matriz A

A~ 1+ 10: A~ 1—10¢ for matriz A

So, we have a large change in the eigenvalues a front of a small change in the matrix.
Thus, according to our definition, the problem is ill-conditioned.

As a note, which we do not prove, the computation of the eigenvalues of a sym-
metric matriz is a well-conditioned problem. O

Floating Point Numbers #1

t
F(3,t,L.U)={0}+ { reR|z=(-1)° Y ap7" }
k=1

3, the base, is an integer with 3 > 2. Common used bases are 3 = 10, 3 = 2

and 3 = 16.

L and U are two integer numbers. Typically we have L. < 0 < U. The scaling
factor p is an integer satisfying L < p < U.

t is a positive integer representing the number of figures agx, k = 1,....1 of
each floating point number. The unique representation of each floating point
number requires a1 > 0. Let us show what happens if this is not the case.
Consider, as an example, the number 2 = 1 and F(10,5,—6,6). Then, the
number = = 1 have different representations: 0.1 x 10', 0.01 x 102, 0.001 x 10?
and many others.

s = 0 for positive numbers and s = —1 for negative numbers.

Floating Point Numbers #2

t
F(3,t,L.U)={0}+ { reR|z=(-1)° Y ap7" }
k=1

Theorem 1.1 The set of floating point numbers F(3,t, L,U) has the following prop-
erties.

(a) F CR.
(b) if v € F then also —x € F.
(c) Fhas1+2-(3—-1)- g1, (U —L+1) numbers.

(d) The lower and the larger positive floating point numbers are, respectively, xpmin
and Tmar defined as

) _ ab-1
Lmin = _.*j)

Lmax = _}b ' (1 - -'B_t)

Floating Point Numbers #3

Example 1.7 Let us explicitly write F(10,1,—-1,2). Itis 3 =10,t =1, L = —1,
U = 2. Thus, for the positive floating point numbers, we have the 36 numbers shown
in Table 1.1.

p=—1 p=20 p=1 p=2

0.1-1071 =0.01 0.1-10Y =0.1 0.1-101 =1 0.1-10%2 =10
0.2-1071 =0.02 0.2-10°=0.2 0.2-101 =2 0.2-10%2 =20
0.3-107t=0.03 0.3-10 = 0.3 0.3-101 =3 0.3-10% = 30
0.4-1071 = 0.04 0.4-10" =04 0.4-10' =4 0.4 -10% = 40
0.5-1071 = 0.05 0.5-10" =0.5 0.5-101 =5 0.5-10% = 50
0.6-10-1 =0.06 0.6-10°=0.6 0.6-10 =6 0.6 - 102 = 60
0.7-1071 = 0.07 0.7-10 = 0.7 0.7-101 =7 0.7 -10% = 70
0.8-10-1 =0.08 0.8-10°=0.8 0.8-10 =8 0.8-102 = 80
0.9-10-1 =0.09 0.9-10°=0.9 0.0-101 =9 0.9-10% = 90

Considering also the negative ones and the zero we have

1+2 (U—-L+1)-(B=1)- " '=14+2-[2—(=1)+1]-(10-1)-10""" =73
floating point numbers. Also, we have

Tmin = 10071 =107 =001, @mee =107 - (1-107") =10" - (1 - 10" ") =90

The difference between two consecutive numbers is not a constant. It is if they have
the same value of p. O

Converting real numbers into F #1

The positive real number = may be written, using the base 3, as

o0
x =[P E ap _,B_k
k=1

for some integer p and some non negative integers a; with a; # 0. When this number
has to be represented using a floating point number in the set F(/3.7,L,U), one of
the following cases may occur.

Converting real numbers into F #2

e If p < L the number is less then the smallest representable floating point
number. An underflow occurs.

o If L < p < U the number can be represented on F. There are, however, two
cases

— ap = 0 for k& > t. The number z € F and so it can be exactly represented.

— aj # 0 for at least one k& > t. The number = ¢ [F. In this case, the better
we can do is to represent the number x with the floating point number

fl(x) (read: “the float of 2”) defined as
B St ap Bk if a€{0,....,5 -1}
fi(z) =
P S _japBTE 4B i are {5, 51}

The representation of fl(x) instead of x leads to an error called rounding
error.

e p > U. The real number = is beyond the capacity of our floating point set F.
An overflow occurs and, usually, the computation stops with an error message.

Converting real numbers into F #3

Remark 1.2 (denormalized numbers) Consider F(3,t, L,U). We have said that
the first figure ay of each floating point number has to fulfill the condition ay > 0 in
order to avoid multiple representations.

However if, and only if, e = L it is usual to remove this condition allowing aq to
be equal to zero. The real numbers obtained for e = L, a1 = 0 and ay # 0 for at least
one k = 2,...,t, are considered as new floating point numbers of F. We call them
denormalized numbers. The other numbers of I for which a1 > 0 (regardless of L)
are called normalized numbers.

17 ‘:lencmna]izzati—l

overflow under || under overflow
flow flow

Useful range rango utilizzabile

f —— Illlllq i

— dmax — min 0 max

(Picture taken from book: M. Redivo Zaglia, “Calcolo Numerico, Metodi ed Algoritmi, 4 Edition”)

Roundoff Error #1

Theorem 1.2 Let
o0
=[P Z . _,B_k
k=1

be a positive, real number with ay # 0. Then, assuming that there is non overflow,

using the floating point system F(3,t,L,U), the following inequality holds
fllx) —x
T

Hl_t

< F
- 2

(1.2)

Proof. Clearly, if « € F, we have fi(z) = z and thus | fl(x) — 2 | = 0. So, the
inequality is trivially fulfilled. Otherwise, the number x lies between two consecutive
floating point numbers (blue circles in the next figure). The representative of z in

F is the nearest to = of this two floating point numbers. As a consequence, it is
| fl(z) —z | < /P2,

iIﬂOOﬁxl
"

BB

(%)

S

9

Roundoff Error #2

Thus, recalling that > 0 and so |z| = x, we have

1 ap o— A
fi(z) — =z _ | fl(z) — x| (/i) | fi(z) — 2 | o2 P Bt _ pl=t
x T - pp.p-l = e _ﬁ_l 2

where inequality (1) holds since (recall that a; € {0,1,---,3 — 1} and a1 > 0)

—+ 00
r = (3P Z ar _;'B_k = (al : ,.:'3_1 + as - ,-:3_2 + ag - ,.:'3_’3 + .-)
k=1

1V

F(L- 4087240872 4+-00)
= [GF. ..-!'3_1

This ends the proof. O

Machine precision #1

Definition 1.1 (machine precision) Let F(3,t,L,U) be a floating point system.
The number

Gt
eps = T (1.3)

is called the machine precision of the floating point system F.

Machine precision #2

Note that 1 belongs to any floating point system since

[
1=p6.7t=p5. Z a3
k=1

with a1 =1 and ap =0, k = 2,....1. The next floating point number is
Ty = _ﬁl . (1- ,.:'3_1 + 0 - _ﬁ_g + - 4+0- _;'3_H_1 +1- _ﬁ_t) = ﬁl . (1- ,.:'3_1 +1- _ﬁ_t)

which differs from 1 by . — 1 = 31~ = 2eps. So, the real number x = 1 + eps lies
exactly in the middle between 1 and x; thus, it is rounded to fi(1+eps) = = . Note
also that each real number z satisfying 1 < 2 < 1 + eps is rounded to the floating
number 1.

From equation (1.2), for some € with 0 < € < eps, we can write

xT

A(x) —=x
—f < &:ié & fl(z)=zt+eéerx=ax(1+§
T

Taking into account the sign, i.e. assuming € € [—eps,eps|, |¢| = €, we have the
following equation

fA(z) =x(1+e€), €& |—eps, eps] (1.4)

Floating Point Arithmetic #1

(a) zdy=1H(z+y)
(b) zoy==Hz—y)
(c) z@y=1f(z xy) z.y e F(3,t,L,U)
(d) zoy=1H(z—y)

So, each floating point operation require two steps: (i) execute the operation in R;
(i) represent the obtained result in F. As an example, consider = & y.

(i) We first compute = + y as an operation between the real numbers = and y.

(ii) We represent the result = 4+ y in F (considering, if the case, over and under

flow).

Floating Point Arithmetic #2

Example 1.8 Consider F(10,—1,2,1) and the three floating point numbers x = 0.1,
y=0.2, z=0.7. Then, we have

rdy=fAzr+y)=A01402)=£f(03)=0.3
since 0.3 € F. Also, we have
xoz=filz/y)= f(0.1/0.7) = fi(0.14285714285714---) = 0.1
Finally, 1 © (x ®) gives an overflow; first, we compute
r@x=fllr xx)=f(0.1x0.1) = f(0.01) = 0.01

next, we compute 1 © 0.01 = fi(1/0.01) = fi(100); since 100 is greater then the
maximum representable floating point number in F, an overflow is produced. O

Floating Point Arithmetic #3

It is interesting to point out that most of the common properties of the operations

if 1 is less then half of the distance between x and the next floating point number z4.

Example 1.9 Consider again F(10,—1,2,1) and the three floating point numbers
x =01, y =2 z=80. Using exact arithmetic, it is known that (z X y) x z =
xr X (y x z) = 16. Using floating point arithmetic, we have

r@y=fllr xy)=fA0.1x2)=L£02)=0.2

and
(r®y)®z=f(0.2x80)=f(16) = 20

This is the best result we can have with our floating point system since fl(x x y x z) =
fl(16) = 20. On the other hand, = @ (y @ z) returns an overflow since y x z = 160
which is greater then the maximum representable number in IF. So, the executing
order of the operations may be important.

Floating Point Arithmetic #4

Example 1.10 (Smearing effect) Consider the floating point system [F(10, 3, —2,2)
and the three floating point numbers x = 0.123, y = 45.6, z = —45.5. The computa-
tion of ¥ + vy + z = 0.223 may be done in two ways.

(i) We compute w = x &y and then w G z. We have

w=zdy = fi(0.123 +45.6) = fI(45.723) = 45.7

and

wey = AA45.7 —45.5) = 0.200

(ii) We compute u =y & z and then x & u. We have

u=y®dz=fll45.6 — 45.5) = 0.100

and
@ u = f(0.123 4+ 0.100) = 0.223

So, in the first case the absolute value of the error is 0.10 = 10% whereas in the

second case we have no error.

Example 1.11 Let f(z) = V1 +ax — Jx. Consider the computation of f(49).
In exact arithmetic, we have f(49) = /50 — /49 = 0.07106781186548.... Using
F(10,—1,2,1) and assuming that \/€ is computed in a floating point system as fi(\/€),
we obtain

A(V50) = A(7.07106781186548) =7 and A(VA9) = A(T) = T.

Thus, using F(10, —1,2,1), the obtained result is T— 7 = 0; the absolute value of the
relative error is [0.07106781186548... — 0|/0.07106781186548... = 1 = 100%.
Noting that

e WTEE VD) (VIFEVE)
f)=Vite—Ve= Jltet RV

we obtain

1 1 D81 a9RET |
£(49) ﬁ(= \/E) ﬂ(m) — fi(0.07142857142857...) = 0.07

which is the best possible result using this floating point system. The absolute value
of the relative error is now

10.07106781186548... — 0.07|]
~ 0.015 = 1.5%
0.07106781186548... 7 "

which is quite lower than the previous one.

Floating Point Arithmetic #7

Definition 1.2 (Stability of an algorithm) An algorithm is stable if and only if
small errors in the data and in the floating point operations does not grow up too
much. Otherwise, the algorithm is instable.

Floating Point Arithmetic #8

Example 1.13 Consider the computation of the positive integrals

I
In:—/ a"e"dr, neN=1{0,1,2,---}

€Jo

It is easy to see that Iy = 1 — e~ = 0.6321205588285577.... Moreover, integrating
by parts, we get the recursive relation

1 . L
Ip==< [2"" = | na™te® } =1—nl,_1.
€ 0

Finally, it is easy to check that limy, .4~ I, = 0 since we have (recall that 1 < e* < e,

x € [0,1])
1t 1 L 1
0 < —f refdr < - -e / z"dxr =
e Jo e 0 n—+1

Now, consider the computation of I, for some given n > 1 with the following two
algorithms:

Floating Point Arithmetic #9

UNSTABLE STABLE

ALGORITHM 1 ALGORITHM 2

set Ty = 0.6321205588285577 choose some N with N > n

- set Iy =0
FO? k:flﬁ"i . FOR k=N:-1:n
END

——UNSTABLE
10'5| | —=—STABLE

0 10 20 30

Floating Point Arithmetic #10

Some not so obvious (and not x 10"
SO easy to provegable formulas.
(from “Introduction to Numerical Analysis”

Arnold Neumaier, Cambridge) ©

1 if x =0
fx) = lsinx/’x if x £ 0

-1 -0.5 0 0.5 1
x 107

o | ifx =1
f“””‘Lx—n/mx if x 2 1

Floating Point Arithmetic #10

How to rewrite some unstable formulas in a stable way

1

unstable per large x Jx+1 _
+ 1 - ﬁ —_— b
Vx+ 1+ x

+
sin” x
unstable for X near zero l —cosx = — 2sin? f,
1 +cosx

