Lesson 2

Non linear Equations
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The problem

Definition 2.1 Let f be a function of the (real or complex) variable x. The roots of
the equation

fla)=0

are the numbers & for which f(£) = 0. FEach root of the equation f(z) =0 is said to
be a zero of the function f.

Example
Let f(x) = x2-1. Then, the zeros of the function f(x) (or, it is t@me, the roots of the
equation f(x)=0 ) are the real numbers x such that

f(x)=x2-1=0

So, we have two zerds = -1 andg, = 1.
The number x = 0 is nat zero of the function f since f(0) 24 = -1,4 0.



Geometric Interpretation

The roots of the equation f(z) = 0 are the intersections of the graph y = f(z) with
the real axis, i.e., the line y = 0. In the same manner, the roots of the equation
f(z) = g(x) are the abscissas of the intersection points of the two graphs y = f(z)

and y = g(z).
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(a) The equation e™* — 0.25 - = 0 has
only one root ¢ € (1, 1.5) since the corre-
sponding graph y = e~ " — (.25 r intersect
the x axis only in one point P = (£,0).
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(b) The equation sin(x) — x? = 0 has two
roots: & = 0 and & € (0.5, 1) since

the graphs y = sin(x) and y = 2% have
two intersection points O = (0,0) and

P = (&, f(£2)).



Root separation #1

The computation of real roots of the equation f(x) = 0 follows two main steps

(a) roots separation : for each root ¢, we find an interval |ap, bi] such that
&k € lag. b] and no one of the other roots belongs to |ax, byl

(b) roots approximation : we approximate some, or even all, of the roots.

A

y = f(x)




Root Separation #2

The first step may be done sketching the graph of the function f. It is also useful
the following theorem.

Theorem 2.1 (zeros of a continuous function) Let f be a continuous function
(at least) in the interval |a, b] with f(a)- f(b) < 0. Then, f has almost one zero in
the interval [a, b]. Furthermore, if the function f is strictly monotone in |a, b], then
the zero is unique.
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NOT monotone: we can have more  STRICTLY monotone: we have exactly
than one root in [a, b] one root in [a, b]



Root Approximation #1

Given an interval [a, b] which contains the unique r§owe search for
a sequencepsuch that

lim x, =¢&

k—>+00

Definition
We define the error gt step k as,g= x, - & .

Definition
Let x, be a sequence that converges.ttf there are positiveonstants ¢ and p
such that

“m | ek+1 |:C
e | g [P

we say that the sequencgoonverges t@ with order p and asymptotic error constant c.
Moreover, the convergence process is said thrisar if p = 1 andsuperlinear if p>1.
For the latter case, we say that igadratic if p = 2.



Root Approximation #2

If we plot the log(] & | ) as a function of kit can be shown that near theroot
the behaviour of thegraph is

A

l0g,0(l & |) l0g,0(l & |)
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LINEAR CONVERGENCE SUPERLINEAR CONVERGENCE

Moreover, recall that when xs close to the root, we may write

| e Fcl e |




Root Approximation #3

Example
Consider the computation of the root of the equatioh e 0. We have the following
behaviour of the error:
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3.0000e+000
2.0498e+000
1.1785e+000
4.8627e-001
1.0119e-001
4.9510e-003
1.2236e-005
7.4862e-011
9.2344e-017
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From the plot (or from the table) we see that the convergence is superlinear.



Bisection Method #1

Let ¢ be the unique zero in the interval [a, O] of the function f which we assume
continuous at least in [a,b]. Assume £ # a and £ # b.

Starting from [ := [ag, by| = |a,b], the bisection method constructs a sequence
of nested intervals I = [a, bx| containing the root:

IoD>h DIoDI3D - DI DIprq--- with £ €l VEk

The k-th step, £ = 0,1,..., of the bisection method is



Bisection Method #2

1. compute z, = (ap + by)/2. Note that xj, € .
2. compute f(xy)

3. choose one of the following cases

3.1.

3.2.

3.3.

f(xzx) = 0, i.e., z} is a root of f. Since zy € [a,b] by construction and £ is the
unique root inside [a, b], then it must be £ = x;. We have find the root and
the iterative process stops.

flag) - f(zr) <0, ie. f(ag) and f(xy) have opposite signs. Thus & € |ag, x|
So, we set Ip 1 = |apy1, bpyt] = |ap, xr]. That is, ap 1 = ap and by = xp,
(see Figure 2.3 on the left).

flag) - f(xg) > 0,ie. f(ag) and f(xp) have the same signs. Thus £ € [z, b).
SO, we set Ik—l—l = [a;,;_|_1, bk—l—l] = [’lk bk] That iS, (41 = Lk and bk—l-l = b;,;
(see Figure 2.3 on the right).



Bisection Method #3




Error in the Bisection Method #1

Let us denote by |I;| = by — a;. the length of the interval I;.. Then, in cases 3.2 and
3.3 we have
1 _‘_@Q‘J 16
k+1] — 9 — 2;;4_1
where (l) follows from mathematical induction. So, after k-th step is complete, the
error e, = x3 — & satisfies the inequality
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ek < [rr1| = ohr1
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Error in the Bisection Method #2

From the latter equation it is simple to compute the number of iterations of the
bisection method that have to be performed in order to obtain | e | < ¢ for some
given ¢ > 0. Indeed, we have

b—(.!. ket b—(.!.
- + . -
SFTT <€ o 2 >

‘E,{;‘<-€ =

—
=
e

and finally, taking the logarithm in the latter inequality, we get

- b—a log ( b—a )
log ( 2871 ) > log > ———f 2 1
og( ) > log ( ) = > 10g(2)

So, to obtain | e, | < € it is necessary to perform at least k ,;,, iterations with

| leg(=2)
Amm{ el 1} (2.1)

where [a| is the smallest integer greater or equal to a.
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Error in the Bisection Method #3

Example 2.2 The computation of the first positive zero of the equation

T
T — te — 1 =0
1 tm(g)

within the tolerance ¢ = 1.E — 5 = 107" and with starting interval [a, b] = [2.0, 2.!

requires, at least,

f2.5-20
ke _ 10% ( ﬁ]__g
Yman

log(2) ) - 1} = [14.61] = 15 iterations

10°

Note that the error DOES NOT

decrease monotonically, i.e.
we can have

|ek+1|>|ek|

Absolute value of the Error
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Fixed Points of a Function

Definition 2.2 The function ¢(x), = € |a,b] has the fired point o« € [a,b] if o =
o(av).

So, fixed points of the function ¢ are, if any, the roots of the equation = = o¢(x).
Graphically, they are abscissas of the intersection points of the graphs y = = and

Yy = r_;.-'}( ;1?) :

A

y=f(x)

Function f(x)
has two fixed points

Example 2.3 The function ¢(z) = 2> + 1 does not have any fized point since the
: 2
equation r = x* + 1 has no real roots.

) , ‘ . . ) 0
The function ¢(x) = x* has two fized points since the equation x = x> has roots
a1 = —1 and ay = 0.



Fixed Point lterations #1

To introduce the fixed point method, the first step is to rewrite the equation f(z) =0
in the form x = ¢(x) for some function ¢. The function ¢ is not unique. For example,
consider the equation 22 — 1 = 0. We can rewrite it as

.- , 1 , —x? +4x+1 .
(a) z = 21 =: o(x), (b) x = — = o(x), (¢) x = : +4 r =: ()

€T

and in many other manners.

Next, let a € |a, b] be the unique fixed point in the interval [a, b] of z = ¢(x).
Given an initial estimate xg € [a, D] of the fixed point a, we consider the following
iterative scheme for the computation of «:

0 given initial estimate of «
Lyl = (,.f)(;l?,g;), k :01.2

The following theorem provides whether the previous iterations xj; converges to the
fixed point av of x = ¢(x).



Fixed Point lterations #2

Theorem 2.3 (Convergence of the iterations) Let ¢ be a continuous function
on |a, b], differentiable in (a, b) with

(i) o(|a, b)) C la, b];
(ii) | ¢'(x) | <K <1 VYa € (a,b)

Then, the sequence
Lh41 :()(’Lk ), ;.:01,2,

converges to the unique fized point o € [a, b| for any choice of xo € |a, b).

Theorem 2.4 (Ostrowski) Let ¢ be a differentiable function in |a, b] with fixed

point o € [a, b]. If | &' ()| < 1, then exists 0 > 0 such that the fized point iterations
Tpy1 = ¢(xg) converge to o for each xy with |xg— af < 4.



Fixed Point Iterations #3

\J

O X, X X, KX X

(a) 0 < ¢'(a) < 1: the iterations (b) =1 < ¢'(a) < 0: the itera-
converge to v in a monotone fash- tions converge to o with values al-
ion (increasing or decreasing ac- ternately above and below «.

cordingly to the position of o with
respect to ).



Fixed Point Iterations #4

(a) ¢'(cv) > 1: the fixed point iter-
ations diverge from cv.



Fixed Point Iterations #5

Example 2.4 If |¢'(«) | = 1 the fized point iteration xpyy = O(x) may, or may
not, converge to the fixed point. The functions

(a) b(z) = 2® — 32° + 40 — 1 (b) d(x) = —a +32% — 2w + 1

have both the fized point o = 1 with |¢'(a) | = 1.

y Y
=X =X
2 2
: P ) P
0 | | | X 0 | | | X
0 1 2 3 0 1 2 3
3_2 3 2
4 [ y=X -3X +4Ax-1 1] y=-X +3% -2x+1

(a) Iterations xy diverge from « for (b) Iterations xj converge to « for
each xg # a chosen near o. each xp chosen near o.



Error Behaviour of Fixed Point lterations

Theorem 2.5 Let ¢ € CP( (v — 0, v +6) ) for suitable 6 > 0 and integer p > 1 of
the fived point o of &. If

da)=¢"(a)=---=PV)=0 and P (a)#0
then the fized point iterations xy 11 = @(xk) has order of convergence p and

I lent1 | oP(a)
k—+4o00 ‘Ek |p B [)T

Proof. Using Taylor expansion we get

€pr1 = Tpe1 —a=o(rE)—a
B E 9 (a) - (% — @) N 6P (&x) - (xk — Q)P
g 7! p!
1) o) (&) - (ex )P
p!

where ¢, is a suitable point between a and z; and (1) follows from ol )(a-) = 0,
7 =0,1,...,p — 1. Providing that x; converges to the fixed point «, we also have
that & — a which completes the proof due to the continuity of ¢(P). O



Stopping Criteria

It is common to terminate the convergent fixed point iterations

T given initial estimate of the fixed point «
Lktl = (;)(L;L) = 0, 1,2, 50 C

when | x5 — x; | < ¢ for some given tolerance = > 0.

Let us see how good is this stopping criteria. We have
1 — o = o(xg) — () = &' (&) (2 — )
for some & in the interval of endpoints a and xj. Since it is
Tp — Q= (Q'FH—I — O:') — (;L‘;H_l — ;Ek) = Tyl — O =T — QO+ Tyl — T
and denoting the error at the £-ih iteration by ¢, = xp — o we obtain
Tp— o+ Tpp1 — 2k = O (&)@ —a) = ep+ Tpy1 — xk = O (&) ek

and finally, assuming that ¢'(x) # 0 near o and taking the absolute values,

1
‘ €k ‘ = ‘ 1 — ”!(&c) ‘ ' ‘ Th+1 — Tk ‘ (22)

So, if ¢'(a) &~ 0 (and, thus, ¢'(x) &~ 0 near a by continuity) the difference between
two consecutive iterates is a reliable estimator of the error. Note that this is the case
if ¢'(a) = 0. If, otherwise, ¢'(cv) &~ 1, eq. (2.2) is not useful to estimate the error.



Exercises

Exercise 1 (1 minute, 2 points)
How many fixed points has the function f(x) =x?

Answer. The fixed points are the solution of the equation

X = f(x)
X = X2-X
X2—-2x=0
X(x-2) =0 which gives, x 0 and x = 2

Indeed, for example,
2 =% =f(x,)=1(2) =22




Exercises

Exercise 2 (5 minutes, 10 points)

Let f(x) = x¥2. (a) Compute the fixed points of f. (b) Is the fixedpaterations

X1 = f(x,) convergent for x= 27 Is the sequencg monotone? (c) Can we choose a
starting point x such that the sequencgoonverges to x= 0?

Answer. First of all note that we must havexQ.
(a) The fixed points are solution of
x=f(x) or x=%2 or »=x whichgives x=0and x=1.

The graph of f(x) gives us the informations needed to angin) and (c).

(b) Yes, the fixed point iterations converges to thedipoint % = 1. Moreover, the
sequence xin monotonically decreasing.
(c) Yes, we can but the only possibility is to chooge 0. The correspondig fixed point

iterations are x= 0 for all k.




Exercises
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Exercises

Exercise 3 (1 minute, 2 points)
Give an example of function f(x) which is NOT strictly mdoaoe in [a, b]
and has only one root in [a, b].

Answer. We can take f(x) = | x | and [a, b] =[-1, 1]. Thoetis x = 0.

Exercise 4 (2 minutes, 2 points)

A problem has input x = 1. The correpsonding outpyt3s10.

When x = 1+16, the corresponding output becomes y = 100. Mark lwhic
of the following is true.

1 The prolem is well conditioned.

1 The condition number is K = 9000.

] Itis impossible to estimate the condition number.
1 The prolem is ill conditioned.

Answer. The problem is ill conditioned since a small change in the
Input gives a wide variation in the output. We alsoéav
| (100-10)/10 | 9
K = oo e = e = 9000
|(1+103-1) / 1] 10



