Lesson 2

Non linear Equations

Youndé – 7 August 2013 Proff. R. Bertelle – MR. Russo

The problem

Definition 2.1 Let f be a function of the (real or complex) variable x. The roots of the equation

f(x) = 0

are the numbers ξ for which $f(\xi) = 0$. Each root of the equation f(x) = 0 is said to be a zero of the function f.

Example

Let $f(x) = x^2-1$. Then, the zeros of the function f(x) (or, it is the same, the roots of the equation f(x)=0) are the real numbers x such that

$$f(x) = x^2 - 1 = 0$$

So, we have two zeros $\xi_1 = -1$ and $\xi_2 = 1$. The number x = 0 is not a zero of the function f since $f(0) = 0^2 - 1 = -1 \neq 0$.

Geometric interpretation

The roots of the equation f(x) = 0 are the intersections of the graph y = f(x) with the real axis, i.e., the line y = 0. In the same manner, the roots of the equation f(x) = g(x) are the abscissas of the intersection points of the two graphs y = f(x)and y = g(x).

(a) The equation $e^{-x} - 0.25 \cdot x = 0$ has only one root $\xi \in (1, 1.5)$ since the corresponding graph $y = e^{-x} - 0.25 \cdot x$ intersect the x axis only in one point $P = (\xi, 0)$.

(b) The equation $\sin(x) - x^2 = 0$ has two roots: $\xi_1 = 0$ and $\xi_2 \in (0.5, 1)$ since the graphs $y = \sin(x)$ and $y = x^2$ have two intersection points O = (0,0) and $P = (\xi_2, f(\xi_2)).$

Root separation #1

The computation of real roots of the equation f(x) = 0 follows two main steps

- (a) **roots separation** : for each root ξ_k , we find an interval $[a_k, b_k]$ such that $\xi_k \in [a_k, b_k]$ and no one of the other roots belongs to $[a_k, b_k]$.
- (b) roots approximation : we approximate some, or even all, of the roots.

Root Separation #2

The first step may be done sketching the graph of the function f. It is also useful the following theorem.

Theorem 2.1 (zeros of a continuous function) Let f be a continuous function (at least) in the interval [a, b] with $f(a) \cdot f(b) < 0$. Then, f has almost one zero in the interval [a, b]. Furthermore, if the function f is strictly monotone in [a, b], then the zero is unique.

Root Approximation #1

Given an interval [a, b] which contains the unique root ξ , we search for a sequence x_k such that

$$\lim_{k \to +\infty} x_k = \xi$$

Definition

We define the error e_k at step k as $e_k = x_k - \xi$.

Definition

Let \boldsymbol{x}_k be a sequence that converges to $\boldsymbol{\xi}.$ If there are <u>positive</u> constants c and p such that

$$\lim_{k \to +\infty} \frac{|e_{k+1}|}{|e_k|^p} = c$$

we say that the sequence x_k converges to ξ with order p and asymptotic error constant c. Moreover, the convergence process is said to be **linear** if p = 1 and **superlinear** if p>1. For the latter case, we say that it is **quadratic** if p = 2.

Root Approximation #2

If we plot the $\log_{10}(|e_k|)$ as a function of k, it can be shown that <u>near</u> the root the behaviour of the graph is

Root Approximation #3

Example

Consider the computation of the root of the equation $e^{x}-1 = 0$. We have the following behaviour of the error:

From the plot (or from the table) we see that the convergence is superlinear.

Bisection Method #1

Let ξ be the unique zero in the interval [a, b] of the function f which we assume continuous at least in [a, b]. Assume $\xi \neq a$ and $\xi \neq b$.

Starting from $I_0 := [a_0, b_0] = [a, b]$, the bisection method constructs a sequence of nested intervals $I_k = [a_k, b_k]$ containing the root:

$$I_0 \supset I_1 \supset I_2 \supset I_3 \supset \cdots \supset I_k \supset I_{k+1} \cdots$$
 with $\xi \in I_k \forall k$

The k-th step, $k = 0, 1, \ldots$, of the bisection method is

Bisection Method #2

- 1. compute $x_k = (a_k + b_k)/2$. Note that $x_k \in I_k$.
- 2. compute $f(x_k)$
- 3. choose <u>one</u> of the following cases
- 3.1. $f(x_k) = 0$, i.e., x_k is a root of f. Since $x_k \in [a, b]$ by construction and ξ is the unique root inside [a, b], then it must be $\xi = x_k$. We have find the root and the iterative process stops.
- 3.2. $f(a_k) \cdot f(x_k) < 0$, i.e. $f(a_k)$ and $f(x_k)$ have opposite signs. Thus $\xi \in [a_k, x_k]$. So, we set $I_{k+1} = [a_{k+1}, b_{k+1}] = [a_k, x_k]$. That is, $a_{k+1} = a_k$ and $b_{k+1} = x_k$ (see Figure 2.3 on the left).
- 3.3. $f(a_k) \cdot f(x_k) > 0$, i.e. $f(a_k)$ and $f(x_k)$ have the same signs. Thus $\xi \in [x_k, b_k]$. So, we set $I_{k+1} = [a_{k+1}, b_{k+1}] = [x_k, b_k]$. That is, $a_{k+1} = x_k$ and $b_{k+1} = b_k$ (see Figure 2.3 on the right).

Bisection Method #3

Error in the Bisection Method #1

Let us denote by $|I_k| = b_k - a_k$ the length of the interval I_k . Then, in cases 3.2 and 3.3 we have

$$|I_{k+1}| = \frac{|I_k|}{2} \stackrel{(1)}{=} \frac{|I_0|}{2^{k+1}}$$

where (1) follows from mathematical induction. So, after k-th step is complete, the error $e_k = x_k - \xi$ satisfies the inequality

$$|e_k| \le |I_{k+1}| = \frac{|I_0|}{2^{k+1}}$$

$$\underline{|I_k|}$$

$$\underline{|I_k|}$$

Error in the Bisection Method #2

From the latter equation it is simple to compute the number of iterations of the bisection method that have to be performed in order to obtain $|e_k| < \varepsilon$ for some given $\varepsilon > 0$. Indeed, we have

$$|e_k| < \varepsilon \qquad \Leftrightarrow \qquad \frac{b-a}{2^{k+1}} < \varepsilon \qquad \Leftrightarrow \qquad 2^{k+1} > \frac{b-a}{\varepsilon}$$

and finally, taking the logarithm in the latter inequality, we get

$$\log\left(2^{k+1}\right) > \log\left(\frac{b-a}{\varepsilon}\right) \qquad \Leftrightarrow \qquad k > \frac{\log\left(\frac{b-a}{\varepsilon}\right)}{\log(2)} - 1$$

So, to obtain $|e_k| < \varepsilon$ it is necessary to perform at least k_{\min} iterations with

$$k_{\min} = \left\lceil \frac{\log\left(\frac{b-a}{\varepsilon}\right)}{\log(2)} - 1 \right\rceil.$$
 (2.1)

where $\lceil a \rceil$ is the smallest integer greater or equal to a.

Error in the Bisection Method #3

Example 2.2 The computation of the first positive zero of the equation

$$x - \tan\left(\frac{x}{2}\right) = 0$$

within the tolerance $\varepsilon = 1.E - 5 = 10^{-5}$ and with starting interval [a, b] = [2.0, 2.5] requires, at least,

$$k_{min} = \left\lceil \frac{\log\left(\frac{2.5-2.0}{10^{-5}}\right)}{\log(2)} - 1 \right\rceil = \left\lceil 14.61 \right\rceil = 15 \text{ iterations}$$

Note that the error DOES NOT decrease monotonically, i.e. we can have

$$e_{k+1} | > | e_k |$$

Fixed Points of a Function

Definition 2.2 The function $\phi(x)$, $x \in [a, b]$ has the fixed point $\alpha \in [a, b]$ if $\alpha = \phi(\alpha)$.

So, fixed points of the function ϕ are, if any, the roots of the equation $x = \phi(x)$. Graphically, they are abscissas of the intersection points of the graphs y = x and $y = \phi(x)$.

Example 2.3 The function $\phi(x) = x^2 + 1$ does not have any fixed point since the equation $x = x^2 + 1$ has no real roots. The function $\phi(x) = x^2$ has two fixed points since the equation $x = x^2$ has roots $\alpha_1 = -1$ and $\alpha_2 = 0$.

To introduce the fixed point method, the first step is to rewrite the equation f(x) = 0in the form $x = \phi(x)$ for some function ϕ . The function ϕ is not unique. For example, consider the equation $x^2 - 1 = 0$. We can rewrite it as

(a)
$$x = x^2 + x - 1 =: \phi(x)$$
, (b) $x = \frac{1}{x} =: \phi(x)$, (c) $x = \frac{-x^2 + 4x + 1}{4} =: \phi(x)$

and in many other manners.

Next, let $\alpha \in [a, b]$ be the unique fixed point in the interval [a, b] of $x = \phi(x)$. Given an initial estimate $x_0 \in [a, b]$ of the fixed point α , we consider the following iterative scheme for the computation of α :

$$\begin{cases} x_0 & \text{given initial estimate of } \alpha \\ x_{k+1} &= \phi(x_k), \quad k = 0, 1, 2, \dots \end{cases}$$

The following theorem provides whether the previous iterations x_k converges to the fixed point α of $x = \phi(x)$.

Theorem 2.3 (Convergence of the iterations) Let ϕ be a continuous function on [a, b], differentiable in (a, b) with

(*i*) $\phi([a, b]) \subseteq [a, b];$

(ii)
$$|\phi'(x)| \le K < 1 \quad \forall x \in (a, b)$$

Then, the sequence

$$x_{k+1} = \phi(x_k), \quad k = 0, 1, 2, \dots$$

converges to the unique fixed point $\alpha \in [a, b]$ for any choice of $x_0 \in [a, b]$.

Theorem 2.4 (Ostrowski) Let ϕ be a differentiable function in [a, b] with fixed point $\alpha \in [a, b]$. If $|\phi'(\alpha)| < 1$, then exists $\delta > 0$ such that the fixed point iterations $x_{k+1} = \phi(x_k)$ converge to α for each x_0 with $|x_0 - \alpha| < \delta$.

(a) $0 < \phi'(\alpha) < 1$: the iterations converge to α in a monotone fashion (increasing or decreasing accordingly to the position of x_0 with respect to α).

(b) $-1 < \phi'(\alpha) < 0$: the iterations converge to α with values alternately above and below α .

(a) $\phi'(\alpha) > 1$: the fixed point iterations diverge from α .

Example 2.4 If $|\phi'(\alpha)| = 1$ the fixed point iteration $x_{k+1} = \phi(x_k)$ may, or may not, converge to the fixed point. The functions

(a) $\phi(x) = x^3 - 3x^2 + 4x - 1$ (b) $\phi(x) = -x^3 + 3x^2 - 2x + 1$

have both the fixed point $\alpha = 1$ with $|\phi'(\alpha)| = 1$.

(a) Iterations x_k diverge from α for each $x_0 \neq \alpha$ chosen near α .

(b) Iterations x_k converge to α for each x_0 chosen near α .

Error Behaviour of Fixed Point Iterations

Theorem 2.5 Let $\phi \in C^p((\alpha - \delta, \alpha + \delta))$ for suitable $\delta > 0$ and integer $p \ge 1$ of the fixed point α of ϕ . If

$$\phi'(\alpha) = \phi''(\alpha) = \dots = \phi^{(p-1)}(\alpha) = 0$$
 and $\phi^{(p)}(\alpha) \neq 0$

then the fixed point iterations $x_{k+1} = \phi(x_k)$ has order of convergence p and

$$\lim_{k \to +\infty} \frac{|e_{k+1}|}{|e_k|^p} = \frac{\phi^{(p)}(\alpha)}{p!}.$$

Proof. Using Taylor expansion we get

$$e_{k+1} = x_{k+1} - \alpha = \phi(x_k) - \alpha$$

$$= \sum_{j=0}^{p-1} \frac{\phi^{(j)}(\alpha) \cdot (x_k - \alpha)^j}{j!} + \frac{\phi^{(p)}(\xi_k) \cdot (x_k - \alpha)^p}{p!}$$

$$\stackrel{(\underline{1})}{=} \frac{\phi^{(p)}(\xi_k) \cdot (e_k)^p}{p!}$$

where ξ_k is a suitable point between α and x_k and (1) follows from $\phi^{(j)}(\alpha) = 0$, $j = 0, 1, \ldots, p - 1$. Providing that x_k converges to the fixed point α , we also have that $\xi_k \to \alpha$ which completes the proof due to the continuity of $\phi^{(p)}$. \Box

Stopping Criteria

It is common to terminate the convergent fixed point iterations

 $\begin{cases} x_0 & \text{given initial estimate of the fixed point } \alpha \\ x_{k+1} & = \phi(x_k), \quad k = 0, 1, 2, \dots \end{cases}$

when $|x_{k+1} - x_k| < \varepsilon$ for some given tolerance $\varepsilon > 0$. Let us see how good is this stopping criteria. We have

$$x_{k+1} - \alpha = \phi(x_k) - \phi(\alpha) = \phi'(\xi_k)(x_k - \alpha)$$

for some ξ_k in the interval of endpoints α and x_k . Since it is

$$x_k - \alpha = (x_{k+1} - \alpha) - (x_{k+1} - x_k) \implies x_{k+1} - \alpha = x_k - \alpha + x_{k+1} - x_k$$

and denoting the error at the k-ih iteration by $e_k = x_k - \alpha$ we obtain

$$x_k - \alpha + x_{k+1} - x_k = \phi'(\xi_k)(x_k - \alpha) \quad \Rightarrow \quad e_k + x_{k+1} - x_k = \phi'(\xi_k)e_k$$

and finally, assuming that $\phi'(x) \neq 0$ near α and taking the absolute values,

$$|e_{k}| = \frac{1}{|1 - \phi'(\xi_{k})|} \cdot |x_{k+1} - x_{k}|$$
(2.2)

So, if $\phi'(\alpha) \approx 0$ (and, thus, $\phi'(x) \approx 0$ near α by continuity) the difference between two consecutive iterates is a reliable estimator of the error. Note that this is the case if $\phi'(\alpha) = 0$. If, otherwise, $\phi'(\alpha) \approx 1$, eq. (2.2) is not useful to estimate the error.

Exercise 1 (1 minute, 2 points) How many fixed points has the function $f(x) = x^2 - x$? Answer. The fixed points are the solution of the equation x = f(x) $x = x^2 - x$ $x^2 - 2x = 0$ x (x-2) = 0 which gives $x_1 = 0$ and $x_2 = 2$ Indeed, for example, $2 = x_2 = f(x_2) = f(2) = 2^2 - 2$

Exercise 2 (5 minutes, 10 points)

Let $f(x) = x^{1/2}$. (a) Compute the fixed points of f. (b) Is the fixed point iterations $x_{k+1} = f(x_k)$ convergent for $x_0 = 2$? Is the sequence x_k monotone? (c) Can we choose a starting point x_0 such that the sequence x_k converges to $x_1 = 0$?

Answer. First of all note that we must have $x \ge 0$.

(a) The fixed points are solution of

x = f(x) or $x = x^{1/2}$ or $x^2 = x$ which gives $x_1 = 0$ and $x_2 = 1$.

The graph of f(x) gives us the informations needed to answer (b) and (c).

(b) Yes, the fixed point iterations converges to the fixed point $x_2 = 1$. Moreover, the sequence x_k in monotonically decreasing.

(c) Yes, we can but the only possibility is to choose $x_0 = 0$. The correspondig fixed point iterations are $x_k = 0$ for all k.

Exercise 3 (1 minute, 2 points)

Give an example of function f(x) which is NOT strictly monotone in [a, b] and has only one root in [a, b].

Answer. We can take f(x) = |x| and [a, b] = [-1, 1]. The root is x = 0.

Exercise 4 (2 minutes, 2 points)

A problem has input x = 1. The corresponding output is y = 10. When $x = 1+10^{-3}$, the corresponding output becomes y = 100. Mark which of the following is true.

- \Box The prolem is well conditioned.
- \Box The condition number is K = 9000.
- \Box It is impossible to estimate the condition number.

 \Box The prolem is ill conditioned.

Answer. The problem is ill conditioned since a small change in the input gives a wide variation in the output. We also have

$$|(100-10)/10| = 9$$

K = ------ = 9000
 $|(1+10^{-3}-1)/1| = 10^{-3}$