Lesson 2

Non linear Equations

Youndé - 7 August 2013
Proff. R. Bertelle - MR. Russo

The problem

Definition 2.1 Let f be a function of the (real or complex) variable x. The roots of the equation

$$
f(x)=0
$$

are the numbers ξ for which $f(\xi)=0$. Each root of the equation $f(x)=0$ is said to be a zero of the function f.

Example

Let $f(x)=x^{2}-1$. Then, the zeros of the function $f(x)$ (or, it is the same, the roots of the equation $f(x)=0$) are the real numbers x such that

$$
f(x)=x^{2}-1=0
$$

So, we have two zeros $\xi_{1}=-1$ and $\xi_{2}=1$.
The number $x=0$ is not a zero of the function f since $f(0)=0^{2}-1=-1 \neq 0$.

Geometric interpretation

The roots of the equation $f(x)=0$ are the intersections of the graph $y=f(x)$ with the real axis, i.e., the line $y=0$. In the same manner, the roots of the equation $f(x)=g(x)$ are the abscissas of the intersection points of the two graphs $y=f(x)$ and $y=g(x)$.

(a) The equation $e^{-x}-0.25 \cdot x=0$ has only one root $\xi \in(1,1.5)$ since the corresponding graph $y=e^{-x}-0.25 \cdot x$ intersect the x axis only in one point $P=(\xi, 0)$.

(b) The equation $\sin (x)-x^{2}=0$ has two roots: $\xi_{1}=0$ and $\xi_{2} \in(0.5,1)$ since the graphs $y=\sin (x)$ and $y=x^{2}$ have two intersection points $O=(0,0)$ and $P=\left(\xi_{2}, f\left(\xi_{2}\right)\right)$.

Root separation \#1

The computation of real roots of the equation $f(x)=0$ follows two main steps
(a) roots separation : for each root ξ_{k}, we find an interval $\left[a_{k}, b_{k}\right]$ such that $\xi_{k} \in\left[a_{k}, b_{k}\right]$ and no one of the other roots belongs to $\left[a_{k}, b_{k}\right]$.
(b) roots approximation : we approximate some, or even all, of the roots.

Root Separation \#2

The first step may be done sketching the graph of the function f. It is also useful the following theorem.

Theorem 2.1 (zeros of a continuous function) Let f be a continuous function (at least) in the interval $[a, b]$ with $f(a) \cdot f(b)<0$. Then, f has almost one zero in the interval $[a, b]$. Furthermore, if the function f is strictly monotone in $[a, b]$, then the zero is unique.

NOT monotone: we can have more than one root in [a, b]

STRICTLY monotone: we have exactly one root in [a, b]

Root Approximation \#1

Given an interval $[\mathrm{a}, \mathrm{b}$] which contains the unique root ξ, we search for a sequence x_{k} such that

$$
\lim _{k \rightarrow+\infty} x_{k}=\xi
$$

Definition

We define the error e_{k} at step k as $\mathrm{e}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}}-\xi$.

Definition

Let x_{k} be a sequence that converges to ξ. If there are positive constants c and p such that

$$
\lim _{k \rightarrow+\infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{p}}=c
$$

we say that the sequence x_{k} converges to ξ with order p and asymptotic error constant c . Moreover, the convergence process is said to be linear if $\mathrm{p}=1$ and superlinear if $\mathrm{p}>1$. For the latter case, we say that it is quadratic if $\mathrm{p}=2$.

Root Approximation \#2

If we plot the $\log _{10}\left(\left|\mathrm{e}_{\mathrm{k}}\right|\right)$ as a function of k , it can be shown that near the root the behaviour of the graph is

LINEAR CONVERGENCE

SUPERLINEAR CONVERGENCE

Moreover, recall that when x_{k} is close to the root, we may write

$$
\left|e_{k+1}\right| \approx c\left|e_{k}\right|^{p}
$$

Root Approximation \#3

Example

Consider the computation of the root of the equation $\mathrm{e}^{\mathrm{x}}-1=0$. We have the following behaviour of the error:

k	$\left\|e_{k}\right\|$
0	$3.0000 \mathrm{e}+000$
1	$2.0498 \mathrm{e}+000$
2	$1.1785 \mathrm{e}+000$
3	$4.8627 \mathrm{e}-001$
4	$1.0119 \mathrm{e}-001$
5	$4.9510 \mathrm{e}-003$
6	$1.2236 \mathrm{e}-005$
7	$7.4862 \mathrm{e}-011$
8	$9.2344 \mathrm{e}-017$

From the plot (or from the table) we see that the convergence is superlinear.

Bisection Method \#1

Let ξ be the unique zero in the interval $[a, b]$ of the function f which we assume continuous at least in $[a, b]$. Assume $\xi \neq a$ and $\xi \neq b$.

Starting from $I_{0}:=\left[a_{0}, b_{0}\right]=[a, b]$, the bisection method constructs a sequence of nested intervals $I_{k}=\left[a_{k}, b_{k}\right]$ containing the root:

$$
I_{0} \supset I_{1} \supset I_{2} \supset I_{3} \supset \cdots \supset I_{k} \supset I_{k+1} \cdots \quad \text { with } \quad \xi \in I_{k} \forall k
$$

The k-th step, $k=0,1, \ldots$, of the bisection method is

Bisection Method \#2

1. compute $x_{k}=\left(a_{k}+b_{k}\right) / 2$. Note that $x_{k} \in I_{k}$.
2. compute $f\left(x_{k}\right)$
3. choose one of the following cases
3.1. $f\left(x_{k}\right)=0$, i.e., x_{k} is a root of f. Since $x_{k} \in[a, b]$ by construction and ξ is the unique root inside $[a, b]$, then it must be $\xi=x_{k}$. We have find the root and the iterative process stops.
3.2. $f\left(a_{k}\right) \cdot f\left(x_{k}\right)<0$, i.e. $f\left(a_{k}\right)$ and $f\left(x_{k}\right)$ have opposite signs. Thus $\xi \in\left[a_{k}, x_{k}\right]$. So, we set $I_{k+1}=\left[a_{k+1}, b_{k+1}\right]=\left[a_{k}, x_{k}\right]$. That is, $a_{k+1}=a_{k}$ and $b_{k+1}=x_{k}$ (see Figure 2.3 on the left).
3.3. $f\left(a_{k}\right) \cdot f\left(x_{k}\right)>0$, i.e. $f\left(a_{k}\right)$ and $f\left(x_{k}\right)$ have the same signs. Thus $\xi \in\left[x_{k}, b_{k}\right]$. So, we set $I_{k+1}=\left[a_{k+1}, b_{k+1}\right]=\left[x_{k}, b_{k}\right]$. That is, $a_{k+1}=x_{k}$ and $b_{k+1}=b_{k}$ (see Figure 2.3 on the right).

Bisection Method \#3

(a) $I_{k+1}=\left[a_{k}, x_{k}\right]$.

(b) $I_{k+1}=\left[x_{k}, b_{k}\right]$.

Error in the Bisection Method \#1

Let us denote by $\left|I_{k}\right|=b_{k}-a_{k}$ the length of the interval I_{k}. Then, in cases 3.2 and 3.3 we have

$$
\left|I_{k+1}\right|=\frac{\left|I_{k}\right|}{2} \stackrel{(1)}{=} \frac{\left|I_{0}\right|}{2^{k+1}}
$$

where (1) follows from mathematical induction. So, after k-th step is complete, the error $e_{k}=x_{k}-\xi$ satisfies the inequality

$$
\left|e_{k}\right| \leq\left|I_{k+1}\right|=\frac{\left|I_{0}\right|}{2^{k+1}}
$$

Error in the Bisection Method \#2

From the latter equation it is simple to compute the number of iterations of the bisection method that have to be performed in order to obtain $\left|e_{k}\right|<\varepsilon$ for some given $\varepsilon>0$. Indeed, we have

$$
\left|e_{k}\right|<\varepsilon \quad \Leftrightarrow \quad \frac{b-a}{2^{k+1}}<\varepsilon \quad \Leftrightarrow \quad 2^{k+1}>\frac{b-a}{\varepsilon}
$$

and finally, taking the logarithm in the latter inequality, we get

$$
\log \left(2^{k+1}\right)>\log \left(\frac{b-a}{\varepsilon}\right) \quad \Leftrightarrow \quad k>\frac{\log \left(\frac{b-a}{\varepsilon}\right)}{\log (2)}-1
$$

So, to obtain $\left|e_{k}\right|<\varepsilon$ it is necessary to perform at least $k_{\text {min }}$ iterations with

$$
\begin{equation*}
k_{\min }=\left\lceil\frac{\log \left(\frac{b-a}{\varepsilon}\right)}{\log (2)}-1\right\rceil \tag{2.1}
\end{equation*}
$$

where $\lceil a\rceil$ is the smallest integer greater or equal to a.

Error in the Bisection Method \#3

Example 2.2 The computation of the first positive zero of the equation

$$
x-\tan \left(\frac{x}{2}\right)=0
$$

within the tolerance $\varepsilon=1 . E-5=10^{-5}$ and with starting interval $[a, b]=[2.0,2.5]$ requires, at least,

$$
k_{\min }=\left\lceil\frac{\log \left(\frac{2.5-2.0}{10^{-5}}\right)}{\log (2)}-1\right\rceil=\lceil 14.61\rceil=15 \text { iterations }
$$

Note that the error DOES NOT decrease monotonically, i.e. we can have

$$
\left|e_{k+1}\right|>\left|e_{k}\right|
$$

Fixed Points of a Function

Definition 2.2 The function $\phi(x), x \in[a, b]$ has the fixed point $\alpha \in[a, b]$ if $\alpha=$ $\phi(\alpha)$.

So, fixed points of the function ϕ are, if any, the roots of the equation $x=\phi(x)$. Graphically, they are abscissas of the intersection points of the graphs $y=x$ and $y=\phi(x)$.

Function $f(x)$ has two fixed points

Example 2.3 The function $\phi(x)=x^{2}+1$ does not have any fixed point since the equation $x=x^{2}+1$ has no real roots.
The function $\phi(x)=x^{2}$ has two fixed points since the equation $x=x^{2}$ has roots $\alpha_{1}=-1$ and $\alpha_{2}=0$.

Fixed Point Iterations \#1

To introduce the fixed point method, the first step is to rewrite the equation $f(x)=0$ in the form $x=\phi(x)$ for some function ϕ. The function ϕ is not unique. For example, consider the equation $x^{2}-1=0$. We can rewrite it as
(a) $x=x^{2}+x-1=: \phi(x)$,
(b) $x=\frac{1}{x}=: \phi(x)$,
(c) $x=\frac{-x^{2}+4 x+1}{4}=: \phi(x)$
and in many other manners.
Next, let $\alpha \in[a, b]$ be the unique fixed point in the interval $[a, b]$ of $x=\phi(x)$. Given an initial estimate $x_{0} \in[a, b]$ of the fixed point α, we consider the following iterative scheme for the computation of α :

$$
\left\{\begin{array}{l}
x_{0} \quad \text { given initial estimate of } \alpha \\
x_{k+1}=\phi\left(x_{k}\right), \quad k=0,1,2, \ldots
\end{array}\right.
$$

The following theorem provides whether the previous iterations x_{k} converges to the fixed point α of $x=\phi(x)$.

Fixed Point Iterations \#2

Theorem 2.3 (Convergence of the iterations) Let ϕ be a continuous function on $[a, b]$, differentiable in (a, b) with
(i) $\phi([a, b]) \subseteq[a, b]$;
(ii) $\left|\phi^{\prime}(x)\right| \leq K<1 \quad \forall x \in(a, b)$

Then, the sequence

$$
x_{k+1}=\phi\left(x_{k}\right), \quad k=0,1,2, \ldots
$$

converges to the unique fixed point $\alpha \in[a, b]$ for any choice of $x_{0} \in[a, b]$.

Theorem 2.4 (Ostrowski) Let ϕ be a differentiable function in $[a, b]$ with fixed point $\alpha \in[a, b]$. If $\left|\phi^{\prime}(\alpha)\right|<1$, then exists $\delta>0$ such that the fixed point iterations $x_{k+1}=\phi\left(x_{k}\right)$ converge to α for each x_{0} with $\left|x_{0}-\alpha\right|<\delta$.

Fixed Point Iterations \#3

(a) $0<\phi^{\prime}(\alpha)<1$: the iterations converge to α in a monotone fashion (increasing or decreasing accordingly to the position of x_{0} with respect to α).

(b) $-1<\phi^{\prime}(\alpha)<0$: the iterations converge to α with values alternately above and below α.

Fixed Point Iterations \#4

(a) $\phi^{\prime}(\alpha)>1$: the fixed point iterations diverge from α.

Fixed Point Iterations \#5

Example 2.4 If $\left|\phi^{\prime}(\alpha)\right|=1$ the fixed point iteration $x_{k+1}=\phi\left(x_{k}\right)$ may, or may not, converge to the fixed point. The functions
(a) $\phi(x)=x^{3}-3 x^{2}+4 x-1$
(b) $\phi(x)=-x^{3}+3 x^{2}-2 x+1$
have both the fixed point $\alpha=1$ with $\left|\phi^{\prime}(\alpha)\right|=1$.

(a) Iterations x_{k} diverge from α for each $x_{0} \neq \alpha$ chosen near α.

(b) Iterations x_{k} converge to α for each x_{0} chosen near α.

Error Behaviour of Fixed Point Iterations

Theorem 2.5 Let $\phi \in C^{p}((\alpha-\delta, \alpha+\delta))$ for suitable $\delta>0$ and integer $p \geq 1$ of the fixed point α of ϕ. If

$$
\phi^{\prime}(\alpha)=\phi^{\prime \prime}(\alpha)=\cdots=\phi^{(p-1)}(\alpha)=0 \quad \text { and } \quad \phi^{(p)}(\alpha) \neq 0
$$

then the fixed point iterations $x_{k+1}=\phi\left(x_{k}\right)$ has order of convergence p and

$$
\lim _{k \rightarrow+\infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{p}}=\frac{\phi^{(p)}(\alpha)}{p!}
$$

Proof. Using Taylor expansion we get

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-\alpha=\phi\left(x_{k}\right)-\alpha \\
& =\sum_{j=0}^{p-1} \frac{\phi^{(j)}(\alpha) \cdot\left(x_{k}-\alpha\right)^{j}}{j!}+\frac{\phi^{(p)}\left(\xi_{k}\right) \cdot\left(x_{k}-\alpha\right)^{p}}{p!} \\
& \stackrel{(1)}{=} \frac{\phi^{(p)}\left(\xi_{k}\right) \cdot\left(e_{k}\right)^{p}}{p!}
\end{aligned}
$$

where ξ_{k} is a suitable point between α and x_{k} and (1) follows from $\phi^{(j)}(\alpha)=0$, $j=0,1, \ldots, p-1$. Providing that x_{k} converges to the fixed point α, we also have that $\xi_{k} \rightarrow \alpha$ which completes the proof due to the continuity of $\phi^{(p)}$.

Stopping Criteria

It is common to terminate the convergent fixed point iterations

$$
\left\{\begin{array}{l}
x_{0} \quad \text { given initial estimate of the fixed point } \alpha \\
x_{k+1}=\phi\left(x_{k}\right), \quad k=0,1,2, \ldots
\end{array}\right.
$$

when $\left|x_{k+1}-x_{k}\right|<\varepsilon$ for some given tolerance $\varepsilon>0$.
Let us see how good is this stopping criteria. We have

$$
x_{k+1}-\alpha=\phi\left(x_{k}\right)-\phi(\alpha)=\phi^{\prime}\left(\xi_{k}\right)\left(x_{k}-\alpha\right)
$$

for some ξ_{k} in the interval of endpoints α and x_{k}. Since it is

$$
x_{k}-\alpha=\left(x_{k+1}-\alpha\right)-\left(x_{k+1}-x_{k}\right) \quad \Rightarrow \quad x_{k+1}-\alpha=x_{k}-\alpha+x_{k+1}-x_{k}
$$

and denoting the error at the k-ih iteration by $e_{k}=x_{k}-\alpha$ we obtain

$$
x_{k}-\alpha+x_{k+1}-x_{k}=\phi^{\prime}\left(\xi_{k}\right)\left(x_{k}-\alpha\right) \quad \Rightarrow \quad e_{k}+x_{k+1}-x_{k}=\phi^{\prime}\left(\xi_{k}\right) e_{k}
$$

and finally, assuming that $\phi^{\prime}(x) \neq 0$ near α and taking the absolute values,

$$
\begin{equation*}
\left|e_{k}\right|=\frac{1}{\left|1-\phi^{\prime}\left(\xi_{k}\right)\right|} \cdot\left|x_{k+1}-x_{k}\right| \tag{2.2}
\end{equation*}
$$

So, if $\phi^{\prime}(\alpha) \approx 0$ (and, thus, $\phi^{\prime}(x) \approx 0$ near α by continuity) the difference between two consecutive iterates is a reliable estimator of the error. Note that this is the case if $\phi^{\prime}(\alpha)=0$. If, otherwise, $\phi^{\prime}(\alpha) \approx 1$, eq. (2.2) is not useful to estimate the error.

Exercises

Exercise 1 (1 minute, 2 points)

How many fixed points has the function $f(x)=x^{2}-x$?
Answer. The fixed points are the solution of the equation

$$
\begin{aligned}
\mathrm{x} & =\mathrm{f}(\mathrm{x}) \\
\mathrm{x} & =\mathrm{x}^{2}-\mathrm{x} \\
\mathrm{x}^{2}-2 \mathrm{x} & =0 \\
\mathrm{x}(\mathrm{x}-2) & =0 \quad \text { which gives } \mathrm{x}_{1}=0 \text { and } \mathrm{x}_{2}=2
\end{aligned}
$$

Indeed, for example,

$$
2=x_{2}=f\left(x_{2}\right)=f(2)=2^{2}-2
$$

Exercises

Exercise 2 (5 minutes, 10 points)

Let $f(x)=x^{1 / 2}$. (a) Compute the fixed points of f. (b) Is the fixed point iterations $x_{k+1}=f\left(x_{k}\right)$ convergent for $x_{0}=2$? Is the sequence x_{k} monotone? (c) Can we choose a starting point x_{0} such that the sequence x_{k} converges to $\mathrm{x}_{1}=0$?

Answer. First of all note that we must have $x \geq 0$.
(a) The fixed points are solution of

$$
x=f(x) \quad \text { or } x=x^{1 / 2} \text { or } x^{2}=x \text { which gives } x_{1}=0 \text { and } x_{2}=1
$$

The graph of $f(x)$ gives us the informations needed to answer (b) and (c).
(b) Yes, the fixed point iterations converges to the fixed point $x_{2}=1$. Moreover, the sequence x_{k} in monotonically decreasing.
(c) Yes, we can but the only possibility is to choose $x_{0}=0$. The correspondig fixed point iterations are $\mathrm{x}_{\mathrm{k}}=0$ for all k .

Exercises

Exercises

Exercise 3 (1 minute, 2 points)

Give an example of function $f(x)$ which is NOT strictly monotone in [a, b] and has only one root in $[\mathrm{a}, \mathrm{b}]$.

Answer. We can take $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ and $[\mathrm{a}, \mathrm{b}]=[-1,1]$. The root is $\mathrm{x}=0$.

Exercise 4 (2 minutes, 2 points)

A problem has input $x=1$. The correpsonding output is $\mathrm{y}=10$.
When $\mathrm{x}=1+10^{-3}$, the corresponding output becomes $\mathrm{y}=100$. Mark which of the following is true.
\square The prolem is well conditioned.
\square The condition number is $K=9000$.
\square It is impossible to estimate the condition number.
\square The prolem is ill conditioned.
Answer. The problem is ill conditioned since a small change in the input gives a wide variation in the output. We also have

$$
K=\underset{|(100-10) / 10|}{\left|\left(1+10^{-3}-1\right) / 1\right|} \quad 9
$$

