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Abstract The connection between swimming and control theory is attracting
increasing attention in the recent literature. Starting from an idea of Alberto Bres-
san [7] we study the system of a planar body whose position and shape are described
by a finite number of parameters, and is immersed in a 2-dimensional ideal and in-
compressible fluid in terms of gauge field on the space of shapes. We focus on a class
of deformations measure preserving which are diffeomeorphisms whose existence is
ensured by the Riemann Mapping Theorem. We face a crucial problem: the pres-
ence of possible non vanishing initial impulse. If it starts with zero initial impulse we
recover the results present in literature (Marsden, Munnier and oths). If instead the
body starts with an initial impulse different from zero, the swimmer can self-propel
in almost any direction if it can undergo shape changes without any bound on their
velocity. Such an important fact, together with the analysis of the controllability of
this system, seems innovative.
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Introduction

In this work we are interested in studying the self-propulsion of a deformable body in
a fluid. This kind of systems is attracting an increasing interest in recent literature.
Many authors focus on two different type of fluids. Some of them consider swim-
ming at micro scale in a Stokes fluid [2, 4, 5, 26, 34, 39], because in this regime the
inertial terms can be neglected and the hydrodynamic equations are linear. Others
are interested in bodies immersed in an ideal incompressible fluid [7, 17, 22, 29, 32]
and also in this case the hydrodynamic equations turn out to be linear.
We deal with the last case, in particular we study a deformable body -typically a
swimmer or a fish- immersed in an ideal and irrotational fluid. This special case has
an interesting geometric nature and there is an attractive mathematical framework
for it. We exploit this intrinsically geometrical structure of the problem inspired by
[38, 39] and [31], in which they interpret the system in terms of gauge field on the
space of shapes. The choice of taking into account the inertia can apparently lead
to a more complex system, but neglecting the viscosity the hydrodynamic equations

1



are still linear, and this fact makes the system more manageable. The same fluid
regime and existence of solutions of these hydrodynamic equations has been studied
in [17] regarding the motion of rigid bodies.
We start from an early idea of Alberto Bressan [7] and some unpublished develop-
ments, according to which the shape changes can be described by a finite number of
parameters. These kind of systems, where the controls are precisely given by further
degrees of freedom of the systems, have been first studied deeply by Aldo Bressan,
see e.g. [8, 9, 10]. In this framework we show that the composed system “fluid-
swimmer” is Lagrangian geodesic. Next, coupling this fact with some techniques
developed in [32], we are able to show that the kinetic energy of the system (i.e.
the Lagrangian) is bundle-like, a concept by Bruce Reinhart [37] and introduced in
control theory by Franco Rampazzo in [36]. This leads us to express the equations of
motion as linear control equations, where any quadratic term is vanishing, radically
simplifying the our final analysis on the system. The geometric construction of the
control dynamic equations follows substantially the line of thought of [12, 28].
At a first glance, the deformations of the swimmer are naturally given by diffeo-
morphisms, that are infinite dimensional objects. By considering a planar setting
and making use of complex analysis, as suggested in [13, 32] the Riemann Mapping
Theorem plays a crucial role in describing the shape changes of the swimmer. It
turns out that the diffeomorphisms can be parametrized by appropriate complex
converging series. In the literature other authors exploit the same way of describing
the shape changes by conformal maps, for example in [13] in the environment of the
Stokes approximate regime or in [32] in the case of an ideal and irrotational fluid, in
which they take into account only a finite number of terms to represent the diffeo-
morphisms. We follow substantially an analogous approach to merge this idea with
the setting of Alberto Bressan. The choice of using a finite number of parameters
means that the kind of deformations that we consider are fewer but still enough to
describe a wide range of swimmers.
In order to have a more manageable system that the one in [32], we establish a
connection between the use of complex and real shape parameters. We show that,
if we consider small shape changes, a well precise choice of the real and imaginary
part of the shape parameters leads to obtain exactly the same deformation proposed
in [31], which use a rather different parametrization governed by suitable small de-
formation. Therefore we gained a description of our system with a finite number of
parameters/coordinates, which is useful to apply the idea of controlling the shape
coordinates to steer the swimmer between two different configurations. In this en-
vironment we recover the well known Scallop Theorem [3] in the case in which we
suppose to have only one real shape parameter. Thanks to the idea of using a finite
number of parameters we can reduce our dynamic equations to a control system. The
controllability issue has been recently linked to the problem of swimming [2, 21, 26]
since it helps in solving effectively motion planning or optimal control problems.

We point out that in the Stokes regime there are interesting results, for example
in [26] the authors study the controllability of a swimmer which performs small defor-
mations around the sphere, or in [22] in which he considers the swimming mechanism
as a ‘broken-line’-like structure, formed by an ordered sequence of finitely many sets.
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Even in [2, 15] they study the controllability of a slender swimmer composed by N
links immersed in a viscous fluid at low Reynolds number.
In the present work we deal with the ideal and irrotational case, neglecting the vis-
cosity. In particular differently from what was done in other works, we focus our
attention on a crucial problem: the presence of an initial impulse. The case of zero
initial linear momentum is well studied in literature concerning systems of differ-
ent nature: both in the multi-particle or many-bodies field, [18, 20, 19], and shape
changing bodies, [29, 31, 32, 33], as the equation of motion are a driftless affine con-
trol system whose controllability can be studied using classical techniques. Instead,
the case of a non vanishing initial impulse leads us to a more complex system since
the equations of motion involve also a non zero drift term and their controllability
is more tricky to study. Therefore we have two contributions to the motion of the
system: the first one that is purely geometrical and determined by the structure of
the problem, and the second one, strictly linked to the presence of a non vanishing
initial impulse.
The controllability of this kind of systems is studied in detail, and among other facts
it is worth noting that we need at least three real shape parameters to make the
system controllable. We have three state parameters, three conjugate variables and
at least three controls. Despite the evident complexity of the computations linked
to this number of variables, we managed to gain good results.

The plan of the paper is the following. In Section 2 we present in some detail
the geometric aspects useful to formulate our problem. The proper geometrical set-
ting of the swimmer in a 2-dimensional fluid is faced in Section 3. Section 4 contains
an exhaustive study, in a complex setting, of the deformation of the body, together
with the construction of the equation of motion. We deal with all the controllability
issues in Section 5.

1 Preliminaries

This section covers some auxiliary mathematical topics, in particular from Lie
groups, fiber bundles and connections that we shall need later. This summary
will be helpful to set the notation, fill in some gaps, and to provide a guide to the
literature for needed background.

1.1 Lie Groups

Let us start from some geometric and algebraic notions on Lie groups, that arise in
discussing conservation laws for mechanical and control systems and in the analysis
of systems with some underlying symmetry.

Definition 1.1 A Lie group is a smooth manifold G that is a group with identity
element e = gg−1 = g−1g, and for which the group operations of multiplication,
(g, h) 7→ gh for g, h ∈ G, and inversion, g 7→ g−1, are smooth.
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Before giving a brief description of some of the theory of Lie groups we mention
an important example: the group of linear isomorphisms of Rn to itself. This is a
Lie group of dimension n2 called the general linear group and denoted by GL(n,R).
The conditions for a Lie group are easily checked. This is a manifold, since it is an
open subset of the linear space of all linear maps of Rn to itself; the group operations
are smooth, since they are algebraic operations on the matrix entries.

Definition 1.2 A matrix Lie group is a set of invertible n×n matrices that is closed
under matrix multiplication and that is a submanifold of Rn×n.

Lie groups are frequently studied in conjunction with Lie algebras, which are
associated with the tangent spaces of Lie groups as we now describe.

Definition 1.3 For any pair of n×n matrices A, B we define the matrix Lie bracket
[A,B] = AB −BA.

Proposition 1.1 The matrix Lie bracket operation has the following two properties:

(i) For any n × n matrices A and B, [B,A] = −[A,B] (this is the property of
skew-symmetry).

(ii) For any n× n matrices A, B, and C,
[[A,B], C]+[[B,C], A]+[[C,A], B] = 0. (This is known as the Jacobi identity.)

As is known, properties (i) and (ii) above are often thought as the definition of more
general Lie brackets (than AB −BA) on vector spaces called Lie algebras.

Definition 1.4 A (matrix) Lie algebra g is a set of n× n matrices that is a vector
space with respect to the usual operations of matrix addition and multiplication by
real numbers (scalars) and that is closed under the matrix Lie bracket operation [·, ·].

Proposition 1.2 For any matrix Lie group G, the tangent space at the identity
TIG is a Lie algebra.
As usual, for matrix Lie groups one denotes e = I

We now describe an example that plays an important role in mechanics and
control.

The plane Euclidean Group
Consider the Lie group of all 3× 3 matrices of the form(

R d
0 1

)
(1.1)

where R ∈ SO(2) and d ∈ R2. This group is usually denoted by SE(2) and is
called the special Euclidean group. The corresponding Lie algebra, se(2), is three-
dimensional and is spanned by

A1 =

0 −1 0
1 0 0
0 0 0

 A2 =

0 0 1
0 0 0
0 0 0

 A3 =

0 0 0
0 0 1
0 0 0

 (1.2)
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The special Euclidean group is of central interest in mechanics since it describes the
set of rigid motions and coordinate transformations on the plane. Let G be a matrix
Lie group and let g = TIG be the corresponding Lie algebra. The dimensions of the
differentiable manifold G and the vector space g are of course the same, and there
must be a one-to-one local correspondence between a neighborhood of 0 in g and
a neighborhood of the identity element I in G. An explicit local correspondence is
provided by the exponential mapping exp : g 7→ G, which we now describe. For any
A ∈ Rn×n (the space of n× n matrices). exp(A) is defined by

exp(A) := I +A+ 1
2!A

2 + 1
3!A

3 + . . . (1.3)

This map for SE(2) can be defined by the exponential of the elements of the Lie
algebra se(2). More precisely

exp(θA1) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1.4)

exp(xA2) =

1 0 x
0 1 0
0 0 1

 exp(yA2) =

1 0 0
0 1 y
0 0 1

 (1.5)

Since [Ai,Aj ] = 0 for all i, j = 1, 2, 3, we have that ∀(θ, x, y) ∈ R3 ≡ g = se(2) :

exp(θA1 + xA2 + yA3) = exp(θA1) exp(xA2) exp(yA3)

that is clearly elements of SE(2).
We now define the action of a Lie group G on a manifold Q. Roughly speaking,

a group action is a group of transformations of Q indexed by elements of the group
G and whose composition in Q is compatible with group multiplication in G.

Definition 1.5 Let Q be a manifold and let G be a Lie group. A left action of a
Lie group G on Q is a smooth mapping Φ : G 7→ Q such that

(i) Φ(e, q) = q for all q ∈ Q,

(ii) Φ(g,Φ(h, q)) = Φ(gh, q) for all g, h ∈ G and q ∈ Q,

(iii) Φ(g, ·) is a diffeomorphism for each g ∈ G.

A Lie group acts on its tangent bundle by the tangent map. We can consider the
left or the right action of G on g by: TeLgξ or TeRgξ, where Lg and Rg denote left
and right translations, respectively; so if g = g(t) is a curve in G, then there exists
a time dependent ξ(·) ∈ g such that

ġ(t) = TeLg(t)ξ(t) = g(t)ξ(t) (1.6)

and similarly for the right action.
Given left action of a Lie group G on Q, Φ : G × Q → Q, and ξ an element
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of the Lie algebra g then Φξ : R × Q → Q : (t, q) 7−→ Φ(exp tξ, q) is a flow on
Q, the corresponding vector field on Q is called infinitesimal generator of Φ
corresponding to ξ, is denoted by ξQ(q)

ξQ(q) = d

dt
Φ(exp tξ, q)|t=0 . (1.7)

1.2 Fiber Bundles and Connections

Fiber bundles provide a basic geometric structure for the understanding of many
mechanical and control problems.

A fiber bundle essentially consists of a given space (the base) together with
another space (the fiber) attached at each point, plus some compatibility conditions.
More formally, we have the following:

Definition 1.6 Let S be a differentiable base manifold and G a Lie group. A dif-
ferentiable manifold Q is called principal fiber bundle if the following conditions are
satisfied:

1 G acts on Q to the left, freely and differentiably:

Φ : G×Q→ Q (1.8)

writing Φ(g, q) = Φg · q = g · q .

2 S = Q/G and the canonical projection π : Q→ S is differentiable

3 Q is locally trivial, namely every point s ∈ S has a neighborhood U such
that π−1(U) ⊂ Q is isomorphic to U × G, in the sense that q ∈ π−1(U) 7→
(π(q), ϕ(q)) ∈ U × G is a diffeomorphism such that ϕ : π−1(U) → G satisfies
ϕ(g · q) = gϕ(q), ∀g ∈ G

An important additional structure on a bundle is a connection. Suppose we
have a bundle and consider (locally) a section of this bundle, i.e., a choice of a point
in the fiber over each point in the base. We call such a choice a “field”. The idea is to
single out fields that are “constant”. For vector fields on a linear space, for example,
it is clear what we want such fields to be; for vector fields on a manifold or an
arbitrary bundle, we have to specify this notion. Such fields are called “horizontal”.
A connection is used to single out horizontal fields, more precisely fields which live in
a subspace of the the tangent space, and is chosen to have other desirable properties,
such as linearity.

Definition 1.7 Let (Q,S, π,G) be a principal fiber bundle. the kernel of Tqπ de-
noted by Vq := {v ∈ TqQ|Tqπ(v) = 0}, is the subspace of TqQ tangent to the fiber
through q and is called vertical subspace. A connection on the principal fiber bundle
is a choice of a tangent subspace Hq ⊂ TqQ at each point q ∈ Q called horizontal
subspace such that:

6



(1) TqQ = Hq ⊕ Vq

(2) For all g ∈ G and q ∈ Q, TqΦg ·Hq = Hg·q

(3) Hq depends differentiably on q

Hence, for any q ∈ Q, we have that Tqπ determines an isomorphism Hq
∼= Tπ(q)S:

for all TqQ 3 v = vVq + vHq and we have that Tπ(q)(v) = vHq ∈ S. In other words
the choice of an horizontal subspace can be seen also as the choice of a vector valued
“connection one form” which vanishes on the horizontal vectors.

It follows the definition
Definition 1.8 An Ehresmann connection A is a vector valued one form such that
(i) A is vertical valued: Aq : Tq −→ Vq is a linear map for each point q ∈ Q

(ii) A is a projection: A(v) = v for all v ∈ Vq.
In the special case in which (Q,S, π,G) is a principal fiber bundle the previous
conditions on A : TQ −→ g read:
(i) A(ξQ(q)) = ξ for all ξ ∈ g and q ∈ Q, where ξQ(q) is the infinitesimal generator

of the left action of G on Q (1.7).

(ii) A is equivariant:
A(Tq(Φg(v))) = Adg(A(v))

for all v ∈ TqQ and g ∈ G where Φg denotes the given action of G on Q and
where Ad denotes the adjoint action of G on g defined as

Adg := Te(Lg ◦Rg−1) : g→ g .

Therefore it is evident that the horizontal subspace Hq is the kernel of Aq.
n the case in which there is a metric h(q) in our manifold Q, we have a special way
to define the horizontal subspace: it is the orthogonal with respect to the metric to
the vertical subspace.

Hq = {w ∈ TqQ : 〈w, h(q)v〉 = 0,∀v ∈ Vq} (1.9)

In this special case our connection A is called mechanical connection (see [30] and
therein references). We now would like to express the connection in coordinates, in
order to do this we first introduce the following definition
Definition 1.9 Let us consider the following diagram

Q

S ⊃ U

π σ where π ◦ σ = id|U
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The functions like σ are sections and we call Γ(U,Q) the set of all sections from
U in Q.

Alternatively often a connection is introduced as a derivation ∇ as follows. Let ∇
be a map

∇ : Γ(Q)→ Γ(Q⊗ T ∗S) such that
∇(σ1 + σ2) = ∇(σ1) +∇(σ2)
∇(fσ) = f∇(σ) + σ ⊗ df if f is a C∞ function.

Let now e be a local basis of sections of the principal fiber bundle, in this basis the
connection one-form A can be expressed as

eaA
a
b = ∇eb a, b = 1 · · · dim(Q).

If we change basis in Γ(Q), say e = ẽΩ, the connection A changes, i.e.

ẽÃ =∇ẽ = ∇(eΩ−1) = (∇e)Ω−1 + edΩ−1 = eAΩ−1 + edΩ−1

= ẽΩAΩ−1 + ẽΩdΩ−1

therefore A and Ã satisfy the following relation

Ã = ΩAΩ−1 + ΩdΩ−1 (1.10)

Let u(t) be a smooth curve in S passing through the point P = u(0). Let
q ∈ QP = π−1(P ) be any point in the fiber of Q over P . We would like to find a
smooth curve γ(t) in Q such that π(γ(t)) = u(t), γ(0) = q, and γ′(t) ∈ Hγ(t) (i.e.,
the tangent vectors to the curve γ(t) are horizontal).

From the usual theory of differential equations it follows that such a curve γ(t)
exists and is unique, at least locally at any point q ∈ Q (i.e., for small values of t).
The curve γ is called a horizontal lift of u. Regarding the tangent vectors, for any
q ∈ Q and any vector u̇ ∈ Tπ(q)S there exists a unique vector v ∈ Hq ⊂ TqQ such
that Tqπ : v 7→ u̇. The vector v is called the horizontal lift of u̇.

Given an Ehresmann connection we can define the horizontal lift of curves in
S, hence we can also define a notion of parallel transport that allows us to identify
different fibers of Q.
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P=u(0) Q=u(t) 

π-1(P)=QP 

q γ(t) 

π-1(Q)=QQ 

Figure 1: Horizontal lift of the curve u(t)

Note that, in general, the parallel transport will be path-dependent. If we start
with two different curves u1(t) and u2(t), such that u1(0) = u2(0) = P and u1(t̄) =
u2(t̄) = S, then the horizontal lifts γ1 and γ2 at a point q ∈ QP will not meet, in
general, at a point in the fiber QS , i.e., we will have γ1(t̄) 6= γ2(t̄). This gap on the
fiber is called holonomy and depends on the choice of the connection and on the
topology of the base manifold. In particular if it is connected the holonomy depends
on the basepoint only up to conjugation [23].

2 Geometrical setting

In this section we present the geometrical framework underlying dynamical control
systems. We derive the equations of motion and discuss how to use the geometrical
tools introduced before to gain informations on our system.

2.1 Geometry of control equations

In this subsection we derive the local dynamic equations for the control system
(Q, h,F) where F is a smooth k-dimensional foliation on Q, and h is the Rie-
maniann metric on the manifold Q, as done in [28]. As is well known, on a set
U ⊂ Q adapted for the foliation, F coincides with the model foliation of Rn by
k-dimensional hyperplanes. Let ϕ : U −→ Rn, ϕ(P ) = (x, y) be a local chart of Q
in U , distinguished for F , so that ϕ maps F|U into the trivial fibration π(x, y) = y.
Set q = (x, y) ∈ Q; given a path u(t) ∈ π(ϕ(U)), we suppose that for every t, the
reaction forces that implement the (ideal) constraint y ≡ u(t) are workless with
respect to the set Vq(t)U = kerTq(t)π of the virtual displacements compatible with
the constraint y ≡ u(t).
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Let (Q, h,F) be a foliated Riemanian manifold, let U ⊂ Q be an open set
adapted for F an let q = (x, y). If T (q, q̇) = 1

2 q̇
th(q)q̇ is the kinetic energy of the

unconstrained system (Q, h,F), then the kinetic energy of the system subject to
the time dependent constraint y ≡ u(t) is T (x, u(t), ẋ, u̇(t)). The related dynamic
equations are, in Lagrangian formalism

d

dt

∂T

∂ẋ
− ∂T

∂x
= 0 (2.1)

These can be put in Hamiltonian form by performing a partial legendre transforma-
tion on the ẋ- variables. When we identify y with u(t) and ẏ with d

dtu(t), the above
Lagrange equations are equivalent to

ẋ = ∂H

∂p
(x, p, u, u̇) ṗ = −∂H

∂x
(x, p, u, u̇) . (2.2)

We call these equations control equations. Let

q̇th(q)q̇ = ẋtCẋ+ ẋtMẏ + ẏtMtẋ+ ẏtBẏ (2.3)

be the local block representation of the metric h in ϕ(U), where C,B are symmetric
and invertible respectively k × k and (n− k)× (n− k) matrices.

To every q ∈ U denote with HqU the subspace orthogonal to VqU = kerTqπ with
respect to h. Referring to the local expression of h in U , it is easy to see that HqU
is the space orthogonal to the vectors (ei, 0)i=1···n with respect to the metric h .

HqU = {(ẋ, ẏ) ∈ TqU such that C(q)ẋ+M(q)ẏ = 0} .

Therefore HqU can be equivalently assigned through the VqU -valued connection one
form defined in 1.8

A(q) = (dx+ C(q)dy)⊗ ∂

∂x
where (see 2.6 ) C = C−1M (2.4)

whose kernel and range are respectively HqU and VqU . Now we consider the orthog-
onal splitting of a vector into its horizontal ad vertical components

v = vv + vh = A(q)v + hor(Tqπv) = (ẋ+ Cẏ, 0) + (−Cẏ, ẏ)

Using the above decomposition, we get the induced splitting of the kinetic energy
metric tensor into its vertical and horizontal part:

h(q)dq ⊗ dq = C(q)A(q)⊗A(q) +K(q)dy ⊗ dy (2.5)

where K(q) = B −MtC−1M.

Definition 2.1 The Riemannian metric h is bundle-like for the foliation F iff on
a neighborhood U with adapted coordinates (x, y) the above orthogonal splitting of g
holds with K = K(y).
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The importance of this notion will be clear in the following subsection (2.1.1). Using
this notation we want to rewrite the control equations.

From
p = ∂T

∂ẋ
= Cẋ+Mẏ

we obtain
ẋ = C−1p− C−1Mu̇ = C−1p− Cu̇ (2.6)

Substituting (2.6) in (2.3) and recalling that −∂H
∂x = ∂T

∂x we have

ṗ = −∂H
∂x

= ∂T

∂x
= −1

2p
t∂C−1
∂x

p+ pt
∂C

∂x
u̇+ 1

2 u̇
t∂(B −MtC−1M)

∂x
u̇ (2.7)

Therefore the control equations are{
ẋ = C−1p− C−1Mu̇

ṗ = −1
2p
t ∂C−1

∂x p+ pt ∂C∂x u̇+ 1
2 u̇

t ∂(B−MtC−1M)
∂x u̇

(2.8)

We now introduce, following [28], the global version of the above dynamic equations
when Q is the total space of a surjective submersion π : Q −→ S. Let V Q be the
vertical subbundle and V ∗Q the dual of V Q. Denote with pQ : T ∗Q −→ Q the
cotangent projection and set π̃ := π ◦ pQ, π̃ : V ∗Q −→ S. If (x, y) are local fibered
coordinates on Q, (x, y, p) are local fibered coordinates on V ∗Q. Moreover, denote
with z = (x, p) the local coordinates on the π̃-fiber over y. Now, to every y ∈ S,
π̃−1(y) is a fiber canonically simplettomophic to T ∗(π−1(y)), representing the phase
space of the constrained system restricted to the π-fiber over y.

T ∗Q

V ∗Q
(x, y, p)

Q

π

(x, y)

TQ

pQ

(x, y, ẋ, ẏ)

S
y

π̃

Suppose that a control vector field u̇ is given on S and that the path u(t) is
an integral curve of u̇. Then the dynamic equations (2.6) and (2.7) are the local
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expression of a vector field Du̇ over V ∗Q that projects on u̇ by π̃. Moreover the
field Du̇ is tangent to the fiber of π̃ only if the control is trivial: u̇ vanishing. Let
us suppose that the control is given by a curve u : [t1, t2] → S in S that is the
integral curve of the vector field u̇. Thus the movement of the system is described
by a differentiable curve γ : [t1, t2] → Q such that π(γ(t)) = u(t). Note that
dγ
dt : [t1, t2] → TQ is the natural increase of the curve γ in the fiber tangent to Q.
Composing dγ

dt with the Legendre transform LTQ → T ∗Q and with the projection
τ : T ∗Q → V ∗Q we obtain the parametric curve γ̂ = τ ◦ L ◦ dγdt : [t1, t2] → V ∗Q
which represent the evolution of the system taking into account the control.

Let horQ : TS −→ TQ denote the horizontal lift of the Ehresmann connection,
introduced in the previous section, and pQ the cotangent projection, using the above
definitions we introduce the function

Ku̇ : V ∗Q −→ R Ku̇ ◦ p−1
Q (q) = (horQ(q)(u̇))th(q)horQ(q)(u̇)

Theorem 2.1 To every control vector field u̇ on S, the corresponding dynamic vec-
tor field Du̇ can be expressed as the sum of three terms:

Du̇ = XH0 −XKu̇ + hor(u̇) (2.9)

with

XH0 = C−1p
∂

∂x
− 1

2p
t∂C−1

∂x
p
∂

∂p
(2.10)

−XKu̇ = 1
2 u̇

t∂K

∂x
u̇
∂

∂p
(2.11)

hor(u̇) =
( ∂
∂y
− C ∂

∂x
+ pt

∂C

∂x

∂

∂p

)
u̇ (2.12)

where XH0 is the Hamiltonian vector field corresponding to the case of locked con-
trol, XKu̇ is the Hamiltonian vector field on V ∗Q associated to Ku̇ and hor is the
horizontal lift of an Ehresmann connection on π̃ : V ∗Q −→ S entirely determined
by π and the metric. These equations are exactly the control equations (2.8).

Proof: [12] 2

2.1.1 The importance of initial impulse

In what follows let us suppose that the metric h is bundle like.

Proposition 2.2 The control system (2.8) is of two different types depending on
the value of the initial value of the x conjugate variables p.

1. Case p(0) = 0
The system (2.8) is an affine non linear driftless control system;

12



2. Case p(0) 6= 0
The system (2.8) is an affine non linear control system with drift.

Proof: Since we have supposed to have a bundle like metric we have that

∂K(y)
∂x

= ∂(B −MtC−1M)(y)
∂x

= 0 .

Therefore the control equation (2.8) becomes{
ẋ = C−1p− C−1Mu̇

ṗ = −1
2p
t ∂C−1
∂x p+ pt ∂C∂x u̇

(2.13)

Case p(0) = 0.
The function p(t) = 0 is the unique solution of (2.13)2 according to the Cauchy
theorem. Thus (2.13)1 becomes a driftless control system.

ẋ = −C−1Mu̇

It is clear that this last equation is entirely determined by the connection (see (2.4)).
Therefore in the case of null initial impulse case only the geometry of the system
determines its motion.
Case p(0) 6= 0.
In this case the equation (2.13)2 has no trivial solution that is p(t) 6= 0. Thus (2.13)1
is a non linear control system with drift determined exactly by the presence of a non
zero p

ẋ = C−1p− C−1Mu̇

The presence of the drift is crucial because in this case the motion of the system
is determined both by the connection (given by the geometry) and by the impulse,
that is non zero. This proves the importance of the initial value of p. 2

In this work we analyze both the cases. The one with zero initial impulse is well
studied in literature for many systems [32, 31, 18, 20, 19]. The one with p(0) 6= 0 is
becoming of increasing interest since the presence of the impulse influences deeply
the motion, as we have seen. We deal with this problem that is more complex and
tricky to study because of the presence of the drift.

2.2 Geometric and dynamic phase

As we have seen, in the general theory, connections are associated with bundle
mappings, which project larger spaces onto smaller ones. The larger space is the
bundle, and the smaller space is the base. Directions in the larger space that project
to a point are vertical directions. The connection is a specification of a set of
directions, the horizontal directions, at each point, which complements the space of
vertical directions. In general, we can expect that for a horizontal motion in the
bundle corresponding to a cyclic motion in the base, the vertical motion will undergo
a shift, called a phase shift, between the beginning and the end of its path. The
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magnitude of the shift will depend on the curvature of the connection and the area
that is enclosed by the path in the base space: it is exactly the holonomy. This shift
in the vertical element is often given by an element of a group, such as a rotation
or translation group, and is called also the geometric phase. Referring to what
said in the previous subsection, the motion is determined only by the geometrical
properties of the system if it starts with zero initial impulse. In many examples,
the base space is the control space in the sense that the path in the base space
can be chosen by suitable control inputs to the system, i.e. changes in internal
shape. In the locomotion setting, the base space describes the internal shape of the
object, and cyclic paths in the shape space correspond to the movements that lead
to translational and rotational motion of the body.
Nevertheless the shape changes are not the only ones to determine a net motion of the
body. More generally, this motion can always be decomposed into two components:
the geometric phase, determined by the shape of the path and the area enclosed by
it, and the dynamic phase, driven by the internal kinetic energy of the system
characterized by the impulse. It is important to stress the difference between the
two phases. The geometric phase is due entirely to the geometric structure of the
system. Instead the dynamic phase is present if and only if the system has non
zero initial impulse or if the impulse is not a conserved quantity, in our context we
refer to what is explained in subsection 2.1.1. More precisely if the curvature of the
connection is null, not necessarily the system does not move after a cyclic motion in
the base: a net motion can result if the system starts with non zero initial impulse,
and this motion is entirely due to the dynamic phase.

Shape space 

Horizontal lift (p*=0) 

p*≠ 0 

Geometric phase 

Dynamic phase 

Figure 2: Geometric phase and dynamic phase.

Figure (2) shows a schematic representation of this decomposition for general
rigid body motion. In this figure the sphere represents the base space, with a loop
in the shape space shown as a circular path on the sphere. The closed circle above
the sphere represents the fiber of this bundle attached to the indicated point. Given
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any path in the base (shape) space, there is an associated path, called the horizontal
lift, that is independent of the time parametrization of the path and of the initial
vertical position of the system see. Following the lifted path along a loop in the
shape space leads to a net change in vertical position along the fiber. This net
change is just the geometric phase. On top of that, but decoupled from it, there is
the motion of the system driven by the impulse, (if it is not zero) which leads to the
dynamic phase. Combining these two provides the actual trajectory of the system.

2.3 Gauge potential

Let us consider a planar body immersed in a 2 dimensional fluid, which moves
changing its shape. For the moment we do not specify the kind of fluid in which
it is immersed that can be either ideal and incompressible or a viscous one with
low Reynolds number. Our aim is to show that the motion of this deformable
body through the fluid is completely determined by the geometry of the sequence
of shapes that the idealized swimmer assumes, and to determine it. This idea was
introduced by Shapere and Wilczek in [39] [38] and developed in [13], where they
apply geometrical tools to describe the motion of a deformable body in a fluid,
focusing their attention on the Stokes regime.
The configuration space of a deformable body is the space of all possible shapes. We
should distinguish between the space of shapes located somewhere in the plane and
the more abstract space of unlocated shapes. The latter space can be obtained from
the space cum locations by making the quotient with the group of rigid motions in
the plane, i.e declaring two shapes with different centers of mass and orientation to
be equivalent. The first problem we wish to solve can be stated as follows: what is
the net rotation and translation which results when a deformable body undergoes a
given sequence of unoriented shapes? The problem is intuitively well posed: when
a body changes its shape in some way a net rotation and translation is induced.
For example, if the system is composed simply by the body, its net rigid motion
can be computed by making use of the law of conservation of momentum, if instead
the body is immersed in an ideal incompressible fluid this motion can be found by
solving the Euler equations for the fluid flow with boundary condition on the surface
of the body with the shape corresponding to the given deformation.
These remarks may seem straightforward, but we encounter a crucial ambiguity
trying to formulate the problem more specifically. Namely how can we specify the
net motion of an object which is continuously changing shape? To quantify this
motion it is necessary to attach a reference frame to each unlocated shape. This is
equivalent to choosing a standard location for each shape; more precisely to each
unlocated shape there now corresponds a unique located shape. Once a choice
of standard locations for shapes has been made, then we shall say that the rigid
motion required to move between two different configurations is the displacement
and rotation necessary to align their centers and axes. In what follows we shall
develop a formalism, already used in [39] [38], which ensures us that the choice of
axes for the unlocated shapes is completely arbitrary and that the rigid motion on
the physical space is independent from this choice. This will be clear soon below.
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For a given sequence of unlocated shapes S0(t), the corresponding sequence of located
shapes S(t) are related by

S(t) = R(t)S0(t) (2.14)

where R is a rigid motion. This relation expresses how to recover the located shapes
S(t) given the unlocated ones, i.e. S0(t). It is clear that we are dealing with a fiber
bundle: the located shapes S(t) live on the big manifold Q = SE(2) × S and the
unlocated ones, S0(t), live on the base manifold obtained by the quotient of the
manifold Q by the plane euclidean group SE(2), i.e S = Q/SE(2).

To make (2.14) more explicit we introduce a matrix representation for the group
of Euclidean motions, of which R is a member. A two dimensional rigid motion
consisting of a rotation R followed by a translation d may be represented as a 3× 3
matrix

[R, d] =
(
R d
0 1

)
(2.15)

where R is an ordinary 2 × 2 rotation matrix, d is a 2 component column vector.
This is the matrix representation of the plane euclidean group action SE(2) on the
manifold Q where the located shapes S(t) live on.
Now in considering the problem of self propulsion we shall assume that our swim-
mer has control over its form but cannot exert net forces and torques on itself.
A swimming stroke is therefore specified by a time-dependent sequence of forms,
or equivalently unlocated shapes S0(t). The located shape will then be expressed
exactly by formula (2.14).

Our problem of determining the net rigid motion of the swimmer thus resolves
itself into the computation of R(t) given S0(t). In computing this displacement it is
most convenient to begin with infinitesimal motions and to build up finite motions
by integrating. So let us define the infinitesimal motion A(t) by

dR
dt

= R
(
R−1dR

dt

)
≡ RA (2.16)

In this formula we can recognize the differential equation corresponding to formula
(1.6), from which we understand that A take values in the Lie algebra of the plane
euclidean group: g = se(2). For any given infinitesimal change of shape A, formula
(2.16), describes the net overall translation and rotation which results. We can
integrate it to obtain

R(t2) = R(t1)P̄ exp
[∫ t2

t1
A(t) dt

]
(2.17)

where P̄ denotes a reverse path ordering, known in literature as chronological series
[1]:

P̄ exp
[∫ t2

t1
A(t) dt

]
= 1 +

∫
t1<t<t2

A(t) dt+
∫∫

t1<t
′<t<t2

A(t)A(t′) dt dt′ + · · ·

The assignment of center and axes can be arbitrary, so we should expect that physical
results are independent of this assignment. How does this show up in our formalism?
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A change in the choice of centers and axes can equally well be thought of as a change
(rigid motion) of the standard shapes, let us write

S̃0 = Ω(S0)S0 (2.18)

The located shapes S(t) being unchanged, (2.14) requires us to define [39] [38]

R̃(t) = R(t)Ω−1(S0(t))

From this, the transformation law of A follow

Ã = ΩAΩ−1 + ΩdΩ−1

dt
(2.19)

from which we can recognize the transformation laws (1.10) of an Ehresmann con-
nection called also Gauge potential. Our freedom in choosing the assignment of
axes shows up as a freedom of gauge choice on the space of standard shapes. Ac-
cordingly the final relationship between physical shapes is manifestly independent
of such choices.
Our aim will be to compute this gauge potential A ∈ se(2) in function of the unlo-
cated shapes S0 that our swimmer is able to control.

3 Swimming in an ideal fluid

We focus on a swimmer immersed in an ideal and incompressible fluid. The dynam-
ical problem of its self propulsion has been reduced to the calculation of the gauge
potential A. In our model we assume that the allowed motions, involving the same
sequence of forms will include additional time-dependent rigid displacements. In
other words the actual motion will be the composition of the given motion sequence
S0(t) and rigid displacements.

3.1 System of coordinates

Let (O, e1, e2) be a reference Galilean frame by which we identify the physical space
to R2. At any time the swimmer occupies an open smooth connected domain B
and we denote by F = R2 \ B̄ the open connected domain of the surrounding fluid.
The coordinates in (O, e1, e2) are denoted with x = (x1, x2)T and are usually called
spatial coordinates. Let us call (−x2, x1)T = x⊥.
Attached to the swimmer, we define also a moving frame (O∗, e∗1, e∗2). Its choice
is made such that its origin coincides at any time with the center of mass of the
body. This frame represents the choice of the axes in the space of unlocated shapes.
As we have shown before, the computation of the net rigid motion of the swimmer
due to shape changes is independent from this choice that accordingly is arbitrary.
The fact that this frame has always its origin in the center of mass is a matter of
convenience: indeed this choice, and others (see Remark 3.2), tell us that the body
frame is the one in which the kinetic energy of the body is minimal [25].
We denote by x∗ = (x∗1, x∗2)T the related so called body coordinates. In this frame
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and at any time the swimmer occupies a region B∗ and the fluid the domain F∗ :=
R2 \ B̄∗.
We define also the computational space, that is the Argand-Gauss plane which we
will need only to perform explicit calculations, endowed with the frame (O,E1,E2)
and in which the coordinates are denoted z = (z1, z2)T . In this space D is the unit
disk and O := R2 \ D̄.

3.2 Shape changes

Banach spaces of sequences. Inspired by [32], we denote any complex sequence
by c := (ck)k≥1 where for any k ≥ 1, ck := ak + ibk ∈ C, ak, bk ∈ R. Most of the
complex sequences we will consider live in the Banach space

S :=
{
(ck)k≥1 :

∑
k≥1

k(|ak|+ |bk|) < +∞
}

endowed with its natural norm ‖c‖S :=
∑
k≥1 k(|ak| + |bk|). This space is continu-

ously embedded in

T :=
{
(ck)k≥1 : sup

z∈∂D

∣∣∑
k≥1

kckz
k
∣∣ < +∞

}
whose norm is ‖c‖T := supz∈∂D |

∑
k≥1 kckz

k|, where D is the unit disk of the
computational space.

Definition 3.1 x We call D the intersection of the unit ball of T with the space S.

This space will play an important role in the description of the shape changes that
will follow.
Finally we introduce also the Hilbert space

U :=
{
(ck)k≥1 :

∑
k≥1

k(|ak|2 + |bk|2) < +∞
}

whose norm is ‖c‖U :=
√∑

k≥1 k(|ak|2 + |bk|2). According to Parseval’s identity we
have

∑
k≥1

k|ck|2 ≤
∑
k≥1

k2|ck|2 = 1
2π

∫ 2π

0

(∑
k≥1

kcke
−ikθ)2 dθ ≤ sup

z∈∂D

∣∣∑
k≥1

kckz
k
∣∣2

Therefore we have the following space inclusions

S ⊂ T ⊂ U

We have introduced these spaces because they will be crucial in the description of
the shape changes of the idealized swimmer.
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3.2.1 Description of the shape changes

Following the line of thoughts of [32] and [13] the shape changes of the swimmer
are described with respect to the moving frame (O∗, e∗1, e∗2) by a C1 diffeomorphism
χ(c), depending on a shape variable c ∈ D which maps the closed unit disk D̄ of the
computational space onto the domain B∗ in the body frame. The diffeomorphisms
χ(c) allows us to associate to each sequence c a shape of the swimmer in the body
frame. We can write, according to our notation, that for any c ∈ D (see definition
3.1),

χ(c) : C ⊃ D̄ → R2 ≡ (O∗, e∗1, e∗2) (3.1)

and B̄∗ = χ(c)(D̄).
We now explain how to build the map χ(c) for any given sequence c, see Fig 3.

e1* 

θ 
 

d 

B 

O e1 

e2* 

e2 

Figure 3: The physical space and the body frame.

Theorem 3.1 (Riemann Mapping Theorem) Let K be a simply connected open
bounded subset of C with 0 ∈ K. Then there exists an holomorphic isomorphism
f : D → K with f(0) = 0. Any other isomorphisms with f(0) = 0 are of the
form z 7→ f(rz) with r ∈ ∂D a rotation. All functions f can be extended to an
homeomorphism of D̄ onto K̄ if and only if ∂K is a Jordan curve.

Defining C∞ = {C ∪∞}, if O = C∞ \ D̄, from the isomorphism f we have also
an isomorphism from D to the exterior F∗; we apply to F∗ the inversion ρ(z) := 1

z
obtaining the open simply connected G, we find another Riemann- isomorphism
g : D → G with g(0) = 0. Then we consider h = ρ ◦ g = 1

g : D → F∗. The function
g is injective around zero, therefore g′(0) 6= 0, it follows that h has a pole of the first
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order in zero and therefore has a Laurent expansion

h(z) = 1
z

+ g
′′(0)
2 +

∞∑
k=1

ckz
k (3.2)

We now have the area theorem [35]: if a function like h is injective on the
punctured disk then we have

∞∑
k=1

k|ck|2 ≤ 1 (3.3)

If we want an isomorphism of O on F∗ we take ϕ(c)(z) = h(1
z )

ϕ(c)(z) = z +
∞∑
k=1

ck
zk

(3.4)

We now suppose that the boundary of B∗ is a Jordan curve, i.e. simple closed curve
in the plane, therefore the function ϕ(c) can be extended to homeomorphism on the
boundary. Now ϕ(c) : Ō → F∗ can be extended continuously to all C∞ setting in
the interior of D

χ(c)(z) := z +
∑
k≥1

ckz̄
k , (z ∈ D̄) (3.5)

Since z̄ = 1
z on ∂D we deduce that the following map is continuous in C for all

c ∈ D:

Φ(c)(z) :=
{
χ(c)(z) if z ∈ D
ϕ(c)(z) if z ∈ Ō = C∞ \D

(3.6)

Proposition 3.2 For all c ∈ D, χ(c) : D̄ → B̄∗ and ϕ(c) : Ō → F̄∗ are both
well defined and invertible. Further, χ(c)|D is a C1 diffeomorphism, ϕ(c)|O is a
conformal mapping and Φ(c) is an homeomorphism form C onto C.

Proof: [32] 2

Remark 3.1 Despite the generality of the Riemann Mapping Theorem, the way
in which we decided to represent our diffeomorphism, lead us to some restrictions.
Indeed in order to be sure that also χ(c) is well defined -from proposition 3.2- we
need to impose the restrictive condition c ∈ D, see (3.3), meaning that the shape
variables have to be finitely bounded for both the norms of S and T . To summarize
we can say that to use the shape variable c ∈ D allows us to describe all of the
bounded non-empty connected shapes of the body that are not too far from the unit
ball, accordingly to some criteria that we specify below.

From the relation
x∗ = χ(c)(z) , (3.7)
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(z ∈ D) we deduce that the area elements dx∗ and dz of respectively B∗ and D can
be deduced one from the other by the identity.

dx∗ := J(c)(z)dz, (z ∈ D, x∗ := χ(c)(z))

where J(c)(z) := |detDχ(c)(z)|, (z ∈ D).
The density ρ∗c of the deformed idealized swimmer can be deduced from a given
constant density ρ0 > 0 by the conservation mass principle:

ρ∗c(x∗) = ρ0
J(c)(χ(c)−1(x∗)) , (x∗ ∈ B∗)

We define the element of mass in D by dm0 := ρ0dz and likewise dm∗ := ρ∗cdx
∗, is

the element of mass in B∗. Then the area of the body is given by (see 3.5)

V ol(B) =
∫
D
J(c)(z) dz =

∫
D

1−
∣∣∣∑
k≥0

(k + 1)ck+1z̄
k
∣∣∣2 dz = π(1− ‖c‖2U ) (3.8)

According to the incompressibility of the fluid both viewed in the physical frame
(O, e1, e2) and in the body frame (O∗, e∗1, e∗2), its area has to be constant. We
draw the same conclusion for the area of our idealized swimmer because its area is
nothing but the complementary of the area of the fluid. Therefore we deduce that
the function t 7→ ‖c(t)‖U = (‖c(0)‖U ) has to be constant. Thus we define the space

E(µ) =
{
c ∈ D : ‖c‖U = µ

}
(3.9)

moreover this set is not empty if and only if µ < 1 and differentiating by time (3.8)
we get an equivalent formulation for the conservation of the body area∑

k≥1
k(ȧkak + ḃkbk) = 0 (3.10)

This gives us the first condition to impose on the shape changes in order to be
physically allowable. Another condition is given by the fact that the motion we are
considering is self-propelled, therefore the Newton’s laws ensure that the linear and
angular momenta of the swimmer with respect to its attached frame (O∗, e∗1, e∗2)
have to be and remain zero when it undergoes shape changes. Hence we get the
condition

d

dt

(∫
B∗
x∗ dm∗

)
= 0 (3.11)

which leads to ∫
D
χ̇(c) dm0 = 0

which is intrinsically satisfied since the body frame has its origin in the center of
mass.
Regarding the angular momentum we find∫

D
χ̇(c) · χ(c)⊥ dm0 = 0 (3.12)
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This condition after some algebra gives the identity∑
k≥1

1
k + 1(ḃkak − ȧkbk) = 0 (3.13)

Remark 3.2 (Minimal Kinetic Energy) It is worth noting that these conditions
tell us that the body frame that we have chosen is exactly the one of the minimal
kinetic energy. Indeed there are two conditions to verify. The first one is that the
velocity of the center of mass is null in this frame (3.11). This condition is clearly
satisfied by the fact that the origin of the frame coincides with the center of mass at
any time. The second condition is that the angular momentum with respect to the
body frame has to be null, that is exactly condition (3.12).

Remark 3.3 The orientation of the frame remains arbitrary and does not effect the
fact that it is the frame of minimal kinetic energy. One of the most used conventions
to define a possible orientation of such a system is to choose as axes the eigenvectors
of the moment of inertia of our body. Obviously as we have said before this choice
does not effect the located shape, since it is independent on the choice of the frame.

These conditions lead us to give the following definition

Definition 3.2 (Physically allowable control) A smooth function t 7→ c(t) is
said to be physically allowable when:

i There exist µ > 0 such that c(t) ∈ E(µ) for all t ≥ 0.

ii Constraint (3.10) and (3.13) are satisfied.

The condition i specifies in a more rigorous way what we meant by shapes near the
circle in the remark (3.1).

3.3 Rigid motions

The overall motion of our body in the fluid is, as said before, the composition of
its shape changes with a rigid motion. The shape changes have been described in
the previous subsection and, as we will see, the Gauge potential A described at the
beginning depends only on the shape variable c that is

A = A(c) (3.14)

this will be evident in the next sections.
The net rigid motion is described by an element of the planar euclidean group as
explained in subsection 2.3. More precisely it is given by a translation d, which is
the position of the center of mass, and a rotation R of an angle θ, that gives the
orientation of the moving frame (O∗, e∗1, e∗2) with respect to the physical one.
Let the shape changes be frozen for a while and consider a physical point x attached
to the body. Then there exists a smooth function t 7→ (d(t), θ(t)) such that the
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point’s coordinates in (O, e1, e2) are given by x = R(θ)x0 + d. Next compute the
time derivative expression (ḋ, θ̇). We deduce that the Eulerian velocity of the point
is vd(x) = θ̇(x− d)⊥ + ḋ. It can be also expressed in the moving frame (O∗, e∗1, e∗2)
and reads v∗d = θ̇(x∗)⊥ + ḋ∗ where(

ḋ∗
θ̇

)
= R(θ)T

(
ḋ
θ̇

)
(3.15)

where R is an element of the euclidean group SE(2) of pure rotation.

Remark 3.4 Notice that ḋ∗ is not the time derivative of some d∗ but only a symbol
to expresse the velocity ḋ in the body frame.

Let us return to the general case where the shape changes are taken into account.
We deduce that the Eulerian velocity at a point x of B is

v(x) = θ̇(x− d)⊥ + ḋ +R(θ)χ̇(c)[χ(c)−1(R(θ)T (x− d))]

where the last term represent the velocity of deformation and is computed deriving
the relation 3.7 and taking into account that x = RT (θ)x∗ = RT (θ)χ(c)(z). When
we express this velocity in the moving frame we get

v∗(x∗) = (θ̇x∗⊥ + ḋ∗) + χ̇(c)(χ(c)−1(x∗)) , (3.16)

which is more compact and will be useful in what follows.

3.4 Dynamics for ideal fluid

In this section we use some well known ideas developed for example in some works
of A. Bressan [7], which further simplify the system of our idealized swimmer.
We assume that the shape changes of our swimmer can be described by a fi-
nite number of shape parameters, i.e. c = (c1, · · · , cm), thus we can call q =
(q1, · · · , qm+3) = (d, θ, c1, · · · , cm). This choice is widely spread in recent literature
as in [7, 31], and implies that we focus only on a class of deformations which consist
of particular shape changes that are sufficient to describe a wide range of swimmer
behaviors. Let us call χ̃ the diffeomorphism which describes the superimposition of
the shape changes with a rigid motion, more precisely χ̃(q)(z) := [R(θ),d] ◦χ(c)(z)
Assuming that there are no external forces, we wish to derive a system of equa-
tions describing the net motion of the body due to the shape changes and of the
surrounding fluid expressed in the moving frame. Let N = m+ 3 and

T (q, q̇) = 1
2

N∑
i,j=1

Ai j(q)q̇iq̇j (3.17)

describe the kinetic energy of the body. For simplicity, we assume that the sur-
rounding fluid has unit density. Calling v = v(x, t) its velocity at the point x, the
kinetic energy of the surrounding fluid is given by

K =
∫
F

|v(x)|2

2 dx (3.18)
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If the only active force is due to the scalar pressure p, the motion of the fluid is
governed by the Euler equation for non-viscous, incompressible fluids:

vt + v · ∇v = −∇p (3.19)

supplemented by the incompressibility condition

div v = 0.

In addition, we need a boundary condition〈
v −

N∑
k=1

∂χ̃(q)(z)
∂qk

q̇k, −z
χ̃
′(q)(z)
|χ̃′(q)(z)|

〉
= 0 (3.20)

−z χ̃
′ (q)(z)
|χ̃′ (q)(z)| = n(x), (x = χ̃(q)(z), z ∈ ∂D) denotes the unit outer normal to the set

χ̃(c)(D) = B at the point x, and is computed making the complex derivative of the
function χ̃(q)(z) expressed in polar coordinates that is

n = i
∂σ(χ̃(q)(eiσ))
|∂σ(χ̃(q)(eiσ))|

= −eiσ χ̃
′(q)(eiσ)
|χ̃′(q)(eiσ)| = −z χ̃

′(q)(z)
|χ̃′(q)(z)| (3.21)

which states that the velocity of the fluid has to be tangent to the surface of the
body. To find the evolution of the coordinate q, we observe that

d

dt

∂T

∂q̇k
= ∂T

∂qk
+ Fk k = 1 · · ·N (3.22)

where T is the kinetic energy of the body and Fi are the components of the external
pressure forces acting on the boundary of B. To determine these forces, we observe
that, in connection with a small displacement of the qi coordinate, the work done
by the pressure forces is

δW = −δqk ·
∫
∂D

〈
−z χ̃

′(q)(z)
|χ̃′(q)(z)| ,

∂χ̃(q)
∂qk

(z)
〉
p(χ̃(q)(z))J(q)(z) dσ (3.23)

The equation of motion for are

d

dt

∂T

∂q̇k
= ∂T

∂qk
−
∫
∂D

〈
−z χ̃

′(q)(z)
|χ̃′(q)(z)| ,

∂χ̃(q)
∂qk

(z)
〉
p(χ̃(q)(z))J(q)(z) dσ (3.24)

We now show that, in the case of irrotational flow, the coupled system can be reduced
to a finite dimensional impulsive Lagrangian system. It is well known (see [17, 27])
that the velocity field of the fluid can be determined by setting v = ∇ψ and solving
the Neumann problem in the exterior domain

∆ψ = 0 x ∈ F
n · ∇ψ = n · v(x)|x=χ̃(q)(z) x ∈ ∂B
|ψ| → 0 |x| → ∞

(3.25)
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where the boundary condition reads

n · v(x) = −z χ̃
′(q)(z)
|χ̃′(q)(z)| ·

∑
k

∂χ̃(q)
∂qk

(z)q̇k (3.26)

Let us now consider the function ϕ̃(q) : R2 \D → R2 defined by the composition
of ϕ(q)(z) with the rigid motion [R,d], that clearly on the boundary of D coincides
with the function χ̃(q). From the linearity of (3.25) the solution will be linear in q̇.

ψ(z,q, q̇) =
N∑
k=1

γk(z,q)q̇k (3.27)

The motion of the fluid can be obtained by solving the ordinary differential equation

d

dt
ϕ̃(q)(z) = ∂ψ

∂xL
(x,q, q̇)|x=ϕ̃(q)(z) (3.28)

precisely

vL(x,q, q̇) =
∑
k

∂ϕ̃(q)
∂qk

(z)q̇k =
∑
k

∂γk
∂xL

(x,q)q̇k|x=ϕ̃(q)(z) (3.29)

This has to be true for all curve R 3 t 7−→ q(t), with c as in definition (3.2) thus
we have

∂ϕ̃(q)
∂qk

(z) = ∂γk
∂xL

(x,q)|x=ϕ̃(q)(z) (3.30)

We now prove that the term of the equations of motion relative to the pressure
forces is a kinetic term

Fk =−
∫
∂D
−z ϕ̃

′(q)(z)
|ϕ̃′(q)(z)|

∂ϕ̃(q)
∂qk

(z)p(ϕ̃(q)(z))J(q)(z) dσ =

−
∫
∂D
−z ϕ̃

′(q)(z)
|ϕ̃′(q)(z)|

∂γk
∂xL

(ϕ̃(q)(z))p(ϕ̃(q)(z))J(q)(z) dσ =

= −
∫
∂B
nL(x) ∂γk

∂xL
p dx

(3.31)

applying the divergence theorem to (3.31)

=
∫
x∈F

∂

∂xL
( ∂γk
∂xL

p) dx =
∫
x∈F

(
p∆γk︸︷︷︸

=0

+∇γk · ∇p
)
dx =

=
∫
x∈F
∇γk · ∇p dx =

∫
z∈R2\D

∂ϕ̃(q)
∂qk

·
(
−v,t−v · ∇v

)
Ĵ(q)(z) dz =

= −
∫
z∈R2\D

∂ϕ̃(q)
∂qk

· d
dt
vĴ(q)(z) dz =

= −
∫
z∈R2\D

[ d
dt

(∂ϕ̃(q)L
∂qk

vL)− vL
∂2ϕ̃(q)
∂qj∂qk

q̇k]Ĵ(q)(z) dz
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where Ĵ(q)(z) is the determinant of the jacobian matrix of the function ϕ̃(c)(z).
Let us define

T f = 1
2

∫
x∈F
|v|2 dx = 1

2

N∑
i,j

Ãi j q̇iq̇j

then
Fk = −

( d
dt

∫
x∈F

∂|v|2

∂q̇k
dx−

∫
x∈F

∂|v|2

∂qk
dx
)

= − d

dt

∂T f

∂q̇k
+ ∂T f

∂qk

In conclusion the system body+fluid is geodesic of Lagrangian

T = T body + T f (3.32)

In what follows for simplicity we will express all the quantities in the moving frame
(O∗, e∗1, e∗2), denoting the total kinetic energy in this frame as

∗
T . We will now

compute explicitly the Lagrangian. Let us start with the kinetic energy of the
swimmer. Since we have chosen the body frame as the one of minimal kinetic energy,
according to Konig theorem, there is a decoupling between the kinetic energy of the
body due to its rigid motion and that due to its shape changes, recalling (3.17):

∗
T
body

:= 1
2m|ḋ

∗|2 + 1
2I(c)θ̇2 + 1

2

∫
B∗

∣∣∣χ̇(c)(χ(c)−1(x∗))
∣∣∣2 dm∗ (3.33)

where I(c) is the moment of inertia of the body thought as rigid with frozen shape,
and the last term being the kinetic energy of deformation. It can be computed as
follows: ∫

B∗

∣∣∣χ̇(c)(χ(c)−1(x∗))
∣∣∣2 dm∗ =

∫
D

∣∣χ̇(c)(z)
∣∣2 dm0 = πρ0

m∑
k=1

|ċk|2

k + 1

where we used the formula (3.5) to compute the integral. Note that accordingly
to remark (3.3) the kinetic energy of the body in the frame (O∗, e∗1, e∗2) does not
depend on the orientation of the frame but only on its angular velocity.

3.4.1 Kinetic energy of the fluid

Since we are interested on the effect of the shape changes of the swimmer on the
fluid, in this subsection we will compute all the quantities in the body frame. As we
have seen in subsection 2.3 we can recover the rigid motion of the swimmer due to
its deformation, exploiting the Gauge potential.
The kinetic energy of the fluid reads

∗
T
f

:= 1
2

∫
F∗
|u∗|2 dm∗f = 1

2

∫
F∗
|∇ψ∗|2 dm∗f (3.34)

There u∗ = ∇ψ∗ and ψ∗ is the solution of the Neumann problem
∆ψ∗ = 0 x ∈ F∗

n(x∗) · ∇ψ∗ = n(x∗) · v(x∗)|x∗=χ(q)(z) x∗ ∈ ∂B∗

|ψ∗| → 0 |x∗| → ∞
(3.35)
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which is the same Neumann problem (3.25) expressed in the body frame. In-
deed since the Laplacian operator is invariant under rototranslations, the function
ψ∗(x∗) = ψ([R(θ),d](x)) is harmonic.

We will use complex analysis to compute the potential function ψ∗. We define
the function ξ(z) := ψ∗(ϕ(c)(z)), (z ∈ O), where ψ∗ is the potential function defined
in (3.35) expressed in the moving frame and recalling (3.4) ϕ(c)(z) is the conformal
map from Ō = C \D to the external domain F∗ . According to classical properties
of conformal mappings, the function ξ is harmonic in O and the following equality
holds:

1
2

∫
F∗
|∇ψ∗|2 dm∗f = 1

2

∫
O
|∇ξ|2 dm0

f (3.36)

The main advantage of this substitution is that ξ is defined in the fixed domain O,
whereas ψ∗ was defined in F∗ depending on c.
In the moving frame is now easier to compute explicitly the boundary condition of
the Neumann problem. The outer normal to ∂B∗ is, recalling (3.21)

n(x∗) := n1(x∗) + in2(x∗) = −z ϕ
′(c)(z)
|ϕ′(c)(z)| (3.37)

where ϕ′(c)(z) is the complex derivative of ϕ(c). Recalling the following identity

∂nξ
r
j (z)

|ϕ′(c)(z)| = ∂nψ
∗r

j (x∗) (x∗ = ϕ(c)(z)) (3.38)

and taking into account the expression (3.16) of v∗, we deduce that the Neumann
boundary condition (3.26) reads

∂nξ(z) = ∇ξ · n = −ḋ∗1<(zϕ′(c)(z))− ḋ∗2=(zϕ′(c)(z))− θ̇=(ϕ(c)(z)zϕ′(c)(z))
−<(χ̇(c)zϕ′(c)(z)) .

(3.39)
This equality leads us to introduce the functions ξrj (c) (j = 1, 2, 3) and ξd(c) as being
harmonic in O and satisfying the following Neumann boundary conditions:

∂nξ
r
1(c)(z) = −<(zϕ′(c)(z)), (3.40)

∂nξ
r
2(c)(z) = −=(zϕ′(c)(z)), (3.41)

∂nξ
r
3(c)(z) = −=(ϕ(c)(z)zϕ′(c)(z)), (3.42)

∂nξ
d(c)(z) = −<(χ̇(c)zϕ′(c)(z)), (z ∈ ∂D). (3.43)

In this way we spilt the harmonicity and the Neumann boundary conditions of the
function ξ into the same properties for the functions ξrj (c) (j = 1, 2, 3) and ξd(c).
Next we have for all c ∈ D

<(χ̇(c)zϕ′(c)(z)) =
m∑
k=1

ȧk<(zk+1ϕ
′(c)(z)) + ḃk=(zk+1ϕ

′(c)(z))
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We introduce therefore the functions ξak(c) and ξbk(c), harmonic in O and satisfying
the boundary conditions:

∂nξ
a
k(c)(z) = −<(zk+1ϕ

′(c)(z))− kak (3.44)
∂nξ

b
k(c)(z) = −=(zk+1ϕ

′(c)(z))− kbk (3.45)

The extra terms kak, kbk have to be added for the boundary data to satisfy the so
called compatibility condition -

∫
∂B∗ n(x∗) · v∗(x∗) dx∗ = 0 - necessary to ensure the

well-posedness of the Neumann problems. Observe that under condition (3.13) we
recover

m∑
k=1

ȧk∂nξ
a
k(c) + ḃk∂nξ

b
k(c) = ∂nξ

d(c) (3.46)

Starting from the relations (3.40) - (3.42) on the normal derivatives ∂nξri i = 1, 2, 3
and from the relation above for ∂nξd, we would like to gain the same property of
linearity for the function ξ.

Proposition 3.3 (Potential decomposition) According to the Kirchhoff law
the formulas (3.40) - (3.42) and (3.46) imply that for any allowable control (in the
sense of (3.2)) the following identities hold in the sobolev space H1(O):

ξ(c) = ḋ∗1ξ
r
1(c) + ḋ∗2ξ

r
2(c) + θ̇ξr3(c) + 〈ξd(c), ċ〉, (3.47)

〈ξd(c), ċ〉 =
m∑
k=1

ȧkξ
a
k(c) + ḃkξ

b
k(c). (3.48)

From the linearity of this expression with respect to ḋ∗, θ̇, ċ and since the gradient
function preserves the linearity, we deduce that the kinetic energy of the fluid is a
quadratic function of ḋ∗, θ̇, ċ.

3.5 The Gauge potential and the equations of motion

According to what proved in the preceding section the Lagrangian of our system is
a quadratic form in (ḋ∗, θ̇, ċ), therefore it can be written in blocks as follows

∗
T (ḋ∗, θ̇, ċ) = 1

2
(
(ḋ∗T

, θ̇)Mr(c)
(

ḋ∗
θ̇

)
+ 2(ḋ∗T

, θ̇)N(c)ċ + ċTMd(c)ċ
)

(3.49)

where Mr, N and Md play the role of the matrices C M and B, introduced in the
section 2.1.1, respectively

Remark 3.5 It is worth noting that in the physical space the kinetic energy is

T (d, θ, c, ḋ, θ̇, ċ)

When it is expressed in the body frame instead it becomes
∗
T (c, ḋ∗, θ̇, ċ)
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This expression does not depend on d and θ due to the symmetry of our model with
respect to the position and orientation of the body in the fluid.

As we have seen in the first section we are interested in determining the Gauge
potential A associated to our system which is

A = R−1dR
dt

= θ̇


(

0 1
−1 0

)
R(θ)T

(
ḋ1
ḋ2

)
0 0 0

 = θ̇


(

0 1
−1 0

) (
ḋ∗1
ḋ∗2

)
0 0 0

 (3.50)

Since all the matrices Mr, N and Md depend only on c, the kinetic energy is inde-
pendent from d and θ and the metric that it defines is bundle like (see Definition
2.1). In the principal fiber bundle SE(2)× S → S, the Gauge potential A depends
on the kinetic energy, through the equation of motion, therefore also A does not
depend on the state variables.
We now need to determine (ḋ∗1, ḋ∗2, θ̇). In order to do this we compute the Hamilto-
nian associated to the Lagrangian function performing a partial legendre transfor-
mation on the q̇∗ variables.
Before passing to formal calculations we recall how to interpret the connection in-
troduced before in the cotangent bundle setting following the steps presented in
subsection 2.1.1. This construction was presented also in [12, 28]. Let V Q be the
vertical subbundle and V ∗Q the dual of V Q. Denote with pQ : T ∗Q −→ Q the
cotangent projection and set π̃ := π ◦pQ, π̃ : V ∗Q −→ S. If (d, θ, c) are local fibered
coordinates on Q, (d, θ, c,p∗) are local fibered coordinates on V ∗Q. Suppose that a
control vector field ċ is given on S and that the path c(t) is an integral curve of ċ.
Then the equation of motion are the local expression of a vector field Dċ over V ∗Q
that projects on ċ by π̃. Moreover the field Dċ is tangent to the fiber of π̃ only if
the control is vanishing.
Recalling that q = (q1, · · · , qm+3) = (d, θ, c)

p∗ =
(∂ ∗T
∂q̇∗i

)
i=1,2,3

= Mr(c)
(

ḋ∗
θ̇

)
+ N(c)ċ

which defines the translational and angular impulses of the system body plus fluid.
From this we obtain (

ḋ∗
θ̇

)
= M−1

r (c)p∗ −M−1
r (c)N(c)ċ (3.51)

This expression is very convenient to study the motion of the shape-changing
body since it gives the velocity with respect to the shape variable.

It is easy to recognize the terms of the sum in which the control equations are
split according to Theorem 2.1 :

XH0 =
(
M−1
r (c)p∗

0

)
XKċ = 0
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and
hor(ċ) =

(
−M−1

r (c)N(c)ċ
ċ

)
Note thus that we are exactly in the case of a bundle-like metric Therefore the
equation of motion regarding the state variables are are exactly the ones given by
formula (3.51).

To obtain the equation of motion regarding the conjugate variables, we follow
the method explained in Lamb [24] and Munnier [32]: we introduce P and Π, the
translational and angular impulses, as well as L and Λ, the impulses relating to the
deformations: (

P
Π

)
= Mr(c)

(
ḋ∗
θ̇

) (
L
Λ

)
= N(c)ċ

p∗ =
(

P + L
Π + Λ

) (3.52)

We start from the Lagrange equations
d

dt

∂T

∂q̇i
− ∂T

∂qi
= 0, i = 1, 2, 3

and recall that
∗
T (c, ḋ∗, θ̇, ċ) = T (c, R(θ)ḋ∗, θ̇, ċ).

Therefore recalling that ∂θR(θ) = −R(π2 )R(θ)

d

dt

∂T

∂ḋ
− ∂T

∂d = d

dt

(∂ ∗T
∂ḋ∗

R(θ)
)

= d

dt
(P + L)− θ̇(P + L)⊥

d

dt

∂T

∂θ̇
− ∂T

∂d = d

dt
(∂

∗
T

∂θ̇
)−R(θ)T ḋ · (P + L)⊥ =

= d

dt
(Π + Λ)− ḋ∗ · (P + L)⊥

(3.53)

from these equations we get

d

dt

(
p∗1
p∗2

)
+ θ̇

(
−p∗2
p∗1

)
= 0

d

dt
p∗3 − ḋ∗2p∗1 + d∗1p

∗
2 = 0

(3.54)

Therefore the equation of motion in the body coordinates are

(
ḋ∗

θ̇

)
= M−1

r (c)p∗ −M−1
r (c)N(c)ċ

ṗ∗1 = θ̇p∗2
ṗ∗2 = −θ̇p∗1
ṗ∗3 = ḋ∗2p

∗
1 − ḋ∗1p∗2

(3.55)

Notice that these equations are exactly the ones presented in [31] which describe
the evolution of the state and the conservation of the impulse.
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3.5.1 Equivalence in using real shape variables or complex ones

Since we are interested in studying small deformation around a circular shape, see
remark 3.1, in order to describe it we can also try to express the distance of each
point on the boundary of the circle in function of the shape parameters c = a + ib.
Let us consider deformation described bym shape parameters. According to formula
(3.5) the deformation can be written as:

χ(c)(z) = z +
m∑
k=1

ckz̄
k for z ∈ D

therefore the modulus of a point on the boundary described in polar coordinates by
z = eiσ is given by

|χ(c)(z)|2 =(z +
m∑
k=1

ckz̄
k)(z̄ +

m∑
k=1

c̄kz
k) =

(
1 +

m∑
k=1

(ak cos((k + 1)σ) + bk sin((k + 1)σ))

+
m∑

h,k=1
(ak + ibk)(ah − ibh)

)
(3.56)

taking the square root and using the Taylor expansion around c = 0 which corre-
sponds to the circular shape we obtain

|χ(c)(z)| =
(
1 +

m∑
k=1

(ak2 cos((k + 1)σ) + bk
2 sin((k + 1)σ))

)
+

m∑
k=1

o(c2
k) (3.57)

where we can neglect all the terms of order grater or equal than 2 supposing ak, bk
small for all k, for example of order ε.

Remark 3.6 Following this construction we have that to each complex shape pa-
rameter correspond two real ones, i.e its real and immaginary part. Therefore in
practice to describe the deformation of the swimmer we need to prescribe both the
real and immagineary part of each complex number ck.

For example in the case m = 2 taking

a1 = 2εs1 b1 = 0 a2 = 2εs2 b2 = 2εs3 (3.58)

we find exactly the formula for the swimmer deformation proposed by Mason and
Burdick in ([31]).

F (σ, s) =
[
1 + ε(s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ))

]
(3.59)

Note that in this specific case we do not need to impose the conservation of area and
of linear momentum because the two conditions (3.10) and (3.13) are not necessary
if we neglect any contribution of order ε2.
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This proves the equivalence of using the complex shape variables c or the real
ones s for deformations near the identity i.e., ak and bk of order ε. Therefore we can
use both the constructions depending on what we need.
We can express the equation of motion (3.55) using the real parameters sk as shape
parameters instead of ck obtaining:

(
ḋ∗

θ̇

)
= M̄−1

r (s)p∗ − M̄−1
r (s)N̄(s)ṡ

ṗ∗1 = θ̇p∗2
ṗ∗2 = −θ̇p∗1
ṗ∗3 = ḋ∗2p

∗
1 − ḋ∗1p∗2

(3.60)

where the matrices M̄r and N̄ have the same physical meaning of the matrices Mr

and N but are expressed using the real shape parameters s.
From now on we focus only on shape transformations near the identity, like (3.59)
so that we can use real shape parameters to describe the deformation of the system.

3.5.2 Curvature of the connection: geometric and dynamic phase

In this subsection we deal with the problem of having a net motion performing
cyclical shape changes. Looking at equations (3.60)1 is evident that there are two
contributions: the one of M−1

r (s)p∗ which involves the impulse and −M−1
r (s)N(s)ṡ

which is entirely geometrical.

• p∗ = 0

First, let us suppose that the system starts with zero initial impulse, i.e.
p∗(0) = 0. With this assumption the last three equations of the system (3.60)
have as unique solution the null one therefore, the first term of equation (3.60)1
vanishes and the infinitesimal relationship between shape changes and body
velocity is described by the local form of the connection computed above.
Moreover we take into account the reconstruction relation (3.15), which links
the state velocity expressed in the body frame with the one expressed in the
physical frame,

ġ =
(

ḋ
θ̇

)
= −

(
R(θ) 0

0 1

)
M−1
r (s)N(s)ṡ = −gAi(s)ṡi (3.61)

where g is an element of the planar euclidean group SE(2). From these we
recognize the expression of the Gauge potential (2.16).
We would like to find a solution for this equations that will aid in designing or
evaluating motions that arise from shape variations. Because SE(2) is a Lie
group this solution will generally have the form

g(t) = g(0)ez(t)
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where z ∈ se(2), the Lie algebra relative to SE(2). An expansion for the Lie
algebra valued function z(t) is given by the Campbell-Hausdorff formula

z = Ā+ 1
2[A,A] + 1

3[[A,A], A] + 1
12[A, [A,A]] + · · · (3.62)

A(t) ≡
∫ t

0
A(τ)ṡ(τ) dτ

To obtain useful results in the spatial coordinates, examine the group displace-
ment resulting from a periodic path α : [0, T ] → Rm, such that α(0) = α(T ).
Taylor expand Ai about α(0) and then regroup, simplify, apply integration by
parts and use that the path is cyclic

z(α) = −1
2Fij(α(0))

∫
α
dsi dsj + 1

3(Fij,k − [Ai, Fjk])(α(0))
∫
α
dsi dsj dsk + · · ·

(3.63)
where

Fij ≡ Aj,i −Ai,j − [Ai, Aj ]

is called curvature of the connection.
For proportionally small deformations, the displacement experienced during
one deformation cycle is:

gdisp = ez(α) ≈ exp
(
−1

2Fij(α(0))
∫
α
dsi dsj

)
(3.64)

If the curvature F is not null this displacement gives us the so called geomet-
ric phase that is the statement of the well-known Ambrose-Singer theorem
[11].

• p∗ 6= 0

Let now suppose that the system starts with an initial impulse which is non
zero. Thus the last three equations of (3.60) are not trivial. First of all we
need to integrate this equations, which in function of the deformation s and ṡ
take the form

ṗ∗
1 =

(
M−1
r (s)p∗)

3p
∗
2 −

(
A(s)ṡ

)
3p

∗
2

ṗ∗
2 = −

(
M−1
r (s)p∗)

3p
∗
1 +

(
A(s)ṡ

)
3p

∗
1

ṗ∗
3 =

(
M−1
r (s)p∗)

2p
∗
1 −

(
A(s)ṡ

)
2p

∗
1 −

(
M−1
r (s)p∗)

1p
∗
2 +

(
A(s)ṡ

)
1p

∗
2

(3.65)

these can be solved once the shape s is prescribed as a function of time, and
as before we choose a periodic shape path α : [0, T ]→ Rm,with α(0) = α(T ).
Let us now consider the equation of motion regarding the state variables. We
have both the contributions: the geometrical one, already studied in the case
with zero impulse, and also the one depending on the impulse p∗.

ġ = g
(
M−1
r (s)p∗ −Ai(s)ṡi

)
(3.66)
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As before the integration of this term along α(t) gives

gdisp = g(0)ez(t)

where
z = Z + 1

2[Z,Z] + 1
3[[Z,Z], Z] + 1

12[Z, [Z,Z]] + · · · (3.67)

Z :=
∫ t

0
M−1
r (τ)p∗(τ)−A(τ)ṡ(τ) dτ

In order to see that gdisp is effectively the sum of two contribution let us focus
on the third equation of (3.66). It is

θ̇ =
(
M−1
r (s)p∗

)
3 −

(
A(s)ṡ

)
3

from this we can easly recognize two terms. The first one integrated along α
is ∫ T

0

(
M−1
r (α(τ))p∗(τ)

)
3 dτ , (3.68)

which value depends strictly on the evolution of the impulse p∗ given by equa-
tions (3.60)2−4. The second term is the geometric contribution analyzed in the
previous section which depends on the curvature of the connection.
Once we have integrated this system and obtained the time evolution of θ we
can solve also the ODEs regarding ḋ which are

ḋ = R(θ)
(
M−1
r (s)p∗

)
1,2 −R(θ)

(
A(s)ṡ

)
1,2 (3.69)

Also for these two equations it is clear that there are two terms. One is
always the geometric one, depending only on the shape s and ṡ. The other
one integrated over α gives∫ T

0
R(θ(τ))

(
M−1
r (α(τ))p∗(τ)

)
1,2 dτ (3.70)

which is due to the presence of the impulse.
The two additional terms (3.68) and (3.70) are exactly the so called dynamic
phase presented in section 2.2 and represent the gap on the fiber (d1, d2, θ)
performed by the swimmer after a periodical change of shape.

4 Controllability

In this section we will focus on the controllability of our system, i.e. its ability to
move everywhere in the plane changing its shape.
First of all we introduce some classical definition and results that will be useful in
what follows
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4.1 Tools in geometric control theory

Let us consider the following control system

q̇ = F(q, u) (4.1)

where q are local coordinates for smooth manifold Q with dimQ = n and u : [0, T ]→
U ⊂ Rm is the set of admissible controls. The unique solution of (4.1) at time t ≥ t0
with initial condition q(t0) = q0 and input function u(·) is denoted q(t, t0, q0, u).

Definition 4.1 • The reachable set RV (q0, T ) is the set of points in Q which
are reachable from q0 at exactly time T > 0, following trajectories which, for
t ≤ T remain in a neighborhood V of q0

• The system (4.1) is locally accessible from x0 if, for any neighborhood V of
q0 and all T > 0 the set RVT (q0) =

⋃
t≤T R

V (q0, t) contains a non empty open
set.

• The system (4.1) is locally strong accessible from q0 if for any neighborhood
V of q0 and all T > 0 sufficiently small, the set RV (q0, T ) contains a non empty
open set.

• The system (4.1) is controllable, if for every q1 , q2 ∈ Q exists a finite time
T > 0 and an admissible control u : [0, T ]→ U such that q(T, 0, q1, u) = q2

• The system (4.1) is small time locally controllable (STLC) from q0 ∈M
if, for any neighborhood V of q0 and all T > 0, q0 is an interior point of the
set RVT (q0), that is a whole neighborhood of q0 is reachable from q0 at arbitrary
small time.

Let now suppose the system (4.1) to be an affine non linear control system, namely

q̇ = F(q, u) = f(q) +
m∑
j=1

gj(q)uj (4.2)

We now present some general results for this type of control systems

Definition 4.2 The strong accessibility algebra C0 is the smallest subalgebra
of the Lie algebra of smooth vector fields on M containing the control vector fields
g1 . . . gm, which is invariant under the drift vector field f , that is [f,X] ∈ C0, ∀X ∈
C0, every element of the algebra C0 is a linear combination of repeated Lie brackets of
the form [Xk, [Xk−1, [. . . , [X1, gj ] . . .]]] for j = 1 . . .m and where Xi ∈ {f, g1, . . . , gm}.

The strong accessibility distribution C0 is the corresponding involutive dis-
tribution C0(q) = {X(q)|X ∈ C0}.

Proposition 4.1 Let qe be an equilibrium point of the system (4.2). The lineariza-
tion of the system (4.2) at qe is controllable if

rank
[
g|∂f
∂q
g|
(∂f
∂q

)2
g| . . . |

(∂f
∂q

)n−1
g
]
|qe = n (4.3)
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We say that the Strong Accessibility Rank Condition at q0 ∈ Q is satisfied if

dimC0(q0) = n (4.4)

Proposition 4.2 We say that the system (4.2) is locally strong accessible from q0
if the strong accessibility rank condition is satisfied.

Proposition 4.3 If the system (4.2) is driftless, namely

q̇ =
m∑
i=1

uigi(q) (4.5)

its controllability is equivalent to its strong accessibility.

Let us recall the definition of iterated Lie brackets [14]

Definition 4.3 Let f ∈ C∞ and g ∈ C∞ we define by induction on k ∈ N adkfg ∈
C∞

ad0
fg := g

adk+1
f g := [f, adkfg], ∀k ∈ N.

We are now ready to give a sufficient condition for small time local controllability

Theorem 4.4 Assume that the controlled vector fields g1 · · · gm generate a Lie al-
gebra Lie{g1 · · · gm} that satisfies Lie{g1 · · · gm} = TqQ for all q in Q then the
corresponding affine system

q̇ = f(q) +
m∑
i=1

gi(q)ui

is strongly controllable whenever there are no restrictions on the size of the controls.

Theorem 4.5 (see [16]) Assume that the drift term is bounded but non zero and the
vectors adkfgi(q) ∀i ∈ {1 · · ·m} k ∈ {0, 1, · · · } together with the vectors [gi, gj ](q)
for all pairs i, j ∈ {1, · · · ,m} span Rn. Then the affine control system is small
time locally controllable from q, if the controls are sufficiently large, i.e with
controls λu̇ and u̇ ∈ {|u̇i| < 1, i = 1, · · · ,m} for some large scalar λ > 0.

4.2 Swimmer controllability

Let us consider the control system (3.55), since they involve the impulse p∗ we have
two different type of control system depending on the initial value of this impulse. If
it is zero, we have a non linear drifltess affine control system, whose controllability
can be proved with classical techniques, instead if it is not zero we have a non linear
affine system with drift, which is more tricky to study.
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Remark 4.1 (Scallop Theorem) Note that in the case of zero initial impulse, if
we have only one real shape parameter we are exactly in the case of the famous
Scallop Theorem according to which if the swimmer performs a cyclical shape
change α the net motion of the swimmer after a period is null.(

∆d
∆θ

)
=
∫ T

0
A(s(t))ṡ(t) dt =

∫ α(T )

α(0)
A(α) dα = 0 since α(0) = α(T ) (4.6)

Remark 4.2 According to the definition of allowable controls (3.2) we need to have
almost two complex shape parameters different from zero. Indeed if we describe the
system’s deformation only by one complex parameter, since it has to satisfy the
conditions (3.10) and (3.13) in order to be allowable it turns out that it has to be
zero. Now we are interested in using real shape parameters, and as we have seen
in remark 3.6, to each complex parameter correspond at least two real parameters,
the real and the imaginary part. Therefore the last observation implies that we need
almost three real parameters s1, s2, s3.

Now let us study the controllability of this system in both cases of interest: p∗0 = 0
and p∗0 6= 0.

4.2.1 Case p∗(0) = 0

In this subsection we want to study the controllability of the system which starts
with zero impulse. According to what said before this means that we deal with a
non linear driftless affine control system.

Case of 3 real shape parameters

We have already noticed that we need at least two complex parameters in order
to be able to have some physically allowable controls. This means that the min-
imum number of real parameters have to be at least three. To begin we study
exactly the case of three real controls, then we will generalized the results obtained
to a larger number of parameters. More precisely, suppose that the deformation of
our swimmer is governed by s1, s2, s3 and according to [31] its shape is described in
polar coordinates in the body frame by

F (σ, s) = 1 + ε(s1 cos(2σ) + s2 cos(3σ) + s3 sin(3σ)) (4.7)

The perfect irrotational fluid has density ρ and the potential ψ∗ can be determined
solving the Laplace problem with Neumann boundary conditions following the steps
described the preceding sections.
After that it is possible to compute the expression of the connection and the equation
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of motion



ḋ∗

θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



−(1− µ)s2
−(1− µ)s3

0
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1+

+



−s1
0

− 2πρs3
M

2πρs3p
∗
2

M

− 2πρs3p
∗
1

M
s1p

∗
2

0
1
0


ε2u2 +



0
−s1
− 2πρs2

M

− 2πρs2p
∗
2

M
2πρs2p

∗
1

M
−s1p

∗
2

0
0
1


ε2u3

(4.8)

with µ = 2πρ
M+πρ and M the mass of our body.

Due to the change of variables (3.15), the equations of motion have to be sup-
plemented with a so-called reconstruction equation allowing to recover d knowing
θ:



ḋ
θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



R(θ)

−(1− µ)s2
−(1− µ)s3

0


0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1+

+



R(θ)

 −s1
0

− 2πρs3
M


2πρs3p

∗
2

M

− 2πρs3p
∗
1

M
s1p

∗
2

0
1
0


ε2u2 +



R(θ)

 0
−s1
− 2πρs2

M


− 2πρs2p

∗
2

M
2πρs2p

∗
1

M
−s1p

∗
2

0
0
1


ε2u3

(4.9)

Theorem 4.6 The control system (4.9) is controllable almost everywhere.
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Proof: First of all note that system (4.9) is clearly of the type

q̇ =
3∑
i=1

gi(θ,p∗, s)ui

Since the initial impulses are zero it is reduced to only six non trivial equations,
indeed we easily have that

p∗(t) = 0 ∀t

is a solution of the equations regarding p∗ (3.65).
Accordingly to theorem (4.3) to prove the controllability it suffices to verify the Lie
algebra rank condition, i.e dim

(
Lie{gi}i=1,2,3

)
= 6. We compute all the vector fields

gi and the Lie brackets of the first order [gi, gj ] with i 6= j (details in the Appendix)
and compute their determinant

det
{
g1, g2, g3, [g1, g2], [g2, g3], [g1, g3]

}
=

4πµρε18 (µM − 2π(µ− 1)ρ
(
s2

2 + s2
3
))

M2 (4.10)

which is not null almost everywhere.
Thus g1, g2, g3, [g1, g2], [g2, g3], [g1, g3] are linearly independent for almost any values
of the parameters and dim(Lie{gi, i = 1, 2, 3}) = 6, which proves the controllability
result. 2

General Case: m > 3

In this subsection we deal with a generalization of the previous controllability re-
sult. Suppose that the shape of the swimmer is described by m real parameters
si, i = 1 · · ·m, which define a transformation near to the identity, whose expression
is a generalization of formula (4.7). Moreover recall that we are still in the assump-
tion that the swimmer starts with zero initial impulse in body coordinates. In this
case the equation of motion turn out to be

ẋ
ẏ

θ̇
ṡ1
...
ṡm


=

m∑
i=1

g̃iui (4.11)

Note that also in this case, since the initial value of p∗ is null, p∗(t) = 0 is still a
solution and therefore p∗ does not appear in the system. We now investigate the
controllability of the system (4.11).

Theorem 4.7 The control system (4.11) is controllable almost everywhere.

Proof: First of all observe that if we keep constant and equal to zero the last
m − 3 controls, i.e. ui = 0, i = 4 · · ·m the last m − 3 equations gives us easily
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si(t) ≡ 0 ∀t, ∀m ≥ 4. This means that the shape of the swimmer is actually
described by only 3 parameters. Therefore the remaining control equations have to
be the same of the ones obtained in the previous section with m = 3. This implies
that the first six components of the vectors g̃j |si≡0i=4···m, j = 1, 2, 3 have to be equal
to the vectors gi defined before. As a consequence we have that

Lie{
(
gi
0

)
, i = 1, 2, 3} ⊂ Lie{g̃i, i = 1 · · ·m} (4.12)

Moreover we have also that the vector space generated by the last m−3 vector fields
g̃i evaluated at si ≡ 0, i = 1, 2, 3 have to be contained in the Lie algebra generated
by all the g̃i, since they are some of the generators.

span{g̃j |si≡0, i=1,2,3, j ≥ 4} ⊂ Lie{g̃i, i = 1 · · ·m} (4.13)

Furthermore we have also obviously that

Lie{
(
gi
0

)
, i = 1, 2, 3} ∩ span{g̃j |si≡0, i=1,2,3, j ≥ 4} = {0} (4.14)

This implies

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ dim

(
Lie{

(
gi
0

)
, i = 1, 2, 3}

)
︸ ︷︷ ︸

=6

+

+ dim
(
span{g̃j |si≡0, i=1,2,3, j ≥ 4}

)
︸ ︷︷ ︸

≥m−3

(4.15)

where the first equality derives from the proof done before in the case m = 3.
Thus finally we obtain that

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ m+ 3 (4.16)

which proves the controllability of the system. 2

4.3 Case p∗0 6= 0

Let us suppose that our deformable body has an initial constant impulse p∗0 that is
not null. As a consequence our control system is a system with drift of dimension
m+ 6.

Case of 3 shape parameters

We start we the simplest case of three control shape parameters; the deformation is

40



the same as before and it is given by formula (4.7). Since we start with an initial
impulse that is not null we have the following control system with drift

ḋ∗

θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



M−1
r (s)p∗

(M−1
r (s)p∗)3p

∗
2

(M−1
r (s)p∗)3p

∗
1

(M−1
r (s)p∗)2p

∗
1 − (M−1

r (s)p∗)1p
∗
2

0
0
0


+

+



−(1− µ)s2
−(1− µ)s3

0
0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1 +



−s1
0

− 2πρs3
M

2πρs3p
∗
2

M

− 2πρs3p
∗
1

M
s1p

∗
2

0
1
0


ε2u2 +



0
−s1
− 2πρs2

M

− 2πρs2p
∗
2

M
2πρs2p

∗
1

M
−s1p

∗
2

0
0
1


ε2u3 .

(4.17)

Which taking into account the reconstruction equations becomes



ḋ
θ̇
ṗ∗

1
ṗ∗

2
ṗ∗

3
ṡ1
ṡ2
ṡ3


=



R(θ)M−1
r (s)p∗

(M−1
r (s)p∗)3p

∗
2

(M−1
r (s)p∗)3p

∗
1

(M−1
r (s)p∗)2p

∗
1 − (M−1

r (s)p∗)1p
∗
2

0
0
0


+

+



R(θ)

−(1− µ)s2
−(1− µ)s3

0


0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


ε2u1 +



R(θ)

 −s1
0

− 2πρs3
M


2πρs3p

∗
2

M

− 2πρs3p
∗
1

M
s1p

∗
2

0
1
0


ε2u2

+



R(θ)

 0
−s1
− 2πρs2

M


− 2πρs2p

∗
2

M
2πρs2p

∗
1

M
−s1p

∗
2

0
0
1


ε2u3

(4.18)
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Theorem 4.8 The system (4.18) is strongly controllable almost everywhere if there
are no restrictions on the size of the controls, moreover it is also STLC for almost
any initial state and and impulse, if the controls are sufficently large, i.e. with
controls λu̇ and u̇ ∈ {|u̇i| < 1, i = 1, · · · ,m} for some large scalar λ > 0.

Proof: The system (4.18) is clearly of the type

q̇ = f(q) +
3∑
i=1

gi(q)ui (4.19)

Applying theorem (4.4) to prove the strong controllability the condition to verify is
that the Lie algebra generated by the vector fields gi has the same dimension of the
tangent space, i.e dim(Lie{gi, i = 1, 2, 3}) = 9. Thus we compute the Lie brackets
of zero, first and second order of the vectors gi (the detailed expressions are in the
Appendix).

The determinant of these vetor fields is

det
{

g1,g2,g3, [g1,g2], [g1,g3], [g2,g3], [g1[g2,g3]], [g2[g2,g3]], [g3[g2,g3]]
}

=
8192
M10 π

7µp∗
2ρ

7s2
2s

2
3ε

36(Mp∗
2 − 2πp∗

1ρs2s3)(
M2(p∗

1((2(µ− 3)µ+ 3)s2 − µs3) + +p∗
2((2µ− 3)s2 + ((9− 4µ)µ− 6)s3))−

− 2π(µ− 1)Mρ
(
2µp∗

1s2
(
s2

2 − 2s2
3
)
− p∗

1(s2 + s3)
(
4s2

2 − 3s2s3 + s2
3
)
−

− p∗
2s3
(
−2µs2

2 + s2
2 + s2

3
))

+ 8π2(µ− 1)2ρ2s2s3
(
s2

2 + s2
3
)

(p∗
2s2 − p∗

1s3)
)
.

(4.20)

Since this determinant is not null except at most a finite number of d1, d2, θ,
p∗1, p∗2, p∗3, s1, s2, s3, the system (4.9) is strongly controllable almost everywhere if
there are no restriction on the size of the controls.
Let us focus now on the proof of the STLC. First we recall the definition of small
time locally controllability (STLC).

Definition 4.4 (see [6] p.181) The system (4.19) is said to be small time locally
controllable (STLC) from q0 if, for any neighborhood V of q0 and all T > 0, q0 is
an interior point of the reachable set from q0 at time T . In other words, it means
that a whole neighborhood of q0 is reachable from q0 at arbitrary small time.

In this case we have to use the theorem 4.5. We note that from the previous sec-
tion, the matrix Mr and its inverse are analytic functions of {θ,p∗, s} and therefore
the drift term f is bounded. Then, to apply Lemma 4.5 we have to compute the
vectors fields involved at a point in which the vector field f does not vanish. Since
we have supposed that the initial value of the impulse p∗ is not null, the drift does
not vanish ∀s because the matrix Mr(s) is invertible.
In what follows, we denote by q the 9-tuple (d, θ,p∗, s1, s2, s3) and we choose the
point q0 := (d, 0, p∗1, 0, 0, 1, 0, 1) p∗1 6= 0, to verify the condition of Lemma 4.5.
By using formal calculation performed by a symbolic computation software (for
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instance here we used Mathematica, to compute the vector fields that are ex-
plicited in the Appendix), we are able to express g1(q0), g2(q0), g3(q0), [g1,g2](q0),
[g1,g3](q0), [g2,g3](q0), [f ,g1](q0), [f ,g2](q0) and [f ,g3](q0).

The determinant of these 9 vector fields is not null, for any p∗1 6= 0 and almost
any values of the parameters ρ and M , and can be computed by formal calculations

det(g1,g2,g3, [g1,g2], [g1,g3], [g2,g3], [f ,g1], [f ,g2], [f ,g3])(q0) = n(p∗
1)
d

(4.21)

where

n(p∗1) = 8192π2(p∗1)6ε8µρ2(Mµ− 2π(µ− 1)ρ)(8M(ε− µ+ 1)+

+ πρ
(
ε2(34− 23µ) + 8ε(µ− 1)− 4µ+ 4

)
)

d = M3(8M + 11περ)4

Finally, by using the classical analyticity argument (see for instance [4, 5, 15]),
since this determinant is an analytic function with respect to position (d), orientation
(θ), impulse (p∗) and shape s it does not vanish for almost all initial position,
orientation,impulse and shape. This is conclude the proof of the Theorem.

2

General case m > 3

In the case of initial impulse not zero, as we have said before we have a control
affine system with drift of dimension m+ 6.

ḋ∗1
ḋ∗2
θ̇
ṗ∗1
ṗ∗2
ṗ∗3
ṡ1
...
ṡm


= f̃ +

m∑
i=1

g̃iui (4.22)

Theorem 4.9 The control system (4.22) is strongly controllable if there are no
restriction on the size of the controls, moreover it is also STLC for almost any
initial state and and impulse, if the controls are sufficently large, i.e. with controls
λu̇ and u̇ ∈ {|u̇i| < 1, i = 1, · · · ,m} for some large scalar λ > 0.

Proof: To prove the strong controllability of the system (4.22) we exploit the
theorem (4.5). Thus the condition to prove is that the dimension of the Lie algebra
genereted by the control vector fields g̃i has dimension m+ 6. The proof is similar
to the proof of the previous theorem. Using the follofing facts:
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• Lie{
(

gi
0

)
, i = 1, 2, 3} ⊂ Lie{g̃i, i = 1, · · · ,m}

• span{g̃j |si≡0,i=1,2,3, j ≥ 4} ⊂ Lie{g̃i, i = 1, · · · ,m}

• Lie{
(

gi
0

)
, i = 1, 2, 3} ∩ span{g̃j |si≡0,i=1,2,3, j ≥ 4} = {0}

we deduce that

dim
(
Lie{g̃i, i = 1 · · ·m}

)
≥ dim

(
Lie{

(
gi
0

)
, i = 1, 2, 3}

)
︸ ︷︷ ︸

=9

+

+ dim
(
span{g̃j |si≡0, i=1,2,3, j ≥ 4}

)
︸ ︷︷ ︸

≥m−3

(4.23)

Which proves that dim
(
Lie{g̃i, i = 1 · · ·m}

)
= m+ 6.

Let us focus now on the STLC part. To deduce this result in the general case we
use an argument very similar to the previous one. First of all consider a point
q̃0 = (d, 0, p∗1, 0, 0, 1, 0, 1, 0, · · · , 0) = (q0, 0, · · · , 0) where q0 is the point chosen in
the case of only 3 parameters. Recalling that gi and f are the vector fields of the
system with 3 parameters the following relations hold

g̃i(q̃0) =
(

gi(q0)
0

)
i = 1, 2, 3 f̃(q̃0) =

(
f(q0)

0

)
. (4.24)

Therefore from what we have proved in the case m = 3

dim
(
span{[g̃i, g̃j ], [f̃ , g̃i] i, j = 1, 2, 3}(q̃0)

)
= 6 . (4.25)

Moreover note that the last m components of the vector fields [g̃i, g̃j ](q̃0) and
[f̃ , g̃i](q̃0) for i = 1, 2, 3 are null. Thus

span{g̃i, i = 1, · · · ,m} ∩ span{[g̃i, g̃j ], [f̃ , g̃i] i, j = 1, 2, 3}(q̃0) = {0} (4.26)

These last two relations imply that

dim
(
span{g̃i, [g̃i, g̃j ], adkf̃ g̃i i, j = 1 · · ·m, i 6= j, k ≥ 0}(q̃0)

)
≥

dim (span{g̃i}(q̃0)) + dim
(
span{[g̃i, g̃j ], [f̃ , g̃i] i, j = 1, 2, 3 i 6= j}(q̃0)

)
≥ m+ 6 .

(4.27)

This argument proves the STLC around the point q̃0. In order to obtain the STLC
almost everywhere we exploit the same analyticity argument used for the casem = 3.

2
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Conclusions and perspectives

In this paper we have investigated the geometric nature of the swimming problem
of a 2-dimensional deformable body immersed in an ideal irrotational fluid.
We faced a new problem: the study of the controllability properties of a dynamical
system which can start with a non zero initial impulse. Reinterpreting the hydrody-
namic forces exerted by the fluid on the body, as kinetic terms, and describing the
shape changes with a finite number of parameters, we derive the equation of motion
of the system. Using classical techniques in control theory we are able to gain some
good results for the controllability of this kind of system.
If it starts with zero initial impulse we recover results present in the literature. We
are always able to find a suitable rate of deformation which makes the swimmer
moving between two different fixed configurations. If instead the body starts with
an initial impulse different from zero, the swimmer can self-propel in almost any
direction if it can undergo shape changes without any bound on their velocity.
The fact that we take into account the presence of an initial impulse not null, and
the analysis of the controllability of this system seems innovative and makes the
study of the self-propulsion of deformable bodies in an ideal fluid more accurate and
complete.
The approach described in this paper can be extended in a number of natural ways.
To begin with, we have restricted our attention to planar swimmers. The general
3-dimensional case is conceptually straightforward, even though the way of describ-
ing the shape changes should be different.
The study of bodies that change their shape using only a finite number of parameters
is the initial point of a more complex study of controlling the deformation by diffeo-
morphisms. Future work will also explore the optimal control problem associated to
these kind of systems, especially in the case of non zero initial impulse.

Appendix

The vector Fields gi and their Lie brackets of the first order mentioned in theorem
4.6 are

g1 = ε2


R(θ)

−(1− µ)s2
−(1− µ)s3

0


1
0
0

 g2 = ε2


R(θ)

 −s1
0

− 2πρs3
M


0
1
0



g3 = ε2


R(θ)

 0
−s1
− 2πρs2

M


0
0
1



(4.28)
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The Lie brackets generated by these vector fields are

[g1, g2] = ε4



2πs2s3(µ−1)ρ sin(θ)−cos(θ)(Mµ−2πs2
3(µ−1)ρ)

M
sin(θ)(2πs2

3(µ−1)ρ−Mµ)−2πs2s3(µ−1)ρ cos(θ)
M
0
0
0
0



[g1, g3] = ε4



sin(θ)(Mµ−2πs2
2(µ−1)ρ)−2πs2s3(µ−1)ρ cos(θ)

M

− cos(θ)(Mµ−2πs2
2(µ−1)ρ)+2πs2s3(µ−1)ρ sin(θ)

M
0
0
0
0



[g2, g3] = ε4



2πs1ρ(s2 sin(θ)+s3 cos(θ))
M

2πs1ρ(s3 sin(θ)−s2 cos(θ))
M

−4πρ
M
0
0
0



(4.29)

The vector fields that we need to compute the Lie algebra generated by gi in
theorem 4.8 are

g1 = ε2



R(θ)

−(1− µ)s2
−(1− µ)s3

0


0
0

−(1− µ)(s3p
∗
1 + s2p

∗
2)

1
0
0


g2 = ε2



R(θ)

 −s1
0

−2πρs3
M


2πρs3p∗2
M

−2πρs3p∗1
M

s1p
∗
2

0
1
0



g3 = ε2



R(θ)

 0
−s1
−2πρs2

M


−2πρs2p∗2

M
2πρs2p∗1
M
−s1p

∗
2

0
0
1



(4.30)

46



Their Lie brackets of the first order are

[g1,g2] = ε4



2πs2s3(µ−1)ρ sin(θ)−cos(θ)(Mµ−2πs2
3(µ−1)ρ)

M
sin(θ)(2πs2

3(µ−1)ρ−Mµ)−2πs2s3(µ−1)ρ cos(θ)
M
0
0
0

2πs3(µ−1)ρ(p∗
1s2−p∗

2s3)−Mp∗
2(µ−2)

M
0
0
0



[g1,g3] = ε4



sin(θ)(Mµ−2πs2
2(µ−1)ρ)−2πs2s3(µ−1)ρ cos(θ)

M

− cos(θ)(Mµ−2πs2
2(µ−1)ρ)+2πs2s3(µ−1)ρ sin(θ)

M
0
0
0

(2πs2(µ−1)ρ(p∗
1s2+p∗

2s3)−M(p∗
1(µ−1)+p∗

2))
M
0
0
0



[g2,g3] = ε4



2πs1ρ(s2 sin(θ)+s3 cos(θ))
M

2πs1ρ(s3 sin(θ)−s2 cos(θ))
M

− 4πρ
M

− 4πρ(Mp∗
2−2πp∗

1s2s3ρ)
M2

− 8π2p∗
2s2s3ρ

2

M2
2πp∗

1s1ρ(s2+s3)
M
0
0
0



(4.31)
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Finally the only non zero brackets of the second order are

[g1, [g2,g3]] = ε6



− 2π(2µ−3)ρ(s2 sin(θ)+s3 cos(θ))
M

2π(2µ−3)ρ(s2 cos(θ)−s3 sin(θ))
M
0
0
0

2πρ(M(p∗
1(s2+s3)+2p∗

2s3(µ−1))+4πs2s3(µ−1)ρ(p∗
2s2−p∗

1s3))
M2

0
0
0



[g2, [g2,g3]] = ε6



2πs1ρ(sin(θ)(3M−2πs2
3ρ)+2πs2s3ρ cos(θ))

M2
2πs1ρ(2πs3ρ(s2 sin(θ)+s3 cos(θ))−3M cos(θ))

M2

0
16π2s3ρ

2(Mp∗
1+2πp∗

2s2s3ρ)
M3

− 16π2s3ρ
2(Mp∗

2−2πp∗
1s2s3ρ)

M3
2πs1ρ(Mp∗

1+2πp∗
2s3ρ(3s2+s3))

M2

0
0
0



[g3, [g2,g3]] = ε6



2πs1ρ(cos(θ)(3M−2πs2
2ρ)+2πs2s3ρ sin(θ))

M2
2πs1ρ(3M sin(θ)−2πs2ρ(s2 sin(θ)+s3 cos(θ)))

M2

0
16π2s2ρ

2(Mp∗
1−2πp∗

2s2s3ρ)
M3

− 16π2s2ρ
2(Mp∗

2−2πp∗
1s2s3ρ)

M3
2πs1ρ(Mp∗

1−2πp∗
2s2ρ(s2+3s3))

M2

0
0
0



(4.32)

To use the theorem 4.5 at the point q0 we need also the Lie brackets of the vector
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fields gi with the drift that are:

[f ,g1](q0) =



16p∗1(µ−1)
8M+11περ

0
−8p∗1(8M(ε−µ+1)+π((34−23µ)ε2+8(µ−1)ε−4µ+4)ρ)

ε(8M+11περ)2

0
−8(p∗1)2(8M(ε−µ+1)+π((34−23µ)ε2+8(µ−1)ε−4µ+4)ρ)

ε(8M+11περ)2

0
0
0
0



(4.33)

[f ,g2](q0) =



0
16p∗1(−4(ε2−1)M2+2π(3ε2+6ε+1)ρM+11π2ε2ρ2)

M(8M+11περ)(8M+π(23ε2+8ε+4)ρ)
0

− 32(p∗1)2πρ
8M2+11περM

0
−16(p∗1)2(4(ε2+1)M2+π(17ε2−4ε+2)ρM−11π2ε2ρ2)

M(8M+11περ)(8M+π(23ε2+8ε+4)ρ)
0
0
0



(4.34)

[f ,g3](q0) =



− 8p∗1
8M+11περ

0
− 8p∗1

8M+11περ
0

− 8(p∗1)2

8M+11περ
8(p∗1)2

8M+11περ
0
0
0



(4.35)
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