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Best rational approximants of Markov functions

Joanna Bisch1, Bernhard Beckermann1

1Laboratoire Painlevé UMR 8524, Université de Lille, France
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Abstract

The study of the error of rational approximants of Markov functions

f [µ](z) =

∫
dµ(x)

z − x , supp(µ) ⊂ [a, b],

on some E ⊂ R \ [α, β] has a long history, with a well-established link to orthogonal polynomi-
als. For example, Zolotarev more than 100 years ago described best rational approximants and
their error for the particular Markov function

f [ν](z) =

√
|a|√

(z − a)(z − b)
=

∫
dν(x)

z − x ,
dν

dx
(x) =

√
|a|

π
√
(x− a)(b− x)

,

for closed intervals E. The aim of this talkis to show that

min
r∈Rm−1,m

‖1− r/f [µ]‖L∞(E) ≤ 3 min
r∈Rm−1,m

‖1− r/f [ν]‖L∞(E),

that is, up to some modest factor, the particular Markov function f [ν] gives the worst relative
error among all Markov functions f [µ]. In our proof we show similar inequalities for rational
interpolants and Padé approximants.
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Extrapolation quadrature from equispaced sam-
ples of functions with jumps
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Abstract

Based on the Euler–Maclaurin formula, the Romberg quadrature method extrapolates trape-
zoidal values to improve their accuracy when computing the integral of smooth functions from
equispaced samples. It has been known at least since an article of Lyness in 1971 that the Euler–
Maclaurin formula may be extended to accomodate functions with jumps. In the present work,
we develop an extrapolation method, based on this extended formula, for the quadrature of such
discontinuous functions. We illustrate the method with numerical examples, using one as well
as several sample vectors.
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Abstract

Road networks, coupled biological and chemical systems, neural networks, social interacting
species, the Internet and the World Wide Web, are only a few examples of systems composed
of a large number of highly interconnected dynamical units. The first approach to capture the
global properties of such systems is to model them as graphs whose nodes represent the units,
and whose links stand for the interactions between them. A popular approach is to explore
the underlying network structure by means of random walks and other processes with diffusive
nature defined on these graphs.

In our talk we investigate some aspects of the behavior of certain nonlocal dynamical pro-
cesses evolving on the networks whose Jacobian matrix is based on a fractional version of a
nonsymmetric Laplacian. In the considered models, a random walker on the network is not
constrained to hop only from one node to adjacent nodes, but is allowed to perform long dis-
tance jumps.

In particular, we focus on some numerical linear algebra aspects of the underlying nonlocal
dynamics on directed and undirected networks. An extension with order variable with time is
considered with some comments on existence, uniqueness, and uniform asymptotic stability of
the solutions. Some examples giving a sample of the behavior of the above dynamics are also
included.
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Computing the eigenvalues of quasi-Toeplitz
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Abstract

A quasi-Toeplitz matrix (in short QT-matrix) is a semi-infinite matrix of the formA = T (a)+E
where T (a) = (aj−i)i,j∈Z+ , a = (ai)i∈Z ∈ `1, is a Toeplitz matrix, and E = (ei,j)i,j∈Z+

represents a compact operator in `2. QT matrices are encountered in certain applications, in
particular in the analysis of queuing models associated with random walks in the quarter plane,
and in other stochastic processes from the applications [1], [2], [4], [6].

We investigate the problem of numerically computing the eigenpairs (λ, v) such that Av =
λv, v = (vj)j∈Z+ , and

∑∞
j=1 |vj|2 = 1. We provide locally convergent algorithms for computing

these eigenpairs in the case where A is finitely representable, i.e., ak = 0 for k < −m and for
k > n, where m,n are given positive integers and E has a finite number of nonzero entries.

Relying on the theoretical properties in [5], we show that the problem is reduced to a finite
generalized nonlinear eigenvalue problem of the kind L(λ)w = λR(λ)w, that can be equiva-
lently formulated as detWV (λ) = 0, where W is a constant matrix and V, L,R depend on λ.
The matrix V can be given either in terms of a Vandermonde matrix or in terms of a Frobenius
companion matrix. The algorithms rely on fixed point iterations or on Newton’s method applied
to the above determinantal equation. Numerical experiments are presented. Some interesting
theoretical and algorithmic issues remain open. The algorithms provide an integration tool of
the CQT-Toolbox [3] for performing computations with QT matrices.
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Solving Kepler’s equation via nonlinear sequence
transformations

Riccardo Borghi1

1Dipartimento di Ingegneria. Università “Roma Tre”, Italy
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Abstract

Likely, there are a very few equations in the world (if any) which can boast such a large number
of solving strategies as much as the celebrated Kepler equation (KE henceforth),

M = ψ − ε sin ψ

The task is to solve KE for ψ, given M ∈ [0, π] and ε ∈ [0, 1]. Despite its apparent simplicity,
solving KE has gained over three centuries a pivotal role in the science of computation. As it
was pointed out in the classical textbook by Colwell [1],

Any new technique for the treatment of trascendental equations should be applied
to this illustrious case; any new insight, however slight, lets its conceiver join an
eminent list of contributors.

In the present work we intend to give a further contribution to the subject, by focusing our atten-
tion on a semi-analytic approach to solve KE based on the following Fourier series expansion:

ψ = M +
∞∑

n=1

2 Jn(n ε)

n
sin nM

where Jn(·) denotes the nth-order Bessel function of the first kind. Although the above series
converges for any ε ∈ [0, 1), it turns out that such a convergence is extremely slow, especially
when ε → 1. This, together with the fact that a considerable number of Bessel function evalu-
ations has to be implemented, unavoidably brought the Fourier series to be abandoned as far as
practical applications of KE are concerned. Nevertheless, such a series expansion presents fea-
tures that still make it a subject of considerable interest, both in math and in theoretical physics.
It was the first example of a class of Bessel function based expansions called Kapteyn series
(KS henceforth) [2]. One of the scope of the present work is to provide numerical evidences
supporting the conjecture that the KS representation of the KE solution is related to the so-called
Stieltjes series, which are mathematical object playing a pivotal role in theoretical physics. To
this end, the well known Debye representation of Bessel functions will be used together with
a special type of nonlinear sequence transformation, namely the Weniger transformation [3].
Moreover, some basic features of the the so-called Debye polynomials will be explored on a
purely numerical ground. Finally, it will be shown how an efficient decoding of the KS series
representation of the KE equation can be achieved again by using the Weniger transformation.
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Peter Wynn and Co.
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Abstract

In this talk, we tell how, at the occasion of the writing of a paper on the genesis and the devel-
opment of Aitken’s ∆2 process, Shanks’ transformation and the ε-algorithm [1], we learned the
death of Peter Wynn in 2017. A special issue of Numerical Algorithms was the dedicated to
him.

As soon as we learnt the death of Wynn, we began to write an analysis of his published
works. But, for introducing them, we had to give an overview of the topics he covered. We also
realized that the works of his predecessors should be described, and those of the followers also.
Thus, our paper’s project rapidly evolved into a book [2], which also contains the testimonies
of several researchers in the domain.

Some time after, we received a message from Sandy Norman, from the University of Texas
at San Antonio, USA, informing us that, from time to time, Peter Wynn was visiting some
friends of him there and left mathematical documents at their home. He asked us if we were
interested in them and he proposed to gather and scan them and send them to us. Of course we
accepted and we analyzed these unpublished handwritten documents in an open access paper
[3].

Finally, Andrea Rosolen, a student of the University of Padua, for his BSC thesis supervised
by M. Redivo-Zaglia, constructed a web site dedicated to P. Wynn, and where all the documents
we found in San Antonio could be downloaded. Thus, they are not lost and people in the
scientific community that want to work on them could do so [4].

This is the story we tell in this talk, together with some biographical notes on Peter Wynn.
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Abstract

Reconstructing the structure of the soil using non invasive techniques is a very relevant problem
in many scientific fields, like geophysics and archaeology. This can be done, for instance, with
the aid of Frequency Domain Electromagnetic (FDEM) induction devices. Inverting FDEM
data is a very challenging inverse problem, as the problem is extremely ill-posed, i.e., sensible
to the presence of noise in the measured data, and non-linear. Regularization methods aim
at reducing this sensitivity. In this talk we describe a regularization method to invert FDEM
data. We propose to determine the electrical conductivity of the ground by solving a variational
problem. The minimized functional is made up by the sum of two terms, the data fitting term
ensures that the recovered solution fits the measured data, while the regularization term enforces
sparsity on the Laplacian of the solution. The trade-off between the two terms is determined
by the regularization parameter. This is achieved by minimizing an `2 − `q functional with
0 < q ≤ 2. Since the functional we wish to minimize is nonconvex, we show that the variational
problem admits a solution. Moreover, we prove that, if the regularization parameter is tuned
accordingly to the amount of noise present in the data, this model induces a regularization
method. Some selected numerical examples show the good performances of our proposal.



Quasi-paraorthogonal polynomials, their zeros
and quadrature
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Abstract

Real polynomials have zeros that are either real or appear in complex conjugate pairs, i.e.,
they are symmetric with respect to the real line R. Complex polynomials whose zeros have
similar properties with respect to the unit circle T, i.e., their zeros are either on the circle or
are symmetric with respect to it, are invariant polynomials. Invariant polynomials of degree n
satisfy by definition Pn(z) = τP ∗

n(z) for some invariance parameter τ ∈ T and where P ∗
n(z) =

znPn(1/z).
In view of this spectral property, it should be clear that the natural counterpart of orthogo-

nal polynomials on R are not the orthogonal, but the paraorthogonal polynomials on T. These
paraorthogonal polynomials are orthogonal to span{z, z2, . . . , zn−1, zn − τ̂} for some τ̂ ∈ T,
and their zeros are important for the construction of (positive) quadrature formulas with maxi-
mal domain of validity.

By removing some of the orthogonality conditions for the polynomials, we gain extra free
parameters, which can be used to place some of the zeros at preselected locations. This resulted
in a number of papers on quasi-orthogonal polynomials on R. In this talk we shall consider
the analogue concept on T which are the quasi-paraorthogonal polynomials. We analyze the
possibilities of preselecting some of the zeros, in order to build positive quadrature formulas
with prefixed nodes and maximal domain of validity. We illustrate with a numerical example
how the zeros behave as a function of an invariance parameter τ , when they are all simple and
on T, and when they are allowed as nodes in positive quadrature formulas.
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Abstract

Despite their simplicity, non-linear Support Vector Machines (SVMs), are still recognised by
practitioners of Machine Learning and Data Science as the preferred choice for classification
tasks in certain situations.

On the other hand, the computational complexity of solving non-linear SVMs is prohibitive
on large-scale datasets: the use of the Kernel Trick requires the storage of a value for the
kernelized distance between any two pairs of points leading to a storage complexity of O(d2)
where d is the dimension of the training set.

In this talk we will demonstrate how to efficiently merge a Hierarchically Semi-Separable
[2] approximation of the kernel matrix with the Alternating Direction Method of Multipliers
(ADMM) [1] for the solution of the underlying convex optimization problem. The proposed
merger delivers a computational framework able to out-perform the state of the art training
algorithms for large scale SVMs [3].
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Abstract

The problem of d-dimensional exponential analysis consists in retrieving the linear param-
eters αj ∈ C and the nonlinear parameters φj ∈ Cd in the exponential model

f(x) =
n∑

j=1

αj exp (〈φj, x〉) , x = (x1, . . . , xd), φj = (φj1, . . . , φjd) (1)

from as few function samples as possible. Until recently, algorithms to solve the problem
required a number of samples of the order O(nd) or O(2dn) or at most (d + 1)n2 log2d−2 n,
all growing exponentially with the dimension of the problem statement. As a consequence,
most of the methods were not employed in practice in higher dimensional problem statements
where d ≥ 3.

We propose to use a reliable implementation based on [1] which requires only O((d+ 1)n)
regularly gathered samples. Thus the new technique does not suffer the well-known curse of
dimensionality. The computation cost of the new method is further reduced as we solve several
smaller systems instead of one large system dealing with all measurements at the same time.

In addition, when the technique is combined with convergence theorems from approxima-
tion theory on the one hand and sparse interpolation results from computer algebra on the other
hand, one is able to:

• filter unstructured noise in the data out of the structured exponential model (1) via a con-
nection to Padé approximation theory,

• automatically deduce and validate the sparsity n of expression (1), which is usually re-
garded to be a hard problem,

• separate exponential components that are contained in a cluster of similar components,
using a connection with sparse interpolation,

• and as a result of all of the above, tighten the numerical estimates for the parameters φj

and αj in case of a low signal-to-noise ratio.

We illustrate its use on several two-, three- and higher-dimensional applications and compare
with existing techniques and optimisation methods.
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Abstract

The aim of this talk is concerned with a global approximation of the following Fredholm integral
equation of the second-kind

f(y)−
∫ 1

−1

k(x, y)f(x)w(x)dx = g(y), y ∈ [−1, 1],

where f is the unknown function, k and g are two given functions and w(x) = (1−x)α(1+x)β
is a Jacobi weight with parameters α, β > −1.

A numerical method based on the Nyström interpolants corresponding to Gauss and anti-
Gauss quadrature formulae is developed [1, 2] providing upper and lower bounds for the solu-
tion of the equation under suitable assumptions, which are easily verified for a particular weight
function.

The convergence and stability of the proposed method is discussed in proper weighted
spaces. Moreover, an error estimate is available, and the accuracy of the solution is improved
by approximating it by an averaged Nyström interpolant.

Numerical tests will show the accuracy of the approach.
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Abstract

We focus on optimization problems with sparse solutions. Although first-order methods are
widely applied to these problems, we believe that interior point methods equipped with suit-
able linear algebra can provide significant advantages, especially when the problems are large
and not so-well conditioned. To this aim, we develop variants of an interior point-proximal
method of multipliers by specializing its linear algebra phase, and show their effectiveness on
applications of wide interest in science and engineering (see [1] and the references therein).
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Abstract

We are interested in a finite difference discretization of a two-dimensional time-dependent
space-fractional diffusion equation (FDE) and in the solution of the related linear systems. Our
focus is both on the case where the fractional orders are close to each other (isotropic case), and
the one where they are not (anisotropic case). Driven by the fact that the discretization matrices
have a block-Toeplitz-Toeplitz-blocks-like structure, and by the well-known negative results on
multilevel circulant preconditioning, we opt for a multigrid approach. In this framework, the
spectral properties of the matrices and the isotropic/anisotropic nature of the problem guide the
selection of both projector and smoother.

In the isotropic case, based on the spectral analysis of the coefficient matrices, we define a
multigrid method with classical linear interpolation as grid transfer operator and damped-Jacobi
as smoother. In the anisotropic case, inspired by certain multigrid strategies for integer order
anisotropic diffusion equations given in literature, we replace the classical linear interpolation
with a semi-coarsening technique. Moreover, we estimate the Jacobi relaxation parameter by
using an automatic spectral-based procedure. A further improvement in the robustness of the
proposed method with respect to the anisotropy of the problem is attained employing the result-
ing V-cycle with semi-coarsening as smoother inside an outer full-coarsening.
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Abstract

Suppose {P (α,β)
n (x)}∞n=0 is a sequence of Jacobi polynomials, α, β > −1. It is known that the

zeros of P (α,β)
n (x) and P (α−t,β+s)

n (x) are interlacing for α− t > −1, β > −1, 0 ≤ t, s ≤ 2. We
discuss the simplest cases of a question raised by Alan Sokal at OPSFA 2019 whether the zeros
of P (α,β)

n (x) and P (α+t,β+s)
n+k (x) are interlacing when s, t > 0 and k, n ∈ N. We prove that the

zeros of P (α,β)
n (x) and P (α,β+1)

n+1 (x), α > −1, β > 0, n ∈ N are partially, but in general not fully,
interlacing, depending on the values of α, β and n. We also consider interlacing of the zeros
of P (α,β)

n (x) and P (α+1,β+1)
n+1 (x), α, β > −1 and provide examples confirming that our results

cannot be strengthened in general. This is joint work with Jorge Arvesú Carballo and Lance
Littlejohn.
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Abstract

Groundwater flow in the unsaturated zone is a highly nonlinear problem. We describe it by
Richards equation in the “mixed form”, for which we consider a cell-centered finite-difference
approximation [1]. The nonlinearities of the model lead to changes in soil conductivity over
several orders of magnitude and long time integrations are often required in simulations. Thus,
any discretization for space variables produces a stiff system of differential equations. To face
it, we employ a fully implicit discretization. This require solving a nonlinear system by a quasi-
Newton algorithm at each time step. In turn, it requires solving a sequence of linear systems
with Jacobian matrices {Jk}k.

We will show some results on the asymptotic distribution of the eigenvalues of each Jk
that will connect the physical and numerical properties of the model. This analysis enables the
possibility of constructing efficient preconditioners based on some recent developments on a
package of AMG preconditioners aimed to improve the efficiency, scalability, and robustness of
Krylov accelerators in solving extreme-scale problems on parallel hybrid architectures. Specif-
ically, we will discuss the use of functionalities introduced by the AMG4PSBLAS [2] package
as part of the PSCToolkit† (Parallel Sparse Computation Toolkit) that includes some parallel
AMG methods designed to provide scalable and easy-to-use preconditioners in the context of
the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms) computational framework,
which implements distributed Krylov-type linear solvers. For the latter aspect, we will focus on
the flexibility and efficiency of the proposed AMG methods and the related software framework
on supercomputers.
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Abstract

We consider a variational approach to the solution of inverse problems by minimization of
Tikhonov-like functionals of the form arg minx∈Xf(x, y) + λg(x) , where f : X × Y −→ R
represents a smooth convex fidelity term between the data y ∈ Y and the solution x ∈ X ,
g : X −→ R is a (possibly non-smooth) convex penalty term, and λ > 0 is the regularization
parameter. In inverse problems modeled by a linear functional equation Ax = y, very basic
examples include norm fidelity terms f(x, y) = ‖Ax−y‖pY and L1 regularization g(x) = ‖x‖1.

In Hilbert space setting, the Forward-Backward (FB) splitting algorithm for the minimiza-
tion of f(x, y) + λg(x) enables to exploit the differentiability of the smooth function f in
the anti-gradient minimization ”forward step” xk 7→ xk − τk∇xf(xk, y) for a proper step-
size τk > 0, and then to minimize with respect the (non smooth) function g by the ”back-
ward step” xk+1 = proxτkλg(xk − τk∇f(xk, y)), defined in terms of the proximal operator
proxγg(u) = argminx∈X

1
2
‖x− u‖2X + γg(x).

In this work, we study the generalization of FB algorithms to a Banach space X . This
generalization is not straightforward. Indeed, since the gradient is an element of the dual space
X∗, the forward step cannot be performed directly on xk and requires the application of the so
called duality maps, which link primal and dual spaces, allowing to perform the gradient step in
the dual space X∗ [1]. Moreover, duality maps are non-linear, leading to a different definition
of the backward step in terms of Bregman distance and a more difficult convergence analysis.

We then introduce a FB algorithm suited for Variable exponent Lebesgue spaces [2], which
are (non-Hilbertian) Banach spaces where the exponent used in the definition of the norm is not
constant, but rather is a function p(·) > 1 of the domain. In this case, the role of the norm in
the proximal operator is replaced by the so called modular m(x, u) =

∑
i p
−1
i |xi − ui|pi , which

allows effective computation of the backward step by virtue of separability. The proposed FB
algorithm based on such a modular-proximity will be outlined and its convergence properties
discussed. We mention that variable exponents Lebesgue spaces are endowed with space variant
geometrical properties which are useful in adaptive regularization techniques [3].
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Abstract

This talk deals with the numerical tretament of the following integral

I(f) =

∫ ∞

0

∫ ∞

0

f(x, y)w(x, y) dx dy

where f is a known function defined on the domain [0,∞)×[0,∞) andw(x, y) = xα yβe−(x+y),
α, β > −1.

Suitable truncated averaged rules based on Gauss-Laguerre formulae [1, 2, 3] will be intro-
duced, and investigated in terms of stability and convergence. Numerical tests will be presented,
in order to show the performance of the introduced cubature schemes.
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Abstract

The trace of a matrix function f(A), most notably of the matrix inverse, can be estimated
stochastically using samples x∗f(A)x if the components of the random vectors x obey an ap-
propriate probability distribution. However such a Monte-Carlo sampling suffers from the fact
that the accuracy depends quadratically of the samples to use, thus making higher precision esti-
mation very costly. In this paper we suggest and investigate a multilevel Monte-Carlo approach
which uses a multigrid hierarchy to stochastically estimate the trace. This results in a substan-
tial reduction of the variance, so that higher precision can be obtained at much less effort. We
illustrate this for the trace of the inverse using three different classes of matrices, the discrete 2d
Laplace operator, the 2d gauge Laplace operator and the Schwinger model of electrodynamics
as a quantum field theory.
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Abstract

Iterative methods for linear systems were invented for the same reasons as they are used today,
namely to reduce computational cost. Gauss states in a letter to his friend Gerling in 1823:
”you will in the future hardly eliminate directly, at least not when you have more than two
unknowns”.

Richardson’s paper from 1910 was then very influential, and is a model of a modern nu-
merical analysis paper: modeling, discretization, approximate solution of the discrete problem,
and a real application. Richardson’s method is much more sophisticated that how it is usually
presented today, and his dream became reality in the PhD thesis of Gene Golub.

The work of Stiefel, Hestenes and Lanczos in the early 1950 sparked the success story of
Krylov methods, and these methods can also be understood in the context of extrapolation,
pioneered by Brezinski and Sidi, based on seminal work by Wynn.

This brings us to the modern iterative methods for solving partial differential equations,
which come in two main classes: domain decomposition methods and multigrid methods. Do-
main decomposition methods go back to the alternating Schwarz method invented by Herman
Amandus Schwarz in 1869 to close a gap in the proof of Riemann’s famous Mapping Theorem.
Multigrid goes back to the seminal work by Fedorenko in 1961, with main contributions by
Brandt and Hackbusch in the Seventies.

I will show in my presentation how these methods function on the same model problem of
the temperature distribution in a simple room. All these methods are today used as precondi-
tioners for Krylov methods, which leads to the most powerful iterative solvers currently known
for linear systems.
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Abstract

This talk will present theoretical and algorithmic aspects of regularization methods based on in-
exact Krylov methods for the solution of large-scale discrete inverse problems. Specifically, we
will introduce two new inexact Krylov methods that can be efficiently applied to unregularized
or Tikhonov-regularized least squares problems, and we present their theoretical properties, in-
cluding links with their exact counterparts and strategies to monitor the amount of inexactness.
We then describe how the new methods can be applied to solve separable nonlinear inverse
problems arising in blind deblurring, where both the sharp image and the parameters defin-
ing the blur are unknown. We show that the new inexact solvers (which can naturally handle
varying inexact blurring parameters while solving the linear deblurring subproblems within a
variable projection method) allow for a much reduced number of total iterations and substantial
computational savings with respect to their exact counterparts. This talk is based on the work
described in [1].
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Abstract

The wavelet theory has been useful to study time economic data (see, among others, the hand-
book of Addison [1]), due to the possibility of working in the dual time-frequency domain and
allowing to establish certain causal properties between variables. Due to its good properties, the
Fourier transform is frequently used which acts as a wavelet filter.
Following the proposal in Haddad [2], in this presentation we explore the alternative use of
the Laplace transform and the Padé approximation to build the transfer function of the wavelet
filter, which may be more appropriate for logarithmic economic time series.
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Abstract

Within the context of nonconvex unconstrained and inexpensively-constrained optimisation, a
class of adaptive regularisation methods under inexact function and derivatives evaluations is
presented.
At variance with the basic ARC framework, the underlying algorithm is not limited to refer
to the cubic model, allowing for the use of potentially higher degrees to search for arbitrary
order optimality points. At each iteration, it features an adaptive mechanism for determining
the inexactness which is needed to compute objective function values and derivatives, in order
to preserve the complexity results of its counterpart with exact evaluations.
Sharp global evaluation complexity bounds, assuming that the right accuracy level in function
and derivatives estimates is deterministically achievable, are derived and hold for any model
degree and any order of optimality, thereby generalising known results for first and second-order
versions of the method. High probability and stochastic complexity bounds are also shown.
For lower orders, preliminary numerical tests are finally reported.
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Abstract

We consider iterative reconstruction methods for X-ray computed tomography that are based on
a discretization Ax ≈ b. This approach does not assume any specific scanning geometry, and it
produces good reconstructions in the case of limited-data and/or limited-angle problems [2].

The matrix A represents the forward projector while the transpose AT represents the so-
called back projector which maps the data back onto the solution domain. In large-scale CT
problems, A is too large to store, and we must use functions that compute the multiplications
with A and AT in a matrix-free fashion. Optimal use of GPUs calls for the use of different
discretization methods for the forward projector and the back projector [4]. Hence, the matrix
B ∈ Rn×m which represents the back projector is typically different from the transpose AT of
the forward projector, and we say that B is an unmatched back projector.

The consequence is that iterative solvers based on multiplications with A and B solve the
unmatched normal equations [1] in one of the forms BAx = B b or AB y = b, x = B y.
It is natural to use the well-known GMRES algorithm to solve these systems, and our work is
based on the preconditioned AB-GMRES and BA-GMRES methods for solving least squares
problems [3] with B as a right and left preconditioner, respectively.

We study the performance and the regularizing effects of the AB- and BA-GMRES methods
when applied to CT reconstruction problems, and we show how these methods depend on the
difference between B and AT . Specifically we show that AB-GMRES and BA-GMRES are
equivalent to LSQR and LSMR, respectively, whenB = AT . We also show how to terminate the
iterations before the noise starts to dominate the iteration vectors. Our numerical experiments
demonstrate that AB- and BA-GMRES can be used successfully to solve algebraic formulations
of large-scale CT reconstruction problems with an unmatched back projector.
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Abstract

A common belief in solving systems of linear equations is that explicitly forming the normal
equations deteriorates the conditioning. Namely, let A ∈ Rn×n, and κ2(A) be the 2-norm
condition number of A. Then, in exact arithmetic, κ2(ATA) = κ2(A)2.

In this talk, we show that if A is extremely ill-conditioned, that is, κ2(A) =
1

o(n
√
ε)

, then,

generically, κ2(fl(ATA)) =
1

O(n2ε)
. Here, ε is the machine epsilon, fl(·) denotes floating point

computation. O(·) and o(·) are Landau’s symbols,
Then, numerical experiments suggest that by Cholesky decomposition fl(ATA) = fl(LLT),

we have κ2(fl(L)) =
1

O(n
√
ε)

, even when κ2(A) =
1

o(n
√
ε)

.

This fact can be used, for instance, to stabilize the convergence of GMRES for extremely ill-
conditioned linear systems. Namely, in the GMRES iteration, when the upper triangular matrix

R becomes severely ill-conditioned, i.e. when κ2(R) =
1

o(n
√
ε)

, instead of solving Ry = t by

back substitution, we solve RTRy = RTt using Cholesky decomposition: RTR = LLT, which
stabilizes the convergence of GMRES [1]. In the talk, we will present numerical experiment
results which demonstrate the validity of this approach.
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Abstract

In this poster, we propose some tensor Krylov-based subspace methods such as tensor GMRES
or tensor Golub-Kahan methods for color image and video processing. The proposed methods
are obtained using the tensor-tensor T-product which is derived by using the Fast Fourier Trans-
form (or the Discrete Cosine Transform for the c-product). We give a small presentation of the
proposed methods and present some numerical examples. We also show how to use the tensor
Golub-Kahan algorithm in Tensor Principal Component Analysis (T-PCA) for classification and
face recognition when using color objects.
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Abstract

This talk is concerned with approximating matrix functions for banded matrices, hierarchically
semiseparable matrices, and related structures. We develop a new divide-and-conquer method
based on (rational) Krylov subspace methods for performing low-rank updates of matrix func-
tions. Our convergence analysis of the newly proposed method proceeds by establishing rela-
tions to best polynomial and rational approximation. When only the trace or the diagonal of
the matrix function is of interest, we demonstrate – in practice and in theory – that convergence
can be faster. For the special case of a banded matrix, we show that the divide-and-conquer
method reduces to a much simpler algorithm, which proceeds by computing matrix functions
of small submatrices. Numerical experiments confirm the effectiveness of the newly developed
algorithms for computing large-scale matrix functions from a wide variety of applications.
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Abstract

The Smith normal form of an n × n matrix Aof integers or polynomials is a diagonal matrix
S = diag(s1, s2, . . . , sn) satisfying s1|s2|..|sn with UAV = S, where U and V are unimodular
matrices (i.e. det U = det V =±1 (integers) or a constant (polynomials)). The U and V matrices
represent the row and column operations need to convert A into S.

In this talk we will discuss efficient algorithms for the computation of S, U and V . The tools
used are closely related to algebraic tools used for fast algorithms for rational approximation
problems such as Padé and Hermite-Padé approximation.
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Abstract

Motivated by a wide range of real-world problems whose solutions exhibit boundary and inte-
rior layers, the numerical analysis of discretizations of singularly perturbed differential equa-
tions is an established sub-discipline within the study of the numerical approximation of so-
lutions to differential equations. Consequently, much is known about how to accurately and
stably discretize such equations on a priori adapted meshes, in order to properly resolve the
layer structure present in their continuum solutions. However, despite being a key step in the
numerical simulation process, much less is known about the efficient and accurate solution of
the linear systems of equations corresponding to these discretizations.

In this talk, we discuss problems associated with the application of direct solvers to these
discretizations. We then propose a preconditioning strategy that is tuned to the matrix structure
induced by using layer-adapted meshes for convection-diffusion equations, proving a strong
condition-number bound on the preconditioned system in one spatial dimension, and a weaker
bound in two spatial dimensions. Numerical results confirm the efficiency of the resulting
preconditioners in one and two dimensions, with time-to-solution of less than one second for
representative problems on 1024 × 1024 meshes and up to 40× speedup over standard sparse
direct solvers.
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Abstract

Let u be a quasi-definite linear functional defined on the linear space of polynomials P. For
such a functional we can define a sequence of monic orthogonal polynomials (SMOP in short)
(Pn)n≥0, which satisfies a three term recurrence relation. Shifting one unity the recurrence co-
efficient indices we get the sequence of associated polynomials of the first kind (P

(1)
n )≥0 which

are orthogonal with respect to a linear functional denoted by u(1).

In the literature two special spectral transformations of the functional u are studied: the
canonical Christoffel transformation ũ = (x−c)u and the canonical Geronimus transformation
û = (x − c)−1u +Mδc , where c is a fixed complex number, M is a free parameter and δc is
the linear functional defined on P as < δc, p(x) >= p(c). They constitute a generating system
of the so called linear spectral transformation set analyzed in [ZH97]. For the Christoffel trans-
formation with SMOP (P̃n)n≥0, we are interested in analyzing the relation between the linear
functionals u(1) and ũ(1). There, the super index denotes the linear functionals associated with
the orthogonal polynomial sequences of the first kind (P

(1)
n )n≥0 and (P̃

(1)
n )n≥0, respectively.

This problem is also studied for Geronimus transformations. Here we give close relations be-
tween their corresponding monic Jacobi matrices by using the LU and UL factorizations. For
more information, see [1].

Joint work with Juan Carlos Garcia Ardila (Universidad Politécnica de Madrid, España) and
Paul H. Villamil-Hernández (Universidad Carlos III de Madrid, España).
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Abstract

The Golub–Welsch algorithm [1] is the classical way to compute the knots xi and the weights
wi, i = 1, . . . , n, of the Gaussian quadrature rule

n∑

i=1

f(xi)wi

approximating the integral
∫ a

−a
f(x)ω(x)dx, with f a continuous function and ω a positive

weight.
The knots xi, zeros of the orthogonal polynomial pn(x) associated to the weight ω, are also

the eigenvalues of a tridiagonal matrix of order n, called Jacobi matrix, whose nonzero entries
are the coefficients of the three–term recurrence relation of the sequence of the orthogonal
polynomials pj(x), j = 0, 1, . . . , n− 1, associated to ω.

Computed xi, i = 1, . . . , n, the corresponding weight wi can be obtained from the first
component of the eigenvector associated to xi [1].

If ω is a symmetric weight, xi and wi, i = 1, . . . , n, can be computed by solving a tridiag-
onal eigenvalue problem of size bn/2c [2].

Exploiting the method proposed in [2], we derive an efficient algorithm to compute the knots
of Gaussian quadrature rules corresponding to symmetric weights ω with high relative accuracy.

Moreover, for a nonsymmetric weight ω̂, computed a knot x̂i, we consider different ways to
compute the corresponding weight ŵi.

Among them, we consider [3]

ŵi =
1∑n−1

k=0 p̂
2
k(x̂i)

,

where p̂k(x), k = 0, . . . , n− 1, are the first n orthonormal polynomials associated to ω̂.
In particular, we analyze the stability of the forward and backward three–term recurrence

relations generating p̂k(x), k = 0, . . . , n − 1, and develop a method for computing them with
high relative accuracy.
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Abstract

We consider the Nonsymmetric algebraic T -Riccati equation (T -NARE)

DX +XTA−XTBX + C = 0, (1)

where X is the unknown matrix and A,B,C,D ∈ Rn×n are the coefficients, while the super-
script T denotes transposition. Equation (1) has been considered in [1], with applications to
solving large-scale Dynamic Stochastic General Equilibrium models.

We introduce a palindromic linearization for the T -NARE (1). More specifically, by using
the coefficients of the matrix equation, we construct a T -palindromic pencil ϕ(z) =M + zMT

of size (2n) × (2n), that linearizes the equation: we show that, if ϕ(z) is regular and if X is

a solution to (1), then the columns of
[
I
X

]
span a deflating subspace of ϕ(z); also a kind of

converse result holds under suitable assumptions. This linearization, besides being interesting
per se, opens the way to find solutions of a T -NARE by relying on algorithms that compute
bases of deflating subspaces of a matrix pencil, such as the QZ algorithm and the Doubling
Algorithm [2, 3]. Moreover, the palindromic structure of ϕ(z) can be exploited by a structured
QZ algorithm [4]. We show the effectiveness of these algorithms, in terms of accuracy and
execution time, with comparisons with the Newton method proposed in [1].
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Abstract

The development of fast and reliable methods to compute the zeros of a polynomial, may, at
first sight, appear to have diminished the need for zero approximations, localization results, and
other properties. However, these properties become significantly more valuable if they can be
generalized to matrix polynomials, as polynomial eigenvalues are much harder to compute than
polynomial zeros. Clearly, not all properties can be so generalized, but many can.

We survey several recent results that were generalized from scalar to matrix polynomials,
ranging from relatively basic ones, such as the well-known zero localizations by Cauchy and
Pellet (and their less well-known improvements), to more refined ones such as properties related
to the angular distribution of zeros.

Although many generalizations to matrix polynomials are traditionally expressed in terms
of the norms of the coefficient matrices, we also make use of the numerical radius of the coeffi-
cients, which has led to remarkably good results.

Finally, we show how generalizations obtained for matrix polynomials can – somewhat
paradoxically – be turned around to improve and even derive new results for scalar polynomials.
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Abstract

There are more and more computing elements in modern supercomputers. This increases the
probability of computer errors. Errors that do not stop the computation are called soft errors or
silent errors. Of course, they could have a negative impact on the output of the code. So, it is
of interest to be able to detect these silent errors and to correct them.

In this talk we are concerned with the detection and correction of silent errors in the conju-
gate gradient (CG) algorithm to solve linear systems Ax = b with a symmetric positive definite
matrix A. Silent errors in CG may affect or even prevent the convergence of the algorithm. We
propose a new way to detect silent errors using a scalar relation that must be satisfied by CG
variables,

α2
k−1

(Apk−1, Apk−1)

(rk−1, rk−1)
= 1 + βk, (1)

where rj’s are the residual vectors, pj’s the descent directions and

αk−1 =
(rk−1, rk−1)

(pk−1, Apk−1)
, βk =

(rk, rk)

(rk−1, rk−1)

are the coefficients computed in CG.
We study how relation (1) is modified in finite precision arithmetic and define a criterion to

detect when this relation is not satisfied.
Checking relation (1) involves computing an additional dot product, but, as it was shown

some time ago in [1] and more recently in [2], relation (1) can be used to introduce more
parallelism in the algorithm.

Assuming that the input data (A, b) is not corrupted, we model silent errors by bit flips in
the output of some CG steps. When an error is detected in some iteration k, we could restore
the CG data from iteration k − 2 to be able to continue the computation safely.

Numerical experiments will show the efficiency of this approach.
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Abstract

Randomized NLA methods have recently gained popularity because of their easy implemen-
tation, computational efficiency, and numerical robustness. We propose a randomized version
of a well-established FEAST eigenvalue algorithm that enables computing the eigenvalues of
the Hermitian matrix pencil (A,B) located in the given real interval I ⊂ [λmin, λmax]. In this
talk, we will present deterministic as well as probabilistic error analysis of the accuracy of ap-
proximate eigenpair and subspaces obtained using the randomized FEAST algorithm. First,
we derive bounds for the canonical angles between the exact and the approximate eigenspaces
corresponding to the eigenvalues contained in the interval I. Then, we present bounds for the
accuracy of the eigenvalues and the corresponding eigenvectors. This part of the analysis is
independent of the particular distribution of an initial subspace, therefore we denote it as deter-
ministic. In the case of the starting guess being a Gaussian random matrix, we provide more
informative, probabilistic error bounds. Finally, we will illustrate numerically the effectiveness
of all the proposed error bounds.
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Abstract

The proposed solvers compute discrete eigenvalues in a simply connected region in the com-
plex plane and the corresponding eigenfunctions of linear operators with boundary conditions.
The operator eigenvalue problems widely appear in science and engineering, such as stability
analysis in infinite-dimensional dynamical systems.

Inspired by recent studies of operator analogs [1, 2], this study extends eigensolvers for
large-scale matrix eigenvalue problems to operators. Complex moment eigensolvers for matrix
eigenvalue problems, including a class of projection methods [3, 4, 5], have been developed, at-
tracting advantages in their highly hierarchical parallelizability. Our extension carries out those
features in parallel by nature. The operator analogs of FEAST avoid discretizing operators, and
the proposed methods likewise. Unlike the operator analogs of FEAST, the proposed methods
reduce the computational costs by using high-order complex moments.

These eigensolvers construct complex moment matrices by a contour integral of a resolvent
and extract the target eigenpairs. A complex moment matrix consisting of a resolvent filters
out undesired eigencomponents and extracts the desired ones in a pseudorandom quasimatrix
whose columns are supposed to have eigencomponents corresponding to the eigenvalues of
interest. FEAST and its operator analogs use the zeroth-order complex moments, while the
proposed methods use high-order complex moments to reduce computational costs. Numerical
experiments show that the proposed methods are more efficient and accurate than previous
methods.
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Abstract

Spectral residual methods are derivative-free and low-cost per iteration procedures for solving
systems of nonlinear equations [1]. They are generally coupled with a nonmonotone linesearch
strategy and compare well with Newton-based methods in the solution of both large nonlinear
systems and sequences of nonlinear systems. The residual vector is used as the search direc-
tion and the steplength is inspired by the Barzilai Borwein method [2]. Analogously to spectral
gradient methods for minimization, choosing the steplength has a crucial impact on the per-
formance of the procedure. In this talk we address, both theoretically and experimentally, the
steplength selection and provide results on a real application such as the wheel-rail contact in
railway systems. The talk is based on the work [3].
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Abstract

Low-rank matrices and tensors are ubiquitous in science. To date, most of the methods have
been developed to build effective low-rank approximations in the spectral or Frobenius norm.
The quality of such approximations depends on the decrease rate of the singular values of the
matrix. However, recent results show that low-rank approximations of matrices in other norms
can be effective even without decreasing singular values. One fundamental result was proved in
[1]:

Theorem. Let X ∈ Rm×n with m ≥ n and 0 < ε < 1. Then, with

r = d72 log (2n+ 1)/ε2e (1)

we have
inf

rankY≤r
‖X − Y ‖C ≤ ε‖X‖2, where ‖X‖C = max

i,j
|Xij| (2)

This paper is devoted to algorithms for constructing low-rank approximations of matrices
in the Chebyshev norm. The problem of low-rank approximations in the Chebyshev norm
formulates as follows

µ = inf
U∈Rm×r,V ∈Rn×r

∥∥A− UV T
∥∥
C
, (3)

As far as we know, the only work that addresses this problem is [2]. To begin with, we study
the necessary and sufficient conditions for the optimality of the solution of problem

µ = inf
U∈Rm×r

∥∥A− UV T
∥∥
C
, (4)

for a known matrix V and come to a method for constructing an exact solution to this problem.
Then we repeatedly alternate between problems for matrices U and V , obtaining convergence
to some solution. As the result, we obtain an algorithm that allows us to build low-rank approxi-
mations of matrices without decreasing singular values in the Chebyshev norm. The accuracy of
the approximation of the method turns out to be significantly higher than (1), and the operating
time grows polynomial with the matrix size.
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Abstract

Computed tomography (CT) techniques are well known for their ability to produce high qual-
ity images needed for medical diagnostic purposes. Unfortunately standard CT machines are
extremely large, heavy, require careful and regular calibration, and are expensive, which can
limit their availability in point-of-care situations. An alternative approach is to use portable ma-
chines, but parameters related to the geometry of these devices (e.g., distance between source
and detector, orientation of source to detector) cannot always be precisely calibrated, and these
parameters may change slightly when the machine is adjusted during the image acquisition pro-
cess. In this work we describe the nonlinear inverse problem that models this situation, and dis-
cuss algorithms that can jointly estimate the geometry parameters and compute a reconstructed
image.
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Abstract

In this talk, we discuss some preconditioning methods for fractional diffusion equations. Also
preconditioning for time fractional diffusion inverse source problems is studied. Numerical ex-
amples are reported to demonstrate these preconditioning techniques. Also some deep learning
methods are discussed in the talk.
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Abstract

Low-rank Krylov methods are one of the few options for solving general linear matrix equa-
tions, especially for large problem dimensions. An important step of these procedures consists
in truncating the rank of the basis vectors, represented in terms of matrices, to maintain a feasi-
ble storage demand of the overall solution process. In principle, such truncations can severely
impact on the converge of the adopted Krylov routine. In this talk we show how to perform the
low-rank truncations in order to maintain the convergence of the selected Krylov procedure. In
particular, our analysis points out that not only the thresholds employed for the truncations are
important, but further care has to be adopted to guarantee the orthogonality of the computed
basis. In particular, an auxiliary, exact Gram-Schmidt procedure in a low dimensional subspace
may be adopted to retrieve the orthogonality of the computed basis – when lost – while pre-
serving the memory-saving features of the latter. This additional orthogonalization step leads
to a modified formulation of the inner problems. Nevertheless, this is still feasible in terms of
computational efforts. We illustrate some numerical experiments which validate our theoretical
findings.
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Abstract

Systems of first kind integral equations arise in many applications. It is well-known that Fred-
holm integral equations of the first kind are often ill-posed problems. When the right-hand side
is only known at a finite set of points, e.g., when it consists of experimental measurements, the
difficulties related to ill-posedness are enforced, as the problem has infinitely many solutions.
We propose a numerical method to compute the minimal-norm solution of a system of the form





∫ b

a

k`(x`,i, t) f(t) dt = g`(x`,i), ` = 1, . . . ,m, i = 1, . . . , n`,

f(a) = f0, f(b) = f1,

in the presence of boundary constraints. The problem is solved in a reproducing kernel Hilbert
space (RKHS), by using the Riesz Representation Theorem. Indeed, the minimal-norm solution
is written as a linear combination of the Riesz representers. Since the resulting linear system is
strongly ill-conditioned, we construct a regularization method based on a truncated expansion of
the minimal-norm solution in terms of the singular functions of the integral operator. Numerical
experiments are presented to illustrate the excellent performance of the method. This is a joint
work with Patricia Dı́az de Alba, Luisa Fermo, and Giuseppe Rodriguez [1, 2].
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1Departamento de Matemática, IBILCE, UNESP - Universidade Estadual Paulista, São José do Rio Preto, Brazil
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Abstract

We study families of multivariate orthogonal polynomials with respect to the symmetric weight
function in d variables

Bγ(x) =
d∏

i=1

w(xi)
∏

i<j

|xi − xj|2γ+1, x ∈ (a, b)d,

for γ > −1, where w(t) is an univariate weight function in t ∈ (a, b) and x = (x1, x2, . . . , xd)
with xi ∈ (a, b). Using the change of variables x = (x1, x2, . . . , xd) 7→ u = (u1, u2, . . . , ud)
where, ur are the r-th elementary symmetric functions we study multivariate orthogonal
polynomials in the variable u associated with the weight function Wγ(u) defined by means
of Wγ(u) = Bγ(x). For the new weight function, the domain is described in terms of the
discriminant of the polynomial having xi, i = 1, 2, . . . , d, as its zeros and in terms of the asso-
ciated Sturm sequence. Obviously, generalized classical orthogonal polynomials as defined by
Lassalle [2, 3, 4] and Macdonald [5] are included in our study. Choosing the univariate weight
function as the Hermite, Laguerre and Jacobi weight functions, we obtain the representation in
terms of the variables ur for the partial differential operators having the respective Hermite, La-
guerre and Jacobi generalized multivariate orthogonal polynomials as the corresponding eigen-
functions. The case d = 2 coincides with the polynomials studied by Koornwinder in [1].
Finally, we present explicitly the partial differential operators for Hermite, Laguerre and Jacobi
generalized polynomials in the cases d = 2 and d = 3.
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Abstract

We introduce a new method for Estimation of Signal Parameters based on Iterative Rational
Approximation (ESPIRA) for sparse exponential sums. Our algorithm uses the AAA algo-
rithm for rational approximation [2] of the discrete Fourier transform of the given equidistant
signal values. We show that ESPIRA can be interpreted as a matrix pencil method applied to
Loewner matrices. These Loewner matrices are closely connected with the Hankel matrices
which are usually employed for recovery of sparse exponential sums. Due to the construction
of the Loewner matrices via an adaptive selection of index sets, the matrix pencil method is
stabilized. ESPIRA achieves similar recovery results for exact data as ESPRIT and the matrix
pencil method in [3] but with less computational effort. Moreover, ESPIRA strongly outper-
forms ESPRIT and the matrix pencil method for noisy data and for signal approximation by
short exponential sums.
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Abstract

The Gauss quadrature can be generalized to approximate quasi-definite linear functionals where
the interconnections with (formal) orthogonal polynomials, (complex) Jacobi matrices, and
Lanczos algorithm are analogous to those in the positive definite case. In particular, the ex-
istence of the n-weight (complex) Gauss quadrature corresponds to successfully performing the
first n steps of the Lanczos algorithm. For general linear functionals, the series of (formal) or-
thogonal polynomials may not be complete. Nevertheless, the Gauss quadrature generalization
is still possible and can be connected with the (look-ahead) Lanczos algorithm.
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Abstract

This talk is concerned with the inexpensive approximation of expressions of the form I(f) =
vTf(A)v, when A is a large symmetric positive definite matrix, v is a vector, and f(t) is a
Stieltjes function. We are interested in the situation whenA is too large to make the evaluation of
f(A) practical. Approximations of I(f) are computed with the aid of rational Gauss quadrature
rules. Error bounds or estimates of bounds are determined with rational Gauss-Radau or rational
anti-Gauss rules.
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Abstract

Computing invariant subspaces is at the core of many applications, from machine learning to
signal processing, and control theory, to name just a few examples. Often one wishes to com-
pute the subspace associated with eigenvalues located at one end of the spectrum, i.e., either
the largest or the smallest eigenvalues. In addition, it is quite common that the data at hand
undergoes frequent changes and one is required to keep updating or tracking the target invariant
subspace. The talk will present standard tools for computing invariant subspaces, with a focus
on methods that do not require solving linear systems. One of the best known techniques for
computing invariant subspaces is the subspace iteration algorithm [2]. While this algorithm
tends to be slower than a Krylov subspace approach such as the Lanczos algorithm, it has many
attributes that make it the method of choice in many applications. One of these attributes is
its tolerance of changes in the matrix. An alternative framework that will be emphasized is
that of Grassmann manifolds [1]. We will derive gradient-type methods and show the many
connections that exist between different viewpoints adopted by practitioners, e.g., the TraceMin
algorithm [3]. The talk will end with a few illustrative examples.

References

[1] A. EDELMAN, T. A. ARIAS, AND S. T. SMITH, The geometry of algorithms with orthogonality
constraints, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 303–353.

[2] Y. SAAD, Numerical Methods for Large Eigenvalue Problems- Classics in Appl. Math., SIAM,
Philadelpha, PA, 2011.

[3] A. H. SAMEH AND J. A. WISNIEWSKI, A trace minimization algorithm for the generalized eigen-
value problem, SIAM Journal on Numerical Analysis, 19 (1982), pp. 1243–1259.



Characterization and convergence improvement
of some Krylov subspace methods for solving
linear systems

F. Bouyghf1,3, A. Messaoudi2,1, Hassane Sadok3
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Abstract

We consider some Krylov subspace methods for solving a linear system Ax = b, which con-
verge in m iterations for a certain initial estimate x0 and the corresponding residual r0 =
b− Ax0, being m the degree of the minimal polynomial Mm of A for r0.

The Krylov methods considered are products methods and the kth residual polynomial is
QkPk, where Pk is a polynomial of degree k such that Pm = Mm and Qk is a polynomial of
fixed or variable degree.

We first show how to compute recursively the sequence of polynomials Pk and provide some
particular case. Then, we study some choices of polynomials Qk involving local convergence,
smoothing, and fixed memory and cost for each iteration. Numerical experiments are provided
to illustrate the performance of the algorithms developed.
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Abstract

The vector Epsilon-algorithm introduced by P. Wynn is a powerful method for accelarating the
convergence of vector sequences. The algorithm is an extension of the scalar Epsilon algorithm,
obtained by replacing the inverse of a real number in the scalar case, by the psoeudo-inverse of
a vector in the vector case. The kernel of the vector Epsilon is the set of sequences transformed
by the algorithm to stationnary sequences (the constant is a limit or anti-limit of the sequence).
It is well-known that the kernel contains sequences satisfying some difference equations. In this
paper, we show that this condition is only sufficient and that the kernel contains other kind of
sequnces. We show also how the use of Clifford algebra, can be very helpful for understand-
ing and deriving new results of the algorithm. In particular, we give necessary and sufficient
condition for caracterizing the kernel. Examples for illustrations as well as geometrical inter-
pretations are given.
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Abstract

It is standard to present Gaussian quadrature in connection with orthogonal polynomials. How-
ever Gauss himself arrived at his quadrature rules by following a very different path. The talk
will be a guided tour through Gauss’s original memoir, a fascinating mathematical work that
uses, in a masterly way, rational approximation, continued fractions, integral transforms, and
many other resources. As any numerical analyst would do today, Gauss wraps up by presenting
an experiment that shows the superiority of his approach when compared with other available
techniques.
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Abstract

We consider the efficient numerical computation of Hadamard Finite Part (HFP) integrals

I[f] = ⨎ba f(x) dx, f(x) = g(x)(x−t)m , g ∈ C∞[a, b], m = 1, 2, . . . , a < t < b,

f(x) T -periodic, f ∈ C∞(Rt), Rt = R \ {t + kT}∞k=−∞, T = b − a.

Such integrals, arise naturally in different scientific and engineering disciplines, such as frac-
ture mechanics, elasticity, electromagnetic scattering, acoustics, to name some. Starting with a
most recent generalization of the Euler–Maclaurin expansion [1], we determine the asymptotic
expansion of the trapezoidal sum h∑n−1

j=1 f(t + jh), h = T/n, and use this and a “backward”

extrapolation procedure to develop new numerical quadrature formulas we denote T̂ (s)
m,n[f]. For

example, with m = 3, we have

T̂
(0)
3,n [f] = h∑n−1

j=1 f(t + jh) − π
2

3
g
′(t)h−1 + 1

6
g
′′′(t)h

T̂
(1)
3,n [f] = h∑n

j=1 f(t + jh − h/2) − π2 g′(t)h−1,
T̂

(2)
3,n [f] = 2h∑n

j=1 f(t + jh − h/2) − h

2
∑2n

j=1 f(t + jh/2 − h/4).
The important features of our formulas are as follows: (i) Unlike existing formulas that deal
separately with each m (limited mostly to m = 1, 2), our formulas cover all values of m si-
multaneously. (ii) They are obtained by adding simple, yet sophisticated, “correction” terms to
h∑n−1

j=1 f(t + jh). Thus, they are compact. (Most quadrature formulas in the literature have
complex structures.) (iii) Unlike most quadrature formulas in the literature that achieve limited
and low accuracy (like O(n−ν) for some small ν > 0), our formulas achieve spectral accuracy,
that is, for all m and s, we have T̂

(s)
m,n[f] − I[f] = o(n−µ) as n→∞∀µ > 0.

We present numerical examples that confirm our theoretical results pertaining to the rates of
convergence of the quadrature formulas developed. For details, see [2].
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Abstract

We consider operator preconditioning B−1A, which is employed in the numerical solution of
boundary value problems. Here, the self-adjoint operators A,B : H1

0 (Ω) → H−1(Ω) are the
standard integral/functional representations of the partial differential operators −∇ · (k(x)∇u)
and −∇ · (g(x)∇u), respectively, and the scalar coefficient functions k(x) and g(x) are as-
sumed to be continuous throughout the closure of the solution domain. The function g(x) is
also assumed to be uniformly positive. When the discretized problem, with the preconditioned
operator B−1

n An, is solved with Krylov subspace methods, the convergence behavior depends
on the distribution of the eigenvalues. Therefore it is crucial to understand how the eigenvalues
of B−1

n An are related to the spectrum of B−1A. Following the path started in the two recent
papers published in SIAM J. Numer. Anal. [57 (2019), pp. 1369-1394 and 58 (2020), pp. 2193-
2211], the first part of the talk addresses the open question concerning the distribution of the
eigenvalues of B−1

n An formulated at the end of the second paper.
The second part generalizes some of the results to bounded and self-adjoint operatorsA,B :

V → V #, where V # denotes the dual of V . More specifically, provided that B is coercive
and that the standard Galerkin discretization approximation properties hold, we prove that the
whole spectrum of B−1A : V → V is approximated to an arbitrary accuracy by the eigenvalues
of its finite dimensional discretization B−1

n An.
The presented spectral approximation problem includes the continuous part of the spec-

trum and it differs from the eigenvalue problem studied in the classical PDE literature which
addresses compact (solution) operators.
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Abstract

We report on our experiments with Block GMRES (BGMRES) on GPUs. We show that there
are many cases in which BGMRES is slower than GMRES on CPUs, but faster on GPUs.
Furthermore, when varying the number s of right hand sides, it is clear that there is an optimal
such number, that is, one for which the advantage of BGMRES over GMRES is maximal.
We develop a computational model, using CPU and GPU specific parameters such as latency,
and communication time per word. The computational model shows qualitatively where this
optimal value of s is, and helps exlpain this phenomena.



Optimal L-shaped matrix reordering via nonlin-
ear matrix eigenvectors

Francesco Tudisco1, Desmond J. Higham2

1School of Mathematics, Gran Sasso Science Institute, 67100 L’Aquila, Italy
email: francesco.tudisco@gssi.it
2School of Mathematics, University of Edinburgh, EH89YL Edinburgh, UK
email: d.j.higham@ed.ac.uk

Abstract

We are interested in finding a permutation of the entries of a given square matrix A, so that the
maximum number of its nonzero entries are moved to one of the corners in a L-shaped fashion,
as in the example figure below.

If we interpret the nonzero entries of the matrix as the edges of a graph, this problem boils
down to the so-called core–periphery structure, consisting of two sets: the core, a set of nodes
that is highly connected across the whole graph, and the periphery, a set of nodes that is well
connected only to the nodes that are in the core.

Matrix reordering problems have applications in sparse factorizations and preconditioning,
while revealing core–periphery structures in networks has applications in economic, social and
communication networks.

This optimal reordering problem is a hard combinatorial optimization problem. In this work,
we relax the combinatorial constraint and propose a method based on the continuous problem:

max f(x) :=
∑

ij

|Aij|max{xi, xj} s.t. ‖x‖ = 1 (1)

A solution of (1) would then be a vector that assigns a core score which indicates how
“likely” it is that a node is in the core. While the quality measure f is still highly nonconvex
and thus hardly treatable, we show that the global maximum of f coincides with the nonlinear
Perron eigenvector of a suitably defined parameter dependent matrix M(x), i.e. the positive
solution to the nonlinear eigenvector problemM(x)x = λx. Using recent advances in nonlinear
Perron–Frobenius theory, we show that (1) has a unique solution and we propose a nonlinear
power-method type scheme that allows us to solve (1) with global convergence guarantees and
effectively scales to very large and sparse matrices. We present several numerical experiments
showing that the new method largely outperforms baseline techniques.
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Abstract

Orthogonal polynomials are an important tool to approximate functions. Orthogonal rational
functions provide a powerful alternative if the function of interest is not well approximated by
polynomials.
Polynomials orthogonal with respect to certain discrete inner products can be constructed by ap-
plying the Lanczos or Arnoldi iteration to appropriately chosen diagonal matrix and vector. This
can be viewed as a matrix version of the Stieltjes procedure. The generated nested orthonormal
basis can be interpreted as a sequence of orthogonal polynomials. The corresponding Hessen-
berg matrix, containing the recurrence coefficients, also represents the sequence of orthogonal
polynomials.
Alternatively, this Hessenberg matrix can be generated by an updating procedure. The goal of
this procedure is to enforce Hessenberg structure onto a matrix which shares its eigenvalues
with the given diagonal matrix and the first entries of its eigenvectors must correspond to the
elements of the given vector. Plane rotations are used to introduce the elements of the given
vector one by one and to enforce Hessenberg structure.
The updating procedure is stable thanks to the use of unitary similarity transformations. In this
talk rational generalizations of the Lanczos and Arnoldi iterations are discussed. These itera-
tions generate nested orthonormal bases which can be interpreted as a sequence of orthogonal
rational functions with prescribed poles. A matrix pencil of Hessenberg structure underlies
these iterations.
We show that this Hessenberg pencil can also be used to represent the orthogonal rational func-
tion sequence and we propose an updating procedure for this case. The proposed procedure
applies unitary similarity transformations and its numerical stability is illustrated.
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Abstract

Numerical methods based on the Laplace transform are ubiquitous in scientific computing. Al-
gorithms in the literature have focused predominantly on the computation of the inverse trans-
form, the assumption presumably being that if the forward transform is needed then one can
find it by analytical methods or table look-up. When these methods fail, the forward transform
has to be computed numerically, a challenging task if the transform is needed in the left half
of the complex plane. This need arises because many efficient inversion algorithms sample the
transform at certain locations in the left half-plane. A method based on the well-known Weeks
method [1] for the inverse transform is modified here for the computation of the forward trans-
form. The method is compared with earlier methods based on sums of exponentials. A few
applications are presented, including the solution of a fractional differential equation.
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