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Abstract

We consider a variational principle for approximated Weak KAM solutions pro-
posed by Evans. For Hamiltonians in quasi-integrable form h(p) + εf(ϕ, p), we
prove that the map which takes the parameters (ε, P, %) to Evans’ approximated
solution uε,P,% is real analytic. In the mechanical case, we compute a recursive
system of periodic partial differential equations identifying univocally the coeffi-
cients for the power series of the perturbative parameter ε.

1 Introduction

In the classical integrability theory of Hamiltonian systems, a central role is played by
the Hamilton-Jacobi method. The basic idea is to integrate the Hamilton’s ODE by a
change of variables (x, p)→ (X,P ) implicitly defined by a generating function v(x, P ).
That is {

X = ∂Pv(x, P )

p = ∂xv(x, P )
(1)

In particular, one looks for a function v(x, P ) and for an integrable Hamiltonian H̄(P )
which solve the so-called Hamilton-Jacobi equation

H(x, ∂xv(x, P )) = H̄(P ). (2)

If there exists a smooth change of variable (x, p)→ (X,P ) which satisfies (1), then the
original Hamiltonian dynamics transforms into the trivial dynamics{

Ẋ = DP H̄(P )

Ṗ = 0
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Clearly, only special Hamiltonians are integrable in the above sense: the Hamilton-
Jacobi equation (2) does not in general admit smooth global solutions and, even if it
does, the new variables (X,P ) are not globally defined. However, most mechanical
systems are quasi-integrable. That is

H(ϕ, p) = h(p) + εf(ϕ, p), (3)

where (ϕ, p) ∈ Td × Rd are the angle-action variables, ε is a small real parameter and
d ∈ N, d ≥ 1, is the fixed dimension of the ambient space.

For quasi-integrable Hamiltonians, the classical perturbation approach consists in
finding a canonical transformation which pushes the perturbation to the order ε2 and
then iterating the procedure. Since for ε = 0 the Hamiltonian (3) is integrable, we look
for a generating function in the form

v(ϕ, P ) = P · ϕ+ εu(ϕ, P ) +O(ε2)

and possibly expand v(ϕ, P ) in a power series of ε. We note here that the ε-dependence
of the generating function v(x, P ) is crucial also for numerical investigations, e.g. in
Celestial and Quantum Mechanics. We also observe that in this context one has to
deal with the resonances related to the so-called small divisors. The main strategies to
handle such a problem are based on KAM and Nekhoroshev theorems (cf. [13, 2, 20, 23])
and on Newton-Nash-Moser implicit function theorem (cf. [21, 12]).

The application of such deep results leads to new intriguing questions concerning, for
example, the generalization of the KAM Theory to a wider class of Hamiltonians which
are not necessarily almost-integrable. The most important outcomes in this direction
have been obtained by the Weak KAM Theory introduced by Mather, Mané and Fathi
(see, e.g., [19, 18, 10]) which exploits variational and PDE’s methods to treat Tonelli
Hamiltonians. In particular, by the Weak KAM Theorem one can prove that, for any
P in Rd (and then with no non-resonance conditions) the Hamilton-Jacobi equation (2)
admits global Lipschitz continuous solutions. The corresponding Hamiltonian H̄(P ) is
given by

H̄(P ) = inf
u∈C1(Td)

sup
ϕ∈Td

H(ϕ, P + ∂ϕu(ϕ, P )) . (4)

and is called “effective Hamiltonian”. However, since Weak KAM solutions are in gen-
eral not differentiable, they cannot be used as generating functions in order to conjugate
the original flow to an integrable one.

In order to bypass this lack of regularity, in [7, 8] Evans introduced a sort of ap-
proximated integrability for Tonelli Hamiltonians. The main result of his approach is
a sequence of smooth functions uniformly converging to a Weak KAM solution and
defining, for any P ∈ Rd, a dynamics on Td. The properties of this torus dynamics and
its relations with the original Hamiltonian flow have been discussed in [8] and in [3].
More recently, Evans returned to this subject in [9].

In the present paper, we propose a functional analytic approach to investigate the
variational approximated version of Weak KAM Theory introduced by Evans. For
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Hamiltonians in the quasi-integrable form (3), we analyze the dependence on parame-
ters of the sequence of Evans’ approximated smooth solutions. In particular, we prove
that the map which takes the perturbative parameter ε to the approximated solution
is real analytic in a neighborhood of 0 (see Theorem 1 here below). As a consequence,
it can be written in terms of a converging power series of ε for ε close to 0. Moreover,
for mechanical Hamiltonians, we compute a recursive system of periodic partial differ-
ential equations which identifies univocally the coefficients of the power series of the
parameter ε (see Section 4). We underline two possible applications of this regularity
result. First, the converging power series of ε can be used in order to investigate the
asymptotic behavior of the parameters involved in Evans’ construction. Moreover, this
series can be useful for a numerical treatment of the above sequence of smooth functions
uniformly converging to a Weak KAM solution.

2 Analytical setting and main result

We start by recalling the main lines of the approach to Weak KAM Theory proposed
by Evans in [7, 8]. Instead of looking for minimizers u for the sup norm

I[u] = sup
ϕ∈Td

H(ϕ, P + ∂ϕu(ϕ, P ))

as suggested by formula (4), Evans considers a positive real number % and looks for
minimizers u of the functional

I%[u] =

∫
Td

e%H(ϕ,P+∂ϕu)dϕ . (5)

Then, for all (P, %) ∈ Rd × R+ the corresponding Euler-Lagrange equation is

divϕ

(
e%H(ϕ,P+∂ϕu)∂H

∂p
(ϕ, P + ∂ϕu)

)
= 0. (6)

In detail:

1

%

d∑
i=1

(Hpi(ϕ, P + ∂ϕu))ϕi
+

d∑
i,j=1

Hpi(ϕ, P + ∂ϕu)Hpj(ϕ, P + ∂ϕu)u′′ij+

+
d∑
i=1

Hϕi
(ϕ, P + ∂ϕu)Hpi(ϕ, P + ∂ϕu) = 0

(7)

where u′′ij = ∂2u
∂ϕi∂ϕj

. Under suitable convexity hypotheses on H –see (c1), (c2) and (c3)

below– and by using standard variational techniques, Evans proves the existence of
minimizers u for (5) for all (P, %) ∈ Rd × R+. He also shows that such minimizers are
smooth and unique up to an additive constant. (So that there exists a unique minimizer
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with zero integral mean, i.e. such that
∫
Td udϕ = 0.)

In the present paper we focus our attention on smooth real valued Hamiltonians
H defined on the covering space Rd × Rd of Tn × Rn by the quasi–integrable form

H(ϕ, p) = h(p) + εf(ϕ, p)

where the functions h and f satisfy the following conditions:

(c1) (periodicity in ϕ) For any p ∈ Rd, the mapping ϕ 7→ f(ϕ, p) is Td-periodic;

(c2) (strict convexity) There exists a constant γ > 0 such that

∂2h

∂pi∂pj
(p)ξiξj ≥ γ|ξ|2 (8)

for each p, ξ ∈ Rd;

(c3) (growth bounds) There exists a constant C > 0 such that

|f(ϕ, p)| ≤ C, |D2
ϕ,pf(ϕ, p)| ≤ C(1 + |p|),

|D2
ϕf(ϕ, p)| ≤ C(1 + |p|2), |D2

pH(ϕ, p)| ≤ C

for each ϕ, p ∈ Rd;

(c4) (regularity of f and h) We suppose that f(ϕ, p) is a jointly real analytic function
of (ϕ, p) ∈ Td × R and that h is real analytic.

As proved by Evans [7, Thm. 5.2], conditions (c1) – (c3) imply the existence of a unique
solution of equation (6) with zero integral mean. We shall denote such a solution by
uε,P,ρ. Then we ask the following question:

what can be said on the function which takes (ε, P, ρ) to uε,P,ρ?

In particular,
what about the ε-dependence?

In our main Theorem 1 we prove that under conditions (c1) – (c4) the map which
takes (ε, P, ρ) to uε,P,ρ is real analytic. However, one may wish to relax the regularity
condition in (c4) and –for example– ask a differentiability condition on f and h instead
of the real analyticity prescribed in (c4) (cf. Proposition 4 below). As one can expect,
a weaker regularity assumption on f and h leads to a lower regularity of the function
which takes (ε, P, ρ) to the solution uε,P,ρ (cf. Thm. 7 below).

The proof of Theorem 1 utilizes a functional analytic approach. We identify uε,P,%
as the implicit solution of a functional equation M̃(ε, P, %, u) = 0, where M̃ is a (non-
linear) operator acting between suitable Banach spaces (see (12) and (13) below). Then
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we study the dependence of uε,P,% upon (ε, P, %) by means of the Implicit Function
Theorem for real analytic maps (cf., e.g., Deimling, Ch. 4 in [6]). We observe that
methods based on the Implicit Function Theorem have been largely exploited for the
study of nonlinear perturbation problems. We refer for example to the works of Stoppelli
and Valent in nonlinear elasticity (see, e.g., [24, 25, 26]) and to the approach of Henry
for the analysis of (regular) perturbations of the domain in boundary value problems
(cf. [11]). We also mention the papers written by the second named author together
with Lanza de Cristoforis and Musolino where a method based on the Implicit Function
Theorem is applied to the study of singular perturbations of the domain in linear and
nonlinear boundary value problems (see, for example, [5, 15]).

In the present paper we will need to set the problem in the frame of Banach spaces
of periodic functions with the following two properties: they have to be appropriate for
the application of the standard elliptic regularity theory and, in addition, they have to
be closed under the product of functions. A suitable choice is that of periodic Schauder
spaces. Here below, we first introduce such spaces and then we state the main result of
the paper.

For any m ∈ N and β ∈ [0, 1[, we denote by Cm,β(Td) the space of periodic func-
tions from Rd to R which have continuous partial derivatives up to the order m and
β-Hölder continuous derivatives of order m. As is well known, Cm,β(Td) is a Banach
space. In addition, we denote by Cm,β

z (Td) the closed subspace of Cm,β(Td) consisting
of the functions with zero mean,

∫
Td u dϕ = 0. For the sake of brevity we write Cm(Td)

instead of Cm,0(Td). Then,

we fix once for all α ∈]0, 1[

and we have the following Theorem 1 which is an immediate consequence of Theorem
7 below.

Theorem 1. Let H : Rd × Rd → R be a smooth Hamiltonian in the quasi–integrable
form

H(ϕ, p) = h(p) + εf(ϕ, p) ,

where the functions h and f satisfy conditions (c1) – (c4). For any (P, %) ∈ Rd × R+,
there exists ε0 > 0 such that the map from ] − ε0, ε0[→ C2,β

z (Td) which takes ε to the
unique solution uε,P,% of equation (6) is real analytic.

We observe that by Theorem 7 one may also deduce that the map from ]−ε0, ε0[×Rd×
R+ to C2,β

z (Td) which takes a triple (ε, P, %) to uε,P,% is real analytic.
As an immediate consequence of Theorem 1, there exists 0 < ε1 ≤ ε0 and a sequence

{vk,P,ρ}k∈N in C2,α
z (Td) such that

uε,P,ρ =
+∞∑
k=0

εk

k!
vk,P,ρ ∀ε ∈]− ε1, ε1[
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where the series converges absolutely and uniformly in C2,α
z (Td). In Section 4 we con-

sider the mechanical case H(ϕ, p) = |p|2/2 + εf(ϕ) and we compute a recursive sys-
tem of periodic partial differential equations which identify univocally the coefficients
{vk,P,ρ}k∈N. Finally, we observe that for a numerical use of such a system, one may
be interested in asymptotic approximations of uε,P,k rather than having the complete
series expansion. Under the hypothesis of Theorem 1 one can prove that

uε,P,k =
N∑
h=0

εh

h!
vh,P,k +O(εN+1) as ε→ 0 ,

for all N ∈ N. However, asymptotic approximations of such a form do not require the
real analyticity of the functions f and h and can be deduced under weaker regularity
assumptions (cf. Theorem 7 below).

3 Proof of Theorem 1

3.1 Regularity of the operators

We start by studying the linear operator LP,% defined by

LP,%u =
d∑

i,j=1

(
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P )

)
u′′ij

for all u ∈ C2,α(Td). In view of the strict convexity hypothesis (8), we observe that

d∑
i,j=1

(
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P )

)
ξiξj ≥

γ

%
|ξ|2 +

(
d∑
i=1

∂h

∂pi
(P )ξi

)2

≥ γ

%
|ξ|2

for all ξ ∈ Rd. Thus LP,% is elliptic and we have the following

Proposition 2. Let (P, %) ∈ Rd × R+ be fixed. The following statements hold:

(i) LP,%u ∈ C0,α
z (Td) for all u ∈ C2,α(Td);

(ii) The map which takes u to LP,%u is an isomorphism from C2,α
z (Td) to C0,α

z (Td).

We premise an elementary lemma to the proof of Proposition 2. In the sequel, Qd

denotes the open domain ]0, 1[d with boundary ∂Qd, νQd denotes the outward unit
normal to ∂Qd, and dσ denotes the area element on ∂Qd.

Lemma 3. We have ∫
Td

div v dϕ =

∫
∂Qd

νQd · v dσ = 0

for all vector valued functions v ≡ (v1, . . . , vd) ∈ (C1(Td))d.
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Proof. It follows by the divergence theorem, by the periodicity of f , and by the equality
νQd(ϕ) = −νQd(ϕ′) which holds for all points ϕ ≡ (ϕ1, . . . , ϕj−1, 0, ϕj, . . . , ϕd) and
ϕ′ ≡ (ϕ1, . . . , ϕj−1, 1, ϕj, . . . , ϕd) in ∂Qd and for all j ∈ {1, . . . , d}.

Proof. (Proposition 2) (i) It is easily verified that LP,%u ∈ C0,α(Td), so it remains to
show that

∫
Td LP,%u dx = 0. Let AP,% denote the d× d real matrix with entries (AP,%)i,j

defined by

(AP,%)i,j ≡
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P ) ∀(i, j) ∈ {1, . . . , d}2

Then LP,%u = div(AP,%∇u) for all u ∈ C2,α(Td). Thus
∫
Td LP,%u dϕ = 0 by the period-

icity of AP,%∇u and by Lemma 3.

(ii) Since LP,% is continuous from C2,α
z (Td) to C0,α

z (Td) it suffices to show that it is
one-to-one and onto in order to derive that it is an isomorphism by the open mapping
theorem. If LP,%u = 0 then a standard energy argument shows that

∫
Td∇u·A∇u dϕ = 0.

Accordingly ∇u · A∇u = 0 on Td and thus ∇u = 0 by the ellipticity of LP,%. Thus u
is constant and then u = 0 because

∫
Td u dϕ = 0 by the membership of u in C2,α

z (Td).
Now we have to prove that LP,% is onto. Let v ∈ C0,α

z (Td). Then we denote by NP,%(v)
the periodic newtonian potential defined by

NP,%(v)(ϕ) =

∫
Td

SLP,%,Td(ϕ− ϑ)v(ϑ) dϑ ∀ϕ ∈ Td ,

where SLP,%,Td denotes the periodic analog of a fundamental solution of LP,% introduced
in Appendix A. Then by a classical argument based on Fubini Theorem and the peri-
odicity of SLP,%,Td one verifies that∫
Td

NP,%(v)(ϕ) dϕ =

∫
Td

∫
Td

SLP,%,Td(ϕ−ϑ)v(ϑ) dϑ dϕ =

∫
Td

v(ϑ) dϑ

∫
Td

SLP,%,q(ϕ) dϕ = 0 .

Thus, by Proposition 9 in Appendix A we have NP,%(v) ∈ C2,α
z (Td) and LP,%NP,%(v) =

v.
We proceed by studying the (nonlinear) operator M from R× Rd × R+ × C2,α

z (Td)
to C0,α(Td) which takes (ε, P, %, u) to the function defined by the left hand side of (7).
So that (7) is equivalent to M(ε, P, %, u) = 0. In order to investigate the mapping
properties of M and enstablish the correct regularity assumptions on the functions f
and h, we exploit the following notation for the composition operators.

If F is a continuous function from Td×Rd to R, then we denote by TF the (nonlinear
nonautonomous) composition operator from (C(Td))d to C(Td) which takes a vector
valued function v ≡ (v1, . . . , vd) to the function TF (v) defined by

TF (v)(ϕ) ≡ F (ϕ, v(ϕ)) ∀ϕ ∈ Td .
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Similarly, for a continuous function G from Rd to R, we denote by TG the (nonlinear
autonomous) composition operator from (C(Td))d to C(Td) which takes a vector valued
function v ≡ (v1, . . . , vd) to the function TG(v) defined by

TG(v)(ϕ) ≡ G(v(ϕ)) ∀ϕ ∈ Td

In the sequel we shall assume the following condition:

The composition operators Tf , Th, and T∂ϕj f
, with j ∈ {1, . . . , d}, map

functions of (C1,α(Td))d to functions of C0,α(Td).
(9)

In addition we shall assume either one of the following conditions (10) and (11). Here
q is fixed natural number in N \ {0}.

The maps Tf and Th are of class Cq+2 from (C1,α(Td))d to C0,α(Td) and

the maps T∂ϕj f
, with j ∈ {1, . . . , d}, are of class Cq+1 from (C1,α(Td))d to C0,α(Td).

(10)

The maps Tf and Th are real analytic from (C1,α(Td))d to C0,α(Td) and

the maps T∂ϕj f
, with j ∈ {1, . . . , d}, are real analytic from (C1,α(Td))d to C0,α(Td).

(11)

We observe that condition (10) implies that T∂2pipjh, T∂pih, T∂pif , T∂ϕif
, T∂2pipj f , and T∂2ϕipi

f

are continuously Frechèt differentiable maps of class Cq from (C1,α(Td))d to C0,α(Td)
while condition (11) implies that T∂2pipjh, T∂pih, T∂pif , T∂ϕif

, T∂2pipj f , and T∂2ϕipi
f are real

analytic from (C1,α(Td))d to C0,α(Td), see [15, Prop. 6.3]. Clearly condition (11) implies
condition (10).
Finally, the next proposition gives some sufficient conditions for the validity of (9),
(10), and (11). In the sequel we say that a function f belongs to Cm(Td × Rd) if f
belongs to Cm(Rd × Rd) and for every ξ ∈ Rd fixed the map which takes x ∈ Rd to
f(x, ξ) is periodic. Similarly, we say that f is jointly real analytic from Td×Rd to R if
it is jointly real analytic from Rd × Rd to R and for every ξ ∈ Rd fixed the map which
takes x ∈ Rd to f(x, ξ) is periodic.

Proposition 4. The following statements hold.

(i) If f ∈ Cq+4(Td×Rd) and h ∈ Cq+4(Rd), then conditions (9) and (10) are verified.

(ii) If f is jointly real analytic from Td×Rd to R and h is real analytic, then conditions
(9) and (11) are verified.

Proof. Let Ω be an open neighbourhood of clQd in Rd and assume that Ω is of class
C1. Then the membership of f in Cq+4(Td×Rd) imply that f|clΩ×Rd ∈ Cq+4(clΩ×Rd).
Accordingly, the validity of statement (i) follows by [26, Thm. 4.4 in Chap. II]. To show
that statement (ii) holds, we note that if f is real analytic then the functions from
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clΩ × Rd to R which takes (x, ξ) to f(x, ξ) and to ∂xif(x, ξ), with i ∈ {1, . . . , d} are
real analytic in ξ uniformly with respect to x. Then the validity of (ii) follows by [26,
Thm. 5.2 in Chap. II].

We write now the (nonlinear) operator M in terms of the operators T∂2pipjh, T∂pih,
T∂2ϕipi

f , T∂pif involving the integrable Hamiltonian h and the function f .

M(ε, P, %, u) =
d∑

i,j=1

(
1

%
T∂2pipjh(P + ∂ϕu) + T∂pih(P + ∂ϕu)T∂pjh(P + ∂ϕu)

)
u′′ij

+
ε

%

d∑
i,j=1

T∂2pipj f (P + ∂ϕu) +
ε

%

d∑
i=1

T∂2ϕipi
f (P + ∂ϕu)

+ 2ε
d∑

i,j=1

T∂pif (P + ∂ϕu)T∂pjh(P + ∂ϕu)u′′ij + ε
d∑
i=1

T∂ϕif
(P + ∂ϕu)T∂pih(P + ∂ϕu)

+ ε2

d∑
i,j=1

T∂pif (P + ∂ϕu)T∂pj f (P + ∂ϕu)u′′ij + ε2

d∑
i=1

T∂ϕif
(P + ∂ϕu)T∂pif (P + ∂ϕu)

(12)

Then, by standard calculus in Banach spaces and by the continuity of the product of
functions from C0,α

z (Td)× C0,α
z (Td) to C0,α(Td), one proves the following

Proposition 5. Let condition (9) hold true.

(i) If condition (10) is verified for a q ∈ N\{0}, then the map M is of class Cq from
R× Rd × R+ × C2,α

z (Td) to C0,α(Td).

(ii) If in addition condition (11) holds true, then the map M is real analytic from
R× Rd × R+ × C2,α

z (Td) to C0,α(Td).

3.2 Applying the Implicit Function Theorem

We plan to use the Implicit Function Theorem for real analytic maps in order to study
equation M(ε, p, %, u) = 0 in a neighbourhood of a fixed point (0, P0, %0, 0) ∈ R×Rd ×
R+ × C2,α

z (Td).
The partial differential of M with respect to the variable u evaluated at (0, P0, %0, 0)

is delivered by

∂uM(0, P0, %0, 0).δu = LP0,%0δu ∀δu ∈ C2,α
z (Td)

and LP0,%0 is an isomorphism from C2,α
z (Td) to C0,α

z (Td) (cf. Prop. 2).
We note that, since

∫
Td M(ε, p, %, u) dϕ may be different from 0, the image of M is not
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contained in C0,α
z (Td). To overcome this difficulty, we introduce the auxiliary map M̃

defined by
M̃(ε, P, %, u) ≡ e%(h(P+∂ϕu)+εf(ϕ,P+∂ϕu))M(ε, P, %, u)

for all (ε, P, %, u) ∈ R×Rd ×R+ ×C2,α
z (Td), or equivalently, by using the operators Th

and Tf ,
M̃(ε, P, %, u) = e%(Th(P+∂ϕu)+εTf (P+∂ϕu))M(ε, P, %, u) (13)

Then one verifies that

M̃(ε, P, %, u) =
1

%
divϕ

(
e%(Th(P+∂ϕu)+εTf (P+∂ϕu))(T∂pih(P + ∂ϕu) + εT∂pif (P + ∂ϕu))i∈{1,...,d}

)
and thus, by Lemma 3, we conclude that∫

Td

M̃(ε, P, %, u) dϕ = 0

for all (ε, P, %, u) ∈ R×Rd ×R+ × C2,α
z (Td). Accordingly M̃(ε, P, %, u) ∈ C0,α

z (Td) and
by using Proposition 5 one shows an analog result for the map M̃ .

Proposition 6. Let condition (9) hold true.

(i) If condition (10) is verified for a q ∈ N \ {0}, then M̃ is a map of class Cq from
R× Rd × R+ × C2,α

z (Td) to C0,α
z (Td).

(ii) If in addition condition (11) holds true, then M̃ is real analytic from R × Rd ×
R+ × C2,α

z (Td) to C0,α
z (Td).

Finally, a straightforward calculation shows that the partial differential of M̃ with
respect to the variable u evaluates at (0, p0, %0, 0) ∈ R×Rd×R+×C2,α

z (Td) is delivered
by

∂uM̃(0, P0, %0, 0).δu = e%0h(P0)LP0,%0δu ∀δu ∈ C2,α
z (Td)

Then, by Proposition 2, ∂uM̃(0, P0, %0, 0) is an isomorphism from C2,α
z (Td) to C0,α

z (Td)
and by the Implicit Function Theorem, see [6, Ch. 4], one deduces the following

Theorem 7. Let (P0, %0) ∈ Rd × R+. Let condition (9) hold true.

(i) Assume that condition (10) is verified for a q ∈ N \ {0}. Then there exist a
neighborhood U of (0, P0, %0) in R× Rd × R+, a neighborhood V of 0 in C2,α

z (Td)
and a map U of class Cq from U to V such that the set of zeros of M̃ in U × V
coincides with the graph of U .

(ii) If in addition condition (11) is verified, then U is real analytic.
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In particular we have U(0, P0, %0) = 0 and

M̃(ε, P, %, U(ε, P, %)) = 0 ∀(ε, P, %) ∈ U .

So that
M(ε, P, %, U(ε, P, %)) = 0 ∀(ε, P, %) ∈ U

(cf. equality (13)). Thus U(ε, P, %) coincides with the unique solution uε,P,% of

M(ε, P, %, uε,P,%) = 0

found by Evans under conditions (c1)–(c3) in the Introduction (see also Thm. 5.2 in
[7]). Accordingly, we have

uε,P,% = U(ε, P, %) ∀(ε, P, %) ∈ U . (14)

Finally, since hypothesis (c4) for H(ϕ, p) = h(p) + εf(ϕ, p) imply conditions (9) and
(11) (cfr. Proposition 4), Theorem 1 immediately follows.

4 Mechanical case

This section is devoted to the mechanical case:

H(ϕ, p) = |p|2/2 + εf(ϕ)

Let us fix P ∈ Rd and k ∈ N \ {0}. We focus our attention on the dependence of uε,P,k
upon the perturbative parameter ε. As an immediate consequence of Theorem 1 and
of equality (14), there exist ε1 > 0 and a sequence {vh,P,k}h∈N in C2,α

z (Td) such that

uε,P,k =
+∞∑
h=0

εh

h!
vh,P,k ∀ε ∈]− ε1, ε1[

where the series converges uniformly in C2,α
z (Td).

We now show how to compute a sequence of recursive equations which determine the
vh,P,k’s. Starting by equality M̃(ε, P, k, uε,P,%) = 0 (see formula (13)) and using the
general Leibniz rule, we have

∂hε (M̃(ε, P, k, uε,P,%)) = ek
( |P+∂ϕuε,P,%|

2

2
+εg
)
∂hε (M(ε, P, k, uε,P,%))

+
h−1∑
l=0

(
h

j

)
∂h−jε (ek

( |P+∂ϕuε,P,%|
2

2
+εg
)
)∂jε(M(ε, P, k, uε,P,%)) ∀ε ∈]− ε1, ε1[

(15)

for all h ∈ N, h ≥ 1.
We now take the limit as ε → 0 in equality (15) and apply a standard induction
argument on h, verifing that equation limε→0 ∂

h
ε (M̃(ε, P, k, uε,P,%)) = 0 is equivalent to

lim
ε→0

∂hε (M(ε, P, k, uε,P,%)) = 0

11



for all h ∈ N, h ≥ 1. Then, by a straightforward calculation, we obtain that the
equations for v0,P,k, v1,P,k, and v2,P,k are as follows:

v0,P,k = 0 ,

LP,%v1,P,k = −P · ∂ϕg ,

LP,%v2,P,k = −2(∂ϕv1,P,k) · ∂ϕg − 4
d∑

i,j=1

Pi ∂ϕi
v1,P,k ∂

2
ϕiϕj

v1,P,k

while the (recursive) equations for the vh,P,k’s with h ≥ 3 are delivered by

LP,%vh,P,k = −h!(∂ϕvh−1,P,k) · ∂ϕg − 2
d∑

i,j=1

Pi

h−1∑
l=1

(
h

l

)
∂ϕi

vh−l,P,k ∂
2
ϕiϕj

vl,P,k

−
d∑

i,j=1

h−1∑
l1=1

(
h

l1

) h−1−l1∑
l2=1

(
h− l1
l2

)
∂ϕi

vl1,P,k ∂ϕj
vl2,P,k ∂

2
ϕiϕj

vh−l1−l2,P,k

A Appendix

For fixed (P, %) ∈ Rd × R+, we consider the partial differential operator on Rd defined
by

LP,% ≡
d∑

i,j=1

(
1

%

∂2h

∂pi∂pj
(P ) +

∂h

∂pi
(P )

∂h

∂pj
(P )

)
∂xi∂xj .

and the polynomial function

Ξp,%(ξ) ≡
d∑

i,j=1

(
1

%

∂2h

∂pi∂pj
(p) +

∂h

∂pi
(p)

∂h

∂pj
(p)

)
ξiξj ∀ξ ∈ Rd

(so that Lp,% = Ξp,%(∂x1 , . . . , ∂xd)). As is well known, there exists a periodic tempered
distribution SP,%,Td on Rd such that

LP,% SP,%,Td =
∑
z∈Zd

δz − 1 ,

where δz denotes the Dirac measure with mass in z (cf. e.g. [1, page 53] and [16]). The
distribution SP,%,Td is determined up to an additive constant, and we can take

SP,%,Td(x) = −
∑

z∈Zd\{0}

1

4π2 ΞP,%(z)
e2πiz·x ,

in the sense of distributions in Rd (cf. e.g., [16, Thm. 3.1]). In addition, we have the
following result (for a proof we refer to [16, Thm. 3.5]).

12



Proposition 8. The following statements hold.

(i) SP,%,Td is real analytic in Rd \ Zd.

(ii) If SP,% is a fundamental solution of LP,% then the difference (SP,%,Td −SP,%) is real
analytic in (Rd \ Zd) ∪ {0}.

(iii) SP,%,Td belongs to L1
loc(Rd).

For all functions f ∈ C0,α(Td), we now denote by NP,%(f) the periodic newtonian
potential defined by

NP,%(f)(ϕ) =

∫
Td

SLP,%,Td(ϕ− ϑ)f(ϑ) dϑ ∀ϕ ∈ Td .

Then, by Proposition 8, by the properties of the fundamental solutions of elliptic con-
stant coefficient operators (cf. [14, Ch. III] and [4, Thm. 5.2]) and by arguing as in [17,
proof of Lem. 3.1] (see also [22, Thm. 2.1]) one verifies the validity of the following

Proposition 9. If f ∈ C0,α(Td), then Np,%(f) ∈ C2,α(Td) and

LP,%NP,%(f) = f −
∫
Td

f(ϕ) dϕ .

References

[1] H. Ammari and H. Kang, Polarization and moment tensors, Applied Mathematical
Sciences, 162, Springer, New York, 2007.

[2] Arnol’d V.I., Proof of A. N. Kolmogorov’s theorem on the conservation of condi-
tionally periodic motions with a small variation in the Hamiltonian. Russian Math.
Surv., 18, no. 5, 9-36, (1963).

[3] O. Bernardi, F. Cardin and M. Guzzo, New estimates for Evans’ variational ap-
proach to weak KAM theory, Commun. Contemp. Math. 15 (2013), no. 2, 36 pp.

[4] M. Dalla Riva, A family of fundamental solutions of elliptic partial differential
operators with real constant coefficients, Integral Equations Oper. Theor., 76, 1-
23, 2013.

[5] M. Dalla Riva, P. Musolino, Real analytic families of harmonic functions in a
planar domain with a small hole. J. Math. Anal. Appl. 422, 37–55, 2015.

[6] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.

[7] L.C. Evans, Some new PDE methods for weak KAM theory, Calc. Var. Partial
Differential Equations, 17, 159-177, 2003.

13



[8] L.C. Evans, Further PDE methods for weak KAM theory, Calc. Var. Partial Dif-
ferential Equations, 35, 435-462, 2009.

[9] L.C. Evans, New Identities for Weak KAM Theory, Preprint.
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C. R. Acad. Sci. Paris. (1997).

[11] D. Henry, Perturbation of the boundary in boundary-value problems of partial dif-
ferential equations. Cambridge University Press, Cambridge, 2005.

[12] R.S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Amer.
Math. Soc. (N.S.) 7, no. 1, 65-222, (1982).

[13] Kolmogorov A.N., On the preservation of conditionally periodic motions. Dokl.
Akad. Nauk SSSR, vol. 98, 527, (1954).

[14] F. John, Plane waves and spherical means applied to partial differential equations,
Interscience Publishers, New York-London, 1955.

[15] M. Lanza de Cristoforis, Asymptotic behavior of the solutions of a nonlinear Robin
problem for the Laplace operator in a domain with a small hole: a functional
analytic approach, Complex Var. Elliptic Equ. 52, 945-977, 2007.

[16] M. Lanza de Cristoforis and P. Musolino, A perturbation result for periodic layer
potentials of general second order differential operators with constant coefficients,
Far East J. Math. Sci. (FJMS), 52, 75-120, 2011.

[17] M. Lanza de Cristoforis and P. Musolino, A singularly perturbed Neumann problem
for the Poisson equation in a periodically perforated domain. A functional analytic
approach, ZAMM Z. Angew. Math. Mech., 96, 253-272, 2016.
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