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Abstract

The aim of this paper is twofold. We construct an extension to non-
integrable case of Hopf’s formula, often used to produce viscosity so-
lutions of Hamilton-Jacobi equations for p-convex integrable Hamilto-
nians. Furthermore, for a general class of p-convex Hamiltonians, we
present a proof of the equivalence of the minimax solution with the
viscosity solution.

1 Introduction

We review some aspects of the Cauchy Problem (CP ) for Hamilton-Jacobi
equations of evolutive type:

(CP )


∂S
∂t (t, q) +H

(
t, q, ∂S∂q (t, q)

)
= 0,

S (0, q) = σ (q) ,

t ∈ [0, T ], q ∈ N , where N is a smooth connected manifold without bound-
ary.
For T small enough, the unique classical solution to (CP ) is determined us-
ing the characteristics method. However, even though H and σ are smooth,
in general there exists a critical time in which the classical solution breaks
down: it becomes multivalued, i.e. the q-components of some characteristics
cross each other. Hence, it arises the question of how to define, and then
to determine, weak (e.g., continuous and almost everywhere differentiable)
global solutions of (CP ).
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In the eighties, Crandall, Evans and Lions introduced the notion of vis-
cosity solution for Hamilton-Jacobi equations, see [22] and [3] for a detailed
review on the subject. Lions [22], Bardi and Evans [2], using Hopf’s formu-
las, directly constructed viscosity solutions for convex Liouville-integrable
Hamiltonians of the form H = H (p).

Afterwards, in 1991 Chaperon and Sikorav proposed in a geometric
framework a new type of weak solutions for (CP ), called minimax solutions –
sometimes also variational or Lagrangian solution (see [13], [31], [24]). Their
definition is based on generating functions quadratic at infinity (G.F.Q.I.)
of the Lagrangian submanifold L obtained by gluing together the character-
istics of the Hamiltonian vector field XH where H (t, q, τ, p) = τ+H (t, q, p).
This global object L resumes geometrically the multi-valued features of the
Hamilton-Jacobi problem, like a sort of Riemann surface (see e.g. [32])
occuring in complex analysis. A discussion on the construction of global
generating functions of L related to viscosity solutions has been made in [8]
in the special case of existence of a complete solution (“complete integral”)
of Hamilton-Jacobi equation.
In this new topological framework, a lot of examples can be found and pro-
duced, even outside the classical mechanics: e.g. in control theory [6], or in
multi-time theory of Hamilton-Jacobi equation [11].

Viscosity and minimax solutions have the same analytic properties, name-
ly, theorems of existence and uniqueness hold, but in general they are dif-
ferent, see [24]. In [20] Joukovskaia indicated that viscosity and minimax
solutions of (CP ) coincide, provided that the Hamiltonian H is convex in
the p variables. A task of the present paper is to give a detailed proof of
this fact.

First, we construct an extension of (the above mentioned) Hopf’s for-
mula, for more general non-integrable Hamiltonians; this is performed on
the torus N = Tn. This result is caught by utilizing (i) a very fruitful, even
though scarcely known, theorem of Hamilton (e.g. quoted by Gantmacher
[18] as “Perturbation Theory”), (ii) a classical composition rule of gener-
ating functions in symplectic geometry [4], and (iii) the existence theorem
by Chaperon-Laudenbach-Sikorav-Viterbo of global generating functions for
Lagrangian submanifolds related to compactly supported Hamiltonians.

Furthermore, we present a proof of the coincidence of minimax and vis-
cosity solutions, essentially based on an Amann-Conley-Zehnder reduction
of the Action Functional of the Hamilton-Helmholtz variational principle.
In our construction it is crucial the following representation of the candi-
date weak solution S : [0, T ] × Rn → R, (t, q) 7→ S (t, q), where we require
(q̃ (·) , p̃ (·)) ∈ H1 ([0, T ] , T ∗Rn)
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S (t, q) := inf
q̃ (·) :

q̃ : [0, t]→ Rn
q̃ (t) = q

sup
p̃ (·) :

p̃ : [0, t]→ Rn,
p̃(0) = ∂σ

∂q (q̃(0))

{
σ (q̃ (0)) +

∫ t

0
(pq̇ −H)|(q̃,p̃) ds

}
,

(1)
H(q, p) = 1

2 |p|
2 + V (q), V compactly supported. Indeed, under the con-

vexity hypothesis on H, from one side, we see that (1) is the Hamiltonian
version of the Lax-Oleinik formula hence defines the viscosity solution by
Crandall-Evans-Lions, see [16], [17] and bibliography quoted therein; from
the other one, we show that the minimax solution proposed by Chaperon-
Sikorav-Viterbo, which is defined through the variational Hamilton-Helm-
holtz functional involved in (1), is exactly given by S.

The sequel is organized as follows.
In Sections 2-4 we recall some notions about symplectic topology, generat-
ing functions and minimax solutions of (CP ). In Section 5, for N = Tn,
we explicitly write down a generating function with finite parameters for
the Lagrangian submanifold geometric solution of (CP ) for the Hamilto-
nian H (q, p) = 1

2 |p|
2 + f (q, p), q ∈ Tn, f compactly supported.

Section 6 is devoted to the proof of the equivalence of viscosity and min-
imax solutions of (CP ), for Hamiltonians of mechanical type H (q, p) =
1
2 |p|

2 + V (q). Here, we assume (q, p) ∈ R2n and compactly supported en-
ergy potential V (q).

In the literature the term minimax solution is often used to indicate a
third approach to generalized solutions of (CP ); this alternative approach –
which applies properly in differential game theory and control theory, hence
lies outside the tasks of the present paper– has been clarified to be equiva-
lent to the concept of viscosity solution, see for example [27], [28] and [25].

One of the authors (F.C.) is friendly indebted to Claude Viterbo, be-
cause the need of investigating the relation between viscosity and minimax
solutions arose during the redaction of the paper [11].

2 Extension of exact Lagrangian isotopies

Conventions. The considered applications are of class C∞ and the spaces
of applications are assumed to be endowed with the C∞ topology. Given
a space of applications E, a path into E is a map t 7→ ft, denoted by (ft),
from I := [0, 1] into E, such that the application (t, x) 7→ ft (x) is of class
C∞. For a generic manifold P , we denote by E (P ) the space of functions
f : P → R.

Let now (P, ω) be a smooth, connected, symplectic manifold of dimension
2n. An embedding j : Λ → P is called Lagrangian if Λ is of dimension n
and j∗ω = 0. In this case, j (Λ) is called Lagrangian submanifold of (P, ω).
The symplectic manifold (P, ω) is exact when ω admits a global primitive
λ; given a primitive λ, an embedding j : Λ→ P such that its pull-back j∗λ
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is exact is called exact Lagrangian embedding.
The following results in symplectic geometry will be used in Section 4.

Theorem 2.1 (Weinstein) For every Lagrangian embedding j : Λ → P ,
there exists an open neighbourhood U of the zero section of T ∗Λ and an em-
bedding J : U → P such that J∗ω = dλΛ|U , where λΛ denotes the Liouville
1-form on T ∗Λ. Moreover, if 0Λ : Λ → T ∗Λ is the zero 1-form on Λ, we
have j = J ◦ 0Λ.

We call J a tubular neighbourhood of j for ω when the open set U ∩ T ∗xΛ is
star-shaped with respect to the origin for every x ∈ Λ.
We denote Emb (Λ, ω) the space of Lagrangian embeddings of Λ into P . A
Lagrangian isotopy of a manifold Λ in (P, ω) is a path into Emb (Λ, ω).

Definition 2.2 (Exact Lagrangian isotopy) Let (jt), jt : Λ → P , be a La-
grangian isotopy of a manifold Λ in (P, ω). Then (jt) is called exact when,
for every t ∈ I and every local primitive λ of ω in a neighbourhood of jt (Λ),
the 1-form d

dtj
∗
t λ is exact on Λ.

We note that a Lagrangian isotopy (jt) such that jt is exact for every t ∈ I,
results an exact Lagrangian isotopy, in fact, in such a case:

d

dt
j∗t λ = dx

[
∂f

∂t
(t, x)

]
.

We refer to [12] for a detailed proof of the following

Theorem 2.3 (Extension of exact Lagrangian isotopies) For every isotopy
(jt) of a compact manifold Λ in (P, ω), the following two properties are
equivalent:
a) (jt) is an exact Lagrangian isotopy of Λ in (P, ω).
b) j0 is Lagrangian and there exists a Hamiltonian isotopy (φt), with compact
support, such that jt = φt ◦ j0 for every t ∈ I.

3 Generating functions

Let N be a compact manifold and L ⊂ T ∗N a Lagrangian submanifold. A
classical argument by Maslov and Hörmander shows that, at least locally,
every Lagrangian submanifold is described by some generating function of
the form

S : N × Rk −→ R

(q, ξ) 7−→ S (q, ξ)
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in the following way:

L :=

{(
q,
∂S

∂q
(q, ξ)

)
:
∂S

∂ξ
(q, ξ) = 0

}
,

where 0 is a regular value of the map

(q, ξ) 7−→ ∂S

∂ξ
(q, ξ) .

In order to apply the Calculus of Variations to generating functions, one
needs a condition implying the existence of critical points. In particular,
the following class of generating functions has been decisive in many issues:

Definition 3.1 A generating function S : N × Rk → R is quadratic at
infinity (G.F.Q.I.) if for |ξ| > C

S (q, ξ) = ξTQξ, (2)

where ξTQξ is a nondegenerate quadratic form.

There were known in literature (see e.g. [32], [21]) three main operations
on generating functions which leave invariant the corresponding Lagrangian
submanifolds:
• Fibered diffeomorphism. Let S : N ×Rk → R be a G.F.Q.I. and N ×Rk 3
(q, ξ) 7→ (q, φ (q, ξ)) ∈ N × Rk a map such that, ∀q ∈ N ,

Rk 3 ξ 7−→ φ (q, ξ) ∈ Rk

is a diffeomorphism. Then

S1 (q, ξ) := S (q, φ (q, ξ))

generates the same Lagrangian submanifold of S.
• Stabilization. Let S : N × Rk → R be a G.F.Q.I. Then

S1 (q, ξ, η) := S (q, ξ) + ηTBη,

where η ∈ Rl and ηTBη is a nondegenerate quadratic form, generates the
same Lagrangian submanifold of S.
• Addition of a constant. Finally, as a third –although trivial– invariant op-
eration, we observe that by adding to a generating function S any arbitrary
constant c ∈ R the described Lagrangian submanifold is invariant.

Crucial problems in the global theory of Lagrangian submanifolds and
their parameterizations are (1) the existence of a G.F.Q.I. for a Lagrangian
submanifold L ⊂ T ∗N , (2) the uniqueness of it (up to the operations de-
scribed above).
The following theorem –see [26]– answers partially to the first question.
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Theorem 3.2 (Chaperon-Chekanov-Laudenbach-Sikorav) Let OT ∗N be the
zero section of T ∗N and (φt) a Hamiltonian flow. Then the Lagrangian
submanifold φ1 (OT ∗N ) admits a G.F.Q.I.

The answer to the second problem is due to Viterbo:

Theorem 3.3 (Viterbo) Let OT ∗N be the zero section of T ∗N and (φt) a
Hamiltonian flow. Then the Lagrangian submanifold φ1 (OT ∗N ) admits a
unique G.F.Q.I. up to the above operations.

The theorems above –see also [29] and [30]– still hold in T ∗Rn, provided
that (φt) is a flow of a compactly supported Hamiltonian vector field.

A generalization of Definition 3.1 –introduced by Viterbo and studied in
detail by Theret [29], [30]– is the following:

Definition 3.4 A generating function S : N ×Rk → R, (q, ξ) 7→ S(q, ξ), is
asymptotically quadratic if for every fixed q ∈ N

||S (q, ·)− P(2)(q, ·)||C1 < +∞, (3)

where P(2)(q, ξ) = Q (q, ξ) + A(q)ξ + B(q) and Q (q, ξ) = ξTQ(q)ξ is a
nondegenerate quadratic form.

In particular, a Lagrangian manifold is generated by a generating function
quadratic at infinity (in the sense of Definition 3.1) if and only if it is gen-
erated by an asymptotically quadratic function (in the sense of Definition
3.4).

4 Geometric and minimax solutions

Let N be a smooth, connected and closed (i.e. compact and without bound-
ary) manifold. Let us consider the Cauchy problem (CP ). We suppose that
the Hamiltonian H : R × T ∗N → R is of class C2 and the initial condition
σ : N → R is of class C1.
Let R × N be the “space-time”, T ∗ (R×N) = {(t, q, τ, p)} its cotangent
bundle (endowed with the standard symplectic form dp ∧ dq + dτ ∧ dt) and
H (t, q, τ, p) = τ +H (t, q, p).
In order to overcome the difficulties arising from the obstruction to existence
of global solutions, we search for Lagrangian submanifolds L ⊂ T ∗ (R×N)
satisfying the following geometric version of Hamilton-Jacobi equation:

L ⊂ H−1 (0) .

But how to obtain such an L? We explain now the procedure.
Let Φt : R×T ∗ (R×N)→ T ∗ (R×N) be the flow generated by the Hamil-
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tonian H : T ∗ (R×N)→ R, H (t, q, τ, p) = τ +H (t, q, p):
ṫ = 1

q̇ = ∂H
∂p

τ̇ = −dH
dt

ṗ = −∂H
∂q

and Γσ be the initial data submanifold:

Γσ := {(0, q,−H (0, q, dσ (q)) , dσ (q)) : q ∈ N} ⊂ H−1 (0) ⊂ T ∗ (R×N) .

We note that Γσ is the intersection of the Lagrangian submanifold Λσ =
{(0, q, t, dσ (q)) : (t, q) ∈ R×N} with the hypersurface H−1 (0):

Γσ = Λσ ∩H−1 (0) .

Definition 4.1 The geometric solution to (CP ) is the submanifold

L :=
⋃

0≤t≤T
Φt (Γσ) ⊂ T ∗ (R×N) .

Proposition 4.2 The geometric solution L is an exact Lagrangian sub-
manifold, contained into the hypersurface H−1 (0) and Hamiltonian iso-
topic to the zero section OT ∗([0,T ]×N) = {(t, q, 0, 0) : 0 ≤ t ≤ T, q ∈ N} of
T ∗ ([0, T ]×N).

Proof. A direct computation shows that every geometric solution is an
exact Lagrangian submanifold. In order to prove that L is Hamiltonian iso-
topic to the zero section OT ∗([0,T ]×N) = {(t, q, 0, 0) : 0 ≤ t ≤ T, q ∈ N} of
T ∗ ([0, T ]×N), we determine a continuous path of exact Lagrangian sub-
manifolds in T ∗ (R×N) connecting the zero section to L. Hence we conclude
using Theorem 2.3.
Let us consider the following 1-parameter family of Cauchy problems related
to Hamilton-Jacobi equations:

(CP )λ


∂S
∂t (t, q) + λH

(
t, q, ∂S∂q (t, q)

)
= 0

S (0, q) = λσ (q)

The initial data submanifold related to (CP )λ is:

Γλσ = {(0, q,−λH (0, q, λdσ (q)) , λdσ (q))}

and the geometric solution to (CP )λ is
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Lλ =
⋃

0≤t≤T
Φt
λ (Γλσ) = {(t, q̃λ (t) , τ̃λ (t) , p̃λ (t))}

with
1) Φt

λ the flow of Hλ = τ + λH,
2) (q̃λ (t) , p̃λ (t)) the characteristics ofXλH such that q̃λ (0) = q0 and p̃λ (0) =
λdσ (q0),
3) τ̃λ (t) = −λH (t, q̃λ (t) , p̃λ (t)).
We point out that every Lλ, geometric solution to (CP )λ, results an exact
Lagrangian submanifold of T ∗ (R×N) and that L1 = L. On the other hand
L0 = OT ∗([0,T ]×N). Hence we have defined a continuous path λ 7→ Lλ con-
necting the zero section OT ∗([0,T ]×N) to the Lagrangian submanifold L. As
a consequence of Theorem 2.3, this fact results equivalent to the existence
of a Hamiltonian isotopy connecting the zero section OT ∗([0,T ]×N) to L. 2

As a consequence of preceding Proposition 4.2 and of the compactness
of N , Theorem 3.3 of Viterbo guarantees that the Lagrangian submanifold
L admits essentially (that is, up to the three operations described above) a
unique G.F.Q.I. S : [0, T ]×N × Rk → R, (t, q; ξ) 7→ S (t, q; ξ).
We can assume that the graph of S (t, q; ξ) at t = 0 coincides with Γσ:

Γσ =

{(
0, q,

∂S

∂t
(0, q; ξ) ,

∂S

∂q
(0, q; ξ)

)
:
∂S

∂ξ
(0, q; ξ) = 0

}
.

The quadraticity at infinity property of S (t, q; ξ) is crucial: minimax
solutions arise from the application of the Lusternik-Schnirelman method to
the G.F.Q.I. S (t, q; ξ). In some more detail, let us consider the sublevel sets

Sc(t,q) :=
{
ξ ∈ Rk : S (t, q; ξ) ≤ c

}
, (t, q) ∈ [0, T ]×N fixed,

Qc :=
{
ξ ∈ Rk : Q (ξ) ≤ c

}
.

We observe that for c > 0 large enough, Sc(t,q) and Qc are invariant from a
homotopical point of view:

S±c(t,q) = Q±c,

and S±c̄(t,q) retracts on S±c(t,q) for every c̄ > c. Let A := Q(c−ε), ε > 0 small.

Then the isomorphisms below (the first one by excision and the second one
by retraction) hold:

H∗
(
Qc, Q−c

) ∼= H∗
(
Qc\

◦
A,Q

−c\
◦
A
)
∼= H∗

(
Di, ∂Di

)
,
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where i is the index of the quadratic form Q (that is, the number of negative
eigenvalues of Q) and Di denotes the disk (of radius

√
c) in Ri. Hence

H∗
(
Sc(t,q), S

−c
(t,q)

)
is 1-dimensional:

Hh
(
Sc(t,q), S

−c
(t,q)

)
∼= Hh

(
Di, ∂Di

)
=

{
0 if h 6= i

α · R if h = i
(4)

We remark that (4) holds also for generalized G.F.Q.I. of Definition 3.4,

because the relative cohomology Hh
(
Sc(t,q), S

−c
(t,q)

)
is invariant.

Definition 4.3 (Minimax solution) Let S (t, q; ξ) be any G.F.Q.I. for L,
S (t, q; ξ) = Q (ξ) out of a compact set in the parameters ξ ∈ Rk. For c > 0

large enough and for every (t, q) ∈ [0, T ]×N , let 0 6= α ∈ H i
(
Sc(t,q), S

−c
(t,q)

)
be the unique generator (up to a constant factor) as in (4) and

iλ : Sλ(t,q) ↪→ Sc(t,q).

The function

(t, q) 7→ u (t, q) := inf {λ ∈ [−c,+c] : i∗λα 6= 0} (5)

is the minimax solution of (CP ).

The following fundamental Theorem has been proved by Chaperon, see [13].

Theorem 4.4 The minimax solution u (t, q) is a weak solution to (CP ),
Lipschitz on finite times, which does not depend on the choice of the G.F.Q.I.

We observe that the definition of minimax solutions arises naturally in the
compact case, when the Uniqueness Theorem of Viterbo is satisfied. More-
over, for a fixed point on the manifold [0, T ]×N , the minimax critical value
is unique and is determined by the Morse index of the quadratic form Q.
We conclude with the following Proposition (see also Theorem 7.1 in [20]),
which will be useful in the sequel.

Proposition 4.5 Let S (t, q; ξ) and u (t, q) as in Definition 4.3. Let us
suppose that the Morse index of the quadratic form Q is 0. Then

u (t, q) = min
ξ∈Rk

S (t, q; ξ) .

Proof. Let us fix a point (t, q) ∈ [0, T ] × N . Since Q is positive definite,
S−c(t,q) = ∅, and for c > 0 large enough, it results (see (4))

Hh
(
Sc(t,q), S

−c
(t,q)

)
= Hh

(
Sc(t,q)

)
=

{
0 if h 6= 0

1 · R if h = 0
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where 1 is the generator of H0
(
Sc(t,q)

)
. Consequently, the minimax solution

(5)

u (t, q) = inf {λ ∈ [−c,+c] : i∗λ1 6= 0}

coincides with the minimum of the function ξ 7→ S (t, q; ξ), that is

u (t, q) = min
ξ∈Rk

S (t, q; ξ) .

2

5 A global generating function for the geometric
solution for H (q, p) = 1

2 |p|
2 + f (q, p) on T ∗Tn

Let us consider the Hamiltonian H (q, p) ∈ C2 (T ∗Tn;R):

H (q, p) =
1

2
|p|2 + f (q, p) , (6)

f compactly supported in the p variables, and the Cauchy Problem (CP )H :

(CP )H


∂S
∂t (t, q) +H

(
q, ∂S∂q (t, q)

)
= 0,

S (0, q) = σ (q) ,

where t ∈ [0, T ], q ∈ Tn and σ ∈ C1 (Tn;R).
In this section we investigate around the structure of the generating function
for the geometric solution of (CP )H , showing that its structure is naturally
interpreted as an improvement of the Hopf’s formula utilized by Bardi and
Evans in order to build the viscosity solution for Liouville-integrable Hamil-
tonians.

It turns out useful to introduce the compactly supported HamiltonianK (t, q, p):

K (t, q, p) =
((
φt0
)∗
f
)

(q, p) = H (q + tp, p)− 1

2
|p|2, (7)

where φt0 is the flow of H0 (p) := 1
2 |p|

2.

We recall now the following Proposition, which is, essentially, a result of
Hamilton (see [19] and also [18], [5]).

Proposition 5.1 Let φtH , φ
t,0
K and φt0 be the flows of H, K and H0 respec-

tively. We have:

φtH (q, p) = φt0 ◦ φ
t,0
K (q, p) , (8)

∀ (q, p) ∈ T ∗Tn and ∀t ∈ R.
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Now let us consider the Cauchy Problem (CP )K related to K:

(CP )K


∂S
∂t (t, q) +K

(
t, q, ∂S∂q (t, q)

)
= 0

S (0, q) = σ (q)

and define K (t, q, τ, p) := τ + K (t, q, p), Φt
K its flow, and (ΓK)σ the initial

data submanifold

(ΓK)σ := {(0, q,−K (0, q, dσ (q)) , dσ (q)) : q ∈ Tn} ⊂ K−1 (0) .

Since the manifold Tn is compact, a consequence of Proposition 4.2 and The-
orem 3.3 is the existence of a unique G.F.Q.I. SK (t, q;u) for the geometric
solution LK of (CP )K :

LK :=
⋃

0≤t≤T
Φt
K ((ΓK)σ) .

Proposition 5.2 Let H (q, τ, p) := τ +H (q, p), Φt
H its flow and (ΓH)σ the

initial data submanifold

(ΓH)σ := {(0, q,−H (q, dσ (q)) , dσ (q)) : q ∈ Tn} ⊂ H−1 (0) .

Then the Lagrangian submanifold LH

LH :=
⋃

0≤t≤T
Φt
H ((ΓH)σ) ,

geometric solution of (CP )H , is generated by the function

S̃ (t, q; ξ, u, v) := −1

2
v2t+ (q − ξ) · v + SK (t, ξ;u) . (9)

Proof. The generating function SK (t, ξ;u) generates the Lagrangian sub-
manifold LK , which can be written, more explicitly

LK :=
⋃

0≤t≤T
Φt
K ((ΓK)σ) = {(t, q̃ (t) , τ̃ (t) , p̃ (t)) : 0 ≤ t ≤ T} ,

where q̃ and p̃ are the characteristics of XK such that q̃ (0) = q0 and p̃ (0) =
dσ (q0), and τ̃ (t) = −K (t, q̃ (t) , p̃ (t)).
Now, by a direct computation, we prove that the Lagrangian submanifold
generated by S̃ (t, q; ξ, u, v) coincides with LH .

L
S̃

=

{(
t, q,

∂S̃

∂t
,
∂S̃

∂q

)
:
∂S̃

∂ξ
= 0,

∂S̃

∂u
= 0,

∂S̃

∂v
= 0

}
.
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More precisely,

∂S̃

∂t
(t, q; ξ, u, v) = −1

2
v2 +

∂SK
∂t

(t, ξ;u) ,

∂S̃

∂q
(t, q; ξ, u, v) = v,

∂S̃

∂ξ
(t, q; ξ, u, v) = 0 is and only if − v +

∂SK
∂ξ

(t, ξ;u) = 0

if and only if v =
∂SK
∂ξ

(t, ξ;u) ,

∂S̃

∂u
(t, q; ξ, u, v) = 0 if and only if

∂SK
∂u

(t, ξ;u) = 0,

∂S̃

∂v
(t, q; ξ, u, v) = 0 if and only if − vt+ q − ξ = 0 if and only if q = ξ + vt.

Hence L
S̃

is equivalent to

L
S̃

=

{(
t, q,−1

2
v2 +

∂SK
∂t

(t, ξ;u) , v

)
: v =

∂SK
∂ξ

(t, ξ;u) ,
∂SK
∂u

(t, ξ;u) = 0, q = ξ + vt

}
.

Now we remind that SK (t, ξ;u) generates the Lagrangian submanifold LK ,
hence

L
S̃

=

{(
t, q,−1

2
v2 −K (t, ξ, v) , v

)
: (ξ, v) ∈ φt,0K (Im (dσ)) , q = ξ + vt

}
.

ButK (t, ξ, v) = H (ξ + tv, v)− 1
2v

2, then−1
2v

2−K (t, ξ, v) = −H (ξ + tv, v).
Hence

L
S̃

=
{

(t, ξ + tv,−H (ξ + tv, v) , v) : (ξ, v) ∈ φt,0K (Im (dσ))
}
.

Now we also note that (ξ + vt, v) = φt0 (ξ, v), therefore, since φtH = φt0 ◦φ
t,0
K ,

L
S̃

= {(t, q̄ (t) ,−H (q̄ (t) , p̄ (t)) , p̄ (t)) : 0 ≤ t ≤ T} ,

where q̄ and p̄ are the characteristics of XH such that q̄ (0) = q0 and p̄ (0) =
dσ (q0). Equivalently

L
S̃

= LH .

2

We remark the following interesting fact: the structure of the generating
function (9) recalls the Hopf’s formula used in 1984 by Bardi and Evans
in order to construct viscosity solutions for Liouville-integrable and convex
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Hamiltonians H (p).
In fact, their formula is

uvisc (t, q) = inf
ξ

sup
v
{−H (v) t+ (q − ξ) · v + σ (ξ)} . (10)

The above formula (10), in the case H (p) = 1
2 |p|

2, becomes

uvisc (t, q) = inf
ξ

sup
v

{
−1

2
v2t+ (q − ξ) · v + σ (ξ)

}
. (11)

Therefore, the generating function (9) can be considered the improvement of
−1

2v
2t+(q − ξ)·v+σ (ξ) in (11) when we take into account the perturbed non-

integrable Hamiltonian H (q, p) = 1
2 |p|

2 + f (q, p), f compactly supported.
This correction is just provided by the term SK (t, ξ;u).
The relationship between the explicit generating function for the geometric
solution formula and the Hopf’s formula was already noticed by Martin Day
in [14], albeit he didn’t know that his formula was a special case of a minimax
solution and he was looking only at the p-convex case.
We finally note that the plan of construct viscosity solutions starting from
generating functions has been rather fruitless; nevertheless, under suitable
assumptions, we can find similar representation formulas for state-dependent
Hamiltonians, see [7] and [23].

6 A relationship between minimax and viscosity
solutions

Here we prove in detail the coincidence of minimax and viscosity solutions for
p-convex Hamiltonians of mechanical type1. The equivalence is essentially
established through an Amann-Conley-Zehnder reduction of an infinite pa-
rameters generating function arising from Hamilton-Helmholtz variational
principle.

6.1 A global generating function for the geometric solution
for H (q, p) = 1

2
|p|2 + V (q) on T ∗Rn

We consider the Hamiltonian H (q, p) = 1
2 |p|

2 + V (q) ∈ C2 (T ∗Rn;R), V
compactly supported, and its related Cauchy problem (CP )H :

(CP )H


∂S
∂t (t, q) + 1

2 |
∂S
∂q (t, q) |2 + V (q) = 0,

S (0, q) = σ (q) ,

1The paper [15] studies the same Hamiltonian from the perspective of idempotent
analysis and arrives essentially to our explicit formula.
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where t ∈ [0, T ], q ∈ Rn, σ compactly supported. The starting point consists
to take into account the below global generating function W for the geo-
metric solution for H –see Theorem 6.1– arising from Hamilton-Helmholtz
functional.

Let us consider the set of curves:

Γ :=
{
γ (·) = (q (·) , p (·)) ∈ H1

(
[0, T ] ,R2n

)
: p (0) = dσ (q (0))

}
.

By Sobolev imbedding theorem,

H1
(
(0, T ) ,R2n

)
↪→ C0

(
[0, T ] ,R2n

)
compactly, so in the above definition the elements of Γ are the natural
continuous extensions of the curves of H1

(
(0, T ) ,R2n

)
(i.e. the continuous

curves t 7→ γ (t), starting from the graph of dσ, such that γ̇ = dγ
dt ∈ L

2 :=
L2
(
(0, T ) ,R2n

)
). Moreover, the set Γ has a natural structure of linear space,

and then TγΓ = Γ, for all γ ∈ Γ.
An equivalent way to describe the curves of Γ is to assign the q-projection
at time t, q = q (t) ∈ Rn, and the velocity γ̇ of the curve γ by means of a
function Φ ∈ L2. This is summarized by the following bijection g:

g : [0, T ]× Rn × L2
(
(0, T ) ,R2n

)
−→ [0, T ]× Γ

(t, q,Φ) 7−→ g (t, q,Φ) = (t, γ (·)) ,

γ (s) = (prΓ ◦ g)(t, q,Φ)(s) = (q (s) , p (s)) =

=

(
q −

∫ t

s
Φq (r) dr, dσ (q (0)) +

∫ s

0
Φp (r) dr

)
=

=

(
q −

∫ t

s
Φq (r) dr, dσ

(
q −

∫ t

0
Φq (r) dr

)
+

∫ s

0
Φp (r) dr

)
. (12)

To be more clear, we remark that the second value of the map g (t, q,Φ) is
the curve γ (·) = (q (·) , p (·)) which is
1) starting from (q (0) , dσ (q (0))), such that
2) γ̇ (·) = Φ (·), and
3) q (t) = q.

By composing the Hamilton-Helmholtz functional:

A : [0, T ]× Γ −→ R

(t, γ (·)) 7→ A [t, γ (·)] := σ (q (0)) +

∫ t

0
[p (r) · q̇ (r)−H (r, q (r) , p (r))] dr.

with the bijection g, we obtain the following global generating function W =
A ◦ g:
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Theorem 6.1 The infinite-parameters function:

W := A ◦ g : [0, T ]× Rn × L2 −→ R, (13)

(t, q,Φ) 7−→W (t, q,Φ) := A ◦ g (t, q,Φ) ,

generates LH =
⋃

0≤t≤T Φt
H ((ΓH)σ), the geometric solution for the Hamil-

tonian H (q, p) = 1
2 |p|

2 + V (q).

Proof. We first explicitly write down W :

W (t, q,Φ) = σ (q (0)) +

∫ t

0

[(
dσ (q (0)) +

∫ s

0
Φp (r) dr

)
· Φq (s)−

− H
(
s, q −

∫ t

s
Φq (r) dr, dσ (q (0)) +

∫ s

0
Φp (r) dr

)]
ds,

= σ

(
q −

∫ t

0
Φq (r) dr

)
+

∫ t

0

[(
dσ

(
q −

∫ t

0
Φq (r) dr

)
+

+

∫ s

0
Φp (r) dr

)
· Φq (s)

]
ds−

−
∫ t

0

[
H

(
s, q −

∫ t

s
Φq (r) dr, dσ

(
q −

∫ t

0
Φq (r) dr

)
+

∫ s

0
Φp (r) dr

)]
ds.

Then, for DW
DΦ = 0, we compute ∂W

∂q and ∂W
∂t .

∂W

∂q
= dσ (q (0)) +

∫ t

0
d2σ (q (0)) · Φq (s) ds−

∫ t

0

∂H

∂q
ds−

∫ t

0

∂H

∂p
· d2σ (q (0)) ds,

= dσ (q (0)) + d2σ (q (0)) ·
∫ t

0
Φq (s) ds+

∫ t

0
ṗ (s) ds− d2σ (q (0)) ·

∫ t

0
q̇ (s) ds,

= dσ (q (0)) + d2σ (q (0)) ·
∫ t

0
q̇ (s) ds+

∫ t

0
ṗ (s) ds− d2σ (q (0)) ·

∫ t

0
q̇ (s) ds,

= dσ (q (0)) +

∫ t

0
Φp (s) ds = p (t) .

Finally, we compute ∂W
∂t .
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∂W

∂t
= dσ (q (0)) · ∂q (0)

∂t
+

(
dσ (q (0)) +

∫ t

0
Φp (r) dr

)
· Φq (t)−

−H
(
t, q, dσ (q (0)) +

∫ t

0
Φp (r) dr

)
+

∫ t

0
d2σ · (−Φq (t)) · Φq (s) ds+

+

∫ t

0

∂H

∂q

(
s, q −

∫ T

0
Φq (r) dr, dσ (q (0)) +

∫ s

0
Φp (r) dr

)
· Φq (t) ds−

−
∫ t

0

∂H

∂p

(
s, q −

∫ t

0
Φq (r) dr, dσ (q (0)) +

∫ s

0
Φp (r) dr

)
· ∂

2σ

∂q2
(q (0)) · (−Φq (t)) ds,

= dσ (q (0)) · (−Φq (t)) + p (t) · q̇ (t)−H (t, q (t) , p (t))− d2σ (q (0)) · Φq (t) ·
∫ t

0
Φq (s) ds+

+

∫ t

0

∂H

∂p
(s, q (s) , p (s)) ds · Φq (t) + d2σ (q (0)) · Φq (t) ·

∫ t

0

∂H

∂p
(s, q (s) , p (s)) ds,

= −p (0) · q̇ (t) + p (t) · q̇ (t)−H (t, q (t) , p (t))− d2σ (q (0)) · q̇ (t) ·
∫ t

0
Φq (s) ds+

+

∫ t

0

∂H

∂q
(s, q (s) , p (s)) ds · q̇ (t) + d2σ (q (0)) · q̇ (t) ·

∫ t

0
q̇ (s) ds,

= −p (0) · q̇ (t) +
∂W

∂q
· q̇ (t)−H

(
t, q (t) ,

∂W

∂q

)
− d2σ (q (0)) · q̇ (t) ·

∫ t

0
q̇ (s) ds−

− ∂

∂q

(∫ t

0
[pq̇ −H] dτ

)
· q̇ (t) + d2σ (q (0)) · q̇ (t) ·

∫ t

0
q̇ (s) ds,

=
∂W

∂q
· q̇ (t)−H

(
t, q (t) ,

∂W

∂q

)
− ∂

∂q

[
σ (q (0)) +

∫ t

0
(pq̇ −H) dτ

]
· q̇ (t) ,

=
∂W

∂q
· q̇ (t)−H

(
t, q (t) ,

∂W

∂q

)
− ∂W

∂q
· q̇ (t) ,

= −H
(
t, q (t) ,

∂W

∂q

)
.

2

6.2 Fourier expansion and fixed point

Results in this Section are classical, see also [1], [12] and [?].
Hamilton equations related to XH are{

q̇ = p

ṗ = −V ′ (q)
(14)

Using the p-components of the bijection g, (14) can be rewritten, almost
everywhere, as
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Φq (s) = dσ
(
q −

∫ t
0 Φq (r) dr

)
+
∫ s

0 Φp (r) dr

Φp (s) = −V ′
(
q −

∫ t
s Φq (r) dr

) (15)

Hence

Φq (s) = dσ

(
q −

∫ t

0
Φq (r) dr

)
−
∫ s

0
V
′
(
q −

∫ t

r
Φq (τ) dτ

)
dr (16)

Note that the reduction of (15) into (16) is equivalent to the displacement
from the Hamiltonian formalism to the Lagrangian formalism through the
Legendre transformation.
For every Φq ∈ L2 ((0, T ) ,Rn), let us consider the Fourier expansion

Φq (s) =
∑
k∈Z

(Φq)k e
i(2πk/T )s.

For each fixed N ∈ N, let us consider the projection maps on the basis{
ei(2πk/T )s

}
k∈Z of L2 ((0, T ) ,Rn),

PNΦq (s) :=
∑
|k|≤N

(Φq)k e
i(2πk/T )s, QNΦq (s) :=

∑
|k|>N

(Φq)k e
i(2πk/T )s.

Clearly,

PNL2 ((0, T ) ,Rn)⊕QNL
2 ((0, T ) ,Rn) = L2 ((0, T ) ,Rn) ,

and for Φq ∈ L2 ((0, T ) ,Rn) we will write u := PNΦq and v := QNΦq.

We will try to solve (16) by a fixed point procedure.

Proposition 6.2 (Lipschitz) Let supq∈Rn |V ′′ (q) | = C (< +∞).
For fixed (t, q) ∈ [0, T ]× Rn and u ∈ PNL2 ((0, T ) ,Rn), the map

F : QNL
2 ((0, T ) ,Rn) −→ QNL

2 ((0, T ) ,Rn)

v 7−→ QN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ v) (τ) dτ

)
dr

}
is Lipschitz with constant

Lip (F ) ≤ T 2C

2πN

(
1 +
√

2N
)
.

Before the proof of the Proposition 6.2, we premise some technical results.
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Lemma 6.3 Let f ∈ L1 ((0, T ) ,Rn) ∩ L2 ((0, T ) ,Rn). Then the function∫ t
0 f (s) ds ∈ L2 ((0, T ) ,Rn) and

||
∫ t

0
f (s) ds||L2((0,T ),Rn) ≤ T · ||f ||L2((0,T ),Rn) (17)

Proof. Left to the reader.

Proof of Proposition 6.2 For each v1, v2 ∈ QNL
2 ((0, T ) ,Rn), let us consider

the Fourier expansion

v := v2 − v1 =
∑
|k|>N

vke
i(2πk/T )τ .

We compute F (v2)− F (v1):

F (v2)− F (v1) =

QN

{
−
∫ s

0

[
V
′
(
q −

∫ t

r
(u+ v2) (τ) dτ

)
dr

]
+

∫ s

0

[
V
′
(
q −

∫ t

r
(u+ v1) (τ) dτ

)
dr

]}
,

= QN

{
−
∫ s

0

[
V
′
(
q −

∫ t

r
(u+ v2) (τ) dτ

)
− V ′

(
q −

∫ t

r
(u+ v1) (τ) dτ

)
dr

]}
.

Therefore

||F (v2)− F (v1) ||L2((0,T ),Rn) ≤

≤ T · ||QN

{
V
′
(
q −

∫ t

r
(u+ v2) (τ) dτ

)
− V ′

(
q −

∫ t

r
(u+ v1) (τ) dτ

)}
||L2((0,T ),Rn) ≤

≤ TC · || −
∫ t

r

∑
|k|>N

vke
i(2πk/T )τdτ ||L2((0,T ),Rn) ≤

≤ TC ·

|| ∑
|k|>N

vke
i(2πk/T )r · T

i2πk
||L2((0,T ),Rn) + ||

∑
|k|>N

vke
i(2πk/T )t · T

i2πk
||L2((0,T ),Rn)

 ≤
≤ T 2C

2πN
· ||v||L2((0,T ),Rn) + T 2C · ||

∑
|k|>N

|vk|
2πk
||L2((0,T ),Rn).

We now use Cauchy-Schwartz inequality in l2 := L2(Z,C) as follows

∑
|k|>N

|vk|
k

=
〈

(|vk|)k∈Z, (
1

k
)|k|>N

〉
l2
≤ ||(|vk|)k∈Z||l2 · ||(

1

k
)|k|>N ||l2 .
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Hence

∑
|k|>N

|vk|
2πk

≤ 1

2π
||v||L2((0,T ),Rn)

√√√√2
∑
|k|>N

1

k2
≤ 1

2π
||v||L2((0,T ),Rn)

√
2

N
,

obteining

T 2C

2πN
· ||v||L2((0,T ),Rn) + T 2C · ||

∑
|k|>N

|vk|
2πk
||L2((0,T ),Rn) ≤

≤ T 2C

2πN
· ||v||L2((0,T ),Rn) + T 2C · 1

2π

√
2

N
||v||L2((0,T ),Rn) =

=
T 2C

2πN

(
1 +
√

2N
)
· ||v||L2((0,T ),Rn),

that is

Lip (F ) ≤ T 2C

2πN

(
1 +
√

2N
)
.

2

Corollary 6.4 (Contraction map) Let supq∈Rn |V ′′ (q) | = C (< +∞). For
fixed (t, q) ∈ [0, T ]× Rn, u ∈ PNL2 ((0, T ) ,Rn) and N large enough:

T 2C

2πN

(
1 +
√

2N
)
< 1,

the map s 7→ F (t, q, u) (s)

F : QNL
2 ((0, T ) ,Rn) −→ QNL

2 ((0, T ) ,Rn)

v 7−→ QN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ v) (τ) dτ

)
dr

}
is a contraction.

By Banach-Cacciopoli Theorem, for fixed (t, q) ∈ [0, T ] × Rn and u ∈
PNL2 ((0, T ) ,Rn), there exists one and only one fixed point F (t, q, u) (s),
shortly F (u), for the above contraction:

F (u) = QN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ F (u)) (τ) dτ

)
dr

}
. (18)

Beside (18), let us consider the finite-dimensional equation of unknown u ∈
PNL2 ((0, T ) ,Rn):
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u = PN
{
dσ

(
q −

∫ t

0
(u+ F (u)) (r) dr

)
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ F (u)) (τ) dτ

)
dr

}
.

(19)
By adding (18) and (19), in correspondence to any solution u of (19), we
gain

u+F (u) = dσ

(
q −

∫ t

0
(u+ F (u)) (r) dr

)
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ F (u)) (τ) dτ

)
dr

(20)
in other words, the curve (see (12))

γ (s) := prΓ ◦ g
(
t, q,

(
[u+ F (u)] (s) ,−V ′

(
q −

∫ t

r
(u+ F (u)) (τ) dτ

)))
solves the Hamilton canonical equations starting from the graph of dσ (so
that γ ∈ Γ).
Furthermore, we point out that dim(PNL2 ((0, T ) ,Rn)) = n (2N + 1).
As a consequence, substantially following the line of thought in [1], [9] and
[10], we get that the geometric solution of Hamilton-Jacobi problem for H
admits a finite-parameters generating function, denoted by W (t, q, u):

Theorem 6.5 The finite-parameters function:

W := A ◦ g : [0, T ]× Rn × Rn(2N+1) −→ R,

(t, q, u) 7−→W (t, q, u) =

=

{
σ (q (0)) +

∫ t

0
[p (s) · q̇ (s)−H (s, q (s) , p (s))] ds

}
|(q(s),p(s)),

(q (s) , p (s)) = prΓ◦g
(
t, q,

(
[u+ F (u)] (s) ,−V ′

(
q −

∫ t
r (u+ F (u)) (τ) dτ

)))
,

generates LH =
⋃

0≤t≤T Φt
H ((ΓH)σ), the geometric solution for the Hamil-

tonian H (q, p) = 1
2 |p|

2 + V (q).

6.3 The quadraticity at infinity property

We check the quadraticity at infinity property of W (t, q, u) with respect to
u: this is a crucial step in order to catch the minimax critical point in the
Lusternik-Schnirelman format. We premise the following technical

Lemma 6.6 For fixed (t, q) ∈ [0, T ] × Rn, the function u 7→ F (u) and its
derivatives u 7→ ∂F

∂u (u) are uniformly bounded.
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Proof. We immediately get from (18) that |F (u) | ≤ TC, where C =
supq∈Rn |V ′′ (q) | < +∞. Moreover, by a direct computation, it can be

proved that the derivatives ∂F
∂u are uniformly bounded. In fact, the fixed

point function F solves the equation of unknown v:

G (t, q, u, v) := QN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ v) (τ) dτ

)
dr

}
− v = 0.

The implicit function theorem does work, since

∂G
∂v

(t, q, u, v) =
∂

∂v
QN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ v) (τ) dτ

)
dr

}
− I,

and, by a classical argument, it can be proved that[
∂G
∂v

(t, q, u, v)

]−1

= −
+∞∑
k=0

[
∂

∂v
QN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ v) (τ) dτ

)
dr

}]k
.

Since a bound for the derivatives ∂
∂vQN

{
−
∫ s

0 V
′
(
q −

∫ t
r (u+ v) (τ) dτ

)
dr
}

is given by the Lipschitz constant α := T 2C
2πN (1 +

√
2N),∣∣∣∣ ∂∂vQN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ v) (τ) dτ

)
dr

}∣∣∣∣ ≤ α < 1,

we obtain that∣∣∣∣∣
[
∂G (t, q, u, v)

∂v

]−1
∣∣∣∣∣ ≤

+∞∑
k=0

∣∣∣∣ ∂∂vQN

{
−
∫ s

0
V
′
(
q −

∫ t

r
(u+ v) (τ) dτ

)
dr

}∣∣∣∣k =

=
1

1− α
< +∞.

G (t, q, u,F (u)) = 0 implies ∂G
∂u + ∂G

∂v
∂F
∂u = 0, therefore the derivatives ∂F

∂u =

−
(
∂G
∂v

)−1 ∂G
∂u result uniformly bounded by the constant α

1−α :

|∂F
∂u
| ≤ |

(
∂G
∂v

)−1

| · |∂G
∂u
| ≤ α

1− α
< +∞.

2

Theorem 6.7 The finite-parameters function

W := A ◦ g : [0, T ]× Rn × Rn(2N+1) −→ R,

(t, q, u) 7−→ W̄ (t, q, u) =

=

{
σ (q (0)) +

∫ t

0
[p (s) · q̇ (s)−H (s, q (s) , p (s))] ds

}
|(q(s),p(s)),
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(q (s) , p (s)) = prΓ◦g
(
t, q,

(
[u+ F (u)] (s) ,−V ′

(
q −

∫ t
r (u+ F (u)) (τ) dτ

)))
,

is asymptotically quadratic: there exists an u-polynomial P(2)(t, q, u) such
that for any fixed (t, q) ∈ [0, T ]× Rn

||W (t, q, ·)− P(2) (t, q, ·) ||C1 < +∞

and its leading term is positive defined (Morse index 0).

Proof.

W (t, q, u) =

{
σ (q (0)) +

∫ t

0
[p (s) · q̇ (s)−H (s, q (s) , p (s))] ds

}
|(q(s),p(s)),

(q (s) , p (s)) = prΓ◦g
(
t, q,

(
[u+ F (u)] (s) ,−V ′

(
q −

∫ t
r (u+ F (u)) (τ) dτ

)))
,

that is (through the Legendre transformation)

W (t, q, u) =

{
σ (q (0)) +

∫ t

0

[
1

2
|q̇ (s) |2 − V (q (s))

]
ds

}
|q(s)=q−∫ t

s [u(r)+(F(u))(r)]dr,

= σ

(
q −

∫ t

0
[u (r) + (F (u)) (r)] dr

)
+

+

∫ t

0

{
1

2
|u (s) + (F (u)) (s) |2 − V

(
q −

∫ t

s
[u (r) + (F (u)) (r)] dr

)}
ds.

As a consequence of the technical Lemma 6.6 above and the compactness of
σ and V , for fixed (t, q) ∈ [0, T ]× Rn we obtain that

||W (t, q, ·)− P(2) (t, q, ·) ||C1 < +∞,

where P(2) (t, q, u) is a function with positive defined leading term 1
2

∫ t
0 |u(s)|2ds

(hence with Morse index 0) and linear term with uniformly bounded coeffi-
cient, that is (see Definition 3.4) W (t, q, u) is an asymptotically quadratic
generating function. 2

6.4 Minimax and viscosity solutions for H (q, p) = 1
2
|p|2 +V (q)

We finally prove the main result: the equivalence of minimax and viscosity
solutions for a large class of p-convex mechanical Hamiltonians.
Preliminarily, we point out the following technical fact:

Lemma 6.8 Let H(t, q, p) be a C2-uniformely p-convex Hamiltonian func-
tion:

∃C ≥ c > 0 : c |λ|2 ≤ ∂2H

∂pi∂pj
(t, q, p)λiλj ≤ C |λ|2, (21)
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∀λ ∈ Rn, ∀t ∈ [0, T ], ∀(q, p) ∈ R2n. Then, for every fixed q(·) ∈ H1([0, T ],Rn),

sup
p(·) ∈ H1([0, T ],Rn) :

p(0) = ∂σ
∂q (q(0))

∫ T

0
[p(t) · q̇(t)−H (t, q(t), p(t))] dt =

=

∫ T

0
L (t, q(t), q̇(t)) dt, (22)

where
L(t, q, v) = sup

p∈Rn
{p · v −H (t, q, p)} (23)

Proof. Convexity (21) guarantees us that global Legendre transformation
holds and that, for any fixed q(·), the (unique, see below) critical curve of
the functional:

Â :

{
H1([0, T ],Rn) : p(0) =

∂σ

∂q
(q(0))

}
−→ R

p(·) 7−→
∫ T

0
[p(t) · q̇(t)−H (t, q(t), p(t))] dt

realizes the strong maximum (in the uniform convergence topology). In fact,
p(·) is a critical curve iff, ∀4p ∈ H1([0, T ],Rn) such that 4p(0) = 0,

dÂ(p)4p = d
{∫ T

0
[p(t) · q̇(t)−H (t, q(t), p(t))] dt

}
4p = 0.

d

dε

{∫ T

0
[(p(t) + ε4p(t)) · q̇(t)−H (t, q(t), p(t) + ε4p(t))] dt

}∣∣∣
ε=0

= 0,∫ T

0

[
q̇(t)− ∂H

∂p
(t, q(t), p(t))

]
4p(t)dt = 0,

that is,

q̇(t) =
∂H

∂p
(t, q(t), p(t)) , (24)

and, by a standard argument laying on Legendre transformation, the unique
solution p(t) of (24), for any time t, is given by

p(t) =
∂L

∂v
(t, q(t), q̇(t)).

Finally, d2Â(p)
(
4p,4p

)
is given by

d2
{∫ T

0
[p(t) · q̇(t)−H (t, q(t), p(t))] dt

}(
4p,4p

)
≤ −cT sup

t∈[0,T ]
|4p(t)|2.

23



From the identity

Â(p+4p) =

Â(p)+
n∑
i=1

∂Â

∂pi
(p)4pi+

∫ 1

0
s

n∑
i,j=1

∂2Â

∂pi∂pJ

(
(1−s)(p+4p)+sp

)(
4pi,4pi

)
ds,

we gain, at the critical p,

Â(p+4p)− Â(p) ≤ −cT ||4p||2C0 ≤ 0

that is, p realizes the maximum of Â in C0, and then in H1(↪→ C0). 2

Theorem 6.9 Let us consider H (q, p) = 1
2 |p|

2 + V (q), V compactly sup-
ported and the related Cauchy Problem (CP )H :

(CP )H


∂S
∂t (t, q) + 1

2 |
∂S
∂q (t, q) |2 + V (q) = 0,

S (0, q) = σ (q) ,

where t ∈ [0, T ] , q ∈ Rn and σ compactly supported.
The minimax and the viscosity solution of (CP )H coincide with the function

S (t, q) := inf
q̃ (·) :

q̃ : [0, t]→ Rn
q̃ (t) = q

sup
p̃ (·) :

p̃ : [0, t]→ Rn,
p̃(0) = ∂σ

∂q (q̃(0))

{
σ (q̃ (0)) +

∫ t

0
(pq̇ −H)|(q̃,p̃) ds

}
.

(25)

Proof. In Subsection 6.1 we have proved that the Hamilton-Helmholtz func-
tional involved in (25) can be interpreted as a global generating function W
(with infinite parameters) for the geometric solution for the Hamiltonian H
(Theorem 6.1). By Lemma 6.8, the sup-procedure on the curves p̃ in (25)
represents exactly the Legendre transformation. Moreover, the fixed point
technique described in Subsection 6.2 reduces the function W to a finite
parameters G.F.Q.I., W , with Morse index 0 (Theorems 6.5 and 6.7). As a
consequence of Proposition 4.5, for such a function W , the minimax critical
value coincides with the minimum (which explains the inf-procedure on the
curves q̃ in (25)). Hence the function S (t, q) furnishes the minimax solution
of (CP )H .

On the other hand (see [16], [17] and bibliography quoted therein), the
function S (t, q) is the Hamiltonian version of the Lax-Oleinik formula pro-
ducing the viscosity solution of (CP )H .

Therefore (25) establishes the equivalence of the two solutions. 2
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