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Abstract

After a discussion on two fundamental routes —weak discontinuity waves
and high frequency asymptotic waves— both leading to Hamilton-Jacobi equa-
tion, we review two notions of weak solution for it, the minimax solution and the
viscosity solution. We claim the coincidence of the two solutions for a general
class of p-convex Hamiltonians of mechanical type and we sketch some technical
details of the proof.

1 Introduction

The work reviewed in this paper is aimed at recollecting some fundamental routes to
Hamilton-Jacobi equations, even outside the classical arena of analytical mechanics
where this equation naturally arises.

We reconsider discontinuity and asymptotic wave propagation –see 1.1 and 1.2
below– leading us to Hamilton-Jacobi equation. For such an equation we recall
two notions of weak solution: the viscous solution and the minimax solution. By
concerning with the last one, a lot of examples can be found and produced, beyond
classical mechanics, in this new topological background: e.g., in control theory [4],
or in multi-time theory of H-J equations [8].

More precisely, we will investigate around H-J evolution equation:

∂u

∂t
+H(t, q,

∂u

∂q
) = 0 u(0, q) = σ(q), (1)
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t ∈ (0, T ), q ∈ N , where N is a bounded domain of Rn.
For T small enough, the Cauchy Problem (1) admits a unique classical solution and it
is determined using characteristics method. However, even though the Hamiltonian
H and the initial function σ are smooth, in general there exists a critical time
in which the classical solution becomes multivalued, i.e. q-components of some
characteristics cross each other. Hence, it comes out the requirement how to define,
and then to construct weak solutions of (1), e.g. continuous and almost everywhere
differentiable functions solving (1).

Before discussing the two announced types of weak solutions, we recall the con-
cept of geometric solution of (1), which is a Lagrangian submanifold L –see 2–
obtained by gluing together the characteristics of the Hamiltonian vector field XH,
where H(t, q, τ, p) = τ + H(t, q, p). In general, Lagrangian submanifolds are de-
scribed by their generating functions. The geometric solution L was intended to be
a global object, showing, among other things, the multivalue features of the H-J
problem. Multivalues, if any, produce in turn singularities, which were studied in
past decades by theoretical physicists and, mainly, by mathematicians like Thom,
Arnol’d and Mather, producing singularity theory1, see [1].
From the one side, by means of several operations, recalled in Section 2, it was pos-
sible to make a theory of local classification of Lagrangian singularities.
From the other side, in the more recent global theory of generating functions –
namely, symplectic topology– their use appears more extensive: up to these oper-
ations, uniqueness is reached for such mathematical tools, describing our involved
Lagrangian submanifolds. Finally, for a general class of p-convex Hamiltonians of
mechanical type: H(q, p) = 1

2 |p|
2 +V (q), we claim the coincidence of the viscous and

minimax solution and we sketch some technical details of the proof, see [3]. Viscous
solution and minimax solution emerge from different, separate fields of mathemat-
ics: such a coincidence, which does work surely for physical Hamiltonians, seems to
mark a sensible step towards the recognition of a robust good model of solution for
wave propagation.

One of the authors (F.C.) gratefully thanks Guy Boillat for many stimulating dis-
cussions during which his relevant experience has allowed the maturation of several
ideas on wave propagation that are widely at the basis of this work.

1sometimes called catastrophe theory
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1.1 Discontinuities

Let consider a general semi-linear evolution system of partial differential equations:

∂ui

∂t
+

dn∑
L=1, j=1

Ai Lj (t, q)
∂uj

∂qL
= bi(t, q) (2)

As is well known, it modelizes e.g. Maxwell equations or non-homogeneous linear
elasticity. Weak discontinuities have support on propagating wave in the space-time
Rd+1 described by

Φ(t, qL) = 0 (Φ : Rd+1 → R) (3)

by denoting, as usual,
[
∂ui

∂t

]
and

[
∂ui

∂qL

]
possible discontinuities of the derivatives of

ui through Φ = 0, we obtain[
∂ui

∂t

]
+

dn∑
L=1, j=1

Ai Lj (t, q)

[
∂uj

∂qL

]
= 0 (4)

By recalling the Hugoniot-Hadamard compatibility conditions,[
∂ui

∂t

]
= −λiv ,

[
∂ui

∂qL

]
= −λinL , (5)

where λi is the size of the jump, v the normal velocity of the wave, and nL is the
normal unit vector of Φ = 0, in some more detail,

v = −
∂Φ
∂t√∑d

L=1

(
∂Φ
∂qL

)2
, nL =

∂Φ
∂qL√∑d

L=1

(
∂Φ
∂qL

)2
, (6)

we write
n∑
j=1

[
δij
∂Φ

∂t
−

d∑
L=1

Ai Lj (t, q)
∂Φ

∂qL

]
λj = 0 , (7)

hence non trivial solutions occur if

det

(
δij
∂Φ

∂t
−

d∑
L=1

Ai Lj (t, q)
∂Φ

∂qL

)
= 0 (8)

A standard irreducible factorization of (8), like ... ·Fα−1 ·Fα ·Fα+1 · ... = 0 , produces
Hamilton-Jacobi equations Fα = 0 for unknown functions Φ describing waves:

Fα
(
t, q,

∂Φ

∂t
,
∂Φ

∂q

)
= 0. (9)
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For example, we ascertain in this framework longitudinal and transversal propagation
waves of linear elasticity. And the universal suggestion for the reader is to make for
the beautiful booklets by Levi Civita [14] and Boillat [5].

1.2 Asymptotics

We can discover another route to H-J equation belonging to the high frequency
asymptotic approximation of semi-linear partial differential equations, like Schrö-
dinger equation in quantum mechanics; for a particle of mass m = 1 in a field
generated by the potential energy V (t, q) (here ε = h/2π, the Planck constant, is
the ‘small’ parameter):

iε
∂ψ

∂t
(t, q) = −ε

2

2
∆ψ(t, q) + V (t, q)ψ(t, q), (10)

t ∈ R, q ∈ Rn. Trying to solve (10) by a (highly) oscillating integral like

I(t, q; ε) =

∫
u∈U

b(t, q, u; ε)e
i
ε
Φ(t,q,u)du,

(U ⊂ Rk), which is a sort of superposition of oscillating functions, we produce, for
some amplitude b and (real) phase Φ, independent of ε,∫

u∈U

(
∂Φ

∂t
+

1

2
|∇qΦ|2 + V

)
b e

i
ε
Φ(t,q,u)du +O(ε) = 0

Non trivial amplitudes are admissible if the phase satisfies the H-J equation

∂Φ

∂t
+

1

2
|∇qΦ|2 + V = 0 (11)

which is exactly a H-J evolution equation like (1), related to the Hamiltonian of the
connected classical model of the physical system: H(t, q, p) = 1

2 |p|
2 + V .

2 Geometric solutions and their generating functions

Let R × N be the “space-time”, T ∗(R × N) = {(t, q, τ, p)} its cotangent bundle
equipped with the standard symplectic 2-form ω = dp ∧ dq + dτ ∧ dt. Moreover, let
H(t, q, τ, p) = τ +H(t, q, p) be the homogeneous Hamiltonian function related to the
evolution type H-J problem (1):

∂u

∂t
+H(t, q,

∂u

∂q
) = 0 u(0, q) = σ(q).
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In other words, a function u(t, q) is a classical solution if2 im(du) ⊂ H−1(0), that is

(t, q,
∂u

∂t
,
∂u

∂q
) ∈ H−1(0) ∀(t, q) ∈ (0, T )×N.

We just recall that im(du) is an exact Lagrangian3 submanifold of T ∗((0, T )×N): a
geometric solution L is nowadays defined as a Lagrangian submanifold –not required
to be exact– which is still contained in the hypersurface H−1(0):

L ⊂ H−1(0).

The following Theorem indicates how to construct such an L –see for example [6]
and [9].

Theorem 2.1. The geometric solution to (1) is the submanifold

L :=
⋃

0<t<T

Φt (Γσ) ⊂ T ∗ (R×N) , (12)

where Φt : R × T ∗(R × N) → T ∗(R × N) is the flow generated by the Hamiltonian
H and Γσ is the initial data submanifold

Γσ := {(0, q,−H (0, q, dσ (q)) , dσ (q)) : q ∈ N} ⊂ H−1 (0) ⊂ T ∗ (R×N) .

A classical Theorem by Maslov and Hörmander assures that, at least locally,
Lagrangian submanifolds L are described by generating functions f : (0, T ) ×N ×
Rk → R, (t, q, ξ) 7→ f(t, q, ξ), in the following way:

L :=

{(
t, q,

∂f

∂t
(t, q, ξ),

∂f

∂q
(t, q, ξ)

)
:
∂f

∂ξ
(t, q, ξ) = 0

}
,

where 0 is a regular value of the map

(t, q, ξ) 7−→ ∂f

∂ξ
(t, q, ξ) .

The direct use of generating functions in Calculus of Variations requires to search
for conditions on L guaranteering the existence and uniqueness of a global generating
function for L. By concerning uniqueness, we remind that it can be stated up to three
main operations on generating functions, which leave invariant the corresponding
Lagrangian submanifolds:

2im(du) means the image of du : (0, T )×N → T ∗((0, T )×N)
3L ⊂ T ∗((0, T )×N) is Lagrangian if (i) ω|L = 0, (ii) dimL = dim((0, T )×N)
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• Fibered diffeomorphisms. Let f : (0, T ) × N × Rk → R be a generating function
and (0, T ) × N × Rk 3 (t, q, η) 7→ (t, q, ξ (t, q, η)) ∈ N × Rk a map such that,
∀(t, q) ∈ (0, T )×N ,

Rk 3 η 7−→ ξ (t, q, η) ∈ Rk

is a diffeomorphism. Then

f1 (t, q, η) := f (t, q, ξ (t, q, η))

generates the same Lagrangian submanifold of f .
• Stabilization. Let f : (0, T )×N × Rk → R be a generating function. Then

f1 (t, q, ξ, v) := f (t, q, ξ) + vTBv,

where v ∈ Rl and vTBv is a nondegenerate quadratic form, generates the same
Lagrangian submanifold of f .
• Addition of a constant. Finally, as a third –although trivial– invariant operation,
we observe that by adding to a generating function f any arbitrary constant c ∈ R
the described Lagrangian submanifold is invariant.

A fundamental step, which will allow us to construct the minimax solution of
(1) is the following

Proposition 2.2. The geometric solution L ⊂ H−1(0) admits an unique global
generating function S : (0, T )×N ×Rk → R, (t, q, ξ) 7→ S(t, q, ξ), which is quadratic
at infinity (GFQI shortly): that is, for |ξ| > C

S(t, q, ξ) = ξTQξ,

where ξTQξ is a nondegenerate quadratic form.

This result, originally deduced for compact support Hamiltonians –see [17], [20], [18]
and [19]–, has been extended to a more general class, like H(q, p) = 1

2 |p|
2 + V (q),

see [3].

3 Minimax solutions of H-J equations

Proposition 2.2 gives us a global object, the GFQI S, describing the geometric
solution L. However, our aim is more ambitious: starting from S, the goal is the
construction of weak solutions of (1). Note that, as a consequence of uniqueness4 of
S, this function results definitively linked only by the geometric solution L.

4i.e. up to the three operations
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In 1991, Chaperon (see [9]) indicated how to utilize the existence and uniqueness
result of Proposition 2.2 in order to construct a new type of weak solution for (1),
called minimax solution. His definition is based on a special critical value (namely,
the minimax critical value) of the function

Rk 3 ξ 7−→ S(t, q, ξ) ∈ R, (13)

∀(t, q) ∈ (0, T )×N fixed.
In some more detail, let us consider the following sublevel sets related to S and Q
(S(t, q, ξ) = ξTQξ, |ξ| > C):

Sc(t,q) :=
{
ξ ∈ Rk : S (t, q; ξ) ≤ c

}
, (t, q) ∈ (0, T )×N fixed,

Qc :=
{
ξ ∈ Rk : Q (ξ) ≤ c

}
.

We observe that for c > 0 large enough, Sc(t,q) and Qc are invariant from a homo-
topical point of view:

S±c(t,q) = Q±c,

and S±c̄(t,q) retracts on S±c(t,q) for every c̄ > c. Let A := Q(c−ε), ε > 0 small. Then

the isomorphisms below (the first one by excision and the second one by retraction)
hold:

H∗
(
Qc, Q−c

) ∼= H∗
(
Qc\

◦
A,Q

−c\
◦
A
)
∼= H∗

(
Di, ∂Di

)
,

where i is the index of the quadratic form Q (that is, the number of negative eigen-

values of Q) and Di denotes the disk (of radius
√
c) in Ri. Hence H∗

(
Sc(t,q), S

−c
(t,q)

)
is 1-dimensional:

Hh
(
Sc(t,q), S

−c
(t,q)

)
∼= Hh

(
Di, ∂Di

)
=

{
0 if h 6= i

α · R if h = i
(14)

where i is the Morse index of the quadratic form Q. Such a one-dimension cohomol-
ogy forces us to select the unique critical value connected to α:

Definition 3.1. (Minimax solution) Let S (t, q, ξ) and ξTQξ as above. For c > 0

large enough and for every (t, q) ∈ (0, T ) × N , let 0 6= α ∈ H i
(
Sc(t,q), S

−c
(t,q)

)
be the

unique generator (up to a constant factor) as in (14) and

iλ : Sλ(t,q) ↪→ Sc(t,q).

The function
(t, q) 7→ u (t, q) := inf {λ ∈ [−c,+c] : i∗λα 6= 0} (15)

is the minimax solution of (1).
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The following fundamental Theorem has been proved by Chaperon, see [9].

Theorem 3.2. The minimax solution (15) is a weak solution to (1), Lipschitz on
finite times, which does not depend on the choice of the GFQI.

4 Viscosity solutions of H-J equations

In this section we review some aspects of the basic theory of continuous viscosity
solutions of the Hamilton-Jacobi equation:

∂u

∂t
+H(t, q,

∂u

∂q
) = 0, (16)

t ∈ (0, T ), q ∈ N . Special attention will be devoted later to the case where H = H(p)
and p 7→ H(p) is convex.

Definition 4.1. A function u ∈ C((0, T ) × N) is a viscosity subsolution [superso-
lution] of (16) if, for any φ ∈ C1((0, T )×N),

∂φ

∂t
(t̄, q̄) +H(t̄, q̄,

∂φ

∂q
(t̄, q̄)) ≤ 0 [≥ 0] (17)

at any local maximum [minimum] point (t̄, q̄) ∈ (0, T )×N of u− φ. Finally, u is a
viscosity solution of (16) if it is simultaneusly a viscosity sub- and supersolution.

The origin of the term “viscosity solution” is going back to the vanishing viscosity
method:

−ε∆uε(q) +H(q,
∂uε
∂q

(q)) = 0, q ∈ N. (18)

In this case, the Hamiltonian of the problem is given by

Hε(q, p,M) = −εtr(M) +H(q, p),

converging in C(N ×Rn×Symn×n) to H(q, p). Giving a solution of (18), a natural
question arises: if ε → 0 does uε tends to a function u, solution (in some sense) of
the limit equation H(q, ∂u∂q (q)) = 0?
The question is not so easy because the regularizing effect of the term ε∆uε vanishes
as ε→ 0 and we end up with an equation that has easily non regular solutions. The
answer is that if uε → u uniformly on every compact sets, then u is a viscosity
solution. This is actually the motivation for the terminology “viscosity solution”,
used in the original paper of Crandall and Lions [10].

Analogously for minimax solutions, existence and uniqueness theorems hold for
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viscous ones. Moreover, Bardi and Evans [2] directly constructed viscosity solu-
tions for Liouville-integrable and convex Hamiltonians H(p). Their representation
of solutions is based on a Hopf’s formula and on an inf-sup procedure on auxiliary
parameters:

uvisc (t, q) = inf
χ∈Rn

sup
v∈Rn

{−H (v) t+ (q − χ) · v + σ (χ)} . (19)

The generating function involved in this representation formula,

S(t, q, (χ, v)︸ ︷︷ ︸
ξ

) = −H(v)t+ (q − χ) · v + σ (χ) ,

results quadratic at infinity under auxiliary hypothesis: for example, σ compact
support and H(p) = 1

2 |p|
2.

The plan of construct viscosity solutions starting from generating functions has been
rather fruitless; nevertheless, we can find similar representation formulas for state-
dependent Hamiltonians, see [7] and [15], although they hold only under suitable
restrictive assumptions.

5 Coincidence of minimax and viscosity solutions in the
convex case

The two types of weak solutions for H-J equations, treated in previous Sections,
result in general different –see [16]. However, in the p-convex case, the coincidence
of viscous and minimax solutions has been guessed in [13] and largely considered to
be true: in the paper [3], we have proved in detail this fact for p-convex Hamiltonians
of mechanical type:

H(q, p) =
1

2
|p|2 + V (q) ∈ C2(T ∗Rn;R),

where V is compact support.
In our proof it is crucial the following representation of the weak solution u : (0, T )×
Rn → R, (t, q) 7→ u(t, q), where we take (q̃ (·) , p̃ (·)) ∈ H1 ((0, T ) , T ∗Rn):

u (t, q) := inf
q̃ (·) :

q̃ : [0, t]→ Rn
q̃ (t) = q

sup
p̃ (·) :

p̃ : [0, t]→ Rn,
p̃(0) = ∂σ

∂q (q̃(0))

{
σ (q̃ (0)) +

∫ t

0
(pq̇ −H)|(q̃,p̃) ds

}
,

(20)
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In fact the above formula (20) provides both the viscous and the minimax solution.
From the one hand, (20) is the Hamiltonian version of the Lax-Oleinik formula

producing the viscosity solution à la Crandall-Evans-Lions, see [12], [11] and bibli-
ography quoted therein.

From the other hand, Amann-Conley-Zehnder reduction does work for the Hamil-
ton-Helmholtz functional involved in (20), producing a global generating function
with a finite number of parameters. It turns out that such a function, under the
p-convexity hypothesis, is quadratic at infinity with Morse index i = 0 (see (14):
in other words, it is definitively positive defined for |ξ| > C, so that it admits
global minimum. After the sup-procedure on the curves p̃ in (20) representing the
Legendre transformation, the inf-procedure on the curves q̃ in (20) captures the
above minimum, which is exactly the minimax critical value, proving that (20) is
precisely the minimax solution proposed by Chaperon-Sikorav-Viterbo.
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