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Abstract

We consider explosions in the generalized recurrent set for homeomorphisms on a compact metric
space. We provide multiple examples to show that such explosions can occur, in contrast to the
case for the chain recurrent set. We give sufficient conditions to avoid explosions and discuss their
necessity. Moreover, we explain the relations between explosions and cycles for the generalized re-
current set. In particular, for a compact topological manifold with dimension greater or equal 2,
we characterize explosion phenomena in terms of existence of cycles. We apply our results to give
sufficient conditions for stability, under C 0 perturbations, of the property of admitting a continuous
Lyapunov function which is not a first integral.

1 Introduction
Generalized recurrence was originally introduced for flows by Auslander in the Sixties [3] by using con-
tinuous Lyapunov functions. Auslander defined the generalized recurrent set to be the union of those
orbits along which all continuous Lyapunov functions are constant. In the same paper, he gave a char-
acterization of this set in terms of the theory of prolongations. The generalized recurrent set was later
extended to maps by Akin and Auslander (see [1] and [2]). More recently Fathi and Pageault [7] proved
that, for a homeomorphism, the generalized recurrent set can be equivalently defined by using Easton’s
strong chain recurrence [6].

The present paper is concerned with the behaviour, under continuous perturbations of the map, of the
generalized recurrent set for homeomorphisms. In particular, we analyze the phenomenon of explosions,
which are discontinuous jumps in the size of the generalized recurrent set. Moreover, we apply our results
to give sufficient conditions to assure the persistence under continuous perturbations of a continuous
Lyapunov function which is not a first integral (that is a continuous strict Lyapunov function).

Throughout the paper, (X, d) is a compact metric space. We denote by Hom(X) the space of homeo-
morphisms of X equipped with the uniform topology induced by the metric:

dC 0(f, g) = max
x∈X

d(f(x), g(x)).

Let GR(f) be the generalized recurrent set of f ∈ Hom(X) (the rigorous definition will be given in
Section 2).

Assume that GR(f) 6= X. We say f does not permit GR-explosions if for any open neighborhood U
of GR(f) in X there exists a neighborhood V of f in Hom(X) such that if g ∈ V then GR(g) ⊂ U .
We say f does not permit GR-full explosions if there exists a neighborhood V of f in Hom(X) such that
if g ∈ V then GR(g) 6= X.

Explosions have been studied for both the non-wandering set NW(f) and the chain recurrent set CR(f)
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(see e.g. [15] and [4] respectively). We introduce the notion of GR-full explosion for the application to
continuous strict Lyapunov functions. After some preliminary results and definitions, in Section 2 we
observe that GR-(full) explosions in general can occur (Example 2.1).

Section 3 gives sufficient conditions to avoid GR-explosions (Corollary 3.1 and Proposition 3.2) and
GR-full explosions (Proposition 3.3). These results can be summarized as follows.

Assume that GR(f) 6= X. If (i) GR(f) = CR(f) or (ii) f is topologically stable then f does not permit
GR-explosions. If CR(f) 6= X then f does not permit GR-full explosions.

The core of Section 3 concerns the necessity of these conditions. In particular, in Examples 3.2, 3.3
and 3.4 respectively, we show that the converses of the previous results are in general false on compact
metric spaces.

The goal of Section 4 is to explain the relations between explosions and cycles for the generalized recur-
rent set. The notion of cycle will be rigorously recalled in Definition 4.1. Since we need to apply the C 0

closing lemma, the ambient space is a compact, topological manifold M with dim(M) ≥ 2.

Assume that GR(f) 6= M . f does not permit GR-explosions if and only if there exists a decomposi-
tion of GR(f) with no cycles.

The above theorem generalizes the corresponding result for the non-wandering set. More precisely, the
fact that the existence of a decomposition of NW(f) without cycles prohibits NW-explosions is due to
Pugh and Shub (see Theorem 6.1 in [14] for flows and Theorem 5.6 in [18] for homeomorphisms); the
converse has been proved by Shub and Smale (see Lemma 2 in [15]). We postpone the proofs of both
implications to Appendixes A and B.
We remark that, in the proof of this theorem, we do not use the full definition of the generalized recurrent
set, but only the fact that GR(f) is a compact, invariant set, which contains NW(f) and is contained in
CR(f). Consequently, with the same proof, we obtain the corresponding results both for the strong chain
recurrent set SCRd(f) and CR(f), see Theorem 4.5 and Remark 4.2.

In Section 5 we apply the results of Sections 3 and 4 to obtain sufficient conditions for an affirma-
tive answer to the question:

For a given homeomorphism, is the property of admitting a continuous strict Lyapunov function sta-
ble under C 0 perturbations?

We refer to Propositions 5.1 and 5.2. Finally, in Proposition 5.3, we remark that on a smooth, com-
pact manifold the property of admitting such a function is generic.

2 Preliminaries

In this section we recall the notions of chain recurrent, strong chain recurrent and generalized recurrent
point for a fixed f ∈ Hom(X).

Given x, y ∈ X and ε > 0, an ε-chain from x to y is a finite sequence (xi)
n
i=1 ⊂ X such that x1 = x

and, setting, xn+1 = y, we have

d(f(xi), xi+1) < ε ∀i = 1, . . . , n. (1)

A point x ∈ X is said to be chain recurrent if for all ε > 0 there exists an ε-chain from x to x. The
set of chain recurrent points is denoted by CR(f). Since we assumed X to be compact, chain recurrence
depends only on the topology, not on the choice of the metric (see for example [5][Theorem 4.4.5] and
[8][Section 1]).

Given x, y ∈ X and ε > 0, a strong ε-chain from x to y is a finite sequence (xi)
n
i=1 ⊂ X such that

x1 = x and, setting xn+1 = y, we have

n∑
i=1

d(f(xi), xi+1) < ε. (2)
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A point x ∈ X is said to be strong chain recurrent if for all ε > 0 there exists a strong ε-chain from x to
x. The set of strong chain recurrent points is denoted by SCRd(f). In general, strong chain recurrence
depends on the choice of the metric; see for example [21][Example 3.1] and [19][Example 2.6].

A way to eliminate the dependence on the metric in SCRd(f) is taking the intersection over all metrics.
We then obtain the generalized recurrent set

GR(f) :=
⋂
d

SCRd(f) (3)

where the intersection is over all metrics compatible with the topology of X.
The sets GR(f), SCRd(f) and CR(f) are all closed and invariant (see respectively [2][Page 52], [7][Page
1193] and [8][Section 1]). Moreover, in general NW(f) ⊂ GR(f) ⊂ SCRd(f) ⊂ CR(f), where NW(f)
denotes the non-wandering set of f , and all inclusions can be strict. We refer to [19][Example 2.9] for an
exhaustive treatment of these inclusions.

The dynamical relevance of the generalized recurrent set relies on its relations with continuous Lya-
punov functions. A continuous function u : X → R is a Lyapunov function for f if u(f(x)) ≤ u(x) for
every x ∈ X. Given a Lyapunov function u : X → R for f , the corresponding neutral set is given by

N (u) = {x ∈ X : u(f(x)) = u(x)}.

We refer to [7][Theorem 3.1] for the proof of the next result.

Theorem 2.1.
GR(f) =

⋂
u∈L (f)

N (u),

where L (f) is the set of continuous Lyapunov functions for f . Moreover, there exists a continuous
Lyapunov function for f such that N (u) = GR(f).

In order to describe the behavior of GR(f) under continuous perturbations of f , we introduce and discuss
the notions of GR-explosion and GR-full explosion.

We start by recalling the phenomenon of explosions for the generalized recurrent set, which are
particular discontinuities of the function

Hom(X) 3 f 7→ GR(f) ∈ P(X),

where P(X) denotes the power set of X.

Definition 2.1. (No GR-explosions) Let f ∈ Hom(X) be such that GR(f) 6= X. We say f does not
permit GR-explosions if for any open neighborhood U of GR(f) in X there exists a neighborhood V of f
in Hom(X) such that if g ∈ V then GR(g) ⊂ U .

No NW-explosions and no CR-explosions are defined analogously (see for example [15][Page 588] for
NW(f) and [4][Page 323] for CR(f)). We recall that NW-explosions in general can occur; see [13],
[11][Section 6.3] and [18][Section 5.2]. This is not the case for CR-explosions; see the following, which is
Theorem F in [4].

Theorem 2.2. Let f ∈ Hom(X) be such that CR(f) 6= X. Then f does not permit CR-explosions.

In [4], the proof of the previous result essentially uses a dynamical characterization of the points outside
CR(f). We propose an alternative, direct proof of this fact.

Proof of Theorem 2.2. Argue by contradiction and suppose there are an open neighborhood U of CR(f)
in X, a sequence (gn)n∈N ∈ Hom(X) converging to f in the uniform topology and a sequence of points
(yn)n∈N such that yn ∈ CR(gn) \U . Since X is compact and U is open, we can assume that the sequence
(yn)n∈N converges to y /∈ U . In particular, y does not belong to CR(f).
Let ε > 0 be fixed. By hypothesis, for any n ∈ N there exists an ε

3 -chain (x1 = yn, x2, . . . , xm, xm+1 = yn)
for gn from yn to yn. Corresponding to ε > 0, there exists n̄ ∈ N such that

dC 0(f, gn) <
ε

3
∀n ≥ n̄. (4)

Moreover, by the uniform continuity of f , there exists δ ∈ (0, ε3 ) such that

d(z, w) < δ ⇒ d(f(z), f(w)) <
ε

3
. (5)
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Finally, let ñ ∈ N such that
d(y, yn) < δ ∀n ≥ ñ. (6)

We will show that, if n ≥ max(n̄, ñ) then the chain

(y, x2, . . . , xm, y)

is an ε-chain for f from y to y. Indeed, thanks to inequalities (4),(5) and (6) and the fact that (x1 =
yn, x2, . . . , xm, xm+1 = yn) is an ε

3 -chain for gn, we have

d(f(y), x2) ≤ d(f(y), f(yn)) + d(f(yn), gn(yn)) + d(gn(yn), x2) < ε.

Moreover
d(f(xi), xi−1) ≤ d(f(xi), gn(xi)) + d(gn(xi), xi+1) <

2ε

3
< ε

for all i = 2, . . . ,m− 1. Finally

d(f(xm), y) ≤ d(f(xm), gn(xm)) + d(gn(xm), yn) + d(yn, y) < ε.

By the arbitrariness of ε > 0, we conclude that y ∈ CR(f), obtaining the desired contradiction. 2

We now introduce full explosions for the generalized recurrent set.

Definition 2.2. (No GR-full explosions) Let f ∈ Hom(X) be such that GR(f) 6= X. We say f does
not permit GR-full explosions if there exists a neighborhood V of f in Hom(X) such that if g ∈ V then
GR(g) 6= X.

Clearly, if f does not permit GR-explosions then f does not permit GR-full explosions; if f permits
GR-full explosions then f permits GR-explosions.

We observe that, unlike the chain recurrent case, GR-(full) explosions can in general occur.

Example 2.1. On the circle S1 with the usual topology, consider an interval I ( S1 of positive Lebesgue
measure. Let φ : S1 → [0,+∞) be a non-negative smooth function whose set of zeroes is I. Let
f : S1 → S1 be the time-one map of the flow of the vector field

V (x) = φ(x)
∂

∂x
.

(See Figure 1). In such a case
I = GR(f).

We observe that, for an arbitrarily small ε > 0, there always exists gε ∈ Hom(S1) such that

dC 0(f, gε) < ε

and
S1 = GR(gε).

(Simply perturb φ so that it is positive on I). Consequently, f ∈ Hom(S1) is an example of a homeo-
morphism which permits GR-full explosions. In particular, f admits GR-explosions.

3 GR-(full) explosions
The aim of this section is to discuss some sufficient conditions to avoid GR-(full) explosions.

The first one comes from a straightforward application of Theorem 2.2 (see Corollary G in [4] for
NW(f)).

Corollary 3.1. Let f ∈ Hom(X) be such that GR(f) 6= X. If GR(f) = CR(f) then f does not permit
GR-explosions.

Notice that the converse of Corollary 3.1 is false, in general. In the next two examples, we define
homeomorphisms which do not permit GR-explosions even though GR(f) 6= CR(f).
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I

Figure 1: The dynamical system of Example 2.1.

Example 3.1. Let S1 be the circle with the usual topology. We consider it as the interval I = [0, 1]
with the endpoints identified. Let K ⊂ S1 be the middle-third Cantor set constructed on the interval
I. Denote as {en}n∈N ⊂ K the set of endpoints of the removed intervals. At each en, glue n copies of
the interval I. Let X be the union of S1 with all these attached copies of I. Define the homeomorphism
f : X → X as follows: f fixes K and every copy of the interval I, f moves all the points in S1 \ K
counterclockwise (see Figure 2). Clearly, it holds that

CR(f) = X.

Moreover, since there is a Cantor set of fixed points,

GR(f) = Fix(f).

We refer to [7][Example 3.3] for details on this argument. The idea is that, even if K has vanishing
Lebesgue measure, the dynamical system is topologically conjugate to the case λLeb(K) > 0, in which
case strong chains cannot cross K.
We observe that every g ∈ Hom(X) must fix K. Indeed, since the en’s have homeomorphically distinct
neighborhoods, any homeomorphism g must fix each en. Moreover, since the endpoints are dense in K, g
must fix the entire Cantor set. As a consequence, the homeomorphism f does not permit GR-explosions.

Figure 2: The dynamical system of Example 3.1.

Example 3.2. We construct the compact metric space X as follows. Let S1 be the circle with the usual
topology. For notational convenience, we consider it as the interval [−2, 2] with the endpoints identified.
Let K ⊂ S1 be the middle-third Cantor set constructed on the interval [−1, 1]. Denote the set K ∩ [0, 1]
by K+ and the set K∩ [−1, 0] by K−. Observe that the element of K+ closest to 0 is 1/3 and the element
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of K− closest to 0 is −1/3. For each point k ∈ K+, let X−k,k be an arc (disjoint from S1) connecting −k
in K− to k ∈ K+. Assume that these arcs are pairwise disjoint. Finally, let

X = S1 ∪

 ⋃
k∈K+

X−k,k

 .

Define the homeomorphism f : X → X as follows. On S1, f fixes K and moves all other points
counterclockwise, that is, in the direction of decreasing x. On every arc X−k,k, the endpoints −k and k
are fixed, since they are in K, and f moves all other points from −k ∈ K− toward k ∈ K+. See Figure 3.
In such a case,

CR(f) = X.

Moreover, since there is a Cantor set of fixed points,

GR(f) = K ∪ (−1/3, 1/3) ∪X−1/3,1/3.

We claim that f does not permit GR-explosions. To see this, let g be a homeomorphism close to f . Then
g(K) = K and each X−k,k maps to some X−k′,k′ . Consequently, if g moves k ∈ K+ clockwise then g
moves −k ∈ K− counterclockwise; if g moves k ∈ K+ counterclockwise then g moves −k ∈ K− clockwise.
For any α > 0, we can assume g close enough to f that

(a) g moves counterclockwise any x ∈ S1 that is not within α of K;

(b) For any x ∈ X−k,k that is not within α of K, g(x) is closer to k ∈ K+ than is x.

We will show that any x ∈ X not within α of GR(f) is not generalized recurrent. Since α is arbitrary,
this means that f does not permit GR-explosions.
For arbitrary a, b ∈ S1, we indicate by [a, b] the closed interval in S1 obtained by connecting clockwise a
and b. Let x be a point not within α of GR(f). Then the following three cases can occur:

(i) The point x ∈ [0, 2] (the right-side semicircle in Figure 3). Then, recalling that points along the
arcs X−k,k move from K− toward K+, any chain from x back to itself must go counterclockwise
to [−2, 0] (the left-side semicircle in Figure 3). If every point of K+ ∩ [0, x] is fixed, then for some
metric and some ε > 0 there is no strong ε-chain from x to [−2, 0], and thus x cannot be generalized
recurrent. Otherwise, there must be a point k′ ∈ K+∩[0, x] that is not fixed. If g moves k′ clockwise,
then the interval [k′, x] maps into its interior. As a consequence, for small enough ε > 0 no ε-chain
can get from [k′, x] to the left-side semicircle, and so x is not chain recurrent. In particular, x
is not generalized recurrent. If g moves k′ counterclockwise, then g moves −k′ clockwise. Then
the interval [−k′, x] maps into its interior, and again x is not chain recurrent and therefore not
generalized recurrent.

(ii) The point x ∈ [−2, 0]. To return to itself, it would first have to pass through [0, 2]. Then the
argument in (i) shows that x cannot return to [−2, 0], and thus x is not generalized recurrent.

(iii) The point x ∈ X−k,k for some k ∈ K+. Again, since points along the arcs X−k,k move from K−
toward K+, the only way for the point x to come back to itself is passing through [0, 2]. Then the
argument in (i) shows that x cannot belong to GR(g).

Summarizing, f ∈ Hom(X) is an example of a homeomorphism such that GR(f) 6= CR(f) and f does
not permit GR-explosions.

The other implication is valid on a compact topological manifold M with dim(M) ≥ 2; see Proposition
3.1 below (see also Theorem H in [4] for NW(f)). To prove this fact we need the following C 0 closing
lemma; see [4][Lemmas 4 and 5] and [12][Lemma 13].

Lemma 3.1. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2. If
x ∈ CR(f) then for any neighborhood V of f in Hom(M) there exists g ∈ V such that x ∈ Per(g).

Proposition 3.1. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2
and such that GR(f) 6= M . GR(f) = CR(f) if and only if f does not permit GR-explosions.
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Figure 3: The dynamical system of Example 3.2.

Proof. One direction is exactly Corollary 3.1. Assume now that f does not permit GR-explosions, which
means that for any open neighborhood U of GR(f) there exists a neighborhood V of f in Hom(M) such
that for any g ∈ V we have GR(g) ⊂ U . Then we have:

GR(f) ⊆ CR(f) ⊆
⋃
g∈V

Per(g) ⊆
⋃
g∈V
GR(g) ⊆ U,

where the second inclusion comes from the C 0 closing lemma, here Lemma 3.1. Since the neighborhood
U of GR(f) is arbitrary, we conclude that GR(f) = CR(f). 2

The second sufficient condition which avoids GR-explosions is topological stability. We recall the
notion of topologically stable homeomorphism, see e.g. [17][Definition 5] .

Definition 3.1. A homeomorphism f ∈ Hom(X) is topologically stable if there exists a neighborhood V
of f in Hom(X) such that for each g ∈ V there is a continuous function hg : X → X satisfying:

(i) hg ◦ g = f ◦ hg (semi-conjugation);

(ii) hg → id as g → f in the uniform topology.

Proposition 3.2. Let f ∈ Hom(X) be such that GR(f) 6= X. If f is topologically stable then f does not
permit GR-explosions.

In order to prove Proposition 3.2, we need the next result.

Lemma 3.2. Let f, g ∈ Hom(X). If there exists a continuous function h : X → X such that

h ◦ g = f ◦ h

then h(GR(g)) ⊆ GR(f).

Proof. Recall that, by Theorem 2.1,
GR(f) =

⋂
u∈L (f)

N (u)

where the intersection is taken over the set L (f) of continuous Lyapunov functions for f .
Let us show that if u ∈ L (f) then u◦h ∈ L (g). Indeed for any z ∈ X, since h◦ g = f ◦h and u ∈ L (f),
we have

u ◦ h ◦ g(z) = u ◦ f ◦ h(z) ≤ u ◦ h(z).
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Now let z = h(x) ∈ h(GR(g)) for some x ∈ GR(g) and consider u ∈ L (f). Since h◦ g = f ◦h, x ∈ GR(g)
and –as remarked above– u ◦ h ∈ L (g), we deduce that

u ◦ f(z) = u ◦ f ◦ h(x) = u ◦ h ◦ g(x) = u ◦ h(x) = u(z).

This means that z = h(x) ∈ N (u). By the arbitrariness of u ∈ L (f) and by Theorem 2.1, we conclude
that z ∈ GR(f). Equivalently, h(GR(g)) ⊆ GR(f). 2

We now prove Proposition 3.2.

Proof of Proposition 3.2. Argue by contradiction and suppose there are an open neighborhood U of
GR(f) in X, a sequence (gn)n∈N ∈ Hom(X) converging to f in the uniform topology and a sequence of
points (xn)n∈N such that xn ∈ GR(gn) \ U .
Since f is topologically stable and the sequence (gn)n∈N converges uniformly to f , there exists an index
n̄ ∈ N such that

hn ◦ gn = f ◦ hn ∀n ≥ n̄

where hn : X → X is a continuous map. Consequently, by Lemma 3.2,

hn(GR(gn)) ⊆ GR(f) ∀n ≥ n̄. (7)

Moreover, by Definition 3.1, the sequence (hn)n∈N converges uniformly to id.
Define the following continuous function

X \ U 3 y 7→ d(y,GR(f)) := min
x∈GR(f)

d(y, x).

Since X \ U is compact and (X \ U) ∩ GR(f) = ∅, it holds that η := miny∈X\U d(y,GR(f)) > 0.
Let now ñ ∈ N, ñ ≥ n̄ be such that

dC 0(id, hn) < η ∀n ≥ ñ. (8)

On one hand, from (8) we immediately deduce that

d(xn, hn(xn)) < η ∀n ≥ ñ. (9)

On the other hand, since xn ∈ GR(gn) \ U then hn(xn) ∈ GR(f) by inclusion (7). As a consequence

d(xn, hn(xn)) ≥ min
x∈GR(f)

d(xn, x) = d(xn,GR(f)) ≥ min
y∈X\U

d(y,GR(f)) = η. (10)

Inequalities (9) and (10) provide the required contradiction. 2

Clearly, from the previous proposition, we immediately deduce that if f ∈ Hom(X) with GR(f) 6= X is
topologically stable then f does not permit GR-full explosions. As proved by P. Walters in [16][Theorem
1], any Anosov diffeomorphism on a smooth, compact manifold M without boundary is topologically
stable. Consequently, the previous proposition applies in particular to every Anosov diffeomorphism with
GR(f) 6= M .

As with Corollary 3.1, the converse of Proposition 3.2 is false in general, as shown in the next example.

Example 3.3. On the circle S1 := R/2πZ embedded in R2 with the usual induced topology, for n ≥ 1
consider the points

Pn :=
(

cos
( π

2n

)
, sin

( π
2n

))
and

Qn :=
(

cos
( π

2n

)
,− sin

( π
2n

))
.

Let f : S1 → S1 be a homeomorphism which fixes exactly (1, 0) and every Pn and Qn and such that:

(i) Every Qn−1 and Pn with n ≥ 2 even is an attractor.

(ii) Every Qn and Pn−1 with n ≥ 2 even is a repeller.
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Figure 4: The dynamical system of Example 3.3.

We refer to Figure 4. In such a case,

Fix(f) = GR(f) = CR(f).

On one hand, since Fix(f) is an infinite set, f is not topologically stable (see [20][Theorem 1]). On the
other hand, since GR(f) = CR(f), f does not permit GR-explosions (see Corollary 3.1). (It is also easy
to verify directly that f does not permit GR-explosions.)

We conclude this section by discussing a sufficient condition to avoid GR-full explosions. This condi-
tion is an immediate corollary of Theorem 2.2.

Proposition 3.3. Let f ∈ Hom(X) be such that GR(f) 6= X. If CR(f) 6= X then f does not permit
GR-full explosions.

Proof. Arguing by contradiction, we assume that f admits GR-full explosions. This means that there
exists a sequence (gn)n∈N in Hom(X) converging to f in the uniform topology such that GR(gn) = X
for any n ∈ N. Consequently, GR(gn) = CR(gn) = X for any n ∈ N. Since by hypothesis CR(f) 6= X,
we conclude that f permits CR-explosions and this fact contradicts Theorem 2.2. 2

Note that, in general, the converse of Proposition 3.3 may be false: in Examples 3.1 and 3.2 we have
defined homeomorphisms on a compact metric space such that GR(f) ( CR(f) = X and f does not
permit GR-explosions. In particular, f does not permit GR-full explosions.
In the following final example, we slightly modify Example 3.1 in order to obtain f ∈ Hom(X) such that
GR(f) ( CR(f) = X and f does not permit GR-full explosions even though f permits GR-explosions.

e e

e

e

e

a

b
1 2

3

4

5

Xa,b

Figure 5: The dynamical system of Example 3.4.
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Example 3.4. Referring to the compact metric space X constructed in the previous Example 3.1, let
a, b ∈ S1 \K be such that the closed interval [a, b] ⊂ S1 (obtained by connecting a and b clockwise) does
not intersect K. Let

X ′ = X ∪Xa,b

where Xa,b is an arc (disjoint from X) from a to b.
Define the homeomorphism f : X ′ → X ′ as follows. f fixes a, b, K, every copy of the interval I and the
arc Xa,b, while f moves all the points in S1 \ (K ∪ {a, b}) counterclockwise (see Figure 5).
In this case

CR(f) = X ′ and GR(f) = Fix(f).

Essentially the same argument as in Example 3.1 shows that f does not permit GR-full explosions.
However, f does permit GR-explosions. Indeed, for any ε > 0 there exists g ∈ Hom(X ′) such that

dC 0(f, g) < ε

and g modifies the dynamics so that on the arc Xa,b, points move from a to b and thus points of the open
interval (a, b) can return to themselves with arbitrary strong chains. This means that

GR(g) = GR(f) ∪ (a, b).

4 GR-explosions and cycles
The goal of this section is to explain the relations between explosions and “cycles” for the generalized
recurrent set. Let f ∈ Hom(X) be such that GR(f) 6= X. We start by introducing the notions of
decomposition and cycle for GR(f).

Given a compact, invariant set L ⊆ X, we define by

W s(L) := {x ∈ X : d(fk(x), L)→ 0 as k → +∞}

and
Wu(L) := {x ∈ X : d(f−k(x), L)→ 0 as k → +∞}

the stable and unstable set, respectively, of L for f . In particular, we have that x ∈ W s(L) if and only
if ω(x) ⊆ L and x ∈Wu(L) if and only if α(x) ⊆ L.
A decomposition of GR(f) is a finite family L1, . . . , Lk of compact, invariant, pairwise disjoint sets in X
such that

GR(f) =

k⋃
i=1

Li.

Definition 4.1. Let L1, . . . , Lk be a decomposition of GR(f).

(i) Let i, j ∈ {1, . . . , k}. We write Li ⇀ Lj if

(Wu(Li) ∩W s(Lj)) \ GR(f) 6= ∅.

Equivalently, there is a point x ∈ X outside GR(f) whose orbit is going from Li to Lj.

(ii) We say that Li1 , . . . , Lir form an r ≥ 1 cycle of {Li} if

Li1 ⇀ Li2 ⇀ . . . ⇀ Lir ⇀ Li1 .

(iii) The decomposition {Li} has no cycles if no subset of {Li} forms an r ≥ 1 cycle.

We first establish that the existence of a decomposition of GR(f) with no cycles prohibits GR-
explosions. This theorem generalizes the corresponding result –due to Pugh and Shub– for the non-
wandering set (see Theorem 6.1 in [14] for flows and Theorem 5.6 in [18] for homeomorphisms). Since in
the proof we apply the C 0 closing lemma, the ambient space is a compact, topological manifold M with
dim(M) ≥ 2.

Theorem 4.1. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2 and
such that GR(f) 6= M . If there exists a decomposition of GR(f) without cycles, then f does not permit
GR-explosions.
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The proof of Theorem 4.1 uses the same techniques of Pugh-Shub and is postponed to Appendix A.
In order to establish the converse of Theorem 4.1, we need to introduce the notion of cycle for a so-called
open decomposition of f ∈ Hom(X) with GR(f) 6= X.

Given an open set V ⊂ X, we define

V u := {x ∈ X : ∃ m ≥ 0 such that f−m(x) ∈ V } =
⋃
m≥0

fm(V ). (11)

An open decomposition of f is a finite family V1, . . . , Vk of open sets in X, with pairwise disjoint closures,
such that

GR(f) ⊆
k⋃
i=1

Vi.

Definition 4.2. Let V1, . . . , Vk be an open decomposition of f .

(i) Let i, j ∈ {1, . . . , k}, i 6= j. We write Vi ≥ Vj if

Vj ∩ V ui 6= ∅.

Equivalently, there are x ∈ Vj and m ≥ 01 such that f−m(x) ∈ Vi.

(ii) We say that Vi1 , . . . , Vir form an r > 1 cycle of {Vi} if

Vi1 ≥ Vi2 ≥ . . . ≥ Vir ≥ Vi1 .

We say that Vj forms a 1 cycle of {Vi} if there are x /∈ Vj and m, q > 0 such that

fm(x), f−q(x) ∈ Vj .

(iii) The open decomposition {Vi} has no cycles if no subset of {Vi} forms an r ≥ 1 cycle.

By using the above formalism, we prove the other implication of Theorem 4.1.

Theorem 4.2. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2 and
such that GR(f) 6= M . If f does not permit GR-explosions, then there exists a decomposition of GR(f)
with no cycles.

The above theorem is a straightforward consequence of the next one.

Theorem 4.3. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2 and
such that GR(f) 6= M . If f does not permit GR-explosions, then for any open neighborhood U of GR(f)
there exists an open decomposition V1, . . . , Vk of f with no cycles such that

GR(f) ⊂
k⋃
i=1

Vi ⊆ U.

Since the proof of Theorem 4.3 follows the same lines of the proof of Lemma 2 in [15], it is postponed to
Appendix B.

Proof of Theorem 4.2. Arguing by contradiction, we suppose that every decomposition L1, . . . , Lk admits
an r ≥ 1 cycle

Li1 ⇀ Li2 ⇀ . . . ⇀ Lir ⇀ Li1 .

This means that there are x1, . . . , xr /∈ GR(f) such that

α(xj) ⊆ Lij , ω(xj) ⊆ Lij+1
∀j ∈ {1, . . . r − 1}

and
α(xr) ⊆ Lir , ω(xr) ⊆ Li1 .

1Actually, m > 0 since the open sets {Vi} have pairwise disjoint closures.
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Since the {Li} are compact and pairwise disjoint, we can choose a family {Li} of open sets, with pairwise
disjoint closures such that Li ⊂ Li for any i = 1, . . . , k. Let us consider the open neighborhood

U :=

k⋃
i=1

Li.

of GR(f). By shrinking each Li a bit, we can assume that the points x1, . . . , xr /∈ U . Then, by construc-
tion, any open decomposition {Vi} of f such that GR(f) ⊂

⋃
i Vi ⊆ U has cycles. This fact contradicts

Theorem 4.3 applied to U and concludes the proof. 2

Finally, Theorems 4.1 and 4.2 give us the equivalence between no GR-explosions and the existence of a
decomposition of GR(f) with no cycles.

Theorem 4.4. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2 and
such that GR(f) 6= M . f does not permit GR-explosions if and only if there exists a decomposition of
GR(f) with no cycles.

Remark 4.1. We notice that in the proof of the previous theorem –see Appendixes A and B– we do
not use the full definition of the generalized recurrent set, but only the fact that GR(f) is a compact,
invariant set, which contains NW(f) and is contained in CR(f). Consequently, with the same proof, we
can obtain the corresponding results both for SCR(f) and CR(f).

Theorem 4.5. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2 and
such that SCR(f) 6= M . f does not permit SCR-explosions if and only if there exists a decomposition of
SCR(f) with no cycles.

Remark 4.2. The corresponding result holds for CR(f); since CR-explosions cannot occur (see Theorem
2.2), we see that for f ∈ Hom(M) defined on a compact topological manifold M of dim(M) ≥ 2, there
exists a decomposition of CR(f) with no cycles. In fact, this holds for compact metric spaces, as a
consequence of the existence of a complete Lyapunov function.

5 Applications to strict Lyapunov functions and genericity

Let X be a compact metric space and f ∈ Hom(X). We say that a continuous Lyapunov function
u : X → R for f is strict if it is not a first integral. Equivalently, this means that N (u) 6= X, i.e. there
exists x ∈ X such that

u(f(x)) < u(x).

By Theorem 2.1, f admits a continuous strict Lyapunov function if and only if GR(f) 6= X. In this
section, we collect the results of Sections 3 and 4 in order to give conditions to give an affirmative answer
to this question:

For a given homeomorphism, is the property of admitting a continuous strict Lyapunov function sta-
ble under C 0 perturbations?

From Corollary 3.1, Proposition 3.2 and Proposition 3.3, we deduce the following

Proposition 5.1. Let f ∈ Hom(X) admit a continuous strict Lyapunov function. Suppose that one of
these hypotheses holds:

(i) GR(f) = CR(f);

(ii) CR(f) is strictly contained in X;

(iii) f is topologically stable.

Then there exists a neighborhood V of f in Hom(X) such that any g ∈ V admits a continuous strict
Lyapunov function.

Moreover, from Theorem 4.4, we obtain that a sufficient condition is the existence of a decomposition of
GR(f) without cycles.
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Proposition 5.2. Let f ∈ Hom(M) admit a continuous strict Lyapunov function. If there exists a
decomposition of GR(f) without cycles then there exists a neighborhood V of f in Hom(M) such that
any g ∈ V admits a continuous strict Lyapunov function.

We finally remark that the property of admitting a continuous strict Lyapunov function is generic.
For this purpose, let M be a smooth, compact manifold with metric d. We endow Hom(M) with the
metric

dH (f, g) = max
x∈M

(
max

[
d(f(x), g(x)), d(f−1(x), g−1(x))

])
.

With this metric, Hom(M) is a complete space and therefore it is a Baire space. A property in Hom(M)
is said to be generic if the set of f ∈ Hom(M) satisfying this property contains a residual set, i.e. a
countable intersection of open dense sets.

Proposition 5.3. On a smooth, compact manifoldM , the property in Hom(M) of admitting a continuous
strict Lyapunov function is generic.

Proof. By Theorem 3.1 in [9], the property in Hom(M) of having int(CR(f)) = ∅ is generic and so
also that of having GR(f) 6= M . Therefore, by Theorem 2.1, the property in Hom(M) of admitting a
continuous strict Lyapunov function is generic too.

A Proof of Theorem 4.1
Arguing by contradiction, we suppose that there are an open neighborhood U of GR(f) inM , a sequence
(hn)n∈N ∈ Hom(M) converging to f in the uniform topology and a sequence of points (an)n∈N ∈ GR(hn)\
U . Since X is compact and U is open, we can assume that an → b1 /∈ GR(f). By assumption

an ∈ GR(hn) ⊆ CR(hn)

and therefore –by the C 0 closing lemma– for each n ∈ N there exists gn ∈ Hom(M) such that

dC 0(hn, gn) <
1

n
and an ∈ Per(gn).

Denote by Tn ≥ 1 the least period of an and define

kn := nTn.

Clearly, kn → +∞ and
gknn (an) = an ∀n ∈ N.

This means that there exist gn → f in the C 0 topology and kn → +∞ such that every point an can be
equivalently represented by gknn (an). Recall that

gknn (an) = an → b1 /∈ GR(f).

The alpha limit and the omega limit of every point of M are contained in NW(f) ⊆ GR(f) (see
Proposition 3.3.4 in [10]). In particular, α(b1), ω(b1) ⊆ L1 ∪ . . . ∪ Lk and therefore, by Theorem 5.4 in
[18], there exist i0, i1 ∈ {1, . . . , k} such that α(b1) ⊆ Li0 and ω(b1) ⊆ Li1 (equivalently b1 ∈ Wu(Li0) ∩
W s(Li1)). Since we have no cycles i0 6= i1.

Take a compact neighborhood Ui1 of Li1 such that

b1 /∈ Ui1 and Ui1 ∩ Lj = ∅ ∀j 6= i1.

Equivalently, since the Lj are invariant,

b1 /∈ Ui1 and f(Ui1) ∩ Lj = ∅ ∀j 6= i1.

As in [18][Page 147], we denote pieces of gn-orbits from an to itself as:

[an, an] := (an, gn(an), g2n(an), . . . , gknn (an)),

[an, an) := (an, gn(an), g2n(an), . . . , gkn−1n (an)),

(an, an) := (gn(an), g2n(an), . . . , gkn−1n (an)).
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Since an → b1 ∈ W s(Li1), gn → f in the uniform topology and kn → +∞, there exists a sequence of
points pn ∈ [an, an] such that

d(pn, Li1)→ 0, for n→ +∞.

In particular, since b1 /∈ Ui1 , pn ∈ (an, an) for large n. Moreover, for the same reason, for n sufficiently
large, there is mn ≥ 1 such that

pn, gn(pn), . . . , gmn−1
n (pn) ∈ int Ui1

and
gmn
n (pn) /∈ int Ui1 .

Then
zn := gmn

n (pn) ∈ gn(int Ui1) \ int Ui1 ⊂ gn(Ui1) \ int Ui1 .

Note that, since d(pn, Li1)→ 0, gn → f in the C 0 topology and Li1 is f -invariant, we have

mn → +∞.

Finally, since gn → f in the uniform norm, we have that for n large enough

gn(Ui1) ∩ Lj = ∅ ∀j 6= i1.

Let b2 be a limit point of the sequence (zn)n∈N. Hence b2 /∈ GR(f). Moreover, since the first mn iterates
of zn with respect to g−1n are contained in Ui1 , gn → f in the uniform norm and mn → +∞, it follows
that f−m(b2) ∈ Ui1 for all m ≥ 1 (recall that, since X is compact, it holds also that g−1n → f−1 in the C 0

topology). This means that α(b2) ⊆ Li1 or equivalently b2 ∈ Wu(Li1). Moreover, from the hypothesis
that there are no cycles, ω(b2) ⊆ Li2 with i2 6= i0, i1.

Recall now that zn ∈ (an, an]. This means that there exists rn ≥ 1 such that zn (which is the first
point of the gn-orbit of pn outside int Ui1) can be represented as

zn = grnn (an).

In order to proceed similarly with b2 /∈ GR(f), we need to prove that also the sequence

kn − rn → +∞.

Suppose to the contrary that kn − rn is uniformly bounded. This means that

b1 = lim
n→+∞

gkn−rnn (zn)

has the same alpha limit of b2 = limn→+∞ zn, that is α(b1) ⊆ Li1 . Since α(b1) ⊆ Li0 with i1 6= i0, this is
the desired contradiction. In particular, zn ∈ (an, an) for large n.

We now apply the same argument to b2 /∈ GR(f). Take a compact neighborhood Ui2 of Li2 such that

b2 /∈ Ui2 and f(Ui2) ∩ Lj = ∅ ∀j 6= i2.

In order to continue, we denote pieces of gn-orbits from zn = grnn (an) to an as:

[zn, an] := (zn, gn(zn), g2n(zn), . . . , gkn−rnn (zn)),

[zn, an) := (zn, gn(zn), g2n(zn), . . . , gkn−rn−1n (zn)),

(zn, an) := (gn(zn), g2n(zn), . . . , gkn−rn−1n (zn)).

As in the previous case, there exists a sequence of points p′n ∈ [zn, an] such that

d(p′n, Li2)→ 0, for n→ +∞.

In particular, since b2 /∈ Ui2 , p′n ∈ (zn, an) for large n. Moreover, for n sufficiently large, there is m′n ≥ 1
such that

p′n, gn(p′n), . . . , g
m′

n−1
n (p′n) ∈ int Ui2

and
g
m′

n
n (p′n) /∈ int Ui2 .
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Then
z′n := g

m′
n

n (p′n) ∈ gn(int Ui2) \ int Ui2 ⊂ gn(Ui2) \ int Ui2
and

m′n → +∞.

Finally, since gn → f in the uniform norm, we have that for n large enough

gn(Ui2) ∩ Lj = ∅ ∀j 6= i2.

Let b3 be a limit point of the sequence (z′n)n∈N. Hence, b3 /∈ GR(f)and α(b3) ⊆ Li2 Moreover, since there
are no cycles, ω(b3) ⊆ Li3 with i3 6= i0, i1, i2.

We finally notice that there exists r′n ≥ 1 such that z′n can be represented as

z′n = g
r′n
n (an).

Arguing as for kn − rn, it can be shown that the sequence kn − r′n → +∞. In particular, z′n ∈ (zn, an)
for large n.

We can proceed with b3 exactly as b2 and produce, by iteration, a chain of Lj ’s with no repetitions
and length greater that k. This is the desired contradiction and the theorem is proved. 2

B Proof of Theorem 4.3
We begin with a definition and a technical lemma.

Definition B.1. Let f ∈ Hom(X), y, z ∈ X and ε > 0. A GR-chain of ε balls of f from y to z is a
finite sequence {Bi} = B1, . . . , Bn of open convex balls such that

(i) y ∈ B1 and z ∈ Bn;

(ii) For any i ∈ {1, . . . , n}, diam(Bi) < ε and Bi ∩ GR(f) 6= ∅;

(iii) For any i ∈ {1, . . . , n− 1}, there exists m(i) ≥ 0 such that fm(i)(Bi) ∩Bi+1 6= ∅.

The same definition of chain of balls is given in [15][Page 590] for the non-wandering set. Moreover,
Lemma B.1 below is a generalization of Lemma 3 in [15].

Lemma B.1. Let f ∈ Hom(M) be defined on a compact topological manifold M of dim(M) ≥ 2. Let
y, z ∈ M and let ε > 0. Given a GR-chain of ε balls of f from y to z, there exists g ∈ Hom(M) such
that:

(a) dC 0(f, g) < 4πε;

(b) gN (f−1(y)) = f(z) for some N > 0;

(c) g = f outside the union of the ε balls of the GR-chain.

Proof of Lemma B.1. Let {Bi} = B1, . . . , Bn be a GR-chain of ε balls from y to z. For any i ∈
{1, . . . , n−1}, let m(i) ≥ 0 be the first integer such that fm(i)(Bi)∩Bi+1 6= ∅. For any i ∈ {1, . . . , n−1},
choose

wi+1 ∈ fm(i)(Bi) ∩Bi+1

and denote
zi := f−m(i)(wi+1) ∈ Bi

Moreover, since {Bi} is a GR-chain, for any i ∈ {1, . . . , n} we can select

ki ∈ Bi ∩ GR(f).

In particular, each ki ∈ CR(f). Consequently, let (ri,1 = ki, ri,2, . . . , ri,N(ki) = ki) be a ε-chain from
ri,1 = ki to itself.

Let now consider the following couples of points:

(y, k1)

15



(f(r1,j), r1,j+1) ∀j = 1, . . . , N(k1)− 2

(f(r1,N(k1)−1), z1)

(f j(z1), f j(z1)) ∀j = 1, . . . ,m(1)− 1

(fm(1)(z1), k2) = (w2, k2)

(f(r2,j), r2,j+1) ∀j = 1, . . . , N(k2)− 2

(f(r2,N(k2)−1), z2)

(f j(z2), f j(z2)) ∀j = 1, . . . ,m(2)− 1

and so on, until

(fm(n−1)(zn−1), z) = (wn, z)

(f(z), f(z)).

By perturbing f a little, we can assume that for every (qi, pi), (qj , pj) with i 6= j, it holds that qi 6= qj
and pi 6= pj . Moreover, by construction, for any couple (q, p) given above, the distance d(q, p) < 2ε.
Consequently, applying Lemma 13 in [12], we obtain a homeomorphism η : M →M such that

dC 0(η ◦ f, f) < 4πε and η(q) = p

for any such a couple (q, p).
We finally prove that there exists N > 0 such that (η ◦ f)N (f−1(y)) = f(z). Indeed

(η ◦ f)(f−1(y)) = k1, (η ◦ f)(k1) = r1,2, (η ◦ f)(r1,2) = r1,3, . . . (η ◦ f)(r1,N(k1)−1) = z1

(η ◦ f)(z1) = f(z1), (η ◦ f)(f(z1)) = f2(z1), . . . (η ◦ f)(fm(1)−1(z1)) = k2

and so on, until
(η ◦ f)(fm(n−1)−1(zn−1)) = η(wn) = z, η ◦ f(z) = f(z).

This proves that, after a number N > 0 of iterations of η ◦ f , we have

(η ◦ f)N (f−1(y)) = f(z)

and so g := η ◦ f is the desired perturbation.

We finally prove Theorem 4.3 by using the same techniques of Lemma 2 in [15].

Proof of Theorem 4.3. Let U be an arbitrary open neighborhood of GR(f) in M . Since f does not
permit GR-explosions, there exists ε > 0 such that if the C 0 distance from g ∈ Hom(M) to f is less than
4πε then

GR(g) ⊂ U. (12)

Let {Bα} be a finite covering of GR(f) by open convex balls such that, for any α,

Bα ⊆ U and diam(Bα) < ε.

We denote by {Uβ} the connected components of
⋃
αBα. By shrinking the balls {Bα} if necessary, we

can assume that the {Uβ} have pairwise disjoint closures. We now introduce the following equivalence
relation on pairs of {Uβ}. We say that Uβ1

is related to Uβ2
if either Uβ1

= Uβ2
or there is a common

cycle containing both Uβ1
and Uβ2

, according to Definition 4.2. Moreover, we indicate by Ũi the union
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of the members of the same relation class. By construction, {Ũi} is an open decomposition of f with no
r cycles for r > 1. In order to obtain an open decomposition of f with no r cycles for r ≥ 1, we define

Ũsi := {x ∈ X : ∃ q ≥ 0 such that fq(x) ∈ Ũi}

and (see also formula (11))
Vi := Ũsi ∩ Ũui .

Then V1, . . . , Vk is an open decomposition of f with no cycles. That is, {Vi} is a finite family of open sets
with pairwise disjoint closures such that GR(f) ⊆

⋃k
i=1 Vi and no subset of {Vi} forms an r ≥ 1 cycle.

It remains to prove that Vi ⊆ U for any i. Let i be fixed. Arguing by contradiction, we suppose there
exists

x ∈ Vi \ U.

Since Vi = Ũsi ∩ Ũui , there exist m, q > 0 such that

y := fm(x) ∈ Ũi and z := f−q(x) ∈ Ũi

Let m, q > 0 be the minimal integers with this property. Recall that, by definition, Ũi is the union of
the members of {Bα} in the same relation class. This means that there exists a GR-chain of ε balls of
f from y to z and therefore we can apply Lemma B.1. Let g ∈ Hom(M) be the homeomorphism given
by Lemma B.1. Since m, q > 0 are the minimal integers such that y = fm(x) ∈ Ũi and z = f−q(x) ∈ Ũi,
the points

f i(x) ∀i ∈ {0, . . . ,m− 1}

and
f−j(x) ∀j ∈ {0, . . . q − 1}

are outside the union of the ε balls of the GR-chain. Consequently, by point (iii) of Lemma B.1,

g(f i(x)) = f(f i(x)) ∀i ∈ {0, . . . ,m− 1} (13)

and
g(f−j(x)) = f(f−j(x)) ∀j ∈ {0, . . . q − 1}.

Since x = f−m(y) = fq(z), the previous equalities become respectively

g(f−i(y)) = f(f−i(y)) ∀i ∈ {1, . . . ,m}

and
g(f j(z)) = f(f i(z)) ∀j ∈ {1, . . . q}. (14)

Consequently, by (14):

x = fq(z) = f(fq−1(z)) = g(fq−1(z)) = g2(fq−2(z)) = . . . = gq−1(f(z)).

Moreover, by point (ii) of Lemma B.1, gN (f−1(y)) = f(z) for some N > 0 and therefore (see also (13))

x = gN+q−1(f−1(y)) = gN+q−1(fm−1(x)) = gN+q−1(f(fm−2(x))) = gN+q(fm−2(x))

= . . . = gN+q+m−2(x).

This means that x ∈ Per(g).
Recall that, by property (i) of Lemma B.1, g ∈ Hom(M) is such that dC 0(f, g) < 4πε. Consequently, by
(12), GR(g) ⊂ U . Since Per(g) ⊆ GR(g), the point x should belong to U and this gives us the required
contradiction. 2

References
[1] Akin, Ethan. The General Topology of Dynamical Systems (Graduate Studies in Mathematics, 1).

American Mathematical Society, Providence, RI, (1993).

[2] Akin, Ethan; Auslander, Joseph. Generalized recurrence, compactifications, and the Lyapunov topol-
ogy. Studia Math. 201, no. 1, 49–63, (2010).

17



[3] Auslander, Joseph. Generalized recurrence in dynamical systems. Contributions to Differential Equa-
tions, vol. 3, 65–74, (1964).

[4] Block, Louis; Franke, John E. The chain recurrent set, attractors, and explosions. Ergodic Theory
Dynam. Systems 5, no. 3, 321–327, (1985).

[5] De Vries, Jan. Topological dynamical systems. An introduction to the dynamics of continuous map-
pings. De Gruyter Studies in Mathematics, 59. De Gruyter, Berlin, (2014).

[6] Easton, Robert. Chain transitivity and the domain of influence of an invariant set. The structure of
attractors in dynamical systems, pp. 95–102, Lecture Notes in Math., 668, Springer, Berlin, (1978).

[7] Fathi, Albert; Pageault, Pierre. Aubry-Mather theory for homeomorphisms. Ergodic Theory Dynam.
Systems 35, no. 4, 1187–1207, (2015).

[8] Franks, John. A variation on the Poincaré-Birkhoff theorem. Hamiltonian dynamical systems (Boul-
der, CO, 1987), 111–117, Contemp. Math., 81, Amer. Math. Soc., Providence, RI, (1988).

[9] Hurley, Mike. Properties of attractors of generic homeomorphisms. Ergodic Theory Dynam. Systems
16, no. 6, 1297–1310, (1996).

[10] Katok, Anatole; Hasselblatt, Boris. Introduction to the Modern Theory of Dynamical Systems.
Cambridge University Press, (1995).

[11] Nitecki, Zbigniew. Differentiable dynamics. An introduction to the orbit structure of diffeomor-
phisms. The M.I.T. Press, Cambridge, Mass.-London, xv+282 pp. (1971).

[12] Nitecki, Zbigniew; Shub, Michael. Filtrations, decompositions, and explosions. Amer. J. Math. 97
(1975), no. 4, 1029–1047.

[13] Palis, Jacob. Ω-explosions. Proc. Amer. Math. Soc. 27, 85–90, (1971).

[14] Pugh, Charles; Shub, Michael. The Ω-Stability Theorem for Flows. Invent. Math. 11, 150–158,
(1970).

[15] Shub, Michael; Smale, Steve. Beyond hyperbolicity. Annals of Mathematics 96, no. 3, 576–591,
(1972).

[16] Walters, Peter. Anosov diffeomorphisms are topologically stable. Topology 9, 71–78, (1970).

[17] Walters, Peter. On the pseudo-orbit tracing property and its relationship to stability. The structure
of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), pp.
231–244, Lecture Notes in Math., 668, Springer, Berlin, (1978).

[18] Wen, Lan. Differentiable dynamical systems. An introduction to structural stability and hyperbolic-
ity. Graduate Studies in Mathematics, 173. American Mathematical Society, Providence, RI, xi+192
pp. (2016).

[19] Wiseman, Jim. The generalized recurrent set and strong chain recurrence. Ergodic Theory Dynam.
Systems 38, no. 2, 788–800, (2018).

[20] Yano, Koichi. Topologically stable homeomorphisms on the circle. Nagoya Math. J. 79, 145–149,
(1980).

[21] Yokoi, Katsuya. On strong chain recurrence for maps. Annales Polonici Mathematici 114, no. 2,
165–177, (2015).

18


	Introduction
	Preliminaries
	GR-(full) explosions
	GR-explosions and cycles
	Applications to strict Lyapunov functions and genericity
	Proof of Theorem 4.1
	Proof of Theorem 4.3

