

The Priority-Band Architecture: a Partitioning Approach for the Definition of Avionics Reference Architectures

Marco Panunzio^{*}, José A. Pulido^{**}, Tullio Vardanega^{*}

* Università di Padova** Universidad Politécnica de Madrid (UPM)

Introduction

- Which motivations promoted IMA
 - How IMA solved those problems?
- Can those problems be solved otherwise
 - Simpler
 - Leaner
 - Less rigid and yet equally effective
 - In a word: more efficiently

IMA goals

- Support for logical partitions
 - Less hardware costs
 - Less harness
- Incremental update
 - Add/delete partitions with minimum impact
- Transparency of underlying technology

- Inflexible schedule
- Difficult to reconfigure
- Hard to accommodate sporadic tasks effectively
- Rigid and inefficient communication scheme

A novel approach

- Scheduling policies
 - Global scheduler: fixed priorities
 - Local schedulers: FPPS, FPNS, EDF, Round Robin
- Communications
 - Via shared resources (with synchronisation protocol)
 » intra-partition and *inter-partition* communication
 - Priority-based
 - » immediate delivery, not time-triggered

Criticality based vs. Deadline monotonic

Compromise solution

Temporal isolation obtained at three stages

- Design time

- » Priority assignment + static analysis
- » Ravenscar Computational Model (RCM)

- Detection of anomalies at run time

- » WCET overrun detection
- » Deadline surveillance
- » Enforcement of minimum inter-arrival time

Fault handling strategies

- » Second chance algorithm
- » Mode change
- » Controlled degradation

Spatial isolation

- Design time
 - Static analysis techniques:
 - » e.g. SPARK tools
 - Linking model
- Run time
 - Needs HW-based memory protection mechanisms
 - Current space processors are too poor in this regard
 » e.g. only two fence registers in LEON2

- GNATforLEON 1.4: a cross-compilation system which embeds a real-time kernel
 - Compliant with the Ravenscar profile
 - Provides support for temporal isolation

- Model-based round-trip timing analysis
 - All relevant information directly gathered at model level
 - Performed on the architectural description of the system
 - » targeting the priority-band architecture
 - » tailored to the RCM
 - » full knowledge of all relevant platform-specific characteristics
 - Results propagated back to the system model

Conclusions

♦ IMA

- Good level of predicibility
- Rigid and inflexible
 - » too much for the demands of today

Priority-band Architecture

- Simpler and elegant
- Flexible
- Improved efficiency
- Warranted timeliness
 - » needs HW support to achieve effective space isolation