G. Parmeggiani, 2/12/2019

Algebra Lineare, a.a. 2019/2020,

Scuola di Scienze - Corsi di laurea:

Statistica per l'economia e l'impresa Statistica per le tecnologie e le scienze

Studenti:

numero di MATRICOLA PARI

ESERCIZIO TIPO 12

Sia V lo spazio vettoriale delle matrici complesse 2×2 diagonali. Si consideri l'applicazione lineare $f:V\to\mathbb{C}^2$ definita da

$$f(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}) = \begin{pmatrix} a - b \\ 2b \end{pmatrix}.$$

Si determini la matrice \mathbf{A} associata ad f rispetto alle basi ordinate

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \right\} \quad e \quad \mathcal{D} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$$

su dominio e codominio rispettivamente.

La matrice che cerchiamo è $\mathbf{A} = \begin{pmatrix} C_{\mathcal{D}} \left(f(\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}) \right) & C_{\mathcal{D}} \left(f(\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}) \right) \end{pmatrix}$.

Poichè $f(\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}) = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$ e $f(\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}) = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$, allora $\mathbf{A} = \begin{pmatrix} C_{\mathcal{D}}\left(\begin{pmatrix} -2 \\ 6 \end{pmatrix}\right) & C_{\mathcal{D}}\left(\begin{pmatrix} -2 \\ 4 \end{pmatrix}\right) \end{pmatrix}.$

Piuttosto che calcolare separatamente $C_{\mathcal{D}}\left(\begin{pmatrix} -2 \\ 6 \end{pmatrix}\right)$ e $C_{\mathcal{D}}\left(\begin{pmatrix} -2 \\ 4 \end{pmatrix}\right)$, calcoliamo $C_{\mathcal{D}}\left(\begin{pmatrix} a \\ b \end{pmatrix}\right)$ per un generico vettore $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{C}^2$, e specializziamo la formula ottenuta ai due diversi vettori $\begin{pmatrix} -2 \\ 6 \end{pmatrix}$ e $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$. Poichè

$$C_{\,\mathcal{D}}\left(\begin{pmatrix} a \\ b \end{pmatrix}\right) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \, \Big| \, \begin{pmatrix} a \\ b \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} \alpha + \beta \\ \alpha - \beta \end{pmatrix}$$

allora

$$\begin{cases} \alpha+\beta=a \\ \alpha-\beta=b \end{cases} \implies \begin{cases} \alpha=(a+b)/2 \\ \beta=(a-b)/2 \end{cases} \implies C_{\mathcal{D}}\left(\binom{a}{b}\right)=\binom{(a+b)/2}{(a-b)/2}.$$

Ponendo
$$a=-2$$
 e $b=6$ otteniamo $C_{\mathcal{D}}\left(\begin{pmatrix} -2\\6 \end{pmatrix}\right)=\begin{pmatrix} 2\\-4 \end{pmatrix}$; ponendo $a=-6$ e $b=0$ otteniamo $C_{\mathcal{D}}\left(\begin{pmatrix} -2\\4 \end{pmatrix}\right)=\begin{pmatrix} 1\\-3 \end{pmatrix}$. Quindi

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -4 & -3 \end{pmatrix}.$$