Homework 1

Solutions due by: October 14th.

Exercise 1. Compute

$$
\lim _{n \rightarrow+\infty} n \int_{0}^{+\infty} \log \left(1+\frac{e^{-x}}{n}\right) d x
$$

Exercise 2. Let

$$
F(x)=\int_{0}^{+\infty} \frac{1-e^{-x t^{2}}}{t^{2}} d t
$$

i) Determine the set of $x \in \mathbb{R}$ such that $F(x)$ is well defined (domain of F).
ii) Discuss carefully the derivability of F on its domain and compute F^{\prime}. State the general theorems you need.
iii) Use the previous results to determine explicitly F.

Exercise 3. Let

$$
f(x, y):=\frac{1}{1-x y}, \text { a.e. }(x, y) \in[0,1]^{2}
$$

Recall that $\frac{1}{1-q}=\sum_{n=0}^{\infty} q^{n}$ for every $|q|<1$. Use this to discuss if $f \in L^{1}\left([0,1]^{2}\right)$.

