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Exercise 1. Compute

+00 e—x
lim n/ log(l + —) dx.
n—+0oo 0 n

+00 1 _ e—xt2
F = — drt.
x) /0 <

i) Determine the set of x € R such that F(x) is well defined (domain of F).
ii) Discuss carefully the derivability of F on its domain and compute F’. State the general
theorems you need.
iii) Use the previous results to determine explicitly F.

Exercise 2. Let

Exercise 3. Let
, ae. (x,y) € [0, 1]

f@d%=1
Recall that ﬁ = 31, q" for every |q| < 1. Use this to discuss if £ € L'([0,1]%).



SoLuTION

Exercise 1. Let
e \"
fu(x) :=log (1 + —) .
n
We have to compute

+00
lim / fu(x) dx.
o Jo
To compute this we may use, in this case, either the monotone or the dominated convergence

theorems. Let’s see how:

e monotone convergence. Recall that (1 + £)"  in n for every ¢ > 0. Therefore, being

log 7,

—X

n+1
) = fur1(x), VR eN, n > 1, Vx € R.
n+1

£2(x) :log(l + e—) < log(l ;L
n

e\
MOreover, being (1 + 67) > 1, fu(x) = 0 for every n and x € [0,+oc0[. We're then in
conditions to apply monotone convergence to conclude that

lim,, /O+O° fu(x)dx = /Om lim, f,(x) dx = /Om lim,, log (1 + %) dx

= 0+°° log (e¢) dx

+00

= Jo e Ydx=1.

e dominated convergence. As above, we have
lim f(x) = log (e) = ™%, Vx> 0.
n

We need then to find an integrable dominant g € L'([0, +o0[) such that
| fi(x)] < g(x), a.e. x € [0,+00[, Vn > ny,
for some ng > 1. We recall the remarkable inequality
log(1+1¢) <t Vt > —1.

If you don’t know this bound, let’s see how how to deduce it. You may first notice that
y = log(1 + t) (as for y = logt) is concave. Therefore, by a remarkable property of
concavity, y = log(1 + ¢) is below every of its tangents (sometimes this is considered as
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definition of concavity). Easily, the tangent at r = 0 is y = ¢, therefore log(1 + ) < ¢ for
every t > —1. Applying this inequality,

e e
nlog(1+—) <Sn-—=e¢"=:g(x),Vx >0, Vn > 1.
n n

Because g € L!([0, +oo[) we're done. The conclusion follows as above. m

*th
Exercise 2. i) Let f(x,7) := 1";2 . In order F' be well posed we need to check for which

x € R we have f(x,#) € L'([0, +oo[). Notice that £(0,7) = 0 € L'([0,+oo[). For x # 0, f(x,?)
is well defined for ¢ # 0, f(x,#) € €(]0,+oo[) hence f(x,#) € L([0,+oo[). Because f(x,§) is
continuous we invoke the following fact:

+00
/ |f(x,1)| dt < +c0 in generalized sense = f(x,#) € L'([0, +o0]).
0

To check this we need to discuss the behavior of f as t — 0, +oo (because f € € (]0,+0o0])).
Recalling that e* = 1 + s + o(s) we have that, as t — 0,

PTR) 2 2
f(x,t)zl (1 )Z +O(t)):x+0:2)

— x € R,

so f(x,H) is absolutely integrable in = 0, for every x € R. As t — +co we may notice that if

x <0,
_e—x12
f(x’ t) ~ 1’2 — 109,

whence f(x,#) ¢ L([0,+oo[) for x < 0. If x > 0, being 0 < e < 1, easily

1
|f(x’t)| = f(x’t) < t_z’

which is integrable at +co0. Conclusion: f(x,#) € L'([0, +oo[) iff x > 0, thus the domain of F is
[0, +o0].

ii) If derivation under integral sign applies at some x > 0,

2 2

+ _ Xt + ) + ) y=V2xt + ¥
F'(x) = Omaxli—zdt:foootlz(tze Y dr = Oooex’ dt” = \/Lz_xfoooe T dy
L 1\or = [T 12
= —=\2m =+/%x .
V2x 2 2

This formula would make sense for x > 0. Now, to check that derivation under integral applies
for x > 0, we need to check the conditions:

o f(x,8) € LY([0,+0[) Vx > 0 (already done);
e 0. f(x,t) exists for every x > 0 and a.e. 1 €]0,+oco[: yes, dy f(x,1) = e



e dg € L'(J0,+0co[) such that |0, f(x,7)| < g(¢), for every x > 0, a.e. t € [0, +oco[. About
this, we understand that if x > O the unique possible bound valid for every x > 0 is
g(t) = 1, which is not in L. However, if we restrict to x > r for r > 0 fixed, we have
immediately

|0 f(x,1)] = e < e = g (1), Vx >r, ae.t €|0,+o0].

Therefore, assumptions are fulfilled on [r,+oo[ and the previous derivation holds true
for every x > r. Now, because r > 0 is arbitrary we can easily conclude that actually
F’(x) exists for every x > 0.

iii) By ii) it follows that
F(x) = —V2rx'? + C, Vx > 0,

where C is an arbitrary constant. Now, how can we determine C? Formally, we cannot set x = 0
because this is not allowed by the previous formula. However, by the same
lim F(x)=C.
x—0+
We can compute the limit directly on F' by mean of some limit theorem. The question is: can
we say that

+00

+00
lim F(x)= lim f(x, 1) dt = / lim f(x,t) dt.
x—0+ Jo 0 x—0+

x—0+

It this is true, because lim,_,o+ f(x,7) = f(0,7) = 0 we would conclude lim,_,0+ F(x) = 0, that
is C = 0. Now, in the present case we can justify the passage of the limit into the integral in two
ways. Let’s see both for convenience (just one is enough for formal justification).

e By monotone convergence: we profit of the fact that f(x,7) is increasing in x. In
fact, 9, f(x,t) = G~ > 0, hence when x N0, f(x,1) N\, 0. So, if (x,) is a sequence
decreasing to 0, setting f,,(¢) := f(xy,t), we have a decreasing sequence of functions. Be-
cause fy = f(xo,4) € L'([0, +co[) we can apply monotone convergence with decreasing
sequences to obtain that

+00 +00 +oo
lim F(x,) = lim/ f(x,1) dt = lim/ Jfu(t) dt = / lim f,,(¢) dt = 0.

Being the sequence (x,) arbitrary, it follows that lim,_o+ F(x) = 0.
¢ By dominated convergence: here we need a bound like |f(x,7)] < g(¢) with g €
L'([0,+00[) for all x € [0, 1] for example. Also in this case we may notice that because

2 . 2 _42
e " decreases with x, 0 < e™" < e forall x € [0, 1], therefore
2
-t

1 —
| f(x,0)] < t—ze’ Vx € [0,1], a.e.t > 0.
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We can now apply the continuity theorem to deduce that F is continuous on [0, 1],
whence in particular

lim F(x)=F(@0)=0. m

x—0+

Exercise 3. Notice first that f is well defined and continuous on [0, 1[2, hence it is L([0, 1]?).
Furthermore, being > 0, the integral of f is well defined (eventually = +c0). By the hint,

(o)

Fley) = ) ()",

n=0
thus

Fey)dudy = [ 3 ) dudy.
[0’1]2 [071]2 n=0

Applying monotone convergence for series (we recall: if (f,;,) c L(D), f, > 0 a.e. on D, then

fD Znﬁl = Zn fD fn) we have
Joap £ = T foapler)' dudy = 532 [ 2" (fol " dy) dx =32, (/o

2
! x" dx)

_ye 1
= 220 iyt < T

We conclude f € L'([0,1]%). m



