
Homework 1

Exercise 1. Compute

lim
n→+∞

n
∫ +∞

0
log

(
1 +

e−x

n

)
dx.

Exercise 2. Let

F(x) =
∫ +∞

0

1 − e−xt2

t2 dt .

i) Determine the set of x ∈ R such that F(x) is well defined (domain of F).
ii) Discuss carefully the derivability of F on its domain and compute F′. State the general

theorems you need.
iii) Use the previous results to determine explicitly F.

Exercise 3. Let
f (x, y) :=

1
1 − xy

, a.e. (x, y) ∈ [0,1]2

Recall that 1
1−q =

∑∞
n=0 qn for every |q | < 1. Use this to discuss if f ∈ L1([0,1]2).
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Solution

Exercise 1. Let

fn(x) := log
(
1 +

e−x

n

)n

.

We have to compute

lim
n

∫ +∞

0
fn(x) dx.

To compute this we may use, in this case, either the monotone or the dominated convergence
theorems. Let’s see how:

• monotone convergence. Recall that
(
1 + t

n

)n
↗ in n for every t > 0. Therefore, being

log↗,

fn(x) = log
(
1 +

e−x

n

)n

6 log
(
1 +

e−x

n + 1

)n+1
= fn+1(x), ∀n ∈ N, n > 1, ∀x ∈ R.

MOreover, being
(
1 + e−x

n

)n
> 1, fn(x) > 0 for every n and x ∈ [0,+∞[. We’re then in

conditions to apply monotone convergence to conclude that

limn
∫ +∞
0 fn(x) dx =

∫ +∞
0 limn fn(x) dx =

∫ +∞
0 limn log

(
1 + e−x

n

)n
dx

=
∫ +∞
0 log

(
ee−x ) dx

=
∫ +∞
0 e−x dx = 1.

• dominated convergence. As above, we have

lim
n

fn(x) = log
(
ee−x

)
= e−x, ∀x > 0.

We need then to find an integrable dominant g ∈ L1([0,+∞[) such that

| fn(x)| 6 g(x), a.e. x ∈ [0,+∞[, ∀n > n0,

for some n0 > 1. We recall the remarkable inequality

log(1 + t) 6 t, ∀t > −1.

If you don’t know this bound, let’s see how how to deduce it. You may first notice that
y = log(1 + t) (as for y = log t) is concave. Therefore, by a remarkable property of
concavity, y = log(1 + t) is below every of its tangents (sometimes this is considered as
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definition of concavity). Easily, the tangent at t = 0 is y = t, therefore log(1 + t) 6 t for
every t > −1. Applying this inequality,

n log
(
1 +

e−x

n

)
6 n ·

e−x

n
= e−x =: g(x), ∀x > 0, ∀n > 1.

Because g ∈ L1([0,+∞[) we’re done. The conclusion follows as above.

Exercise 2. i) Let f (x, t) := 1−e−xt
2

t2 . In order F be well posed we need to check for which
x ∈ R we have f (x, ]) ∈ L1([0,+∞[). Notice that f (0, t) ≡ 0 ∈ L1([0,+∞[). For x , 0, f (x, t)
is well defined for t , 0, f (x, ]) ∈ C (]0,+∞[) hence f (x, ]) ∈ L([0,+∞[). Because f (x, ]) is
continuous we invoke the following fact:∫ +∞

0
| f (x, t)| dt < +∞ in generalized sense =⇒ f (x, ]) ∈ L1([0,+∞[).

To check this we need to discuss the behavior of f as t −→ 0,+∞ (because f ∈ C (]0,+∞[)).
Recalling that es = 1 + s + o(s) we have that, as t −→ 0,

f (x, t) =
1 − (1 − xt2 + o(t2))

t2 = x +
o(t2)

t2 −→ x ∈ R,

so f (x, ]) is absolutely integrable in t = 0, for every x ∈ R. As t −→ +∞ we may notice that if
x < 0,

f (x, t) ∼
−e−xt2

t2 −→ +∞,

whence f (x, ]) < L1([0,+∞[) for x < 0. If x > 0, being 0 6 e−xt2
< 1, easily

| f (x, t)| = f (x, t) 6
1
t2 ,

which is integrable at +∞. Conclusion: f (x, ]) ∈ L1([0,+∞[) iff x > 0, thus the domain of F is
[0,+∞[.

ii) If derivation under integral sign applies at some x > 0,

F′(x) =
∫ +∞
0 ∂x

1−e−xt
2

t2 dt =
∫ +∞
0

1
t2 (t2e−xt2

) dt =
∫ +∞
0 e−xt2

dt
y=
√

2xt
= 1√

2x

∫ +∞
0 e−

y2
2 dy

= 1√
2x

1
2
√

2π =
√
π
2 x−1/2.

This formula would make sense for x > 0. Now, to check that derivation under integral applies
for x > 0, we need to check the conditions:

• f (x, ]) ∈ L1([0,+∞[) ∀x > 0 (already done);
• ∂x f (x, t) exists for every x > 0 and a.e. t ∈]0,+∞[: yes, ∂x f (x, t) = e−xt2;
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• ∃g ∈ L1([0,+∞[) such that |∂x f (x, t)| 6 g(t), for every x > 0, a.e. t ∈ [0,+∞[. About
this, we understand that if x > 0 the unique possible bound valid for every x > 0 is
g(t) ≡ 1, which is not in L1. However, if we restrict to x > r for r > 0 fixed, we have
immediately

|∂x f (x, t)| = e−xt2
6 e−rt2

=: gr(t), ∀x > r, a.e. t ∈ [0,+∞[.

Therefore, assumptions are fulfilled on [r,+∞[ and the previous derivation holds true
for every x > r . Now, because r > 0 is arbitrary we can easily conclude that actually
F′(x) exists for every x > 0.

iii) By ii) it follows that
F(x) = −

√
2πx1/2 + C, ∀x > 0,

where C is an arbitrary constant. Now, how can we determine C? Formally, we cannot set x = 0
because this is not allowed by the previous formula. However, by the same

lim
x→0+

F(x) = C.

We can compute the limit directly on F by mean of some limit theorem. The question is: can
we say that

lim
x→0+

F(x) = lim
x→0+

∫ +∞

0
f (x, t) dt =

∫ +∞

0
lim

x→0+
f (x, t) dt.

It this is true, because limx→0+ f (x, t) = f (0, t) = 0 we would conclude limx→0+ F(x) = 0, that
is C = 0. Now, in the present case we can justify the passage of the limit into the integral in two
ways. Let’s see both for convenience (just one is enough for formal justification).

• By monotone convergence: we profit of the fact that f (x, t) is increasing in x. In
fact, ∂x f (x, t) = G−xt2

> 0, hence when x ↘ 0, f (x, t) ↘ 0. So, if (xn) is a sequence
decreasing to 0, setting fn(t) := f (xn, t), we have a decreasing sequence of functions. Be-
cause f0 = f (x0, ]) ∈ L1([0,+∞[) we can apply monotone convergence with decreasing
sequences to obtain that

lim
n

F(xn) = lim
n

∫ +∞

0
f (xn, t) dt = lim

n

∫ +∞

0
fn(t) dt =

∫ +∞

0
lim

n
fn(t) dt = 0.

Being the sequence (xn) arbitrary, it follows that limx→0+ F(x) = 0.
• By dominated convergence: here we need a bound like | f (x, t)| 6 g(t) with g ∈

L1([0,+∞[) for all x ∈ [0,1] for example. Also in this case we may notice that because
e−xt2 decreases with x, 0 6 e−xt2

6 e−t2 for all x ∈ [0,1], therefore

| f (x, t)| 6
1 − e−t2

t2 , ∀x ∈ [0,1], a.e.t > 0.
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We can now apply the continuity theorem to deduce that F is continuous on [0,1],
whence in particular

lim
x→0+

F(x) = F(0) = 0.

Exercise 3. Notice first that f is well defined and continuous on [0,1[2, hence it is L([0,1]2).
Furthermore, being > 0, the integral of f is well defined (eventually = +∞). By the hint,

f (x, y) =
∞∑

n=0
(xy)n,

thus ∫
[0,1]2

f (x, y) dxdy =
∫
[0,1]2

∞∑
n=0
(xy)n dxdy.

Applying monotone convergence for series (we recall: if ( fn) ⊂ L(D), fn > 0 a.e. on D, then∫
D

∑
n fn =

∑
n

∫
D fn) we have∫

[0,1]2 f =
∑∞

n=0
∫
[0,1]2(xy)

n dxdy =
∑∞

n=0
∫ 1
0 xn

(∫ 1
0 yn dy

)
dx =

∑∞
n=0

(∫ 1
0 xn dx

)2

=
∑∞

n=0
1

(n+1)2 < +∞.

We conclude f ∈ L1([0,1]2).


