Homework 1

Exercise 1. Compute

$$
\lim _{n \rightarrow+\infty} n \int_{0}^{+\infty} \log \left(1+\frac{e^{-x}}{n}\right) d x
$$

Exercise 2. Let

$$
F(x)=\int_{0}^{+\infty} \frac{1-e^{-x t^{2}}}{t^{2}} d t
$$

i) Determine the set of $x \in \mathbb{R}$ such that $F(x)$ is well defined (domain of F).
ii) Discuss carefully the derivability of F on its domain and compute F^{\prime}. State the general theorems you need.
iii) Use the previous results to determine explicitly F.

Exercise 3. Let

$$
f(x, y):=\frac{1}{1-x y}, \text { a.e. }(x, y) \in[0,1]^{2}
$$

Recall that $\frac{1}{1-q}=\sum_{n=0}^{\infty} q^{n}$ for every $|q|<1$. Use this to discuss if $f \in L^{1}\left([0,1]^{2}\right)$.

Solution

Exercise 1. Let

$$
f_{n}(x):=\log \left(1+\frac{e^{-x}}{n}\right)^{n}
$$

We have to compute

$$
\lim _{n} \int_{0}^{+\infty} f_{n}(x) d x
$$

To compute this we may use, in this case, either the monotone or the dominated convergence theorems. Let's see how:

- monotone convergence. Recall that $\left(1+\frac{t}{n}\right)^{n} \nearrow$ in n for every $t \geqslant 0$. Therefore, being $\log \nearrow$,
$f_{n}(x)=\log \left(1+\frac{e^{-x}}{n}\right)^{n} \leqslant \log \left(1+\frac{e^{-x}}{n+1}\right)^{n+1}=f_{n+1}(x), \forall n \in \mathbb{N}, n \geqslant 1, \forall x \in \mathbb{R}$.
MOreover, being $\left(1+\frac{e^{-x}}{n}\right)^{n} \geqslant 1, f_{n}(x) \geqslant 0$ for every n and $x \in[0,+\infty[$. We're then in conditions to apply monotone convergence to conclude that

$$
\begin{aligned}
\lim _{n} \int_{0}^{+\infty} f_{n}(x) d x & =\int_{0}^{+\infty} \lim _{n} f_{n}(x) d x=\int_{0}^{+\infty} \lim _{n} \log \left(1+\frac{e^{-x}}{n}\right)^{n} d x \\
& =\int_{0}^{+\infty} \log \left(e^{e^{-x}}\right) d x \\
& =\int_{0}^{+\infty} e^{-x} d x=1
\end{aligned}
$$

- dominated convergence. As above, we have

$$
\lim _{n} f_{n}(x)=\log \left(e^{e^{-x}}\right)=e^{-x}, \forall x \geqslant 0 .
$$

We need then to find an integrable dominant $g \in L^{1}([0,+\infty[)$ such that

$$
\left|f_{n}(x)\right| \leqslant g(x), \text { a.e. } x \in\left[0,+\infty\left[, \forall n \geqslant n_{0},\right.\right.
$$

for some $n_{0} \geqslant 1$. We recall the remarkable inequality

$$
\log (1+t) \leqslant t, \forall t>-1
$$

If you don't know this bound, let's see how how to deduce it. You may first notice that $y=\log (1+t)$ (as for $y=\log t$) is concave. Therefore, by a remarkable property of concavity, $y=\log (1+t)$ is below every of its tangents (sometimes this is considered as
definition of concavity). Easily, the tangent at $t=0$ is $y=t$, therefore $\log (1+t) \leqslant t$ for every $t>-1$. Applying this inequality,

$$
n \log \left(1+\frac{e^{-x}}{n}\right) \leqslant n \cdot \frac{e^{-x}}{n}=e^{-x}=: g(x), \forall x \geqslant 0, \forall n \geqslant 1 .
$$

Because $g \in L^{1}([0,+\infty[)$ we're done. The conclusion follows as above.

Exercise 2. i) Let $f(x, t):=\frac{1-e^{-x t^{2}}}{t^{2}}$. In order F be well posed we need to check for which $x \in \mathbb{R}$ we have $f(x, \sharp) \in L^{1}\left(\left[0,+\infty[)\right.\right.$. Notice that $f(0, t) \equiv 0 \in L^{1}([0,+\infty[)$. For $x \neq 0, f(x, t)$ is well defined for $t \neq 0, f(x, \sharp) \in \mathscr{C}(] 0,+\infty[)$ hence $f(x, \sharp) \in L([0,+\infty[)$. Because $f(x, \sharp)$ is continuous we invoke the following fact:

$$
\int_{0}^{+\infty}|f(x, t)| d t<+\infty \text { in generalized sense } \Longrightarrow f(x, \sharp) \in L^{1}([0,+\infty[)
$$

To check this we need to discuss the behavior of f as $t \longrightarrow 0,+\infty$ (because $f \in \mathscr{C}(] 0,+\infty[)$). Recalling that $e^{s}=1+s+o(s)$ we have that, as $t \longrightarrow 0$,

$$
f(x, t)=\frac{1-\left(1-x t^{2}+o\left(t^{2}\right)\right)}{t^{2}}=x+\frac{o\left(t^{2}\right)}{t^{2}} \longrightarrow x \in \mathbb{R}
$$

so $f(x, \sharp)$ is absolutely integrable in $t=0$, for every $x \in \mathbb{R}$. As $t \longrightarrow+\infty$ we may notice that if $x<0$,

$$
f(x, t) \sim \frac{-e^{-x t^{2}}}{t^{2}} \longrightarrow+\infty
$$

whence $f(x, \sharp) \notin L^{1}\left(\left[0,+\infty[)\right.\right.$ for $x<0$. If $x>0$, being $0 \leqslant e^{-x t^{2}}<1$, easily

$$
|f(x, t)|=f(x, t) \leqslant \frac{1}{t^{2}}
$$

which is integrable at $+\infty$. Conclusion: $f(x, \sharp) \in L^{1}([0,+\infty[)$ iff $x \geqslant 0$, thus the domain of F is $[0,+\infty$ [.
ii) If derivation under integral sign applies at some $x \geqslant 0$,

$$
\begin{aligned}
F^{\prime}(x) & =\int_{0}^{+\infty} \partial_{x} \frac{1-e^{-x t^{2}}}{t^{2}} d t=\int_{0}^{+\infty} \frac{1}{t^{2}}\left(t^{2} e^{-x t^{2}}\right) d t=\int_{0}^{+\infty} e^{-x t^{2}} d t \stackrel{y=\sqrt{2 x} t}{=} \frac{1}{\sqrt{2 x}} \int_{0}^{+\infty} e^{-\frac{y^{2}}{2}} d y \\
& =\frac{1}{\sqrt{2 x}} \frac{1}{2} \sqrt{2 \pi}=\sqrt{\frac{\pi}{2}} x^{-1 / 2}
\end{aligned}
$$

This formula would make sense for $x>0$. Now, to check that derivation under integral applies for $x>0$, we need to check the conditions:

- $f(x, \sharp) \in L^{1}([0,+\infty[) \forall x>0$ (already done);
- $\partial_{x} f(x, t)$ exists for every $x>0$ and a.e. $\left.t \in\right] 0,+\infty\left[:\right.$ yes, $\partial_{x} f(x, t)=e^{-x t^{2}}$;
- $\exists g \in L^{1}\left(\left[0,+\infty[)\right.\right.$ such that $\left|\partial_{x} f(x, t)\right| \leqslant g(t)$, for every $x>0$, a.e. $t \in[0,+\infty[$. About this, we understand that if $x>0$ the unique possible bound valid for every $x>0$ is $g(t) \equiv 1$, which is not in L^{1}. However, if we restrict to $x \geqslant r$ for $r>0$ fixed, we have immediately

$$
\left|\partial_{x} f(x, t)\right|=e^{-x t^{2}} \leqslant e^{-r t^{2}}=: g_{r}(t), \forall x \geqslant r \text {, a.e. } t \in[0,+\infty[.
$$

Therefore, assumptions are fulfilled on $[r,+\infty[$ and the previous derivation holds true for every $x \geqslant r$. Now, because $r>0$ is arbitrary we can easily conclude that actually $F^{\prime}(x)$ exists for every $x>0$.
iii) By ii) it follows that

$$
F(x)=-\sqrt{2 \pi} x^{1 / 2}+C, \forall x>0
$$

where C is an arbitrary constant. Now, how can we determine C ? Formally, we cannot set $x=0$ because this is not allowed by the previous formula. However, by the same

$$
\lim _{x \rightarrow 0+} F(x)=C .
$$

We can compute the limit directly on F by mean of some limit theorem. The question is: can we say that

$$
\lim _{x \rightarrow 0+} F(x)=\lim _{x \rightarrow 0+} \int_{0}^{+\infty} f(x, t) d t=\int_{0}^{+\infty} \lim _{x \rightarrow 0+} f(x, t) d t
$$

It this is true, because $\lim _{x \rightarrow 0+} f(x, t)=f(0, t)=0$ we would conclude $\lim _{x \rightarrow 0+} F(x)=0$, that is $C=0$. Now, in the present case we can justify the passage of the limit into the integral in two ways. Let's see both for convenience (just one is enough for formal justification).

- By monotone convergence: we profit of the fact that $f(x, t)$ is increasing in x. In fact, $\partial_{x} f(x, t)=G^{-x t^{2}} \geqslant 0$, hence when $x \searrow 0, f(x, t) \searrow 0$. So, if $\left(x_{n}\right)$ is a sequence decreasing to 0 , setting $f_{n}(t):=f\left(x_{n}, t\right)$, we have a decreasing sequence of functions. Because $f_{0}=f\left(x_{0}, \sharp\right) \in L^{1}([0,+\infty[)$ we can apply monotone convergence with decreasing sequences to obtain that

$$
\lim _{n} F\left(x_{n}\right)=\lim _{n} \int_{0}^{+\infty} f\left(x_{n}, t\right) d t=\lim _{n} \int_{0}^{+\infty} f_{n}(t) d t=\int_{0}^{+\infty} \lim _{n} f_{n}(t) d t=0
$$

Being the sequence $\left(x_{n}\right)$ arbitrary, it follows that $\lim _{x \rightarrow 0+} F(x)=0$.

- By dominated convergence: here we need a bound like $|f(x, t)| \leqslant g(t)$ with $g \in$ $L^{1}([0,+\infty[)$ for all $x \in[0,1]$ for example. Also in this case we may notice that because $e^{-x t^{2}}$ decreases with $x, 0 \leqslant e^{-x t^{2}} \leqslant e^{-t^{2}}$ for all $x \in[0,1]$, therefore

$$
|f(x, t)| \leqslant \frac{1-e^{-t^{2}}}{t^{2}}, \forall x \in[0,1] \text {, a.e. } t \geqslant 0 .
$$

We can now apply the continuity theorem to deduce that F is continuous on $[0,1]$, whence in particular

$$
\lim _{x \rightarrow 0+} F(x)=F(0)=0
$$

Exercise 3. Notice first that f is well defined and continuous on $\left[0,1\left[^{2}\right.\right.$, hence it is $L\left([0,1]^{2}\right)$. Furthermore, being $\geqslant 0$, the integral of f is well defined (eventually $=+\infty$). By the hint,

$$
f(x, y)=\sum_{n=0}^{\infty}(x y)^{n}
$$

thus

$$
\int_{[0,1]^{2}} f(x, y) d x d y=\int_{[0,1]^{2}} \sum_{n=0}^{\infty}(x y)^{n} d x d y
$$

Applying monotone convergence for series (we recall: if $\left(f_{n}\right) \subset L(D), f_{n} \geqslant 0$ a.e. on D, then $\int_{D} \sum_{n} f_{n}=\sum_{n} \int_{D} f_{n}$) we have

$$
\begin{aligned}
\int_{[0,1]^{2}} f & =\sum_{n=0}^{\infty} \int_{[0,1]^{2}}(x y)^{n} d x d y=\sum_{n=0}^{\infty} \int_{0}^{1} x^{n}\left(\int_{0}^{1} y^{n} d y\right) d x=\sum_{n=0}^{\infty}\left(\int_{0}^{1} x^{n} d x\right)^{2} \\
& =\sum_{n=0}^{\infty} \frac{1}{(n+1)^{2}}<+\infty .
\end{aligned}
$$

We conclude $f \in L^{1}\left([0,1]^{2}\right)$.

