Exercise 1. Let $\left(f_{n}\right) \subset L([0,1])$. Which of the following statements hold true?
i) If $f_{n} \xrightarrow{L^{2}} 0$ then $f_{n} \xrightarrow{L^{1}} 0$.
ii) If $f_{n} \xrightarrow{L^{\infty}} 0$ then $f_{n} \xrightarrow{L^{2}} 0$.
iii) If $f_{n} \xrightarrow{L^{1}} 0$ then $f_{n} \xrightarrow{L^{2}} 0$.

For each true statement provide a proof, otherwise exhibit a counterexample.

Exercise 2. Let $X:=\mathscr{C}([-1,1])$ and $Y:=\mathscr{C}^{1}([-1,1])$ (that is functions f continuous on $[-1,1]$ with f^{\prime} continuous on $\left.[-1,1]\right)$, both endowed with uniform norm $\|f\|_{\infty}:=\max _{[-1,1]}|f|$. Consider the sequence $f_{n}(x):=\sqrt{x^{2}+\frac{1}{n}}, x \in[-1,1], n \in \mathbb{N}, n \geqslant 1$.
i) Is $f_{n} \xrightarrow{X} f$ for some $f \in X$?
ii) Is $f_{n} \xrightarrow{Y} g$ for some $g \in Y$?

Exercise 3. Let $X:=\left\{f \in \mathscr{C}^{1}([0,1]): f(0)=0\right\}$. On X we define

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x, \quad\|f\|_{*}:=\int_{0}^{1}\left|f^{\prime}(x)\right| d x
$$

i) It is well known that $\|\cdot\|_{1}$ is a norm on $\mathscr{C}([0,1])$. Is this true also on X ? Justify your answer.
ii) Show that $\|\cdot\|_{*}$ is a norm on X.
iii) Prove that $\|\cdot\|_{*}$ is stronger than $\|\cdot\|_{1}$, that is

$$
\exists C>0,:\|f\|_{1} \leqslant C\|f\|_{*}, \forall f \in X .
$$

iv) Discuss if $\|\cdot\|_{*}$ and $\|\cdot\|_{1}$ are equivalent. Hint: consider $f_{n}(x)=x^{n}, n \in \mathbb{N}$.

Solution due by Monday 4th of November.

