Exercise 1. Let $\left(f_{n}\right) \subset L([0,1])$. Which of the following statements hold true?
i) If $f_{n} \xrightarrow{L^{2}} 0$ then $f_{n} \xrightarrow{L^{1}} 0$.
ii) If $f_{n} \xrightarrow{L^{\infty}} 0$ then $f_{n} \xrightarrow{L^{2}} 0$.
iii) If $f_{n} \xrightarrow{L^{1}} 0$ then $f_{n} \xrightarrow{L^{2}} 0$.

For each true statement provide a proof, otherwise exhibit a counterexample.

Exercise 2. Let $X:=\mathscr{C}([-1,1])$ and $Y:=\mathscr{C}^{1}([-1,1])$ (that is functions f continuous on $[-1,1]$ with f^{\prime} continuous on $\left.[-1,1]\right)$, both endowed with uniform norm $\|f\|_{\infty}:=\max _{[-1,1]}|f|$. Consider the sequence $f_{n}(x):=\sqrt{x^{2}+\frac{1}{n}}, x \in[-1,1], n \in \mathbb{N}, n \geqslant 1$.
i) Is $f_{n} \xrightarrow{X} f$ for some $f \in X$?
ii) Is $f_{n} \xrightarrow{Y} g$ for some $g \in Y$?

Exercise 3. Let $X:=\left\{f \in \mathscr{C}^{1}([0,1]): f(0)=0\right\}$. On X we define

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x, \quad\|f\|_{*}:=\int_{0}^{1}\left|f^{\prime}(x)\right| d x
$$

i) It is well known that $\|\cdot\|_{1}$ is a norm on $\mathscr{C}([0,1])$. Is this true also on X ? Justify your answer.
ii) Show that $\|\cdot\|_{*}$ is a norm on X.
iii) Prove that $\|\cdot\|_{*}$ is stronger than $\|\cdot\|_{1}$, that is

$$
\exists C>0,:\|f\|_{1} \leqslant C\|f\|_{*}, \forall f \in X .
$$

iv) Discuss if $\|\cdot\|_{*}$ and $\|\cdot\|_{1}$ are equivalent. Hint: consider $f_{n}(x)=x^{n}, n \in \mathbb{N}$.

Solution due by Monday 4th of November.

Solution.

Exercise 1. i) True: because of the Cauchy-Schwarz inequality,

$$
\|f\|_{L^{1}}=\int_{0}^{1}|f| \leqslant\left(\int_{0}^{1} 1^{2} d x\right)^{1 / 2}\left(\int_{0}^{1}|f|^{2} d x\right)^{1 / 2}=\|f\|_{L^{2}}
$$

by which we deduce that $\|\cdot\|_{L^{2}}$ is stronger than $\|\cdot\|_{L^{1}}$. It's a standard fact that by this it follows that if $\left(f_{n}\right)$ converges in the L^{2} norm it converges in L^{1} norm as well.
ii) True: just notice that $|f(x)| \leqslant\|f\|_{L^{\infty}}$ a.e., then

$$
\|f\|_{L^{1}}=\int_{0}^{1}|f| d x \leqslant \int_{0}^{1}\|f\|_{L^{\infty}} d x=\|f\|_{L^{\infty}},
$$

by which, again, the conclusion follows being $\|\cdot\|_{L^{\infty}}$ stronger than $\|\cdot\|_{L^{1}}$.
iii) False: take $f_{n}=n^{2 / 3} \chi_{\left[0, \frac{1}{n}\right]}$. Then
$\left\|f_{n}\right\|_{L^{1}}=\int_{0}^{1}\left|f_{n}\right| d x=n^{2 / 3} \int_{0}^{1 / n} d x=\frac{1}{n^{1 / 3}} \longrightarrow 0$, but $\left\|f_{n}\right\|_{L^{2}}^{2}=n^{4 / 3} \int_{0}^{1 / n} d x=n^{1 / 3} \longrightarrow+\infty$.
In particular, $\left(f_{n}\right)$ cannot be convergent in L^{2} otherwise it should be bounded.

Exercise 2. i) We claim $f_{n} \xrightarrow{X} f$ where $f(x)=|x|$. Indeed:

$$
f_{n}(x)-f(x)=\sqrt{x^{2}+\frac{1}{n}}-|x|=\sqrt{x^{2}+\frac{1}{n}}-\sqrt{x^{2}}=\frac{1 / n}{\sqrt{x^{2}+\frac{1}{n}}+\sqrt{x^{2}}}
$$

hence

$$
\left\|f_{n}-f\right\|_{\infty}=\max _{[-1,1]} \frac{1 / n}{\sqrt{x^{2}+\frac{1}{n}}+\sqrt{x^{2}}} \leqslant \sqrt{\frac{1}{n}} \longrightarrow 0
$$

ii) However, $\left(f_{n}\right)$ cannot have any limit in Y. Indeed: if $f_{n} \xrightarrow{Y} g \in Y$, in particular, $f_{n} \xrightarrow{X} g$. But $f_{n} \xrightarrow{X} f=|x|$ and because the limit is unique, $g \equiv|x|$. But such $g \notin Y=\mathscr{C}^{1}([-1,1])$, leading to a contradiction.

Exercise 3. i) Yes, X is just a subspace of $\mathscr{C}([0,1])$, properties of $\|\cdot\|_{1}$ remain unchanged.
ii) To check that $\|\cdot\|_{*}$ is a norm, we first notice that it is well defined: indeed, because $f \in X$, $f \in \mathscr{C}^{1}$, thus $f^{\prime} \in \mathscr{C}([0,1])$ it is integrable. To complete the check, we have to prove the fundamental properties of a norm:

- vanishing: $\|f\|_{*}=0$ iff $\int_{0}^{1}\left|f^{\prime}\right|=0$. Because $f^{\prime} \in \mathscr{C}$, by a well known result this happens iff $\left|f^{\prime}\right| \equiv 0$, that is $f^{\prime} \equiv 0$, again iff f is constant. Because $f \in X$ in particular $f(0)=0$, thus $f \equiv 0$.
- homogeneity: trivial.
- triangular inequality: straightforward,

$$
\|f+g\|_{*}=\int_{0}^{1}\left|f^{\prime}+g^{\prime}\right| \leqslant \int_{0}^{1}\left(\left|f^{\prime}\right|+\left|g^{\prime}\right|\right)=\|f\|_{*}+\|g\|_{* *} .
$$

iii) We have to bound $\int_{0}^{1}|f|$ by $C \int_{0}^{1}\left|f^{\prime}\right|$. Notice that, according to the fundamental thm of integral calculus,

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(y) d y=\int_{0}^{x} f^{\prime}(y) d y,
$$

thus

$$
|f(x)| \leqslant\left|\int_{0}^{x} f^{\prime}(y) d y\right| \leqslant \int_{0}^{x}\left|f^{\prime}(y)\right| d y \leqslant \int_{0}^{1}\left|f^{\prime}\right|=\|f\|_{*} .
$$

Therefore

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x \leqslant \int_{0}^{1}\|f\|_{*} d x=\|f\|_{* *}
$$

iv) Let $f_{n}(x)=x^{n}$. Clearly $f_{n} \in X$ for every $n \in \mathbb{N}$. Notice that

$$
\left\|f_{n}\right\|_{1}=\int_{0}^{1} x^{n} d x=\left[\frac{x^{n+1}}{n+1}\right]_{x=0}^{x=1}=\frac{1}{n+1},
$$

while

$$
\left\|f_{n}\right\|_{*}=\int_{0}^{1} n x^{n-1} d x=\left[x^{n}\right]_{x=0}^{x=1}=1 .
$$

Therefore, if $\|\cdot\|_{*}$ and $\|\cdot\|_{1}$ were equivalent, being already checked that $\|\cdot\|_{*}$ is stronger than $\|\cdot\|_{1}$, we would have

$$
\|f\|_{*} \leqslant C\|f\|_{1}, \forall f \in X,
$$

and a suitable universal constant C. However, letting $f=f_{n}$ we have

$$
1 \leqslant C \frac{1}{n+1}, \forall n \in \mathbb{N},
$$

which is impossible.

