
Analytical Methods — Homework 2

Exercise 1. Let ( fn) ⊂ L([0,1]). Which of the following statements hold true?

i) If fn
L2

−→ 0 then fn
L1

−→ 0.

ii) If fn
L∞
−→ 0 then fn

L2

−→ 0.

iii) If fn
L1

−→ 0 then fn
L2

−→ 0.
For each true statement provide a proof, otherwise exhibit a counterexample.

Exercise 2. Let X := C ([−1,1]) and Y := C 1([−1,1]) (that is functions f continuous on
[−1,1] with f ′ continuous on [−1,1]), both endowed with uniform norm ‖ f ‖∞ := max[−1,1] | f |.

Consider the sequence fn(x) :=
√

x2 + 1
n , x ∈ [−1,1], n ∈ N, n > 1.

i) Is fn
X
−→ f for some f ∈ X?

ii) Is fn
Y
−→ g for some g ∈ Y?

Exercise 3. Let X :=
{

f ∈ C 1([0,1]) : f (0) = 0
}
. On X we define

‖ f ‖1 =
∫ 1

0
| f (x)| dx, ‖ f ‖∗ :=

∫ 1

0
| f ′(x)| dx.

i) It is well known that ‖ · ‖1 is a norm on C ([0,1]). Is this true also on X? Justify your
answer.

ii) Show that ‖ · ‖∗ is a norm on X .
iii) Prove that ‖ · ‖∗ is stronger than ‖ · ‖1, that is

∃C > 0, : ‖ f ‖1 6 C‖ f ‖∗, ∀ f ∈ X .

iv) Discuss if ‖ · ‖∗ and ‖ · ‖1 are equivalent. Hint: consider fn(x) = xn, n ∈ N.

Solution due by Monday 4th of November.
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Solution.

Exercise 1. i) True: because of the Cauchy–Schwarz inequality,

‖ f ‖L1 =

∫ 1

0
| f | 6

(∫ 1

0
12 dx

)1/2 (∫ 1

0
| f |2 dx

)1/2

= ‖ f ‖L2,

by which we deduce that ‖ · ‖L2 is stronger than ‖ · ‖L1 . It’s a standard fact that by this it follows
that if ( fn) converges in the L2 norm it converges in L1 norm as well.
ii) True: just notice that | f (x)| 6 ‖ f ‖L∞ a.e., then

‖ f ‖L1 =

∫ 1

0
| f | dx 6

∫ 1

0
‖ f ‖L∞ dx = ‖ f ‖L∞,

by which, again, the conclusion follows being ‖ · ‖L∞ stronger than ‖ · ‖L1 .
iii) False: take fn = n2/3χ[0, 1n ]

. Then

‖ fn‖L1 =

∫ 1

0
| fn | dx = n2/3

∫ 1/n

0
dx =

1
n1/3 −→ 0, but ‖ fn‖2L2 = n4/3

∫ 1/n

0
dx = n1/3 −→ +∞.

In particular, ( fn) cannot be convergent in L2 otherwise it should be bounded.

Exercise 2. i) We claim fn
X
−→ f where f (x) = |x |. Indeed:

fn(x) − f (x) =

√
x2 +

1
n
− |x | =

√
x2 +

1
n
−

√
x2 =

1/n√
x2 + 1

n +
√

x2
,

hence

‖ fn − f ‖∞ = max
[−1,1]

1/n√
x2 + 1

n +
√

x2
6

√
1
n
−→ 0.

ii) However, ( fn) cannot have any limit in Y . Indeed: if fn
Y
−→ g ∈ Y , in particular, fn

X
−→ g.

But fn
X
−→ f = |x | and because the limit is unique, g ≡ |x |. But such g < Y = C 1([−1,1]),

leading to a contradiction.

Exercise 3. i) Yes, X is just a subspace of C ([0,1]), properties of ‖ · ‖1 remain unchanged.
ii) To check that ‖ · ‖∗ is a norm, we first notice that it is well defined: indeed, because f ∈ X ,
f ∈ C 1, thus f ′ ∈ C ([0,1]) it is integrable. To complete the check, we have to prove the
fundamental properties of a norm:
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• vanishing: ‖ f ‖∗ = 0 iff
∫ 1
0 | f

′| = 0. Because f ′ ∈ C , by a well known result this
happens iff | f ′| ≡ 0, that is f ′ ≡ 0, again iff f is constant. Because f ∈ X in particular
f (0) = 0, thus f ≡ 0.

• homogeneity: trivial.
• triangular inequality: straightforward,

‖ f + g‖∗ =
∫ 1

0
| f ′ + g′| 6

∫ 1

0
(| f ′| + |g′|) = ‖ f ‖∗ + ‖g‖∗.

iii) We have to bound
∫ 1
0 | f | by C

∫ 1
0 | f

′|. Notice that, according to the fundamental thm of
integral calculus,

f (x) = f (0) +
∫ x

0
f ′(y) dy =

∫ x

0
f ′(y) dy,

thus

| f (x)| 6
����∫ x

0
f ′(y) dy

���� 6 ∫ x

0
| f ′(y)| dy 6

∫ 1

0
| f ′| = ‖ f ‖∗.

Therefore

‖ f ‖1 =
∫ 1

0
| f (x)| dx 6

∫ 1

0
‖ f ‖∗ dx = ‖ f ‖∗.

iv) Let fn(x) = xn. Clearly fn ∈ X for every n ∈ N. Notice that

‖ fn‖1 =
∫ 1

0
xn dx =

[
xn+1

n + 1

] x=1

x=0
=

1
n + 1

,

while

‖ fn‖∗ =
∫ 1

0
nxn−1 dx = [xn]x=1

x=0 = 1.

Therefore, if ‖ · ‖∗ and ‖ · ‖1 were equivalent, being already checked that ‖ · ‖∗ is stronger than
‖ · ‖1, we would have

‖ f ‖∗ 6 C‖ f ‖1, ∀ f ∈ X,
and a suitable universal constant C. However, letting f = fn we have

1 6 C
1

n + 1
, ∀n ∈ N,

which is impossible.


