Analytical Methods — Homework 2

Exercise 1. Let $(f_n) \subset L([0,1])$. Which of the following statements hold true?

i) If $f_n \xrightarrow{L^2} 0$ then $f_n \xrightarrow{L^1} 0$. ii) If $f_n \xrightarrow{L^{\infty}} 0$ then $f_n \xrightarrow{L^2} 0$. iii) If $f_n \xrightarrow{L^1} 0$ then $f_n \xrightarrow{L^2} 0$.

For each true statement provide a proof, otherwise exhibit a counterexample.

Exercise 2. Let $X := \mathscr{C}([-1,1])$ and $Y := \mathscr{C}^1([-1,1])$ (that is functions f continuous on [-1,1] with f' continuous on [-1,1]), both endowed with uniform norm $||f||_{\infty} := \max_{[-1,1]} |f|$. Consider the sequence $f_n(x) := \sqrt{x^2 + \frac{1}{n}}, x \in [-1,1], n \in \mathbb{N}, n \ge 1$.

i) Is $f_n \xrightarrow{X} f$ for some $f \in X$? ii) Is $f_n \xrightarrow{Y} g$ for some $g \in Y$?

Exercise 3. Let $X := \{ f \in \mathscr{C}^1([0,1]) : f(0) = 0 \}$. On X we define

$$||f||_1 = \int_0^1 |f(x)| \, dx, \quad ||f||_* := \int_0^1 |f'(x)| \, dx.$$

- i) It is well known that $\|\cdot\|_1$ is a norm on $\mathscr{C}([0,1])$. Is this true also on X? Justify your answer.
- ii) Show that $\|\cdot\|_*$ is a norm on *X*.
- iii) Prove that $\|\cdot\|_*$ is stronger than $\|\cdot\|_1$, that is

$$\exists C > 0, : \|f\|_1 \leq C \|f\|_*, \forall f \in X.$$

iv) Discuss if $\|\cdot\|_*$ and $\|\cdot\|_1$ are equivalent. Hint: consider $f_n(x) = x^n$, $n \in \mathbb{N}$.

Solution due by Monday 4th of November.

SOLUTION.

Exercise 1. i) True: because of the Cauchy–Schwarz inequality,

$$||f||_{L^1} = \int_0^1 |f| \leq \left(\int_0^1 1^2 \, dx\right)^{1/2} \left(\int_0^1 |f|^2 \, dx\right)^{1/2} = ||f||_{L^2},$$

by which we deduce that $\|\cdot\|_{L^2}$ is stronger than $\|\cdot\|_{L^1}$. It's a standard fact that by this it follows that if (f_n) converges in the L^2 norm it converges in L^1 norm as well. ii) True: just notice that $|f(x)| \leq ||f||_{L^{\infty}}$ a.e., then

$$||f||_{L^1} = \int_0^1 |f| \, dx \leqslant \int_0^1 ||f||_{L^\infty} \, dx = ||f||_{L^\infty},$$

by which, again, the conclusion follows being $\|\cdot\|_{L^{\infty}}$ stronger than $\|\cdot\|_{L^{1}}$. iii) False: take $f_n = n^{2/3} \chi_{[0,\frac{1}{n}]}$. Then

$$||f_n||_{L^1} = \int_0^1 |f_n| \, dx = n^{2/3} \int_0^{1/n} \, dx = \frac{1}{n^{1/3}} \longrightarrow 0, \text{ but } ||f_n||_{L^2}^2 = n^{4/3} \int_0^{1/n} \, dx = n^{1/3} \longrightarrow +\infty.$$

In particular, (f_n) cannot be convergent in L^2 otherwise it should be bounded.

Exercise 2. i) We claim $f_n \xrightarrow{X} f$ where f(x) = |x|. Indeed: $f_n(x) - f(x) = \sqrt{x^2 + \frac{1}{n}} - |x| = \sqrt{x^2 + \frac{1}{n}} - \sqrt{x^2} = \frac{1/n}{\sqrt{x^2 + \frac{1}{n}} + \sqrt{x^2}},$

hence

$$||f_n - f||_{\infty} = \max_{[-1,1]} \frac{1/n}{\sqrt{x^2 + \frac{1}{n}} + \sqrt{x^2}} \le \sqrt{\frac{1}{n}} \longrightarrow 0.$$

ii) However, (f_n) cannot have any limit in *Y*. Indeed: if $f_n \xrightarrow{Y} g \in Y$, in particular, $f_n \xrightarrow{X} g$. But $f_n \xrightarrow{X} f = |x|$ and because the limit is unique, $g \equiv |x|$. But such $g \notin Y = \mathscr{C}^1([-1, 1])$, leading to a contradiction.

Exercise 3. i) Yes, *X* is just a subspace of $\mathscr{C}([0, 1])$, properties of $\|\cdot\|_1$ remain unchanged. ii) To check that $\|\cdot\|_*$ is a norm, we first notice that it is well defined: indeed, because $f \in X$, $f \in \mathscr{C}^1$, thus $f' \in \mathscr{C}([0, 1])$ it is integrable. To complete the check, we have to prove the fundamental properties of a norm:

- vanishing: $||f||_* = 0$ iff $\int_0^1 |f'| = 0$. Because $f' \in \mathcal{C}$, by a well known result this happens iff $|f'| \equiv 0$, that is $f' \equiv 0$, again iff f is constant. Because $f \in X$ in particular f(0) = 0, thus $f \equiv 0$.
- homogeneity: trivial.
- triangular inequality: straightforward,

$$||f + g||_* = \int_0^1 |f' + g'| \le \int_0^1 (|f'| + |g'|) = ||f||_* + ||g||_*.$$

iii) We have to bound $\int_0^1 |f|$ by $C \int_0^1 |f'|$. Notice that, according to the fundamental thm of integral calculus,

$$f(x) = f(0) + \int_0^x f'(y) \, dy = \int_0^x f'(y) \, dy,$$

thus

$$|f(x)| \leq \left| \int_0^x f'(y) \, dy \right| \leq \int_0^x |f'(y)| \, dy \leq \int_0^1 |f'| = ||f||_*.$$

Therefore

$$\|f\|_{1} = \int_{0}^{1} |f(x)| \, dx \leq \int_{0}^{1} \|f\|_{*} \, dx = \|f\|_{*}.$$

iv) Let $f_n(x) = x^n$. Clearly $f_n \in X$ for every $n \in \mathbb{N}$. Notice that

$$||f_n||_1 = \int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1}\right]_{x=0}^{x=1} = \frac{1}{n+1},$$

while

$$||f_n||_* = \int_0^1 nx^{n-1} dx = [x^n]_{x=0}^{x=1} = 1.$$

Therefore, if $\|\cdot\|_*$ and $\|\cdot\|_1$ were equivalent, being already checked that $\|\cdot\|_*$ is stronger than $\|\cdot\|_1$, we would have

$$||f||_* \leq C ||f||_1, \,\forall f \in X_i$$

and a suitable universal constant C. However, letting $f = f_n$ we have

$$1 \leqslant C \frac{1}{n+1}, \, \forall n \in \mathbb{N},$$

which is impossible.