Analytical Methods — Homework 3

Exercise 1. Let

$$X := \left\{ f \in \mathscr{C}([0,1]) : \|f\|_* := \sup_{t \in [0,1]} \frac{|f(t)|}{t} < +\infty \right\}$$

- i) Check that $\|\cdot\|_*$ is a well defined norm on *X*.
- ii) Let f_n be defined as

$$f_n(t) := \begin{cases} nt, & 0 \le t \le \frac{1}{n^2}, \\ \\ \sqrt{t}, & \frac{1}{n^2} \le t \le 1. \end{cases}$$

Is $(f_n) \subset X$? If yes, is (f_n) convergent to some $f \in X$ in the $\|\cdot\|_*$ norm?

- iii) On *X* is also defined the $\|\cdot\|_{\infty}$ norm. Show that $\|\cdot\|_*$ is stronger than $\|\cdot\|_{\infty}$. Are the two also equivalent? (prove or disprove)
- iv) Discuss if *X* is a Banach space under $\|\cdot\|_*$.

Exercise 2. Let $H = L^2([-1,1])$ endowed with usual scalar product $\langle f,g \rangle = \int_{-1}^1 f(x)g(x) dx$.

- i) Let *U* be the subspace of *H* generated by functions x, x^2, x^4 . Determine an orthonormal base for *U*.
- ii) Determine the best approximation of 1 in U.

Exercise 3. Let

$$H := \left\{ f : [0, +\infty[\longrightarrow \mathbb{R} : f \text{ Leb. meas.}, \int_0^{+\infty} f(x)^2 e^{-x} dx < +\infty \right\}.$$

On *H* we define

$$\langle f,g\rangle := \int_0^{+\infty} f(x)g(x)e^{-x} dx.$$

i) Check that $\langle \cdot, \cdots, \rangle$ is a well defined scalar product with vanishing in the sense that $\langle f, f \rangle = 0$ iff f = 0 a.e.

We accept *H* is Hilbert. Let $U := \{g \in H : \int_0^{+\infty} g(x)e^{-x} dx = 0\}.$

- ii) Is U closed? Justify your answer.
- iii) Determine the orthogonal projection on U of $f(x) = e^{-2x}$.