
Analytical Methods — Homework 3

Exercise 1. Let

X :=

{
f ∈ C ([0,1]) : ‖ f ‖∗ := sup

t∈]0,1]

| f (t)|
t

< +∞

}
.

i) Check that ‖ · ‖∗ is a well defined norm on X .
ii) Let fn be defined as

fn(t) :=


nt, 0 6 t 6 1
n2 ,

√
t, 1

n2 6 t 6 1.
Is ( fn) ⊂ X? If yes, is ( fn) convergent to some f ∈ X in the ‖ · ‖∗ norm?

iii) On X is also defined the ‖ · ‖∞ norm. Show that ‖ · ‖∗ is stronger than ‖ · ‖∞. Are the
two also equivalent? (prove or disprove)

iv) Discuss if X is a Banach space under ‖ · ‖∗.

Exercise 2. Let H = L2([−1,1]) endowed with usual scalar product 〈 f ,g〉 =
∫ 1
−1 f (x)g(x) dx.

i) Let U be the subspace of H generated by functions x, x2, x4. Determine an orthonormal
base for U.

ii) Determine the best approximation of 1 in U.

Exercise 3. Let

H :=
{

f : [0,+∞[−→ R : f Leb. meas.,
∫ +∞

0
f (x)2e−x dx < +∞

}
.

On H we define
〈 f ,g〉 :=

∫ +∞

0
f (x)g(x)e−x dx.

i) Check that 〈·, · · · , 〉 is a well defined scalar product with vanishing in the sense that
〈 f , f 〉 = 0 iff f = 0 a.e.

We accept H is Hilbert. Let U := {g ∈ H :
∫ +∞
0 g(x)e−x dx = 0}.

ii) Is U closed? Justify your answer.
iii) Determine the orthogonal projection on U of f (x) = e−2x .
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Solution

Exercise 1. i) Clearly, ‖ f ‖∗ is well defined for every f ∈ X and ‖ f ‖∗ > 0. Let’s check the
characteristic property of a norm:

• vanishing: ‖ f ‖∗ = 0 iff supt∈]0,1]
| f (t)|

t = 0, that is | f (t)|t ≡ 0 on ]0,1] thus, in particular,
f ≡ 0 on ]0,1]. Being f continuous, this implies also f (0) = 0, thus f ≡ 0 on [0,1].

• homogeneity:

‖λ f ‖∗ = sup
]0,1]

|λ f (t)|
t
= sup
]0,1]
|λ |
| f (t)|

t
= |λ | sup

]0,1]

| f (t)|
t
= |λ |‖ f ‖∗.

• triangular inequality: first notice that
‖ f (t) + g(t)|

t
6
| f (t)|

t
+
|g(t)|

t
6 ‖ f ‖∗ + ‖g‖∗, ∀t ∈]0,1],

therefore
‖ f + g‖∗ = sup

]0,1]

| f (t) + g(t)|
t

6 ‖ f ‖∗ + ‖g‖∗.

ii) Clarly, each fn ∈ C ([0,1]). Furthermore,

‖ fn‖∗ = sup ]0,1]
| fn(t)|

t
= sup
]0,1]

gn(t),

where

gn(t) =


n, 0 6 t 6 1
n2 ,

1√
t
, 1

n2 6 t 6 1.

Clearly, sup]0,1] gn(t) = n, thus ‖ fn‖∗ = n < +∞, that is fn ∈ X for every n ∈ N. Because ( fn) is
unbounded in ‖ · ‖∗ norm, it is not convergent in X .
iii) We’ve to show that

∃C > 0, : ‖ f ‖∞ 6 C‖ f ‖∗, ∀ f ∈ X .
The bound is quite easy: because t ∈]0,1] we just notice that

| f (t)| 6
| f (t)|

t
6 ‖ f ‖∗, ∀t ∈]0,1],

and because f is continuous this bound holds true also at t = 0. Thus
‖ f ‖∞ = sup

t∈[0,1]
| f (t)| 6 ‖ f ‖∗.

We guess the two norms are not equivalent because it seems impossible to bound uniformly
‖ f (t)‖

t
6 C‖ f ‖∞,
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where C is an universal constant. Take the example at ii): we already checked ( fn) is not
convergent under ‖ · ‖∗. However, as it is easy to check,

‖ fn‖∞ = sup
t∈[0,1]

| fn(t)| = fn

(
1
n2

)
=

1
n
−→ 0,

thus fn
‖·‖∞
−→ 0. Were ‖ · ‖∞ stronger than ‖ · ‖∗, ( fn) should converge to 0 also according to ‖ · ‖∗,

which is false.
iv) Let ( fn) ⊂ X be a Cauchy sequence under ‖ · ‖∗, this meaning

∀ε > 0, ∃N : ‖ fn − fm‖∗ 6 ε, ∀n,m > N .

In particular, ( fn) is Cauchy also under ‖ · ‖∞ norm and because C ([0,1]) is a Banach space
respect to this norm, ( fn) converges to some f in ‖ · ‖∞. In particular, fn(t) −→ f (t) for every
t ∈ [0,1]. Returning to the Cauchy property in the ‖ · ‖∗ norm, because

| fn(t) − fm(t)|
t

6 ε, ∀t ∈]0,1], ∀n,m > N,

letting m −→ +∞,
| fn(t) − f (t)|

t
6 ε, ∀t ∈]0,1], ∀n > N,

that is
‖ fn − f ‖∗ 6 ε, ∀n > N, ⇐⇒ fn

‖·‖∗
−→ f .

This shows that X is Banach.

Exercise 2. i) To compute an orthonormal base for Span〈x, x2, x4〉 we use the Gram–Schmidt
algorithm. Set

e0 =
x
‖x‖

,

where

‖x‖2 =
∫ 1

−1
x2 dx = 2

[
x2

2

] x=1

x=0
= 1,

then e0 = x. Next,

e1 =
x2 − 〈x2, e0〉e0

‖x2 − 〈x2, e0〉e0‖
.

Because 〈x2, e0〉 =
∫ 1
−1 x2x dx = 0, hence

‖x2 − 〈x2, e0〉e0‖
2 = ‖x2‖2 =

∫ 1

−1
x4 dx = 2

[
x5

5

] x=1

x=0
=

2
5
,
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we have

e1 =

√
5
2

x2.

Finally, let

e2 =
x4 −

(
〈x4, e0〉e0 + 〈x4, e1〉e1

)
‖x4 −

(
〈x4, e0〉e0 + 〈x4, e1〉e1

)
‖
.

We have

〈x4, e0〉 =

∫ 1

−1
x4x dx = 0, 〈x4, e1〉 =

√
5
2

∫ 1

−1
x4x2 dx =

√
5
2

2
[

x7

7

] x=1

x=0
=

√
10
7
.

Then

‖x4 −
(
〈x4, e0〉e0 + 〈x4, e1〉e1

)
‖2 =



x4 − 5
7 x2



2
=

∫ 1
−1

(
x4 − 5

7 x2
)2

dx

= 2
[

x9

9

] x=1

x=0
− 20

7

[
x7

7

] x=1

x=0
+ 50

49

[
x5

5

] x=1

x=0

= 2
9 −

20
49 +

25
49 =

143
441

and

e2 =

√
441
143

(
x4 −

5
7

x2
)
.

ii) The best approximation of 1 in U is its orthogonal projection, namely,
ΠU1 = 〈1, e0〉e0 + 〈1, e1〉e1 + 〈1, e2〉e2,

and because
〈1, e0〉 =

∫ 1
−1 1 · x dx = 0,

〈1, e1〉 =
∫ 1
−1 1 ·

√
5
2 x2 dx =

√
5
2

2
3 =

√
10
3 ,

〈1, e2〉 =
√

441
143

∫ 1
−1 1 ·

(
x4 − 5

7 x2
)

dx =
√

441
1432

(
1
5 −

5
7

1
3

)
= 32

105

√
441
143 .

we have
ΠU1 =

5
3

x2 +
1568
2145

(
x4 −

5
7

x2
)
.

Exercise 3. i) Check is straightforward. Just the vanishing: 〈 f , f 〉 = 0 iff∫ +∞

0
f (x)2e−x dx = 0, ⇐⇒ f (x)2e−x = 0, a.e. x ∈ [0,+∞[,
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that is f = 0 a.e. on [0,+∞[.
ii) We may see U as

U = {g ∈ H : 〈g,1〉 = 0} .
It is easy to check that U is closed: if (gn) ⊂ U is such that gn −→ g (in H), then

0 = 〈gn,1〉 −→ 〈g,1〉, =⇒ 〈g,1〉 = 0, =⇒ g ∈ U.

iii) We may notice that U is the space of vectors orthogonal to 1. Take V = Span〈1〉. Because
f = ΠV f + ( f − ΠV f )

and f − ΠV f is orthogonal to V , we claim that ΠU f = f − ΠV f . Indeed: first notice that

ΠV f = 〈 f ,1〉
1
‖1‖

,

where
‖1‖2 =

∫ +∞

0
12e−x dx =

[
e−x

−1

] x=+∞

x=0
= 1.

Thus
ΠV f = 〈 f ,1〉1.

To show that ΠU f = f − ΠV f ≡ f − 〈 f ,1〉1 notice that
• f − ΠV f ∈ U (trivial: f − ΠV f is, by construction, orthogonal to V , that is to 1, thus it
belongs to U, the space of vectors orthogonal to 1;
• f − ( f − ΠV f ) = ΠV f is orthogonal to U because if g ∈ U, namely 〈g,1〉 = 0, then

〈g,ΠV f 〉 = 〈g, 〈 f ,1〉1〉 = 〈 f ,1〉〈g,1〉 = 〈 f ,1〉 · 0 = 0.
Being U closed, there exists a unique element ΠU f ∈ U such that f − ΠU f ⊥ U, thus it must
be ΠU f = f − ΠV f . In conclusion

ΠU f = f − 〈 f ,1〉1.


