Exercise 1. Let

$$
X:=\left\{f \in \mathscr{C}([0,1]):\|f\|_{*}:=\sup _{t \in] 0,1]} \frac{|f(t)|}{t}<+\infty\right\} .
$$

i) Check that $\|\cdot\|_{*}$ is a well defined norm on X.
ii) Let f_{n} be defined as

$$
f_{n}(t):= \begin{cases}n t, & 0 \leqslant t \leqslant \frac{1}{n^{2}} \\ \sqrt{t}, & \frac{1}{n^{2}} \leqslant t \leqslant 1\end{cases}
$$

Is $\left(f_{n}\right) \subset X$? If yes, is $\left(f_{n}\right)$ convergent to some $f \in X$ in the $\|\cdot\|_{*}$ norm?
iii) On X is also defined the $\|\cdot\|_{\infty}$ norm. Show that $\|\cdot\|_{*}$ is stronger than $\|\cdot\|_{\infty}$. Are the two also equivalent? (prove or disprove)
iv) Discuss if X is a Banach space under $\|\cdot\|_{*}$.

Exercise 2. Let $H=L^{2}([-1,1])$ endowed with usual scalar product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$.
i) Let U be the subspace of H generated by functions x, x^{2}, x^{4}. Determine an orthonormal base for U.
ii) Determine the best approximation of 1 in U.

Exercise 3. Let

$$
H:=\left\{f:\left[0,+\infty\left[\longrightarrow \mathbb{R}: f \text { Leb. meas., } \int_{0}^{+\infty} f(x)^{2} e^{-x} d x<+\infty\right\}\right.\right.
$$

On H we define

$$
\langle f, g\rangle:=\int_{0}^{+\infty} f(x) g(x) e^{-x} d x
$$

i) Check that $\langle\cdot, \cdots$,$\rangle is a well defined scalar product with vanishing in the sense that$ $\langle f, f\rangle=0$ iff $f=0$ a.e.
We accept H is Hilbert. Let $U:=\left\{g \in H: \int_{0}^{+\infty} g(x) e^{-x} d x=0\right\}$.
ii) Is U closed? Justify your answer.
iii) Determine the orthogonal projection on U of $f(x)=e^{-2 x}$.

Solution

Exercise 1. i) Clearly, $\|f\|_{*}$ is well defined for every $f \in X$ and $\|f\|_{*} \geqslant 0$. Let's check the characteristic property of a norm:

- vanishing: $\|f\|_{*}=0$ iff $\sup _{t \in] 0,1]} \frac{|f(t)|}{t}=0$, that is $\left\lvert\, \frac{f(t) \mid}{t} \equiv 0\right.$ on $\left.] 0,1\right]$ thus, in particular, $f \equiv 0$ on $] 0,1]$. Being f continuous, this implies also $f(0)=0$, thus $f \equiv 0$ on $[0,1]$.
- homogeneity:

$$
\|\lambda f\|_{*}=\sup _{j 0,1]} \frac{|\lambda f(t)|}{t}=\sup _{] 0,1]}|\lambda| \frac{|f(t)|}{t}=|\lambda| \sup _{[0,1]} \frac{|f(t)|}{t}=|\lambda|\|f\|_{*} .
$$

- triangular inequality: first notice that

$$
\left.\left.\frac{\| f(t)+g(t) \mid}{t} \leqslant \frac{|f(t)|}{t}+\frac{|g(t)|}{t} \leqslant\|f\|_{*}+\|g\|_{*}, \forall t \in\right] 0,1\right],
$$

therefore

$$
\|f+g\|_{*}=\sup _{j 0,1]} \frac{|f(t)+g(t)|}{t} \leqslant\|f\|_{*}+\|g\|_{*} .
$$

ii) Clarly, each $f_{n} \in \mathscr{C}([0,1])$. Furthermore,

$$
\left.\left.\left\|f_{n}\right\|_{*}=\sup \right] 0,1\right] \frac{\left|f_{n}(t)\right|}{t}=\sup _{] 0,1]} g_{n}(t)
$$

where

$$
g_{n}(t)= \begin{cases}n, & 0 \leqslant t \leqslant \frac{1}{n^{2}}, \\ \frac{1}{\sqrt{t}}, & \frac{1}{n^{2}} \leqslant t \leqslant 1 .\end{cases}
$$

Clearly, $\sup _{[0,1]} g_{n}(t)=n$, thus $\left\|f_{n}\right\|_{*}=n<+\infty$, that is $f_{n} \in X$ for every $n \in \mathbb{N}$. Because $\left(f_{n}\right)$ is unbounded in $\|\cdot\|_{*}$ norm, it is not convergent in X.
iii) We've to show that

$$
\exists C>0,:\|f\|_{\infty} \leqslant C\|f\|_{*}, \forall f \in X .
$$

The bound is quite easy: because $t \in] 0,1]$ we just notice that

$$
\left.\left.|f(t)| \leqslant \frac{|f(t)|}{t} \leqslant\|f\|_{*}, \forall t \in\right] 0,1\right],
$$

and because f is continuous this bound holds true also at $t=0$. Thus

$$
\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)| \leqslant\|f\|_{*} .
$$

We guess the two norms are not equivalent because it seems impossible to bound uniformly

$$
\frac{\|f(t)\|}{t} \leqslant C\|f\|_{\infty},
$$

where C is an universal constant. Take the example at ii): we already checked $\left(f_{n}\right)$ is not convergent under $\|\cdot\|_{*}$. However, as it is easy to check,

$$
\left\|f_{n}\right\|_{\infty}=\sup _{t \in[0,1]}\left|f_{n}(t)\right|=f_{n}\left(\frac{1}{n^{2}}\right)=\frac{1}{n} \longrightarrow 0,
$$

thus $f_{n} \xrightarrow{\|\cdot\|_{\infty}} 0$. Were $\|\cdot\|_{\infty}$ stronger than $\|\cdot\|_{*},\left(f_{n}\right)$ should converge to 0 also according to $\|\cdot\|_{*}$, which is false.
iv) Let $\left(f_{n}\right) \subset X$ be a Cauchy sequence under $\|\cdot\|_{*}$, this meaning

$$
\forall \varepsilon>0, \exists N:\left\|f_{n}-f_{m}\right\|_{*} \leqslant \varepsilon, \forall n, m \geqslant N .
$$

In particular, $\left(f_{n}\right)$ is Cauchy also under $\|\cdot\|_{\infty}$ norm and because $\mathscr{C}([0,1])$ is a Banach space respect to this norm, $\left(f_{n}\right)$ converges to some f in $\|\cdot\|_{\infty}$. In particular, $f_{n}(t) \longrightarrow f(t)$ for every $t \in[0,1]$. Returning to the Cauchy property in the $\|\cdot\|_{*}$ norm, because

$$
\left.\left.\frac{\left|f_{n}(t)-f_{m}(t)\right|}{t} \leqslant \varepsilon, \forall t \in\right] 0,1\right], \forall n, m \geqslant N \text {, }
$$

letting $m \longrightarrow+\infty$,

$$
\left.\left.\frac{\left|f_{n}(t)-f(t)\right|}{t} \leqslant \varepsilon, \forall t \in\right] 0,1\right], \forall n \geqslant N,
$$

that is

$$
\left\|f_{n}-f\right\|_{*} \leqslant \varepsilon, \forall n \geqslant N, \Longleftrightarrow f_{n} \xrightarrow{\|\cdot\|_{*}} f .
$$

This shows that X is Banach.

Exercise 2. i) To compute an orthonormal base for $\operatorname{Span}\left\langle x, x^{2}, x^{4}\right\rangle$ we use the Gram-Schmidt algorithm. Set

$$
e_{0}=\frac{x}{\|x\|},
$$

where

$$
\|x\|^{2}=\int_{-1}^{1} x^{2} d x=2\left[\frac{x^{2}}{2}\right]_{x=0}^{x=1}=1
$$

then $e_{0}=x$. Next,

$$
e_{1}=\frac{x^{2}-\left\langle x^{2}, e_{0}\right\rangle e_{0}}{\left\|x^{2}-\left\langle x^{2}, e_{0}\right\rangle e_{0}\right\|}
$$

Because $\left\langle x^{2}, e_{0}\right\rangle=\int_{-1}^{1} x^{2} x d x=0$, hence

$$
\left\|x^{2}-\left\langle x^{2}, e_{0}\right\rangle e_{0}\right\|^{2}=\left\|x^{2}\right\|^{2}=\int_{-1}^{1} x^{4} d x=2\left[\frac{x^{5}}{5}\right]_{x=0}^{x=1}=\frac{2}{5}
$$

we have

$$
e_{1}=\sqrt{\frac{5}{2}} x^{2}
$$

Finally, let

$$
e_{2}=\frac{x^{4}-\left(\left\langle x^{4}, e_{0}\right\rangle e_{0}+\left\langle x^{4}, e_{1}\right\rangle e_{1}\right)}{\left\|x^{4}-\left(\left\langle x^{4}, e_{0}\right\rangle e_{0}+\left\langle x^{4}, e_{1}\right\rangle e_{1}\right)\right\|}
$$

We have

$$
\left\langle x^{4}, e_{0}\right\rangle=\int_{-1}^{1} x^{4} x d x=0,\left\langle x^{4}, e_{1}\right\rangle=\sqrt{\frac{5}{2}} \int_{-1}^{1} x^{4} x^{2} d x=\sqrt{\frac{5}{2}} 2\left[\frac{x^{7}}{7}\right]_{x=0}^{x=1}=\frac{\sqrt{10}}{7} .
$$

Then

$$
\begin{aligned}
\left\|x^{4}-\left(\left\langle x^{4}, e_{0}\right\rangle e_{0}+\left\langle x^{4}, e_{1}\right\rangle e_{1}\right)\right\|^{2} & =\left\|x^{4}-\frac{5}{7} x^{2}\right\|^{2}=\int_{-1}^{1}\left(x^{4}-\frac{5}{7} x^{2}\right)^{2} d x \\
& =2\left[\frac{x^{9}}{9}\right]_{x=0}^{x=1}-\frac{20}{7}\left[\frac{x^{7}}{7}\right]_{x=0}^{x=1}+\frac{50}{49}\left[\frac{x^{5}}{5}\right]_{x=0}^{x=1} \\
& =\frac{2}{9}-\frac{20}{49}+\frac{25}{49}=\frac{143}{441}
\end{aligned}
$$

and

$$
e_{2}=\sqrt{\frac{441}{143}}\left(x^{4}-\frac{5}{7} x^{2}\right)
$$

ii) The best approximation of 1 in U is its orthogonal projection, namely,

$$
\Pi_{U} 1=\left\langle 1, e_{0}\right\rangle e_{0}+\left\langle 1, e_{1}\right\rangle e_{1}+\left\langle 1, e_{2}\right\rangle e_{2}
$$

and because

$$
\begin{aligned}
& \left\langle 1, e_{0}\right\rangle=\int_{-1}^{1} 1 \cdot x d x=0 \\
& \left\langle 1, e_{1}\right\rangle=\int_{-1}^{1} 1 \cdot \sqrt{\frac{5}{2}} x^{2} d x=\sqrt{\frac{5}{2}} \frac{2}{3}=\frac{\sqrt{10}}{3}, \\
& \left\langle 1, e_{2}\right\rangle=\sqrt{\frac{441}{143}} \int_{-1}^{1} 1 \cdot\left(x^{4}-\frac{5}{7} x^{2}\right) d x=\sqrt{\frac{441}{143}} 2\left(\frac{1}{5}-\frac{5}{7} \frac{1}{3}\right)=\frac{32}{105} \sqrt{\frac{441}{143}} .
\end{aligned}
$$

we have

$$
\Pi_{U} 1=\frac{5}{3} x^{2}+\frac{1568}{2145}\left(x^{4}-\frac{5}{7} x^{2}\right) .
$$

Exercise 3. i) Check is straightforward. Just the vanishing: $\langle f, f\rangle=0$ iff

$$
\int_{0}^{+\infty} f(x)^{2} e^{-x} d x=0, \Longleftrightarrow f(x)^{2} e^{-x}=0, \text { a.e. } x \in[0,+\infty[,
$$

that is $f=0$ a.e. on $[0,+\infty[$.
ii) We may see U as

$$
U=\{g \in H:\langle g, 1\rangle=0\}
$$

It is easy to check that U is closed: if $\left(g_{n}\right) \subset U$ is such that $g_{n} \longrightarrow g$ (in H), then

$$
0=\left\langle g_{n}, 1\right\rangle \longrightarrow\langle g, 1\rangle, \Longrightarrow\langle g, 1\rangle=0, \Longrightarrow g \in U .
$$

iii) We may notice that U is the space of vectors orthogonal to 1 . Take $V=\operatorname{Span}\langle 1\rangle$. Because

$$
f=\Pi_{V} f+\left(f-\Pi_{V} f\right)
$$

and $f-\Pi_{V} f$ is orthogonal to V, we claim that $\Pi_{U} f=f-\Pi_{V} f$. Indeed: first notice that

$$
\Pi_{V} f=\langle f, 1\rangle \frac{1}{\|1\|},
$$

where

$$
\|1\|^{2}=\int_{0}^{+\infty} 1^{2} e^{-x} d x=\left[\frac{e^{-x}}{-1}\right]_{x=0}^{x=+\infty}=1
$$

Thus

$$
\Pi_{V} f=\langle f, 1\rangle 1 .
$$

To show that $\Pi_{U} f=f-\Pi_{V} f \equiv f-\langle f, 1\rangle 1$ notice that

- $f-\Pi_{V} f \in U$ (trivial: $f-\Pi_{V} f$ is, by construction, orthogonal to V, that is to 1 , thus it belongs to U, the space of vectors orthogonal to 1 ;
- $f-\left(f-\Pi_{V} f\right)=\Pi_{V} f$ is orthogonal to U because if $g \in U$, namely $\langle g, 1\rangle=0$, then

$$
\left\langle g, \Pi_{V} f\right\rangle=\langle g,\langle f, 1\rangle 1\rangle=\langle f, 1\rangle\langle g, 1\rangle=\langle f, 1\rangle \cdot 0=0 .
$$

Being U closed, there exists a unique element $\Pi_{U} f \in U$ such that $f-\Pi_{U} f \perp U$, thus it must be $\Pi_{U} f=f-\Pi_{V} f$. In conclusion

$$
\Pi_{U} f=f-\langle f, 1\rangle 1
$$

