Analytical Methods — Homework 3

Exercise 1. Let

$$X := \left\{ f \in \mathscr{C}([0,1]) : \|f\|_* := \sup_{t \in [0,1]} \frac{|f(t)|}{t} < +\infty \right\}$$

- i) Check that $\|\cdot\|_*$ is a well defined norm on *X*.
- ii) Let f_n be defined as

$$f_n(t) := \begin{cases} nt, & 0 \le t \le \frac{1}{n^2}, \\ \\ \sqrt{t}, & \frac{1}{n^2} \le t \le 1. \end{cases}$$

Is $(f_n) \subset X$? If yes, is (f_n) convergent to some $f \in X$ in the $\|\cdot\|_*$ norm?

- iii) On *X* is also defined the $\|\cdot\|_{\infty}$ norm. Show that $\|\cdot\|_*$ is stronger than $\|\cdot\|_{\infty}$. Are the two also equivalent? (prove or disprove)
- iv) Discuss if *X* is a Banach space under $\|\cdot\|_*$.

Exercise 2. Let $H = L^2([-1,1])$ endowed with usual scalar product $\langle f,g \rangle = \int_{-1}^1 f(x)g(x) dx$.

- i) Let *U* be the subspace of *H* generated by functions x, x^2, x^4 . Determine an orthonormal base for *U*.
- ii) Determine the best approximation of 1 in U.

Exercise 3. Let

$$H := \left\{ f : [0, +\infty[\longrightarrow \mathbb{R} : f \text{ Leb. meas.}, \int_0^{+\infty} f(x)^2 e^{-x} dx < +\infty \right\}.$$

On *H* we define

$$\langle f,g\rangle := \int_0^{+\infty} f(x)g(x)e^{-x} dx.$$

i) Check that $\langle \cdot, \cdots, \rangle$ is a well defined scalar product with vanishing in the sense that $\langle f, f \rangle = 0$ iff f = 0 a.e.

We accept *H* is Hilbert. Let $U := \{g \in H : \int_0^{+\infty} g(x)e^{-x} dx = 0\}.$

- ii) Is U closed? Justify your answer.
- iii) Determine the orthogonal projection on U of $f(x) = e^{-2x}$.

Solution

Exercise 1. i) Clearly, $||f||_*$ is well defined for every $f \in X$ and $||f||_* \ge 0$. Let's check the characteristic property of a norm:

- vanishing: $||f||_* = 0$ iff $\sup_{t \in [0,1]} \frac{|f(t)|}{t} = 0$, that is $|\frac{f(t)|}{t} \equiv 0$ on [0,1] thus, in particular, $f \equiv 0$ on [0,1]. Being f continuous, this implies also f(0) = 0, thus $f \equiv 0$ on [0,1].
- homogeneity:

$$\|\lambda f\|_* = \sup_{]0,1]} \frac{|\lambda f(t)|}{t} = \sup_{]0,1]} |\lambda| \frac{|f(t)|}{t} = |\lambda| \sup_{]0,1]} \frac{|f(t)|}{t} = |\lambda| ||f||_*.$$

• triangular inequality: first notice that

$$\frac{\|f(t) + g(t)\|}{t} \leq \frac{|f(t)|}{t} + \frac{|g(t)|}{t} \leq \|f\|_* + \|g\|_*, \ \forall t \in]0,1],$$

therefore

$$||f + g||_* = \sup_{[0,1]} \frac{|f(t) + g(t)|}{t} \le ||f||_* + ||g||_*.$$

ii) Clarly, each $f_n \in \mathscr{C}([0, 1])$. Furthermore,

$$||f_n||_* = \sup]0, 1] \frac{|f_n(t)|}{t} = \sup_{[0,1]} g_n(t),$$

where

$$g_n(t) = \begin{cases} n, & 0 \leq t \leq \frac{1}{n^2}, \\ \frac{1}{\sqrt{t}}, & \frac{1}{n^2} \leq t \leq 1. \end{cases}$$

Clearly, $\sup_{[0,1]} g_n(t) = n$, thus $||f_n||_* = n < +\infty$, that is $f_n \in X$ for every $n \in \mathbb{N}$. Because (f_n) is unbounded in $|| \cdot ||_*$ norm, it is not convergent in *X*. iii) We've to show that

$$\exists C > 0, : \|f\|_{\infty} \leq C \|f\|_{*}, \forall f \in X.$$

The bound is quite easy: because $t \in [0, 1]$ we just notice that

$$|f(t)| \leq \frac{|f(t)|}{t} \leq ||f||_{*}, \forall t \in]0, 1],$$

and because f is continuous this bound holds true also at t = 0. Thus

$$||f||_{\infty} = \sup_{t \in [0,1]} |f(t)| \le ||f||_{*}.$$

We guess the two norms are not equivalent because it seems impossible to bound uniformly

$$\frac{\|f(t)\|}{t} \leq C \|f\|_{\infty},$$

where *C* is an universal constant. Take the example at ii): we already checked (f_n) is not convergent under $\|\cdot\|_*$. However, as it is easy to check,

$$||f_n||_{\infty} = \sup_{t \in [0,1]} |f_n(t)| = f_n\left(\frac{1}{n^2}\right) = \frac{1}{n} \longrightarrow 0,$$

thus $f_n \xrightarrow{\|\cdot\|_{\infty}} 0$. Were $\|\cdot\|_{\infty}$ stronger than $\|\cdot\|_*$, (f_n) should converge to 0 also according to $\|\cdot\|_*$, which is false.

iv) Let $(f_n) \subset X$ be a Cauchy sequence under $\|\cdot\|_*$, this meaning

$$\forall \varepsilon > 0, \ \exists N : \|f_n - f_m\|_* \leq \varepsilon, \ \forall n, m \geq N.$$

In particular, (f_n) is Cauchy also under $\|\cdot\|_{\infty}$ norm and because $\mathscr{C}([0,1])$ is a Banach space respect to this norm, (f_n) converges to some f in $\|\cdot\|_{\infty}$. In particular, $f_n(t) \longrightarrow f(t)$ for every $t \in [0,1]$. Returning to the Cauchy property in the $\|\cdot\|_*$ norm, because

$$\frac{|f_n(t) - f_m(t)|}{t} \leq \varepsilon, \ \forall t \in]0,1], \ \forall n, m \ge N,$$

letting $m \longrightarrow +\infty$,

$$\frac{|f_n(t) - f(t)|}{t} \le \varepsilon, \ \forall t \in]0,1], \ \forall n \ge N,$$

that is

$$||f_n - f||_* \leq \varepsilon, \ \forall n \geq N, \iff f_n \xrightarrow{\|\cdot\|_*} f_n$$

This shows that X is Banach.

Exercise 2. i) To compute an orthonormal base for Span $\langle x, x^2, x^4 \rangle$ we use the Gram–Schmidt algorithm. Set

$$e_0 = \frac{x}{\|x\|},$$

where

$$||x||^2 = \int_{-1}^{1} x^2 dx = 2 \left[\frac{x^2}{2} \right]_{x=0}^{x=1} = 1,$$

then $e_0 = x$. Next,

$$e_1 = \frac{x^2 - \langle x^2, e_0 \rangle e_0}{\|x^2 - \langle x^2, e_0 \rangle e_0\|}.$$

Because $\langle x^2, e_0 \rangle = \int_{-1}^1 x^2 x \, dx = 0$, hence

$$||x^{2} - \langle x^{2}, e_{0} \rangle e_{0}||^{2} = ||x^{2}||^{2} = \int_{-1}^{1} x^{4} dx = 2 \left[\frac{x^{5}}{5} \right]_{x=0}^{x=1} = \frac{2}{5},$$

4

we have

$$e_1 = \sqrt{\frac{5}{2}}x^2.$$

Finally, let

$$e_{2} = \frac{x^{4} - (\langle x^{4}, e_{0} \rangle e_{0} + \langle x^{4}, e_{1} \rangle e_{1})}{\|x^{4} - (\langle x^{4}, e_{0} \rangle e_{0} + \langle x^{4}, e_{1} \rangle e_{1})\|}.$$

We have

$$\langle x^4, e_0 \rangle = \int_{-1}^1 x^4 x \, dx = 0, \ \langle x^4, e_1 \rangle = \sqrt{\frac{5}{2}} \int_{-1}^1 x^4 x^2 \, dx = \sqrt{\frac{5}{2}} 2 \left[\frac{x^7}{7} \right]_{x=0}^{x=1} = \frac{\sqrt{10}}{7}.$$

Then

$$\|x^{4} - (\langle x^{4}, e_{0} \rangle e_{0} + \langle x^{4}, e_{1} \rangle e_{1}) \|^{2} = \|x^{4} - \frac{5}{7}x^{2}\|^{2} = \int_{-1}^{1} \left(x^{4} - \frac{5}{7}x^{2}\right)^{2} dx$$
$$= 2 \left[\frac{x^{9}}{9}\right]_{x=0}^{x=1} - \frac{20}{7} \left[\frac{x^{7}}{7}\right]_{x=0}^{x=1} + \frac{50}{49} \left[\frac{x^{5}}{5}\right]_{x=0}^{x=1}$$
$$= \frac{2}{9} - \frac{20}{49} + \frac{25}{49} = \frac{143}{441}$$

and

$$e_2 = \sqrt{\frac{441}{143}} \left(x^4 - \frac{5}{7} x^2 \right).$$

ii) The best approximation of 1 in U is its orthogonal projection, namely,

$$\Pi_U 1 = \langle 1, e_0 \rangle e_0 + \langle 1, e_1 \rangle e_1 + \langle 1, e_2 \rangle e_2,$$

and because

$$\langle 1, e_0 \rangle = \int_{-1}^{1} 1 \cdot x \, dx = 0,$$

$$\langle 1, e_1 \rangle = \int_{-1}^{1} 1 \cdot \sqrt{\frac{5}{2}} x^2 \, dx = \sqrt{\frac{5}{2}} \frac{2}{3} = \frac{\sqrt{10}}{3},$$

$$\langle 1, e_2 \rangle = \sqrt{\frac{441}{143}} \int_{-1}^{1} 1 \cdot \left(x^4 - \frac{5}{7} x^2\right) \, dx = \sqrt{\frac{441}{143}} 2\left(\frac{1}{5} - \frac{5}{7}\frac{1}{3}\right) = \frac{32}{105} \sqrt{\frac{441}{143}}.$$

$$\Pi_U 1 = \frac{5}{3} x^2 + \frac{1568}{2145} \left(x^4 - \frac{5}{7} x^2\right).$$

we have

$$\Pi_U 1 = \frac{5}{3}x^2 + \frac{1568}{2145}\left(x^4 - \frac{5}{7}x^2\right). \quad \blacksquare$$

Exercise 3. i) Check is straightforward. Just the vanishing: $\langle f, f \rangle = 0$ iff

$$\int_0^{+\infty} f(x)^2 e^{-x} \, dx = 0, \iff f(x)^2 e^{-x} = 0, \text{ a.e. } x \in [0, +\infty[,$$

that is f = 0 a.e. on $[0, +\infty[$. ii) We may see U as

$$U = \{g \in H : \langle g, 1 \rangle = 0\}.$$

It is easy to check that U is closed: if $(g_n) \subset U$ is such that $g_n \longrightarrow g$ (in H), then

$$0 = \langle g_n, 1 \rangle \longrightarrow \langle g, 1 \rangle, \implies \langle g, 1 \rangle = 0, \implies g \in U.$$

iii) We may notice that U is the space of vectors orthogonal to 1. Take V = Span(1). Because

$$f = \Pi_V f + (f - \Pi_V f)$$

and $f - \prod_V f$ is orthogonal to V, we claim that $\prod_U f = f - \prod_V f$. Indeed: first notice that

$$\Pi_V f = \langle f, 1 \rangle \frac{1}{\|1\|}$$

where

$$||1||^{2} = \int_{0}^{+\infty} 1^{2} e^{-x} dx = \left[\frac{e^{-x}}{-1}\right]_{x=0}^{x=+\infty} = 1.$$

Thus

 $\Pi_V f = \langle f, 1 \rangle 1.$

To show that $\Pi_U f = f - \Pi_V f \equiv f - \langle f, 1 \rangle 1$ notice that

- $f \prod_V f \in U$ (trivial: $f \prod_V f$ is, by construction, orthogonal to *V*, that is to 1, thus it belongs to *U*, the space of vectors orthogonal to 1;
- $f (f \Pi_V f) = \Pi_V f$ is orthogonal to U because if $g \in U$, namely $\langle g, 1 \rangle = 0$, then

 $\langle g, \Pi_V f \rangle = \langle g, \langle f, 1 \rangle 1 \rangle = \langle f, 1 \rangle \langle g, 1 \rangle = \langle f, 1 \rangle \cdot 0 = 0.$

Being U closed, there exists a unique element $\Pi_U f \in U$ such that $f - \Pi_U f \perp U$, thus it must be $\Pi_U f = f - \Pi_V f$. In conclusion

$$\Pi_U f = f - \langle f, 1 \rangle 1. \quad \blacksquare$$