FUNDAMENTALS OF MATHEMATICAL ANALYSIS II - ENSTP

EXAM SIMULATION (SOLUTION BY WED 17TH OF JUNE)

Exercise 1. Consider the differential equation

$$y' = \frac{e^y}{e^y - t}.$$

- i) Find the domain D of local existence and uniqueness.
- ii) Find eventual stationary solutions and plot regions of D where solutions are increasing/decreasing.

Let now $\varphi :]\alpha, \beta[\longrightarrow \mathbb{R}$ be the maximal solution of the Cauchy problem $\varphi(2) = 0$.

- iii) Show that φ is monotone and deduce that $\alpha > 1$.
- iv) Find the concavity of φ and discuss if $\beta = +\infty$ or less.
- v) With all the previous informations plot a qualitative graph of φ .

Exercise 2. Consider the system

$$\left\{ \begin{array}{l} x' = y(x^2 + y^2 - 2), \\ y' = x(x^2 + y^2 - 2). \end{array} \right.$$

- i) Find stationary solutions (if any).
- ii) Determine a non constant first/prime integral for the system.
- iii) Plot the phase portrait of the system. Are there periodic solutions? Are there non constant global solutions? Justify your answers.
- iv) Find explicitly the x-solution of the Cauchy problem with initial conditions $x(0) = 1/\sqrt{2}$ and $v(0) = 1/\sqrt{2}$.

Exercise 3. Let

$$\Omega := \{ (x, y, z) \in \mathbb{R}^3 : z \ge 1 - (x^2 + y^2), x^2 + y^2 + z^2 \le 1 \}.$$

- i) Draw Ω .
- ii) Compute the volume of Ω .
- iii) Compute the outward flux by Ω of F := -(x, y, z). Determine also its components on x² + y² + z² = 1 and on z = 1 (x² + y²).
 iv) Parametrize ∂Ω ∩ {z = 1 (x² + y²)} and determine its area.

Time: 4h.