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Abstract—For a physical layer message authentication proce-
dure based on the comparison of channel estimates obtained from
the received messages, we focus on an outer bound on the type
I/II error probability region. Channel estimates are modelled as
multivariate Gaussian vectors, and we assume that the attacker
has only some side information on the channel estimate, which
he does not know directly. We derive the attacking strategy
that provides the tightest bound on the error region, given the
statistics of the side information. This turns out to be a zero
mean, circularly symmetric Gaussian density whose covariance
matrices can be obtained by solving a constrained optimization
problem. We propose an iterative algorithm for its solution:
starting from the closed form solution of a relaxed problem,
we obtain, by projection, an initial feasible solution; then, by an
iterative procedure, we look for the fixed point solution of the
problem. Numerical results show that for cases of interest the
iterative approach converges, and perturbation analysis shows
that the found solution is a local minimum.

Index Terms—Authentication, Physical layer security, Rayleigh
fading channels, Hypothesis testing

I. INTRODUCTION

PHysical layer security provides an effective defense mech-
anism which is complementary to higher layer security

techniques. Indeed, it has the potential of resisting the attacks
based on computational capabilities that may be feasible
in the near future, e.g., by quantum computing. Moreover,
security implemented at the physical layer is usually based on
information theoretic arguments [1]. It therefore entails ana-
lytically predictable performance irrespective of the attacker
capabilities and has recently been applied to widely used
communication systems [2], [3]. One of the most desirable
mechanisms of physical layer security is the authentication of
the message source. This key task can be conveniently recast
into a hypothesis testing problem [4], [5], namely to decide
between hypothesis H0 that the message was effectively sent
by the legitimate source, and hypothesis H1 that it was forged
by an attacker.

Physical layer authentication has been addressed by consid-
ering either device-specific non-ideal transmission parameters

A. Ferrante, N. Laurenti and S. Tomasin are with the Department
of Information Engineering, University of Padua, Padua, Italy. Email:
{first name.last name}@dei.unipd.it.

C. Masiero was with the Department of Information Engineering, University
of Padua, Padua, Italy. Email: {first name.last name}@dei.unipd.it.

M. Pavon is with the Department of Mathematics, University of Padua,
Italy. Email:pavon@math.unidp.it.

This work was supported in part by the Italian Ministry of Education
and Research (MIUR) project ESCAPADE (Grant RBFR105NLC) under the
“FIRB-Futuro in Ricerca 2010” funding program.

extracted from the received signal [6], or channel character-
istics to identify the link between a specific source and the
receiver [7]–[9] (see the introduction of [9] for a survey on
this topic). In this paper we focus on the latter case, which
finds application in many wideband wireless systems, where
even small changes in the position of the transmitter have a
significant impact on the channel. In particular, we consider a
scenario in which the test is performed in two phases. In the
first phase, the receiver gets an authenticated noisy estimate x
of the channel with respect to the legitimate transmitter. In the
second phase, upon reception of a message, the receiver gets a
new estimate u of the channel and compares it with x. Then, he
must decide whether u is an estimate of the legitimate channel
or the channel forged by an eavesdropper. This approach is
used e.g., in [8], [9] and is quite general for channel-based
authentication.

The performance of a binary hypothesis testing scheme is
measured by the probability of type I (false alarm), and type II
(missed detection) errors. Therefore, theoretical bounds on the
achievable error probability region are of great importance to
establish the effectiveness of practical schemes. For instance,
[4] considered the traditional authentication scenario in which
the legitimate parties can make use of a shared cryptographic
key which is kept perfectly secret to the attackers. There,
an outer bound on the achievable error region was derived,
which holds irrespectively of the decision rule implemented
by the receiver. Then, by fixing the false alarm probability,
the outer bound is turned into a lower bound on the missed
detection probability. An analogous approach was used in [11]
and [12] within the different contexts of steganography and
fingerprinting, respectively. Similarly, in [5], such lower bound
is paired with an asymptotic upper bound, and both are derived
also in the case that the legitimate parties share correlated
sequences, instead of an identical key.

In the above cases, since the attacker has no information
on the shared sequences, the optimal attacking strategy with
respect to the outer bound is to present forged signals that,
albeit independent of the legitimate shared key, are generated
from the same marginal distribution as the legitimate signals.
In our framework, on the contrary, the legitimate authenti-
cation signal is the actual realization of a fading wireless
channel. Thus the attacker has some side information given
by the channel estimates z he performs, which are in general
correlated with the legitimate channel. We model channel
estimates as correlated multivariate Gaussian vectors, which is
a usual assumption in wireless transmissions, including those
using orthogonal frequency division multiplexing (OFDM) or
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hBE

sB

+ wBE

rBEĥBE
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ĥ b̂

pre-processing ĥBEĥAE
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Fig. 1. Transmission channel scenario for the physical layer authentication problem.

multiple input multiple output (MIMO).
The contribution of our paper is thus threefold: 1) we derive

an outer bound on the error probability region in terms of the
attacker strategy; 2) we prove the existence of a strategy v,
jointly Gaussian with z, that yields the tightest bound, and
characterize its covariance through the solution of a system
of two matrix equations; 3) we give an efficient technique for
the numerical evaluation of the optimal attack strategy and the
corresponding bound.

The paper is organized as follows. Section II introduces the
problem formally, so that the theoretical results can be derived
in Section III. Based on those results, in Section IV, we pro-
pose an efficient algorithm for the numerical evaluation of the
optimal attack strategy. Then, in Section V we give examples
of numerical results, and eventually we draw conclusions in
Section VI.

In our notation, if a ∈ Cn and b ∈ Cm are random random
vectors with random entries, Kab denotes the n×m covariance
matrix of vectors a and b, whereas K[ ab ] stands for the (n+

m)×(n+m) covariance matrix of the vector [ ab ]. Symbol A∗

denotes the complex conjugate transpose of matrix A, while
A† denotes the Moore-Penrose pseudo inverse of matrix A.
Symbol In denotes the identity matrix of size n× n. A⊗ B
denotes Kronecker product of matrices A and B.

II. PROBLEM STATEMENT

We consider the physical layer channel authentication
scheme depicted in Fig. 1, where agents Alice (A) and Eve (E)
transmit messages to Bob (B), and Bob aims at authenticating
messages from Alice, i.e., reliably detecting whether she sent
them or not. The authentication is performed via a two phase
procedure [9]:

a) First Phase: In this phase, illustrated in Fig. 1.a, Alice
(denoted by A in the figure) transmits one or more training
messages, denoted by sI

A, whose authenticity is guaranteed by
higher layer techniques, to Bob (denoted by B), through the
channel hAB. From the received signal rI

B, by conventional
channel estimation techniques Bob gets a noisy estimate ĥI

AB

of the channel with respect to Alice and replies with an
acknowledgement message sB. At the same time Eve (denoted
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Fig. 2. Abstract model for physical layer authentication cast as an hypothesis
testing problem with channel estimates as the available observations.

by E in the figure) overhears sI
A and sB through her channels

to Alice and Bob, respectively. Assuming that she also knows
the content of these messages, by channel estimation from the
received signals rAE and rBE, Eve obtains (possibly noisy)
estimates ĥAE, ĥBE of the channels that link her to both agents.

b) Second Phase: Subsequently, as shown in Fig. 1.b,
either Alice or Eve transmit message sA or sE, respectively,
which contains a training pattern. By this pattern Bob obtains
a new noisy channel estimate ĥ from rB. Authentication of
the message is then performed by comparing estimate ĥ with
the template ĥI

AB. If the decision process D establishes that
the two estimates are likely to be originated from the same
channel realization, the message is deemed as coming from
Alice and the binary flag b̂ is set to zero, otherwise the message
is deemed as forged and b̂ is set to one. When Alice transmits
in this phase, the new estimate ĥII

AB of the Alice-Bob channel
will not be identical to ĥI

AB, in general, due to the independent
noises that affect both estimates. On the other hand, when Eve
transmits in this phase, she can perform a pre-processing of
her own messages in order to induce an equivalent channel
estimate by Bob, who is as close as possible to ĥI

AB.
Note that we are now focusing on the authentication of

a single message, but the authentication process can also be
applied to multiple messages. Indeed, assuming that for each
transmitted message a training sequence is also transmitted
in order to allow channel estimation, a new authentication
procedure can be issued for each message, and each procedure
will be independent of the others. Thus, focusing on a single
message authentication provides a full description of the
system.

From now on, for the sake of a more compact notation,
we let x = ĥI

AB, y = ĥII
AB, z = (ĥAE, ĥBE), u = ĥ and

we refer to the abstract representation of the authentication
scenario given in Fig. 2. There, the joint probability density
function (pdf) pxyz of the channel estimates is determined by
the fading environment and the estimation techniques adopted
by the agents, which are assumed to be known to all of them.
In order to consider a worst case scenario, we assume that Eve
is able to forge any equivalent channel estimate v on Bob,
neglecting power constraints and/or channel characteristics
that, in practice, may prevent this and restrict the set of
possible attacks. As a side effect, this assumptions also allows
to simplify our analysis. The attacker’s forging strategy can

exploit of the information carried by her observations z, and
for the sake of generality, we consider that she can make use
of a probabilistic strategy, which is thus characterized by the
conditional pdf pv|z .

Note that, although our framework considers a single forg-
ing attempt, it can be extended to a sequence of attempts {vi},
i = 1, 2, . . ., where the attacker strategy is represented by the
family of conditional pdfs

{
pvi|z,v1,...,vi−1

}
.

Given the channel estimate u, Bob decides between the two
hypotheses

H0 : u = y message is from Alice, (1)
H1 : u = v message was forged. (2)

In Fig. 2, being in hypothesis H0 or H1 is obtained by setting
b = 0 or 1, respectively. Correct authentication is achieved
when b̂ = b.

Recall that all channels are described by zero-mean cir-
cular symmetric complex Gaussian vectors with correlated
entries, as a suitable model for many scenarios (including
MIMO/OFDM). Moreover, we assume that all transmissions
are corrupted by additive white Gaussian noise with zero
mean. Similarly, we assume that also the channel estimates are
zero-mean circular symmetric complex Gaussian vectors with
correlated entries.1 In particular, x, and y are n-dimensional,
complex, circular symmetric Gaussian random vectors, z is an
m-dimensional, complex, circular symmetric Gaussian random
vector. On the other hand v is an n-dimensional, complex,
random vector whose probability density is not specified as it
will be chosen by the attacker in order to obtain better mimetic
features. Note that Eve collects in z the estimates of channels
to both Alice and Bob. For example, in an OFDM system n is
the number of subcarriers, while m = 2n, since z collects two
n-size channel estimates. For a MIMO system Alice and Bob
may be equipped with a number of antennas different from
those of Eve, and in this case again n 6= m.

We denote the set of all possible conditional distributions
(forging strategies) pv|z(·|·) as

Q =

{
q(·|·) : Cn × Cm → R, q(b|c) ≥ 0,

∫
q(b|c) db = 1

}
.

(3)
The performance of the authentication system is assessed

by the type I error probability α, i.e., the probability that Bob
discards a message as forged by Eve while it is coming from
Alice

α = P[b̂ = 1|H0] , (4)

and the type II error probability β, i.e., the probability that
Bob accepts a message coming from Eve as legitimate

β = P[b̂ = 0|H1] . (5)

The aim of a clever design for the authentication scheme is
to make both error probabilities α and β as small as possible.

1This is justified by the fact that, in order to be effective, estimates should
have a distribution that is close to that of the target variable. Furthermore,
under mild assumptions on the SNR and with a sufficient amount of data,
estimates obtained e.g., with an maximum likelihood (ML) estimation, are
asymptotically unbiased, efficient and Gaussian distributed themselves [13,
§7.8].
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Since it is trivial to achieve α+β = 1 with a random decision
strategy that outputs b̂ = 1 with probability α, independently
of the observation u, we are only interested in values of α, β
in the region

R0 = {(α, β) : α ≥ 0, β ≥ 0, α+ β ≤ 1} . (6)

A. Outer Bound on the Error Region for a Given Attacking
Strategy

A first bound on the error region for a given attacking
strategy can be obtained by applying the fundamental data pro-
cessing inequality for the Kullback-Leibler (KL) divergence
D (· || ·) [14] to our binary hypothesis decision scheme D. In
fact, from [4], [11] we have2

D
(
pb̂|H1

|| pb̂|H0

)
≤ D

(
pxu|H1

|| pxu|H0

)
. (7)

First we observe that pb̂|H0
(1) = α, pb̂|H0

(0) = 1 − α,
and similarly pb̂|H1

(0) = β, pb̂|H1
(1) = 1 − β. Therefore,

introducing the function3

f (ϕ,ψ) = ϕ log
ϕ

1− ψ
+ (1− ϕ) log

1− ϕ
ψ

, ϕ, ψ ∈ [0, 1]

(8)
we can rewrite (7) as

f(β, α) ≤ D
(
pxu|H1

|| pxu|H0

)
. (9)

Since the observation z encloses all the information the
attacker can exploit in order to deceive the receiver, we can
assume that the forging strategy v is conditionally independent
of the secure template x, given z. Then the divergence on the
right side of (9) can be explicitly written for a given attacking
strategy pv|z ∈ Q as

D
(
pxu|H1

|| pxu|H0

)
= D (pxv || pxy) = D(pv|z) (10)

where

D(q) :=

∫ ∫ [∫
pxz(a, c)q(b|c) dc

]
×[

log

(∫
pxz(a, c)q(b|c) dc

)
− log pxy(a, b)

]
dadb .

(11)

For a given f0 ≥ 0, set

R (f0) :=
{

(α, β) ∈ R0 : f(β, α) ≤ f0

}
. (12)

Then (9) can be rewritten as an outer bound on the achievable
(α, β) pairs, that is

(α, β) ∈ R
(
D(pv|z)

)
. (13)

2Note that the symmetric bound D
(
pb̂|H0

|| pb̂|H1

)
≤

D
(
pxu|H0

|| pxu|H1

)
holds as well (see also [9]).

3Notice that f(ϕ,ψ) is the KL divergence between two Bernoulli proba-
bility distributions of parameters ϕ and 1− ψ, respectively.

B. Tightening the Outer Bound over All Attacking Strategies

Each outer bound in (13) is clearly looser4 than

R∩ :=
⋂
q∈Q
R (D(q)) = R (D?) (14)

where

D? = inf
q∈Q

D(q) . (15)

Note that region (14) is not strictly speaking an outer bound of
the type (13), since the infimum (15) may not be achievable,
in general. In the case that it is achievable, (14) represents
a worst case performance for the authentication system, over
all possible attacking strategies. On the other hand, for the
attacker, approaching (15) represents the possibility to effec-
tively carry out an impersonation attack.

The main goal of this paper is to evaluate the tightest bound
(14). We provide an attacking strategy that achieves (15),
under the assumption that the observation z encodes all the
information about the secure template x, which is available to
the attacker. From what we have shown, this is equivalent to
the following constrained optimization problem:

Problem 1: Given the zero-mean, circular symmetric, jointly
Gaussian random vectors x, y, z with joint covariance matrix

K[
x
y
z

] :=

Kxx Kxy Kxz

K∗xy Kyy Kyz

K∗xz K∗yz Kzz

 , (16)

find a joint probability distribution pxvz ∈ L1(C2n+m) such
that its marginal pxv minimizes D (pxv || pxy) under the con-
straints:
1. The marginal distribution of x, z corresponding to pxvz is
equal to the given distribution pxz .
2. The random vectors v and x are conditionally independent
given z.

III. MAIN RESULTS

In this section, we address Problem 1. In particular, we
show that the problem is feasible, that it admits an optimal
solution and that this solution is circularly symmetric complex
Gaussian. Finally, we show how to reformulate this problem
in terms of the solutions of two coupled matrix equations.
The first issue to be considered is the feasibility of Problem
1, namely the existence of a distribution pxvz satisfying the
constraints and such that D (pxv || pxy) is finite.

Lemma 1: Problem 1 is feasible.
Proof: Let v be an n-dimensional, complex, zero-mean,

circular symmetric Gaussian random vector (with arbitrary
covariance) independent of x and of z. It is immediate to
check that the corresponding pxvz satisfies the constraints and
is such that D (pxv || pxy) is finite.

4The second equality in (14) is straightforward. In fact, observe that
R (f0) ⊂ R (f1) if and only if f0 ≤ f1. Then, for all q ∈ Q, since
D? ≤ D(q), we have R (D?) ⊂ R (D(q)), and hence R (D?) ⊂ R∩.

Conversely, in order to prove that R∩ ⊂ R (D?) we show that (α, β) 6∈
R (D?) ⇒ (α, β) 6∈ R∩. In fact let (α, β) 6∈ R (D?), that is f(α, β) >
D?. Then, by (15) there exist some q0 ∈ Q such that f(α, β) > D(q0) >
D?, and hence (α, β) 6∈ R (D(q0)) and (α, β) 6∈ R∩. Thus,R∩ ⊂ R (D?)
is proved.
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Lemma 2: Let x and z be jointly Gaussian. For any attacking
strategy pxv having finite second moment and in which v and
x are conditionally independent given z, v and x are also
conditionally orthogonal given z, that is

E
[
(x− Ē[x|z])(v − Ē[v|z])

]
= 0, (17)

where Ē[·|z] stands for the linear minimum mean square error
estimator [13, §15.8] of “·” given z.

Proof: We have

E
[
(x− Ē[x|z])(v − Ē[v|z])

]
(18a)

= Ez
[
Exv|z

[
(x− Ē[x|z])(v − Ē[v|z])|z

]]
(18b)

= Ez
[
Ex|z

[
(x− Ē[x|z])|z

]
Ev|z

[
(v − Ē[v|z])|z

]]
(18c)

= Ez
[(
Ex|z[x|z]− Ē[x|z]

) (
Ev|z[v|z]− Ē[v|z]

)]
, (18d)

where Ex[·] denotes the expectation taken with respect to
vector x, and (18b) and (18c) follow from the Total Expecta-
tion Theorem and the definition of conditional independence,
respectively. Since x and z are jointly Gaussian, we have that
E [x|z] = Ē[x|z]. Thus, we can conclude that the right-hand
side of (18d) is equal to zero.

In general, conditional independence does not imply con-
ditional orthogonality, although for jointly Gaussian variables
they are equivalent. However, we have proved that conditional
independence of x and v given z implies that x and v are
conditionally orthogonal given z, thanks to x and z being
jointly Gaussian.

Notice that, since the attacker knows the joint probability
density pxyz , the corner blocks of K[

x
v
z

] are known [see also

(16)]. For the sake of simplicity, we introduce the following
symbols

X := Kvv, Y := Kxv, Z := Kvz. (19)

Hence, we can write

K[
x
v
z

] =

Kxx Y Kxz

Y ∗ X Z
K∗xz Z∗ Kzz

 . (20)

Recall that the conditional orthogonality of x and v given z is
equivalent to the following zero-block pattern in its inverse5

K−1[
x
v
z

] =

∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

 . (21)

In this way we have expressed the second constraint of
Problem 1 in terms of the structure of the inverse of the
covariance matrix. We can therefore enforce this constraint by
resorting to a “maximum entropy” completion as described in
[16] – see also [17] for a more general result and [18] for an
application of this technique.

Lemma 3: If qG is a circular symmetric Gaussian distribu-
tion, then, among all distributions p that share the same mean
vector µ and covariance matrix K, the one that minimizes
D (p || qG) is circular symmetric and Gaussian.

Proof: Let pG be a circular symmetric Gaussian proba-
bility density on Cn and let p 6= pG be any density having

5A proof can be worked out in the same vein of [15, Section 2].

the same first and second moment as pG. We denote by
H(p) the differential entropy of the density p, i.e., H(p) :=
−
∫
p(a) log p(a) da. Then (see [19, Theorem 2]), we have the

inequality
H(p) < H(pG). (22)

Now let qG be any proper Gaussian density on Cn. Under the
same hypotheses, we have∫

log qG(x)p(x)dx =

∫
log qG(x)pG(x)dx, (23)

because log qG(x) is a quadratic function of x. In view of (22)
and (23), we now have

D(p‖qG) =

∫
log

p(x)

qG(x)
p(x)dx

= −H(p)−
∫

log qG(x)p(x)dx

= −H(p)−
∫

log qG(x)pG(x)dx

> −H(pG)−
∫

log qG(x)pG(x)dx = D(pG‖qG),

(24)

Thus, the solution of any minimum entropy problem with
circular symmetric Gaussian prior has to be circular symmetric
and Gaussian.

Lemma 4: If the second moment of pxv is not finite, then
D (pxv || pxy) =∞.

Proof: We assume that D (pxv || pxy) is finite and show
that the second moment of pxv is finite. Let us first recall the
variational formula for the relative entropy [20, page 68]:

D (pxv || pxy) = sup
ϕ∈Φ

{∫
C2n

ϕ(a)pxv(a)da

− log

[∫
C2n

exp[ϕ(a)]pxy(a)da

]}
(25)

where Φ is the set of bounded functions. Observe now that,
since pxy is a Gaussian probability density, there exists ε > 0
such that

L := E[exp(ε‖[x, y]‖2)] =

∫
C2n

exp(ε‖a‖2)pxy(a)da (26)

is finite. Let us now consider the following sequence of
bounded functions:

ϕ`(a) :=

{
ε‖a‖2, if ‖a‖2 ≤ `,
0, if ‖a‖2 > `.

(27)

From (25) we get that for all ` = 1, 2, . . . ,

D (pxv || pxy) + log

[∫
C2n

exp[ϕ`(a)]pxy(a)da

]
≥
∫
C2n

ϕ`(a)pxv(a)da,

(28)

or, equivalently, from (27),

1

ε

{
D (pxv || pxy) + log

[∫
C2n

exp[ϕ`(a)]pxy(a)da

]}
≥
∫

Ω`

‖a‖2pxv(a)da,

(29)
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where Ω` := {a ∈ C2n : ‖a‖2 ≤ `}. As ` → ∞, the left-
hand side of (29) converges to 1

ε [D (pxv || pxy) +L] while the
right hand side converges to the trace of the second moment
of pxv . Such a trace is therefore finite and thus also the second
moment of pxv is finite.
We are now ready to consider the existence problem. As in
many optimization problems this is one of the most delicate
issue.

Theorem 1: There exists an optimal solution p?xv of Problem
1.

Proof: Let p(j)
xvz , j = 1, 2, . . . , be a sequence of probabil-

ity densities satisfying the constraints of Problem 1 and such
that the corresponding marginals p(j)

xv satisfy

lim
j→∞

D
(
p(j)
xv || pxy

)
= D?,

with D? given by (15). In view of Lemma 4, we can assume
that all p(j)

xvz have finite mean vector µj and covariance matrix
K̄j . Let mj and Kj be the mean and covariance of p(j)

xv , i.e.,
mj are the first 2n components of µj and Kj is the 2n× 2n
upper-left block of K̄j . Now, in view of Lemma 3,

D
(
p(j)
xv || pxy

)
≥ D

(
p

(j)
xv,G || pxy

)
= tr[K−1

[ xy ]
Kj ] +m∗jK

−1

[ xy ]
mj

− log

[
det[Kj ]

det[K[ xy ]]

]
− 2n, (30)

where p(j)
xv,G is the Gaussian distribution having mean vector

mj and covariance matrix Kj . It is easy to check that the
right-hand side of (30) diverges if at least one of ‖Kj‖ and
‖mj‖ does. Hence, both ‖Kj‖ and ‖mj‖ remain bounded,
and also µj and K̄j remain bounded. Therefore, there exists
a subsequence p

(ji)
xvz , i = 1, 2, . . . , such that K̄ji and µji

converge as i → ∞. Let K̄? and µ? be their limits and
let K? and m? be the corresponding limits of Kji and mji .
Notice now that each density of the corresponding sequence
of Gaussian distributions with the same mean and variance
p

(ji)
xvz,G satisfies the constraints of Problem 1. In fact, the

marginal pxz does not change and, in view of (21), the second
constraint only depends on the variance matrix. Let p?xvz,G be
the Gaussian distribution whose mean and variance are µ? and
K̄?, respectively. In view of the previous arguments, we can
conclude that p(ji)

xvz,G satisfies the constraints of Problem 1. Let
p?xv,G be the corresponding marginal. We have

D? = lim
i→∞

D
(
p

(ji)
xv,G || pxy

)
≥ lim
i→∞

D
(
p

(ji)
xv,G || pxy

)
= lim
i→∞

tr[K−1

[ xy ]
Kji ] +m∗jiK

−1

[ xy ]
mji − log

det[Kji ]

det[K[ xy ]]
− 2n

= tr[K−1

[ xy ]
K?] + (m?)∗K−1

[ xy ]
m? − log

det[K?]

det[K[ xy ]]
− 2n

= D
(
p?xv,G || pxy

)
. (31)

Thus p?xvz,G solves Problem 1.

Notice that from (31) it is immediate to see that the optimal
solution not only exists but is Gaussian distributed with zero
mean.

Corollary 1: Let x and y be jointly Gaussian. Then the
solution of Problem 1 is zero mean and Gaussian.

We are now ready to find the solution of our problem.
Theorem 2: The solution of Problem 1 is the zero mean

circularly symmetric Gaussian density p?xvz whose covariance
matrix is

K[
x
v
z

] =

 Kxx KxzK
−1
zz Z

∗ Kxz

ZK−1
zz K

∗
xz ZK−1

zz Z
∗ + CC∗ Z

K∗xz Z∗ Kzz

 , (32)

where Z and C solve
C∗ = C∗(ZK−1

zz BK
−1
zz Z

∗ + CC∗)−1A

Z∗ = K∗xzK
−1
xxKxy

+BK−1
zz Z

∗(ZK−1
zz BK

−1
zz Z

∗ + CC∗)−1A

(33)

with

A := Kyy −K∗xyK−1
xxKxy , (34a)

B := Kzz −K∗xzK−1
xxKxz . (34b)

Proof: See the Appendix.
In view of (11) and (14), Theorem 2 provides the tightest

bound to the error region (14). Indeed, let K[ xv ] be a shorthand
notation for the 2n× 2n upper-left corner of (32). Then, D?

is given by

D? = D(p?xv‖pxy)

= − log det(K[ xv ]K
−1

[ xy ]
)

+ trK[ xy ]
−1
(
K[ xv ] −K[ xy ]

)
. (35)

Consider the circular symmetric Gaussian density p?xvz ,
with zero mean and covariance (32). Note that it is such
that x and v are conditionally independent given z. Then, by
marginalizing and conditioning, we can obtain an optimum
attacking strategy p?v|z(·|a) which achieves (14). It is given
by the proper Gaussian density whose mean and variance are
defined by

µv|z := ZK−1
zz z (36)

Kv|z := Kvv −KvzK
−1
zz K

∗
vz = CC∗ . (37)

IV. EFFICIENT COMPUTATION OF THE TIGHTEST BOUND

In view of Theorem 2, in order to provide the expression of
the optimal solution p?xvz , we have to compute matrices C and
Z, which solve the system of nonlinear matrix equations (33).
This appears however to be a highly non trivial task. Thus,
we propose a two stage algorithm:

1) Feasible (projected) Solution. To begin with, we deal
with an optimization problem which can be considered
a relaxed version of Problem 1, since no positivity
constraints on matrix K[

x
v
z

] are imposed. This task turns

out to be much simpler to achieve. Indeed, the solution
can be computed in closed form. Then, we project the
solution to the relaxed problem onto the feasible set,
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i.e., the set of pairs (X,Z) which make K[
x
v
z

] positive

definite.
2) Iterative Algorithm. We use the projection as a starting

point for an iterative update procedure whose fixed point
satisfies (33).

Next we provide some details for each phase.
Feasible Solution. Minimizing (11) with no constraints on the
positivity of K[

x
v
z

] is equivalent to solving

Problem 2:

arg min
X,Z

J(K[ xv ](Z,X))

:=

{
− log det(K[ x

v

](Z,X)K−1[
x
y

])
+ tr(K[ x

v

](Z,X)K−1[
x
y

])} , (38)

where we have made the dependence of K[ x
v

] on (Z,X)

explicit. In the same vein of the proof of Theorem 2, we work
out the optimality conditions that X and Z have to satisfy,
based on the analysis of the first variation D[J(K[ xv ]); δK[ xv ]].
Some easy algebraic calculations lead us to the closed form
of an optimal solution (Z,X):
Z = K∗xyK

−1
xxKxz(K

∗
xzK

−1
xxKxz)

†Kzz,

X = Kyy −K∗xyK
− 1

2
xx[

In −K
− 1

2
xx Kxz(K

∗
xzK

−1
xxKxz)

†K∗xzK
− 1

2
xx

]
K
− 1

2
xx Kxy .

(39)
If the obtained X and Z are such that X −ZK−1

zz K
∗ ≥ 0,

the algorithm terminates. Otherwise, a pair (C,Z) is obtained
as follows. Let T be a unitary matrix such that ΣT := T ∗(X−
ZK−1

zz K
∗)T = diag(d1, d2, . . . , dk, δ1, δ2, . . . , δh), where di

are real positive and in decreasing order, and δi are negative or
zero. Let Σ′T := diag(d1, d2, . . . , dk, ε, ε, . . . , ε), where ε is a
“small” parameter, e.g., ε := dk/100. Let Σ′ := TΣ′TT

∗ > 0
and C be such that CC∗ = Σ′.
Iterative Algorithm. We use the pair (C,Z) as a starting point
for the iterations
C∗(k + 1) = C∗(k)(Z(k)K−1

zz BK
−1
zz Z

∗(k)

+ C(k)C∗(k))−1A

Z∗(k + 1) = K∗xzK
−1
xxKxyBK

−1
zz Z

∗(k)

(Z(k)K−1
zz BK

−1
zz Z

∗(k) + C(k)C∗(z))−1A
(40)

with A and B as defined in (34a)–(34b). By the iterative
process we aim at finding a fixed point for (40), which provides
the solution of Problem 1. The iterative process can be stopped
either after a fixed number of iterations, or when the variation
of the cost D?(k) over one iteration is smaller than a given
percentage.

V. NUMERICAL RESULTS

In this section we provide numerical evidence of the effec-
tiveness of the proposed algorithm.

In order to assess the performance of the proposed algorithm
for the computation of the tightest bound, we consider the case
where m = n and the covariance matrix is given by

K[
x
y
z

] =

 1 σ ρ
σ∗ 1 τ
ρ∗ τ∗ 1

⊗Hn , (41)

where matrix Hn, represents the correlation between coeffi-
cients in the same channel estimate, while the parameter ρ
dictates the correlation between channel estimates performed
by Eve and the legitimate channel template, while σ represents
the correlation between successive estimates of the same
legitimate channel performed by Bob in the two phases. Note
that this formulation simplifies the discussion of results as it
allows to separate the correlation between terminals from that
between channel coefficients.

For instance, by choosing Hn = In, this scenario corre-
sponds to an OFDM transmission with uncorrelated chan-
nel frequency response. Besides being an asymptotic case
widely considered in the literature, this is also a practical
scenario, when channel estimation is performed on a subset
of subcarriers with cardinality smaller than the number of
channel taps, and the channel taps are independent Gaussian
variables. As a possibly more relistic example, consider an
impulse response with n independent channel taps having zero
mean and exponentially decaying power delay profile with
exponential parameter λ. In this case, the correlation matrix
between channel coefficients in the frequency domain is given
by the matrix Hn where the generic (p, q) entry is

[Hn]p,q =

n−1∑
`=0

e−2πı(p−q)`/ne−λ`

=
1− e−λn

1− e−[λ+2πı(p−q)/n]
. (42)

Under the assumption (41), the submatrices in (16) are all
multiples of Hn, and the closed form solution (39) simplifies
to {

Z = σ∗

ρ∗ Hn

X = Hn ,
(43)

which is feasible if and only if |ρ| ≥ |σ|, that is if the
legitimate channel estimate in the first phase is more correlated
with the attacker observations than with the legitimate channel
estimate in the second phase, and in this case it provides
D? = 0 and the optimal solution

µv|z = σ∗

ρ∗ z (44)

Kv|z =

(
1−

∣∣∣σρ ∣∣∣2)Hn . (45)

This agrees with the intuition that if the attacker enjoys such
advantage in the correlation coefficients he can forge a channel
that is indistinguishable by the receiver from the legitimate
one.

On the other hand, in the less pessimistic and supposedly
more realistic condition that |ρ| < |σ|, the iterative algorithm
to compute the optimal attack can be written as

C(k) = c(k)Hn , Z(k) = ζ(k)Hn
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Fig. 3. Cost of the solution D?(k) computed by the iterative algorithm as
a function of the iteration number k, with n = m = 64, for σ = 0.7 and
ρ = 0.1, 0.3, 0.5.

with the initial scalar values

c(0) = ε , ζ(0) =
σ∗

ρ∗

and the iteration equations
c(k + 1) =

c(k)(1− |ρ|2)

|ζ(k)|2 (1− |σ|2) + |c(k)|2

ζ(k + 1) = ρσ∗ +
ζ(k)(1− |σ|2)(1− |ρ|2)

|ζ(k)|2 (1− |σ|2) + |c(k)|2

(46)

First we assess the performance of the iterative algorithm.
Fig. 3 shows the cost of the optimum solution D?(k) as a
function of the number of iterations for the iterative algorithm,
with n = m = 64, and various values of ρ. We observe that
the iterative algorithm always converges to a fixed point of
(40) and that a solution with good accuracy is achieved in
less than 100 iterations. Thus, in the following we consider
this value for the maximum number of iterations.

Fig. 4 shows the outer bound on the type I/II error probabil-
ity region (α, β) for various values of the correlation parameter
ρ, and for n = m = 64, as obtained from the proposed iterative
approach. As expected, we observe that for increasing values
of ρ, the region of achievable values of α and β gets narrower.
In particular, for the considered scenario (n = 16, σ = 0.7),
we see that it is impossible to bring both type I and type II
error probabilities below 10−1 already for ρ = 0.5.

In Fig. 5 we report the results obtained for both the initial
feasible solution (projection of the solution of (39)) and final
solution of the iterative algorithm, as a function of ρ, for two
different values of σ.

We note that for low values of ρ the iterative algorithm
remarkably lowers the value of the cost function from the
initial feasible solution, thus motivating its use, although it
comes at the cost of more computations. On the other hand,
as ρ approaches σ the initial feasible solution gets closer to

110−110−210−310−410−5

1

10−1

10−2

10−3

10−4

α

β

ρ = 0.7
ρ = 0.5
ρ = 0.3
ρ = 0.1

Fig. 4. Bound on the region of type II (β) vs. type I (α) error probability
for various values of the correlation parameter ρ, with n = 16, σ = 0.7.

1 2 4 8 16 32 64
10−4

10−3

10−1

10−2

1

10

102

103

104

n

D?

ρ = 0.1

ρ = 0.4

ρ = 0.6

ρ = 0.69

ρ = 0.1

ρ = 0.4

ρ = 0.6

ρ = 0.69

Fig. 5. Cost function D? as a function of n, for several values of ρ and
σ = 0.7. The cost D?(0) of the initial projected solution is shown in dashed
lines, while that of the final solution of the iterative algorithm is in solid lines.

the unconstrained solution, and hence it is already close to the
final optimum.

Moreover, it is observed that the cost function D? is
independent of the particular choice of the matrix Mn, as long
as it is positive definite, depending linearly only on its size n.
For the considered case of OFDM transmission, this means
that more dispersive channels having independent taps have
the potential to provide a better authentication system. This
phenomenon was already seen, e.g., in [9].

A. Randomly Correlated Channels

We now consider channels with random correlation.
In the model (41)–(42) we choose σ uniformly distributed

in [0.8, 0.9] and ρ uniformly distributed in [0, 0.6].
Even in this case we have verified that setting the maximum

number of iteration to 100 is enough for the convergence of the
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Fig. 6. CDF of the cost function D? in the random correlation model
with σ uniform in [0.8, 0.9], ρ uniform in [0, 0.6] and n = 64, for the
initial projected solution (dashed lines) and the final solution of the iterative
algorithm (solid lines).

iterative algorithm. Fig. 6 shows the cumulative distribution
function (CDF) of D? for n = 64, at the convergence of the
iterative algorithm, as well as at the initial feasible solution
obtained by projection.

We have also carried out a perturbation analysis. In par-
ticular, we evaluate the effects of small perturbations of Z
and C generated as Gaussian random variables with norm
0.01‖Z‖ and 0.01‖C‖, respectively. Results not reported here
show that it provides a negligible variation with respect to the
solution of the iterative approach. This supports the conclusion
that the iterative approach reaches a minimum for J(K[ xv ]).
We also applied the iterative algorithm starting from the
perturbed solutions which led to cost improvements. Again,
this procedure achieves very small variation with a relative
increase of the cost function by 10−4.

VI. CONCLUSIONS

We have considered the problem of deriving a univer-
sal performance bound, for a message source authentication
scheme based on channel estimates in a wireless fading
scenario, where an attacker may have correlated observations
available. We have formulated an outer bound to the region
of achievable false alarm and missed detection probabilities,
which is universal across all possible decision rules by the
receiver.

Under the assumption that the channels are represented
by multivariate complex Gaussian variables, we have proved
that the tightest bound corresponds to a forging strategy that
produces a zero mean signal which is jointly Gaussian with
the attacker observations. Furthermore, we have derived a
characterization of their joint covariance matrix through the
solution of a system of two nonlinear matrix equations. Based
upon this characterization, we have also devised an efficient
iterative algorithm for its computation: the solution to the
matrix system appears as a fixed point of the iteration.

From the numerical results, we conjecture that the proposed
iterative approach for the best attacking strategy converges in
general, although determining its convergence seems a highly
difficult problem. Moreover, from the perturbation analysis,
we deduce that the limit point is a local minimum. We
have therefore provided an effective method for the attacking
strategy that yields the tightest bound on the error region of
any message authentication procedure.
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APPENDIX

In this Appendix we provide the proof of Theorem 2.
We have already shown that the optimal solution is a zero-

mean Gaussian distribution having covariance matrix (20)
where

K[ xz ] :=

[
Kxx Kxz

K∗xz Kzz

]
> 0
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is given. Clearly in this way the first constraint of Problem 1
is automatically satisfied for any X,Y, Z. We now show that
the second constraint is equivalent to impose

Y = KxzK
−1
zz Z

∗.

Indeed, in view of Lemma 2, x and v are conditionally
orthogonal given z, so that the inverse of Kxvz must exhibit
the zero-block pattern (21). Based on this information, we can
compute Y as a function of Z and X by employing the block-
matrix inversion formula

M1 =

[
A1 B1

C1 D1

]
⇒ M−1

1 =

[
(M−1

1 )11 (M−1
1 )12

(M−1
1 )21 (M−1

1 )22

]
.

(47)
where

(M−1
1 )11 = (A1 −B1D

−1
1 C1)−1 (48)

(M−1
1 )12 = −A−1

1 B1(D1 − C1A
−1
1 B1)−1 (49)

(M−1
1 )21 = −D−1

1 C1(A1 −B1D
−1
1 C1)−1 (50)

(M−1
1 )22 = (D1 − C1A

−1
1 B1)−1 (51)

We partition K[
x
v
z

] as

K[
x
v
z

] =

[
A1 B1

C1 D1

]
, (52)

where

A1 := Kxx, B1 :=
[
Y Kxz

]
,

C1 :=

[
Y ∗

K∗xz

]
, D1 :=

[
X Z
Z∗ Kzz

]
.

Therefore, the block in position (1, 2) of K−1
xvz (with respect

to the partition (52)) is given by

−A−1
1 B1(D1 − C1A

−1
1 B1)

−1
= −K−1

xx

[
Y Kxz

]
×([

X Z
Z∗ Kzz

]
−
[
Y ∗

K∗xz

]
K−1
xx

[
Y Kxz

])−1

= −K−1
xx

[
Y Kxz

]
×

[
X − Y ∗K−1

xx Y Z − Y ∗K−1
xxKxz

Z∗ −K∗xzK−1
xx Y Kzz −K∗xzK−1

xxKxz

]
︸ ︷︷ ︸

:=M2


−1

.

In order to impose the zero-block pattern (21) to
the inverse, we make the block in position (1, 1) in
−A−1

1 B1(D1 − C1A
−1
1 B1)

−1
vanish. Note that we need to

explicitly compute only the elements in the first column block
of M2

−1. Let[
A2 B2

C2 D2

]
:=

[
X − Y ∗K−1

xx Y Z − Y ∗K−1
xxKxz

Z∗ −K∗xzK−1
xx Y Kzz −K∗xzK−1

xxKxz

]
= M2

(53)

Thus, in view of the matrix inversion lemma, the first block
column in M−1

2 is given by[
(A2 −B2D

−1
2 C2)−1

−D−1
2 C2(A2 −B2D

−1
2 C2)−1

]
.

Therefore, orthogonality of x and v given z implies

0 = −K−1
xx

[
Y Kxz

]
× (54)[

(A2 −B2D
−1
2 C2)−1 0

0 −D−1
2 C2(A2 −B2D

−1
2 C2)−1

]
= −K−1

xx Y (A2 −B2D
−1
2 C2)−1

+K−1
xxKxzD

−1
2 C2(A2 −B2D

−1
2 C2)−1

= Y −KxzD
−1
2 C2 ,

so that

Y = Kxz

(
Kzz −K∗xzK−1

xxKxz

)−1 (
Z∗ −K∗xzK−1

xx Y
)

=
[(
I +Kxz

(
Kzz −K∗xzK−1

xxKxz

)−1

× K∗xzK
−1
xx

)]−1
Kxz

(
Kzz −K∗xzK−1

xxKxz

)−1
Z∗

= KxzK
−1
zz Z

∗ .

In this way, we have parametrized all matrices K[
x
v
z

] whose

inverse has the specified structure. At this point, we could
minimize the divergence D(pxv‖pxy) over Z and X . This turns
out to be an easy problem that can be solved in closed form.
This, however, is not the solution6 to our original problem
since there is yet another (hidden) constraint that we need to
impose, namely that matrix

K[
x
v
z

] =

 Kxx KxzK
−1
zz Z

∗ Kxz

(KxzK
−1
zz Z

∗)∗ X Z
K∗xz Z∗ Kzz

 (55)

is a bona fide covariance matrix, i.e., it is positive semidefinite.
Since K[ xz ] is positive definite, this constraint is equivalent to

X−
[
(KxzK

−1
zz Z

∗)∗ Z
] [Kxx Kxz

K∗xz Kzz

]−1 [
KxzK

−1
zz Z

∗

Z∗

]
≥ 0

which, with simple algebraic manipulations, is seen to be
equivalent to

X − ZK−1
zz Z

∗ ≥ 0. (56)

The positivity constraint is then automatically satisfied if we
re-parametrize the unknown matrix X in term of a new matrix
C in the form

X = ZK−1
zz Z

∗ + CC∗. (57)

The optimal solution can now be easily obtained by solving
the following unconstrained optimization problem

arg min
C,Z

D(pxv‖pxy). (58)

Since

K[ xv ] :=

[
Kxx KxzK

−1
zz Z

∗

Z(KxzK
−1
zz )∗ ZK−1

zz Z
∗ + CC∗

]
, (59)

K[ xy ] :=

[
Kxx Kxy

K∗xy Kyy

]
, (60)

6Here we mention this simplified optimization problem because, as dis-
cussed later, it turns out to be very useful as the first step of an efficient
numerical procedure that computes the solution of our original problem.
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solving (58) is equivalent to compute

arg min
Z,C

{
− log det(K[ xv ]K

−1

[ xy ]
) + trK−1

[ xy ]
K[ xv ]

}
. (61)

We are then led to the formulation of Problem 1. Let

J
(
K[ xv ]

)
:= − log det(K[ xv ]K

−1

[ xy ]
)

+ trK−1

[ xy ]
K[ xv ]. (62)

Introducing the partitioning in square blocks

K−1

[ xy ]
−K−1

[ xv ]
=

[
∆11 ∆12

∆21 ∆22

]
(63)

and the notation

F := δZK−1
zz Z

∗ + ZK−1
zz δZ

∗ + δCC∗ + CδC∗ (64)
G := ∆21KxzK

−1
zz δZ

∗ + ∆22

[
δZK−1

zz Z
∗

+ ZK−1
zz δZ

∗ + δCC∗ + CδC∗
]
. (65)

the first variation of J(K[ xv ]) is

D[J(K[ xv ]); δK[ xv ]]

= tr

[
(K−1

[ xy ]
−K−1

[ xv ]
) δK[ xv ]

]
= tr

[[
∆11 ∆12

∆21 ∆22

] [
0 KxzK

−1
zz δZ

∗

δZ(KxzK
−1
zz )∗ F

]]
= tr

[
∆12δZ(KxzK

−1
zz )∗ ∗

∗ G

]
. (66)

By the properties of the trace and the Hermitian symmetry,
we get that the first variation vanishes if and only if

tr
[(

(KxzK
−1
zz )∗∆12 + Z∗K−1

zz ∆22

)
δZ + C∗∆22δC

]
= 0.

(67)
This holds for all δZ, δC if and only if{

(KxzK
−1
zz )∗∆12 +K−1

zz Z
∗∆22 = 0

C∗∆22 = 0
(68)

The first equation in (68) can be simplified so that it reads

Kxz∆12 + Z∗∆22 = 0. (69)

The matrix inversion lemma allows to compute an explicit
expression for matrix ∆

∆12 = −K−1
xxKxy(Kyy −K∗xyK−1

xxKxy)−1+

K−1
xxKxzK

−1
zz Z

∗×[
ZK−1

zz (Kzz −K∗xzK−1
xxKxz)K

−1
zz Z

∗ + CC∗
]−1

,

∆22 =
(
Kyy −KyzK

−1
xxKxy

)−1−[
ZK−1

zz (Kzz −K∗xzK−1
xxKxz)K

−1
zz Z

∗ + CC∗
]−1

.

Now, using (34), we can write

∆12 = −K−1
xxKxyA

−1 +K−1
xxKxzK

−1
zz Z

∗×[
ZK−1

zz BK
−1
zz Z

∗ + CC∗
]−1

,

∆22 = A−1 −
(
ZK−1

zz BK
−1
zz Z

∗ + CC∗
)−1

.

Therefore, after some manipulation, we conclude that the
optimum solution is provided by C and Z solving (33).
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