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The tensor train decomposition is a representation technique which allows compact storage
and efficient computations with arbitrary tensors [2]. Basically, a tensor train (TT) decom-
position of a d-dimensional tensor A with size n1 × n2 × · · · × nd is a sequence G1, . . . , Gd of
3-tensors (the carriages); the size of Gi is ri−1 × ni × ri with r0 = rd = 1 (that is, G1 and Gd
are ordinary matrices) and

A(i1, i2, . . . , id) =
∑

α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id).

The index αi runs from 1 to ri, for i = 1, . . . , d − 1, and the numbers r1, . . . , rd−1 are the
TT-ranks of A. We will use the notation A = TT(G1, . . . , Gd).

We present a backward error analysis of two algorithms found in [3] which perform com-
putations with tensors in TT-format. The first one produces an exact or approximate TT-
decomposition G1, . . . , Gd of a tensor A given in functional form, depending on a tolerance
ε. If ε = 0 then the output of the algorithm is an exact TT-decomposition, that is, A =
TT(G1, . . . , Gd). If ε > 0 then TT(G1, . . . , Gd) is an O(ε)-approximation of A which can real-
ize significant savings in memory space. The computational core of the algorithm is a suitable
(approximate) matrix factorization that, in the original paper, relies on SVD computations.
We prove that analogous performances and backward stability can be obtained by means of
QR factorizations.

The second algorithm computes the contraction (multilinear form) of a tensor in TT-format
and vectors v1, . . . , vd,

a =

n1∑
i1=1

· · ·
nd∑
id=1

∑
α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id)v1(i1) · · · vd(id).

By means of known error bounds for inner products in floating point arithmetic [1], we prove
backward stability of the proposed algorithm under very general hypotheses on the evaluation
order of the innermost summations. More precisely, if A = TT(G1, . . . , Gd) and no underflows
or overflows are encountered then the output â computed by the algorithm in floating point
arithmetic is the exact contraction of Â = TT(G1 + ∆G1, . . . , Gd + ∆Gd) and v1, . . . , vd where
|∆Gi| ≤ (ni + ri−1)u|Gi|+O(u2) and u is the machine precision.
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