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Abstracts

Rational approximations of fractional powers of matrices 8 Feb
10:15

Lidia Aceto1, Paolo Novati2

1 Dipartimento di Matematica, Università di Pisa. lidia.aceto@unipi.it
2 Dipartimento di Matematica e Geoscienze, Università di Trieste. novati@units.it

Fractional powers of matrices can be used to construct numerical methods for the solution of prob-
lems involving fractional derivatives. For instance, denoting by A the approximation of the standard
Laplacian with homogeneous Dirichlet boundary conditions obtained by using any finite difference
method, the so-called matrix transfer technique introduced by Ilić et al. in [4, 5] approximates the
fractional Laplacian operator of order 2α, α ∈ (1/2, 1], by Aα. The idea can be extended to other kind
of fractional derivatives whenever A represents the discretization of the corresponding integer order
one [1].

In this view, any numerical scheme able to compute the matrix fractional powers can be potentially
used to define a method for fractional equations. Nevertheless, when working with fractional powers,
it must be kept in mind that raising to a fractional number destroys the sparsity structure of the
underlying integer order approximation. As a consequence, the corresponding solver may be extremely
expensive for large size matrices. In order to tackle this problem, in [2, 3] we have studied a rational
approximation to Aα, that is,

Aα ≈ [qk(A)]−1 pk(A), (1)

where pk, qk ∈ Πk, the set of polynomials of degree k and smaller. Considering that good accuracy
is attainable for values of the bandwidth k much less than the size of Aα, the action of Aα is then
approximated through the action of sparse matrices. However, the condition number of pk(A) and
qk(A) becomes (with respect to k) quickly very large.

In this talk, we first recall the basic features about this rational approximation, that is essen-
tially a scaled Padé form, and then we present a simple but reliable strategy that allows to keep the
conditioning under control.
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[5] M. Ilić, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation
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Perturbations of Hermitian Matrices and Applications to Spectral Symbols8 Feb
17:50

Giovanni Barbarino1, Stefano Serra-Capizzano2

1 Faculty of Mathematical and Natural Sciences, Scuola Normale Superiore, Pisa, Italy. giovanni.barbarino@sns.it
2 Department of Science and High Technology, Insubria University, Italy; Department of Information Technology, Uppsala

University, Sweden. stefano.serrac@uninsubria.it; stefano.serra@it.uu.se

It is often observed in practice that matrix sequences {An}n generated by discretization meth-
ods applied to linear differential equations, possess a Spectral Symbol, that is a measurable function
describing the asymptotic distribution of the eigenvalues of An. Sequences composed by Hermitian
matrices own real spectral symbols, that can be derived through the axioms of Generalized Locally
Toeplitz sequences [1].

The spectral analysis of matrix-sequences which can be written as a non-Hermitian perturbation
of a given Hermitian matrix-sequence has been performed in a previous work by Leonid Golinskii and
the second author [2]. A result was proven but under the technical restrictive assumption that the
involved matrix-sequences are uniformly bounded in spectral norm. Nevertheless that result had a
remarkable impact in the analysis of spectral distribution and clustering of matrix-sequences coming
from various applications, mainly in the context of the numerical approximation of partial differential
equations (PDEs) and related preconditioned matrix-sequences.

In this presentation, we propose a new result that does not require the boundedness of the sequences
and permits to enlarge substantially the class of problems, such as variable-coefficient PDEs and
preconditioned matrix-sequences with unbounded coefficients.

References

[1] Garoni C., Serra-Capizzano S. Generalized Locally Toeplitz Sequences: Theory and Applications (Vol-
ume I). Springer (2017).

[2] Golinskii L., Serra-Capizzano S. The asymptotic properties of the spectrum of nonsymmetrically per-
turbed Jacobi matrix sequences. J. Approx. Theory, 144 (2007) 84–102.

Regularization preconditioners for frame-based image deblurring9 Feb
14:55

Davide Bianchi 1, Alessandro Buccini2, Marco Donatelli3, Ya-Ru Fan4, Ting-Zhu Huang5

1 Università degli Studi dell’Insubria. d.bianchi9@uninsubria.it
2 Kent State University. abuccini@kent.edu
3 Università degli Studi dell’Insubria. marco.donatelli@uninsubria.it
4 University of Electronic Science and Technology of China. yarufanfan@163.com
5 University of Electronic Science and Technology of China. tingzhuhuang@126.com

We are interested in fast and stable iterative regularization methods for image deblurring problems
with space invariant blur. The associated coefficient matrix has a Block Toeplitz Toeplitz Blocks
(BTTB) like structure depending on the boundary conditions imposed on the imaging model. In
the literature, several strategies have been proposed in the attempt to define proper preconditioner
for iterative regularization methods that involve such linear systems. Usually, the structure of the
preconditioner is chosen Block Circulant with Circulant Blocks (BCCB) because it can be efficiently
exploited by Fast Fourier Transform (FFT). Nevertheless, for ill-conditioned problems, it is well known
that BCCB preconditioners cannot provide a strong clustering of the eigenvalues. Moreover, in order
to get an effective preconditioner, it is crucial to preserve the structure of the coefficient matrix.

On the other hand, thresholding iterative methods are recently successfully applied to image de-
blurring problems, exploiting the sparsity of the image in a proper wavelet domain. Motivated by
the results of recent papers [2, 3], we combine a nonstationary preconditioned iteration [1] with the
modified linearized Bregman algorithm (MLBA) and proper regularization operators.

We prove that our algorithms are regularizing and convergent. Finally, several numerical experi-
ments shows the consistency of our methods in terms of speed and quality of the restorations.
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Preconditioning Boundary Integral Equations with Application to
High-Frequency Wave Propagation Analysis 8 Feb

11:55

Bruno Carpentieri1

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy. bruno.carpentieri@unibz.it

Boundary integral equations are integral equations defined on the boundary of the domain of
interest. The price that one pays for replacing a three-dimensional model with a two-dimensional
model is that upon discretization a sparse problem in O(n3) variables is replaced by a dense problem
in O(n2). Most truly dense linear systems arising from scientific applications come from the solution
of boundary integral equations. Their size can be extremely large in applications. The scattering
of a plane wave by a perfectly electrically conducting spherical geometry with a diameter of 1800
wavelengths modelled using surface integral equations would give rise to a fully populated matrix with
more than three billion unknowns. Direct methods, both in-core and out-of-core, are not affordable to
solve problems of this size even on modern parallel computers due to the large memory requirements.
Iterative Krylov methods can solve the problems of space of direct methods, but they need fast
matrix-vector products and robust preconditioners to achieve almost linear complexity.

In this talk, we present our recent advances in the design of preconditioned Krylov methods for
solving dense linear systems arising from boundary element discretization of high-frequency cavity
scattering problems. We discuss various numerical linear algebra aspects, such as the choice of the
iterative method, the characteristics and performance of fast integral equation solvers for the matrix-
vector product operation, and the design of algebraic preconditioners based on multilevel incomplete
LU factorization, sparse approximate inverses and inner-outer methods combined with fast solvers. We
also consider symmetry-preserving strategies both for the iterative method and for the preconditioner.
These numerical linear algebra tools have enabled us the solution of large scattering applications
efficiently on a moderate number of processors.
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Convergence analysis of the LSQR method for compact operator equations8 Feb
12:45

Noè Caruso1, Paolo Novati2

1 Mathematics Area, SISSA, Trieste, Italy. ncaruso@sissa.it
2 Department of Mathematics and Geoscience, University of Trieste, Trieste, Italy. novati@units.it

In this work we study the behaviour of the LSQR algorithm in the solution of the linear equation
Ax = b where A is a compact operator between two separable Hilbert spaces and b ∈ R(A) the range
of A. We present a rigorous analysis concerning the existence of a Krylov solution, and new results on
the rate of convergence in terms of an `p sequence where p depends on the summability of the singular
values of the operator. We also study the approximation of the singular values of the operator obtained
by the bidiagonal matrices derived from the Lanczos bidiagonalisation algorithm.

On the numerical convergence and properties of the Iterative Filtering method
for the analysis of nonlinear and nonstationary signals9 Feb

14:30
Antonio Cicone1, Haomin Zhou2

1 INdAM & Università degli Studi dell’Aquila. antonio.cicone@univaq.it
2 School of Mathematics , Georgia Institute of Technology. hmzhou@math.gatech.edu

The decomposition and analysis of nonstationary and nonlinear signals are of great interest both
from a theoretical and an applied standpoint. Among possible applications we mention, for instance,
the refining of nondestructive techniques for the identification of faults in buildings or machineries;
the identification of hidden quasiperiodicities and long term behaviors in a time series like the average
troposphere temperature, a financial index, or the terrestrial magnetic field driven by the solar wind
[3].

Standard techniques like Fourier or wavelet Transform are unable to properly capture nonlinear
and nonstationary phenomena. For this very reason in the last two decades several ad hoc methods
have been proposed in the literature. Among them there is the so called Iterative Filtering method
[1, 2, 4], whose numerical convergence and stability was not completely understood so far.

In this talk we quickly overview previously developed methods, we introduce a complete numerical
convergence of Iterative Filtering, we provide details about its properties and show some numerical
examples.
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Extrapolation Methods for fixed point Multilinear PageRank computations 9 Feb
16:10

Stefano Cipolla1, Michela Redivo-Zaglia2, Francesco Tudisco3

1 University of Padua, Dept. of Mathematics, Padua, Italy. cipolla@math.unipd.it
2 University of Padua, Dept. of Mathematics, Padua, Italy. michela@math.unipd.it
3 University of Strathclyde, Dept. of Mathematics and Statistics, Glasgow, UK. f.tudisco@strath.ac.uk

A Markov Chain is a discrete stochastic process {Xt}∞t=0 over a finite state space where the probabil-
ity distribution of Xt+1 depends on the previous Xt, . . . , X0. However, the classic “Markov property”
specifies that the transition probability to the next state only depends on the probability of the current
state, i.e. P(Xt+1|Xt, . . . , X0) = P(Xt+1|Xt) . Nevertheless, there are situations where it is important
to keep track of what happens further in the past, leading to what we call Higher Order Markov Chain.

Given a random walk on a directed graph, the PageRank modification [1] builds a new Markov
chain that always has a unique stationary distribution. Recently this idea has been extended to Higher
Order Markov Chains [2]. Although this extension has attractive theoretical properties, it is compu-
tationally intractable for problems of large size; hence an approximation of the ideal Higher Order
PageRank vector is introduced, called Multilinear PageRank. The Multilinear PageRank vector can
be interpreted as the stationary distribution of a non-Markovian stochastic process called the “spacey
random surfer”.

In this talk, after a short survey on results about the existence/uniqueness of the solution and on
the state-of-the-art of computational techniques for the Multilinear PageRank vector, we will show
how its computation can be considerably sped-up using extrapolation techniques. In particular we
will show how the sequence generated by two fixed point-type techniques as the SS-HOPM [3] and the
Inner-Outer Method [2], are accelerated using the The Simplified Topological ε-Algorithm (STEA) [4]
in the restarted form [5]. The considerable improvement of the rate of convergence in the accelerated
version, obtained at the cost of a fixed number of scalar products per step, suggests that the sequences
generated by the considered methods are particularly close to the Shanks Kernel and hence encourages
further theoretical investigation.
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[1] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank citation ranking: Bringing order to the
web. Stanford InfoLab, (1999).
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[3] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs. SIAM Journal on
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A general framework for ADMM acceleration8 Feb
11:30

Alessandro Buccini1, Pietro Dell’Acqua2, Marco Donatelli3

1 Department of Mathematical Sciences, Kent State University, Kent, OH, USA. abuccini@kent.edu
2 Dipartimento di Ingegneria, Scienze dell’Informazione e Matematica, Università degli Studi dell’Aquila, L’Aquila, Italy.

pietro.dellacqua@gmail.com
3 Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Como, Italy. marco.donatelli@uninsubria.it

The Alternating Direction Multipliers Method (ADMM) is a very popular algorithm for addressing
the problem of minimizing a convex function subject to some constraints. Such problem is important
from the application point of view, since it occurs in many fields of science and engineering. ADMM
is a good numerical tool, but unfortunately it has the drawback that it can exhibit slow convergence.
Thus, several approaches for accelerating it have been proposed. In this talk we present a general
framework for acceleration of ADMM algorithm. In particular, we describe an algorithm in which it
is possible to insert any acceleration step and still having convergence guarantee, thanks to a guard
condition. Numerical results, in which we consider several acceleration strategies, show that this
framework leads to an improvement with respect to the state of the art.

On the approximate solution of triangular systems for massively parallel machines9 Feb
15:20

Monica Dessole1, Fabio Marcuzzi2

1 University of Padova. monica.dessole@unipd.it
2 University of Padova. marcuzzi@math.unipd.it

Parallel solution of sparse triangular linear systems is indeed a challenging task due to its inherently
sequential nature. Many classical techniques are based on level scheduling rows that are independent
[1], but depending on the sparsity pattern there may be a very large number of levels with a small
amount of work to efficiently use massively-parallel architectures like GPUs. In the present talk we
show other possibilities for the case of a Krylov subspace method coupled with a LU-type precon-
ditioner. In particular, we introduce an hybrid direct/iterative two steps method and we present a
numerical application to a CFD model problem [4] that shows performance gains of this approach over
cuSPARSE direct solver.
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Designing constraint-preconditioned Krylov methods for the solution of
regularized saddle-point systems 9 Feb

09:10
Daniela di Serafino1, Dominique Orban2

1 Department of Mathematics and Physics, University of Campania “Luigi Vanvitelli”, Caserta, Italy.

daniela.diserafino@unicampania.it
2 GERAD and Department of Mathematics and Industrial Engineering, École Polytechnique, Montréal, QC, Canada.

dominique.orban@gmail.com

We are interested in the iterative solution of regularized saddle-point systems where the leading
block of the matrix can be either symmetric or non-symmetric. These systems arise in many areas
of scientific computing, such as interior point and augmented Lagrangian methods for constrained
optimization, and stabilized finite-element discretizations of incompressible flow problems [1, 2].

When the leading block is symmetric and satisfies additional conditions, e.g., accounting for the
local convexity of an associated minimization problem, the system can be solved by using the conjugate
gradient method coupled with a constraint preconditioner, a choice that has proved to be very effective,
especially in optimization applications. In this work, we consider more general leading blocks and
investigate the design of constraint-preconditioned variants of other Krylov methods, by focusing on
the underlying basis-generation processes.

We build upon [3] to provide general guidelines that allow us to specialize any Krylov method
to regularized saddle-point systems. In particular, we obtain constraint-preconditioned variants of
Lanczos and Arnoldi-based methods, including MINRES, SYMMLQ, GMRES(m) and DQGMRES. A
numerical illustration of their behaviour is provided, using systems arising in constrained optimization
and fluid-flow simulation.
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In our talk, we propose an innovative algorithm for the large (dense) linear systems of time–
dependent partial fractional differential equations discretized in time with linear multistep formulas,
both in classical [1] and in boundary value form [2]. We use, in both cases, the short–memory principle
to ensure the decay of the entries of sparse approximations of the discretized operator and its inverse.

Standard Krylov methods with preconditioners based on short–memory principle as well are then
used to solve the underlying sequence of linear systems, while FGMRES method is used for the systems
in boundary value form. The sparse approximate inverse preconditioners for linear multistep formulas
in classical form are implemented on GPU devices by means of the techniques proposed in [3]. Notes
on recent tests for some nonlinear time–fractional problems will be also presented.
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We present the efficient strategy described in [2] for the solution of sequences of linear systems
arising in the numerical solution of a Branched Transport model, extension of the Dynamical Monge-
Kantorovich equations introduced in [1]. The linear systems are characterized by large sparse very
ill conditioned symmetric positive definite (SPD) matrix A. These linear systems are generated by a
combination of Galerkin Finite Element discretization and explicit Euler time stepping yield a linear
system to be solved at each time step. Extreme cases even prevent the convergence of PCG with
standard preconditioners such as an IC (with partial fill-in) factorization of A, which can not always
be computed.

We present several preconditioning strategies that incorporate partial approximated spectral in-
formation of the matrix A. In our approach, we compute a number of approximated eigenvectors for
a given coefficient matrix in the sequence of linear systems to be solved (i.e. the first one). Then,
we used these spectral informations to obtain an efficient preconditioner for the subsequent systems
in the sequence. We present numerical evidence showing the efficiency of the proposed techniques, in
terms of reduction of the condition number of the preconditioned systems, and thus decreasing the
number of PCG iterations and the overall CPU time.
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The tensor train decomposition is a representation technique which allows compact storage and
efficient computations with arbitrary tensors [2]. Basically, a tensor train (TT) decomposition of a
d-dimensional tensor A with size n1×n2×· · ·×nd is a sequence G1, . . . , Gd of 3-tensors (the carriages);
the size of Gi is ri−1 × ni × ri with r0 = rd = 1 (that is, G1 and Gd are ordinary matrices) and

A(i1, i2, . . . , id) =
∑

α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id).

The index αi runs from 1 to ri, for i = 1, . . . , d− 1, and the numbers r1, . . . , rd−1 are the TT-ranks of
A. We will use the notation A = TT(G1, . . . , Gd).

We present a backward error analysis of two algorithms found in [3] which perform computa-
tions with tensors in TT-format. The first one produces an exact or approximate TT-decomposition
G1, . . . , Gd of a tensor A given in functional form, depending on a tolerance ε. If ε = 0 then the
output of the algorithm is an exact TT-decomposition, that is, A = TT(G1, . . . , Gd). If ε > 0 then
TT(G1, . . . , Gd) is an O(ε)-approximation of A which can realize significant savings in memory space.
The computational core of the algorithm is a suitable (approximate) matrix factorization that, in the
original paper, relies on SVD computations. We prove that analogous performances and backward
stability can be obtained by means of QR factorizations.

The second algorithm computes the contraction (multilinear form) of a tensor in TT-format and
vectors v1, . . . , vd,

a =

n1∑
i1=1

· · ·
nd∑
id=1

∑
α1,...,αd−1

G1(i1, α1)G2(α1, i2, α2) · · ·Gd(αd−1, id)v1(i1) · · · vd(id).

By means of known error bounds for inner products in floating point arithmetic [1], we prove backward
stability of the proposed algorithm under very general hypotheses on the evaluation order of the
innermost summations. More precisely, if A = TT(G1, . . . , Gd) and no underflows or overflows are
encountered then the output â computed by the algorithm in floating point arithmetic is the exact
contraction of Â = TT(G1+∆G1, . . . , Gd+∆Gd) and v1, . . . , vd where |∆Gi| ≤ (ni+ri−1)u|Gi|+O(u2)
and u is the machine precision.
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Computing the greatest common divisor of a set of polynomials is a problem which plays an
important role in different fields, such as linear system, control and network theory. In practice,
the polynomials are obtained through measurements and computations, so that their coefficients are
inexact. This poses the problem of computing an approximate common factor. We propose an
improvement and a generalization of the method recently proposed in [1], which restates the problem
as a (structured) distance to singularity of the Sylvester matrix. We generalize the algorithm in order
to work with more than 2 polynomials and to compute an Approximate GCD of degree k ≥ 1; moreover
we show that the algorithm becomes faster by replacing the eigenvalues by the singular values.
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This talk deals with the numerical solution of bisingular Cauchy integral equations of the first
kind, defined on the square S = [−1, 1]× [−1, 1], having the following form

(D +K)f = g

where f is the bivariate unknown function, g is a given right-hand side, D is the dominant operator

Df(t, s) =
1

π2

∮
S

f(x, y)

(x− t)(y − s)

√
1− x
1 + x

√
1− y
1 + y

dx dy,

and K is the perturbation operator

Kf(t, s) =

∫
S
k(x, y, t, s)f(x, y)

√
1− x
1 + x

√
1− y
1 + y

dx dy

with k a given kernel function.
For its solution we propose a numerical method based on a polynomial approximation of the

unknown function f . We examine the stability of the proposed method, discuss the convergence, and
analyze the conditioning of the linear system we solve. Moreover, we illustrate numerical tests showing
the efficiency of the approach.
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Factored sparse approximate inverses (FSAI) play a key-role in the efficient algebraic precondi-
tioning of sparse linear systems of equations. For SPD problems remarkable results are obtained by
building the FSAI non-zero pattern iteratively during its computation [1]. Unfortunately, an equiva-
lent algorithm still is missing in the non-symmetric case. In the present contribution we explore the
possibility of iteratively computing FSAI for non-symmetric matrices by using an incomplete Krylov
subspace bi-orthogonalization procedure. Another adaptive technique relies on the idea of directly
minimizing the two norm of the off-diagonal row(/column) of the preconditioned matrix. Finally, as
reference algorithm, a factorized sparse approximate inverse on static pattern is considered.

The main idea behind these approaches is to build two real sparse triangular factors (W is lower
triangular and Z is upper triangular) such that:

WAZ = D (2)

where A ∈ Rn×n is the original non-symmetric matrix and D is the preconditioned matrix. Factors
W and Z should be sparse, cheap to compute and effective, i.e. D tends to be diagonal.

The three mentioned algorithms are intrinsically parallel as they compute the approximate inverse
row(/column)-wisely, with each row independently computed from the others. In this preliminary
work, we show the effectiveness of the bi-orthogonalization based preconditioner for Krylov subspace
iterative methods, like BiCGstab and GMRES. We compare this approach also with the norm mini-
mization technique and with the computation relying on a static pattern.
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Bogoya, Böttcher, Grudsky, and Maximenko have recently obtained the precise asymptotic ex-
pansion for the eigenvalues of a sequence of Toeplitz matrices {Tn(f)}n, under suitable assumptions
on the associated generating function f [2]. An evident restriction is that f has to be polynomial,
monotone and scalar-valued.

In this talk we focus on the case of f being a s× s matrix-valued trigonometric polynomial, s ≥ 1,
and {Tn(f)}n a sequence of block Toeplitz matrix generated by f , with size N(n, s) = sn, where the
case s = 1 corresponds to that already treated in the literature [6].
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Following the proposal in the scalar-valued case, we devise an extrapolation algorithm [1, 4, 5, 6]
(see also [3]) for computing the eigenvalues in the present setting regarding banded symmetric block
Toeplitz matrices, with a high level of accuracy and with a low computational cost.
We use the asymptotic expansion to study the spectral properties of special block Toeplitz structures
and we show exact formulae for the eigenvalues of the stiffness matrices coming from the Qp Lagrangian
FEM approximation of a second order elliptic differential problem [7]. Numerical results are presented
and critically discussed.

References

[1] F. Ahmad, E. S. Al–Aidarous, D. A. Alrehaili, S.-E. Ekström, I. Furci, C. Garoni, S. Serra-Capizzano, Are
the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? Num.
Alg. (in press) https://doi.org/10.1007/s11075-017-0404-z.
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Extrapolation is known to be one of the most successful ways for accelerating the convergence of
numerical methods [2]. In the words of Birkhoff and Rota, “its usefulness for practical computations
can hardly be overestimated”. In the presence of an asymptotic expansion for the quantity to be
approximated, a “canonical” extrapolation method arises; think, for example, to Romberg’s integration
method, which arises from the Euler–Maclaurin expansion associated with the trapezoidal formula.

In this presentation, we discuss a recently conjectured asymptotic expansion for the eigenvalues
of banded symmetric Toeplitz matrices [5]. We also describe the related extrapolation method, which
allows the fast computation of the spectrum of such matrices [4, 5]. Further applications of this
method include the fast computation of the eigenvalues of both preconditioned banded symmetric
Toeplitz matrices [1, 4] and PDE discretization matrices [3].
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Let r be a rational function. We consider the matrix equation r(X) = A, where A and X are a
given and an unknown square complex matrix, respectively, and r(X) should be understood in the
sense of functions of matrices [1].

After a brief classification of the solutions, we describe an algorithm, based on a recursion on the
Schur normal form of A, to compute all the well-posed solutions of the aforementioned equation. The
algorithm is constructed in a fashion similar to existing algorithms for specific problems, such as the
ones for the equation Xp = A [2], and behaves in a similar, stable way. Moreover, in the case of real
data, it is able to compute the real solutions using only real arithmetic.

As an application, we propose a new algorithm for computing the matrix logarithm, built on the
inverse scaling and squaring method [3], but relying on a different rational approximation.
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The numerical simulation of modern engineering problems can easily incorporate millions or even
billions degrees of freedom. In several applications, these simulations require the solution to sparse
linear systems of equations, and algebraic multigrid (AMG) methods are often standard choices as
iterative solvers or preconditioners [1]. This happens due to their high convergence speed guaranteed
even in large size problems, which is a consequence of the AMG ability of reducing particular error
components across their multilevel hierarchy. Despite carrying the name “algebraic”, most of these
methods still rely on additional information other than the global assembled sparse matrix, as for
instance the knowledge of the operator near kernel. This fact somewhat limits their applicability as
black-box solvers. In this work, we introduce a novel AMG approach featuring the adaptive Factored
Sparse Approximate Inverse (aFSAI) [2] method as a flexible smoother as well as three new approaches
to adaptively compute the prolongation operator. We assess the performance of the proposed AMG
through the solution of a set of model problems along with real-world engineering test cases. More-
over, comparisons are made with the aFSAI and BoomerAMG preconditioners, showing that our new
method proves to be superior to the first strategy and comparable to the second one, if not better as
in the elasticity problems.
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In this talk, we study the relative error propagation in the solution of linear autonomous ordinary
differential equations with respect to perturbations in the initial value. We also consider equations
with a constant forcing term and a nonzero equilibrium. The study is carried out for equations defined
by normal matrices.
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In this work we study how the solutions of certain linear matrix equations behave when the original
coefficients are modified with low-rank perturbations. More precisely, given the solution X0 of the
Sylvester equation AX0 + X0B = C, and 3 low-rank matrices δA, δB and δC, we are interested in
characterizing the update δX that verifies

(A+ δA)(X0 + δX) + (X0 + δX)(B + δB) = C + δC.

Under reasonable assumptions, δX turns out to have a low numerical rank and allows to be efficiently
approximated by means of Krylov subspace techniques. We show how to exploit this property to
design divide and conquer methods for solving large-scale Sylvester equations whose coefficients are
represented in the HODLR and HSS formats. This comprises the case of banded and quasiseparable
coefficients.
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We are interested in the numerical solution of the large-scale Lyapunov equation

AX + XAT = C,

where A,C ∈ Rn×n are both large and banded matrices. We suppose that A is symmetric and
positive definite and C is symmetric. While the case of low-rank C has been successfully addressed in
the literature, the more general banded setting has not received much attention, in spite of its possible
occurrence in applications. In this talk we aim to fill this gap.

It has been recently shown that if A is well conditioned, the entries of the solution matrix X decay
in absolute value as their indexes move away from the sparsity pattern of C. This property can be
used in a memory-saving matrix-oriented Conjugate Gradient method to obtain a banded approximate
solution.

For A not well conditioned, the entries of X do not sufficiently decay to derive a good banded
approximation. Nonetheless, we show that it is possible to split X as X = Zb+Zr, where Zb is banded
and Zr is numerically low rank. We thus propose a novel strategy that efficiently approximates both
Zb and Zr with acceptable memory requirements.

Numerical experiments are reported to illustrate the potential of the discussed methods.
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Scattered data interpolation using Radial Basis Functions (RBFs) involves solving ill-conditioned
Symmetric Positive Definite (SPD) linear systems; refer e.g. to [6] for further details. We will discuss
the properties (conditioning, density) of the interpolation matrices for both global and compactly
supported kernels, depending on the value of the shape parameter for both classical global interpolation
and local methods based on Partition of Unity (PU). The severe ill-conditioning of the interpolation
matrices causes theoretically SPD matrices to be not numerically SPD. We will discuss the benefits
provided by Tikhonov regularization techniques to guarantee the stability of the solution, as well as
preconditioned iterative methods for the solution by collocation of elliptic boundary value problems
[2].

Also efficient numerical linear algebra tools are needed in the computation of rational RBF inter-
polants [4, 5]. Rational RBF interpolation reveals particularly suitable for approximating functions
that display oscillations or steep gradients. The study described in [3] reveals that the method is
robust enough to accurately fit data coming from applications, such as Earth’s topography. Moreover,
when compactly supported RBFs are used, it enables us to increase the sparsity of the kernel matrices
and at the same time to maintain a good accuracy. Furthermore, since a global interpolation method
cannot handle truly large sets of points, an efficient implementation via the PU method is carried out.
The resulting scheme requires the solution of a set of generalized eigenvalue problems, one for each
local subdomain. We will describe an efficient algorithm for solving these local eigenvalue problems
by means of the combination of the power method and the Deflation-Accelerated Conjugate Gradi-
ent (DACG) method [1]. We will present results showing that with this efficient implementation the
proposed method outperforms the classical and rescaled PU schemes.
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In [2], the authors obtain a backward stable algorithm for computing the eigenvalues of a matrix
polynomial P (z) = zd +Ad−1z

d−1 + · · ·+A1z +A0 ∈ C[z]k×k using a fast eigensolver on the classical
Frobenius (column-based) companion matrix. The two main properties that make it possible are:

1. this companion matrix can be factored into the product of k analogous companion matrices of
scalar polynomials (k = 1);

2. this companion matrix is a small-rank modification of an orthogonal matrix.

We show that both these results hold also for a larger class of companion matrices introduced by
Fiedler [1, 3]. The matrices in this class can be obtained as products of elementary matrices of the
form [

0 Ik
Ik A

]
, A ∈ Ck×k, (3)

suitably padded with identities.
To obtain the first result, the main ingredient is extending the flow graph notation for Fiedler

matrices introduced in [4] with the novel idea of ‘breaking up’ a block elementary Fiedler matrix (3)
into the product of several scalar ones (i.e., with the same structure but k = 1). The decompositions
arising from this factorization are easy to visualize graphically.

The second result also stems from factoring Fiedler pencils and rearranging the various terms, and
leads to a more general result that on when a matrix is orthogonal-plus-low-rank.
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Gauss quadrature can be naturally generalized to approximate quasi-definite linear functionals [1],
where the interconnections with formal orthogonal polynomials, Padé approximants, complex Jacobi
matrices and Lanczos algorithm are analogous to those in the positive definite case. The existence
of the n-weight complex Gauss quadrature corresponds to performing successfully the first n steps of
the non-Hermitian Lanczos algorithm. Some further results on the relation between the non-definite
case, the look-ahead Lanczos algorithm and the minimal partial realization will be shown.
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We consider the problem of optimizing finite element models arising from structural analysis of
buildings using some free parameters describing the mechanical characteristics of the underlying ma-
terials. This problem — usually known in engineering as model updating — arises when trying to
match the theoretical characteristic frequencies predicted by the finite element model with the ones
recovered using accelerometers combined with a system identification approach. In particular, one
desires to optimize the eigenvalues at the lowest end of the spectrum of a symmetric definite pencil
K(x)−λM(x), depending on a vector of ` parameters x. A relevant application is understanding the
characteristic of unknown materials, whose properties cannot be analyzed directly because of lack of
samples [3].

We describe the numerical challenges in tackling large scale problems (with typically more than 105

degrees of freedom for 3D models) — where repeated computation of the eigenvalues for many values
of x is often too expensive. For this reason, we rely on a trust region optimizer to efficiently perform
the optimization task. To this end, we need a local model of the objective function that approximates
it cheaply. The model can be obtained by a slightly modified inverse Lanczos projection, based on
the one used to approximate the smallest eigenvalues. The idea is to re-use the projection space at
one point also in a small neighborhood (similarly to Krylov recycling methods [2]), and update the
projection computing a first order local approximation of K(x)−1, and of the inner product induced
by M(x). This approximation can be interpreted as an instance of parametric model order reduction
[1].

We show that this choice provides a first-order accurate local model, and that this can be used
to prove the convergence of the scheme. In particular, the obtained method allows to optimize the
frequency response of the buildings to match the one experimentally recovered at the cost of very few
evaluations of the objective function. Several practical examples are shown, that further confirm the
applicability and efficiency of the method.
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Isogeometric analysis (IGA) is a method to numerically solve partial differential equations (PDEs).
It is based on the idea of using B-splines (and their generalizations) both for the parametrization of
the domain, as it is typically done by computer aided design software, and for the representation of
the unknown solution. One interesting feature of IGA is the possibility of using high-degree high-
regularity splines (the so-called k−refinement) as they deliver higher accuracy per degree-of-freedom
in comparison to C0 finite elements [1].

The computational cost of a solver for a linear PDE problem is the sum of the cost of the formation
of the system matrix and the cost of the solution of the linear system. Unfortunately, it is known
if these two steps are performed using the approaches that are standard in the context of C0 finite
elements, their computational cost increases dramatically with the spline degree. This makes the
k-refinement unfeasible for practical problem, where quadratic or cubic splines are typically preferred.

Several improvements have been achieved recently. In [2], the authors discuss a preconditioner for
scalar elliptic problems, based on an old idea, which is robust with respect to both the mesh size h
and the spline degree p. Moreover, in [3] a novel method is developed that allows the formation of
the stiffness matrix with almost optimal complexity. In the recent work [4], these two approaches are
combined with a third ingredient: a matrix-free implementation.

In this talk we discuss the overall strategy, which is very beneficial in terms of both memory and
computational cost. In particular, we show that memory required is practically independent of p
and that the cost depends on p only mildly. The numerical experiments show that, with the new
implementation, the k−refinement becomes appealing from a computational point of view. Indeed,
increasing the degree and continuity leads to orders of magnitude higher computational efficiency.
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The nonlinear Perron-Frobenius theory (see [1] e.g.) addresses existence, uniqueness and maxi-
mality of positive eigenpairs for order-preserving homogeneous functions. This is an important and
relatively recent generalization of the famous results for nonnegative matrices. In this talk I present a
further generalization of this theory to “multi-dimensional” order-preserving and homogeneous maps,
which we briefly call multi-homogeneous maps [2]. The results presented are then used to discuss a
new eigenvector-based centrality measure for nodes and layers of a multi-layer network [3].
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In this talk we survey recent essential developments [2, 3] of the ideas of low-rank matrix approx-
imation proposed in [1]. The practical importance of the very approach consists in its paradigma of
using only small part of matrix entries that allows one to construct a sufficiently accurate appoxima-
tion in a fast way for ”big data” matrices that cannot be placed in any available computer memory and
are accessed implicitly through calls to a procedure producing any individual entry in demand. During
the two recent decades the approach has become a powerful numerical instrument in a tremendous
variety of applications. However, its theoretical grounds still invite the researchers to provide them a
better look. We discuss the notable new findings and as well some perspectives and open questions.
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Gil Strang proposed the use of circulant matrices (and the FFT) for preconditioning symmetric
Toeplitz (constant-diagonal) matrix systems in 1986 and there is now a well-developed theory which
guarantees rapid convergence of the conjugate gradient method for such preconditioned positive defi-
nite symmetric systems developed by Raymond Chan, Michael Ng, Fabio Di Benedetto, Stefano Serra
Capizzano and Eugene Tyrtyshnikov amongst others.

In this talk we describe our recent approach which provides a preconditioned MINRES method
with the same guarantees for real nonsymmetric Toeplitz systems regardless of the non-normality. We
demonstrate the utility of these ideas in the context of time-dependent PDEs.
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We present MatFun, a Julia package for computing dense and sparse matrix functions fully auto-
matically (no user input required, other than the code to compute the function f and the matrix A
themselves). This is achieved by combining specifically chosen algorithms and some peculiar feature
of Julia. For dense matrices, the Schur-Parlett algorithm [1] has been implemented, leveraging Ju-
lia’s automatic differentiation capabilities. The algorithm has also been improved from a performance
standpoint, making the Parlett recurrence cache-oblivious and enabling the whole procedure to work
mostly in real arithmetic, for real inputs. For sparse matrices, we implemented a Rational Krylov
method [2], alongside the AAA Rational Approximation [3]. Given a function’s samples, AAA is often
able to accurately identify its poles, which can then be used by the Rational Krylov method itself
for the approximation of f(A)b. The accuracy and performance of the algorithms are evaluated, in
comparison with already existing specialized methods.
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[2] Stefan Güttel, Rational Krylov approximation of matrix functions: Numerical methods and optimal pole
selection. GAMM-Mitteilungen, 36 (2013) 8–31.
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