COMPLEX ANALYSIS - SELECTED PROBLEMS

PIETRO POLESELLO

Exercises from the final examinations Master degree in Mathematics (2013-2019)

Problem 1. Let log denote the principal branch of the logarithm and $[z_1, z_2]$ the oriented line segment joining z_1 with z_2 .

- (a) Prove that $|\log(1-z)| \le \frac{\pi}{2} \log(1-\cos\epsilon)$ for any $z \in [e^{-i\epsilon}, e^{i\epsilon}]$ with $0 < \epsilon < \frac{\pi}{2}$.
- (a) Prove that |log(1 z)| ≤ 2 log(1 cosc) for any z ∈ [e , e -] where 0 < e < 2. (Hint: note that |1 z| < 1.)
 (b) Show that ∫_{[e^{-iϵ},e^{iϵ]}} | log(1-z)/z dz → 0 as ϵ → 0+.
 (c) Prove that ∫_{γ_ϵ} log(1-z)/z dz → 0 as ϵ → 0+, for γ_ϵ the arc of the unit circle joining e^{iϵ} with e^{-iϵ}. (Hint: use the Cauchy formula.)
- (d) Show that $\int_0^{2\pi} \log |1 e^{i\theta}| d\theta = 0.$ (e) Set $g_a(z) = \begin{cases} \frac{a-z}{1-\bar{a}z} & \text{if } |a| < 1\\ \frac{a-z}{a} & \text{if } |a| = 1 \end{cases}$. Prove that $\int_0^{2\pi} \log |g_a(e^{i\theta})| d\theta = 0.$
- (f) Set $\mathbb{E} = \{|z| < 1\}$ and let $h \in \mathcal{O}(\overline{\mathbb{E}})$ be never vanishing. Show that $\int_0^{2\pi} \log |h(e^{i\theta})| d\theta = 0$ $2\pi \log |h(0)|$.
- (g) Let $f \in \mathcal{O}(\overline{\mathbb{E}})$ satisfying $f(0) \neq 0$. Prove that f has a finite number of zeros in $\overline{\mathbb{E}}$. Let a_1, \ldots, a_m those zeros in \mathbb{E} , counting multiplicities. Prove that

$$\int_0^{2\pi} \log |f(e^{i\theta})| \, d\theta = 2\pi \sum_{i=1}^m \log \left| \frac{f(0)}{a_i} \right|.$$

(Hint: use the g_a 's defined in (e) and (f).)

Solution. Recall that $\log z = \log |z| + i \arg z$, where $\arg z \in (-\pi, \pi)$ denotes the principal argument.

(a) For $z \in [e^{-i\epsilon}, e^{i\epsilon}]$, with $0 < \epsilon < \frac{\pi}{2}$, we have 0 < |1 - z| < 1, hence $|\arg(1 - z)| < \frac{\pi}{2}$ and $\log |1-z| < 0$, and we get

 $\left|\log(1-z)\right| \le \left|\operatorname{Re}\log(1-z)\right| + \left|\operatorname{Im}\log(1-z)\right| = \left|\log|1-z|\right| + \left|\arg(1-z)\right| < -\log|1-z| + \frac{\pi}{2}.$

The result then follows from $|1-z| \ge \operatorname{Re}(1-z) = 1 - \cos \epsilon$ for $z \in [e^{-i\epsilon}, e^{i\epsilon}]$.

(b) Since $|z| \ge \text{Re}z = \cos \epsilon$ for any $z \in [e^{-i\epsilon}, e^{i\epsilon}]$, by (a) we get

$$\left|\frac{\log(1-z)}{z}\right| \le \frac{\frac{\pi}{2} - \log(1-\cos\epsilon)}{\cos\epsilon},$$

hence by the standard estimate

$$\left| \int_{[e^{-i\epsilon}, e^{i\epsilon}]} \frac{\log(1-z)}{z} \, dz \right| \le 2\sin\epsilon \frac{\frac{\pi}{2} - \log(1-\cos\epsilon)}{\cos\epsilon} \to 0 \quad \text{ as } \epsilon \to 0 + .$$

Please communicate possible errors to pietro@math.unipd.it.

(c) Since $\log(1-z)$ is holomorphic in $\mathbb{C} \setminus \mathbb{R}_{\geq 1}$, by the Cauchy formula we have

$$0 = 2\pi i \log 1 = \int_{\partial K} \frac{\log(1-z)}{z} \, dz$$

where ∂K is the boundary of the compact delimited by γ_{ϵ} and by the line segment $[e^{-i\epsilon}, e^{i\epsilon}]$, oriented counterclockwise. By taking $\lim_{\epsilon \to 0^+}$, we get the result by (b).

(d) By (c), we get

$$0 = \lim_{\epsilon \to 0+} \operatorname{Im} \int_{\gamma_{\epsilon}} \frac{\log(1-z)}{z} \, dz = \lim_{\epsilon \to 0+} \operatorname{Im} \int_{\epsilon}^{2\pi-\epsilon} \frac{\log(1-e^{i\theta})}{e^{i\theta}} \, de^{i\theta} = \int_{0}^{2\pi} \log|1-e^{i\theta}| \, d\theta.$$

(e) Let |a| = 1. Then $a = e^{i\alpha}$ for $\alpha \in [0, 2\pi]$ and by (d) we get

$$\int_0^{2\pi} \log |g_a(e^{i\theta})| \, d\theta = \int_0^{2\pi} \log \left|1 - e^{i(\theta - \alpha)}\right| \, d\theta = 0.$$

If |a| < 1, the result follows from $|g_a(e^{i\theta})| = \left|\frac{a-e^{i\theta}}{1-\bar{a}e^{i\theta}}\right| = \left|\frac{a-e^{i\theta}}{e^{-i\theta}-\bar{a}}\right| = 1.$

(f) Since \mathbb{E} is simply connected and h is never vanishing on \mathbb{E} , there exists a logarithm l of h on a neighborhood of \mathbb{E} . In particular, Re $l(z) = \log |h(z)|$. The result then follows by taking the real part of the Cauchy formula $\frac{1}{2\pi i} \int_{\partial \mathbb{E}} \frac{l(z)}{z} dz = l(0)$.

(g) Since f is not identically zero, its set of zeros is locally finite, hence finite on the compact $\overline{\mathbb{E}}$. Let b_1, \ldots, b_n denotes the zeros in $\partial \mathbb{E}$, counting multiplicities. Then $fg_{a_1}^{-1} \ldots g_{a_m}^{-1}g_{b_1}^{-1} \ldots g_{b_n}^{-1}$ extends to a never vanishing function h on $\overline{\mathbb{E}}$. By (f), thanks to $g_{b_1}(0) = \cdots = g_{b_n}(0) = 1$, we get

$$\int_{0}^{2\pi} \log |h(e^{i\theta})| \, d\theta = 2\pi \log |h(0)| = \sum_{i=1}^{m} \log \left| \frac{f(0)}{a_i} \right|.$$

Problem 2. Let g be an entire function.

(a) Assume that the equation

$$2g(z) = g\left(\frac{z}{2}\right) + g\left(\frac{z+1}{2}\right)$$

holds for all $z \in \mathbb{C}$. Prove that g is constant. (Hint: apply the Maximum Modulus principle on $\overline{B_r(0)} = \{|z| \leq r\}$ for r > 1)

(b) Assume that g has no zeros and

(0.1)
$$cg(z) = g\left(\frac{z}{2}\right)g\left(\frac{z+1}{2}\right)$$

holds for all $z \in \mathbb{C}$ and some $c \in \mathbb{C}^{\times}$. Prove that $g(z) = ce^{-\frac{b}{2}}e^{bz}$ for some $b \in \mathbb{C}$. (Hint: take $\partial \log g$)

(c) Assume that g is odd, it has zeros exactly at the points $z \in \mathbb{Z}$, all with multiplicity 1, and

$$cg(2z) = g(z)g\left(z + \frac{1}{2}\right)$$

holds for all $z \in \mathbb{C}$ and some $c \in \mathbb{C}^{\times}$. Prove that $g(z) = 2c\sin(\pi z)$. (Hint: consider $\frac{g(z)}{\sin(\pi z)}$ and use the duplication formula for $\sin(\pi z)$)

Solution. 23 (a) Set $M = ||g||_{\overline{B_r(0)}}$ for some r > 1. By the Maximum Modulus principle (see [7, Lecture 6]), g is either constant on $\overline{B_r(0)}$ (hence on \mathbb{C} by the Identity principle) or there exists $z_0 \in \partial B_r(0)$ satisfying $|g(z_0)| = M$ and |g(z)| < M for any $z \in B_r(0)$. In the latter case, since both $\frac{z_0}{2}$ and $\frac{z_0+1}{2}$ lie in $B_r(0)$, we get

$$2M = \left|2g(z_0)\right| \le \left|g\left(\frac{z_0}{2}\right)\right| + \left|g\left(\frac{z_0+1}{2}\right)\right| < 2M$$

Contradiction.

(b) Since g never vanishes, we may consider the entire function $h = \partial \log g$. By taking the logarithmic derivative of the functional equation in (b), we get that h satisfies the functional equation in (a), hence it is constant. It follows that g' = bg for some $b \in \mathbb{C}$, hence $g(z) = ae^{bz}$ for some $a \in \mathbb{C}$. By using again the functional equation in (b), we get $c = ae^{\frac{b}{2}}$.

(c) Since both g(z) and $\sin(\pi z)$ have zeros exactly at the points $z \in \mathbb{Z}$, all with multiplicity 1, the meromorphic function $h(z) = \frac{g(z)}{\sin(\pi z)}$ extends to a never vanishing entire function, still denoted by h. From the duplication formula $\sin(2\pi z) = 2\sin(\pi z)\cos(\pi z) = 2\sin(\pi z)\cos(\pi z) \sin(\pi z)\sin(\pi (z + \frac{1}{2}))$ follows that h satisfies the functional equation in (b), with c replaced by 2c, hence $h(z) = 2ce^{-\frac{b}{2}}e^{bz}$ for some $b \in \mathbb{C}$. As g(z) and $\sin(\pi z)$ are odd, h is even hence b = 0.

Problem 3. Let f be an holomorphic function on the unit disk $\mathbb{E} = \{|z| < 1\}$, with bounded derivative and satisfying f(0) = 0, f'(0) = 1.

(a) Show that there exists $r \in [0, 1[$ such that

$$|f'(z) - 1| \le \frac{|z|}{r}$$
 for any $z \in \mathbb{E}$.

(Hint: use Schwarz' lemma.)

(b) Show that

$$|f(z) - z| \le \frac{|z|^2}{2r}$$
 for any $z \in \mathbb{E}$.

(Hint: consider $\int_{\gamma} (f'(z) - 1) dz$ with γ a line segment.)

(c) Deduce that, for any |z| = r and $|w| < \frac{r}{2}$, one has

$$|f(z) - z| < |z - w|.$$

- (d) Show that $B_{\frac{r}{2}}(0) \subset f(B_r(0))$ (recall that $B_r(0) = \{|z| < r\}$). (Hint: apply the argument principle to $B_r(0) \ni z \mapsto \frac{f(z)-w}{z-w}$ for $w \in B_{\frac{r}{2}}(0)$.)
- (e) Conclude that f maps conformally $B_r(0)$ onto an open neighbourhood of $B_{\frac{r}{2}}(0)$.

Solution. (a) Let us fix a constant C > 0 such that |f'(z)| < C for any $z \in \mathbb{E}$.

As |f'(z) - 1| < C + 1, the function

$$g(z) = \frac{f'(z) - 1}{C+1}$$

satisfies g(0) = 0 and |g(z)| < 1 for any $z \in \mathbb{E}$. We may thus apply Schwarz' lemma and get $|g(z)| \leq |z|$ for any $z \in \mathbb{E}$. One then sets $r = \frac{1}{C+1} \in [0, 1[$.

We may also proceed as follows: as $\lim_{z\to 0} \frac{f'(z)-1}{z} = f''(0)$, the function $\frac{f'(z)-1}{z}$ extends to an holomorphic function g(z) on \mathbb{E} . One has

$$|g(z)| = \frac{|f'(z) - 1|}{|z|} < \frac{C+1}{\rho}$$
 for any $|z| = \rho \in]0, 1[.$

Hence, by the Maximum Modulus theorem, $|g(z)| < \frac{C+1}{\rho}$ for any $|z| \le \rho$ and, by letting $\rho \to 1-$, one gets $|g(z)| \le C+1$ for any $z \in \mathbb{E}$. Again, one sets $r = \frac{1}{C+1}$.

(b) For $z \in \mathbb{E}$ consider the path $\gamma(t) = tz$ with $t \in [0, 1]$. Then

$$|f(z) - z| = \left| \int_{\gamma} (f'(z) - 1) \, dz \right| \le |z| \int_{0}^{1} |f'(tz) - 1| \, dt \le |z| \int_{0}^{1} \frac{|tz|}{r} \, dt = \frac{|z|^{2}}{2r},$$

where the last inequality follows from (a).

(c) From (b), it follows that

$$|f(z) - z| \le \frac{r^2}{2r} = \frac{r}{2}$$
 for any $|z| = r$.

For $|w| < \frac{r}{2}$, we thus have $|z - w| > \frac{r}{2} \ge |f(z) - z|$ for any |z| = r.

(d) Fix $w \in B_{\frac{r}{2}}(0)$ and consider the function

$$h(z) = \frac{f(z) - w}{z - w}.$$

From (c) it follows that |h(z) - 1| < 1 for any |z| = r, hence the function $\log h(z)$ is well defined and holomorphic on a neighbourhood of the circle $\{|z| = r\}$. Therefore

$$\int_{|z|=r} \partial \log h(z) \, dz = 0$$

so that, by the argument principle, h(z) has the same number of zeros and poles on $B_r(0)$, i.e. the function f(z) - w has the same number of zeros on $B_r(0)$ of the function z - w. It follows that for any $w \in B_{\frac{r}{2}}(0)$ there exists (only one) $z \in B_r(0)$ such that f(z) = w.

(e) As f is non-constant, from (d) and by the open mapping theorem it follows that f maps $B_r(0)$ onto an open neighbourhood of $B_{\frac{r}{2}}(0)$. It remains to prove that f is also injective on $B_r(0)$.

We may proceed as in (b): given $z_0, z_1 \in B_r(0)$, let $\gamma(t) = (1-t)z_0 + tz_1$ with $t \in [0, 1]$ be the line segment joining them. Then

$$\left| (f(z_1) - z_1) - (f(z_0) - z_0) \right| = \left| \int_{\gamma} (f'(z) - 1) \, dz \right| \le |z_1 - z_0| \int_0^1 \frac{|\gamma(t)|}{r} \, dt$$

As $\gamma(t) \in B_r(0)$ for any t, the last integral is < 1. Then $f(z_1) = f(z_0)$ implies $|z_1 - z_0| = 0$, i.e. $z_1 = z_0$.

Note that, from (a) we get immediately that $f'(z) \neq 0$ for any $z \in B_r(0)$, hence f is locally injective on $B_r(0)$. However, this does not prove that f is injective on $B_r(0)$. \Box

Problem 4. Let \mathbb{E} denote the unit disk $\{|z| < 1\}$. For $z_1, z_2 \in \mathbb{E}$, set

$$d(z_1, z_2) = \frac{|z_1 - z_2|}{|1 - \bar{z}_2 z_1|}.$$

- (a) Show that d is a metric on \mathbb{E} .
- (b) Let f be a bounded holomorphic function on \mathbb{E} . Show that, if $||f||_{\mathbb{E}} \leq 1$, then

(0.2)
$$d(f(z_1), f(z_2)) \le d(z_1, z_2)$$
 for any $z_1, z_2 \in \mathbb{E}$.

(Hint: use the Schwarz lemma for a suitable function.)

- (c) Prove that, in the above situation, f is either a contraction w.r.t. d, i.e. strict inequality holds in (0.2) for $z_1 \neq z_2$, or an isometry w.r.t. d, i.e. equality holds in (0.2).
- (d) Show that, in the above situation, for any $z \in \mathbb{E}$

$$|f'(z)| \le \frac{1 - |f(z)|^2}{1 - |z|^2}.$$

(e) For $z_1, z_2 \in \mathbb{E}$, characterise the bounded functions $f \in \mathcal{O}(\mathbb{E})$ with $||f||_{\mathbb{E}} \leq 1$ and $f(z_1) = z_2$, which maximize $|f'(z_1)|$.

Solution. (a) By definition, for any $z_1, z_2 \in \mathbb{E}$ we have $d(z_1, z_2) \ge 0$, $d(z_1, z_2) = 0$ iff $z_1 = z_2$, and

$$d(z_2, z_1) = \frac{|z_2 - z_1|}{|\overline{1 - \overline{z}_1 z_2}|} = d(z_1, z_2).$$

As usual, set $g_a(z) = \frac{z-a}{\bar{a}z-1}$ for $a \in \mathbb{E}$. Then

$$d(z_1, z_2) = |g_{z_1}(z_2)| = d(0, g_{z_1}(z_2)).$$

Hence it is enough to prove that $d(z_1, z_2) \leq d(z_1, 0) + d(0, z_2)$, that is,

$$|g_{z_1}(z_2)| \le |z_1| + |z_2|.$$

This follows from (see [7, Lecture 6] for the first equality)

$$|g_{z_1}(z_2)|^2 = 1 - \frac{(1 - |z_1|^2)(1 - |z_2|^2)}{|1 - \bar{z}_1 z_2|^2} \le 1 - \frac{(1 - |z_1|^2)(1 - |z_2|^2)}{(1 + |z_1||z_2|)^2} = \frac{(|z_1| + |z_2|)^2}{(1 + |z_1||z_2|)^2} \le (|z_1| + |z_2|)^2$$

(b) Let f be a bounded holomorphic function on \mathbb{E} with $||f||_{\mathbb{E}} \leq 1$. If $|f(z_0)| = 1$ for some $z_0 \in \mathbb{E}$, then z_0 is a maximum for |f|. By the Maximum Modulus theorem, f is constant and the inequality is trivially satisfied.

Suppose that |f(z)| < 1 for any $z \in \mathbb{E}$. We have to prove that

$$|g_{f(z_1)} \circ f(z_2)| \le |g_{z_1}(z_2)|$$
 for any $z_1, z_2 \in \mathbb{E}$.

Set $F = g_{f(z_1)} \circ f \circ g_{z_1}$. Then F defines an holomorphic map $\mathbb{E} \to \mathbb{E}$ satisfying F(0) = 0. By the Schwarz lemma, $|F(z)| \leq |z|$ for any $z \in \mathbb{E}$. It follows that

$$|g_{f(z_1)} \circ f(z_2)| = |g_{f(z_1)} \circ f \circ g_{z_1} \circ g_{z_1}(z_2)| = |F(g_{z_1}(z_2))| \le |g_{z_1}(z_2)|.$$

(c) If f is constant, then f is trivially a contraction w.r.t. d.

Suppose that |f(z)| < 1 for any $z \in \mathbb{E}$. If the equality holds in (0.2) for some $z_1, z_2 \in \mathbb{E}$, then $|F(z_0)| = |z_0|$ for $z_0 = g_{z_1}(z_2) \in E$. Again by the Schwarz lemma, F is a rotation, hence |F(z)| = |z| for all $z \in \mathbb{E}$ and it follows that f is an isometry w.r.t. d. Otherwise f is a contraction w.r.t. d.

(d) If f is constant, then the inequality is trivially satisfied (equality if |f(z)| = 1 for any $z \in \mathbb{E}$).

Suppose that |f(z)| < 1 for any $z \in \mathbb{E}$. Again by the Schwarz lemma, $|F'(0)| \leq 1$. Since $|g'_a(0)| = 1 - |a|^2$ and $|g'_a(a)| = \frac{1}{1 - |a|^2}$, we get

$$|F'(0)| = |g'_{f(z_1)}(f(z_1))f'(z_1)g'_{z_1}(0)| = \frac{1}{1 - |f(z_1)|^2}|f'(z_1)|(1 - |z_1|^2)$$

for any $z_1 \in \mathbb{E}$ and the result follows.

(e) By (d), for any $z_1, z_2 \in \mathbb{E}$ and any bounded function $f \in \mathcal{O}(\mathbb{E})$ with $||f||_{\mathbb{E}} \leq 1$ and $f(z_1) = z_2$, we have $|f'(z_1)| \leq \frac{1-|z_2|^2}{1-|z_1|^2}$. Since $|f(z_1)| = |z_2| < 1$, again by the Schwarz lemma, the equality holds for some $z_1, z_2 \in \mathbb{E}$ iff F is a rotation. It follows that f(z) is an automorphism of \mathbb{E} interchanging z_1 with z_2 . \square

Problem 5. Let $f \in \mathcal{O}(\mathbb{E})$ satisfies f(0) = 1, where \mathbb{E} denotes the unit disk $\{|z| < 1\}$.

- (a) Show that, if f extends analytically to a neighbourhood of \mathbb{E} in such a way that |f(z)| > 1 for |z| = 1, then f has a zero in \mathbb{E} .
- (b) Assume that $Ref \ge 0$ in \mathbb{E} . Show that Ref never vanishes in \mathbb{E} . (Hint: consider $h(z) = e^{-f(z)}.$
- (c) Set $g(z) = \frac{f(z)-1}{f(z)+1}$. In the situation of (b), show that $|g(z)| \le |z|$ for any $z \in \mathbb{E}$.
- (d) In the situation of (b), prove that $\frac{1-|z|}{1+|z|} \leq |f(z)| \leq \frac{1+|z|}{1-|z|}$ for any $z \in \mathbb{E}$.
- (e) In the situation of (b), prove that there exists $z_0 \in \mathbb{E} \setminus \{0\}$ making one of the two inequalities in (d) an equality if and only if $f(z) = \frac{1+\lambda z}{1-\lambda z}$ for $|\lambda| = 1$.

Solution. (a) Assume that f never vanishes in \mathbb{E} . Then, by hypothesis, f is holomorphic and never vanishes in a neighbourhood U of \mathbb{E} . It follows that $g = \frac{1}{f}$ is holomorphic in U and satisfies $|g(z)| < ||g||_{\partial \mathbb{E}} < 1 = g(0)$ for any $z \in \mathbb{E}$ by the Maximum Modulus theorem. Contradiction.

(b) By hypothesis, the function $h(z) = e^{-f(z)}$ is holomorphic in \mathbb{E} and satisfies $h(0) = \frac{1}{e}$ and $|h(z)| = e^{-\operatorname{Re} f(z)} \leq 1$ for any $z \in \mathbb{E}$. Assume that $\operatorname{Re} f(z_0) = 0$ for $z_0 \in \mathbb{E}$. Then |h(z)| attains its maximum in z_0 , hence it has constant value 1 by the Maximum Modulus theorem. Contradiction.

(c) First note that $t(z) = \frac{z-1}{z+1}$ defines a conformal map $\{\operatorname{Re} z > 0\} \to \mathbb{E}$. This follows by a direct computation, or by noticing (see [7, Lecture ?]) that t may be decomposed into

$$\{\operatorname{Re} z > 0\} \xrightarrow{a} \{\operatorname{Re} z > 1\} \xrightarrow{b} \{|z - \frac{1}{2}| < \frac{1}{2}\} \xrightarrow{c} \mathbb{E}$$

where $b(z) = \frac{1}{z}$, a(z) = z + 1 and c(z) = 1 - 2z are surjective affine transformations, hence conformal maps; equivalently, $t = h \circ d$ where d(z) = iz and $h(z) = \frac{z-i}{z+i}$ is the Cayley map.

By (b), f defines a map $\mathbb{E} \to \{ \operatorname{Re} z > 0 \}$, hence $g = t \circ f$ defines a map $\mathbb{E} \to \mathbb{E}$ such that g(0) = 0. By the Schwarz's lemma, $|g(z)| \leq |z|$ for any $z \in \mathbb{E}$.

(d) By triangular inequality and (c), for any $z \in \mathbb{E}$

$$\left|\frac{|f(z)| - 1}{|f(z)| + 1}\right| = \frac{||f(z)| - 1|}{|f(z)| + 1} \le \left|\frac{f(z) - 1}{f(z) + 1}\right| \le |z|$$

that is,

$$\frac{1-|z|}{1+|z|} \le |f(z)| \le \frac{1+|z|}{1-|z|}.$$

(e) By (d), there exists $z_0 \in \mathbb{E} \setminus \{0\}$ making one of the two inequalities in (d) an equality if and only if $|g(z_0)| = |z_0|$. Again by the Schwarz's lemma, this happens if and only if there exists $|\lambda| = 1$ such that $g(z) = \lambda z$, that is, $f(z) = \frac{1+\lambda z}{1-\lambda z}$.

Problem 6. Let $D \subset \mathbb{C}$ be an unbounded domain (i.e. non-empty, open and connected) and $f \in \mathcal{O}(D)$ be continuous on \overline{D} and bounded on ∂D .

- (a) Assume $\lim_{z\to\infty,z\in\overline{D}} f(z) = 0$. Prove that the set $K_c = \{z\in\overline{D}; |f(z)| \ge c\}$ is compact for any c > 0.
- (b) In the situation of (a), prove that $K_c = \emptyset$ for any $c > ||f||_{\partial D}$. (Hint: use the Maximum Modulus theorem.) Deduce that $||f||_{\overline{D}} = ||f||_{\partial D}$ and $|f(z)| < ||f||_{\partial D}$ for any $z \in D$ if f is non-constant.
- (c) Assume that $|f(z)| \leq \log(a + |z|)$ for any $z \in D$ and some a > 0, and set $h(z) = \frac{f(z) f(z_0)}{z z_0}$ for some $z_0 \in D$. Prove that h extends to an holomorphic function on D which is continuos on \overline{D} , bounded on ∂D and satisfies $|f^n(z)h(z)| \leq ||f||_{\partial D}^n ||h||_{\partial D}$ for any $z \in \overline{D}$ and any $n \geq 0$.
- (d) In the situation of (c), prove that $||f||_{\overline{D}} = ||f||_{\partial D}$ and $|f(z)| < ||f||_{\partial D}$ for any $z \in D$ if f is non-constant.

Solution. (a) Fix c > 0. As f is continuous in \overline{D} , a closed subset of \mathbb{C} , the subset $K_c = \{z \in \overline{D}; |f(z)| \ge c\} = f^{-1}\{[c, +\infty[\} \text{ is closed in } \overline{D}, \text{ hence in } \mathbb{C}.$

As $\lim_{z\to\infty,z\in\overline{D}} f(z) = 0$, there exists R > 0 such that |f(z)| < c for any $z \in \overline{D} \setminus \overline{B}_R(0)$, therefor $K_c \subset B_R(0)$, *i.e.* it is bounded. It follows that K_c is compact in \mathbb{C} , hence in \overline{D} .

(b) Fix $c > ||f||_{\partial D}$ and assume $K_c \neq \emptyset$. As |f| is continuous in the compact subset K_c , by Weierstrass' theorem there exists $z_0 \in K_c$ such that

$$|f(z_0)| \ge |f(z)| \ge c > ||f||_{\partial D} \quad \text{for any } z \in K_c \subset \overline{D},$$

hence $z_0 \notin \partial D$, *i.e.* $z_0 \in D$. Moreover, $|f(z_0)| \ge c > |f(z)|$ for any $z \in D \setminus K_c$, therefor z_0 is a (global) maximum point for |f| in D. By the Maximum Modulus theorem, f needs to be constant in D, hence in \overline{D} . Contradiction, as $|f(z_0)| > ||f||_{\partial D}$.

As $K_c = \emptyset$ for any $c > ||f||_{\partial D}$, we get $|f(z)| \le \inf\{c > ||f||_{\partial D}\} = ||f||_{\partial D}$ for any $z \in \overline{D}$, hence $||f||_{\overline{D}} \le ||f||_{\partial D} \le ||f||_{\overline{D}}$, *i.e.* $||f||_{\overline{D}} = ||f||_{\partial D}$. If f is non-constant, then $|f(z)| < ||f||_{\partial D}$ for any $z \in D$, otherwise, if $|f(z_0)| = ||f||_{\partial D}$ for $z_0 \in D$, then z_0 is a (global) maximum point for |f| in D and f needs to be constant in D.

(c) Clearly $h(z) = \frac{f(z)-f(z_0)}{z-z_0}$ extends to an holomorphic function on D, which is continuous on \overline{D} , by setting $h(z_0) = f'(z_0)$. Moreover, for any $z \in \partial D$ we have

$$|h(z)| = \frac{|f(z) - f(z_0)|}{|z - z_0|} \le \frac{|f(z)| + |f(z_0)|}{|z - z_0|} \le \frac{||f||_{\partial D} + |f(z_0)|}{\operatorname{dist}(z_0, D)},$$

where $dist(z_0, D) = \min_{z \in \partial D} |z - z_0| > 0$, hence h(z) is bounded on ∂D .

Let's prove that $\lim_{z\to\infty,z\in\overline{D}} f^n(z)h(z) = 0$ for any $n \ge 0$. It will follows from (b) that $|f^n(z)h(z)| \le ||f^nh||_{\partial D} \le ||f||^n_{\partial D} ||h||_{\partial D}$ for any $z\in\overline{D}$ and any $n\ge 0$.

For $|z| >> |z_0|$, we have

$$\begin{split} |f^{n}(z)h(z)| &\leq |f(z)|^{n} \frac{|f(z)| + |f(z_{0})|}{|z| - |z_{0}|} \\ &\leq \begin{cases} \|f\|_{\partial D}^{n} \frac{\|f\|_{\partial D} + |f(z_{0})|}{|z| - |z_{0}|} & \text{if } z \in \partial D \\ |\log(a + |z|)|^{n} \frac{|\log(a + |z|)| + |\log(a + |z_{0}|)|}{|z| - |z_{0}|} \leq 2 \frac{\log(a + |z|)|^{n+1}}{|z| - |z_{0}|} & \text{if } z \in D, \end{cases} \end{split}$$

where both terms in the right-hand side tend to 0 as $z \to \infty$.

(d) If f is constant, then $||f||_{\overline{D}} = ||f||_{\partial D}$ trivially. If f is non-constant, then h(z) is non-identically zero and for any $z \in \overline{D}$ and any $n \ge 0$, we have $|f(z)||h(z)|^{\frac{1}{n}} \le ||f||_{\partial D} ||h||^{\frac{1}{n}}_{\partial D}$. It follows that

$$|f(z)| \le \inf\left\{\left(\frac{\|h\|_{\partial D}}{|h(z)|}\right)^{\frac{1}{n}} \|f\|_{\partial D}\right\} = \|f\|_{\partial D} \quad \text{for any } z \in \overline{D} \setminus \{z; h(z) = 0\},$$

hence $|f(z)| \leq ||f||_{\partial D}$ for any $z \in \overline{D}$, as $\overline{D} \setminus \{z; h(z) = 0\}$ is dense in \overline{D} . As before, we get $||f||_{\overline{D}} = ||f||_{\partial D}$ and $|f(z)| < ||f||_{\partial D}$ for any $z \in D$.

Problem 7. Let $D \subset \mathbb{C}$ be a domain (i.e. non-empty, open and connected) and \mathbb{E} the unit disk. Suppose that there exists a non-constant bounded holomorphic function on D.

- (a) Show that for any given $z_0 \in D$, there exists $g: D \to \mathbb{E}$ holomorphic such that $g(z_0) = 0 \neq g'(z_0)$. (Hint: consider $\frac{h(z) h(z_0)}{(z z_0)^n}$ for suitable h(z) and n.)
- (b) For any given $z_0 \in D$, find a holomorphic function $G: D \to \mathbb{E}$ satisfying $|G'(z_0)| \ge |g'(z_0)|$ for any holomorphic function $g: D \to \mathbb{E}$.
- (c) For G(z) as in (b), show that $G'(z_0) \neq 0 = G(z_0)$ (Hint: consider $g = g_{G(z_0)} \circ G$, for $g_{G(z_0)}$ the Möbius transformation ...)
- (d) For G(z) as in (b) with $D = \mathbb{E}$ and $z_0 = 0$, prove that G is a rotation.
- (e) For G(z) as in (b) with D proper simply connected, prove that G is conformal.
- (f) Show that there exists a holomorphic function $G: \mathbb{C} \setminus [-2, 2] \to \mathbb{E}$ satisfying G(i) = 0, G'(i) > 0 and $G'(i) \ge |g'(i)|$ for any holomorphic function $g: \mathbb{C} \setminus [-2, 2] \to \mathbb{E}$. Show that G cannot be conformal.

Solution. (a) Let $h \in \mathcal{O}(D)$ be non-constant and bounded and $m \geq 1$ be the multiplicity of h at z_0 . Then $(h(z) - h(z_0))(z - z_0)^{-(m-1)}$ extends to a holomorphic function $\tilde{g}(z)$ on D satisfying $\tilde{g}(z_0) = 0 \neq \tilde{g}'(z_0)$. Let $\overline{B_r(z_0)} = \{|z - z_0| \leq r\} \subset D$ for some r > 0. Then $\tilde{g}(z)$ is bounded on $\overline{B_r(z_0)}$, compact, and also on $D \setminus \overline{B_r(z_0)}$, since on such subset h is bounded and $|(z - z_0)^{-(m-1)}| < r^{-(m-1)}$. Set $g(z) = \frac{1}{\|\tilde{g}\|_D} \tilde{g}(z)$. As g(z) is non-constant and D connected, then $g(D) \subset \mathbb{E}$ by the Open Mapping theorem.

(b) The set $\mathcal{F} = \{g \in \mathcal{O}(D); \|g\|_D \leq 1\} \subset \mathcal{O}(D)$ is closed and bounded, hence compact by Montel's theorem. It follows that the continuous function $\mathcal{F} \to \mathbb{R}_{\geq 0}, \quad g \mapsto |g'(z_0)|$ admits a maximum $G \in \mathcal{F}$, *i.e.* $|G'(z_0)| \geq |g'(z_0)|$ for any $g: D \to \mathbb{E}$ holomorphic. By (a), there is a function $g \in \mathcal{F}$ with $g'(z_0) \neq 0$, hence $G'(z_0) \neq 0$, so that G is non-constant, therefore $G(D) \subset \mathbb{E}$ by the Open Mapping theorem.

(c) It remains to prove that $G(z_0) = 0$. Recall that for any $a \in \mathbb{E}$ the Möbius transformation $g_a(z) = \frac{z-a}{\bar{a}z-1}$ defines a conformal map of \mathbb{E} interchanging a with 0 and satisfying $|g'_a(a)| = \frac{1}{1-|a|^2}$. Then

$$g(z) = g_{G(z_0)} \circ G(z) = \frac{G(z) - G(z_0)}{\overline{G(z_0)}G(z) - 1} \in \mathcal{F},$$

hence

$$|G'(z_0)| \ge |g'(z_0)| = |g'_{G(z_0)}(G(z_0))G'(z_0)| = \frac{|G'(z_0)|}{1 - |G(z_0)|^2}$$

Since $G'(z_0) \neq 0$, we get $G(z_0) = 0$.

(d) By (c), $G: \mathbb{E} \to \mathbb{E}$ satisfies G(0) = 0, hence $|G'(0)| \leq 1$ by the Schwarz lemma. As the identity function $z \mapsto z$ belongs to \mathcal{F} , we also have $|G'(0)| \geq 1$, hence equality holds. Again by the Schwarz lemma, we get that G is a rotation, *i.e.* $G(z) = \alpha z$ with $|\alpha| = 1$.

(e) By the Riemann Mapping theorem, there exists a conformal map $\varphi \colon D \to \mathbb{E}$ satisfying $\varphi(z_0) = 0$. Set $F = G \circ \varphi^{-1} \colon \mathbb{E} \to \mathbb{E}$. Then $|F'(0)| = |G'(z_0)\frac{1}{\varphi'(z_0)}| \ge |f'(0)|$ for any holomorphic function $f \colon \mathbb{E} \to \mathbb{E}$, as $f = g \circ \varphi^{-1}$ for a unique $g \colon D \to \mathbb{E}$. By (d), F is a rotation, *i.e.* $G(z) = \alpha \varphi(z)$ with $|\alpha| = 1$. Hence G is conformal.

(f) Recall that $f(z) = z + \frac{1}{z}$ defines a conformal map $\mathbb{E} \setminus \{0\} \to \mathbb{C} \setminus [-2, 2]$, hence its inverse is a non-constant bounded function on $\mathbb{C} \setminus [-2, 2]$. By (b) and (c), there exists a holomorphic function $\tilde{G} \colon \mathbb{C} \setminus [-2, 2] \to \mathbb{E}$ satisfying $\tilde{G}(i) = 0 \neq |\tilde{G}'(i)| \geq |g'(i)|$ for any holomorphic function $g \colon \mathbb{C} \setminus [-2, 2] \to \mathbb{E}$. Then $G(z) = \frac{|\tilde{G}'(z_0)|}{\tilde{G}'(z_0)}\tilde{G}(z)$ satisfies the required properties. Clearly G cannot be conformal, as $\mathbb{C} \setminus [-2, 2]$ is not simply connected. \Box

Problem 8. 21 Let \mathbb{H} denote the upper half plane $\{Imz > 0\}$, \mathbb{E} the unit disk $\{|z| < 1\}$ and $\overline{\mathbb{C}}$ the extended complex plane $\mathbb{C} \cup \{\infty\}$.

- (a) Show that $h_{\alpha}(z) = \frac{z-\alpha}{z-\bar{\alpha}}$ defines a conformal map $\mathbb{H} \to \mathbb{E}$ for any $\alpha \in \mathbb{H}$, and compute its inverse.
- (b) Show that any conformal map $f : \mathbb{H} \to \mathbb{E}$ may be written uniquely as $f(z) = \mu h_{\alpha}(z)$ with $|\mu| = 1$ and $\alpha \in \mathbb{H}$ satisfying $f(\alpha) = 0$.
- (c) Show that a Möbius transformation $z \mapsto \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$ defines a conformal map $\mathbb{H} \to \mathbb{H}$ if and only if ad bc > 0. Show that any conformal map $g: \mathbb{H} \to \mathbb{H}$ may be written (not uniquely) as $g(z) = \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$ satisfying ad bc > 0. (Hint: use that $g = h_i^{-1} \circ \mu h_\alpha$ for some μ and α as in (b).)
- (d) Let $\emptyset \neq D \subset \overline{\mathbb{C}}$ be a simply connected open subset. Show that one, and only one, of the following is true: 1) $D = \overline{\mathbb{C}}$; 2) D is conformally equivalent to \mathbb{C} ; 3) Dis conformally equivalent to \mathbb{E} . Here, if $\infty \in D \cup D'$, a conformal map $D \to D'$ is by definition a Möbius transformation. (Hint: if $\infty \in D \subsetneq \overline{\mathbb{C}}$, find a Möbius transformation $D \to D'$ with $\infty \notin D'$.)
- (e) Let D as in (d). Show that the group $\operatorname{Aut}(D) = \{ \text{conformal maps } D \to D \}$ is isomorphic to one of the following:

$$G_1 = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{C}, \det = 1 \} / \{ \pm 1 \};$$

$$G_2 = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}; a, b, d \in \mathbb{C}, \det = 1 \} / \{ \pm 1 \};$$

$$G_3 = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{R}, \det = 1 \} / \{ \pm 1 \}.$$

Solution. (a) Since $\alpha \in \mathbb{H}$, one has $-\bar{\alpha} + \alpha = 2i \operatorname{Im} \alpha \neq 0$, hence h_{α} is a Möbius transformation. It thus defines a conformal map $\mathbb{C} \setminus \{\bar{\alpha}\} \to \mathbb{C} \setminus \{1\}$ with inverse $w \mapsto \frac{\bar{\alpha}w - \alpha}{w-1}$. It remains to show that $h_{\alpha}(\mathbb{H}) = \mathbb{E}$. As $\partial h_{\alpha}(\mathbb{H}) = h_{\alpha}(\partial \mathbb{H})$ and $h_{\alpha}(\alpha) = 0$, it is enough to check that h_{α} maps $\partial \mathbb{H}$ (= real axis) onto $\partial \mathbb{E}$ (= unit circle), *i.e.* $|z - \alpha| = |z - \bar{\alpha}|$ for any $z \in \mathbb{R}$. This follows from $z - \bar{\alpha} = \overline{z - \alpha}$.

(b) Clearly $z \mapsto \mu h_{\alpha}(z)$ defines a conformal map $\mathbb{H} \to \mathbb{E}$, since $z \mapsto \mu z$ is a rotation. Conversely, let $f \colon \mathbb{H} \to \mathbb{E}$ be a conformal map. Set $\alpha = f^{-1}(0) \in \mathbb{H}$. Then $f \circ h_{\alpha}^{-1}$ is a conformal map $\mathbb{E} \to \mathbb{E}$ which fixes 0, hence $f \circ h_{\alpha}^{-1}(z) = \mu z$ for some $|\mu| = 1$ as a consequence of the Schwarz lemma. Therefore, $f(z) = \mu h_{\alpha}(z)$.

(c) We know (see for example [7, Lecture 5]) that for $a, b, c, d \in \mathbb{R}$ satisfying $ad-bc \neq 0$, the Möbius transformation $z \mapsto \frac{az+b}{cz+d}$ defines a conformal map $f : \mathbb{C} \setminus \{-\frac{d}{c}\} \to \mathbb{C} \setminus \{\frac{a}{c}\}$ with inverse $w \mapsto \frac{dw-b}{-cw+a}$. Since

$$\frac{az+b}{cz+d} = \frac{ac|z|^2 + bd + adz + bc\bar{z}}{|c\bar{z}+d|^2},$$

we get that $\operatorname{Im}(\frac{az+b}{cz+d}) > 0$ if and only if $\operatorname{Im} z$ and ad - bc have the same sign. Hence f restricts to a conformal map $\mathbb{H} \to \mathbb{H}$ if and only if ad - bc > 0.

Conversely, let $g: \mathbb{H} \to \mathbb{H}$ be a conformal map. By (b), $h_i \circ g = \mu h_\alpha$ for some $|\mu| = 1$ and $\alpha \in \mathbb{H}$. Then

$$g(z) = h_i^{-1}(\mu h_\alpha(z)) = i \frac{z(1+\mu) - (\bar{\alpha} + \mu\alpha)}{z(1-\mu) - (\bar{\alpha} - \mu\alpha)} = \frac{zi(\mu - \bar{\mu}) - [i(\bar{\alpha} - \alpha) - i(\bar{\mu}\bar{\alpha} - \mu\alpha)]}{z[1-\mu]^2 - [\bar{\alpha} + \alpha - (\bar{\mu}\bar{\alpha} + \mu\alpha)]}$$

This is a Möbius transformation $\mathbb{H} \to \mathbb{H}$ with real coefficients, hence they need to be positive.

(d) Let $\emptyset \neq D \subset \overline{\mathbb{C}}$ be a simply connected open subset. If $\infty \notin D$, then $D \subset \mathbb{C}$ is either \mathbb{C} or conformally equivalent to \mathbb{E} by the Riemann Mapping theorem. If $\infty \in D$, then D is either $\overline{\mathbb{C}}$ or $\overline{\mathbb{C}} \setminus D \neq \emptyset$. In the latter case, the Möbius transformation $z \mapsto \frac{1}{z-z_0}$ for $z_0 \in \overline{\mathbb{C}} \setminus D$ extends to an homomorphism $D \to D'$ with $\infty \notin D'$. Since D' is simply connected, it is either \mathbb{C} or conformally equivalent to \mathbb{E} .

Finally, there cannot be conformal maps $\overline{\mathbb{C}} \to \mathbb{C}$, $\overline{\mathbb{C}} \to \mathbb{E}$ or $\mathbb{C} \to \mathbb{E}$, since $\overline{\mathbb{C}}$ is compact and any holomorphic map $\mathbb{C} \to \mathbb{E}$ is constant by Liouville theorem.

(e) Let $D = \overline{\mathbb{C}}$. Then one easily checks that the assignment $\frac{az+b}{cz+d} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ defines a group isomorphism

Aut
$$(\overline{\mathbb{C}}) = \{ \text{M\"obius transformations} \} \simeq \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{C}, \det \neq 0 \} / \{ \mathbb{C}^{\times} \} \}$$

By sending a matrix A to $\frac{1}{\sqrt{\det A}}A$ for a chosen square root of det A, we get that the right-hand side is isomorphic to G_1 .

Let $\emptyset \neq D \subset \overline{\mathbb{C}}$ be conformally equivalent to \mathbb{C} . Then the group isomorphism $\operatorname{Aut}(\overline{\mathbb{C}}) \simeq G_1$ restricts to

 $\operatorname{Aut}(D) \simeq \operatorname{Aut}(\mathbb{C}) = \{ \text{affine transformations } z \mapsto az + b \} \simeq G_2.$

Finally, if $\emptyset \neq D \subset \overline{\mathbb{C}}$ is conformally equivalent to \mathbb{E} , it is also conformally equivalent to \mathbb{H} by (a). Hence by (c), the group isomorphism Aut $(\overline{\mathbb{C}}) \simeq G_1$ restricts to

$$\operatorname{Aut}(D) \simeq \operatorname{Aut}(\mathbb{H}) \simeq G_3.$$

(Note that one uses the fact that ad - bc > 0 has real square roots.)

Problem 9. For a domain $D \subset \mathbb{C}$ (i.e. non-empty, open and connected) and $a \in D$, set Aut_a(D) = { $f: D \to D$ biholomorphism; f(a) = a}

and let σ_a : Aut_a(D) $\rightarrow \mathbb{C}$ be the map $f \mapsto f'(a)$.

- (a) Show that σ_a : Aut_a(D) $\rightarrow \mathbb{C}$ defines an homomorphism of the group Aut_a(D) into the group \mathbb{C}^{\times} .
- (b) Describe $\operatorname{Aut}_{a}(D)$ and σ_{a} for $D = \mathbb{E}$, the unit disc, and a = 0, and for $D = \mathbb{C}^{\times}, \mathbb{C}$ and any a.
- (c) Prove that σ_a : Aut_a(D) $\rightarrow \mathbb{C}^{\times}$ is injective with image $\mathbb{U} = \{z; |z| = 1\}$ for any proper simply connected domain $D \subset \mathbb{C}$.
- (d) Let $D \subset \mathbb{C}$ be a proper domain. Prove that, if D is simply connected or biholomorphic to \mathbb{C}^{\times} , then any $f \in \operatorname{Aut}_{a}(D)$ satisfying f'(a) > 0 is the identity of D.

Solution. (a) As any biholomorphism is locally injective, $\sigma_a(f) = f'(a) \in \mathbb{C}^{\times}$ for any $f \in \operatorname{Aut}_a(D)$. Moreover, $\sigma_a(\operatorname{id}_D) = 1$ and

$$\sigma_a(g \circ f) = (g \circ f)'(a) = g'(f(a))f'(a) = \sigma_a(g)\sigma_a(f)$$

for any $f, g \in \operatorname{Aut}_{a}(D)$.

(b) By the Schwarz lemma, any biholomorphism f of the unit disc \mathbb{E} satisfying f(0) = 0 is a rotation, *i.e.* $f(z) = \lambda z$ for some $\lambda \in \mathbb{U} = \{z; |z| = 1\}$ (see [7, Lecture 6]). It follows that Aut₀(\mathbb{E}) is isomorphic through σ_0 to \mathbb{U} .

The biholomorphisms of $D = \mathbb{C}$ are the affine transformations cz + b with $c \in \mathbb{C}^{\times}$ (see [7, Lecture 5]). Hence any $f \in \operatorname{Aut}_{a}(\mathbb{C})$ has the form c(z-a) + a with $c \in \mathbb{C}^{\times}$ and σ_{a} : $\operatorname{Aut}_{a}(\mathbb{C}) \to \mathbb{C}^{\times}$ is an isomorphism.

Similarly, the biholomorphisms of $D = \mathbb{C}$ have the form cz^{ϵ} with $c \in \mathbb{C}^{\times}$ and $\epsilon = \pm 1$. Solving the equation $ca^{\epsilon} = a$ gives $\epsilon = c = 1$ or $\epsilon = -1$ and $c = a^2$. It follows that $\operatorname{Aut}_a(\mathbb{C}^{\times})$ is isomorphic through σ_a to the group $\{\pm 1\}$.

(c) By the Riemann Mapping Theorem, given a proper simply connected domain $D \subset \mathbb{C}$ and $a \in D$ there exists a biholomorphism $g: D \to \mathbb{E}$ satisfying g(a) = 0. The map $\operatorname{Ad}_g: f \mapsto g \circ f \circ g^{-1}$ defines a group isomorphism $\operatorname{Aut}_a(D) \to \operatorname{Aut}_0(\mathbb{E})$ satisfying

$$\operatorname{Ad}_{g}(f)'(0) = g'(f(a))f'(a)(g^{-1})'(0) = g'(a)f'(a)\frac{1}{g'(a)} = f'(a)$$

Hence $\sigma_a = \sigma_0 \circ \operatorname{Ad}_g$ and the result then follows from (b).

(d) For a proper simply connected domain $D \subset \mathbb{C}$, it follows from (c) that σ_a is injective with image $\mathbb{U} = \{z; |z| = 1\}$. Then $|f'(a)| = |\sigma_a(f)| = 1$ for any $f \in \text{Aut}_a(D)$ and f'(a) > 0 implies f'(a) = 1, hence $f = \text{id}_D$, as σ_a is injective.

If D is biholomorphic to \mathbb{C}^{\times} , one may replace D by \mathbb{C}^{\times} along the same lines of (c) and the result follows from (b).

Problem 10. Let $D \subset \mathbb{C}$ be a domain (i.e. non-empty, open and connected), and $S \subset D$ a closed subset. Set

Aut_s(D) = { $f: D \to D$ conformal map; f(S) = S }.

- (a) Show that the restriction map $f \mapsto f|_{D\setminus S}$ defines an injective group morphism $\rho \colon \operatorname{Aut}_{S}(D) \to \operatorname{Aut}(D \setminus S) = \{ \text{conformal maps } D \setminus S \to D \setminus S \}.$
- (b) Show that ρ is never an isomorphism for $D = \mathbb{C}$ and $S = \{c\}$.

- (c) Show that ρ is an isomorphism for $D = \mathbb{E} = \{|z| < 1\}$, the unit disk, and $S = \{c\}$.
- (d) Show that ρ is an isomorphism for D proper and simply connected and $S = \{c\}$. Compute explicitly the group Aut $(D \setminus \{c\})$.
- (e) Show that ρ is an isomorphism for D bounded with ∂D not containing isolated points and S discrete. (Hint: use that for any open subset $\Omega \subset \mathbb{C}$, if $\Omega \cup \{c\}$ is open then either $c \in \Omega$, or c is an isolated point of $\partial \Omega$).

Solution. (a) Clearly, $\operatorname{Aut}_{S}(D)$ is a group. For $f \in \operatorname{Aut}_{S}(D)$, we have $f(D \setminus S) = D \setminus S$, as f is bijective and f(S) = S, hence $f|_{D \setminus S} \colon D \setminus S \to D \setminus S$ is bijective and holomorphic, *i.e.* a conformal map. Therefore ρ is well-defined and it is clearly a group morphism.

Given conformal maps $f, g: D \to D$, if $f|_{D \setminus S} = g|_{D \setminus S}$, we get f = g by the identity principle (as $D \setminus S$ is non-empty and open in D, connected), hence ρ is injective.

(b) The conformal map $\tau(z) = z - c$ sends c to 0, hence $f \mapsto \tau \circ f \circ \tau^{-1}$ defines group isomorphisms $\operatorname{Aut}_{\{c\}}(\mathbb{C}) \xrightarrow{\sim} \operatorname{Aut}_{\{0\}}(\mathbb{C})$ and $\operatorname{Aut}(\mathbb{C} \setminus \{c\}) \xrightarrow{\sim} \operatorname{Aut}(\mathbb{C} \setminus \{0\})$ compatible with ρ . It follows that we may suppose c = 0. A conformal map $\mathbb{C} \to \mathbb{C}$ is an affine map $z \mapsto \alpha z + \beta$ with $\alpha \neq 0$, and it fixes 0 iff $\beta = 0$, whereas a conformal map $\mathbb{C}^{\times} \to \mathbb{C}^{\times}$ is of the form $z \mapsto \alpha z^{\pm 1}$ with $\alpha \neq 0$. Hence ρ is not surjective.

(c) Let $f : \mathbb{E} \setminus \{c\} \to \mathbb{E} \setminus \{c\}$ be a conformal map. Then c is an isolated singularity for f and, f being bounded, it must be removable. Let \tilde{f} be the analytic continuation of f at \mathbb{E} . Then \tilde{f} is continuous and injective, since $\mathbb{E} \setminus \{c\}$ is dense in \mathbb{E} (see [7, Lecture 5]), hence $\tilde{f}(c) \in \overline{\tilde{f}(\mathbb{E} \setminus \{c\})} \setminus \tilde{f}(\mathbb{E} \setminus \{c\}) = \partial(\mathbb{E} \setminus \{c\}) = \{c\} \cup \partial\mathbb{E}$. Since $|\tilde{f}(z)| < 1$ for any $z \neq c$, then $\tilde{f}(c) = c$, otherwise it would be constant by the Maximum Modulus theorem. It follows that ρ is surjective.

(Note that, as in (e), one may use the Open Mapping theorem to get $f(\mathbb{E}) \subset \mathbb{E}$ and to deduce $\tilde{f}(c) = c$. Note also that, as for (b) with τ the Möbius transformation $z \mapsto \frac{z-c}{1-\bar{c}z}$, one might have supposed c = 0.)

(d) By the Riemann Mapping theorem, there exists a conformal map $\varphi \colon D \to \mathbb{E}$ sending c to 0, hence $f \mapsto \varphi \circ f \circ \varphi^{-1}$ and $f \mapsto \varphi|_{D \setminus \{c\}} \circ f \circ \varphi|_{D \setminus \{c\}}^{-1}$ define the vertical group isomorphisms in the following commutative diagram

(where $\mathbb{E}^{\times} = \mathbb{E} \setminus \{0\}$). By (c), we get that the upper horizontal arrow is an isomorphism.

By the Schwarz lemma, a conformal map $f: \mathbb{E} \to \mathbb{E}$ satisfying f(0) = 0 is a rotation, *i.e.* $f(z) = \alpha z$ for some $\alpha \in \mathbb{U} = \{|z| = 1\}$, hence $\operatorname{Aut}(D \setminus \{c\}) \xrightarrow{\sim} \operatorname{Aut}(\mathbb{E}^{\times}) \xleftarrow{\sim} \operatorname{Aut}_{\{0\}}(\mathbb{E}) \simeq \mathbb{U}$ (the last arrow being a group isomorphism).

(e) Let $f: D \setminus S \to D \setminus S$ be a conformal map. Then any $c \in S$ is a removable singularity for f, as f is bounded and S discrete. Let \tilde{f} be the analytic continuation of f at D. Since \tilde{f} is continuous and injective (as in (c), $D \setminus S$ being dense in D) and $\tilde{f}(D) = \tilde{f}(D \setminus S) \cup \tilde{f}(S) = (D \setminus S) \cup \tilde{f}(S)$ is open by the Open Mapping theorem, it follows from the *Hint* (by induction) that $\tilde{f}(S)$ consists of isolated points of $\partial(D \setminus S) = S \cup \partial D$. Since ∂D has no isolated points, it follows that $\tilde{f}(S) \subset S$.

By replacing f with f^{-1} , we get an holomorphic map $\widetilde{f^{-1}}: D \to D$ satisfying $\widetilde{f^{-1}} \circ \widetilde{f} =$ id = $\widetilde{f} \circ \widetilde{f^{-1}}$ on $D \setminus S$, hence on D by the identity principle. It follows that \widetilde{f} is conformal, hence ρ is surjective.

Problem 11. Let f be a meromorphic function on \mathbb{C} .

- (a) Show that f is locally injective at a pole $a \in \mathbb{C} \cup \infty$ iff $\operatorname{ord}_a f = -1$.
- (b) Show that f is injective iff it is a Möbius transformation. (Hint: show that if $z_1, z_2 \in \mathbb{C}, z_1 \neq z_2$, are poles for f, then f cannot be injective.)

Solution. (a) First, recall that the zeros and poles of f form a closed and discrete set. Let $a \in \mathbb{C}$ be a pole of order m of f. As $\lim_{z \to a} f(z) = \infty$, locally at a we have $f(z) \neq 0$, hence $\frac{1}{f}$ is well-defined and (extends to an holomorphic function which) has a zero of order m at a. Clearly, f is locally injective at a iff so does $\frac{1}{f}$, iff $(\frac{1}{f})'(a) \neq 0$, that is, iff $1 = \operatorname{ord}_a \frac{1}{f} = -\operatorname{ord}_a f$.

If $a = \infty$, replace f(z) by $f(\frac{1}{z})$ and a by 0.

(b) Suppose that $z_1, z_2 \in \mathbb{C}$, $z_1 \neq z_2$, are poles for f. As $\lim_{z \to z_i} f(z) = \infty$ for i = 1, 2, we may find two disjoint open neighbourhoods V_1 and V_2 of z_1, z_2 such that $f(V_1)$ and $f(V_1)$ are open neighbourhoods of ∞ . Then $f(V_1) \cap f(V_2)$ is also an open neighbourhood of ∞ , hence non-empty. Contradiction.

It follows that f has at most one pole, which must be simple by (a). To conclude one then follows the lines of [7, Lecture 5] and prove that f is a Möbius transformation either of the form $a\frac{1}{z-c} + b = \frac{bz+a-bc}{z-c}$ if it has a pole, or a(z-c) + b = az + b - ac for $a \in \mathbb{C}^{\times}$ and $b \in \mathbb{C}$.

Problem 12. Set $\mathbb{E} = \{|z| < 1\}$ and let $f : \mathbb{E} \to \mathbb{E}$ be holomorphic and proper (i.e. the pre-image of any compact subset is compact).

- (a) Show that $\partial f(S) \subset f(\partial S)$ for any subset $S \subset \mathbb{E}$ with $\partial S \subset \mathbb{E}$.
- (b) Prove that $\lim_{z \to \partial \mathbb{E}} |f(z)| = 1$.
- (c) Given $a_1, \ldots, a_n \in \mathbb{E}$, not necessarily distinct, show that

$$B_{a_1,\dots,a_n}(z) = \prod_{i=1}^n \frac{z - a_i}{1 - \bar{a}_i z}$$

defines a proper holomorphic map $\mathbb{E} \to \mathbb{E}$, which is conformal if and only if n = 1.

- (d) Prove that there exist $\lambda \in \partial \mathbb{E}$ and $a_1, \ldots, a_n \in \mathbb{E}$ such that $f(z) = \lambda B_{a_1, \ldots, a_n}(z)$. (Hint: use the Maximum Modulus theorem.)
- (e) Suppose that f extends analytically on \mathbb{C} . Show that $f(z) = \lambda z^n$ for some $n \ge 1$.

Solution. (a) Since f is proper and $\mathbb{E} = f^{-1}(f(\mathbb{E}))$ is non-compact, f cannot be constant, hence it is open by the Open Mapping theorem. It follows that $f(\operatorname{Int}(S)) \subset \operatorname{Int}(f(S))$ for any subset $S \subset \mathbb{E}$. Let us prove that $\overline{f(S)} \subset f(\overline{S})$ for any subset $S \subset \mathbb{E}$ with $\partial S \subset \mathbb{E}$. It will follow that

$$\partial f(S) = \overline{f(S)} \setminus \operatorname{Int}(f(S)) \subset f(\overline{S}) \setminus f(\operatorname{Int}(S)) = f(\partial S).$$

Take $w = \lim_{n \to +\infty} f(z_n) \in \overline{f(S)}$ for a sequence $\{z_n\}_n \subset S$. Since \overline{S} is compact, $\{z_n\}_n$ has a convergent subsequence to some $z \in \overline{S} \subset \mathbb{E}$, hence f(z) = w.

(b) We have to prove that $\lim_{z\to\partial\mathbb{E}} f(z) \in \partial\mathbb{E}$. Let $\{z_n\}_n \subset \mathbb{E}$ be a sequence convergent to $\partial\mathbb{E}$ and suppose that $\{f(z_n)\}_n$ does not converge to $\partial\mathbb{E}$. Then there exists a subsequence $\{f(z_{n_k})\}_k$ lying in the compact subset $\overline{B_r(0)}$ for some 0 < r < 1. Since f is proper, $f^{-1}\left(\overline{B_r(0)}\right)$ is compact. Hence $\{z_{n_k}\}_k \subset f^{-1}\left(\overline{B_r(0)}\right) \subset \mathbb{E}$ has a convergent subsequence to some $z \in \mathbb{E}$. Contradiction. It follows that $\lim_{n\to+\infty} f(z_n) \in \partial\mathbb{E}$.

(c) Since $|a_i| < 1$ for any i = 1, ..., n, each $\frac{z-a_i}{1-\bar{a}_i z}$ is a conformal self-map of \mathbb{E} (see [7, Lecture 6]), which is in particular proper and sends a_i to 0. Hence their product $B_{a_1,...,a_n}$ defines a proper holomorphic map $\mathbb{E} \to \mathbb{E}$, which cannot be conformal if n > 1, as $B_{a_1,...,a_n}^{-1}(\{0\}) = \{a_1,\ldots,a_n\} \neq \{0\}$ if there are $a_i \neq a_j$, otherwise $B_{a_1,...,a_n} = \left(\frac{z-a_1}{1-\bar{a}_1 z}\right)^n$.

(d) By (b), we get $\partial f(\mathbb{E}) \subset \partial \mathbb{E}$, hence $0 \in f(\mathbb{E})$, otherwise the line segment joining 0 and f(0) would contain a point in $\partial f(\mathbb{E})$, contradiction. Since f is proper, the non-empty discrete subset $f^{-1}(\{0\}) \subset \mathbb{E}$ is compact, hence finite.

Let $a_1, \ldots, a_n \in \mathbb{E}$ be the zeros of f, counted according to their multiplicities. Then the function $\frac{f(z)}{B_{a_1,\ldots,a_n}(z)}$ can be analytically extended to a never vanishing function $h \in \mathcal{O}(\mathbb{E})$. Since $|B_{a_1,\ldots,a_n}(z)| = 1$ for |z| = 1 and $\lim_{|z|\to 1^-} |f(z)| = 1$ by (b), we get $\lim_{|z|\to 1^-} |h(z)| = 1$. By the Maximum Modulus theorem, we have both $|h(z)| \leq 1$ and $\frac{1}{|h(z)|} \leq 1$ for any $z \in \overline{\mathbb{E}}$. It follows that $h(z) = \lambda$ with $|\lambda| = 1$.

(e) Supposing f non-constant, by (d) we have $f(z) = \lambda B_{a_1,\dots,a_n}(z)$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. If f extends analytically on \mathbb{C} , then $a_1 = \cdots = a_n = 0$ and $f(z) = \lambda z^n$. \Box

Problem 13. Denote by $\overline{\mathbb{E}}$ the closure of the unit disk $\mathbb{E} = \{|z| < 1\}$ and set $\partial \mathbb{E} = \overline{\mathbb{E}} \setminus \mathbb{E}$. Let $f \in \mathcal{O}(\overline{\mathbb{E}})$ satisfy $f(\partial \mathbb{E}) \subset \partial \mathbb{E}$.

- (a) Show that $f(\overline{\mathbb{E}}) \subset \overline{\mathbb{E}}$.
- (b) Prove that either $f(\overline{\mathbb{E}}) = \overline{\mathbb{E}}$, or f is constant. (Hint: use the Open Mapping theorem)
- (c) Prove that if $\operatorname{Ref}' > 0$ in \mathbb{E} , then f restricts to a conformal map $\mathbb{E} \to \mathbb{E}$. (Hint: compute $\int_{\gamma} f'(z) dz$ for an appropriate path γ)
- (d) Prove that, if f is non-constant, then there exists $\lambda \in \partial \mathbb{E}$ such that $f(z) = \lambda B(z)$, where B is a finite Blaschke product.
- (e) Suppose that f extends analytically on \mathbb{C} . Show that $f(z) = \lambda z^n$ for some $n \in \mathbb{N}$.
- (f) Prove that any $g \in \mathcal{O}(\mathbb{C})$ mapping a circle to a circle has the form $g(z) = a(z z_0)^n + w_0$ for some $a, z_0, w_0 \in \mathbb{C}$ and $n \in \mathbb{N}$.

Solution. (a) Since |f(z)| = 1 for |z| = 1, it follows by the Maximum Modulus theorem that $|f(z)| \leq 1$ for any $|z| \leq 1$, *i.e.* $f(\overline{\mathbb{E}}) \subset \overline{\mathbb{E}}$.

(b) If f is non-constant, then f is open by the Open Mapping theorem, hence $\partial f(\mathbb{E}) \subset f(\partial \mathbb{E}) \subset \partial \mathbb{E}$. It follows that $f(\overline{\mathbb{E}}) \supset \overline{\mathbb{E}}$, as it contains any line segment $S \subset \overline{\mathbb{E}}$ starting from f(0). Indeed, if it is not the case, there would exist a point in $S \setminus \partial \mathbb{E}$ belonging to $\partial f(\overline{\mathbb{E}})$, a contradiction.

(c) As f cannot be constant, we have |f(z)| < 1 for any $z \in \mathbb{E}$ by the Maximum Modulus theorem, *i.e.* f restricts to an holomorphic map $\mathbb{E} \to \mathbb{E}$. From $f(\overline{\mathbb{E}}) = \overline{\mathbb{E}}$ and $f(\partial \mathbb{E}) \subset \partial \mathbb{E}$ it follows that $f(\mathbb{E}) = \mathbb{E}$. It remains to prove that f is injective.

Let $[z_1, z_2]$ be the line segment joining two points $z_1, z_2 \in \mathbb{E}$. Then

$$f(z_2) - f(z_1) = \int_{[z_1, z_2]} f'(z) dz = (z_2 - z_1) \int_0^1 f'(z_1 + t(z_2 - z_1)) dt.$$

Since $\operatorname{Re} f' > 0$ in \mathbb{E} , we have $\operatorname{Re} \int_0^1 f'(z_1 + t(z_2 - z_1))dt > 0$, hence $\int_0^1 f'(z_1 + t(z_2 - z_1))dt \neq 0$ and the result follows.

(d) As $\overline{\mathbb{E}}$ is compact, f has a finite number of zeros a_1, \ldots, a_n in $\overline{\mathbb{E}}$, counted according to their multiplicities. As $f(\partial \mathbb{E}) \subset \partial \mathbb{E}$, none of the a_i 's belongs to $\partial \mathbb{E}$, hence $a_1, \ldots, a_n \in \mathbb{E}$. It follows that the finite Blaschke product

$$B(z) = \prod_{i=1}^{n} \frac{z - a_i}{\bar{a}_i z - 1} \frac{|a_i|}{a_i}$$

(where we set $\frac{|a|}{a} = 1$ if a = 0) belongs to $\mathcal{O}(\overline{\mathbb{E}})$ and $\frac{f(z)}{B(z)}$ can be analytically extended to a never vanishing function $h \in \mathcal{O}(\overline{\mathbb{E}})$ satisfying $|h(z)| = \frac{|f(z)|}{|B(z)|} = 1$ for |z| = 1. By the Maximum Modulus theorem, we have both $|h(z)| \leq 1$ and $\frac{1}{|h(z)|} \leq 1$ for any $z \in \overline{\mathbb{E}}$. It follow that $h(z) = \lambda$ with $|\lambda| = 1$.

(e) Supposing f non-constant, by (d) we have $f(z) = \lambda B(z)$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. If f extends analytically on \mathbb{C} , then $a_1 = \cdots = a_n = 0$ and $f(z) = \lambda z^n$.

(f) Let S be the circle of radius r > 0 centred in $z_0 \in \mathbb{C}$, and suppose that g(S) is the circle of radius $\rho > 0$ centred in w_0 . Consider the conformal maps of the plane $h_1(z) = \frac{1}{r}(z - z_0)$ and $h_2(w) = \frac{1}{\rho}(w - w_0)$. Then $h_1(S) = \partial \mathbb{E} = h_2(g(S))$, hence $\tilde{g} = h_2 \circ g \circ h_1^{-1} \in \mathcal{O}(\mathbb{C})$ maps the unit circle to the unit circle. It follows by (e) that $\tilde{g}(z) = \lambda z^n$ for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$, hence

$$g(z) = h_2^{-1} \circ \tilde{g} \circ h_1(z) = \frac{\rho \lambda}{r^n} (z - z_0)^n + w_0.$$

Problem 14. Let $D \subset \mathbb{C}$ be a domain (i.e. non-empty, open and connected).

- (a) Let $g, h: D \to D$ be holomorphic maps, with g non-constant and satisfying $g = h \circ g$. Prove that $h = id_D$.
- (b) Let $\{h_k\}_{k\geq 0}$ be a sequence which converges in $\mathcal{O}(D)$ to a non-constant function h. Prove that if $h_k(D) \subset E$ for any k then $h(D) \subset E$. (Hint: use Hurwitz's theorem.)
- (c) Let $f: D \to D$ be an holomorphic map and set $f^{\circ 1} = f$, $f^{\circ (n+1)} = f \circ f^{\circ n}$ for any $n \ge 1$. Assume that there exists a subsequence $\{f^{\circ n_k}\}_{k\ge 0}$ which converges in $\mathcal{O}(D)$ to a non-constant function g and set $h_k = f^{\circ (n_{k+1}-n_k)}$ for any $k \ge 0$.
 - (i) Prove that every convergent subsequence of $\{h_k\}_{k\geq 0}$ converges in $\mathcal{O}(D)$ to id_D . (Hint: note that $f^{\circ n_{k+1}} = h_k \circ f^{\circ n_k}$ and use that $\cdot \circ \cdot$ is continuous.)
 - (ii) Suppose that D is bounded. Show that $\{h_k\}_{k\geq 0}$ converges in $\mathcal{O}(D)$ to id_D . (Hint: use Montel's convergence criterion.) Deduce that f is conformal.
- (d) Suppose that D is bounded and let $f: D \to D$ be an holomorphic map such that $f(z_0) = z_0$ for some $z_0 \in D$. Assume that either $|f'(z_0)| = 1$, or $f(z_1) = z_1$ for some $z_1 \in D \setminus \{z_0\}$. Prove that f is conformal.

Solution. (a) h is the identity on the (non-empty) subset $g(D) \subset D$, which is open by the open mapping theorem, since g is non-constant. As D is connected, $h = id_D$ by the identity principle.

(b) Take $w \notin E$. Then $h_k(z) - w$ never vanishes in D for any k and by Hurwitz's theorem so does h(z) - w, as it is non-constant. Hence $w \notin h(D)$, that is $h(D) \subset E$.

(c) (i) Let $\{h_{k_l}\}_{l\geq 0}$ be a subsequence convergent to some h in $\mathcal{O}(D)$. As $\cdot \circ \cdot$ is continuous, taking the limit of $f^{\circ n_{k+1}} = h_k \circ f^{\circ n_k}$, we get $g = h \circ g$. Since g is non-constant, we can apply (a) and get $h = \mathrm{id}_D$.

(ii) Since $f(D) \subset D$, by induction we get $h_k(D) \subset D$ for any k. As D is bounded, the sequence $\{h_k\}_{k\geq 0}$ is bounded, and we can use Montel's convergence criterion: by (i) every convergent subsequence converges to id_D in $\mathcal{O}(D)$, hence so does $\{h_k\}_{k\geq 0}$.

By induction $f^{\circ n}(D) \subset f(D)$ for any n, hence $h_k(D) \subset f(D)$ for any k. By (b) we get $D \subset f(D) \subset D$, that is f(D) = D.

Given $f(z_1) = f(z_2)$, we have $f_n(z_1) = f_n(z_2)$ for any n, hence $h_k(z_1) = h_k(z_2)$ for any k. Taking the limit we get $z_1 = z_2$. Therefore f is conformal.

(d) By Montel's theorem, the bounded sequence $\{f^{\circ n}\}_{n\geq 1}$ has a subsequence $\{f^{\circ n_k}\}_{k\geq 0}$ which converges in $\mathcal{O}(D)$ to some g. In both cases, g is non-constant and we may apply (c) (ii). Indeed, in one case $|g'(z_0)| = \lim_k |f^{\circ n_k}(z_0)| = \lim_k |f'(z_0)|^{n_k} = 1$, whereas in the other case g has two distinct fixed points, since so does any $f^{\circ n}$.

Problem 15. Let Z be a connected component of $\mathbb{C} \setminus K$ for a compact $K \subset \mathbb{C}$.

- (a) Show that $\partial Z \subset \partial K$. (Hint: If $B_r(z_0) \subset \mathbb{C} \setminus K$ for $z_0 \in \partial Z$ and r > 0, then ...)
- (b) Suppose that Z is bounded and $K \cup Z \subset U$ for an open subset $U \subset \mathbb{C}$. Prove that $\|f\|_{\overline{Z}} \leq \|f\|_{K}$ for any $f \in \mathcal{O}(U)$.
- (c) In the situation of (b), prove that for any $z_0 \in Z$ there exists $C_{K,z_0} > 0$ such that $\left\|\frac{1}{z-z_0} f(z)\right\|_K \ge C_{K,z_0}$ for any $f \in \mathcal{O}(U)$.
- (d) Assume $\mathbb{C} \setminus K$ not connected. Show that there exists $f \in \mathcal{O}(K)$ which cannot be approximated on K by polynomials.
- (e) Assume $\mathbb{C} \setminus K$ connected. Show that for any $z_0 \in \mathbb{C} \setminus K$ there exist a polynomial p and $f \in \mathcal{O}(K \cup \{z_0\})$ satisfying $f(z_0) = 1$, $f|_K = 0$ and $||f p||_{K \cup \{z_0\}} < \frac{1}{2}$.
- (f) Prove that $\mathbb{C} \setminus K$ is connected if and only if for any $z_0 \in \mathbb{C} \setminus K$ there exists a polynomial p such that $||p||_K < |p(z_0)|$.

Solution. (a) Let $z_0 \in \partial Z = \overline{Z} \setminus Z$. It is enough to prove that z_0 is a limit point for K, *i.e.* for any r > 0 the open disc $B_r(z_0)$ intersects K. As K is closed and $z_0 \notin \text{Int}K$, it will follow that $z_0 \in \partial K = K \setminus \text{Int}K$.

Assume $B_r(z_0) \subset \mathbb{C} \setminus K$. Then $Z \subset Z \cup B_r(z_0) \subset \mathbb{C} \setminus K$ and $Z \cup B_r(z_0)$ is connected, as $B_r(z_0)$ and Z are connected and $B_r(z_0) \cap Z \neq \emptyset$. Since Z is maximal, we have $Z \cup B_r(z_0) = Z$, that is, $B_r(z_0) \subset Z$. Contradiction.

(b) By (a), we have $\partial Z \subset \partial K \subset K$, hence $\overline{Z} \subset K \cup Z \subset U$. As \overline{Z} is bounded, by the Maximum Modulus theorem, we get

$$\|f\|_{\overline{Z}} = \|f\|_{\partial Z} \le \|f\|_{K} \quad \text{for any } f \in \mathcal{O}(U).$$

(c) By (b), for $z_0 \in Z$ and any $f \in \mathcal{O}(U)$ we have

$$\begin{aligned} \left\| \frac{1}{z - z_0} - f(z) \right\|_K &\geq \frac{\left\| 1 - (z - z_0) f(z) \right\|_K}{\left\| z - z_0 \right\|_K} \geq \frac{\left\| 1 - (z - z_0) f(z) \right\|_{\overline{Z}}}{\left\| z - z_0 \right\|_K} \\ &\geq \frac{\left\| 1 - (z - z_0) f(z) \right\|_{z_0}}{\left\| z - z_0 \right\|_K} = \frac{1}{\left\| z - z_0 \right\|_K} = C_{K, z_0} > 0 \end{aligned}$$

(d) If $\mathbb{C} \setminus K$ is not connected, it has a bounded component Z (see [7, Lecture 16]) and $f(z) = \frac{1}{z-z_0} \in \mathcal{O}(K)$ for $z_0 \in Z$. By (c), there exists $C_{K,z_0} > 0$ such that

$$||f - p||_K \ge C_{K,z_0}$$
 for any $p \in \mathbb{C}[z] \subset \mathcal{O}(\mathbb{C})$,

hence f cannot be approximated on K by polynomials.

(e) For $z_0 \in \mathbb{C} \setminus K$, take $V, W \subset \mathbb{C}$ disjoint open subsets satisfying $z_0 \in V$ and $K \subset U$, and f the function which has value 1 on V and 0 on W. Then f is locally constant, hence holomorphic, in $V \cup W \supset K \cup \{z_0\}$, that is, $f \in \mathcal{O}(K \cup \{z_0\})$.

If $\mathbb{C} \setminus K$ is connected, then $\mathbb{C} \setminus \{K \cup \{z_0\}\} = \{\mathbb{C} \setminus K\} \setminus \{z_0\}$ is connected as well, hence by Runge's theorem there exists a polynomial p such that $\|f - p\|_{K \cup \{z_0\}} < \frac{1}{2}$.

(f) Assume $\mathbb{C} \setminus K$ connected and take $z_0 \in \mathbb{C} \setminus K$. By (e), there exist $f \in \mathcal{O}(K \cup \{z_0\})$ and a polynomial p satisfying $f(z_0) = 1$, $f|_K = 0$ and $||f - p||_{K \cup \{z_0\}} < \frac{1}{2}$. It follows that

$$||p||_{K} = ||f - p||_{K} \le ||f - p||_{K \cup \{z_{0}\}} < \frac{1}{2}$$

and

$$|1 - |p(z_0)|| \le |1 - p(z_0)| = ||f - p||_{\{z_0\}} \le ||f - p||_{K \cup \{z_0\}} < \frac{1}{2},$$

hence $||p||_K < \frac{1}{2} < |p(z_0)|.$

Conversely, if $\mathbb{C} \setminus K$ is not connected, it has a bounded component Z. Take $z_0 \in Z$. It follows by (b) that

$$|p(z_0)| \le ||p||_{\overline{Z}} \le ||p||_K$$
 for any $p \in \mathbb{C}[z]$.

Problem 16. For a domain (i.e. non-empty, open and connected) $D \subset \mathbb{C}$ and $a \in D$, set

 $\operatorname{Aut}(D) = \{f \colon D \to D \text{ biholomorphism}\}, \quad \operatorname{Aut}_a(D) = \{f \in \operatorname{Aut}(D); f(a) = a\}.$

- (a) Suppose that $\mathbb{C} \setminus D$ is non-empty and without bounded components. Prove that any $f \in \operatorname{Aut}_a(D)$ satisfies |f'(a)| = 1, and f'(a) = 1 if and only if f is the identity.
- (b) In the situation of (a), suppose moreover that D is symmetric with respect to the real axis and a ∈ D ∩ ℝ. Given f ∈ Aut_a(D), prove that f(z̄) = f(z) on D if and only if f'(a) = ±1. (Hint: consider f(z) = f(z).)
- (c) Let D be bounded. Prove that any $f \in \operatorname{Aut}_{a}(D)$ satisfies |f'(a)| = 1. (Hint: consider the sequence $\{f^{\circ n} = f \circ f \circ \cdots \circ f\}_{n \geq 1}$ and compute $(f^{\circ n})'(a)$.)
- (d) In the situation of (c), prove that any $f \in \operatorname{Aut}_{a}(D)$ satisfying f'(a) = 1 is the identity. (Hint: use that, if $z + c_m z^m + \dots (m \ge 2)$ is the Taylor series at 0 of an holomorphic function f, then $z + nc_m z^m + \dots$ is the Taylor series at 0 of $f^{\circ n}$. Prove this fact by induction, if time allows.)

(e) In the situation of (c), suppose moreover that $D = \operatorname{Int} \overline{D}$. Prove that a convergent sequence $\{f_n\}_{n\geq 0} \in \operatorname{Aut}(D)$ converges either to some $f \in \operatorname{Aut}(D)$ or to a constant $\notin D$. (Hint: use the sequence $\{f_n^{-1}\}_{n\geq 0} \in \operatorname{Aut}(D)$.) Deduce that $\operatorname{Aut}_a(D) \subset \mathcal{O}(D)$ is compact.

Solution. (a) As a consequence of Runge's little theorem (see [7, Lecture 16]), $D \subset \mathbb{C}$ is a proper simply connected domain, hence by the Riemann Mapping Theorem, for any $a \in D$ there exists a biholomorphism $g: D \to \mathbb{E}$ satisfying g(a) = 0. Then $\operatorname{Ad}_g(f) =$ $g \circ f \circ g^{-1} \in \operatorname{Aut}_0(\mathbb{E})$ is a rotation by the Schwarz lemma, *i.e.* it has the form λz for some $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. It follows that $f'(a) = (\operatorname{Ad}_g(f))'(0) = \lambda$, hence |f'(a)| = 1, and f'(a) = 1 if and only if $\operatorname{Ad}_g(f) = \operatorname{id}_{\mathbb{E}}$ if and only if $f = \operatorname{id}_D$.

(b) Set $\tilde{f}(z) = \overline{f(\overline{z})}$. Since $\overline{D} = D$ and $\overline{a} = a$, we get a bijection $\tilde{f}: D \to D$ satisfying $\tilde{f}(a) = a$. Moreover, since

$$\tilde{f}'(z) = \lim_{h \to 0} \overline{\left(\frac{f(\overline{z} + \overline{h}) - f(\overline{h})}{\overline{h}}\right)} = \overline{f'(\overline{z})},$$

it follows that \tilde{f} is holomorphic, hence $\tilde{f} \in \operatorname{Aut}_a(D)$, and $\tilde{f}'(a) = \overline{f'(a)}$.

One has $f(\overline{z}) = \overline{f(z)}$ if and only if $\tilde{f} = f$, if and only if $f^{-1} \circ \tilde{f} \in \text{Aut}_a(D)$ is the identity. By (a), this happens if and only if $(f^{-1} \circ \tilde{f})'(a) = \frac{\overline{f'(a)}}{f'(a)} = 1$, that is, $f'(a) = \pm 1$, since |f'(a)| = 1 by (a).

(c) Given $f \in \operatorname{Aut}_a(D)$, one easily checks that $(f^{\circ n})(a) = a$ and $(f^{\circ n})'(a) = f'(a)^n$. Since D is bounded, then $\operatorname{Aut}_a(D)$ is bounded, as $\sup_{f \in \operatorname{Aut}_a(D)} ||f||_K \leq \sup_{z \in D} |z| < +\infty$ for any compact $K \subset D$. By Montel's theorem, it follows that the sequence $\{f^{\circ n}\}_{n \geq 1} \subset \operatorname{Aut}_a(D)$ has a convergent subsequence $\{f^{\circ n_k}\}_{k \geq 1}$, hence the sequence $\{(f^{\circ n_k})'(a) = f'(a)^{n_k}\}_{k \geq 1}$ is convergent. This can happen only if $|f'(a)| \leq 1$, otherwise $\lim_n |f'(a)|^n = +\infty$ so that it cannot have convergent subsequences. By considering $f^{-1} \in \operatorname{Aut}_a(D)$, one also gets $|f^{-1'}(a)| = \frac{1}{|f'(a)|} \leq 1$, hence |f'(a)| = 1.

(d) Given $f \in \operatorname{Aut}_a(D)$ satisfying f'(a) = 1, one has $(f^{\circ n})(a) = a$, $(f^{\circ n})'(a) = 1$, and $(f^{\circ n})''(a) = nf''(a)$ by the hint. As in (c), by Montel's theorem the sequence $\{f^{\circ n}\}_{n\geq 1} \subset \operatorname{Aut}_a(D)$ has a convergent subsequence $\{f^{\circ n_k}\}_{k\geq 1}$, hence the sequence $\{(f^{\circ n_k})''(a) = n_k f''(a)\}_{k\geq 1}$ is convergent. This can happen if and only if f''(a) = 0. By induction, one gets that $f^{(m)}(a) = 0$ for any $m \geq 2$. By the identity principle, it follows that f(z) = z on D.

Let us prove the content of the hint. Given the Taylor series $f(z) = z + c_m z^m + ...$ $(m \ge 2)$ centred at 0, by induction hypothesis and by using $f^{\circ n}(0) = 0$, we get the following Taylor series centred at 0

$$f^{\circ n+1}(z) = f(f^{\circ n}(z)) = f^{\circ n}(z) + c_m f^{\circ n}(z)^m + \dots$$

= $z + nc_m z^m + \dots + c_m (z + nc_m z^m + \dots)^m + \dots$
= $z + (n+1)c_m z^m + \dots$

(e) Let $\{f_n\}_{n\geq 0} \in \operatorname{Aut}(D)$ be a sequence convergent to f in $\mathcal{O}(D)$. By Hurwitz's theorem, either f has constant value $\in \overline{D}$, or f is injective, hence open by the Open Mapping theorem, so that $f(D) \subset \operatorname{Int}\overline{D} = D$.

Consider the sequence of the inverses $\{f_n^{-1}\}_{n\geq 0} \in \operatorname{Aut}(D)$. Since D is bounded, then $\operatorname{Aut}(D)$ is bounded, hence, by Montel's theorem there exists a convergent subsequence $\{f_{n_k}^{-1}\}$ which converges to g in $\mathcal{O}(D)$. It follows that

$$g'(f(z))f'(z) = \lim_{k} (f_{n_k}^{-1} \circ f_{n_k})'(z) = 1$$
 for any $z \in D$ satisfying $f(z) \in D$.

Therefore, if f has constant value, necessarily $\in \overline{D} \setminus D$, whereas if f is injective, g cannot be constant, hence it is injective and open, with $g(D) \subset \operatorname{Int}\overline{D} = D$. As

$$g \circ f = \lim_{k} (f_{n_k}^{-1} \circ f_{n_k}) = \mathrm{id}_D = \lim_{k} (f_{n_k} \circ f_{n_k}^{-1}) = f \circ g$$

it follows that f (and g) is bijective.

If $\{f_n\}_{n\geq 0} \in \operatorname{Aut}_a(D)$ is a sequence converging to f, then $f(a) = \lim_n f_n(a) = a \in D$, hence f cannot have constant value $\notin D$. It follows that $\operatorname{Aut}_a(D)$ is closed in $\mathcal{O}(D)$. Since it is also bounded, it is compact by Montel's theorem.

Problem 17. Let $D \subset \mathbb{C}$ be a domain (i.e. non-empty, open and connected).

- (a) For $z_0 \in D$, let $ev_{z_0} \colon \mathcal{O}(D) \to \mathbb{C}$, $f \mapsto f(z_0)$ be the evaluation map. Show that $ev_{z_0}^{-1}(\{0\})$ is a closed and maximal ideal of $\mathcal{O}(D)$ (i.e. $\mathcal{O}(D)$ is the only ideal which properly contains it).
- (b) Let I ⊂ O(D) be an ideal. Show that the following are equivalent:
 (i) I is closed and maximal;
 - (ii) $I = \{f \in \mathcal{O}(D); f(z_0) = 0\}$ for some $z_0 \in D$;
 - (iii) $I = \ker \chi$ for a \mathbb{C} -linear ring homomorphism $\chi \colon \mathcal{O}(D) \to \mathbb{C}$.
 - (Hint: show that $z_0 = \chi(id_D) \in D$ and $\chi = ev_{z_0}$.)

Solution. (a) The evaluation map is continuous for the topology of compact convergence on $\mathcal{O}(D)$, hence $ev_{z_0}^{-1}(\{0\}) \subset D$ is a closed subset, and one easily checks that this is a proper ideal of $\mathcal{O}(D)$. Let $I \subset \mathcal{O}(D)$ be an ideal properly containing $ev_{z_0}^{-1}(\{0\})$ and take $f \in I$ such that $f(z_0) \neq 0$. Then $f(z) = f(z_0) + (z - z_0)g(z)$ for $g \in \mathcal{O}(D)$, hence $1 = f(z_0)^{-1}f(z_0) = f(z_0)^{-1}(f(z) - (z - z_0)g(z)) \in I$, so that $I = \mathcal{O}(D)$.

(b) (i) \Rightarrow (ii) By the main result of ideal theory for holomorphic functions (see [7, Lectures 20,21]), every closed ideal is principal, hence $I = g \mathcal{O}(D)$ for some $g \in \mathcal{O}(D)$. Since I is proper, g needs to have a zero $z_0 \in D$, otherwise $\frac{1}{g} \in \mathcal{O}(D)$ and $I = \frac{1}{g}I = \frac{1}{g}g\mathcal{O}(D) = \mathcal{O}(D)$. It follows that $I \subset \{f \in \mathcal{O}(D); f(z_0) = 0\}$ and equality holds by maximality of I.

(ii) \Rightarrow (i) It follows from (a).

(ii) \Rightarrow (iii) One easily checks that $ev_{z_0} \colon \mathcal{O}(D) \to \mathbb{C}$ is a \mathbb{C} -linear ring homomorphism, hence $\{f \in \mathcal{O}(D); f(z_0) = 0\} = ev_{z_0}^{-1}(\{0\}) = \ker ev_{z_0}$.

(iii) \Rightarrow (ii): Set $z_0 = \chi(\mathrm{id}_D) \in \mathbb{C}$. Then $\chi(z - z_0) = \chi(\mathrm{id}_D) - z_0 = 0$, hence $z_0 \in D$, otherwise $(z - z_0)^{-1} \in \mathcal{O}(D)$ and $1 = \chi((z - z_0)^{-1}(z - z_0)) = \chi(z - z_0)^{-1}\chi(z - z_0) = 0$. Let $f \in \mathcal{O}(D)$. Then $f(z) = f(z_0) + (z - z_0)g(z)$ for $g \in \mathcal{O}(D)$, hence $\chi(f) = \chi(f(z_0)) + \chi((z - z_0))\chi(g(z)) = f(z_0) = ev_{z_0}(f)$. It follows that ker $\chi = \{f \in \mathcal{O}(D); f(z_0) = 0\}$. \Box

Problem 18. Set
$$\mathbb{E} = \{|z| < 1\}$$
 and $b_a(z) = \begin{cases} \frac{|a|}{a} \frac{z-a}{az-1} & \text{if } a \in \mathbb{E} \setminus \{0\}, \\ z & \text{if } a = 0. \end{cases}$

- (a) Show that for any $a \in \mathbb{E}$, the map $b_a(z)$ defines a biholomorphism of \mathbb{E} satisfying $b_a(\partial \mathbb{E}) = \partial \mathbb{E}$.
- (b) Prove that $|b_a(z) 1| \leq \frac{(1-|a|)(1+|z|)}{1-|z|}$ for any $a, z \in \mathbb{E}$.
- (c) Let $\{a_n\}_{n\in\mathbb{N}} \subset \mathbb{E}$ be a sequence such that the series $\sum_{n\geq 0}(1-|a_n|)$ converges. Prove that the infinite product $\prod_{n\geq 0} b_{a_n}(z)$ defines a holomorphic map $f: \mathbb{E} \to \mathbb{E}$ having a zero at any a_n .

Solution. (a) If a = 0 there is nothing to prove. If $a \in \mathbb{E} \setminus \{0\}$, then $\left|\frac{|a|}{a}\right| = 1$ hence $b_a(z)$ is a Möbius transformation which restricts to a conformal map $\mathbb{E} \to \mathbb{E}$ (see [7, Lecture 5]). It remains to prove that $b_a(\partial \mathbb{E}) = \partial \mathbb{E}$. We have

$$|b_a(z)| = \frac{|z-a|}{|\bar{a}z-1|} = 1 \iff |z-a|^2 = |\bar{a}z-1|^2 \iff (z-a)(\bar{z}-\bar{a}) = (1-\bar{a}z)(1-\bar{z}a).$$

This is equivalent to $(1 - |a|^2)(1 - |z|^2) = 0$, which holds iff |z| = 1, as |a| < 1.

(b) Let
$$z \in \mathbb{E}$$
. If $a = 0$, then $|z - 1| \le 1 + |z| \le \frac{1 + |z|}{1 - |z|}$. For $a \in \mathbb{E} \setminus \{0\}$, we have

$$|b_a(z) - 1| = \left| \frac{|a|(z-a) - a(\bar{a}z - 1)|}{a(\bar{a}z - 1)} \right| = \frac{(1 - |a|)|(|a|z+a)|}{|a||(\bar{a}z - 1)|} \le \frac{(1 - |a|)(1 + |z|)}{1 - |z|}$$

since $|\bar{a}z - 1| \ge 1 - |\bar{a}z| > 1 - |z|$.

(c) For any compact $K \subset \mathbb{E}$, we have

$$\|b_{a_n}(z) - 1\|_K \le (1 - |a_n|) \frac{1 + \|z\|_K}{1 - \|z\|_K}$$

by (b), as $a_n \in \mathbb{E}$ for any $n \ge 0$. Since $\sum_{n\ge 1}(1-|a_n|) < +\infty$, the series $\sum_{n\ge 1}(b_{a_n}(z)-1)$ is normally convergent in $\mathcal{O}(\mathbb{E})$, hence $\prod_{n\ge 0}b_{a_n}(z)$ defines a holomorphic map $f \in \mathcal{O}(\mathbb{E})$ having a zero at any a_n (but not identically zero as none of its factors vanishes). By (a), for any $z \in \mathbb{E}$ we have $|f(z)| = \prod_{n\ge 0} |b_{a_n}(z)| \le 1$, hence $f(\mathbb{E}) \subset \mathbb{E}$ by the Open Mapping Theorem, f being non-constant.

Problem 19. Let \mathbb{T} denote the right half-plane $\{Re \ z > 0\}$ and \mathbb{E} the unit disk $\{|z| < 1\}$.

- (a) Show that $t(z) = \frac{z-1}{z+1}$ defines a conformal map $t: \mathbb{T} \to \mathbb{E}$, and compute its inverse.
- (b) Let $d: \mathbb{T} \to \mathbb{N}$ be a positive divisor and $\{a_n\}_{n\geq 1} \subset \mathbb{C}^{\times}$ a sequence such that $\operatorname{supp} d = \{a_n; n \geq 1\}$ and $d(a_n) = \operatorname{cardinality}$ of $\{a_k; k \geq 1, a_k = a_n\}$.
 - Prove that the following are equivalent: (i) d = (f) for a bounded function $f \in \mathcal{O}(\mathbb{T})$:
 - (i) d = (f) for a bounded function $f \in \mathcal{O}(\mathbb{T})$;
 - (ii) the series $\sum_{n\geq 1} \frac{Re a_n}{|1+a_n|^2}$ converges.

(Hint: use the Blaschke condition and the inequality $\frac{1}{2}(1-|w|^2) \leq 1-|w| \leq (1-|w|^2)$ in \mathbb{E} .)

(c) Let $\{r_n\}_{n\geq 1} \subset \mathbb{R}_{>0}$ be a sequence with $r_n > 1$ for any $n \geq 1$ and such that $\sum_{n\geq 1}\frac{1}{r_n} = +\infty$. Show that, if $f \in \mathcal{O}(\mathbb{T})$ is a bounded function such that $f(r_n) = 0$ for any $n \geq 1$, then f vanishes identically on \mathbb{T} .

Solution. (a) We know (see [7, Lecture 6]) that $z \mapsto \frac{1}{z}$ maps conformally $\{\operatorname{Re} z > 1\}$ onto the open disk $\{|z - \frac{1}{2}| < \frac{1}{2}\}$. It follows that $t(z) = \frac{z-1}{z+1}$ defines a conformal map of \mathbb{T} onto \mathbb{E} , as it may be decomposed into

$$\mathbb{T} \xrightarrow{a} \{\operatorname{Re} z > 1\} \xrightarrow{b} \{|z - \frac{1}{2}| < \frac{1}{2}\} \xrightarrow{c} \mathbb{E}$$

where $b(z) = \frac{1}{z}$, and a(z) = z + 1 and c(z) = 1 - 2z are surjective affine transformations. As t(z) is the Möbius transformation associated to the projective matrix $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $t^{-1} \colon \mathbb{E} \to \mathbb{T}$ is given by the Möbius transformation associated to the inverse projective matrix $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, that is, $t^{-1}(z) = \frac{1+z}{1-z}$.

One may also proceed as follows: t(z) is a Möbius transformation, hence it defines a conformal map of $\mathbb{C} \setminus \{-1\}$ onto $\mathbb{C} \setminus \{1\}$, which sends simply connected open subsets to simply connected open subsets. By a direct computation, one gets $t(\partial \mathbb{T}) = \partial \mathbb{E} \setminus \{1\} \subset \partial \mathbb{E} \subset \partial t(\mathbb{T})$. It follows that $\partial t(\mathbb{T}) = \partial \mathbb{E}$, hence $t(\mathbb{T}) = \mathbb{E}$. The determination of the inverse follows also by an easy computation.

(b) The conformal map $t: \mathbb{T} \to \mathbb{E}$ induces a ring isomorphism

$$\mathcal{O}(\mathbb{T}) \to \mathcal{O}(\mathbb{E}), \quad f \mapsto \tilde{f} = f \circ t^{-1},$$

which sends bounded functions on \mathbb{T} to bounded functions on \mathbb{E} . Then (f) = d if and only if $(\tilde{f}) = \tilde{d}$, where $\tilde{d} = d \circ t^{-1} \colon \mathbb{E} \to \mathbb{N}$ is a positive divisor. By the Blaschke condition, this happens if and only if the series $\sum_{n\geq 1}(1 - |t(a_n)|)$ converges, as $\tilde{d}(t(a_n)) = d(a_n)$. From the inequality in \mathbb{E}

$$\frac{1}{2}(1-|w|^2) \le 1-|w| \le (1-|w|^2),$$

it follows that the above series converges if and only if so does the series $\sum_{n\geq 1}(1-|t(a_n)|^2)$. One then concludes, since for any $z\in\mathbb{T}$

$$1 - |t(z)|^2 = 4 \frac{\text{Re } z}{|1+z|^2}.$$

(c) Let $f \in \mathcal{O}(\mathbb{T})$ be a bounded function satisfying $f(r_n) = 0$ for any $n \ge 1$. If f was not identically zero, d = (f) would be a positive divisor. By (a), the series $\sum_{n\ge 1} \frac{r_n}{(1+r_n)^2}$ would converge, as a sub-series of $\sum_{n\ge 1} \frac{\text{Re } a_n}{|1+a_n|^2}$, with $\{a_n\}_{n\ge 1} \subset \mathbb{C}^{\times}$ a sequence satisfying $\sup d = \{a_n; n \ge 1\}$ and $d(a_n) = \text{cardinality of } \{a_k; a_k = a_n, k \ge 1\}$. But this is impossible, as

$$\sum_{n \ge 1} \frac{r_n}{(1+r_n)^2} \ge \frac{1}{4} \sum_{n \ge 1} \frac{1}{r_n} = +\infty.$$

Problem 20. Consider the infinite product

$$\prod_{n\geq 1} (1+q^n z) \qquad for \ q \in \mathbb{C}$$

(a) Find the q's for which the infinite product converges normally in $\mathcal{O}(\mathbb{C})$ to $f_q(z)$.

- (b) For any q as in (a), show that $\prod_{n\geq 1,n \text{ odd}}(1+q^n)$ and $\prod_{n\geq 1,n \text{ odd}}(1-q^n)^{-1}$ may be recovered as special values of $f_p(w)$ for some p and w. (Hint: for the second use $(1+q^n)(1-q^n) = (1-q^{2n})$.)
- (c) For any q as in (a), show that $f_q(z)$ never vanishes in the unit disk $\mathbb{E} = \{|z| < 1\}$, and compute $\partial \log f_q(0)$.
- (d) For any q as in (a), compute the Taylor series of $f_q(z)$ at z = 0. (Hint: use $\prod_{n\geq 1}(1+q^nz) = (1+qz)\prod_{n\geq 1}(1+q^nqz)$.)

Solution. (a) The infinite product $\prod_{n\geq 1}(1+q^n z)$ converges normally in $\mathcal{O}(\mathbb{C})$ iff the series $\sum_{n\geq 1}q^n z$ converges normally in $\mathcal{O}(\mathbb{C})$, and this happens iff |q| < 1. For any such q, set $f_q(z)$ the entire function defined by the corresponding infinite product.

(b) Since $\prod_{n\geq 1}(1+q^n)$ is convergent, so does $\prod_{n\geq 1,n \text{ odd}}(1+q^n)$ and, if $q\neq 0$, this is equal to $\prod_{n\geq 1}(1+q^{2n-1}) = f_{q^2}(q^{-1})$ (note that, if |q| < 1, then $|q^2| < 1$ and f_{q^2} is well-defined).

From $(1+q^n)(1-q^n) = (1-q^{2n})$, one has

$$\prod_{n=1}^{k} (1+q^n) = \frac{1-q^2}{1-q} \frac{1-q^4}{1-q^2} \frac{1-q^6}{1-q^3} \frac{1-q^8}{1-q^4} \dots \frac{1-q^{2k}}{1-q^k} = \prod_{n=1, n \text{ odd}}^{k} (1-q^n)^{-1} \prod_{n=k+1, n \text{ even}}^{2k} (1-q^n).$$
As

$$\lim_{k \to +\infty} \prod_{n=k+1}^{2k} (1-q^n) = \lim_{k \to +\infty} \frac{\prod_{n \ge k+1} (1-q^n)}{\prod_{n \ge 2k+1} (1-q^n)} = \frac{1}{1},$$

we get $f_q(1) = \prod_{n \ge 1, n \text{ odd}} (1 - q^n)^{-1}$.

(c) $f_q(z) = 0$ iff one of the factors $1 + q^n z = 0$, i.e. $z = -q^{-n}$ for some $n \ge 1$ if $q \ne 0$. As |q| < 1, then $|-q^{-n}| = |q|^{-n} > 1$ for any $n \ge 1$, so that $f_q(z)$ never vanishes in \mathbb{E} . One has

$$\partial \log f_q(z) = \sum_{n \ge 1} \partial \log(1 + q^n z) = \sum_{n \ge 1} \frac{q^n}{1 + q^n z},$$

whence

$$\partial \log f_q(0) = \sum_{n \ge 1} q^n = \frac{1}{1-q} - 1 = \frac{q}{1-q}.$$

(d) From
$$\prod_{n\geq 1}(1+q^n z) = (1+qz)\prod_{n\geq 1}(1+q^n qz)$$
, we get the functional equation $f_q(z) = (1+qz)f_q(qz).$

Let $f_q(z) = \sum_{n\geq 0} a_n z^n$ be the Taylor series at z = 0. We have $a_0 = f_q(0) = 1$, and the functional equation gives $a_n = a_n q^n + q a_{n-1} q^{n-1}$ for any $n \geq 1$, i.e. $a_n = \frac{q^n}{1-q^n} a_{n-1}$. By induction, one gets $a_n = \frac{q^{1+2+\cdots+n}}{(1-q)(1-q^2)\dots(1-q^n)}$ for any $n \geq 1$. Whence

$$f_q(z) = 1 + \sum_{n \ge 1} \frac{q^{\frac{n(n+1)}{2}}}{(1-q)(1-q^2)\dots(1-q^n)} z^n.$$

Problem 21. Consider the infinite products

$$\prod_{n \ge 1} (1 + (-1)^n z^n), \quad \prod_{n \ge 1} (1 + z^{2n-1})$$

- (a) Show that they converge normally in $\mathcal{O}(\mathbb{E})$ to never vanishing functions f(z) and g(z). (Here $\mathbb{E} = \{|z| < 1\}$ denotes the unit disk.)
- (b) Compute the product f(z)g(z) for any $z \in \mathbb{E}$.

Solution. (a) The infinite products converge normally in $\mathcal{O}(\mathbb{E})$, since the series $\sum_{n\geq 1}(-1)^n z^n$ and $\sum_{n\geq 1} z^{2n-1}$ converge normally in $\mathcal{O}(\mathbb{E})$. They define holomorphic functions f(z) and g(z) on \mathbb{E} , which never vanish, since none of their factors vanishes on \mathbb{E} .

(b) From $(1 + (-1)^n z^n)(1 - (-1)^n z^n) = (1 - z^{2n})$, one has $\prod_{i=1}^{k} (1+(-1)^{n} z^{n}) = \frac{\prod_{i=1}^{k} (1-z^{2n})}{\prod_{i=1}^{k} (1-(-1)^{n} z^{n})}.$

It follows that

$$\lim_{k \to +\infty} \prod_{n=1}^{k} (1 + (-1)^n z^n) \prod_{n=1}^{k} (1 + z^{2n-1}) = \lim_{k \to +\infty} \frac{\prod_{n=1}^{2k} (1 - (-1)^n z^n)}{\prod_{n=1}^{k} (1 - (-1)^n z^n)},$$

$$z)q(z) = 1 \text{ for any } z \in \mathbb{E}.$$

hence f(z)g(z) = 1 for any $z \in$

- (a) Prove that $\prod_{n\geq 1} \frac{(2n)^2}{(2n-1)(2n+1)}$ is convergent. Prove that $\prod_{n\geq 1} \frac{1+\frac{2z}{2n-1}}{1+\frac{2z}{2n+1}} =$ Problem 22. $1+2z \text{ in } \mathcal{O}(B_1(0)).$
 - (b) Prove that $z \prod_{n \ge 1} \left(1 \frac{z^2}{n^2}\right)$ is normally convergent to an entire function g(z), and compute its zeros with multiplicities.
 - (c) Prove that q(z) satisfies the functional equation (0.1) in **Problem** 2. Deduce the sine product $\frac{\sin(\pi z)}{\pi} = z \prod_{n \ge 1} \left(1 - \frac{z^2}{n^2} \right)$. (Hint: use $\frac{(2n-1)(2n+1)}{(2n)^2} \left(1 - \frac{(2z)^2}{(2n-1)^2} \right) = \frac{1}{2} \left(1 - \frac{(2z)^2}{(2n-1)^2} \right)$ $\frac{1+\frac{2z}{2n-1}}{1+\frac{2z}{2n-1}}\left(1-\frac{(z+\frac{1}{2})^2}{n^2}\right)$.

Solution. (a) The first infinite product is convergent, since

$$\frac{(2n)^2}{(2n-1)(2n+1)} - 1 = \frac{1}{4n^2 - 1} \sim \frac{1}{4n^2} \quad \text{for } n \to +\infty$$

with $\sum_{n\geq 1} \frac{1}{4n^2} < +\infty$. For the second, we have

$$\prod_{n\geq 1}^{k} \frac{1+\frac{2z}{2n-1}}{1+\frac{2z}{2n+1}} = \frac{1+2z}{1+\frac{2z}{3}} \frac{1+\frac{2z}{3}}{1+\frac{2z}{5}} \dots \frac{1+\frac{2z}{2k-1}}{1+\frac{2z}{2k+1}} = \frac{1+2z}{1+\frac{2z}{2k+1}}$$

with $\frac{1+\frac{2n}{2n-1}}{1+\frac{2n}{2n+1}}$ holomorphic in $B_1(0)$ for any $n \ge 1$, hence we get

$$\prod_{n\geq 1} \frac{1+\frac{2z}{2n-1}}{1+\frac{2z}{2n+1}} = \lim_{k \to +\infty} \frac{1+2z}{1+\frac{2z}{2k+1}} = 1+2z \text{ in } \mathcal{O}(B_1(0))$$

(b) For any compact $K \subset \mathbb{C}$ and any $z \in K$, we have

$$\left|1 - \frac{z^2}{n^2} - 1\right| \le \frac{\|z\|_K^2}{n^2}$$

with $\sum_{n\geq 1} \frac{1}{n^2} < +\infty$, hence the infinite product is normally convergent in $\mathcal{O}(\mathbb{C})$. Since $\left(1-\frac{z^2}{n^2}\right)=0$ iff $z=\pm n$ for any $n\geq 1$, it follows that $g(z)=z\prod_{n\geq 1}\left(1-\frac{z^2}{n^2}\right)$ has zeros exactly at the points $z\in\mathbb{Z}$, all with multiplicity 1.

(c) Set $\lambda = \prod_{n \ge 1} \frac{(2n)^2}{(2n-1)(2n+1)}$. By using normal convergence, we get

$$\begin{split} g(2z) &= 2z \prod_{n \ge 1} \left(1 - \frac{(2z)^2}{(2n)^2} \right) \prod_{n \ge 1} \left(1 - \frac{(2z)^2}{(2n-1)^2} \right) \\ &= 2g(z) \prod_{n \ge 1} \left(1 - \frac{(2z)^2}{(2n-1)^2} \right) \\ &= 2g(z) \lambda \prod_{n \ge 1} \frac{(2n-1)(2n+1)}{(2n)^2} \left(1 - \frac{(2z)^2}{(2n-1)^2} \right) \\ &= 2g(z) \lambda \prod_{n \ge 1} \frac{1 + \frac{2z}{2n-1}}{1 + \frac{2z}{2n+1}} \left(1 - \frac{(z+\frac{1}{2})^2}{n^2} \right) \\ &= 2g(z) \lambda (1+2z) \prod_{n \ge 1} \left(1 - \frac{(z+\frac{1}{2})^2}{n^2} \right) = 4\lambda g(z) g\left(z + \frac{1}{2} \right) \end{split}$$

Hence g satisfies the functional equation (0.1) in **Problem** 2 with $c = \frac{1}{4\lambda}$.

As g is entire and odd, from (0.1) it follows that $g(z) = \frac{1}{2\lambda} \sin(\pi z)$. Finally, since

$$1 = \lim_{z \to 0} \frac{\sin(\pi z)}{\pi z} = \lim_{z \to 0} \frac{2\lambda g(z)}{\pi z} = \frac{2\lambda}{\pi}$$

we get $\lambda = \frac{\pi}{2}$ (Wallis' formula).

Problem 23. Consider the infinite product $\prod_{n=-\infty}^{\infty} \left(1 + \frac{z}{n-\lambda}\right) e^{-\frac{z}{n-\lambda}}$ with $\lambda \in \mathbb{C} \setminus \mathbb{Z}$.

- (a) Prove that $|(1-z)e^z 1| \le |z|^2$ for |z| < 1.
- (b) Show that infinite product converges normally in $\mathcal{O}(\mathbb{C})$ to a function $f_{\lambda}(z)$ having a zero at $n + \lambda$ for any $n \in \mathbb{Z}$.
- (c) Find $\alpha > 0$ and $\beta \in \mathbb{C}$ such that $\sin(\alpha(z+\beta))$ and $f_{\lambda}(z)$ define the same divisor.
- (d) For α, β as in (c), find explicitly a function $v_{\lambda}(z)$ such that $\sin(\alpha(z+\beta)) = e^{v_{\lambda}(z)}f_{\lambda}(z)$.

Solution. (a) For any |z| < 1, we have

$$|(1-z)e^{z} - 1| = \left|\sum_{n\geq 0} \frac{z^{n}}{n!} - \sum_{n\geq 0} \frac{z^{n+1}}{n!} - 1\right| \le \sum_{n\geq 2} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right) |z|^{n} = |z|^{2},$$

as the series $\sum_{n\geq 2} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right)$ telescopes to 1. (See **Problem** 27 (a).)

(b) For any compact $K \subset \mathbb{C}$, take $n_K \in \mathbb{N}$ such that $n_K - |\lambda| > ||z||_K$. Then for any $z \in K$ and $|n| \ge n_K$, we have $\left|\frac{z}{n-\lambda}\right| \le \frac{|z|}{|n|-|\lambda|} \le \frac{||z||_K}{n_K - |\lambda|} < 1$, hence by (a)

$$\left| \left(1 + \frac{z}{n-\lambda} \right) e^{-\frac{z}{n-\lambda}} - 1 \right| \le \left| \frac{z}{n-\lambda} \right|^2 \le \frac{\|z\|_K^2}{(|n|-|\lambda|)^2}$$

Since $\sum_{|n|\geq 1} \frac{1}{(|n|-|\lambda|)^2} < +\infty$, the series $\sum_{|n|\geq 1} \left\| \left(1 + \frac{z}{n-\lambda}\right) e^{-\frac{z}{n-\lambda}} - 1 \right\|_K$ is convergent, hence $\prod_{n=-\infty}^{\infty} \left(1 + \frac{z}{n-\lambda}\right) e^{-\frac{z}{n-\lambda}}$ defines an entire holomorphic map $f_{\lambda}(z)$, which has a zero at $n + \lambda$ for any $n \in \mathbb{Z}$.

(c) The zeros of $f_{\lambda}(z)$ are all simple, as well as those of $\sin(\alpha(z+\beta))$ for $\alpha > 0$. It follows that they define the same divisor if and only if $\sin(\alpha(n+\lambda+\beta)) = 0$ for any $n \in \mathbb{Z}$, for some $\alpha > 0$ and $\beta \in \mathbb{C}$, that is, iff $\alpha = \pi$ and $\beta = -\lambda$.

(d) Clearly, since $\sin(\pi(z - \lambda))$ and $f_{\lambda}(z)$ have the same divisor and \mathbb{C} is simply connected, there exist a function $v_{\lambda}(z)$ such that $\sin(\pi(z - \lambda)) = e^{v_{\lambda}(z)}f_{\lambda}(z)$. To find it explicitly, by taking $\partial \log$ of the previous equality, we get

$$\pi \cot(\pi(z-\lambda)) = v'_{\lambda}(z) + \sum_{n=-\infty}^{\infty} \left(\frac{\frac{1}{n-\lambda}}{1+\frac{z}{n-\lambda}} - \frac{1}{n-\lambda}\right)$$
$$= v'_{\lambda}(z) + \sum_{n=-\infty}^{\infty} \left(\frac{1}{z+n-\lambda} - \frac{1}{n-\lambda}\right)$$
$$= v'_{\lambda}(z) + p.v. \sum_{n=-\infty}^{\infty} \frac{1}{z-\lambda+n} - p.v. \sum_{n=-\infty}^{\infty} \frac{1}{-\lambda+n}$$
$$= v'_{\lambda}(z) + \pi \cot(\pi(z-\lambda)) - \pi \cot(-\pi\lambda)$$

that is, $v'_{\lambda}(z) = \pi \cot(-\pi\lambda)$. It follows that $v_{\lambda}(z) = \pi \cot(-\pi\lambda)z + c$ for some $c \in \mathbb{C}$. Since $f_{\lambda}(z) = 1$, we get $\sin(-\pi\lambda) = e^{v_{\lambda}(0)} = e^{c}$, hence $c = \log(\sin(-\pi\lambda))$.

Problem 24. Let $\{a_n\}_{n\in\mathbb{N}} \subset \mathbb{C}$ be a sequence of bounded variation, i.e. satisfying $\sum_{n\geq 0} |a_{n+1}-a_n| < +\infty$.

- (a) Show that the series $\sum_{n\geq 0} a_n z^n$ converges normally in $\mathcal{O}(\mathbb{E})$ to a function f.
- (b) Suppose $a_0 = a_1 = 1$ and set $a = \sum_{n \ge 0} |a_{n+1} a_n|$ and E(z) = (1-z)f(z). Show that $|E(z) 1| \le a|z|^2$ for any $z \in \mathbb{E}$.
- (c) In the situation of (b), suppose moreover that f extends analytically in \mathbb{C} . Show that $\prod_{n\geq 1} E(\frac{z}{n})$ converges normally in $\mathcal{O}(\mathbb{C})$ to an holomorphic function g having a zero at any $n \geq 1$.
- (d) Set $a_n = \frac{1}{n!}$. Show that the sequence $\{a_n\}_{n \in \mathbb{N}}$ is of bounded variation. Then prove that $zg(z)g(-z) = \frac{\sin(\pi z)}{\pi}$ and compute g(-1).

Solution. (a) For any $k \ge 1$ we have

$$|a_k| = |a_0 + \sum_{n=0}^{k-1} (a_{n+1} - a_n)| \le |a_0| + \sum_{n=0}^{k-1} |a_{n+1} - a_n| \le |a_0| + \sum_{n\ge 0} |a_{n+1} - a_n|,$$

hence $\{a_n\}_{n\in\mathbb{N}}$ is a bounded sequence. (In fact, in the same way one may prove that $\{a_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence, hence convergent.)

For any compact $K \subset \mathbb{E}$ and any $n \geq 0$ we get $||a_n z^n||_K = |a_n| ||z||_K^n \leq \text{cost.} ||z||_K^n$. Since $\sum_{n\geq 0} ||z||_K^n < +\infty$, the series $\sum_{n\geq 0} a_n z^n$ converges normally in $\mathcal{O}(\mathbb{E})$. (b) For $z \in \mathbb{E}$, we have

$$E(z) = (1-z)f(z) = \sum_{n\geq 0} a_n z^n - \sum_{n\geq 1} a_{n-1} z^n = a_0 + \sum_{n\geq 1} (a_n - a_{n-1}) z^n.$$

Since $a_0 = a_1 = 1$ and |z| < 1, we get

$$|E(z) - 1| = \left| \sum_{n \ge 2} (a_n - a_{n-1}) z^n \right| \le \sum_{n \ge 2} |a_n - a_{n-1}| |z|^n \le a |z|^2.$$

(c) Since f extends analytically on \mathbb{C} , $E(\frac{z}{n}) \in \mathcal{O}(\mathbb{C})$ for any $n \in \mathbb{N}$. For a compact $K \subset \mathbb{C}$, take $n_K \in \mathbb{N}$ such that $n_K > ||z||_K$. Then for any $z \in K$ and $n \ge n_K$, we have $\left|\frac{z}{n}\right| < 1$, hence by (b)

$$\left| E\left(\frac{z}{n}\right) - 1 \right| \le a \left| \frac{z}{n} \right|^2 \le a \frac{\left\| z \right\|_K^2}{n^2}.$$

Since $\sum_{n \ge n_K} \frac{1}{n^2} < +\infty$, the series $\sum_{n \ge n_K} \left\| E(\frac{z}{n}) - 1 \right\|_K$ converges. It follows that the infinite product $\prod_{n \ge 1} E(\frac{z}{n})$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function g.

Since $E(\frac{z}{n}) = 0$ if z = n, it follows that any $n \ge 1$ is a zero of g.

(d) As the sequence $\{\frac{1}{n!}\}_{n \in \mathbb{N}}$ is decreasing, we get a telescoping series

$$\sum_{n\geq 0} \left| \frac{1}{(n+1)!} - \frac{1}{n!} \right| = \sum_{n\geq 0} \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right) = 1.$$

For $a_n = \frac{1}{n!}$, we have $f(z) = e^z$, hence

$$g(z) = \prod_{n \ge 1} \left(1 - \frac{z}{n} \right) e^{\frac{z}{n}}$$

By using the sine product, we get

$$zg(z)g(-z) = z\prod_{n\geq 1} \left(1 - \frac{z}{n}\right) e^{\frac{z}{n}} \prod_{n\geq 1} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}} = z\prod_{n\geq 1} \left(1 - \frac{z^2}{n^2}\right) = \frac{\sin(\pi z)}{\pi}$$

Note that

$$g(-z) = \frac{\Delta(z)}{ze^{\gamma z}}$$

where $\Delta(z)$ is the Weierstrass Delta function and γ the Euler-Mascheroni constant, hence

$$g(-1) = \prod_{n \ge 1} \left(1 + \frac{1}{n} \right) e^{-\frac{1}{n}} = \frac{\Delta(1)}{e^{\gamma}} = e^{-\gamma}.$$

In order to prove the above equality directly, one uses the following computation

$$\log g(-1) = \sum_{n \ge 1} \left(\log \left(1 + \frac{1}{n} \right) - \frac{1}{n} \right)$$
$$= -\sum_{n=1}^{\infty} \left(\frac{1}{n} + \log n - \log(n+1) \right)$$
$$= -\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log(n+1) \right) = -\gamma$$

Problem 25. (a) Let $f \in \mathcal{O}(\mathbb{C})$ satisfy f(0) = 1 and f'(0) = 0. Show that $\prod_{n \ge 1} f(\frac{z}{n})$ converges normally in $\mathcal{O}(\mathbb{C})$.

- (b) Let f(z) be the analytic continuation of $\frac{\sin \pi z}{\pi z}$ on \mathbb{C} . Show that $\prod_{n\geq 1} f(\frac{z}{2n-1})$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function g and compute the divisor (g).
- (c) Prove that $g(z) = \prod_{n>1} \cos(\frac{\pi z}{2n})$. (Hint: use the sine product)

Solution. (a) The function f(z) - 1 has a zero of order ≥ 2 in 0, hence we may write $f(z) - 1 = a(z)z^2$ for $a \in \mathcal{O}(\mathbb{C})$. For a compact $K \subset \mathbb{C}$, take $n_K \in \mathbb{N}$ such that $n_K \geq ||z||_K$. Then for any $z \in K$ and $n \geq n_K$, we have $|\frac{z}{n}| \leq 1$ and

$$\left| f\left(\frac{z}{n}\right) - 1 \right| = \left| a\left(\frac{z}{n}\right) \right| \left| \frac{z}{n} \right|^2 \le \|a\|_{\overline{\mathbb{E}}} \|z\|_K^2 \frac{1}{n^2}.$$

Since $\sum_{n \ge n_K} \frac{1}{n^2} < +\infty$, the series $\sum_{n \ge n_K} \left\| f(\frac{z}{n}) - 1 \right\|_K$ converges. It follows that the infinite product $\prod_{n\ge 1} f(\frac{z}{n})$ converges normally in $\mathcal{O}(\mathbb{C})$.

(b) Since f(0) = 1 and f'(0) = 0, by (a) $\prod_{n \ge 1} f(\frac{z}{2n-1})$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function g. Since f(z) has a first order zero at any non-zero integer, g(z) = 0 iff $z \in (2n-1)\mathbb{Z} \setminus \{0\}$ for some integer $n \ge 1$. It follows that

 $(g)(z) = \begin{cases} \#\{\text{positive odd integers which divide } z\} & \text{if } z \in \mathbb{Z} \setminus \{0\}, \\ 0 & \text{otherwise.} \end{cases}$

(c) For any $n \ge 1$ and $z \ne 0$, the sine product formula gives

$$\frac{\sin\left(\pi\frac{z}{2n-1}\right)}{\pi\frac{z}{2n-1}} = \prod_{m\geq 1} \left(1 - \frac{\left(\frac{z}{2n-1}\right)^2}{m^2}\right) = \prod_{m\geq 1} \left(1 - \frac{\left(\frac{z}{m}\right)^2}{(2n-1)^2}\right)$$

hence for any $z \neq 0$ we get

$$\prod_{n\geq 1} f\left(\frac{z}{2n-1}\right) = \prod_{n\geq 1} \frac{\sin\left(\pi \frac{z}{2n-1}\right)}{\pi \frac{z}{2n-1}} = \prod_{n,m\geq 1} \left(1 - \frac{\left(\frac{z}{m}\right)^2}{(2n-1)^2}\right).$$

The result follows by recalling that for any $m \ge 1$

$$\prod_{n\geq 1} \left(1 - \frac{4\left(\frac{z}{2m}\right)^2}{(2n-1)^2} \right) = \cos\left(\pi \frac{z}{2m}\right)$$

(see [7, Lecture 14]), and by the uniqueness theorem.

Note that one can also use directly the formula

$$\cos\left(\pi\frac{z}{2m}\right) = \frac{\sin\left(\pi\frac{z}{2n-1}\right)}{2\sin\left(\pi\frac{z}{2m}\right)}.$$

Problem 26. For $n \in \mathbb{N}$, set $E_n(z) = (1-z)e^{p_n(z)}$ with $p_n(z) = z + \frac{z^2}{2} + \cdots + \frac{z^n}{n}$ for $n \ge 1$ and $p_0(z) = 0$.

(a) Show that $-\frac{E'_n(z)}{z^n}$ extends to an entire function $F_n(z)$ satisfying $|F_n(z)| \le F_n(|z|)$.

(b) Prove that

$$|E_n(z) - 1| \le |z|^{n+1} \int_0^1 t^n F_n(t|z|) dt$$

- for any $z \in \mathbb{C}$ and deduce that $|E_n(z) 1| \le |z|^{n+1}$ if $|z| \le 1$. (c) Let $\{a_n\}_{n \ge 0} \subset \mathbb{C}^{\times}$ be a sequence satisfying $\lim_{n \to \infty} |a_n| = +\infty$. Show that for any choice of a sequence $\{k_n\}_{n\geq 0} \subset \mathbb{N}$ satisfying $\sum_{n\geq 0} \left(\frac{r}{|a_n|}\right)^{k_n+1} < +\infty$ for any r > 0, the infinite product $\prod_{n \ge 0} E_{k_n}\left(\frac{z}{a_n}\right)$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function having a zero at any a_n .
- (d) Show that $\prod_{n>0} \left(1 \frac{z}{2^n}\right)$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function f satisfying $f(z) = (1-z)f(\frac{z}{2}).$
- (e) Let g be an entire function satisfying $g(z) = (1-z)g(\frac{z}{2})$ and $g(0) \neq 0$. Show that g = g(0)f.

Solution. (a) We have $E'_n(z) = -z^n e^{p_n(z)}$, hence $F_n(z) = e^{p_n(z)}$ and $|F_n(z)| = e^{\operatorname{Re}(p_n(z))} < e^{|p_n(z)|} < F_n(|z|)$

(b) Since $E_n(0) = 1$, we get

$$|E_n(z) - 1| = \left| \int_{[0,z]} E'_n(w) dw \right| \le |z|^{n+1} \int_0^1 t^n |F_n(tz)| dt \le |z|^{n+1} \int_0^1 t^n F_n(t|z|) dt$$

For $|z| \leq 1$, we have $F_n(t|z|) \leq F_n(t)$ for any $t \geq 0$, hence

$$E_n(z) - 1| \le |z|^{n+1} \int_0^1 t^n F_n(t) dt = |z|^{n+1} \int_0^1 -E'_n(t) dt = |z|^{n+1}$$

as $E_n(1) = 0$.

(c) For a compact $K \subset \mathbb{C}$, take $n_K \in \mathbb{N}$ such that $|a_{n_K}| \ge ||z||_K$. Then for any $z \in K$ and $n \ge n_K$, we have $|\frac{z}{a_n}| \le 1$. By (b) we get for any $k_n \in \mathbb{N}$

$$\left| E_{k_n} \left(\frac{z}{a_n} \right) - 1 \right| \le \left| \frac{z}{a_n} \right|^{k_n + 1} \le \left(\frac{\|z\|_K}{|a_n|} \right)^{k_n + 1}$$

Since $\sum_{n \ge n_K} \left(\frac{\|z\|_K}{|a_n|}\right)^{k_n+1} < +\infty$, the series $\sum_{n \ge n_K} \left\| E_{k_n}(\frac{z}{a_n}) - 1 \right\|_K$ converges. It follows that the infinite product $\prod_{n\geq 0} E_{k_n}\left(\frac{z}{a_n}\right)$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function having a zero at any a_n .

(d) Since $\lim_{n\to\infty} 2^n = +\infty$ and $\sum_{n\geq 0} \frac{1}{2^n} < +\infty$, we may chose $k_n = 0$ for any $n \in \mathbb{N}$. As $E_0(z) = 1 - z$, it follows by (c) that $\prod_{n\geq 0} \left(1 - \frac{z}{2^n}\right)$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function f satisfying

$$f(z) = (1-z) \prod_{n \ge 1} \left(1 - \frac{z}{2^n} \right) = (1-z) f\left(\frac{z}{2}\right)$$

(e) By induction, g must satisfy for any $n \in \mathbb{N}$

$$g(z) = \prod_{k=0}^{n} \left(1 - \frac{z}{2^k}\right) g\left(\frac{z}{2^{n+1}}\right)$$
28

By taking $n \to +\infty$, we get

$$g(z) = \prod_{n \ge 0} \left(1 - \frac{z}{2^n} \right) g(0)$$

Problem 27. Set $E(z) = (1 - z)e^z$ for any $z \in \mathbb{C}$.

- (a) Show that $|E(z) 1| \le |z|^2$ for any $|z| \le 1$.
- (b) Show that the infinite products

$$\prod_{n \ge 1} E\left(-\frac{z}{2n}\right) \quad and \quad \prod_{n \ge 0} E\left(\frac{z}{2n+1}\right)$$

converge normally in $\mathcal{O}(\mathbb{C})$ to functions a(z) and b(z), respectively.

(c) Show that for any $z \in \mathbb{C}$

$$za(z)b(z) = 2^{z+1}\sqrt{\pi}\Delta\left(\frac{z}{2}\right)\Delta\left(\frac{1-z}{2}\right)$$

where Δ is the Weierstress' Delta function. (Hint: use the duplication formula) (d) Show that

$$a(z)b(z) = 2^{z} \prod_{n \ge 1} \left(1 + (-1)^{n} \frac{z}{n} \right)$$

where the infinite product is convergent (not normally convergent!) in $\mathcal{O}(\mathbb{C})$. Express the value of $\prod_{n>1} \left(1 + (-1)^n \frac{z}{n}\right)$ in term of the Gamma function.

Solution. (a) This is a particular case of **Problem** 4 (b) and of **Problem** [?] (b). Choosing for example the first method, we have for any $|z| \leq 1$

$$|E(z) - 1| = |e^z - ze^z - 1| = \left| \sum_{n \ge 2} \left(\frac{1}{n!} - \frac{1}{(n-1)!} \right) z^n \right| \le \sum_{n \ge 2} \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right) |z|^n = |z|^2,$$

as the series $\sum_{n\geq 2} \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right)$ telescopes to 1.

(b) For a compact $K \subset \mathbb{C}$, take $n_K \in \mathbb{N}$ such that $2n_K > ||z||_K$. Then for any $z \in K$ and $n \ge n_K$, we have $|\frac{z}{2n+1}| < |\frac{z}{2n}| < 1$, hence by (a)

$$\left| E\left(-\frac{z}{2n}\right) - 1 \right| \le \left|\frac{z}{2n}\right|^2 \le \frac{\|z\|_K^2}{(2n)^2} \quad \text{and} \quad \left| E\left(\frac{z}{2n+1}\right) - 1 \right| \le \left|\frac{z}{2n+1}\right|^2 \le \frac{\|z\|_K^2}{(2n+1)^2}$$

Since $\sum_{n\geq n_K} \frac{1}{n^2} < +\infty$, the series $\sum_{n\geq n_K} \left\| E(-\frac{z}{2n}) - 1 \right\|_K$ and $\sum_{n\geq n_K} \left\| E(\frac{z}{2n+1}) - 1 \right\|_K$ converge. It follows that the infinite products $\prod_{n\geq 1} E\left(-\frac{z}{2n}\right)$ and $\prod_{n\geq 0} E\left(\frac{z}{2n+1}\right)$ converge normally in $\mathcal{O}(\mathbb{C})$ to functions a(z) and b(z), respectively.

(c) Recall that $\Delta(z) = z e^{\gamma z} G(z)$ with γ the Euler-Mascheroni's constant and

$$G(z) = \prod_{n \ge 1} \left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}}$$

The duplication formula for the Gamma function in terms of Δ reads as

$$\Delta(2z) = \frac{\sqrt{\pi}}{2^{2z-1}} \Delta\left(z + \frac{1}{2}\right) \Delta(z)$$
²⁹

From this, one gets

$$\sqrt{\pi}2^{z+1}\Delta\left(-\frac{z}{2}+\frac{1}{2}\right)\Delta\left(\frac{z}{2}\right) = \frac{\Delta(-z)}{\Delta\left(-\frac{z}{2}\right)}\Delta\left(\frac{z}{2}\right) = \frac{zG(-z)}{G\left(-\frac{z}{2}\right)}G\left(\frac{z}{2}\right) = za(z)b(z)$$

(d) One has

$$a(z)b(z) = \lim_{k \to +\infty} (1-z) \prod_{n=1}^{k} \left(1 + \frac{z}{2n}\right) \left(1 - \frac{z}{2n+1}\right) e^{z\left(\frac{1}{2n+1} - \frac{1}{2n}\right)}$$
$$= \lim_{k \to +\infty} e^{z\sum_{n=1}^{2k+1} (-1)^n \frac{1}{n}} \prod_{n=1}^{2k+1} \left(1 + (-1)^n \frac{z}{n}\right) = e^{z\log 2} \prod_{n \ge 1} \left(1 + (-1)^n \frac{z}{n}\right)$$

By (c), one has

$$z2^{z}\prod_{n\geq 1}\left(1+(-1)^{n}\frac{z}{n}\right) = 2^{z+1}\sqrt{\pi}\Delta\left(\frac{z}{2}\right)\Delta\left(\frac{1-z}{2}\right)$$

Recalling that $\Gamma(z) = \frac{1}{\Delta(z)}$, one finally gets

$$\prod_{n\geq 1} \left(1 + (-1)^n \frac{z}{n} \right) = \frac{2\sqrt{\pi}}{z\Gamma\left(\frac{z}{2}\right)\Gamma\left(\frac{1-z}{2}\right)} = \frac{\sqrt{\pi}}{\Gamma\left(1 + \frac{z}{2}\right)\Gamma\left(\frac{1-z}{2}\right)}$$

Problem 28. Consider the infinite product

$$\prod_{n \ge 1} \left(\frac{n}{n+1} \right)^z \left(1 + \frac{z}{n} \right)$$

- (a) Show that it converges normally in $\mathcal{O}(\mathbb{C})$ to a function f(z).
- (b) Show that $f(z) = \Delta(z+1)$, where Δ denotes the Weierstress' Delta function.

Solution. (a) Set

$$f_n(z) = \left(\frac{n}{n+1}\right)^z \left(1 + \frac{z}{n}\right) = e^{-z \log\left(1 + \frac{1}{n}\right)} \left(1 + \frac{z}{n}\right)$$

Then by the mean value theorem, for any r > 0 and $z \in \overline{B_r(0)}$ we have

$$|f_n(z) - 1| = |f_n(z) - f_n(0)| \le ||f'_n||_{[0,z]} |z|$$

$$\le e^{r \log(1 + \frac{1}{n})} r \left\| \frac{1}{n} - \log\left(1 + \frac{1}{n}\right) \left(1 + \frac{z}{n}\right) \right\|_{\overline{B_r(0)}}$$

For $n \to +\infty$, we have $\log\left(1+\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2}\frac{1}{n^2} + o(\frac{1}{n^2})$, hence the right hand term is $\sim C_r \frac{1}{n^2}$ for a constant C_r depending on r. Since $\sum_{n\geq 1} \frac{1}{n^2} < +\infty$, the series $\sum_{n\geq 1} \|f_n(z) - 1\|_{\overline{B_r(0)}}$ converges. It follows that the infinite product $\prod_{n\geq 1} \left(\frac{n}{n+1}\right)^z \left(1+\frac{z}{n}\right)$ converges normally in $\mathcal{O}(\mathbb{C})$ to a function f(z).

(b) Recall that $\Delta(z) = ze^{\gamma z}G(z)$ with $\gamma = \lim_{k \to \infty} \left(\sum_{n=1}^{k} \frac{1}{n} - \log k\right)$ the Euler-Mascheroni's constant and

$$G(z) = \prod_{n \ge 1} \left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}}$$

Thanks to functional equation $\Delta(z) = z\Delta(z+1)$, it is enough to prove that $f(z) = e^{\gamma z}G(z)$. As

$$e^{-\frac{z}{n}} = e^{-\frac{z}{n} + z \log\left(1 + \frac{1}{n}\right)} \left(1 + \frac{1}{n}\right)^{-z} = e^{z\left[-\frac{1}{n} - \log n + \log(n+1)\right]} \left(\frac{n}{n+1}\right)^{z}$$

we get

$$e^{\gamma z}G(z) = \lim_{k \to +\infty} e^{\gamma z} \prod_{n \ge 1}^{k} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$$
$$= \lim_{k \to +\infty} e^{z\left[\gamma - \sum_{n=1}^{k} \frac{1}{n} + \log(k+1)\right]} \prod_{n \ge 1}^{k} \left(1 + \frac{z}{n}\right) \left(\frac{n}{n+1}\right)^{z}$$
$$= \lim_{k \to +\infty} e^{z\left[\gamma - \left(\sum_{n=1}^{k} \frac{1}{n} - \log k\right) + \log\left(1 + \frac{1}{k}\right)\right]} \prod_{n \ge 1}^{k} \left(1 + \frac{z}{n}\right) \left(\frac{n}{n+1}\right)^{z} = f(z)$$

Note that one can also use Gauss' product formula

$$\Delta(z) = \lim_{n \to +\infty} \frac{z(z+1)\dots(z+n)}{n!n^z}$$

Problem 29. Let $\Gamma(z)$ denote the Gamma function.

(a) Show that Γ(z + n) ~ n^zΓ(n) for n → +∞ and any z ∈ C \ Z_{≤0}.
(b) Let f ∈ O({Rez > 0}) satisfy f(z + 1) = zf(z) and f(z + n) ~ n^zf(n) for n → +∞. Show that f(z) = f(1)Γ(z).

Solution. 22 (a) For any $z \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0}$, we have

$$\lim_{n \to +\infty} \frac{\Gamma(z+n)}{n^z \Gamma(n)} = \lim_{n \to +\infty} \frac{\Gamma(z+n+1)}{(n+1)^z \Gamma(n+1)} = \lim_{n \to +\infty} \frac{(z+n)\dots(z+1)z\Gamma(z)}{(1+\frac{1}{n})^z n^z n!} = 1$$

by the Gauss product representation

$$\frac{1}{\Gamma(z)} = \lim_{n \to \infty} \frac{z(z+1)\dots(z+n)}{n!n^z}$$

(b) The functional equation f(z+1) = zf(z) allows to analytically extend the function $g(z) = \frac{f(z)}{\Gamma(z)}$ to an entire function, also denoted by g, satisfying g(z+1) = g(z). We have

$$\frac{g(z)}{g(1)} = \frac{g(z+n)}{g(n)} = \lim_{n \to \infty} \frac{g(z+n)}{g(n)} = \lim_{n \to \infty} \frac{f(z+n)}{n^z f(n)} \frac{n^z \Gamma(n)}{\Gamma(z+n)} = 1$$

by (a) and $\lim_{n \to +\infty} \frac{f(z+n)}{n^z f(n)} = 1$, hence g is constant, *i.e.* $\frac{f(z)}{\Gamma(z)} = f(1)$.

Problem 30. (a) Find all $\alpha \in \mathbb{C}$ for which $f_{\alpha}(z) = \int_{0}^{+\infty} (1 - e^{-zt})t^{-\alpha - 1} dt$ defines an holomorphic function on $\{Rez > 0\}$.

- (b) For all $\alpha \in \mathbb{C}$ as in (a), compute explicitly $f'_{\alpha}(z)$. Derive the explicit value of $f_{\alpha}(z)$.
- (c) For any $\alpha \in \mathbb{C}$ as in (a), prove that $f_{\alpha}(z) \sim -\frac{\Gamma(-\alpha)\Gamma(\alpha+z)}{\Gamma(z)}$ for $z \to \infty$. (Hint: use the Stirling formula.)

Solution. (a) Take a compact $K \subset \{\text{Re} z > 0\}$. For $t \to 0^+$ we have

$$\left\| (1 - e^{-zt})t^{-\alpha - 1} \right\|_{K} = \left\| 1 - e^{-zt} \right\|_{K} t^{-\operatorname{Re}\alpha - 1} \sim \left\| z \right\|_{K} t^{-\operatorname{Re}\alpha}$$

hence $\int_0^1 \|(1-e^{-zt})t^{-\alpha-1}\|_K dt < +\infty$ if and only if Re $\alpha < 1$. For $t \to +\infty$ we have

$$\left\|1-e^{-zt}\right\|_{K}t^{-\operatorname{Re}\alpha-1}\sim t^{-\operatorname{Re}\alpha-1}$$

hence $\int_{1}^{+\infty} \|(1-e^{-zt})t^{-\alpha-1}\|_{K} dt < +\infty$ if and only if $\operatorname{Re} \alpha > 0$. From a known theorem (see [7, Lecture 10]), it follows that $f_{\alpha}(z)$ defines an holomorphic function on {Rez > 0} if and only if Re $\alpha \in [0, 1[$.

(b) For Re $\alpha \in [0, 1]$ and $z \in \{\text{Re} z > 0\}$ we have

$$f_{\alpha}'(z) = \int_0^{+\infty} e^{-zt} t^{-\alpha} dt = \mathcal{L}(t^{-\alpha})(z) = z^{\alpha-1} \Gamma(1-\alpha)$$

where \mathcal{L} stands for the Laplace transform (for the computation, see [7, Lecture 23]). It follows that

$$f_{\alpha}(z) = \int_{[1,z]} f'_{\alpha}(w)dw + f_{\alpha}(1) = -\Gamma(-\alpha)z^{\alpha} + \Gamma(-\alpha) + f_{\alpha}(1)$$

By a direct computation, we get $f_{\alpha}(1) = \int_{0}^{+\infty} (1 - e^{-t})t^{-\alpha - 1} dt = -\Gamma(-\alpha)$, hence $f_{\alpha}(z) = \int_{0}^{+\infty} (1 - e^{-t})t^{-\alpha - 1} dt = -\Gamma(-\alpha)$ $-\Gamma(-\alpha)z^{\alpha}$.

(c) It is enough to prove that

$$\lim_{z \to \infty} \frac{z^{\alpha} \Gamma(z)}{\Gamma(z+\alpha)} = 1$$

By the Stirling formula (see [5, XIV.2]), we have $\Gamma(z) = \sqrt{2\pi} z^{z-\frac{1}{2}} e^{-z} e^{\mu(z)}$ with $\lim_{z \to \infty} \mu(z) = \frac{1}{2\pi} e^{-z} e^{\mu(z)}$ 0. It follows that for $z \to \infty$

$$\frac{z^{\alpha}\sqrt{2\pi}z^{z-\frac{1}{2}}e^{-z}e^{\mu(z)}}{\sqrt{2\pi}(z+\alpha)^{z+\alpha-\frac{1}{2}}e^{-(z+\alpha)}e^{\mu(z+\alpha)}} \sim \frac{z^{\alpha}z^{z-\frac{1}{2}}}{(z+\alpha)^{z+\alpha-\frac{1}{2}}e^{-\alpha}} \sim \left(1+\frac{\alpha}{z}\right)^{-z} \left(1+\frac{\alpha}{z}\right)^{\frac{1}{2}-\alpha}e^{\alpha} \sim 1$$

Problem 31. Let $f \in \mathcal{C}^{\infty}(\mathbb{R})$ be a Schwartz function, that is, $\sup_{t \in \mathbb{R}} |t^m f^{(l)}(t)| < +\infty$ for any $m, l \in \mathbb{N}$.

- (a) Show that $\int_0^{+\infty} f(t)t^{z-1}dt$ defines an holomorphic function $\Gamma_f(z)$ on $\{Rez > 0\}$. (b) Prove that $\Gamma_f(z)$ extends analytically to a meromorphic function on \mathbb{C} with at most simple poles. (Hint: integrate by parts.)
- (c) Assume that f extends to an holomorphic function on a disc $B_r(0)$ for some r > 1. Find an explicit partial fraction decomposition for $\Gamma_f(z)$ on \mathbb{C} .
- (d) Let $\Delta(z)$ denote the Weierstrass' Delta function. Show that $\Delta(z)\Gamma_f(z)$ extends to an entire function and compute its value at any $k \in \mathbb{Z}_{\leq 0}$.
- (e) Set $f(t) = e^{-t^2}$. Prove that $\Gamma_f(2z) = \frac{2^z}{\sqrt{\pi}} \Gamma_f(z) \Gamma_f(z+1)$.

Solution. (a) For a compact $K \subset \{\text{Re} z > 0\}$, set $\rho_K = \max_K \text{Re} z > 0$ and $\mu_K = \min_K \text{Re} z > 0$. Then for any t > 0, we have

$$\begin{split} \left\| f(t)t^{z-1} \right\|_{K} &= |f(t)| \max_{z \in K} t^{\operatorname{Re} z-1} = \begin{cases} |f(t)|t^{\rho_{K}-1} & \text{if } t > 1\\ |f(t)|t^{\mu_{K}-1} & \text{if } 0 < t \leq 1 \end{cases} \\ &\leq m_{K}(t) = \begin{cases} \sup_{t \in \mathbb{R}} \left(|f(t)|t^{[\rho_{K}]+2} \right) t^{-2} = Ct^{-2} & \text{if } t > 1\\ \sup_{t \in \mathbb{R}} \left(|f(t)| \right) t^{\mu_{K}-1} = Dt^{\mu_{K}-1} & \text{if } 0 < t \leq 1. \end{cases} \end{split}$$

(here [·] denotes the integral part, and C, D positive constant). Since $f(t)t^{z-1}$ is continuous in $\mathbb{R}_{>0} \times \{\operatorname{Re} z > 0\}$ and holomorphic in z, and $\int_0^{+\infty} m_K(t) dt < +\infty$, it follows that the given integral defines an holomorphic function $\Gamma_f(z)$ on $\{\operatorname{Re} z > 0\}$.

(b) Note first that for any $m, l \in \mathbb{N}$ and t > 0, $\operatorname{Re} z > -n$ we have

$$|f^{(l)}(t)t^{z+n}| = |f^{(l)}(t)|t^{\operatorname{Re}z+n} \le \begin{cases} \sup_{t \in \mathbb{R}} \left(|f^{(l)}(t)|t^{(\operatorname{Re}z]+n+2} \right) t^{-1} \to 0 & \text{as } t \to +\infty \\ \sup_{t \in \mathbb{R}} \left(|f^{(l)}(t)| \right) t^{\operatorname{Re}z+n} \to 0 & \text{as } t \to 0+ \end{cases}$$

By integrating by parts, we get

$$\Gamma_f(z) = \int_0^{+\infty} f(t)t^{z-1}dt = \frac{1}{z}f(t)t^z|_0^{+\infty} - \frac{1}{z}\int_0^{+\infty} f'(t)t^zdt = -\frac{1}{z}\int_0^{+\infty} f'(t)t^zdt$$

and the right-hand side defines an holomorphic function on $\{\text{Re}z > -1\} \setminus \{0\}$. By iterating, we get

$$\Gamma_f(z) = \frac{(-1)^n}{z(z+1)\dots(z+n)} \int_0^{+\infty} f^{(n+1)}(t) t^{z+n} dt$$

which defines an holomorphic function on $\{\operatorname{Re} z > -n-1\} \setminus \{0, -1, \ldots, -n\}$. This allows to analytically extend Γ_f to a meromorphic function on \mathbb{C} with at most simple poles at any $k \in \mathbb{Z}_{\leq 0}$.

(c) From the computation in (a), it follows that $G_f(z) = \int_1^{+\infty} f(t)t^{z-1}dt$ is entire, as $m_K(t)$ does not depend on K for t > 1. As f extends to an holomorphic function on a disc $B_r(0)$ with r > 1, we may consider its Taylor series $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} t^n$ at t = 0. Then we get the following partial fraction decomposition

$$\Gamma_f(z) = \int_0^1 f(t)t^{z-1}dt + G_f(z)$$

= $\int_0^1 \sum_{n \ge 0} \frac{f^{(n)}(0)}{n!} t^{z+n-1}dt + G_f(z)$
= $\sum_{n \ge 0} \frac{f^{(n)}(0)}{n!} \int_0^1 t^{z+n-1}dt + G_f(z) = \sum_{n \ge 0} \frac{f^{(n)}(0)}{n!} \frac{1}{z+n} + G_f(z).$

where we have used that the series is normally convergent in [0, 1].

(d) Take $k = -n \in \mathbb{Z}_{\leq 0}$. Then $\Gamma_f(z)$ has at most a simple pole at -n by (b), whereas $\Delta(-n) = 0$. It follows that -n is a removable singularity for $\Delta(z)\Gamma_f(z)$. Moreover

$$\lim_{z \to -n} \Delta(z) \Gamma_f(z) = \lim_{z \to -n} \frac{\Gamma_f(z)}{\Gamma(z)} = \frac{res_{-n} \Gamma_f(z)}{res_{-n} \Gamma(z)} = \frac{\frac{f^{(n)}(0)}{n!}}{\frac{(-1)^n}{n!}} = (-1)^n f^{(n)}(0)$$

where the residue of $\Gamma_f(z)$ at -n follows from (c), or from (b) by a direct computation.

(e) One easily checks that $f(t) = e^{-t^2}$ is a Schwartz function, and one has

$$\Gamma_f(2z) = \int_0^{+\infty} e^{-t^2} t^{2z-1} dt = \frac{1}{2} \int_0^{+\infty} e^{-s} s^{z-1} ds = \frac{1}{2} \Gamma(z)$$

by change of variable $t = \sqrt{s}$. Then the formula to prove follows directly form Legendre's duplication formula

$$\Gamma\left(\frac{z}{2}\right)\Gamma\left(\frac{z+1}{2}\right) = \frac{\sqrt{\pi}}{2^{z-1}}\Gamma(z).$$

Problem 32. Let γ the path in $\mathbb{C} \setminus \{0,1\}$ drawn below

(the left dot corresponds to 0 and the right one to 1). Set $f(\zeta, z, w) = \zeta^{z-1}(1-\zeta)^{w-1}$.

(a) Prove that $f(\cdot, z, w)$ defines a continuous function on $|\gamma|$ for any $z, w \in \mathbb{C}$. Deduce that

$$F(z,w) = \int_{\gamma} f(\zeta, z, w) \, d\zeta$$

defines an entire function in each argument.

(b) Prove that

$$\Gamma(z+w)F(z,w) = (1-e^{2\pi i z})\Gamma(z)(1-e^{2\pi i w})\Gamma(w)$$

as meromorphic functions on \mathbb{C} . (Hint: prove the equality for Rez, Rew > 0.)

Solution. (a) Choose arguments for ζ and $1 - \zeta$, and take $P \in |\gamma|$, say $P = \gamma(a) = \gamma(b)$ for a parametrization $\gamma \colon [a, b] \to \mathbb{C}$. As $f(\zeta, z, w)$ changes by a factor $e^{2\pi i z}$ (resp. $e^{2\pi i w}$) when $\arg \zeta$ (resp. $\arg(1 - \zeta)$) is increased by 2π , and the path circled 0 and 1 twice in opposite directions, the value of $f(\gamma(b), z, w)$ is the same as that of $f(\gamma(a), z, w)$. Hence $f(\cdot, z, w)$ defines a continuous function on $|\gamma|$ for any $z, w \in \mathbb{C}$.

Since the integral exists for any $z, w \in \mathbb{C}$ and $f(\zeta, z, w)$ is holomorphic both in z and w, by a theorem on functions defined by integral along a path (see [7, Lecture 10]), F(z, w)is entire on each argument.

(b) For $\operatorname{Re} z$, $\operatorname{Re} w > 0$, we have

$$\frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)} = B(z,w) = \int_0^1 t^{z-1}(1-t)^{w-1}dt$$

by the identity principle is thus enough to prove that

$$F(z,w) = (1 - e^{2\pi i z})(1 - e^{2\pi i w}) \int_0^1 t^{z-1} (1 - t)^{w-1} dt$$

for Rez, Rew > 0. As f defines an holomorphic function on \mathbb{C} deprived by two half-lines (depending on the choice of the arguments) of initial points 0 and 1, we may deform γ to a path made by four straight line segments γ_i , i = 1, 2, 3, 4 along the real axis, two circles δ_i , i = 1, 2 around 0 and two circles δ_i , i = 3, 4 around 1, without changing the integral.

Since $\operatorname{Re} z$, $\operatorname{Re} w > 0$, for any i = 1, 2, 3, 4 we have

$$\left| \int_{\delta_i} \zeta^{z-1} (1-\zeta)^{w-1} \, d\zeta \right| \le \int_{\delta_i} |\zeta|^{\operatorname{Re}z-1} |1-\zeta|^{\operatorname{Re}w-1} \, d|\zeta| \to 0$$
34

as the radius of δ_i tends to 0. Whence, by letting the length of the γ_i 's tend to 1 and by taking into account the appearing factors $e^{\pm 2\pi i z}$ and $e^{\pm 2\pi i w}$, we get

$$\begin{split} F(z,w) &= \int_{\gamma_1} f(\zeta,z,w) \, d\zeta + e^{2\pi i w} \int_{\gamma_2} f(\zeta,z,w) \, d\zeta \\ &+ e^{2\pi i z} e^{2\pi i w} \int_{\gamma_3} f(\zeta,z,w) \, d\zeta + e^{2\pi i z} \int_{\gamma_4} f(\zeta,z,w) \, d\zeta \\ &= \int_0^1 t^{z-1} (1-t)^{w-1} dt - e^{2\pi i w} \int_0^1 t^{z-1} (1-t)^{w-1} dt \\ &+ e^{2\pi i z} e^{2\pi i w} \int_0^1 t^{z-1} (1-t)^{w-1} dt - e^{2\pi i z} \int_0^1 t^{z-1} (1-t)^{w-1} dt \\ &= (1-e^{2\pi i z}) (1-e^{2\pi i w}) \int_0^1 t^{z-1} (1-t)^{w-1} dt. \end{split}$$

Problem 33. Consider the double sided series $\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^k}$ for $k \in \mathbb{N}$.

- (a) Prove that for any $k \ge 2$, the series converges normally to a meromorphic function $\epsilon_k(z)$ on \mathbb{C} , periodic of period 1 and having a pole of order k at any $n \in \mathbb{Z}$.
- (b) Show that $\epsilon_k(z) = \frac{(-1)^k}{(k-1)!} \partial_z^{(k-2)} \frac{\pi^2}{\sin^2(\pi z)}$ for any $k \ge 2$.
- (c) Show that $\epsilon_k(z) = \frac{(-1)^k}{(k-1)!} (2\pi i)^k \sum_{n\geq 1}^{\infty} n^{k-1} e^{2\pi i n z}$ in $\{Im \ z > 0\}$, with normal convergence. (Hint: one has $\pi \cot(\pi z) = \pi i \frac{e^{2\pi i z} + 1}{e^{2\pi i z} - 1} = \dots$) (d) Show that $\epsilon_k(z) = \frac{1}{z^k} + (-1)^k 2 \sum_{2n \ge k} {2n-1 \choose k-1} \zeta(2n) z^{2n-k}$ for |z| < 1. (e) Show that $(n + \frac{1}{2})\zeta(2n) = \sum_{k+l=n} \zeta(2k)\zeta(2l)$ for any $n \ge 2$. (Hint: $use \frac{\pi^2}{\sin^2(\pi z)} = 2$)
- $\pi^2(\cot^2(\pi z) + 1).)$

Solution. (a) For any compact $K \subset \mathbb{C}$, set $m_K = ||z||_K$. Then for any $k \geq 1$ and any $n > m_K$, one has

$$\left\|\frac{1}{(z\pm n)^k}\right\|_K = \sup_{z\in K} \frac{1}{|z\pm n|^k} \le \sup_{z\in K} \frac{1}{||z|-n|^k} \le \frac{1}{(n-m_K)^k}.$$

with $\frac{1}{(z\pm n)^k}$ having no pole in K. Since $\sum_{n>m_K} \frac{1}{(n-m_K)^k} < +\infty$ for any $k \ge 2$, it follows that the series

$$\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^k} = \sum_{n \ge 0} \frac{1}{(z+n)^k} + \sum_{n \ge 1} \frac{1}{(z-n)^k}$$

converges normally to a meromorphic function $\epsilon_k(z)$ on \mathbb{C} , which has a pole of order k at any $n \in \mathbb{Z}$. One has $\epsilon_k(z+1) = \sum_{n \in \mathbb{Z}} \frac{1}{(z+1+n)^k} = \epsilon_k(z)$ by rearranging the terms.

(b) Since the series $\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^k}$ is normally convergent we may derive term by term, hence $\partial_z \epsilon_k(z) = -k \epsilon_{k+1}(z)$ for any $k \ge 2$, so that $\epsilon_k(z) = \frac{(-1)^k}{(k-1)!} \partial_z^{(k-2)} \epsilon_2(z)$. It remains to prove that $\epsilon_2(z) = \frac{\pi^2}{\sin^2(\pi z)}$. Fort this, it is enough to apply differentiation to both sides of the Mittag-Leffler's partial fractions decomposition

$$\pi \cot(\pi z) = \frac{1}{z} + \sum_{\substack{n \in \mathbb{Z} \setminus \{0\}\\35}} \left\lfloor \frac{1}{z+n} + \frac{1}{n} \right\rfloor$$

(the series being normally convergent).

(c) For $z \in \{\text{Im } z > 0\}$, we have $|e^{2\pi i z}| = e^{-2\pi \text{Im } z} < 1$, hence

$$\pi \cot(\pi z) = \pi i \frac{e^{2\pi i z} + 1}{e^{2\pi i z} - 1} = \pi i \left(1 - \frac{2}{1 - e^{2\pi i z}} \right) = \pi i - 2\pi i \sum_{n \ge 0} e^{2\pi i n z}$$

(with normal convergence). By applying differentiation to both sides, we get $\frac{\pi^2}{\sin^2(\pi z)} =$ $(2\pi i)^2 \sum_{n>1} n e^{2\pi i n z}$ and we conclude by using (b).

(d) Since z = 0 is the unique pole of $\epsilon_k(z)$ in \mathbb{E} , and it is of order k with principal part $\frac{1}{z^k}$, the holomorphic function $\epsilon_k(z) - \frac{1}{z^k}$ admits a Taylor series in \mathbb{E} centered at z = 0, $\tilde{i}.e. \ \epsilon_k(z) = \frac{1}{z^k} + \sum_{m \ge 0} a_m z^m$ for |z| < 1 (with normal convergence). We have

$$a_m = \frac{1}{m!} \partial_z^m \left[\epsilon_k(z) - \frac{1}{z^k} \right]_{z=0} = \frac{1}{m!} \sum_{l \in \mathbb{Z}, l \neq 0} \partial_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1+m}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k} \right]_{z=0} = (-1)^m \sum_{l \in \mathbb{Z}, l \neq 0} \binom{k-1}{k-1} \frac{1}{l^{k+m}} d_z^m \left[\frac{1}{(z+l)^k}$$

(the series being normally convergent). If k + m is odd, the terms $\pm \frac{1}{l^{k+m}}$ of the double series cancel out, so that we may suppose k + m = 2n for $n \ge 1$. It follows that

$$a_{2n-k} = (-1)^k 2 \sum_{l \ge 1} \binom{k-1+m}{k-1} \frac{1}{l^{2n}} = (-1)^k 2 \binom{2n-1}{k-1} \zeta(2n)$$

for any $2n \geq k$.

Note that one may also use (b) and apply differentiation to both sides of $\pi \cot(\pi z) =$ $\frac{1}{z} - 2\sum_{n\geq 1} \zeta(2n) z^{2n-1}$ for |z| < 1.

(e) From (b), we get
$$\epsilon_2(z) = \frac{\pi^2}{\sin^2(\pi z)} = \pi^2(\cot^2(\pi z) + 1)$$
. Let $z \in \mathbb{E}$. By (d) we have
$$\frac{\pi^2}{\sin^2(\pi z)} = \frac{1}{z^2} + 2\sum_{n\geq 1} (2n-1)\zeta(2n)z^{2n-2}$$

and from the Taylor expansion $\pi \cot(\pi z) = \frac{1}{z} - 2 \sum_{n \ge 1} \zeta(2n) z^{2n-1}$ and by using Cauchy's product formula for series, we get

$$\pi^{2} + \pi^{2} \cot^{2}(\pi z) = \pi^{2} + \frac{1}{z^{2}} - 4 \sum_{n \ge 1} \zeta(2n) z^{2n-2} + 4 \sum_{n \ge 2} \sum_{k+l=n} \zeta(2k) \zeta(2l) z^{2n-2}.$$

By comparing the coefficients of the same power of z, for any $n \ge 2$ we get

$$2(2n-1)\zeta(2n) = -4\zeta(2n) + 4\sum_{k+l=n}\zeta(2k)\zeta(2l)$$

hence the result. Note that, by comparing the coefficients of the zero-th power of z, we recover also $\zeta(2) = \frac{\pi^2}{6}$

Problem 34. Let $\mathbb{E} = \{|z| < 1\}$ denote the unit disk, $\zeta(z)$ the Riemann Zeta function and γ the Euler-Mascheroni constant.

- (a) Show that the series $\sum_{n=1}^{\infty} \left(\frac{1}{z+n} \frac{1}{n} \right)$ converges normally in $\mathcal{M}(\mathbb{C})$ to a function f(z) having a simple pole at any $k \in \mathbb{Z}_{\leq -1}$ with $\operatorname{res}_k f = 1$. (b) Prove that $f(z) = \sum_{m=1}^{\infty} (-1)^m \zeta(m+1) z^m$ for any $z \in \mathbb{E}$. (c) Set $g(z) = f(z) + \frac{1}{z}$. Prove that g(z+1) = f(z) and $g(z) - g(1-z) = \pi \cot(\pi z)$.

- (d) For any $z \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$, set $G(z) = \int_{[1,z]} g(\xi) d\xi$, where [1,z] denotes the oriented line segment joining 1 with z. Show that $G(z) = \log z - \sum_{n=1}^{\infty} \left(\frac{z}{n} - \log(1 + \frac{z}{n})\right) + \gamma$.

- (e) Show that $G(z+1) = -\sum_{m=2}^{\infty} \frac{(-1)^m}{m} \zeta(m) z^m$ for any $z \in \mathbb{E}$. (Hint: use (b) and (c).)
- (f) Prove that l(z) = γ γz G(z) is a logarithm of Γ(z) on C \ R_{≤0}.
 (g) Prove that the series ∑_{m=2}[∞] (-1)^m/m ζ(m) is convergent. Then compute its sum. (Hint: compute lim_{x→1-} G(x + 1).)

Solution. (a) For any compact $K \subset \mathbb{C}$, set $m_K = ||z||_K$. Then $\frac{1}{z+n} - \frac{1}{n}$ has no pole in K for any $n > m_K$, and the series $\sum_{n > m_K} \left\| \frac{1}{z+n} - \frac{1}{n} \right\|_K$ is convergent, since for $z \in K$ we have

$$\left|\frac{1}{z+n} - \frac{1}{n}\right| = \left|\frac{z}{n(z+n)}\right| \le \frac{|z|}{n||z|-n|} \le \frac{m_K}{n(n-m_K)} \quad \text{for any } n > m_K$$

and $\sum_{n>m_K} \frac{m_K}{n(n-m_K)} < +\infty$. It follows that the series $\sum_{n=1}^{\infty} \left(\frac{1}{z+n} - \frac{1}{n}\right)$ converges normally in $\mathcal{M}(\mathbb{C})$ to a meromorphic function f(z) having a simple pole at any $k \in \mathbb{Z}_{\leq -1}$ with

$$\operatorname{res}_k f = \lim_{z \to k} (z - k) f(z) = \lim_{z \to k} \left(1 - \frac{(z - k)}{-k} + (z - k) \sum_{n \ge 1, n \ne -k} \left(\frac{1}{z + n} - \frac{1}{n} \right) \right) = 1.$$

(b) For any |z| < n, we have

$$\frac{1}{z+n} - \frac{1}{n} = \frac{1}{n} \left(\frac{1}{1+\frac{z}{n}} - 1 \right) = \sum_{m \ge 1} \frac{(-1)^m}{n} \left(\frac{z}{n} \right)^m,$$

hence, by normal convergence, for any |z| < 1 we get

$$\sum_{n\geq 1} \left(\frac{1}{z+n} - \frac{1}{n} \right) = \sum_{n\geq 1} \sum_{m\geq 1} \frac{(-1)^m}{n} \left(\frac{z}{n} \right)^m = \sum_{m\geq 1} (-1)^m z^m \sum_{n\geq 1} \frac{1}{n^{m+1}} = \sum_{m\geq 1} (-1)^m \zeta(m+1) z^m$$

(c) By rearranging the terms, we get

$$g(z+1) = \frac{1}{z+1} + \sum_{n \ge 1} \left(\frac{1}{z+1+n} - \frac{1}{n} \right) = \frac{1}{z+1} - 1 + \sum_{n \ge 2} \left(\frac{1}{z+n} - \frac{1}{n} \right) = f(z)$$

and

$$g(z) - g(1 - z) = \frac{1}{z} + f(z) - f(-z)$$

= $\frac{1}{z} + \sum_{n \ge 1} \left(\frac{1}{z + n} - \frac{1}{n} \right) - \sum_{n \ge 1} \left(\frac{1}{-z + n} - \frac{1}{n} \right)$
= $\frac{1}{z} + \sum_{n \ge 1} \left(\frac{1}{z + n} + \frac{1}{z - n} \right) = \pi \cot(\pi z)$

(d) Since the series is normally convergent, we can integrate term by term, and we get

$$\begin{split} G(z) &= \int_{[1,z]} \left(\frac{1}{\xi} + \sum_{n \ge 1} \left(\frac{1}{\xi + n} - \frac{1}{n} \right) \right) d\xi \\ &= \int_{[1,z]} \frac{1}{\xi} d\xi + \sum_{n \ge 1} \int_{[1,z]} \left(\frac{1}{\xi + n} - \frac{1}{n} \right) d\xi \\ &= \log z - \log 1 + \sum_{n \ge 1} \left(\log(z + n) - \frac{z}{n} - \log(1 + n) + \frac{1}{n} \right) \\ &= \log z - \sum_{n \ge 1} \left(\frac{z}{n} - \log\left(1 + \frac{z}{n}\right) \right) + \gamma. \end{split}$$

Here we used that $\log(z+n) = \log(1+\frac{z}{n}) + \log n$, as both z and $\frac{z}{n}$ lie in $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ for any $n \in \mathbb{N}_{\geq 1}$ and any $z \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$, and that

$$\sum_{n=1}^{\infty} \left(\log n - \log(1+n) + \frac{1}{n} \right) = \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log(1+n) \right) = \gamma.$$

(e) Since G(1) = 0 and for any $z \in \mathbb{E}$

$$(G(z+1))' = g(z+1) = f(z) = \sum_{m \ge 1} (-1)^m \zeta(m+1) z^m$$

we get for any $z \in \mathbb{E}$

$$G(z+1) = -\sum_{m\geq 2} \frac{(-1)^m}{m} \zeta(m) z^m.$$

(f) By (d), we have $l(z) = -\gamma z - \log z + \sum_{n=1}^{\infty} \left(\frac{z}{n} - \log(1 + \frac{z}{n})\right)$, hence for any $z \in$ $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$

$$e^{l(z)} = e^{-\gamma z} z^{-1} \prod_{n \ge 1} e^{\frac{z}{n}} \left(1 + \frac{z}{n}\right)^{-1} = \frac{1}{\Delta(z)} = \Gamma(z).$$

(g) The series $\sum_{m=2}^{\infty} \frac{(-1)^m}{m} \zeta(m)$ is convergent by the Leibniz criterion, since the sequence $\{\frac{\zeta(m)}{m}\}_{m\geq 1} \subset \mathbb{R}_{>0}$ is decreasing, as $\zeta'(x) < 0$ for x > 1, and infinitesimal, as $\lim_{m \to +\infty} \zeta(m) = 1$.

By (e) and (f), we get

$$\sum_{m \ge 2} \frac{(-1)^m}{m} \zeta(m) = -\lim_{x \to 1^-} G(x+1) = -G(2) = l(2) - \gamma + 2\gamma = \gamma$$

= log $\Gamma(2)$ = log 1 = 0.

since $l(2) = \log \Gamma(2) = \log 1 = 0$.

Problem 35. Let $\{t\}$ denote the fractional part of $t \in \mathbb{R}$.

- (a) Prove that $f(z) = \int_0^1 \{s^{-1}\} s^z \, ds$ defines an holomorphic function on $\{Rez > -1\}$. (b) Show that there exist a rational function R(z) and $\lambda \in \mathbb{C}^{\times}$ such that (z+1)f(z) = $R(z) + \lambda \zeta(z+1)$ in $\{Rez > -1\}$ (here $\zeta(z)$ denotes the Riemann Zeta function).
- (c) Compute f(n) for $n \in \mathbb{N}$ odd.

Solution. (a) Since $|\{s^{-1}\}| \leq 1$ for any $s \neq 0$, for any compact $K \subset \{\text{Re}z > -1\}$ and any $z \in K$, we have

$$\left|\{s^{-1}\}s^z\right| \le s^{\operatorname{Re}z} \le \frac{1}{s^{-\rho}}$$

with $\rho = \max_K \operatorname{Re} z > -1$ and $\int_0^1 t^{-\rho} dt < +\infty$. Then $\int_0^1 \{s^{-1}\} s^z ds$ defines an holomorphic function in $\mathcal{O}(\{\operatorname{Re} z > -1\})$ (the function $\{s^{-1}\} s^z$ being locally bounded on $[0,1] \times \{\operatorname{Re} z > -1\}).$

(b) Since $\{s^{-1}\} = s^{-1} - [s^{-1}]$ ($[s^{-1}]$ is the integral part of s^{-1}) and by setting $t = s^{-1}$, in $\{\operatorname{Re} z > 0\}$ one gets

$$(z+1)f(z) = (z+1)\int_0^1 s^{z-1} ds - (z+1)\int_0^1 [s^{-1}]s^z ds = \frac{z+1}{z} - (z+1)\int_1^{+\infty} [t]t^{-z-2} dt$$

with

$$(z+1)\int_{1}^{+\infty} [t]t^{-z-2} dt = \mathcal{M}([t])(z+1) = \zeta(z+1)$$

where $\mathcal{M}([t])$ denotes the Mellin transform of [t] and ζ the Riemann Zeta function (see [7, Lecture 22]). It follows that

$$(z+1)f(z) = 1 + \frac{1}{z} - \zeta(z+1)$$
 in {Re $z > 0$ }.

Since ζ is a meromorphic function on \mathbb{C} with a unique pole in z = 1, which is simple with residue 1, the function $\frac{1}{z} - \zeta(z+1)$ extends analytically on \mathbb{C} , and by the identity principle the above equality holds on $\{\operatorname{Re} z > -1\}$.

(c) From the above computation, for any $k \in \mathbb{N}_{\geq 1}$ we have

$$f(k) = \frac{1}{k} - \frac{\zeta(k+1)}{k+1}$$

hence, recalling Euler's identities, for k = 2n + 1 one gets

$$f(2n+1) = \frac{1}{2n+1} - \frac{\zeta(2(n+1))}{2(n+1)} = \frac{1}{2n+1} + \frac{(-1)^{n+1}}{2(n+1)} \frac{(2\pi)^{2(n+1)}}{2(2(n+1))!} B_{2(n+1)}$$

where $B_{2(n+1)}$ denotes the 2(n+1)-th Bernoulli's number.

Problem 36. Let $\zeta(z)$ denote the Riemann Zeta function.

- (a) Prove that $(1-2^{1-z})\zeta(z)$ extends to an entire function $\eta(z)$. (b) Show that $\eta(z) = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n^z}$ for Rez > 1.
- (c) Let Rez > 1. Show that $\eta(z)$ is the Mellin transform of $f(t) = \frac{1+(-1)^{[t]-1}}{2}$. (Here [t]denotes the integral part of t and the Mellin transform of f is defined as $\mathcal{M}f(z) =$ $z \int_{1}^{+\infty} f(t) t^{-z-1} dt.$
- (d) Show that the equality in (b) holds for Rez > 0. (Hint: prove that $\sum_{n>1} \frac{(-1)^{n-1}}{n^2}$ converges in $\mathcal{O}(\{Rez > 0\})$.)

Solution. (a) Recall that $\zeta(z)$ is meromorphic with a unique pole in z = 1, which is simple. As the function $1 - 2^{1-z} = 1 - e^{(1-z)\log 2}$ is holomorphic on \mathbb{C} with a zero at z = 1, it follows that $(1 - 2^{1-z})\zeta(z)$ extends to an entire function.

(b) First, note that the series is normally convergent in $\mathcal{O}(\{\operatorname{Re} z > 1\})$ and recall that $\zeta(z) = \sum_{n \ge 1} \frac{1}{n^z}$ on $\operatorname{Re} z > 1$. Hence

$$(1-2^{1-z})\zeta(z) = \sum_{n\geq 1} \frac{1}{n^z} - \sum_{n\geq 1} \frac{1}{(2n)^z} - \sum_{n\geq 1} \frac{1}{(2n)^z} = \sum_{n\geq 1} \frac{1}{(2n-1)^z} - \sum_{n\geq 1} \frac{1}{(2n)^z} = \sum_{n\geq 1} \frac{(-1)^{n-1}}{n^z}$$

(c) From (b) we have $\eta(z) = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n^z}$ for $\operatorname{Re} z > 1$. As $(-1)^{n-1} = f(n) - f(n-1)$ and f(0) = 0, by Abel's summation formula we get

$$\sum_{n=1}^{k} \frac{(-1)^{n-1}}{n^{z}} = \frac{f(k)}{k^{z}} + \sum_{n=1}^{k-1} f(n) \left(\frac{1}{n^{z}} - \frac{1}{(n+1)^{z}}\right)$$
$$= \frac{f(k)}{k^{z}} + \sum_{n=1}^{k-1} z \int_{n}^{n+1} f(t) t^{-z-1} dt$$
$$= \frac{f(k)}{k^{z}} + z \int_{1}^{k} f(t) t^{-z-1} dt.$$

Since f(t) is bounded, it follows that $\frac{f(k)}{k^2} \to 0$ in $\mathcal{O}(\{\operatorname{Re} z > 1\})$ as $k \to +\infty$, and $\eta(z) = \mathcal{M}f(z).$

(d) For any compact $K \subset \{\operatorname{Re} z > 0\}$ and any $z \in K$ we have

$$|f(t)t^{-z-1}| \le t^{\text{Re}z-1} \le t^{-\rho-1}$$

with $\rho = \min_K \operatorname{Re} z > 0$ and $\int_1^{+\infty} t^{-\rho-1} dt < +\infty$. Then $z \int_1^{+\infty} f(t) t^{-z-1} dt$ converges normally in $\mathcal{O}(\{\operatorname{Re} z > 0\})$.

Since $\frac{f(k)}{k^2} \to 0$ in $\mathcal{O}(\{\operatorname{Re} z > 0\})$, we get that $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n^2}$ is convergent (but not normally convergent!) in $\mathcal{O}(\{\operatorname{Re} z > 0\})$.

The equality in (b) then follows by the identity principle.

Problem 37. Let μ denote the Möbius μ -function: $\mu(1) = 1$ and, for n > 1, $\mu(n) = (-1)^r$ if n is a product of r distinct primes, $\mu(n) = 0$ otherwise.

- (a) Prove that $\sum_{n\geq 1} \frac{\mu(n)}{n^z}$ defines an holomorphic function $\eta(z)$ on $\{Rez > 1\}$. (b) Prove that $\eta(z)\zeta(z) = 1$ on $\{Rez > 1\}$, where $\zeta(z)$ denotes the Riemann Zeta function. (Hint: use Euler's product formula.)

Solution. (a) For any compact $K \subset \{\text{Re}z > 1\}$ and any $z \in K$, we have

$$\left|\frac{\mu(n)}{n^z}\right| \le \frac{1}{|n^z|} = \frac{1}{n^{\operatorname{Re}z}} \le \frac{1}{n^\rho}$$

with $\rho = \min_K \operatorname{Re} z > 1$. Hence the series converges normally in $\mathcal{O}(\{\operatorname{Re} z > 1\})$.

(b) By Euler's product formula, we have to show that

$$\prod_{p \in \mathbb{P}} (1 - p^{-z}) = \sum_{n \ge 1} \frac{\mu(n)}{n^z}$$

on $\{\operatorname{Re} z > 1\}$, where \mathbb{P} denotes the set of prime numbers.

Note that, for any prime p, we have

$$1 - p^{-z} = \frac{\mu(1)}{1^z} + \frac{\mu(p)}{p^z} = \sum_{n=p^k, k \ge 0} \frac{\mu(n)}{n^z}$$

We will thus proceed by induction. Let $F \subset \mathbb{P}$ be finite and suppose that

$$\prod_{p \in F} (1 - p^{-z}) = \sum_{n \in \mathbb{N}_F} \frac{\mu(n)}{n^z},$$

where $\mathbb{N}_F = \{ p_1^{k_1} \dots p_l^{k_l}; p_i \in F, k_i \ge 0 \text{ for any } i = 1, \dots, l \} \subset \mathbb{N}.$ Let $q \in \mathbb{P} \setminus F$. Then

$$\prod_{p \in F \cup \{q\}} (1 - p^{-z}) = (1 - q^{-z}) \prod_{p \in F} (1 - p^{-z}) = (1 - q^{-z}) \sum_{n \in \mathbb{N}_F} \frac{\mu(n)}{n^z} = \sum_{n \in \mathbb{N}_F} \frac{\mu(n)}{n^z} - \sum_{n \in \mathbb{N}_F} \frac{\mu(n)}{(qn)^z} = \sum_{n \in \mathbb{N}_F} \frac{\mu(n)}{n^z} = \sum_{n \in \mathbb{$$

As $\mu(nq^k) = 0$ for k > 1 and $\mu(nq) = \mu(n)\mu(q) = -\mu(n)$ for any $n \in \mathbb{N}$, we get

$$\sum_{\in\mathbb{N}_{F\cup\{q\}}}\frac{\mu(n)}{n^{z}} = \sum_{n\in\mathbb{N}_{F}}\frac{\mu(n)}{n^{z}} + \sum_{n\in\mathbb{N}_{F}}\frac{\mu(nq)}{(nq)^{z}} = \sum_{n\in\mathbb{N}_{F}}\frac{\mu(n)}{n^{z}} - \sum_{n\in\mathbb{N}_{F}}\frac{\mu(n)}{(nq)^{z}}$$

We thus proved that

n

$$\prod_{p \in F \cup \{q\}} (1 - p^{-z}) = \sum_{n \in \mathbb{N}_{F \cup \{q\}}} \frac{\mu(n)}{n^z}.$$

By induction, we get that

$$\prod_{p \in F} (1 - p^{-z}) = \sum_{n \in \mathbb{N}_F} \frac{\mu(n)}{n^z},$$

for any $F \subset \mathbb{P}$ finite. By passing to the limit we get the result, as $\mathbb{N}_{\mathbb{P}} = \mathbb{N}$ by the fundamental theorem of arithmetic.

Problem 38. Let \mathbb{P} denote the set of prime numbers and log the principal branch of the logarithm.

(a) Show that $|\log(1-z) + z| \le |z|^2$ for any $|z| \le \frac{1}{2}$.

p

- (b) Let $\{b_p\}_{p\in\mathbb{P}} \subset \mathbb{C}$ be a sequence such that the series $\sum_{p\in\mathbb{P}} b_p$ and $\sum_{p\in\mathbb{P}} |b_p|^2$ are convergent. Prove that the infinite product $\Pi_{p\in\mathbb{P}}(1-\overline{b_p})$ converges. (Hint: use (a).)
- (c) Prove that $\sum_{p \in \mathbb{P}} \frac{1}{p} = +\infty$. (Hint: use (b)). (d) Show that $\sum_{p \in \mathbb{P}} \frac{1}{p^z}$ defines an holomorphic function $\zeta_{\mathbb{P}}(z)$ on $\{Rez > 1\}$.
- (e) Prove that $\zeta_{\mathbb{P}}(z)$ is the Mellin transform of $\pi(t) = \#\{p \in \mathbb{P}; p \leq t\}$. (Recall that the Mellin transform of f(t) is defined as $\mathcal{M}f(z) = z \int_{1}^{+\infty} f(t)t^{-z-1} dt$.)
- (f) Prove that $\zeta_{\mathbb{P}}(z) \log \zeta(z)$ extends analytically to a neighbourhood of $\{Rez \ge 1\}$. (Hint: use Euler's product formula and (a).)
- (g) Show that $\zeta_{\mathbb{P}}(z) + \log(z-1)$ extends analytically to a neighbourhood of $\{Rez \ge 1\}$.

Solution. (a) For any |z| < 1, we have

$$\left|\log(1-z)+z\right| = \left|-\sum_{n\geq 1}\frac{z^n}{n}+z\right| \le \sum_{n\geq 2}\frac{|z|^n}{n} \le \frac{|z|^2}{2}\sum_{n\geq 0}|z|^n = \frac{|z|^2}{2}\frac{1}{1-|z|}.$$

If $|z| \leq \frac{1}{2}$, then $\frac{1}{1-|z|} \leq 2$ and we get the result.

(b) As \mathbb{P} is countable, all results for series and infinite products still hold when the indexes belong to \mathbb{P} . In particular, $\prod_{p \in \mathbb{P}} (1 - b_p)$ is convergent iff so is $\sum_{p \in \mathbb{P}} \log(1 - b_p)$ (providing $b_p \neq 1$ for p >> 0). Since $\sum_{p \in \mathbb{P}} b_p$ is convergent, $b_p \to 0$ as $p \to +\infty$, hence there exists $\bar{p} \in \mathbb{P}$ such that $|b_p| \leq \frac{1}{2}$ for $p \geq \bar{p}$ and

$$|\log(1 - b_p) + b_p| \le |b_p|^2$$

by (a). Since $\sum_{p \in \mathbb{P}} |b_p|^2$ and $\sum_{p \in \mathbb{P}} b_p$ are convergent, so are $\sum_{p \in \mathbb{P}} (\log(1 - b_p) + b_p)$ and $\sum_{p \in \mathbb{P}} \log(1 - b_p) = \sum_{p \in \mathbb{P}} (\log(1 - b_p) + b_p) - \sum_{p \in \mathbb{P}} b_p$.

(c) Assume that $\sum_{p \in \mathbb{P}} \frac{1}{p} < +\infty$. Then $\prod_{p \in \mathbb{P}} (1 - \frac{1}{p})$ would be convergent by (b), as $\sum_{p \in \mathbb{P}} \frac{1}{p^2} \leq \sum_{n \geq 1} \frac{1}{n^2} < +\infty$. By Euler's product formula, we have

$$\Pi_{p\in\mathbb{P}}\left(1-\frac{1}{p}\right) = \lim_{z\to 1} \Pi_{p\in\mathbb{P}}\left(1-\frac{1}{p^z}\right) = \lim_{z\to 1} \frac{1}{\zeta(z)} = 0$$

since z = 1 is a pole of ζ . Contradiction.

(d) For any compact $K \subset {\text{Re} z > 1}$ and any $z \in K$, we have

$$\sum_{p \in \mathbb{P}} \left| \frac{1}{p^z} \right| = \sum_{p \in \mathbb{P}} \frac{1}{p^{\text{Re}z}} \le \sum_{n \ge 1} \frac{1}{n^{\text{Re}z}} < +\infty,$$

hence $\sum_{p \in \mathbb{P}} \frac{1}{p^z}$ converges normally in $\mathcal{O}(\{\operatorname{Re} z > 1\})$ to an holomorphic function $\zeta_{\mathbb{P}}(z)$.

(e) As \mathbb{P} is countable, we may denote by p_n the *n*-th prime $(n \ge 1)$. By Abel's summation formula we get

$$\sum_{n=1}^{k} \frac{1}{p_n^z} = \sum_{n=1}^{k} \frac{n - (n-1)}{p_n^z} = \frac{k}{p_{k+1}^z} + \sum_{n=1}^{k} \left(\frac{n}{p_n^z} - \frac{n}{p_{n+1}^z}\right)$$
$$= \frac{k}{p_{k+1}^z} + \sum_{n=1}^{k} z \int_{p_n}^{p_{n+1}} nt^{-z-1} dt$$
$$= \frac{k}{p_{k+1}^z} + z \int_{1}^{p_{k+1}} \pi(t) t^{-z-1} dt,$$

as $\pi(t) = \begin{cases} 0 & \text{if } t \in [1, 2[\\ n & \text{if } t \in [p_n, p_{n+1}[]. \end{cases}$ Since $p_k > k$ for any $k \ge 1$, it follows that $\left| \frac{k}{p_{k+1}^2} \right| < \frac{k}{(k+1)^{\text{Re } z}} \to 0$ as $k \to +\infty$, and $\zeta_{\mathbb{P}}(z) = \mathcal{M}\pi(t)$.

(f) By Euler's product formula, in $\{\text{Re}z > 1\}$ we have

$$\zeta_{\mathbb{P}}(z) - \log \zeta(z) = \sum_{p \in \mathbb{P}} p^{-z} + \sum_{p \in \mathbb{P}} \log \left(1 - p^{-z}\right) = \sum_{p \in \mathbb{P}} \left(p^{-z} + \log \left(1 - p^{-z}\right)\right)$$

It is enough to show that the right-hand side is normally convergent in a neighbourhood of $\{\operatorname{Re} z \geq 1\}$. Since $|p^{-z}| = \frac{1}{p^{\operatorname{Re} z}} \leq \frac{1}{2}$ in $\{\operatorname{Re} z \geq 1\}$ for all $p \in \mathbb{P}$ for any compact $K \subset \{\operatorname{Re} z \geq 1\}$ and any $z \in K$ we have by (a) and (d)

$$\left|\sum_{p \in \mathbb{P}} p^{-z} + \log\left(1 - p^{-z}\right)\right| \le \sum_{p \in \mathbb{P}} \left|p^{-z} + \log\left(1 - p^{-z}\right)\right| \le \sum_{p \in \mathbb{P}} \left|p^{-z}\right|^2 = \sum_{p \in \mathbb{P}} \frac{1}{p^{2\operatorname{Re}z}} < +\infty$$

(g) Recall that $\zeta(z)$ has a unique pole in z = 1, which is simple, and never vanishes in $\{\text{Re}z \ge 1\}$. It follows that $(z-1)\zeta(z)$ is holomorphic never-vanishing in a neighbourhood

of $\{\operatorname{Re} z \geq 1\}$, hence $\log((z-1)\zeta(z)) = \log(z-1) + \log\zeta(z)$ is holomorphic there, and so is $\zeta_{\mathbb{P}}(z) + \log(z-1) = \zeta_{\mathbb{P}}(z) - \log \zeta(z) + \log(z-1) + \log \zeta(z)$ by (f).

Problem 39. Let $\zeta(z)$ denote the Riemann Zeta function, $\Delta(z)$ the Weierstrass' Delta function, and B_m the m-th Bernoulli's number.

- (a) Prove that $\int_0^1 \frac{t^{z-1}}{e^t-1} dt = \sum_{n\geq 0} \frac{B_n}{n!(z+n-1)}$ for Rez > 1. (b) Show that $\int_1^{+\infty} \frac{t^{z-1}}{e^t-1} dt$ defines an entire holomorphic function. (c) Show that $\int_0^{+\infty} \frac{t^{z-1}}{e^t-1} dt$ defines an holomorphic function on $\{Rez > 1\}$, which extends analitically to a meromorphic function F(z) on \mathbb{C} .
- (d) Show that $\Delta(z)F(z)$ has a unique pole at z = 1, which is simple.
- (e) Prove that $\Delta(z)F(z) = \zeta(z)$. (Hint: use the change $t = \frac{s}{n}$.)

Solution. Recall that $\frac{w}{e^w-1}$ has a removable singularity at w=0 and has Taylor series at $\mathbf{0}$

$$\frac{w}{e^w - 1} = \sum_{n \ge 0} \frac{B_n}{n!} w^n \quad \text{for } |w| < 2\pi.$$

(a) First note that for Rez > 1, the integral is absolutely convergent, as

$$\left|\frac{t^{z-1}}{e^t - 1}\right| = \frac{t^{\text{Re}z-1}}{e^t - 1} \sim t^{\text{Re}z-2} \quad \text{as } t \to 0 + .$$

We have

$$\frac{t^{z-1}}{e^t - 1} = \sum_{n \ge 0} \frac{B_n}{n!} t^{z+n-2} \quad \text{with normal convergence in } [0,1],$$

hence

$$\int_{0}^{1} \frac{t^{z-1}}{e^{t}-1} dt = \lim_{\epsilon \to 0} \int_{\epsilon}^{1} \sum_{n \ge 0} \frac{B_n}{n!} t^{z+n-2} dt = \sum_{n \ge 0} \frac{B_n}{n!} \lim_{\epsilon \to 0} \int_{\epsilon}^{1} t^{z+n-2} dt = \sum_{n \ge 0} \frac{B_n}{n!(z+n-1)} dt$$

for $\operatorname{Re} z > 1$, as $\lim_{\epsilon \to 0} \epsilon^{z+n-1}$ for any $n \ge 0$.

(b) For a compact $K \subset \mathbb{C}$, set $\rho_K = \max_K \operatorname{Re} z \ge 0$. Then for any $z \in K$ and $t \ge 1$, we have _1 | (Ber_1

$$\left|\frac{t^{z-1}}{e^t - 1}\right| = \frac{t^{\text{Re}z-1}}{e^t - 1} \le \frac{t^{\rho_K - 1}}{e^t - 1} = o(t^{-2}) \quad \text{as } t \to +\infty$$

hence $\int_{1}^{+\infty} \frac{t^{\rho_{K}-1}}{e^{t}-1} dt < +\infty$. Since $\frac{t^{z-1}}{e^{t}-1}$ is continuos in $\mathbb{R}_{\geq 1} \times \mathbb{C}$ and holomorphic in z, it follows that the given integral defines an entire holomorphic function.

(c) By (b), it is enough to prove that

$$\int_0^1 \frac{t^{z-1}}{e^t - 1} dt$$

defines an holomorphic function on $\{\operatorname{Re} z > 1\}$.

For a compact $K \subset \{\operatorname{Re} z > 1\}$, set $\mu_K = \min_K \operatorname{Re} z > 1$. Then for any $z \in K$ and $t \in]0, 1]$, we have

$$\left|\frac{t^{z-1}}{e^t - 1}\right| = \frac{t^{\operatorname{Re}z-1}}{e^t - 1} \le \frac{t^{\mu_K - 1}}{e^t - 1} \sim t^{\mu_K - 2} \quad \text{as } t \to 0+,$$

hence $\int_0^1 \frac{t^{\mu_K-1}}{e^t-1} dt < +\infty$. Since $\frac{t^{z-1}}{e^t-1}$ is continuos in $[0,1] \times \{\text{Re}z > 1\}$ and holomorphic in z, the result then follows.

By (a), in $\{\text{Re}z > 1\}$ we have

$$\int_0^{+\infty} \frac{t^{z-1}}{e^t - 1} dt = \sum_{n \ge 0} \frac{B_n}{n!(z+n-1)} + \int_1^{+\infty} \frac{t^{z-1}}{e^t - 1} dt.$$

It remains to prove that the series $\sum_{n\geq 0} \frac{B_n}{n!(z+n-1)}$ is normally convergent in $\mathcal{M}(\mathbb{C})$ to a meromorphic function on \mathbb{C} .

For any compact $K \subset \mathbb{C}$, set $m_K = ||z||_K$. Then $\frac{1}{(z+n-1)}$ has no pole on K for any $n > m_K + 1$ and the series $\sum_{n > m_K+1} \left\| \frac{B_n}{n!(z+n-1)} \right\|_K$ is convergent, since for $z \in K$ we have $\left| \frac{B_n}{n!(z+n-1)} \right| \le \frac{|B_n|}{n!} \frac{1}{||z| - (n-1)|} \le \frac{|B_n|}{n!} \frac{1}{(n-1-m_K)} \le \frac{|B_n|}{n!}$

and $\sum_{n > m_K + 1} \frac{|B_n|}{n!} \le \sum_{n \ge 0} \frac{|B_n|}{n!} t^n |_{t=1} < +\infty.$

(d) By (c), we have

$$F(z) = \sum_{n \ge 0} \frac{B_n}{n!(z+n-1)} + \int_1^{+\infty} \frac{t^{z-1}}{e^t - 1} dt \quad \in \mathcal{M}(\mathbb{C}),$$

hence F(z) has a simple pole at any $k \in \mathbb{Z}_{\leq 1}$. Since $\Delta(z)$ is entire and it has a simple zero at any $k \in \mathbb{Z}_{\leq 0}$, the meromorphic function $\Delta(z)F(z)$ has removable singularities at any $k \in \mathbb{Z}_{\leq 0}$ and a unique pole at z = 1, which is simple.

(e) Since both sides of the equation are meromorphic on \mathbb{C} , by the identity principle it is enough to prove it for Re z > 1. In this case we have

$$\begin{split} \Delta(z)F(z) &= \Delta(z) \int_{0}^{+\infty} t^{z-1} e^{-t} \frac{1}{1-e^{-t}} dt \\ &= \Delta(z) \int_{0}^{+\infty} t^{z-1} \sum_{n \ge 1} e^{-tn} dt \\ &= \Delta(z) \sum_{n \ge 1} \int_{0}^{+\infty} t^{z-1} e^{-tn} dt \\ &= \Delta(z) \sum_{n \ge 1} \frac{1}{n^{z}} \int_{0}^{+\infty} t^{z-1} e^{-t} dt = \Delta(z) \Gamma(z) \zeta(z) = \zeta(z) \end{split}$$

where we have used that the series is normally convergent in $\mathbb{R}_{>0}$.

FORMULÆ

Pompeiu's formula:
$$f(z) = \frac{1}{2\pi i} \left[\int_{\partial K} \frac{f(w)}{w - z} dw + \int_{K} \frac{\partial_{\bar{w}} f(w)}{w - z} dw \wedge d\bar{w} \right] \quad \text{for } \begin{cases} f \in \mathcal{C}^{1}(\Omega), \\ \Omega \subset \mathbb{C}, \\ \circ \text{open} \\ z \in K \subset K \subset \Omega, \\ K \subset \\ \text{compact} \\ \end{array} \end{cases}$$

Euler's Gamma function: $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ for $\operatorname{Re} z > 0$

Euler's Beta function:
$$B(z,w) = \int_0^1 t^{z-1} (1-t)^{w-1} dt = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}$$
 for $\operatorname{Re} z, \operatorname{Re} w > 0$

Euler's supplement:
$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$

Legendre's duplication formula: $\Gamma\left(\frac{z}{2}\right)\Gamma\left(\frac{z+1}{2}\right) = \frac{\sqrt{\pi}}{2^{z-1}}\Gamma(z)$

Multiplication formula:
$$\Gamma(mz) = \frac{m^{mz}}{(\sqrt{2\pi})^{m-1}\sqrt{m}} \prod_{k=0}^{m-1} \Gamma(z+k/m)$$
 for $m \ge 2$

Weierstrass' Delta function: $\Delta(z) = ze^{\gamma z} \prod_{n \ge 1} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$ with $\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n\right)$

Gauss' product representation: $\frac{1}{\Gamma(z)} = \Delta(z) = \lim_{n \to \infty} \frac{z(z+1)\dots(z+n)}{n!n^z}$

Mittag-Leffler's partial fractions decompositions:

$$\pi \cot(\pi z) = p.v. \sum_{n \in \mathbb{Z}} \frac{1}{z - n} = \frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} \left[\frac{1}{z - n} + \frac{1}{n} \right] = \frac{1}{z} + \sum_{n \ge 1} \frac{2z}{z^2 - n^2} = \sum_{n \in \mathbb{Z}} \frac{z}{z^2 - n^2}$$
$$\frac{\pi}{\sin(\pi z)} = p.v. \sum_{n \in \mathbb{Z}} \frac{(-1)^n}{z - n} = \frac{1}{z} + \sum_{n \in \mathbb{Z} \setminus \{0\}} (-1)^n \left[\frac{1}{z - n} + \frac{1}{n} \right] = \frac{1}{z} + \sum_{n \ge 1} \frac{(-1)^n 2z}{z^2 - n^2} = \sum_{n \in \mathbb{Z}} \frac{(-1)^n z}{z^2 - n^2}$$
Sine product: $\frac{\sin(\pi z)}{\pi} = z \prod_{n \ge 1} \left(1 - \frac{z^2}{n^2} \right)$ Bernoulli's numbers: $\frac{z}{e^z - 1} = \sum_{n \ge 0} \frac{B_n}{n!} z^n$ for $|z| < 2\pi$
$$B_0 = 1, B_1 = -\frac{1}{2}, B_{2n+1} = 0$$
 for $n \ge 1, \sum_{k=0}^n \binom{n+1}{k} B_k = 0$

 $\zeta(2n) = (-1)^{n+1} \frac{(2\pi)^{2n}}{2(2n)!} B_{2n} \text{ for } m \ge 1$ Euler's identities:

 $\zeta(z) = \prod_{p: \text{ prime}} \frac{1}{1 - p^{-z}} \quad \text{for } \operatorname{Re} z > 1$ Euler's product formula:

Riemann's integral representation:

Riemann's relation:

$$z) = -\frac{\Gamma(1-z)}{2\pi i} \int_{\gamma} \frac{(-w)^{z-1}}{e^{w} - 1} dw$$

 $\zeta(z) = \left[2(2\pi)^{z-1}\sin(\frac{\pi z}{2})\Gamma(1-z)\right]\zeta(1-z)$

ζ(

References

- [1] R. B. Ash, W. P. Novinger, *Complex Variables. Second Edition*, Dover Books on Mathematics (2007).
- [2] J. Bak, D.J.F. Newman, Complex Analysis. Third Edition, UTM, Springer-Verlag, Berlin (2010).
- [3] G. De Marco, *Basic Complex Analysis*, Università di Padova, self-published (2011).
- [4] _____, Selected Topics of Complex Analysis, Università di Padova, self-published (2012).
- [5] T. W. Gamelin, *Complex Analysis*, UTM, Springer-Verlag, Berlin (2001).
- [6] E. Freitag, R. Busam, Complex Analysis. Second Edition, Universitext, Springer-Verlag, Berlin (2009).
- [7] P. Polesello, *Complex Analysis*, Master degree in Mathematics Lecures Notes (2019).
- [8] R. Remmert, Theory of Complex Functions, Graduate Texts in Mathematics, Springer-Verlag, Berlin (1991).
- _, Classical Topics in Complex Function Theory, Graduate Texts in Mathematics, Springer-[9]Verlag, Berlin (1991).
- [10] W. Rudin, Real and Complex Analysis. Third edition, McGraw-Hill (1986).
- [11] J.-P. Schneiders, Fonctions de Variables Complexes, Universitè de Liége, self-published (2010).

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"; UNIVERSITÀ DI PADOVA; VIA TRIESTE, 63; 35121 PADOVA; ITALY

E-mail address: pietro@math.unipd.it