COMPLEX ANALYSIS - SELECTED PROBLEMS

PIETRO POLESELLO

Fxercises from the final examinations
Master degree in Mathematics (2013-2019)

Problem 1. Let log denote the principal branch of the logarithm and |z1, ze] the oriented
line segment joining z; with z.
(a) Prove that |log(1 — z)| < I —log(1 — cose) for any z € [e™*, €] with 0 < e < 5.
(Hint: note that |1 — z| < 1.)
(b) Show that f[e_ie il w dz — 0 as € = 0+.
(¢) Prove that f% @ dz — 0 as € = 0+, for 7. the arc of the unit circle joining
e’ with e~**. (Hint: use the Cauchy formula.)
(d) Show that [;"log|1 — e[ df = 0.
== gfla] <1
e) Set g,(z) = 1-a2
() g() a—=z zf|a|:1

a

(f) SetE = {|z| < 1} and let h € O(E) be never vanishing. Show that fo% log |h(e?)| df =
27 log [h(0)]. B

(g) Let f € O(E) satisfying f(0) # 0. Prove that f has a finite number of zeros in K.
Let aq,...,a, those zeros in E, counting multiplicities. Prove that

/O27r log | f ()] df = 27ri10g 1)

(Hint: use the g,’s defined in (e) and (f).)

. Prove that fo% log |ga(e?)| df = 0.

7

Solution. Recall that log z = log |z| + i arg z, where arg z € (—m, ) denotes the principal
argument.

(a) For z € [e7", "], with 0 < € < &, we have 0 < |1 — 2| < 1, hence |arg(l — z)| < 5
and log |1 — z| < 0, and we get

llog(1 — z)| < |Relog(1l — z)|+|Imlog(1 — z)| = |log |1 — z||+]|arg(l — z)| < —log |1—z\—|—g.

The result then follows from |1 — z| > Re(1 — z) = 1 — cose for z € [e7, €™].

(b) Since |z| > Rez = cose for any z € [e7, €], by (a) we get

log(1 — z) < 5 — log(1 — cose)
z B Cos €
hence by the standard estimate
log(1 — 2 —log(1l — cose
/ Mdz < 2gine2 8 )—>O as e — 0+.
[ef’ieyeis] z COS €

Please communicate possible errors to pietro@math.unipd.it.
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(c) Since log(1 — z) is holomorphic in C \ Rsy, by the Cauchy formula we have

log(1 —
0:27m'10g1:/ Mdz
oK z

where 0K is the boundary of the compact delimited by ~. and by the line segment
[e7% €], oriented counterclockwise. By taking lim.—sq,, we get the result by (b).

(d) By (c), we get

log(1 — 21— |oo(] — £0) 2 ‘
0= tim tm [ 8175 g gy Im/ log(1 = ¢7) i :/ log |1 — ¢”| do.
e—>0+ . 0

e—>0+ Yo z et

(e) Let |a| = 1. Then a = €™ for a € [0,27] and by (d) we get

27 o
[ toslaaelao = [ g1 = ) ao —o.
0 0

a_ei(9
1—ae?

If |a| < 1, the result follows from |g,(e??)| =

(f) Since E is simply connected and A is never vanishing on E, there exists a logarithm
[ of h on a neighborhood of E. In particular, Re I(z) = log |h(2)|. The result then follows

by taking the real part of the Cauchy formula ﬁ Jox @ dz =1(0).

(g) Since f is not identically zero, its set of zeros is locally finite, hence finite on
the compact E. Let by,...,b, denotes the zeros in OE, counting multiplicities. Then
fol.. -9;,1191;11 . .g;n1 extends to a never vanishing function h on E. By (f), thanks to
gbl(o) == gbn<o) =1, we get

f(0)

(2

2 m
/ log |h(e”)| df = 27 log [h(0)] = log
0 =1

Problem 2. Let g be an entire function.

(a) Assume that the equation

29(z) =g (g) +g (2;1)

holds for all z € C. Prove that g is constant. (Hint: apply the Maximum Modulus

principle on B.(0) = {|z| < r} forr >1)
(b) Assume that g has no zeros and

(0.1) cg<z>:g(g>g(zgl)

holds for all z € C and some ¢ € C*. Prove that g(z) = ce3 b for some b € C.
(Hint: take 0logg)
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(c) Assume that g is odd, it has zeros exactly at the points z € 7, all with multiplicity
1, and

c9(22) = g(2)g (= + 3

holds for all z € C and some ¢ € C*. Prove that g(z) = 2csin(7wz). (Hint:

Sirgl((fr)z) and use the duplication formula for sin(nz))

consider

Solution. 23 (a) Set M = ||g[|5 5y for some r > 1. By the Maximum Modulus principle

(see [7, Lecture 6]), g is either constant on B,.(0) (hence on C by the Identity principle)
or there exists zg € 0B,(0) satisfying |g(z0)| = M and |g(2)| < M for any z € B,(0). In
the latter case, since both 2 and 22 lie in B, (0), we get

o0 = f2g(z0)| <o (2) |+ 'g (%5 1)\ <oM

Contradiction.

(b) Since g never vanishes, we may consider the entire function h = dlog g. By taking
the logarithmic derivative of the functional equation in (b), we get that h satisfies the
functional equation in (a), hence it is constant. It follows that ¢' = bg for some b € C,
hence g(z) = ae® for some a € C. By using again the functional equation in (b), we get

b

c = aez.

(c) Since both g(z) and sin(nz) have zeros exactly at the points z € Z, all with

9(2)
sin(7z)

function, still denoted by h. From the duplication formula sin(27z) = 2sin(7z) cos(nz) =
2sin(7z) sin (7 (2 + 3)) follows that h satisfies the functional equation in (b), with ¢

multiplicity 1, the meromorphic function h(z) = extends to a never vanishing entire

replaced by 2¢, hence h(z) = 2ce™2¢" for some b € C. As g(z) and sin(rz) are odd, h is
even hence b = 0. 4

Problem 3. Let f be an holomorphic function on the unit disk E = {|z| < 1}, with
bounded derivative and satisfying f(0) =0, f'(0) = 1.

(a) Show that there exists r €0, 1] such that
If'(z) —1| < 2l for any z € E.
r

(Hint: use Schwarz’ lemma.)
(b) Show that

|2
< —  forany z € E.

£ -2 < 2L
(Hint: consider fv(f’(z) — 1) dz with v a line segment.)
(c) Deduce that, for any |z| =r and |w| < %, one has
f(2) = 2 <[z —wl.
(d) Show that Bz (0) C f(B.(0)) (recall that B,(0) = {|z| < r}). (Hint: apply the
argument principle to B,(0) 3 z — % forw € B:(0).)
(e) Conclude that f maps conformally B,(0) onto an open neighbourhood of Bz (0).
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Solution. (a) Let us fix a constant C' > 0 such that |f'(z)| < C for any z € E.
As |f'(z) — 1| < C' + 1, the function

_ ') -
9(:) =72 +1
satisfies g(0) = 0 and |g(2)| < 1 for any z € E. We may thus apply Schwarz’ lemma and
get [g(z)| < |z] for any z € E. One then sets r = 15 €]0,1].
We may also proceed as follows: as lim,—s r (Z = f"(0), the function @ extends

to an holomorphic function ¢g(z) on E. One has

o)) = L O]

2|
Hence, by the Maximum Modulus theorem, |g(z)| <

for any |z| = p €]0,1].
CH for any |z| < p and, by letting
p — 1—, one gets |g(2)] < C +1 for any z € E. Agam one sets r =

(b) For z € E consider the path v(t) = tz with ¢ € [0,1]. Then

1 1 2
u@y_dzk/uma—ndzstﬂl|fw0—ﬂﬁfﬂdAJ%L“:%%’
ol

where the last inequality follows from (a).
(c) From (b), it follows that

C+1

|f(2) — 2| S—T: for any |z| = r.

For |w| < %, we thus have |z —w| > § > |f(z) — 2| for any |z| = r.
(d) Fix w € Br(0) and consider the function

f(z) —w
h(z)= L2~ Y
(2) ="
From (c) it follows that |h(z) — 1| < 1 for any |z| = r, hence the function log h(z) is well
defined and holomorphic on a neighbourhood of the circle {|z| = r}. Therefore

Ologh(z)dz =0,
|z|=r
so that, by the argument principle, h(z) has the same number of zeros and poles on B,.(0),
i.e. the function f(z) — w has the same number of zeros on B,(0) of the function z — w.
It follows that for any w € Bz (0) there exists (only one) z € B,(0) such that f(z) = w.

(e) As f is non-constant, from (d) and by the open mapping theorem it follows that
f maps B,(0) onto an open neighbourhood of Br(0). It remains to prove that f is also
injective on B,.(0).

We may proceed as in (b): given zp, 21 € B,(0), let v(t) = (1 — )z +tz; with ¢ € [0, 1]

be the line segment joining them. Then
: Fh)l
(Fe0) = 20) = (o) = )l = | [(#2) = Dte| < v ol [ D
¥ 0

As~(t) € B,(0) for any t, the last integral is < 1. Then f(z1) = f(2o) implies |z; —2| = 0,
ie. z1 = 2.
Note that, from (a) we get immediately that f'(z) # 0 for any z € B,.(0), hence f is

locally injective on B,(0). However, this does not prove that f is injective on B,(0). O
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Problem 4. Let E denote the unit disk {|z| < 1}. For z1,2z € E, set

|21 — 2
d _ 1zl
(Zh ZQ) |1 — 222?1|
(a) Show that d is a metric on E.
(b) Let f be a bounded holomorphic function on E. Show that, if || f||g < 1, then

(0.2) d(f(z21), f(22)) < d(21, 22) for any z, 2z, € E.

(Hint: use the Schwarz lemma for a suitable function.)
(c) Prove that, in the above situation, f is either a contraction w.r.t. d, i.e. strict
inequality holds in (0.2) for z1 # 2z, or an isometry w.r.t. d, i.e. equality holds

in (0.2).
(d) Show that, in the above situation, for any z € E
1—[f(2)
/
< —
76l < 2

(e) For z1,2 € E, characterise the bounded functions f € O(E) with ||f||z < 1 and
f(z1) = 2z, which maximize |f'(z1)].

Solution. (a) By definition, for any 21,20 € E we have d(z1,22) > 0, d(z1,22) = 0 iff
z1 = zp, and
- |22 —Zl| -

d(Zl, 22).

o) = =l

As usual, set g,(z) = 2% for a € E. Then

az—1

d(z1,22) = |91 (22)| = d(0, g2, (22)).
Hence it is enough to prove that d(zy, z2) < d(z1,0) + d(0, 2z3), that is,

1921 (22)| < |za] + [zl
This follows from (see [7, Lecture 6] for the first equality)

2 2 2 2 2
U= la) el (A= ]aP)0 = |l (el 4 ]22])” (21222
1= Z12[? (1 +|z1]]2])? (1+|z1|22))?

(b) Let f be a bounded holomorphic function on E with || f|| < 1. If [f(2)| = 1 for
some 2o € E, then 2 is a maximum for |f|. By the Maximum Modulus theorem, f is
constant and the inequality is trivially satisfied.

Suppose that |f(z)| < 1 for any z € E. We have to prove that

921 (22)* = 1

‘gf(zq) o f(2z2)] <9 (22)] for any 21,2, € E.

Set F' = g(z;) 0 f ©g.,. Then F defines an holomorphic map E — E satisfying F'(0) = 0.
By the Schwarz lemma, |F'(z)| < |z| for any z € E. It follows that

195(1) © f(22)] = |95(er) © ] © 91 © G2 (22)] = |F (92 (22))] < |9z (22)]-

(c) If f is constant, then f is trivially a contraction w.r.t. d.

Suppose that | f(2)| < 1 for any z € E. If the equality holds in (0.2) for some z1, 25 € E,
then |F'(29)| = |20| for 2o = ¢.,(22) € E. Again by the Schwarz lemma, F is a rotation,
hence |F(z)| = |#] for all z € E and it follows that f is an isometry w.r.t. d. Otherwise
f is a contraction w.r.t. d.

(d) If f is constant, then the inequality is trivially satisfied (equality if |f(z)| = 1 for

any z € E).
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Suppose that |f(z)| < 1 for any z E E. Again by the Schwarz lemma, |F'(0)] < 1.

Since |g;,(0)] = 1 — [af* and |g;(a)| = =;p, we get

[E"(0)] = |90y (f (20)) ] (21) g, (0)] =

for any z; € E and the result follows.

(e) By (d), for any 21,22 € E and any bounded function f € O(E) with || f|lz <1 and
f(z1) = 22, we have |f'(z1)| < L=l Since |f(z1)| = |z2] < 1, again by the Schwarz

— 1,‘21|2

lemma, the equality holds for some 21, z5 € E iff F' is a rotation. It follows that f(z) is
an automorphism of [E interchanging z; with z,. O

1 / — |z 2
WV(%)!U |21]7)

Problem 5. Let f € O(E) satisfies f(0) = 1, where E denotes the unit disk {|z| < 1}.
(a) Show that, if f extends analytically to a neighbourhood of E in such a way that
|f(2)] > 1 for |z| =1, then f has a zero in E.
(b) Assume that Ref > 0 in E. Show that Ref never vanishes in E. (Hint: consider

h(z) = e—f(2) .)
(c) Set g(z) = fEZ;H In the situation of (b), show that |g(z)| < |z| for any z € E.
(d) In the situation of (b), prove that Ltl <|f(z)| < if}j{ for any z € E.

(e) In the situation of (b), prove that there exists zo € E\ {0} making one of the two
inequalities in (d) an equality if and only if f(z) = 52 for [\ = 1.

Solution. (a) Assume that f never vanishes in E. Then, by hypothesis, f is holomorphic
and never vanishes in a neighbourhood U of E. It follows that g = % is holomorphic in U
and satisfies [g(2)| < ||g]|sz < 1 = g(0) for any z € E by the Maximum Modulus theorem.
Contradiction.

(b) By hypothesis, the function h(z) = e~/(*) is holomorphic in E and satisfies h(0) = %
and |h(z2)| = e™®ef2) < 1 for any 2z € E. Assume that Ref(z) = 0 for 2o € E. Then
|h(z)| attains its maximum in zo, hence it has constant value 1 by the Maximum Modulus
theorem. Contradiction.

(c) First note that ¢(z) = = defines a conformal map {Rez > 0} — E. This follows
by a direct computation, or by noticing (see [7, Lecture ?]) that ¢ may be decomposed
into

1 1
{Rez>0}—>{Rez>1}7{]z—§|<5}—>IE

where b(z) = 1, a(z) = z + 1 and ¢(z) = 1 — 2z are surjective affine transformations,
hence conformal maps; equivalently, ¢ = h o d where d(z) = iz and h(z) = ;—Jr; is the
Cayley map.

By (b), f defines a map E — {Rez > 0}, hence g = t o f defines a map E — E such

that g(0) = 0. By the Schwarz’s lemma, |g(2)| < |z| for any z € E.
(d) By triangular inequality and (c), for any z € E

fEI =1 G =1 fz ‘
FEIT1 - et S e =P
that is, 4 "
1—1z 1+ 1z
1+\zyf|f(z)|§1_yzy'
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(e) By (d), there exists zp € E \ {0} making one of the two inequalities in (d) an
equality if and only if |g(z)| = |20]. Again by the Schwarz’s lemma, this happens if and

only if there exists [A| = 1 such that g(z) = Az, that is, f(2) = 1522, 0

Problem 6. Let D C C be an unbounded domain (i.e. non-empty, open and connected)
and f € O(D) be continuous on D and bounded on OD.

(a) Assume lim,_, .5 f(z) = 0. Prove that the set K. = {z € D; |f(z)| > ¢} is
compact for any c¢ > 0.

(b) In the situation of (a), prove that K. = @ for any ¢ > || fl|,p- (Hint: use the
Mazimum Modulus theorem.) Deduce that || f||5 = || fllop and |f(2)] < ||fllsp for

any z € D if f is non-constant.

(c) Assume that |f(z)| <log(a + |z|) for any z € D and some a > 0, and set h(z) =
%ﬁézo) for some zy € D. Prove that h extends to an holomorphic function on D

which is continuos on D, bounded on dD and satisfies | f*(2)h(2)] < | fll5p 1Allop
for any z € D and any n > 0.

(d) In the situation of (c), prove that || fll5 = ||fllop and |f(2)| < || fllsp for any
z € D if f is non-constant.

Solution. (a) Fix ¢ > 0. As f is continuous in D, a closed subset of C, the subset
K.={z€ D; |f(2)| > c} = fH{[c, +oo[} is closed in D, hence in C.

Aslim,_,  .p f(z) =0, there exists R > 0 such that [ f(z)| < ¢ for any z € D\ Bg(0),
therefor K, C Bg(0), i.e. it is bounded. It follows that K, is compact in C, hence in D.

(b) Fix ¢ > ||f|lsp and assume K. # @. As |f| is continuous in the compact subset
K., by Weierstrass’ theorem there exists zy € K, such that

[f(z)l 2 1f(2)] = e> | fllop  for any z € K. C D,

hence zg € 0D, i.e. zy € D. Moreover, |f(z0)| > ¢ > |f(2)] for any z € D \ K., therefor
29 1s a (global) maximum point for |f| in D. By the Maximum Modulus theorem, f needs
to be constant in D, hence in D. Contradiction, as |f(z0)| > || f]l,p-

As K. = @ for any ¢ > | fllop, we get [f(z)| < inf{c > [[flsp} = [Ifllop for any
2 € D, hence |flly < Iflop < Wl i.e: 1fli5 = Il TE F 35 non-constant, then
|f(2)] < |Ifllgp for any z € D, otherwise, if |f(z0)| = ||fllsp for zo € D, then z is a
(global) maximum point for |f| in D and f needs to be constant in D.

(c) Clearly h(z) = %ﬁém) extends to an holomorphic function on D, which is con-
tinuos on D, by setting h(z) = f'(2). Moreover, for any z € dD we have

f(2) = [zl _ [fG+ 1)l _ [ fllop + 1f(20)]

|z — 20| |z — 20| —  dist(zg, D)

h(z)] =

Y

where dist(zg, D) = min,esp |2z — 20| > 0, hence h(z) is bounded on 9D.
Let’s prove that lim,_,_ .5 f"(2)h(z) = 0 for any n > 0. It will follows from (b) that

RG] < 1 hllop < £ [hllop for any = € D and any n > 0.
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For |z] >> |z|, we have

(@) < | fop A G

2] = ||
1f1lop fH|zl\7+||z];(|ZO)‘ if z € 0D,
| log(a + |Z‘)|n|10g at|z])|H log(atlzo)|  gloglatlzD["™™ ¢~ p
|z|—lzol - 2] —lzol ’

where both terms in the right-hand side tend to 0 as z — co.

(d) If f is constant, then || f||5 = || f||;p trivially. If f is non-constant, then h(z) is non

— 1
identically zero and for any z € D and any n > 0, we have | f(2)||h(z)|» < | fllop 1250
It follows that

|f(2)|§mf{(”h”‘”> ||f||aD}=||f||@D for any = € D\ {z: h(=) = 0},

|7(2)]

hence |f(2)| < ||fllop for any z € D, as D\ {z; h(z) = 0} is dense in D. As before, we
get [|fllp = [lflop and [f(2)| < [[fllsp for any z € D. O

Problem 7. Let D C C be a domain (i.e. non-empty, open and connected) and E the
unit disk. Suppose that there exists a non-constant bounded holomorphic function on D.

(a) Show that for any given zy € D, there exz'sts g: D — E holomorphic such that

9(z0) =0 # ¢'(%). (Hint: consider ™ (— for suitable h(z) and n.)

(b) For any given zy € D, find a holomorphic function G: D — E satisfying |G’ (z9)| >
|g'(20)| for any holomorphic function g: D — E.

(c) For G(z) asin (b), show that G'(z) # 0 = G(z) (Hint: consider g = gg(.) © G,
for ga) the Mébius transformation ... )

(d) For G(2) as in (b) with D =E and zy = 0, prove that G is a rotation.

(e) For G(z) as in (b) with D proper simply connected, prove that G is conformal.

(f) Show that there exists a holomorphic function G: C\[-2, 2] — E satisfying G(i) =
0, G'(i) > 0 and G'(i) > |¢'(i)| for any holomorphic function g: C\ [-2,2] — E.

Show that G cannot be conformal.

Solution. (a) Let h € O(D) be non-constant and bounded and m > 1 be the multiplicity
of h at zy. Then (h(z) — h(20))(z — 2)~ ™Y extends to a holomorphic function §(z) on
D satistying §(z9) = 0 # §'(20). Let B, (20) = {|z — 20| < r} C D for some r > 0. Then
g(z) is bounded on B, ( 20), compact and also on D \ B,(z), since on such subset h is
bounded and |(z — zo) "™~ V| < r=(m"V_ Set g(z) = mg(z). As g(z) is non-constant
and D connected, then g(D) C E by the Open Mapping theorem.

(b) Theset F = {g € O(D); |lgllp < 1} C O(D) is closed and bounded , hence compact
by Montel’s theorem. It follows that the continuous function F — Rsq, ¢ — |¢'(20)]
admits a maximum G € F, i.e. |G'(20)| > |¢'(%0)| for any g: D — E holomorphic . By
(a), there is a function g € F with ¢'(29) # 0, hence G'(zy) # 0, so that G is non-constant,
therefore G(D) C E by the Open Mapping theorem.

(c) It remains to prove that G(zp) = 0. Recall that for any a € E the Mdbius transfor-
mation g,(z) = =% defines a conformal map of E interchanging a with 0 and satisfying
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90(a)| = — |a\2 Then

~ G(2) — G(x)
9(2) = ga(z) © G(2) = GGl 1 € F,
hence
! / A ! _ |G/(ZO)|
G ()l 2 1 (o)l = Il (GG (0)] = T g0

Since G'(zp) # 0, we get G(zp) = 0.

(d) By (¢), G: E — E satisfies G(0) = 0, hence |G'(0)| < 1 by the Schwarz lemma. As
the identity function z — z belongs to F, we also have |G’(0)| > 1, hence equality holds.
Again by the Schwarz lemma, we get that G is a rotation, i.e. G(z) = az with |a| = 1.

(e) By the Riemann Mapping theorem, there exists a conformal map p: D — E satis-
fying p(z9) = 0. Set ' = Gop ': E — E. Then |F'(0)| = |G’(zo) | > |f'(0)] for any
holomorphic function f: E — E, as f = go ¢! for a unique g: D —> E. By (d), Fis a
rotation, i.e. G(2) = ap(z) with |a| = 1. Hence G is conformal.

(f) Recall that f(z) = z + 1 defines a conformal map E \ {0} — C\ [-2,2], hence its
inverse is a non-constant bounded function on C\ [-2,2]. By (b) and (c), there exists a
holomorphic function G: C\ [-2,2] — E satisfying G(i) = 0 # |G'(7)| > |¢'(¢)| for any
holomorphic function g: C\ [-2,2] — E. Then G(z) = g - lG( ) satisfies the required
properties. Clearly G cannot be conformal, as C \ [-2,2] is not simply connected. O

Problem 8. 21 Let H denote the upper half plane {Imz > 0}, E the unit disk {|z| < 1}
and C the extended complex plane C U {oo}.

(a) Show that h,(z) = =%
compute its inverse.

(b) Show that any conformal map f: H — E may be written uniquely as f(z) = pha(2)
with |u| = 1 and o € H satisfying f(a) =

(¢) Show that a Mdbius transformation z — %j:s with a,b,c,d € R defines a conformal
map H — H if and only if ad — bc > 0. Show that any conformal map g: H — H
may be written (not uniquely) as g(z) = % with a,b, ¢, d € R satisfying ad—bc >
0. (Hint: use that g = h; ' o uhe for some p and a as in (b).)

(d) Let @ # D C C be a simply connected open subset. Show that one, and only one,
of the following is true: 1) D = C; 2) D is conformally equivalent to C; 3) D
is conformally equivalent to E. Here, if oo € DU D', a conformal map D — D’
is by definition a Mdbius transformation. (Hint: if oo € D C C, find a Mdbius
transformation D — D" with oo ¢ D’.)

(e) Let D as in (d). Show that the group Aut (D) = {conformal maps D — D} is
isomorphic to one of the following:

Glz{<i 2);a,b,c,d€(€, det = 1}/{=£1};

) ;a,b,d € C, det = 1}/{%1};
) ja,bye,d € R, det = 1} /{£1}.
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Solution. (a) Since a € H, one has —a + a = 2ilma # 0, hence h,, is a Mdbius transfor—
mation. It thus defines a conformal map C \ {a} — C\ {1} with inverse w
remains to show that h,(H) = E. As 0h,(H) = h,(0H) and h,(a) = 0, it is enough to
check that h, maps OH (= real axis) onto OE (= unit circle), i.e. |z —a| = |z — a| for
any z € R. This follows from z —a =z — a.

(b) Clearly z — phes(2) defines a conformal map H — E, since z — pz is a rotation.
Conversely, let f: H — E be a conformal map. Set a = f~1(0) € H. Then f o h_*
a conformal map E — E which fixes 0, hence f o h;'(z) = pz for some || = 1 as a
consequence of the Schwarz lemma. Therefore, f(2) = pha(z).

(c) We know (see for example [7, Lecture 5]) that for a,b,c,d € R satisfying ad—be # 0,
the Mobius transformation z +— “Z+b defines a conformal map f: C\ {4} — C\ {2}

with inverse w — _dé"Tjrba. Since
az+b  aclz|® +bd + adz + bez
cz+d lczZ + d|? ’
we get that Im(“zig) > 0 if and only if Imz and ad — bc have the same sign. Hence f

restricts to a conformal map H — H if and only if ad — be > 0.
Conversely, let g: H — H be a conformal map. By (b), h; o g = uh, for some |pu| =1
and « € H. Then

_ 21+ p) = (a+ po zi(p — [ a—a) — (o — po
g(Z):h-l(,U,ha(Z)):Z ( ) (_ ) — ( )2 [( ) _(_ )]
2(1=p) = (@ — pa) 21 = pP =+ a = (pa + pa)]
This is a Mobius transformation H — H with real coefficients, hence they need to be
positive.

(d) Let @ # D C C be a simply connected open subset. If oo ¢ D, then D C C is
either C or conformally equivalent to E by the Riemann Mapping theorem. If co € D
then D is either C or C\ D # @. In the latter case, the Mdbius transformation z — — =

for 2o € C\ D extends to an homomorphism D — D’ with oo ¢ D'. Since D’ is simply
connected, it is either C or conformally equivalent to E.

Finally, there cannot be conformal maps C — C, C — E or C — E, since C is compact
and any holomorphic map C — E is constant by Liouville theorem.

(e) Let D = C. Then one easily checks that the assignment < “”b — ( CCL b ) defines

d
a group isomorphism

Aut (C) = {Mobius transformations} ~ {( CCZ Z ) ;a,b,c,d € C, det # 0} /{C"}.

By sending a matrix A to mA for a chosen square root of det A, we get that the

right-hand side is isomorphic to Gi.
Let & # D C C be conformally equivalent to C. Then the group isomorphism
Aut (C) ~ G restricts to

Aut (D) ~ Aut (C) = {affine transformations z — az + b} ~ Gj.

Finally, if @ # D C C is conformally equivalent to E, it is also conformally equivalent
to H by (a). Hence by (c), the group isomorphism Aut (C) ~ G, restricts to
Aut (D) ~ Aut (H) ~ Gs.

(Note that one uses the fact that ad — be > 0 has real square roots.) g
10



Problem 9. For a domain D C C (i.e. non-empty, open and connected) and a € D, set
Aut (D) = {f: D — D biholomorphism; f(a)=a}
and let o,: Aut (D) — C be the map f — f'(a).

(a) Show that o,: Aut (D) — C defines an homomorphism of the group Aut (D)
into the group C*.

(b) Describe Aut (D) and o, for D = E, the unit disc, and a = 0, and for D = C*,C
and any a.

(c) Prove that o,: Aut (D) — C* is injective with image U = {z; |z| = 1} for any
proper simply connected domain D C C.

(d) Let D C C be a proper domain. Prove that, if D is simply connected or biholo-
morphic to C*, then any f € Aut (D) satisfying f'(a) > 0 is the identity of
D.

Solution. (a) As any biholomorphism is locally injective, o,(f) = f'(a) € C* for any
f € Aut (D). Moreover, o,(idp) =1 and

oa(go f)= (g0 f)(a) =g (f(a))f'(a) = oa(g)oa(f)
for any f,g € Aut (D).

(b) By the Schwarz lemma, any biholomorphism f of the unit disc E satisfying f(0) =0
is a rotation, i.e. f(z) = Az for some A\ € U = {z; |2| = 1} (see [7, Lecture 6]). It follows
that Aut (E) is isomorphic through oy to U.

The biholomorphisms of D = C are the affine transformations ¢z + b with ¢ € C*
(see [7, Lecture 5]). Hence any f € Aut (C) has the form ¢(z — a) + a with ¢ € C* and
o, Aut (C) — C* is an isomorphism.

Similarly, the biholomorphisms of D = C have the form cz¢ with ¢ € C* and € = +1.
Solving the equation ca® = a gives e = ¢ = 1 or € = —1 and ¢ = a?. It follows that
Aut (C*) is isomorphic through o, to the group {%1}.

(c) By the Riemann Mapping Theorem, given a proper simply connected domain D C C
and a € D there exists a biholomorphism g: D — E satisfying g(a) = 0. The map
Ad,: f+> go fog ' defines a group isomorphism Aut (D) — Aut,(E) satisfying

1

Ady(f)'(0) = g'(f(a))f'(a)(g™")'(0) = g’(a)f’(a)g,(a) = ['(a)

Hence o, = 0 0 Ad, and the result then follows from (b).

(d) For a proper simply connected domain D C C, it follows from (c) that o, is
injective with image U = {z; |2| = 1}. Then |f'(a)| = |o.(f)| = 1 for any f € Aut (D)
and f'(a) > 0 implies f'(a) = 1, hence f =idp, as g, is injective.

If D is biholomorphic to C*, one may replace D by C* along the same lines of (c¢) and
the result follows from (b). O

Problem 10. Let D C C be a domain (i.e. non-empty, open and connected), and S C D
a closed subset. Set

Aut (D) ={f: D — D conformal map; f(S)=S}.
(a) Show that the restriction map f — f|p\s defines an injective group morphism
p: Aut ¢(D) = Aut (D \ S) = {conformal maps D\ S — D\ S}.

(b) Show that p is never an isomorphism for D = C and S = {c}.
11



(c) Show that p is an isomorphism for D = E = {|z| < 1}, the unit disk, and S = {c}.

(d) Show that p is an isomorphism for D proper and simply connected and S = {c}.
Compute explicitly the group Aut (D \ {c}).

(e) Show that p is an isomorphism for D bounded with 0D not containing isolated
points and S discrete. (Hint: use that for any open subset Q C C, if QU {c} is
open then either ¢ € S0, or c is an isolated point of O2).

Solution. (a) Clearly, Aut 4(D) is a group. For f € Aut (D), we have f(D\S) =D\ S,
as f is bijective and f(S) = S, hence f|p\g: D\ S — D\ S is bijective and holomorphic,
i.e. a conformal map. Therefore p is well-defined and it is clearly a group morphism.
Given conformal maps f,g: D — D, if f|p\s = g|p\s, we get f = g by the identity
principle (as D \ S is non-empty and open in D, connected), hence p is injective.

(b) The conformal map 7(z) = z — ¢ sends ¢ to 0, hence f + 7o f o7 ! defines group
isomorphisms Aut,(C) = Aut (0y(C) and Aut (C\ {c}) = Aut(C\ {0}) compatible
with p. It follows that we may suppose ¢ = 0. A conformal map C — C is an affine map
z — az + [ with a # 0, and it fixes 0 iff = 0, whereas a conformal map C* — C* is
of the form 2z — az*! with o # 0. Hence p is not surjective.

(c) Let f: E\ {c} — E\ {¢} be a conformal map. Then c is an isolated singularity for
f and, f being bounded, it must be removable. Let f be the analytic continuation of f
at E. Then f is continuous and injective, since E \ {¢} is dense in E (see [7, Lecture 5)),
hence f(c¢) € f(E\{c})\ f(E\ {c}) = d(E\ {c}) = {c} UDE. Since |f(z)| < 1 for any
z # ¢, then f (¢) = ¢, otherwise it would be constant by the Maximum Modulus theorem.
It follows that p is surjective.

(Note that, as in (e), one may use the Open Mapping theorem to get f(E) C E and to
deduce f(c) = ¢. Note also that, as for (b) with 7 the Mobius transformation z — =,
one might have supposed ¢ = 0.)

(d) By the Riemann Mapping theorem, there exists a conformal map ¢: D — E sending
¢ t0 0, hence f +— @o fop ™ and f— @p\yeo fo 90|]5<{C} define the vertical group
isomorphisms in the following commutative diagram

Aut (D) —"= Aut (D \ {c})

- a

Aut g, (E) —"— Aut (EX)

(where EX = E\ {0}). By (c), we get that the upper horizontal arrow is an isomorphism.

By the Schwarz lemma, a conformal map f: E — E satisfying f(0) = 0 is a rotation,
i.e. f(z2) = az for some a € U = {|z| = 1}, hence Aut (D \ {c}) = Aut(EX) <
Aut {0}(E) ~ U (the last arrow being a group isomorphism).

(e) Let f: D\ S — D\ S be a conformal map. Then any ¢ € S is a removable
singularity for f, as f is bounded and S discrete. Let f be the analytic continuation
of f at D. Since f is continuous and injective (as in (c), D\ S being dense in D) and
f(D) = f(D\S)Uf(S) = (D\S)Uf(S) is open by the Open Mapping theorem, it follows
from the Hint (by induction) that f(S) consists of isolated points of (D \ S) = S UD.

Since 0D has no isolated points, it follows that f(S) C S.
12



By replacing f with f ~1. we get an holomorphic map ]f‘:: D — D satisfying }‘—:/1 o f =
id = fof~ton D\ S, hence on D by the identity principle. It follows that f is conformal,
hence p is surjective. U

Problem 11. Let f be a meromorphic function on C.

(a) Show that f is locally injective at a pole a € CU oo iff ord, f = —1.
(b) Show that f is injective iff it is a Mdobius transformation. (Hint: show that if
21,29 € C, 21 # 29, are poles for f, then f cannot be injective.)

Solution. (a) First, recall that the zeros and poles of f form a closed and discrete set.
Let a € C be a pole of order m of f. Aslim,—s, f(z) = 0o, locally at a we have f(z) # 0,
1

hence ; is well-defined and (extends to an holomorphic function which) has a zero of

order m at a. Clearly, f is locally injective at a iff so does %, iff (%)’(a) # 0, that is, iff
1= orda% = —ord, f.
If a = oo, replace f(z) by f(1) and a by 0.

(b) Suppose that z1, 2z € C, 21 # 29, are poles for f. As lim,—,, f(z) = oo for i = 1,2,
we may find two disjoint open neighbourhoods V; and V3 of 21, z3 such that f(V}) and
f (V1) are open neighbourhoods of co. Then f(V1)N f(V3) is also an open neighbourhood
of 0o, hence non-empty. Contradiction.

It follows that f has at most one pole, which must be simple by (a). To conclude one
then follows the lines of [7, Lecture 5] and prove that f is a Mdbius transformation either
of the form a— + b = %2 if it has a pole, or a(z — ¢) + b = az + b — ac for a € C*
and b € C. O

Problem 12. Set E = {|z| < 1} and let f: E — E be holomorphic and proper (i.e. the
pre-image of any compact subset is compact).

(a) Show that Of(S) C f(0S) for any subset S C E with 0S C E.
(b) Prove that lim,— g |f(2)| = 1.
(¢) Given aq,...,a, € E, not necessarily distinct, show that

- Z — Q;
Bal 77777 an(z) :Hl_az

=1
defines a proper holomorphic map E — &, which is conformal if and only if n = 1.
(d) Prove that there exist A € OE and ay,...,a, € E such that f(2) = ABq, .. 4, (2).
(Hint: use the Mazimum Modulus theorem.)
(e) Suppose that f extends analytically on C. Show that f(z) = Az" for some n > 1.

Solution. (a) Since f is proper and E = f~!(f(EE)) is non-compact, f cannot be constant,
hence it is open by the Open Mapping theorem. It follows that f(Int(S)) C Int(f(S)) for
any subset S C E. Let us prove that f(S) C f(S) for any subset S C E with S C E. It
will follow that

0f(S) = f(S) \Int(£(S5)) C f(S)\ f(Int(S)) = £(S).

Take w = lim,— 400 f(2,) € f(S) for a sequence {z,}, C 5. Since S is compact, {z,}n

has a convergent subsequence to some z € S C E, hence f(2) = w.
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(b) We have to prove that lim,—gr f(2) € OE. Let {2,}, C E be a sequence con-
vergent to OE and suppose that {f(z,)}, does not converge to JE. Then there exists a

subsequence {f(z,,)}x lying in the compact subset B, (0) for some 0 < r < 1. Since f
BT(O)> C E has a convergent

VS

is proper, f! < BT(O)> is compact. Hence {2, }r C f~!
subsequence to some z € E. Contradiction. It follows that lim,,— . f(z,) € JE.

(c) Since |a;| <1 for any i =1,...,n, each {=* is a conformal self-map of E (see [7,
Lecture 6]), which is in particular proper and sends a; to 0. Hence their product B,,

deﬁnes a proper holomorphic map E — [E, which cannot be conformal if n > 1, as
..... Voo ({0}) ={a1,...,a,} # {0} if there are a; # a;, otherwise By, . 4, = (@) :

l1—ai1z

(d) By (b), we get Of(E) C JE, hence 0 € f(E), otherwise the line segment joining 0
and f(0) would contain a point in df(E), contradiction. Since f is proper, the non-empty
discrete subset f~1({0}) C E is compact, hence finite.

Let aq,...,a, € E be the zeros of f, counted according to their multiplicities. Then
the function & can be analytically extended to a never vanishing function h €
O(E). Since |Ba1 _____ an(2)] = 1 for |z| = 1 and lim,—- |f(2)] = 1 by (b), we get
lim‘z|_>17 |h(2)| = 1. By the Maximum Modulus theorem, we have both |h(z)| < 1 and

Ih(Z) < 1 for any z € E. It follows that h(z) = A with |\| = 1.

(e) Supposing f non-constant, by (d) we have f(2) = ABq, ... 4, (z) for some A € C with
|A| = 1. If f extends analytically on C, then a; =--- =a, =0 and f(z) = Az". O

Problem 13. Denote by E the closure of the unit disk E = {|z| < 1} and set OE = E\E.
Let f € O(E) satisfy f(OE) C OE.

(a) Show that f(E) C E

(b) Prove that either f(E) = E, or f is constant. (Hint: use the Open Mapping
theorem,)

(¢c) Prove that if Ref’ > 0 in E, then f restricts to a conformal map E — E. (Hint:
compute f f'(z)dz for an appropriate path vy)

(d) Prove that if [ is non-constant, then there exists A € OE such that f(z) = AB(z),
where B is a finite Blaschke product.

(e) Suppose that f extends analytically on C. Show that f(z) = Az" for some n € N.

(f) Prove that any g € O(C) mapping a circle to a circle has the form g(z) = a(z —
20)™ + wg for some a, zy, wy € C and n € N.

Solution. (a) Since |f(z)| = 1 for |z| = 1, it follows by the Maximum Modulus theorem
that |f(z)] <1 for any |2| <1, i.e. f(E )CIE

(b) If f is non-constant, then f is open by the Open Mapping theorem, hence 0 f (E) c
f(OE) C OE. It follows that f(E) D E, as it contains any line segment S C E starting
from f(0). Indeed, if it is not the case, there would exist a point in S\ OE belonging to
Of(E), a contradiction.

(c) As f cannot be constant, we have [f(z)| < 1 for any z € E by the Maximum
Modulus theorem, i.e. f restricts to an holomorphic map E — E. From f(E) = E and

f(OE) C JE it follows that f(E) = E. It remains to prove that f is injective.
14



Let [21, 29] be the line segment joining two points 21, 2o € E. Then

o) = £) = [

[21,22]

fl(z)dz = (20 — 21)/0 I(z1 + t(29 — 21))dt.

Since Ref’ > 0 in E, we have Re fol f(z1+t(29—21))dt > 0, hence fol f(z1+t(z0—21))dt #
0 and the result follows.

(d) As E is compact, f has a finite number of zeros ay, . . ., a, in E, counted according to
their multiplicities. As f(OE) C JE, none of the a;’s belongs to OE, hence ay, ..., a, € E.
It follows that the finite Blaschke product

B(z) = J[ 2 lad

; C_LiZ—l a;

=1

(where we set % = 1 if a = 0) belongs to O(E) and % can be analytically extended
to a never vanishing function h € O(E) satisfying |h(z)| = ‘lj_;(é))" =1 for |z| = 1. By the
Maximum Modulus theorem, we have both |h(z)] < 1 and <1 forany z € E. It

follow that h(z) = A with |A| = 1.

(e) Supposing f non-constant, by (d) we have f(z) = AB(z) for some A € C with
|A| = 1. If f extends analytically on C, then a; =--- =a, =0 and f(z) = Az".

1
|h(2)]

(f) Let S be the circle of radius r > 0 centred in zyg € C, and suppose that g(.5)
is the circle of radius p > 0 centred in wy. Consider the conformal maps of the plane
h(z) = (2 — z) and hy(w) = %(w — wp). Then hy(S) = IE = ha(g(95)), hence
G =hyogoh;t € O(C) maps the unit circle to the unit circle. It follows by (e) that
g(z) = \z"™ for some A\ € C with |A| = 1, hence

. A n
g(z) = h2_1 ogohyi(z) = i—n(z — 20)" + wo.

Problem 14. Let D C C be a domain (i.e. non-empty, open and connected,).

(a) Let g,h: D — D be holomorphic maps, with g non-constant and satisfying g =
hog. Prove that h = idp.

(b) Let {hi}r>0 be a sequence which converges in O(D) to a non-constant function
h. Prove that if hy(D) C E for any k then h(D) C E. (Hint: use Hurwitz’s
theorem.)

(c) Let f: D — D be an holomorphic map and set f°r = f, fo0+D) = fo for for
any n > 1. Assume that there exists a subsequence {f°™ }r>o which converges in
O(D) to a non-constant function g and set hy = fo™+1=™%) for any k > 0.

(i) Prove that every convergent subsequence of {hy}r>0 converges in O(D) to
idp. (Hint: note that o™+ = hy o f and use that - o - is continuous.)

(i) Suppose that D is bounded. Show that {hy}r>0 converges in O(D) to idp.
(Hint: use Montel’s convergence criterion.) Deduce that f is conformal.

(d) Suppose that D is bounded and let f: D — D be an holomorphic map such that
f(z0) = 2o for some zy € D. Assume that either |f'(z0)| = 1, or f(z1) = 2 for
some z1 € D\ {z}. Prove that f is conformal.
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Solution. (a) h is the identity on the (non-empty) subset g(D) C D, which is open by
the open mapping theorem, since g is non-constant. As D is connected, h = idp by the
identity principle.

(b) Take w ¢ E. Then hy(z) — w never vanishes in D for any k and by Hurwitz’s
theorem so does h(z) — w, as it is non-constant. Hence w ¢ h(D), that is h(D) C E.

(c) (i) Let {hg, }i>0 be a subsequence convergent to some h in O(D). As -o- is continuous,
taking the limit of fo"+! = hy o f" we get ¢ = h o g. Since g is non-constant, we can
apply (a) and get h = idp.

(ii) Since f(D) C D, by induction we get hiy(D) C D for any k. As D is bounded,
the sequence {hg}r>o is bounded, and we can use Montel’s convergence criterion: by (i)
every convergent subsequence converges to idp in O(D), hence so does {hy }r>o.

By induction f°"(D) C f(D) for any n, hence hy(D) C f(D) for any k. By (b) we get
D c f(D) C D, that is f(D) = D.

Given f(z1) = f(z2), we have f,,(z1) = fn(22) for any n, hence hy(z1) = hi(z2) for any
k. Taking the limit we get z; = z5. Therefore f is conformal.

(d) By Montel’s theorem, the bounded sequence {f°"},>1 has a subsequence { f°" }1>o
which converges in O(D) to some g. In both cases, g is non-constant and we may apply
(c) (ii). Indeed, in one case |¢'(20)| = limg |f°™'(20)| = limg | f'(20)|™ = 1, whereas in
the other case g has two distinct fixed points, since so does any f°". U

Problem 15. Let Z be a connected component of C\ K for a compact K C C.
(a) Show that 0Z C OK. (Hint: If B.(z0) C C\ K for zo € 0Z and r > 0, then ...)
(b) Suppose that Z is bounded and K UZ C U for an open subset U C C. Prove that
1fllz < [[fllg for any f € OU).
(c) In the situation of (b), prove that for any zy € Z there exists Ck ., > 0 such that
Zfzo — f(2) N > Ck .z for any f € OU).
(d) Assume C\ K not connected. Show that there exists f € O(K) which cannot be

approximated on K by polynomials.

(e) Assume C\ K connected. Show that for any zy € C\ K there exist a polynomial
pand f € O(K U{z}) satisfying f(20) = L, flx = 0 and |f — pllyy < b

(f) Prove that C\ K is connected if and only if for any zo € C\ K there exists a
polynomial p such that ||pll, < |p(20)]-

Solution. (a) Let 2o € 0Z = Z \ Z. It is enough to prove that z is a limit point for K,
i.e. for any r > 0 the open disc B,(zg) intersects K. As K is closed and zy ¢ IntK, it
will follow that 2y € 0K = K \ IntK.

Assume B, (zp) C C\ K. Then Z C ZU B,(z)) C C\ K and Z U B,(z) is connected,
as B,(z)) and Z are connected and B,(z9) N Z # @. Since Z is maximal, we have
Z U B,(z)) = Z, that is, B.(29) C Z. Contradiction.

(b) By (a), we have 0Z C 9K C K, hence Z C K UZ C U. As Z is bounded, by the
Maximum Modulus theorem, we get

1fllz = I lloz < Hf!l,;f6 for any f € O(U).



(c) By (b), for zyp € Z and any f € O(U) we have

L s il 1= =)/ G
Z— 20 K HZ—ZOHK HZ_ZOHK
> Hl_(Z—ZO)f(Z)HZO _ 1 :CKZO>0
Iz = 2ol |z — 2oll 5 ’

(d) If C\ K is not connected, it has a bounded component Z (see [7, Lecture 16]) and
f(z) = 2= € O(K) for 2y € Z. By (c), there exists Ck ., > 0 such that

|f —pllx = Ckz for any p € Clz] C O(C),

hence f cannot be approximated on K by polynomials.

(e) For zy € C\ K, take V, W C C disjoint open subsets satisfying zo € V and K C U,
and f the function which has value 1 on V and 0 on W. Then f is locally constant, hence
holomorphic, in VUW D K U {z}, that is, f € O(K U {z}).

If C\ K is connected, then C\ {K U{z}} = {C\ K} \ {20} is connected as well, hence
by Runge’s theorem there exists a polynomial p such that [|f — p|| .y < z.

(f) Assume C\ K connected and take zy € C\ K. By (e), there exist f € O(K U{z})
and a polynomial p satisfying f(z0) =1, flx = 0 and || f — pll y, < 5. Tt follows that

1
Il = Wf =2l < 1 = Pllxoeg < 5

and
1
1= Ip(0)l] < 1 = (o)l = If = Pllsy < I = Pllkogy < 50
hence [lp],c < 4 < [p(z0)].
Conversely, if C\ K is not connected, it has a bounded component Z. Take z; € Z. It
follows by (b) that

[p(20)] < llpllz < llpllx ~ for any p € C[2].

Problem 16. For a domain (i.e. non-empty, open and connected) D C C and a € D,
set

Aut (D) = {f: D — D biholomorphism}, Aut (D)= {f € Aut(D); f(a) = a}.

(a) Suppose that C\ D is non-empty and without bounded components. Prove that any
f € Aut (D) satisfies | f'(a)| =1, and f'(a) =1 if and only if f is the identity.
(b) In the situation of (a), suppose moreover that D is symmetric with respect to the

real azis and a € DNR. Given f € Aut (D), prove that f(Z) = f(z) on D if and
only if f'(a) = +£1. (Hint: consider f(z) = f(Z).)

(c) Let D be bounded. Prove that any f € Aut (D) satisfies |f'(a)] = 1. (Hint:
consider the sequence {f°" = fo fo---o fl,>1 and compute (f")(a).)

(d) In the situation of (c), prove that any f € Aut (D) satisfying f'(a) = 1 is the
identity. (Hint: use that, if z 4+ ¢,,2™ + ... (m > 2) is the Taylor series at 0 of
an holomorphic function f, then z +nc,2™ + ... is the Taylor series at 0 of f°.

Prove this fact by induction, if time allows.)
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(e) In the situation of (c), suppose moreover that D = Int D. Prove that a convergent
sequence { fn}n>0 € Aut (D) converges either to some f € Aut (D) or to a constant
¢ D. (Hint: use the sequence {f,'}n>0 € Aut(D).) Deduce that Aut (D) C
O(D) is compact.

Solution. (a) As a consequence of Runge’s little theorem (see [7, Lecture 16]), D C C is
a proper simply connected domain, hence by the Riemann Mapping Theorem, for any
a € D there exists a biholomorphism g: D — E satisfying g(a) = 0. Then Ad,(f) =
go fogt e Aut,(E) is a rotation by the Schwarz lemma, i.e. it has the form Az for
some A € C with [A\| = 1. It follows that f'(a) = (Ad,(f))’(0) = A, hence |f'(a)| = 1,
and f'(a) = 1if and only if Ad,(f) = idg if and only if f =idp.

(b) Set f(2) = f(Z). Since D = D and @ = a, we get a bijection f: D — D satisfying
f(a) = a. Moreover, since

7(2) = lim (f@%% - f(ﬁ))

= f'(2),

it follows that f is holomorphic, hence f € Aut (D), and f'(a) =

One has f(z) = f(z) if and only if f = f, if and only 1f ft
identity. By (a), this happens if and only if (f~' o f)(a) = ;
since |f'(a)| = 1 by (a).

(c) Given f € Aut (D), one easily checks that (f")(a) = a and (f°")'(a) = f'(a)™.
Since D is bounded, then Aut (D) is bounded, as supeay; () | fllx < sup.ep |2 < +o00

h—>0

(a).
f € Aut (D) is the

that is, f'(a) = £1,

for any compact K C D. By Montel’s theorem, it follows that the sequence {f°"},>1 C
Aut (D) has a convergent subsequence {f°*};>1, hence the sequence {(f°™*)'(a) =
f'(a)™ }g>1 is convergent. This can happen only if |f/(a)| < 1, otherwise lim,, | f'(a)|" =
+o00 so that it cannot have convergent subsequences. By considering f~! € Aut (D),
one also gets | f~V(a)| = ‘f, o7 < 1, hence |f'(a)] = 1.

(d) Given f € Aut (D) satisfying f'(a) = 1, one has (f°")(a) = a, (f°")'(a) = 1, and
(f°™)"(a) = nf”(a) by the hint. Asin (c), by Montel’s theorem the sequence {f°"},>1 C
Aut (D) has a convergent subsequence {f°™*};>1, hence the sequence {(f°")"(a) =
nif”(a) br>1 is convergent. This can happen if and only if f”(a) = 0. By induction, one
gets that f(™(a) = 0 for any m > 2. By the identity principle, it follows that f(z) = z
on D.

Let us prove the content of the hint. Given the Taylor series f(z) = z + ¢,2™ + ...
(m > 2) centred at 0, by induction hypothesis and by using f°"(0) = 0, we get the
following Taylor series centred at 0

Fz) = F(f(2) = F(2) + em [ ()T
=z4+ncpz2"+ - Fep(ztne 2"+ )+
=z4+n+1)c,2"+ ...

(e) Let {fn}n>o € Aut(D) be a sequence convergent to f in O(D). By Hurwitz’s
theorem, either f has constant value € D, or f is injective, hence open by the Open

Mapping theorem, so that f(D) C IntD = D.
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Consider the sequence of the inverses {f,'},>0 € Aut (D). Since D is bounded, then
Aut (D) is bounded, hence, by Montel’s theorem there exists a convergent subsequence
{f,1} which converges to g in O(D). It follows that

g () = lilgn( o fn) (z) =1 forany z € D satisfying f(z) € D.

Therefore, if f has constant value, necessarily € D\ D, whereas if f is injective, g cannot
be constant, hence it is injective and open, with g(D) C IntD = D. As

go f=lim(f,'o fo,) =idp =lim(fu, 0 f, ') = fog

it follows that f (and g) is bijective.

If {fu}n>0 € Aut (D) is a sequence converging to f, then f(a) = lim, f,(a) =a € D,
hence f cannot have constant value ¢ D. It follows that Aut (D) is closed in O(D).
Since it is also bounded, it is compact by Montel’s theorem. Il

Problem 17. Let D C C be a domain (i.e. non-empty, open and connected,).

(a) For zg € D, let ev,,: O(D) — C, f — f(z9) be the evaluation map. Show that
ev, ' ({0}) is a closed and mazimal ideal of O(D) (i.e. O(D) is the only ideal
which properly contains it).

(b) Let I € O(D) be an ideal. Show that the following are equivalent:

(i) I is closed and mazimal;

(ii) I ={f € O(D); f(z0) =0} for some zy € D;
(iii) I = ker x for a C-linear ring homomorphism x: O(D) — C.
(Hint: show that zy = x(idp) € D and x = ev,,.)

Solution. (a) The evaluation map is continuous for the topology of compact convergence
on O(D), hence ev '({0}) C D is a closed subset, and one easily checks that this is
a proper ideal of O(D). Let I C O(D) be an ideal properly containing ev;'({0}) and
take f € I such that f(z9) # 0. Then f(z) = f(z0) + (z — 20)g(2) for g € O(D), hence
1= f(20)""f(20) = f(20) 7 (f(2) = (2 — 20)g(2)) € I, so that I = O(D).

(b) (i) = (ii) By the main result of ideal theory for holomorphic functions (see |7,
Lectures 20,21]), every closed ideal is principal, hence I = g O(D) for some g € O(D).
Since I is proper, g needs to have a zero zy € D, otherwise % € O(D) and I = %[ =
%}g O(D) = O(D). It follows that I C {f € O(D); f(20) = 0} and equality holds by
maximality of I.

(ii) = (i) It follows from (a).

(ii) = (iii) One easily checks that ev,,: O(D) — C is a C-linear ring homomorphism,
hence {f € O(D); f(z) = 0} = ev, ' ({0}) = kerev,,.

(iii) = (ii): Set zg = x(idp) € C. Then x(z — z9) = x(idp) — 2o = 0, hence 2y € D,
otherwise (z — z9) ™' € O(D) and 1 = x ((z — 20) "}z — 20)) = x(2 — 20) 'x(2 — 29) = 0.

Let f € O(D). Then f(z) = f(20)+(2—20)g(2) for g € O(D), hence x(f) = x(f(z0))+
V(2= 20)x(9(2)) = F(20) = vy (f). Tt follows that kery = { € O(D); f(z0) = 0} O

la| z2=a E
Problem 18. Set E = {|z| < 1} and b,(z) = { a az—1 zfa € E\ {0},
z ifa=0.
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(a) Show that for any a € E, the map b,(z) defines a biholomorphism of E satisfying
ba(OE) = .

(b) Prove that |b,(z) — 1] < % for any a,z € E.

(c) Let {an}nen C E be a sequence such that the series ) (1 — |ay|) converges.
Prove that the infinite product [, > ba,(2) defines a holomorphic map f: E — E
having a zero at any a,,.

[l — 1 hence by(2)

a

Solution. (a) If a = 0 there is nothing to prove. If a € E\ {0}, then

is a Mobius transformation which restricts to a conformal map E — E (see [7, Lecture
5]). It remains to prove that b,(0E) = OE. We have

2 —al

[ba(2)] =

az — 1] =1 = [z—a’=laz - 1) = (z—a)(z-a) = (1 -a2)(1 - Za).

This is equivalent to (1 — |a]?)(1 — |z|?) = 0, which holds iff |z| = 1, as |a| < 1.

(b) Let z € E. If a =0, then |z — 1| <1+ 2| < 1+‘Z| For a € E\ {0}, we have

==l

jal(z —a) —aaz = 1)| _ (1 —a])[(lalz +a)] _ (1 —|a])(1 + =)

[ba(2) — 1] = a(az — 1) B la| |[(az — 1) B 1= ]

since |az — 1] > 1 — |az| > 1 —|z|.
(¢) For any compact K C E, we have
L+ [l2llx

1a, (2) = Ul < (1 = lanl)5

by (b), as a, € E for any n > 0. Since Y ,(1—|a,|) < +o0, the series >, -, (bs, (2) —1)
is normally convergent in O(E), hence [, - ba, (2) defines a holomorphic map f € O(E)
having a zero at any a, (but not identically zero as none of its factors vanishes). By (a),
for any z € E we have |f(2)| = [[,,.5¢ |ba, (2)] < 1, hence f(E) C E by the Open Mapping
Theorem, f being non-constant. U

—lI=llk

Problem 19. Let T denote the right half-plane {Re z > 0} and E the unit disk {|z| < 1}.
(a) Show that t(z) = 2
(b) Let d: T — N be a positive divisor and {a,},>1 C C* a sequence such that

suppd = {an;n > 1} and d(a,) = cardinality of {ay; k > 1,a, = a,}.
Prove that the following are equivalent:
(i) d = (f) for a bounded function f € O(T);

(ii) the series > <, H}TT“”P converges.

(Hint: use the Blaschke condition and the inequality 5(1 — Jw]?) < 1 — |w| <
(1—|w|?) inE.)

(c) Let {rn}n>1 C Ryp be a sequence with r, > 1 for any n > 1 and such that
Dol - = +00. Show that, if f € O(T) is a bounded function such that f(r,) =0
for any n > 1, then f vanishes identically on T.
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Solution. (a) We know (see [7, Lecture 6]) that z — % maps conformally {Rez > 1} onto
the open disk {|z — 3| < 3}. It follows that ¢(z) = £ defines a conformal map of T onto
[, as it may be decomposed into

1 1
T — {Rez > 1}?{|z—§| <§}—>E
where b(z) = 1, and a(z) = 2+ 1 and ¢(z) = 1 — 2z are surjective affine transformations.

1 1
t~1: E — T is given by the Mobius transformation associated to the inverse projective

: ], that is, t71(2) = ==

. s . . Lo . 1 -1
As t(z) is the Mobius transformation associated to the projective matrix [ } ,

matri 1
atrix 11 .

One may also proceed as follows: t(z) is a Mébius transformation, hence it defines a
conformal map of C\ {—1} onto C\ {1}, which sends simply connected open subsets to
simply connected open subsets. By a direct computation, one gets t(0T) = JE \ {1} C

OE C 0t(T). It follows that 0t(T) = OE, hence ¢(T) = E. The determination of the
inverse follows also by an easy computation.

(b) The conformal map ¢: T — E induces a ring isomorphsim
O(T) —» O(E), fwf=fot!,
which sends bounded functions on T to bounded functions on E. Then (f) = d if and
only if (f) = d, where d = dot™': E — N is a positive divisor. By the Blaschke condition,
this happens if and only if the series > -,(1 — [t(a,)|) converges, as d(t(a,)) = d(an).
From the inequality in E B

1
5= wl*) <1 —Jw| < (1 |wf?),

it follows that the above series converges if and only if so does the series 3 -, (1—[t(a,)[?).
One then concludes, since for any z € T
Re 2

(c) Let f € O(T) be a bounded function satifying f(r,) = 0 for any n > 1. If f was
not identically zero, d = (f) would be a positive divisor. By (a), the series ) -, (14:#)2
would converge, as a sub-series of » ‘EST‘::‘LQ, with {a,}n,>1 C C* a sequence satisfying

suppd = {an;n > 1} and d(a,) = cardinality of {ax;ar = a,, & > 1}. But this is

impossible, as
Tn 1 1
" >z - = )
D

n>1 n>1

Problem 20. Consider the infinite product
H(1+q”z) forqeC
n>1

(a) Find the q’s for which the infinite product converges normally in O(C) to f,(2).
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(b) For any q as in (a), show that [],~, ,, oaa(1 +¢") and [],51  oaa(l — q")~t may
be recovered as special values of fp(_w) for some p and w. (Hint: for the second
use (1+¢")(1—q") = (1—-¢*).)

(c) For any q as in (a), show that f,(z) never vanishes in the unit disk E = {|z| < 1},
and compute 0log f,(0).

(d) For any q as in (a), compute the Taylor series of f,(z) at z = 0. (Hint: use

[[s(1+¢"2) =1 +q2)[[,5,(1+4d"¢2).)

Solution. (a) The infinite product [[,-,(1+¢"z) converges normally in O(C) iff the series
Y n>1 4"z converges normally in O(C), and this happens iff |g| < 1. For any such g, set
f4(2) the entire function defined by the corresponding infinite product.

(b) Since [],5,(1 4+ ¢") is convergent, so does [],; ,, oqq(1 +¢") and, if ¢ # 0, this
is equal to ], (1 +¢* 1) = f2(¢7") (note that, if |¢| < 1, then |¢?| < 1 and fp is
well-defined).

From (1+¢")(1 —¢") = (1 — ¢*"), one has

k k 2%

n 1_q21_q41_q61_q8 1_q2lC ny— n
[T+ = o—= I a-m7 I -

l—qgl—q¢*1—¢*1—¢* 1—gq

n=1 n=1,n odd n=k+1,n even
As ”
1—q" 1
lim (1—¢") = lim ozl qn) =Z,
k=t 2o k=400 [[sopa (T —¢q") 1

we get fo(1) = HnZI,n oaa(l — ")

(c) fy(2) = 0 iff one of the factors 1 4+ ¢"z =0, i.e. z = —¢ " for some n > 1if ¢ # 0.
As |g| < 1, then | —¢7"| = |¢|™™ > 1 for any n > 1, so that f,(z) never vanishes in E.

One has .
dlog f,(2) Z(’)log 1+q"z) = Zlf
n>1 n>1 q
whence )
q
01 0) = N 1= —
ngq( ) ;q 1—¢ 1—¢

(d) From [],5,(1+¢"2) = (1 +¢2z) [[,>,(1 + ¢"¢qz), we get the functional equation

fo(2) = (1 +¢2) fy(q2).
Let fy(2) = >_,50@n2" be the Taylor series at 2 = 0. We have ap = f,(0) = 1, and the

functional equation gives a, = a,q" + qa,_1¢" "' for any n > 1, i.e. a, = %an_l. By
. . o gttt
induction, one gets a,, = T gy for any n > 1. Whence
n(n2+1)
=1+ z".
; (1—q¢)(1—¢q%)...(1—qm)
O

Problem 21. Consider the infinite products

[Ta+ o, JLa+z.

n>1 n>1
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(a) Show that they converge normally in O(E) to never vanishing functions f(z) and
g(z). (Here E = {|z| < 1} denotes the unit disk.)
(b) Compute the product f(z)g(z) for any z € E.

Solution. (a) The infinite products converge normally in O(E), since the series ) -, (—1)"2"
and )7, ., 2*"~! converge normally in O(E). They define holomorphic functions f(z) and
g(z) on E, which never vanish, since none of their factors vanishes on E.

(b) From (1 + (—1)"2")(1 — (=1)"2") = (1 — 2*"), one has

n_n Hfz:l(l - Z%)
1 —1)"2") = .
L0+ 0 = o

It follows that
k k 2%
1= (=1)"z"
lim (14 (=1)"z") H<1 + z2n—1) — lim szl( (—=1)"=")
e e T, (1= (1))

n=1 n=1
hence f(z)g(z) =1 for any z € E. O

Y

2
1+ Qnil

Problem 22. (a) Provethat]], -, % is convergent. Prove that [, o
1+ 2z in O(B41(0)).
(b) Prove that z[],,>, <1 — ;—2) is normally convergent to an entire function g(z), and

compute its zeros with multiplicities.
(c) Prove that g(z) satisfies the functional equation (0.1) in Problem 2. Deduce the

sine product % = 2[[= (1 - Z—i) (Hint: use % (1 - (in);) =

2z
45,5 1— (Z+%)2 )
1+ 2z 7’12 .

2n+1

Solution. (a) The first infinite product is convergent, since

(2n)? 1 1

on —1)(2n + 1 a2 1" a2
(

with 2@1 ﬁ < +00.
For the second, we have

for n — 400

ﬁ1+2321_1+221+% I+527  1+22

n>1 I+l 2k+1 2k+1
[ B A ..
with —2%=% holomorphic in B;(0) for any n > 1, hence we get
1+ y b
2n+1

1+ 522 1+2
H # — lim +—2j =14+2zin 0(31(0))~
nZl + m k‘—>+OO ]_ + 2k+1

(b) For any compact K C C and any z € K, we have

2 [EQIFS
e
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with 7 ) 75 < 400, hence the infinite product is normally convergent in O(C). Since
<1 - %) = 0 iff z = £n for any n > 1, it follows that g(z) = 2 [],5, (1 — Z—i) has zeros
exactly at the points z € Z, all with multiplicity 1.

(¢) Set A = [T1 2. By using normal convergence, we get
o0 =201 (1 G ) T (- i)
=200 ]1 (1 - %)
=2 T (1 )
o] : zz; ( e ;b?)
— 2(2)A(1 + 22) 1:[1 (1 & Zf)Q) = 4\g(2)g (Z + %)

Hence g satisfies the functional equation (0.1) in Problem 2 with ¢ = ﬁ.

As g is entire and odd, from (0.1) it follows that g(z) = 35 sin(7z). Finally, since
20g(z) 2\

1= lim = lim ——= =
z—0 Tz z—0 Tz e

sin(mz)

we get A = 7 (Wallis’ formula).

Problem 23. Consider the infinite product [[7___ (1 + -%5) e~ mx with A € C\ Z.

(a) Prove that |(1 — z)e* — 1| < |2]? for |2| < 1.

(b) Show that infinite product converges normally in O(C) to a function f\(z) having
a zero at n+ X\ for any n € Z.

(¢) Find a > 0 and € C such that sin(a(z + ) and f\(z) define the same divisor.

(d) For «, B as in (c), find explicitly a function vy(z) such that sin(a(z + f)) =
evk(z)f)\(z).

Solution. (a) For any |z| < 1, we have

(1—2)e —1] =

n n+1
Z%_Zzn! -1

n>0 n>0

<3 (= ) =P

n>2

as the series ) -, <(; - %) telescopes to 1. (See Problem 27 (a).)

n—1)!
(b) For any compact K C C, take ng € N such that ng — |A| > ||2]/5. Then for any
z € K and |n| > ng, we have |25 | < 2l < el 1 hence by (a)

In|=IAl = nr—[Al

z z
1 i -1
(755)r

2 2
[EIFS

= (In[=1AD*

z

n—A

<
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. 1 .
Since mem < +o0, the series > -,

(14 =) ey — 1HK is convergent,

hence [T>>_ (1+ =) e~ 7x defines an entire holomorphic map f,(z), which has a zero

at n+ A for any n € Z.
(c) The zeros of fy(z) are all simple, as well as those of sin(a(z + 3)) for a > 0. It
) pumy

follows that they define the same divisor if and only if sin(a(n + A + 5) 0 for any
n € Z, for some a > 0 and € C, that is, iff « = 7 and § = —\.

(d) Clearly, since sin(m(z — A\)) and f\(z) have the same divisor and C is simply con-
nected, there exist a function vy(z) such that sin(m(z — \)) = e f,(z). To find it
explicitly, by taking 0log of the previous equality, we get

ﬂ-COt(ﬂ-(z—)\)):U;(Z)‘i‘ Z (1?2 _ni)\>

n=-—00 n—A>\
- 1 1
o
=)+ Z (z+n—/\_n—>\)
- 1 - 1
= v\(2) + p.v. Z P w200 Z 0

= vy (2) + meot(m(z — \)) — weot(—mN)

that is, v} (z) = wcot(—nA). It follows that vy(z) = 7 cot(—mA)z + ¢ for some ¢ € C.
Since fy(z) = 1, we get sin(—7A) = e = ¢, hence ¢ = log(sin(—7\)). O

Problem 24. Let {a,}nen € C be a sequence of bounded variation, i.e. satisfying
D om0 |nt1 — an| < +00.

(a) Show that the series ) -, an2" converges normally in O(E) to a function f.

(b) Suppose ag =a; =1 and set a =", ¢ |ans1 — an| and E(z) = (1 —2)f(z). Show
that |E(z) — 1| < alz|? for any z € E.

(c) In the situation of (b), suppose moreover that f extends analytically in C. Show
that [[,,~, E£(£) converges normally in O(C) to an holomorphic function g having
a zero at any n > 1.

(d) Set a, = % Show that the sequence {ay }nen is of bounded variation. Then prove

that zg(z)g(—z) = @ and compute g(—1).

Solution. (a) For any k > 1 we have

k—1 k—1
lax| = [ao + Z(an-i-l —an)| < lao| + Z |an1 — an] < ao| + Z g1 — nl,
n=0 n=0

n>0

hence {a,}nen is a bounded sequence. (In fact, in the same way one may prove that
{an }nen is a Cauchy sequence, hence convergent.)
For any compact K C E and any n > 0 we get [|a,2" | = |aa| ||2||x < cost. | z]%.
Since >, <, |Iz[|% < +o0, the series Y ., a,2z" converges normally in O(E).
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(b) For z € E, we have

E(z)=(1-2)f(2) = Zanz —Zan 12" —CL0+Z n— ap_1)

n>0 n>1 n>1

Since ag = a; = 1 and |z| < 1, we get

Z(an — p_1)

n>2

B(z) 1] = < St = apal2]" < a2

n>2

(c) Since f extends analytically on C, E(2) € O(C) for any n € N. For a compact
K C C, take ng € N such that ng > ||z|| ;. Then for any z € K and n > ng, we have
SE

|2| < 1, hence by (b)
2
2(3) -1l sali] <o

Since Y5, 75 < 400, the series ) |E(2) - IHK converges. It follows that the

n2 n>ng

infinite product [],-, £(Z) converges normally in O(C) to a function g.
Since E(2) = 0 if z = n, it follows that any n > 1 is a zero of g.

(d) As the sequence {4 },cn is decreasing, we get a telescoping series

it E (- ) -

“|(n+1)! nl =

For a,, = %, we have f(z) = e?, hence

By using the sine product, we get

2g(2)g9(—2) = 2 H <1 - %) en H (1 + %) eTn =2 H (1 — ;—Z) = sinf:rz)'

n>1 n>1 n>1

Note that AG)
z
—2z) =
9(=2) =3
where A(z) is the Weierstrass Delta function and v the Euler-Mascheroni constant, hence

g(=1) = H (1 + %) e = %71) =e .

n>1

In order to prove the above equality directly, one uses the following computation

log g(—1) :n; (log (1 + %) — %)
:_Z< +logn—log(n+1))
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Problem 25. (a) Let f € O(C) satisfy f(0) =1 and f'(0) = 0. Show that [, f(%)
converges normally in O(C).
(b) Let f(z) be the analytic continuation of ®22= on C. Show that [, f(5Z

converges normally in O(C) to a function g and compute the divisor (g).
(c) Prove that g(2) = [[,>, cos(52). (Hint: use the sine product)

2n— 1)

Solution. (a) The function f(z) — 1 has a zero of order > 2 in 0, hence we may write
f(z) =1 = a(2)z? for a € O(C). For a compact K C C, take ng € N such that
nk > ||z|| . Then for any z € K and n > ng, we have |2| <1 and

(2) 1] =]a(D)] (3)2 < Yl =1 -

Since ) L < 400, the series Y, || f(£) — 1], converges. It follows that the

n>nK n2

infinite product [[,-, f(Z) converges normally in (’)((C).

(b) Since f(0) = 1 and f'(0) = 0, by (a) [],s, f(57=) converges normally in O(C)
to a function g. Since f(z) has a first order zero at any non-zero integer, g(z) = 0 iff
z € (2n — 1)Z \ {0} for some integer n > 1. It follows that

#{positive odd integers which divide z} if z € Z\ {0},
(9)(z) = .
0 otherwise.

(c) For any n > 1 and z # 0, the sine product formula gives

2n—1 m>1 m>1

hence for any z # 0 we get

7 (5) -T2 (-5

n>1 n>1 2n—1 n,m>1

The result follows by recalling that for any m > 1
4( = )2 z
- ) o)
11 ( (2n —1)2 ) “\"om
n>1

(see [7, Lecture 14]), and by the uniqueness theorem.
Note that one can also use directly the formula

; _z
cos (n2) = sin (m3,77)

2m 2 sin (Wﬁ)

Problem 26. Forn € N, set E,(2) = (1 — 2)eP»&) with p,(z) = z + é + -+ % for
n>1 and po(z) = 0.

(a) Show that —% extends to an entire function F,(z) satisfying |F,(z)| < F.(|z]).
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(b) Prove that
1
|Eu(2) — 1] < yz|"+1/ t"F, () z])dt
0
for any z € C and deduce that |E,(2) — 1] < |z|"*™ if |2] < 1.
(c) Let {an}n>0 C C* be a sequence satisfying lim,—s |a,| = +00. Show that for
Fon+1
any choice of a sequence {k,}n>0 C N satisfying ano( L ) < 400 for

lan|
any r > 0, the infinite product [],~, Ex, (i) converges normally in O(C) to a

function having a zero at any a,.
(d) Show that [, (1—2£) converges normally in O(C) to a function f satisfying

f(z) =1 =2)f(3).
(e) Let g be an entire function satisfying g(z) = (1 —2)g(3) and g(0) # 0. Show that

9=9(0)f.
Solution. (a) We have E! (z) = —2"e¢P(*) hence F,(z) = eP»(*) and
|, (2)] = eRer) < elmGl < | (12])
(b) Since E,(0) = 1, we get

1 1
|En(z)—1|:/ E;<w)dw‘g|z|"+l/ t”|Fn(tz)|dt§]z\”“/ £ F (¢ 2] )t
0,z]

0 0
For |z] <1, we have F,(t|z]|) < F,(t) for any ¢ > 0, hence

1 1
Bo(z) — 1] < |2 / £, (t)dt = |2 / B (1)t = [
0 0

as E,(1) = 0.

(c) For a compact K C C, take nx € N such that |a,,| > ||z]| ;. Then for any z € K
and n > ng, we have | = <1. By (b) we get for any k, € N

kn+1 kn+1
E. (i) _1‘§ z < (HZHK)
ay, ||

Qn
: Izl )+ :
Since Y5, < K) < 00, the series >

|‘1n|

- HEkn(i) - 1HK converges. It follows

that the infinite product [[,-, Ej, ( = ) converges normally in O(C) to a function having
a zero at any a,, .

(d) Since lim,— 2" = 400 and Y - 5= < 400, we may chose k, = 0 for any n € N.
As Ey(z) =1 — z, it follows by (c) that [],., (1 — %) converges normally in O(C) to a
function f satisfying -

f&=0-]1(-5)=0-27(3)

n>1

(e) By induction, g must satisfy for any n € N

w0 -T1(- 3)o(55)
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By taking n — 400, we get

Problem 27. Set E(z) = (1 — z)e* for any z € C.
(a) Show that |E(z) — 1] < |z|* for any |z| < 1.
(b) Show that the infinite products

zZ VA
EE<_%) and gE(2n+1>

converge normally in O(C) to functions a(z) and b(z), respectively.
(c) Show that for any z € C

za(2)b(z) = 2V/7A (5) A (1 ; z)

where A 1s the Weierstress” Delta function. (Hint: use the duplication formula)
(d) Show that

a(z)b(z) = 27 H (1 + (_1)”5)

n
n>1
where the infinite product is convergent (not normally convergent!) in O(C).
FExpress the value of anl (1 + (—1)"%) in term of the Gamma function.

Solution. (a) This is a particular case of Problem 4 (b) and of Problem [?] (b). Choos-
ing for example the first method, we have for any |z| <1

> (3o < 2 (o - o) =

n>2 n>2

|E(z)—1| = |e*—ze* — 1| =

as the series ) -, <ﬁ - %) telescopes to 1.

(b) For a compact K C C, take nx € N such that 2nx > ||z]|,. Then for any z € K
and n > ng, we have |525] < |5-| < 1, hence by (a)
2
[EIFS

: P el .
E(——)—1‘<‘—‘< K and |E -1 <
‘ on =lonl = (@202 ™ o+ 1 = (2n + 1)
Since Y, 75 < +00, the series Y . |E(-£) — 1HK and ) o HE(%ZI) - 1HK

converge. It follows that the infinite products [],-, & (—%) and  [[,50F (TZH) con-
verge normally in O(C) to functions a(z) and b(z), respectively.

(c) Recall that A(z) = ze7*G(z) with v the Euler-Mascheroni’s constant and

G(z) = H (1 + %) e n

n>1

2
<

z
2n+1

The duplication formula for the Gamma function in terms of A reads as

s 2 (o4 ) a0
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From this, one gets

VAzTA (‘g * %) AG) =% )" (5) = ZGG(<—_§) G () = =a(=)b(z)

(d) One has

a(2)b(z) = lim (1-2) ﬁ (1 n %) (1 _ zni 1) )

n—

2k+1
— 1 Zz%’ﬁll(*l)n% (1 -1 ni) _ ,zlog2 (1 -1 ”E)
Jm e lill +(-1) - e 1:[1 +(=1) o

By (c), one has

() - v () ()

Recalling that I'(z) = ﬁ, one finally gets

H (1 + (_1)ni> - ZF( 2T i—z\ v 1

n
n>1

Problem 28. Consider the infinite product

I(:5) 0+0)

(a) Show that it converges normally in O(C) to a function f(z).
(b) Show that f(z) = A(z 4+ 1), where A denotes the Weierstress” Delta function.

Solution. (a) Set

fe = () (1 2) =) (14 2)

Then by the mean value theorem, for any » > 0 and z € B,.(0) we have

[fn(2) =11 = [fa(2) = (O] < [1f2lljp,z 121

%—log<l+%> (1—1—%)

For n — o0, we have log (1 + ) = 5~ 37 +o(5z), hence the right hand term is ~ C-

n n  2n?

for a constant C, depending on 7. Since »_ 25 < 400, the series > ons1 1fa(2) = Uiz

< 6T10g(1+%)r

B-(0)

converges. It follows that the infinite product Hn21 (NLH)Z (1 + %) converges normally
in O(C) to a function f(z).

(b) Recall that A(z) = 2¢7°G(2) with v = limy_s (z’“ ! —logk) the Euler-

G(z) = H (1 + %) e n

Mascheroni’s constant and



Thanks to functional equation A(z) = zA(z + 1), it is enough to prove that f(z) =
e*G(z). As

e m — e*%+zlog(1+%) <1 + 1>_ _ ez[f%flognJrlog(nJrl)] (L)
n

n+1
we get
i z
vz T Nz z _z
€G(2) = lim e [] (1+ n) ¢
n>1
[ k 1 ] k z n z
e 1 z 'Y_anl E‘l’log(k—l—l) (1 _)
k_lgoo ) H - n n+1
n>1
k z
- z[v—( ,’2:1 %—logk)-i—log(l-&-%)] <1 i) n _
s H + o A W f(2)

n>1
Note that one can also use Gauss’ product formula

1)...
A(s) = E{E z(z + )' (z+n)
n 00 nin?

Problem 29. Let I'(z) denote the Gamma function.

(a) Show that T'(z 4+ n) ~ n*T'(n) for n — +oo and any z € C\ Z<.
(b) Let f € O({Rez > 0}) satisfy f(z +1) = z2f(2) and f(z +n) ~ n*f(n) for
n — +00. Show that f(z) = f(1)I'(2).

Solution. 22 (a) For any z € C\ Z<,, we have

. I(z+n) , F(z4+n+1) . (z+n)...(z+1)z2I(2)
im ——~ = lim = lim - =1
n—+oo n*l'(n) n—+too (n+ 1)*I'(n+1) n—+o (1+ E)ZTLZTL!
by the Gauss product representation
1 lim z(z—i—l)...(z—i—n).
I'(z) n—oo nln?

(b) The functional equation f(z+1) = zf(2) allows to analytically extend the function

g(z) = 1]:8 to an entire function, also denoted by g, satisfying g(z + 1) = g(z). We have

9(2) _glz+m) o ogletn) L fetn) n )
o) " gl e gl o nf(n) T+ n)

J:L(Z?EZ)) = 1, hence ¢ is constant, i.e. %08 = f(1). -

by (a) and lim,,— |

Problem 30. (a) Find all « € C for which f,(z) = f0+oo(1 —e )t~ 1dt defines an
holomorphic function on {Rez > 0}.
(b) For all & € C as in (a), compute explicitly f!(z). Derive the explicit value of
fa(2).
(c) For any a € C as in (a), prove that fo(z) ~ —
the Stirling formula.)

I'—a)'(atz)

re Jorz = oc. (Hint: use
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Solution. (a) Take a compact K C {Rez > 0}. For t — 07 we have

H(l o e—zt)t—a—IHK — Hl o e—thKt—Re a—1 _, HzHKt—Rea

hence fol (1 —e#)t~* Y|, dt < oo if and only if Re o < 1.
For t — +o00 we have
Hl _ e—th 75—Re a—1 _, t_Re a—1
K

hence f1+°° (1 — e #)t~*7Y| ; dt < +oc if and only if Re @ > 0. From a known theorem
(see [7, Lecture 10]), it follows that f,(z) defines an holomorphic function on {Rez > 0}
if and only if Re a € ]0, 1].

(b) For Re a € ]0,1[ and z € {Rez > 0} we have

+o0
fi(z) = /0 e F ot = L(E7Y)(2) = 2°7'T(1 — @)

where £ stands for the Laplace transform (for the computation, see [7, Lecture 23|). It
follows that

falz) = ; ]fé(w)dw + fa(l) = =T(=a)z% + T'(=a) + fa(1)
By a direct computation, we get fo(1) = [[™°(1 —e ")t 2 'dt = —T(—a), hence f,(2) =
—I'(—a)z”.

(c) It is enough to prove that

lim — L)

W)y
z2—>00 F(z+a)

By the Stirling formula (see [5, XIV.2]), we have I'(z) = v/2727 2 %e#() with lim,—yo0 p(z) =
0. It follows that for z — oo

1 1

20/ 2z e e () 2%2%72 o\ ~F a2
~(2) (+3)

~

vV 27T(Z + a)z+a—%e—(z+a)eu(z+a) (Z 4+ a)z—&-oz—%e_a

Problem 31. Let f € C*(R) be a Schwartz function, that is, sup,cg |t™ fO(t)| < +o0
for any m,l € N.

(a) Show that f0+oo f(&) ¥~ dt defines an holomorphic function T'¢(z) on {Rez > 0}.

(b) Prove that I'y(z) extends analytically to a meromorphic function on C with at
most simple poles.(Hint: integrate by parts.)

(c) Assume that f extends to an holomorphic function on a disc B,(0) for somer > 1.
Find an explicit partial fraction decomposition for I'(z) on C.

(d) Let A(z) denote the Weierstrass” Delta function. Show that A(z)I'f(2) extends to
an entire function and compute its value at any k € Z<.

(e) Set f(t) =e*". Prove that T';(2z) = \2/—;1—‘]0(2)1—‘]0(2 +1).
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Solution. (a) For a compact K C {Rez > 0}, set px = maxgRez > 0 and px =
mingRez > 0. Then for any ¢ > 0, we have

IFO)et it > 1

z—1 Rez—1 __
LFOF e = 1) maxt {|f(t)|tl”<1 ito<t<1

< 9 sup,e (|f(O)PEI2) 72 = Ct=2 ift > 1
m =
=K sup,eg (|f(0)]) 5=t = Dgrs=1 §f0 <t < 1.

(here [-] denotes the integral part, and C, D positive constant). Since f(¢)t*~! is continu-
ous in Ry x {Rez > 0} and holomorphic in z, and f0+oo m(t) dt < +oo, it follows that
the given integral defines an holomorphic function I't(z) on {Rez > 0}.

(b) Note first that for any m,l € N and ¢ > 0, Rez > —n we have

supyeg ([fO@)[tRAT42) 71 50 ast — +o0

|f(l) (t)tz+n| _ |f(l) (t)‘tReZ+n < {

sup;ep (ISP (1)]) R =0 as t — 0+
By integrating by parts, we get
oo z—1 1 z|+o0 1 e / z oo ! z
[y(2) = fOEdt = —fO)F[;™ — - fOrdt = —- frd
0 z < Jo <z Jo

and the right-hand side defines an holomorphic function on {Rez > —1} \ {0}. By
iterating, we get

(=1)" I (n+1) +
r = " Ht=Tdt
1(z) 2(z4+1)...(z+n) Jy / (t)
which defines an holomorphic function on {Rez > —n—1}\{0,—1,..., —n}. This allows

to analytically extend I'y to a meromorphic function on C with at most simple poles at
any k e Zgo.

(c) From the computation in (a), it follows that G¢(z) = 1+°° f(t)t=~1dt is entire, as

m(t) does not depend on K for t > 1. As f extends to an holomorphic function on a

disc B,(0) with 7 > 1, we may consider its Taylor series ), -, f(TZ( Jirat ¢ = 0. Then we
get the following partial fraction decomposition

:/1f(t)t“dt+Gf(z)
/Zf ) jzn- Ldt + Gy(z)

n>0

(n)
_Zf / Lt + Gy (2) :Zf nfo)zinJrGf(z).

n>0 n>0

where we have used that the series is normally convergent in [0, 1].

(d) Take k = —n € Z<p. Then I'f(z) has at most a simple pole at —n by (b), whereas
A(—n) = 0. It follows that —n is a removable singularity for A(2)I'f(z). Moreover

(")(0)
. T resL Iy B
zl—lgr—lnA(z>Ff(z>—zl—1§I—ln F(Z) - TGS,HF(Z) - (71)n _(_1) f (O)

n!

where the residue of I'¢(z) at —n follows from (c), or from (b) by a direct computation.
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(e) One easily checks that f(t) = e is a Schwartz function, and one has

oo 1 [t 1
'y (22) = e B = = e %" ds = —T'(2)
f 2 2
0 0

by change of variable ¢ = y/s. Then the formula to prove follows directly form Legendre’s

duplication formula
r;)r = YT
2 ( 2 ) gl ()

Problem 32. Let vy the path in C\ {0, 1} drawn below

=)

(the left dot corresponds to O and the right one to 1). Set f(¢,z,w) = ¥ 11 — )~ L.

(a) Prove that f(-,z,w) defines a continuos function on |7y| for any z,w € C. Deduce
that

F(z,w) = / F(Czow) dC

defines an entire function in each argument.
(b) Prove that

(2 +w)F(z,w) = (1 —e**)(2)(1 — ™) (w)

as meromorphic functions on C. (Hint: prove the equality for Rez, Rew > 0.)

Solution. (a) Choose arguments for ¢ and 1 — (, and take P € ||, say P = y(a) = v(b)
for a parametrization v: [a,b] — C. As f((, z, w) changes by a factor €™ (resp. e?™%)
when arg ¢ (resp. arg(l — ()) is increased by 27, and the path circled 0 and 1 twice in
opposite directions, the value of f(v(b), z, w) is the same as that of f(y(a), z,w). Hence
f(+, z,w) defines a continuous function on |y| for any z,w € C.

Since the integral exists for any z,w € C and f((, z, w) is holomorphic both in z and w,
by a theorem on functions defined by integral along a path (see [7, Lecture 10]), F'(z, w)
is entire on each argument.

(b) For Rez, Rew > 0, we have
I'(z)0 !
—<Z> (w) = B(z,w) :/ =1 — 1)t
['(z +w) 0
by the identity principle is thus enough to prove that

1
F(Z,’U)) — (1 o 627Tiz)<1 o 627riw)/ tz—l(l o t)w_ldt
0

for Rez, Rew > 0. As f defines an holomorphic function on C deprived by two half-lines

(depending on the choice of the arguments) of initial points 0 and 1, we may deform ~ to

a path made by four straight line segments ~;, © = 1,2, 3,4 along the real axis, two circles

0;, © = 1,2 around 0 and two circles ¢§;, © = 3,4 around 1, without changing the integral.
Since Rez, Rew > 0, for any 7« = 1,2, 3,4 we have

[era-aeta < [t - a0




as the radius of d; tends to 0. Whence, by letting the length of the +;’s tend to 1 and by
taking into account the appearing factors e*>™* and e*>™" we get

Plevw) = [ Gy e [ ¢z w g
7 72

+ 627ri2627riw/ f(Q,Z,w) dC + 627riz/ f(C,Z,w> dC

) V3 | . Y4
:/ tz_l(l o t)w_ldt o e27mw/ tz—l(l o t)w_ldt
0 0
+ 627r2z627rzw/ tz—l(l . t)w_ldt . eQﬂzz/ tz—l(l - t)w—ldt
0 0

1
=(1—e*™*)(1 - e2”w)/ (1 — )t
0

Problem 33. Consider the double sided series ), , m for k € N.

(a) Prove that for any k > 2, the series converges normally to a meromorphic function
€x(z) on C, periodic of period 1 and having a pole of order k at any n € Z.

(b) Show that e;(z) = (- OFD 2 for any k> 2.

(k—1)! sin?(7z)
(c) Show that ex(z) = ((k i) (2mi)* 37,5y 0 1e?™™ in {Im 2 > 0}, with normal con-
vergence. (Hint: one has 7 cot(mz) = mi z:ﬂ =...)

(d) Show that ex(2) = & + (=1)*2 3,5, (2= H¢@n)zF for |2 < 1.
(e) Show that (n+ $)¢(2n) = >, .., C(2k)C(2) for any n > 2. (Hint: use Smg(m) =
7 (cot?(mz) +1).)

Solution. (a) For any compact K C C, set mg = ||z||x. Then for any k£ > 1 and any
n > my, one has

1 1 1 1
— pr— —_— < < .
EETa P S“%KuiMk—“”“ﬂ|—mh—m—nmw
with G i IF having no pole in K. Since »_ m < +oo for any k > 2, it follows

that the series ) ) )

DI i LD D iy D DY e

nez (Z + TL) n>0 (Z - n) n>1 (Z n)
converges normally to a meromorphic function €,(z) on C, which has a pole of order k at
any n € Z. One has ex(z +1)=>_ _, m = €x(2) by rearranging the terms.

(b) Since the series ZneZ Z+n)
hence 0,€x(2) = —kekH( ) for any k > 2, so that €(z) =

prove that ey(2) = m
the Mittag-Leffler’s partial fractions decomposmon

7Tcot7TZ——+ Z l+ }
z n n

neZ\{0}
35

— 7 is normally Convergent we may derlve term by term,

(k 1 ( ). It remains to

Fort this, it is enough to apply dlfferentlatlon to both sides of




(the series being normally convergent).

(c) For z € {Im z > 0}, we have |¢*™?| = ¢e~?™™ % < 1 hence

2miz 1 2 )
meot(mz) = m': = i (1 - —> = mi — 27 Z e?minz

627rzz -1 1— 627rzz
n>0

(with normal convergence). By applying differentiation to both sides, we get - (m) =

(274)% 3,51 ne*™"* and we conclude by using (b).

(d) Since z = 0 is the unique pole of €;(z) in E, and it is of order k with principal part
Zik, the holomorphic function € (z) — zlk admits a Taylor series in E centered at z = 0,
i.e. €,(2) = o + Ym0 @m2z™ for |z| < 1 (with normal convergence). We have

1 1 1 k—1+m 1
m m _1 m
m m'az [ k() = zk} o m! Z o [(z—i—l)’“} —0 (=1) Z ( k—1 )lk+m
z 1E€7,1£0 z 1€Z,1£0

(the series being normally convergent). If k 4+ m is odd, the terms + gz of the double
series cancel out, so that we may suppose k +m = 2n for n > 1. It follows that

—1+m\ 1 paf2n —1
aoni = (— 22( L )l?—n_( 1)2<k_1)((2n)
1>1
for any 2n > k.
Note that one may also use (b) and apply differentiation to both sides of 7 cot(mrz) =
123 5,¢(2n)22 ! for |2] < 1.
(e) From (b), we get e3(2) = —— = w2(cot®(mz) 4+ 1). Let z € E. By (d) we have

sin?(7z)

w2 1

=5 +2) (2n—1)¢(2n)2""

sin2(7rz) z =

and from the Taylor expansion 7 cot(r2) = 1 =23 -, ¢(2n)2*"~! and by using Cauchy’s
product formula for series, we get

7?2 4+ 12 cot?(r2) = % + % - 42 C(2n)2*"2 + 42 Z C(2k)C(20) 22,

n>1 n>2 k+l=n

By comparing the coefficients of the same power of z, for any n > 2 we get

2(2n — 1)¢(2n) = —4¢(2n) +4 Y ((2k)¢(21)
k+l=n
hence the result. Note that, by comparing the coefficients of the zero-th power of z, we

2

recover also ((2) = % O

Problem 34. Let E = {|z| < 1} denote the unit disk, ((z) the Riemann Zeta function
and vy the Fuler-Mascheroni constant.

(a) Show that the series ( — l) converges normally in M(C) to a function

z+n n

f(2) having a simple pole at any k € Z<_y with res,f = 1.
(b) Prove that f(z) =Y >_ (=1)"C(m + 1)2™ for any z € E.

m=1
(c) Set g(z) = f(z) + L. Prove that g(z + 1) f(2) and g(z) — g(1 — z) = wcot(mz).
(d) For any z € C\]R<0, set G(z f[1 B g(&)dE, where [1, z] denotes the oriented line

segment joining 1 with z. Show that G(z) =logz — Y o7, (£ —log(1 + 2)) + 7.
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(e) Show that G(z+1) = =3, #C(m)zm for any z € E. (Hint: use (b) and
(¢).)

(f) Prove that I(z) = v — vz — G(z) is a logarithm of I'(z) on C\ R<o.

(g) Prove that the series Y -, EV%¢(m) is convergent. Then compute its sum.

m

(Hint: compute lim,—s,_ G(z +1).)

Solution. (a) For any compact K C C, set mg = ||2|/ . Then ZJ%n — < has no pole in K
for any n > mpg, and the series Zn>mK || Z}rn — %H  Is convergent, since for z € K we
have
1 1
——| = & < 12 < MK for any n > my
Zz+n n n(z+n)| ~ nllz| —n| T n(n —mg)

and Y, < 400

n(n—mg)

It follows that the series Y ", (5 — &) converges normally in M(C) to a meromor-

phic function f(z) having a simple pole at any k € Z<_; with

, . (z — k) 1 1
-t -2 (22)-

(b) For any |z| < n, we have

Rt ED S O

z
n m>1

hence, by normal convergence, for any |z| < 1 we get

3] EESEE I 3 DR ) WSS DEEND pEesiy SR

n>1 n>1 m>1 m>1 m>1

(c) By rearranging the terms, we get

1 1 1 1 1 1
o0 =3+ 3 () =1 (e a) =0

n>1 n>2

and

Y () 2 (=)

n>1

1 1 1
=+ ( + ) = 7 cot(mz)
z

+n z—n
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(d) Since the series is normally convergent, we can integrate term by term, and we get

G<Z):/u]< +Z<§+n‘ﬁ)>d‘5

n>1

1 1
/[12]gd§+z_:l/[1,z] (54—”_5) “

1
:logz—10g1+z (log(z—l—n)—%—log(l%—n)—l—ﬁ)

n>1

zlogz—z<§—log<1+%>)+v.

n>1

Here we used that log(z +n) = log (1 + Z) 4+1logn, as both z and £ lie in C\ Ry for any
n € N>y and any z € C\ Re, and that

; (logn —log(1+n) + 5) = ngquoo (; T log(1 + n)) = 1.

(e) Since G(1) =0 and for any z € E
(G +1) =g(z+1) = f(z) = Y _(=1)"¢(m +1)2"

m>1

we get for any z € E

Glz+1)==)_ #C(m)zm.

m>2

—yz —logz + >0, (£ —log(1+ £)), hence for any z €

c {fg&By (d), we have I(z) =
- lz z, -1 1
(2) — ¢ Hen (1 + > = A(z) — F(Z)

n>1

(g) The series > me (m) is convergent by the Leibniz criterion, since the se-

quence {C }m>1 C Ry is decreasing, as ('(z) < 0 for x > 1, and infinitesimal, as

hmm—)+oo C( ) =1

By (e) and (f), we get
> .(_;L)m_((m) =~ lim Gz +1)=—G2)=12) —7+2y=1

m>2
U

since [(2) = logI'(2) =log1 = 0.

Problem 35. Let {t} denote the fractional part of t € R.
(a) Prove that f(z fo {s71}s*ds defines an holomorphic function on {Rez > —1}.

(b) Show that there exist a rational function R(z) and A\ € C* such that (z+1)f(z) =
R(z) + A((z+1) in {Rez > —1} (here ((z) denotes the Riemann Zeta function).

(¢) Compute f(n) forn € N odd.
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Solution. (a) Since [{s™'}| < 1 for any s # 0, for any compact K C {Rez > —1} and any
z € K, we have

|{S—1}Sz‘ S SRez S ﬁ

with p = maxxRez > —1 and fol tPdt < 400. Then fol{s_l}sz ds defines an holo-

morphic function in O({Rez > —1}) (the function {s7'}s* being locally bounded on
10,1] x {Rez > —1}).

(b) Since {s7'} = s7! — [s7!] ([s7!] is the integral part of s7') and by setting t = s~ !,
in {Rez > 0} one gets

(Z+1)f(z):(z+1)/0 sz_lds—(z—l—l)/o [s7s*ds =

with

z+1
z

—(2+1) /1+Oo[t]t—z—2 dt

(z+1) /1+Oo[t]tZ2 dt = M([])(z+1) = C(z + 1)

where M([t]) denotes the Mellin transform of [t] and ¢ the Riemann Zeta function (see [7,
Lecture 22]). It follows that

(z+1)f(z)z1+%—((z+1) in {Rez > 0}.

Since (¢ is a meromorphic function on C with a unique pole in z = 1, which is simple
with residue 1, the function 2 — ((z + 1) extends analytically on C, and by the identity
principle the above equality holds on {Rez > —1}.

(c) From the above computation, for any k& € N>; we have

hence, recalling Euler’s identities, for kK = 2n 4 1 one gets

_ 1 C(2(n -+ 1)) . 1 (_1)n+1 (27T>2(n+1)
f@Cn+1) = n—+1 2(n+1) 241 2n+ 1)2(2(n + 1))!32(n+1)

where By(,11y denotes the 2(n + 1)-th Bernoulli’s number. O

Problem 36. Let ((z) denote the Riemann Zeta function.

(a) Prove that (1 — 2'7%)((2) extends to an entire function n(z).

(b) Show that n(z) = >_,- (_173:71 for Rez > 1.

(c) Let Rez > 1. Show that n(z) is the Mellin transform of f(t) = H(}& (Here [t]
denotes the integral part of t and the Mellin transform of f is defined as M f(z) =
2 [0 fe)e =t ae.) -

(d) Show that the equality in (b) holds for Rez > 0. (Hint: prove that ), -, %
converges in O({Rez > 0}).)

Solution. (a) Recall that ((z) is meromorphic with a unique pole in z = 1, which is
simple. As the function 1 — 2'7% = 1 — (1721982 ig holomorphic on C with a zero at

z =1, it follows that (1 — 2'7#)((z) extends to an entire function.
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(b) First, note that the series is normally convergent in O({Rez > 1}) and recall that
((2) = ¥,51 2= on Rez > 1. Hence

- L 1 1y
(1-2 Z Z (2n)* Z (2n)* _;(Qn—l)z_z (2n)? _Z n?

n>1 n>1

(c) From (b) we have n(z) = anl “U" for Rez > 1. As (=) t=f(n)— f(n—1)
and f(0) = 0, by Abel’s summation formula we get

k k—1
(=" f(k) 1 1
2 T i (n_ B <n+1)Z)
k-1 n+1
- _fli’:) + Zz/ fr="tat

k
k) +z/1 ft="tdt.

Since f(t) is bounded, it follows that (f) — 0 in O({Rez > 1}) as k — +o0, and
n(z) = Mf(2).
(d) For any compact K C {Rez > 0} and any z € K we have
{f(t)t_z_l‘ S tRez—l S t_p_l

with p = ming Rez > 0 and f;roo t=771dt < +o00. Then zf1+°° f(t)t=*=1dt converges

normally in O({Rez > 0}).

Since k—f) — 0 in O({Rez > 0}), we get that > ., (7173—:71 is convergent (but not
normally convergent!) in O({Rez > 0}).

The equality in (b) then follows by the identity principle.

g

Problem 37. Let i denote the Mébius p-function: p(1) =1 and, forn > 1, u(n) = (=1)"
if n is a product of v distinct primes, p(n) = 0 otherwise.
(a) Prove that ), -, “7(;) (z2) on {Rez > 1}.
(b) Prove that n(2)((z) = 1 on {Rez > 1}, where ((z) denotes the Riemann Zeta
function. (Hint: use Euler’s product formula.)

Solution. (a) For any compact K C {Rez > 1} and any z € K, we have

p(n) 1 < 1
nz - |nz| o nRez — ne

9

with p = ming Rez > 1. Hence the series converges normally in O({Rez > 1}).
(b) By Euler’s product formula, we have to show that

H(l . pfz) _ :uflzl)

peP n>1

on {Rez > 1}, where P denotes the set of prime numbers.
40



Note that, for any prime p, we have

et

n=pk k>0

We will thus proceed by induction. Let F' C P be finite and suppose that

[Ja-r>) = M(n),

/’fLZ
peF neENp

where Np = {p® ... p/"; py € F,k; > 0forany i =1,...,1} C N.
Let ¢ € P\ F. Then

[[ a5 =0-¢)][a-»p)=0-¢7) Myi?) = Mgf) - u(”l.
peFU{q} peF neNp NNy ot

As pu(ng®) =0 for k > 1 and u(nq) = p(n)u(q) = —u(n) for any n € N, we get

Hn) _ o~ ) Hng) _ 5~ pn) s i)

TLENFU{Q} neENp neENp neENg neENg
We thus proved that
- p(n)
[I a-p9= > =
peFU{q} nENpU{q}
By induction, we get that
- p(n)
H(l —p ) = z
n
peEF neENp
for any F' C P finite. By passing to the limit we get the result, as Np = N by the
fundamental theorem of arithmetic. O

Problem 38. Let P denote the set of prime numbers and log the principal branch of the
logarithm.
(a) Show that |log(1 — z) + 2| < |z|? for any |z| < 3.
(b) Let {by}per C C be a sequence such that the series Y pb, and Y _p|by|* are
convergent. Prove that the infinite product Il,ep(1 — b,) converges. (Hint: use
a).
(c) ;7201)16 that Zpé[[”% = +o0. (Hint: use (b)).
(d) Show that 3 p # defines an holomorphic function (p(z) on {Rez > 1}.
(e) Prove that (p(z) is the Mellin transform of w(t) = #{p € P; p < t}. (Recall that
the Mellin transform of f(t) is defined as Mf(z) = z 1+°O ft—="1dt.)
(f) Prove that (p(z) — log ((2) extends analytically to a neighbourhood of { Rez > 1}.
(Hint: use Euler’s product formula and (a).)

(g) Show that (p(z) +1log(z — 1) extends analytically to a neighbourhood of { Rez > 1}.

Solution. (a) For any |z| < 1, we have

—Z%—l—z

n>1

|log(1l —2) + 2| = <

If || <1, then 1_#|z| < 2 and we get the result.
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(b) As P is countable, all results for series and infinite products still hold when the
indexes belong to P. In particular, Il,ep(1 — b,) is convergent iff so is >~ plog(1 — b,)
(providing b, # 1 for p >> 0). Since }_ b, is convergent, b, — 0 as p — +o0, hence
there exists p € IP such that |b,| < % for p > p and

[ log(1 = by) + by| < |bp‘2
by (a). Since >° p|by|* and >~ b, are convergent, so are Y p (log(1 — b,) + b,) and
ZpG]P’ log(1—1b,) = Zpeum (log(1 = b,) +b,) — ZPGP bp.

(c) Assume that > p - 1 < 400. Then I,ep(1 — %) would be convergent by (b), as

> peh = < > ns1 7z < +oo. By Euler’s product formula, we have

1 ) 1 . 1
M (1) = T (1) = by 75 =
since z = 1 is a pole of (. Contradiction.

(d) For any compact K C {Rez > 1} and any z € K, we have

1 1 1
Z el Z Rez = Z nRez < 100,
peP p peP p n>1
hence ZPE]P = converges normally in O({Rez > 1}) to an holomorphic function (p(z).

(e) As P is countable, we may denote by p, the n-th prime (n > 1). By Abel’s
summation formula we get

b (n—1) k b n n
Z ; pk+1 " ; (])_fb - pfz+1>
k

k Pn+1
— Y [

pk+1 n=1 Pn

k Pk+1
= — +z/ m(t)t =t dt,
1

Pri1

<

k+1

0 iftel|l,2
as m(t) = 1 €12l Since pr > k for any k& > 1, it follows that
n ift e [pn>pn+1[-

W — 0 as k = 400, and (p(z) = Mmn(t).

(f) By Euler’s product formula, in {Rez > 1} we have

Cp(z) —log ((= Zp + Zlog 1— Z (p~* +log (1 —p77))

peP peP pEP
It is enough to show that the right-hand side is normally convergent in a neighbourhood
of {Rez > 1}. Since |[p7*| = # < % in {Rez > 1} for all p € P for any compact

K C {Rez > 1} and any z € K we have by (a) and (d)

prz_i_log(l_ <Z‘p —|—10g 1— }<Z|piz :Zp2i{ez<+oo

pEP peP pEP peP

(g) Recall that ((z) has a unique pole in z = 1, which is simple, and never vanishes in

{Rez > 1}. It follows that (z —1)((z) is holomorphic never-vanishing in a neighbourhood
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of {Rez > 1}, hence log ((z — 1)({(z)) = log(z — 1) + log ((2) is holomorphic there, and
so is (p(2) +log(z — 1) = (p(2) — log ((2) + log(z — 1) + log ((z) by (f). O

Problem 39. Let ((z) denote the Riemann Zeta function, A(z) the Weierstrass™ Delta
function, and B,, the m-th Bernoulli’s number.

(a) Prove that fl - dt =50 m for Rez > 1.
(b) Show that erOO f ~dt defines an entire holomorphic function.
(¢) Show that erOO - dt defines an holomorphic function on {Rez > 1}, which ex-

tends analitically to a meromorphic function F(z) on C.

(d) Show that A(z)F(z) has a unique pole at z = 1, which is simple.
(e) Prove that A(2)F(z) = ((2). (Hint: use the changet = *.)

Taylor series at

0
w B, .,
_1:ZF"LU fOI‘|"LU|<27T.
n>0
(a) First note that for Rez > 1, the integral is absolutely convergent, as
tz—l tRez—l R )
et—lzet—lwt ast — 0+4.
We have
tz—l
_ noyz4n—2 : :
1 Z . t with normal convergence in [0, 1],
n>0
hence
1 1 1
t*~ B, B
rdt =1 =g =y = i A=y ———
/0 of — egﬂ)/z Zn egﬁ) Zn!(z—l—n—l)

n>0 n>0

for Rez > 1, as lim,—yo ™! for any n > 0.

(b) For a compact K C C, set px = maxgRez > 0. Then for any z € K and t > 1, we

have

tz—l tRez—l tPK—l
= <

et —1 el—1 " et —1

hence [, oo e 11 dt < +o00. Since Z—:ll is continuos in Rs; X C and holomorphic in z, it

follows that the given integral defines an entire holomorphic function.

=o(t™?) ast— +oo

(c) By (b), it is enough to prove that

1 4z-1
t
/ ; dt
0 € — 1
defines an holomorphic function on {Rez > 1}.

For a compact K C {Rez > 1}, set ux = mingRez > 1. Then for any z € K and
t €]0, 1], we have

tzfl
e — 1

tRezfl t,qul

_ -2
= t—1§ t_lwt‘”{ as t — 0+,

hence fl PR dt < +oo. Since L is continuos in ]0,1] x {Rez > 1} and holomorphic

in z, the result then follows.
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By (a), in {Rez > 1} we have

400 tz—l Bn +oo 2fz—l
dt = VB dt.
/0 et —1 Zn!(2+n—1)+/1 et —1

n>0

It remains to prove that the series ) Br ) is normally convergent in M(C) to a

n>0 nl(z+n—1)
meromorphic function on C.

For any compact K C C, set mg = ||z]|x. Then m has no pole on K for any

n > mg + 1 and the series Zn>mK 1 —n!(zf’; =il is convergent, since for z € K we have
B, [_1BJ 1 _|Bl 1 _|B|
nl(z+n—1) nl Jlzl—=(n—=1) = n!l (n—1—mg) ~ n!
Bn Bn,
and D2, Pal < > om0 Bulgn),_y < 4o0.

(d) By (c), we have
+oo  pz—1
F(z) :Zn!B—n)*/I P € M(C),

_ t_
= (z+n—1 et —1

hence F(z) has a simple pole at any k € Z<;. Since A(z) is entire and it has a simple
zero at any k € Z<p, the meromorphic function A(z)F(z) has removable singularities at
any k € Z<, and a unique pole at z = 1, which is simple.

(e) Since both sides of the equation are meromorphic on C, by the identity principle it
is enough to prove it for Rez > 1. In this case we have

+o0
A(2)F(z) = A(z)/o tz_le_t;dt

where we have used that the series is normally convergent in R. U
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FORMULAE

(feci(@),
Q c C,
Pompeiu’s formula:  f(z2) = 2L [/ f(w) dw +/ de A di for ope;; o
T Jog W — 2 K W—Z2 ze K C K C{)
K c C
\ compact

Euler’'s Gamma function: T'(z) = / t*“le7tdt for Rez > 0
0

! ()T
Euler’s Beta function:  B(z,w) = / N1 — ) dt = L()C(w) for Rez, Rew > 0
0 I'(z+w)
Euler’s supplement: I'(2)['(1 —2) = sin?ﬂz)

1
Legendre’s duplication formula: T’ (%) r (Z; ) = 2\5_%1 ['(2)

m—1

g LD+ k/m) form 22

Multiplication formula:  T'(mz) =

: —~ 1
Weierstrass’ Delta function:  A(z) = ze7” H (1 + E) e n  withy = 11_I>n ( 5 log n)

n
n>1 k=1

. . +1)...(2+
Gauss’ product representation: —— = A(z) = lim de4l).(z4m)
I'(z2) n—roo nln?

Mittag-Leffler’s partial fractions decompositions:

1 1 1 1 1 2z z
rer =pe D=t B e = e N e
neEZ neZ\{0} n>1 ne7Z
5 (-1 1 1 1] 1 (—1)"2z (—1)"z
=pu. y —— =-— -1)" —| == 5 =
sin(mz) pvzz—n z+ Z (=1) L’—njLn} z+z 22 —n? 222_n2
nez neZ\{0} n>1 nez

T
n>1
B,

Bernoulli’s numbers: S —2"  for |z| < 27
e —1 n!
n>0
1 Z” n+1
BO:1731:_§’an+1:OfornZ1’k_o( L )Bk:()
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(27r)2n
2(2n)!

Euler’s identities:  ¢(2n) = (—1)"** By, for m >1

1
Euler’s product formula:  ((z) = H 1o for Rez > 1

(1 — _ z—1
Riemann’s integral representation: — ((z) = — ( Z) / (—w) dw
gl

Riemann’s relation:  ((z) = [2(27r)z_1 sin(%z)F(l - z)] ((1—2)
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