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1. The Riemann mapping theorem

1.1. Holomorphic isomorphisms.

1.1.1. Injectivity of holomorphic maps. We recall (one of the possible statements of) the:

. Open mapping theorem. Let D be a region of C, and let f : D → C be holomorphic and non-
constant. Given c ∈ D, denote by m the multiplicity of c as a zero of f − f(c). Then there exist open
neighborhoods U of c and V of f(c) such that f(U) = V , and for every w ∈ V � {f(c)} the equation
w = f(z) has m distinct solutions z1, . . . , zm ∈ U � {c}.

In particular f is an open mapping, that is, f(A) is open for every open subset of D.

We remark that the proof is a nice application of the argument principle (see, e.g. [Rudin]), and we
reproduce it here for completeness.

Proof. Since f is non constant the identity theorem says that c is isolated in f←
(f(c)), and moreover Z(f �

) is

a discrete subset of D, closed in D. Thus there exists δ > 0 such that B(c, δ] ⊆ D, and B(c, δ] ∩ f←
(f(c)) = {c},

whereas B(c, δ] ∩ Z(f �
) contains at most c. Then f(c) /∈ f(∂B(c, δ]), and Z(f �

) ∩ ∂B(c, δ] = ∅. Let V be the

connected component of C � f(∂B(c, δ]) that contains f(c); remember that V is open. Set U = B(c, δ[∩f←
(V ),

so that U is open, contains c, and f(U) ⊆ V . If γ(t) = c+ δ eit, t ∈ [0, 2π] is a parametrization of the boundary

of B(c, δ], and Γ = f ◦ γ, then we have

m =
1

2πi

�

γ

f �
(z)

f(z)− f(c)
dz =

1

2πi

�

Γ

dζ
ζ − f(c)

= indΓ(f(c)).

But we have indΓ(w) = m for every w ∈ V , that is

m =
1

2πi

�

γ

f �
(z)

f(z)− w
dz for every w ∈ V ;

By the argument principle the equation f(z) = w has then m solutions z ∈ B(c, δ[, counting multiplicities; since

Z(f �
) ∩ B(c, δ[ is either empty, or contains only c, it follows that if w ∈ V and w �= f(c) then the equation

w = f(z) has m distinct solutions z1, . . . , zm ∈ B(c, δ[; clearly z1, . . . , zm belong also to U , so that V ⊆ f(U).

�

Corollary. Let f : D → C, with D open subset of C, be holomorphic. If c ∈ D, and f �(c) = 0,
then there is no neighborhood U of c such that f|U is injective. If, conversely, f �(c) �= 0, then there are
open neighborhoods U of c and V of f(c) such that f induces a homeomorphism of U onto V .

Proof. For, c has in the first case multiplicity at least two as a zero of f − f(c). The second case is
the above theorem if f �(c) �= 0. �
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1.1.2. Local injectivity at an isolated singularity. The preceding corollary says that a holomorphic
mapping is locally injective at a point c of its domain iff f �(c) �= 0, in which case it is a local homeo-
morphism at c. What about isolated singularities? that is, if D is open, c ∈ D, and f is holomorphic in
D� {c}, what can be said about injectivity of f in some (punctured) neighborhood of c? Assuming that
c is a pole, then f is nonzero in every sufficiently small neighborhood of c, and it is locally injective iff so
is 1/f in some (perhaps smaller) neighborhood of c. Since 1/f has a zero at c, whose multiplicity is the
order of c as a pole for f , it follows that f is locally injective near a pole iff that pole has order 1. If c is an
essential singularity the Casorati–Weierstrass theorem says that for every r the set f(B(c, r[∩D� {c}) is
(open) and dense in C, and this clearly implies that f is not one–to–one in any punctured neighborhood
of c (the precise verification of this statement is left as an exercise; see 1.1.3 for a solution). We have
proved:

. A holomorphic function is injective near an isolated non removable singularity if and only if that
singularity is a simple pole.

Of course this works also at infinity: if a function is holomorphic in a (punctured) neighborhood of
∞, say a set like C � B(0, r] = {z ∈ C : |z| > r}, then it is injective in some neighborhood of infinity if
and only if its Laurent development in this neighborhood is of the type

f(z) =
∞�

n=1

c−n

zn
+ c0 + c1 z (c1 �= 0) or f(z) =

∞�

n=2

c−n

zn
+

c−1

z
+ c0 (c−1 �= 0)

this is immediate, simply by considering the function g(z) = f(1/z) near z = 0. In particular, an entire
function is injective in some neighborhood of ∞ iff it is of the form z �→ c0 + c1 z, with c1 �= 0, that is,
a polynomial of degree 1. The following statement, whose proof is left as an exercise, subsumes all that
has been said in this section, taking account also of removable singularities:

. Let D be open in C, c ∈ D, f : D � {c} → C be holomorphic, and let

∞�

n=0

cn (z − c)n +
∞�

n=1

c−n

(z − c)n

be the Laurent development of f at c. Then f is injective in some neighborhood of c iff either c−n = 0
for n > 1 and c−1 �= 0, or c−n = 0 for n > 0, and c1 �= 0. The same holds true if c = ∞ (in this case the
development is written as if c = 0).

1.1.3. On the Casorati–Weierstrass theorem. For the reader’s comfort we sketch here a proof of the
Casorati–Weierstrass theorem: if f : B(c, r[�{c} → C is holomorphic with an essential singularity at c,
then f(B(c, δ[�{c}) is dense in C, for every δ with 0 < δ ≤ r. In fact, if f(B(c, δ[�{c}) is not dense
in C, then there exists w ∈ C and ρ > 0 such that |f(z) − w| ≥ ρ for every z ∈ B(c, δ[�{c}. Then
g(z) = 1/(f(z)− w) is holomorphic and bounded in B(c, δ[�{c}, and hence has a removable singularity
at c; but then f(z) = w + 1/g(z) has at worst a polar singularity at c. This concludes the proof.

Since f is an open map, f maps the open annulus B(c, ]s, t[= {z ∈ C : s < |z − c| < t}, where
0 < s < t ≤ r, onto an open set; and since f(B(c, s[�{c}) is dense in C the intersection f(B(c, s[�{c})∩
f(B(c, ]s, t[) is non empty: this clearly implies the non–injectivity of f on B(c, t[�{c}.

1.1.4. Holomorphic isomorphisms. The inverse of a holomorphic mapping, whenever it exists, is
holomorphic.

Proposition. Le D be open in C, and let f : D → C be holomorphic and injective; denote by E the
image f(D) of f . Then E is also open, f is a homeomorphism of D onto E, and the inverse g : E → D
of f is holomorphic; moreover

g�(w) =
1

f �(g(w))
for every w ∈ E.

Proof. That E is open follows from the open mapping theorem; and the same theorem shows that
the inverse g of f is continuous (if A is an open subset of D, then g←(A) = f(A) is open). It remains to
prove that g is complex–differentiable. Given w = f(z) ∈ E let’s compute the limit

lim
ζ→w

g(ζ)− g(w)

ζ − w
;
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since f : D → E is a homeomorphism, we can use it as a change of variable ζ = f(ξ); that is, the
preceding limit exists in C iff the limit

lim
ξ→z

g(f(ξ))− g(w)

f(ξ)− f(z)

exists in C, and in that case the two limits coincide. But since f is injective, we have f �(z) �= 0 (1.1.1);
hence

lim
ξ→z

g(f(ξ))− g(f(z))

f(ξ)− f(z)
= lim

ξ→z

ξ − z

f(ξ)− f(z)
= lim

ξ→z

�
f(ξ)− f(z)

ξ − z

�−1

= (f �(z))−1,

thus concluding the proof. �

Given two regions D,E ⊆ C, an holomorphic isomorphism, or simply an isomorphism of D onto E
is a bijective holomorphic map f : D → E. By what we have just proved the inverse map f−1 : E → D
is then also a holomorphic isomorphism of E onto D. The self–isomorphisms of a region D are called
automorphisms ofD; their set Aut(D) is clearly a group under map composition, the group of holomorphic
automorphisms of D.

Example 1.1.4.1. The principal (branch of the) logarithm is the function log : C− → C, where
C− = C � R−, is the slit plane ( R− = {x ∈ R : x ≤ 0} is the negative half–line); it may be defined as
the inverse of exp|S , where S is the open strip S = {z ∈ C : Im z ∈]− π,π[}. It is then an isomorphism
of the slit plane onto the strip.

Example 1.1.4.2. The mapping f(z) = z2 is an isomorphism of the right half–plane S = {z ∈ C :
Re z > 0} onto the slit plane C− = C � R−. It is immediate to check that z �→

√
z = |z|1/2ei arg z/2 =

elog z/2, the principal branch of the square root, is the inverse of z �→ z2 between these regions.

Example 1.1.4.3. The Cayley map hC(z) := (z − i)/(z + i) is an isomorphism of the (open) upper
half–plane H = {z ∈ C : Im z > 0} onto the unit disc ∆ = {z ∈ C : |z| < 1}. In fact the formula defines
an isomorphism of C�{−i} onto C�{1}, whose inverse is kC(z) = i(1+z)/(1−z); geometrically it is easy
to see that hC maps the upper half plane onto the unit disc: the real axis is the axis of the segment [−i, i],
that is R is the locus of points which have equal distance from −i, i; clearly the upper half–plane is the
set of points whose distance from i is less than the distance from −i, i.e. H = {z ∈ C : |z − i| < |z + i|},
equivalently, H = {z ∈ C : |hC(z)| < 1}. This proves that hC maps H into ∆, while C� H̄ is mapped in
the outside of ∆; since hC (as a map of C� {−i} onto C� {1}) has an inverse kC the map hC actually
maps H onto ∆.

Example 1.1.4.4. If D = C, then clearly the maps z �→ a z + b, with a ∈ C∗ are automorphisms of
C (the affine automorphisms); in fact the inverse is z �→ a−1 z − a−1b; and 1.1.2 says that these are all
the automorphisms of C. In other words, Aut(C) is the affine group.

Example 1.1.4.5. Given the punctured plane C∗ = C � {0}, let us determine the injective maps
with domain C∗. Injectivity near 0 requires the singular part of such a map to be either zero or a/z, at
infinity to be of the type c z, or zero ( 1.1.2). An injective holomorphic map f : C∗ → C must then be of
the type f(z) = a/z+ b+ c z; but it is clear that if both a and c are nonzero then the map is not injective
(the equation w = a/z + b+ c z has two solutions in z if a, c �= 0, for most values of w). Then f is either
of the form f(z) = a/z + b with a �= 0, or of the form f(z) = b + c z with c �= 0, this last an affine map
injective on all of C considered in the previous example. The automorphisms of the punctured plane are
then the maps z �→ a z or the maps z �→ a/z, with a ∈ C nonzero.

Exercise 1.1.4.6. Write an explicit isomorphism of the strip S = {z ∈ C : Im z ∈]− π,π[} onto the
unit disc (look at some of the above . . . ).

1.1.5. Möbius transformations. We have seen that entire holomorphic maps are injective iff they are
affine maps, whereas maps on a punctured plane C� {k} are injective if and only if they are of the form
z �→ a/(z − k) + b or z �→ a+ b(z − k). We are led to the study of the maps of the form

f(z) =
az + b

cz + d
.

Excluding the trivial case c = d = 0, which gives an empty domain of definition, such a map is everywhere
defined, and is in fact an affine map, if c = 0 and d �= 0, whereas if c �= 0 its domain is the punctured



1. THE RIEMANN MAPPING THEOREM 5

plane C� {−d/c}. Next, observe that if

det

�
a b
c d

�
= ad− bc = 0,

but c, d not both zero, then the map is constant on its domain: in fact the rows (a, b) and (c, d) are
linearly dependent, and hence a = λ c, b = λ d for some λ ∈ C, which implies f(z) = λ for every

z ∈ domain(f). From this point on we assume nonsingularity of the matrix

�
a b
c d

�
, and we extend the

map f to the Riemann sphere C∞ = C ∪ {∞}, the one–point compactification of the complex plane, by
setting f(−d/c) = ∞ and f(∞) = a/c if c �= 0, and f(∞) = ∞ if c = 0 (when f is an affine map). In
this way f is a self–homeomorphism of C∞, whose inverse is again a Möbius transformation:

Proposition. Let G = Gl2(C) be the group of nonsingular 2× 2 complex matrices; for

A =

�
a b
c d

�
∈ Gl2(C)

let fA be the Möbius transformation given by

fA(z) =
az + b

cz + d
.

Then A �→ fA is a surjective group homomorphism of Gl2(C) onto the group of Möbius transformations

of the Riemann sphere C∞; the kernel of this homomorphism is the subgroup

��
λ 0
0 λ

�
: λ ∈ C×

�
of all

scalar matrices.

Proof. The proof, an easy computation, is left to the reader. �

Exercise 1.1.5.1. Denote by Sl2(C) the subgroup of Gl2(C) consisting of all matrices with deter-
minant 1. Prove that the restriction to Sl2(C) of the preceding homomorphism is still onto, and has
{I2,−I2} as kernel, where I2 is the 2× 2 identity matrix.

We note that the Riemann sphere C∞ can be canonically identified with P1 C, the one dimensional
complex projective space; in this context the Möbius transformations are exactly the projective transfor-
mations of P1 C. Let us recall that the space P1 C is the quotient of C2

∗ = C2 � {(0, 0)}, punctured two
dimensional complex space, by the equivalence relation (x, y) ∼ (u, v) iff there exists λ ∈ C such that
x = λu and y = λ v, that is, the equivalence relation whose equivalence classes are the punctured one–
dimensional complex subspaces of C2. If we consider the map k : C2

∗ → C∞ given by k(z1, z2) = z1/z2
when z2 �= 0 and k(z1, 0) = ∞, the map k is continuous and onto, and its fibers are exactly the equiv-
alence classes which give the points of the projective space P1 C; since P1 C is a compact space under
the quotient topology we have that k induces an homeomorphism h of P1 C onto C∞. The linear auto-
morphisms of C2 clearly induce bijective maps of P1 C; these maps transferred to C∞ by the conjugation
with h are exactly the Möbius transformations. We refer the reader to [Conway] for more about Möbius
transformations ”an amazing class of maps”.

1.1.6. Involutions. We address the following problem: given a ∈ C, a �= 0, find a Möbius transforma-
tion g which is an involution (i.e., equal to its inverse) and maps 0 to a. Since g(a) = 0 by the involutive
requirement, we can certainly write g(z) = (z−a)/(cz+d); and since g(0) = a, we have −a/d = a, hence
d = −1 (since a �= 0). So far we have

g(z) =
z − a

c z − 1
; but the determinant det

�
1 −a
c −1

�
= −1 + ac,

must be non zero, hence c �= 1/a. Next, a computation gives

g(g(z)) =
(1− ac)z

(1− ac)
= z;

so that g is indeed an involution. It follows that all maps g(z) = (z − a)/(cz − 1) are the required
involutions, provided that c �= 1/a. For future use, we impose the further restriction that the involution
preserves the unit circle U = {z ∈ C : |z| = 1}; this of course implies a /∈ U and holds if and only if we
have |z − a|/|cz − 1| = 1 for every z ∈ U, i.e. if and only if

|cz − 1| = |z − a| for all z ∈ U, i.e. |cz − 1|2 = |z − a|2 for all z ∈ U,
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equivalently

|c|2|z|2 + 1− 2Re(cz) = |z|2 + |a|2 − 2Re(zā) ⇐⇒ |c|2 − |a|2 = 2Re(z(c− ā)) for all z ∈ U.
This is impossible if |c| �= |a|: in fact, changing z in −z the right–hand side changes sign; then we have
Re(z(c− ā)) = 0 for every z ∈ U, from which we immediately deduce that c− ā = 0, i.e. c = ā.

We have obtained:

. For every a �= 0, with |a| �= 1, there exists exactly one Möbius involution ga which exchanges 0 and
a and preserves the unit circle ∂∆ = U. We have

ga(z) =
z − a

ā z − 1
.

If |a| < 1 then ga induces a holomorphic automorphism of the unit disc.

Proof. The only statement not already checked is the last; since ga(∆) ∩ ga(∂∆) ⊆ ga(∆) ∩ ∂∆ = ∅

and ga(∆) is connected we have either ga(∆) ⊆ ∆ or ga(∆) ⊆ C� ∆̄; but a = ga(0) ∈ ∆, so ga(∆) ⊆ ∆;
by applying ga to both sides we get ga(ga(∆)) ⊆ ga(∆), but ga(ga(∆)) = ∆, hence ga(∆) = ∆ (at any
rate, an easy computation proves directly that ga(∆) ⊆ ∆). �

1.1.7. The group of automorphisms of the unit disc. We want to explicitly determine every automor-
phism of the unit disc ∆ = {z ∈ C : |z| < 1}.

Lemma. (Schwarz’s lemma) Let f : ∆ → ∆ be a holomorphic self–map of the unit disc ∆. Assume
that f(0) = 0. Then |f(z)| ≤ |z| for every z ∈ ∆, and |f �(0)| ≤ 1. If |f(z)| = |z| occurs for some nonzero
z ∈ ∆, or if |f �(0)| = 1, then f is a rotation, that is, there exists u ∈ U(= ∂∆) such that f(z) = u z for
every z ∈ ∆ .

Proof. Since f(0) = 0, the function g(z) := f(z)/z has a removable singularity at z = 0. For every
r, with 0 < r < 1, if |z| ≤ r we have |g(z)| ≤ max{|g(ζ)| : |ζ| = r} by the maximum modulus theorem.
But |g(ζ)| = |f(ζ)|/|ζ| = |f(ζ)|/r < 1/r if |ζ| = r , hence |g(z)| < 1/r if |z| ≤ r; letting r → 1− we
get |g(z)| ≤ 1 for all z ∈ ∆, equivalently, |f(z)| ≤ |z| for all z ∈ ∆. Since g(0) = f �(0), we also have
|f �(0)| ≤ 1. If for any z ∈ ∆ we have |g(z)| = 1, then |g| attains its maximum in ∆, and again by the
maximum modulus theorem g is then constant on ∆, of course of absolute value 1. This concludes the
proof.

�
Proposition. An automorphism of the unit disc ∆ which leaves 0 fixed is a rotation.

Proof. Let f be such an automorphism; by hypothesis f(0) = 0, hence also f−1(0) = 0. Then
|f(z)| ≤ |z|, and also |f−1(z)| ≤ |z|, for all z ∈ ∆, by the Schwarz lemma applied to f and f−1 .
Substitution of f(z) in place of z in the second inequality yields |z| ≤ |f(z)|, for all z ∈ ∆. But then
|f(z)| = |z| for every z ∈ ∆, and again by the lemma there exists u ∈ U such that f(z) = u z for every
z ∈ ∆. �

We can now describe all the elements of Aut(∆) when ∆ is the unit disc.

Theorem. Every automorphism h of the unit disc ∆ is of the form

h(z) = eiα
z − a

ā z − 1
a ∈ ∆, α ∈]− π,π] (the involution ga followed by a rotation of angle α).

Proof. Let h ∈ Aut(∆) be given; if h(0) = b �= 0 then gb ◦ h(= g−1
b

◦ h) is an automorphism of ∆
which keeps 0 fixed hence there exists α ∈]− π,π] such that gb ◦ h(z) = eiα z. Then h(z) = gb(eiα z) for
every z ∈ ∆; but

h(z) = gb(e
iα z) =

eiα z − b

(b̄)(eiα z)− 1
= eiα

z − (e−iαb)

(e−iαb) z − 1
= eiα

z − a

ā z − 1
,

if a = e−iαb. �
Remark. In passing, we have also obtained the commutation formula:

gb ◦ (e
iα
·) = eiα ge−iαb(·),

and seen that every automorphism of ∆ may be written in the form

h(z) = gb(e
iα z) =

eiα z − b

(b̄)(eiα z)− 1
.
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1.2. The Riemann mapping theorem. There is a very deep result due to Riemann concerning
isomorphism classes of simply connected regions in C, which we now state. The proof will be completed
later; here we pave the way for it. There clearly can be no holomorphic isomorphism of C onto the unit
disc: every entire function which takes values only in the unit disc is constant, by Liouville’s theorem.
But this is the only exception! a simply connected region of C is indeed holomorphically isomorphic
to the unit disc, if it is not all of C! Among simply connected subregions of C there are thus only
two isomorphism classes, one containing C alone, the other containing all simply connected open proper
subsets of C.

. Riemann mapping theorem. Let G be a proper simply connected subregion of C, and let ∆
denote the unit disc. For every c ∈ G there exists a holomorphic bijection f : G → ∆ with f(c) = 0.

1.2.1. Regions with the square root property. We say that a region G has the square root property if
every function holomorphic on G which never vanishes has a holomorphic square root, that is, for every
u ∈ O(G) with ZG(u) = ∅, there exists v ∈ O(G) such that v2 = u. A simply connected region has the
square root property:

Proposition. Let G be a simply connected region, and let f : G → C be holomorphic and zero–free
in G. Then f has logarithms on G (i.e., there exists g ∈ O(G) such that f = exp g), and also roots of all
orders (in particular square roots).

Proof. Observe that g ∈ O(G) is a logarithm of f iff for some c ∈ G we have exp g(c) = f(c), and
moreover g�(z) = f �(z)/f(z) for all z ∈ G. This last assertion says that g is a primitive of the logarithmic
derivative f �/f of f ; and since G is simply connected, every holomorphic function has a primitive in G;
thus f has logarithms. Given a logarithm g of f , for every natural number m the function v = exp(g/m)
is an m−th root of f ; in fact (v(z))m = exp(m(g(z)/m)) = exp g(z) = f(z), for every z ∈ G. �

We also observe that the square root property is invariant by holomorphic isomorphisms: if E has
the square root property and G is isomorphic to E, then G has the square root property: if f : G → C
is holomorphic and never 0, and η : E → G is an holomorphic isomorphism, then f ◦ η is a nowhere–
vanishing holomorphic function on E; if v : E → C is a square root of f ◦ η, then v ◦ η−1 is a square root
of f , as is easy to check.

After the Riemann mapping theorem is proved, it will be obvious that the square root property is
equivalent to simple connectedness; but this property is the only tool needed for the proof of the theorem.

Remark. Even if not relevant to the present aim, it is interesting to observe that the square root property

for a region E implies directly that every nowhere–vanishing f ∈ O(E) has a logarithm in O(E). In fact, f has

a logarithm if and only if f �/f has a primitive on E, and this happens if and only if for every loop γ in E the

integral
�
γ
(f �/f) dz vanishes. We know that

1

2πi

�

γ

f �
(z)

f(z)
dz = m, an integer.

But if f has roots of arbitrarily high order, then m = 0. In fact, if v is a kth
root of f , that is f = vk, then m is

divisible by k:

m =
1

2πi

�

γ

f �
(z)

f(z)
dz =

1

2πi

�

γ

k (v(z))k−1 v�(z)
(v(z))k

dz =
k
2πi

�

γ

v�(z)
v(z)

dz = k pk,

with pk an integer (the winding number of the loop v ◦ γ around 0). But the only integer divisible by infinitely

many different integers is of course 0.

1.2.2. Injective mappings into the unit disc. We start by proving that for every proper region G with
the square root property there exist injective holomorphic mappings f : G → ∆, which map a prescribed
point c ∈ G to 0. We need only to prove that there is at least one injective map f : G → ∆; in fact, if
f(c) = a �= 0 we consider ga ◦ f , where ga(z) = (z−a)/(ā z− 1) is the involution of ∆ which sends a to 0.
And if C�G has non–empty interior (equivalently, if G is not dense in C) it is trivial to find an injective
holomorphic map f : G → ∆; simply take c in the interior of C � G, so that for some δ > 0 we have
|z − c| > δ for all z ∈ G; then f(z) = δ/(z − c) maps injectively G into ∆. Of course C � G may have
empty interior, but if it is non empty some square root function will establish an isomorphism between
G and a non dense open region E, as we now prove. If a ∈ C�G, then z− a is never 0 in G, hence there
exists v ∈ O(G) such that (v(z))2 = z − a for all z ∈ G, by the square root property. Observe that v is
injective, since z �→ z − a is injective; moreover v(G) ∩ (−v(G)) = ∅: in fact, if v(p) = −v(q) for some
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p, q ∈ C then p − a = (v(p))2 = (−v(q))2 = q − a, hence p = q, but then v(p) = −v(p), hence v(p) = 0,
impossible. Thus −v(G) is an open set disjoint from v(G); hence E = v(G) is isomorphic to G and not
dense in C, and as seen above it can be mapped injectively into ∆. We have proved:

. If G is a region with the square root property which is not all of C, then for every c ∈ G there exists
an injective holomorphic mapping f : G → ∆ such that f(c) = 0.

1.2.3. Tentative isomorphisms. If we want the map f to be also bijective, the Schwarz lemma says
that we have to pick the map f “as large as possible”. This is in some sense to be expected, since we
want the image of f to fill the entire unit disc, and is made more precise by the following observation:

. Let G be a region, c ∈ G, and let f, h : G → ∆ be injective maps of G into ∆, with f(c) = h(c) = 0.
If h is bijective, then |f(p)| ≤ |h(p)| for every p ∈ G; and if equality holds, for some p ∈ G� {c}, then f
is also bijective.

Proof. Take g : ∆ → ∆ defined by g(z) = f ◦ h−1(z). Then g(∆) ⊆ ∆ and g(0) = 0. By the Schwarz
lemma we have |g(z)| ≤ |z| for all z ∈ ∆, hence, if z = h(p), we have |f(p)| ≤ |h(p)|; and still by the
Schwarz lemma, if for some nonzero w ∈ ∆ we have |g(w)| = |w| then there exists u ∈ U such that
g(z) = u z for every z ∈ ∆, so that f(p) = uh(p) for every p ∈ G; but then f is h rotated, and hence f
is also bijective. �

1.2.4. Maximality of isomorphisms. Next we prove that for regions with the square root property
the preceding maximality is also sufficient for isomorphisms. That is

. Let G be a region with the square root property, c ∈ G and f : G → ∆ injective and holomorphic
with f(c) = 0. If f is not bijective then there exist g : G → ∆ injective and holomorphic, with g(c) = 0,
and |f(p)| < |g(p)| for every p ∈ G� {c}.

Proof. Set E = f(G); then E is isomorphic to G via f , hence E has the square root property, too.
Assuming ∆ � E non empty, we manifacture a holomorphic injection η : E → ∆ with η(0) = 0 and
|η(z)| > |z| for every z ∈ E � {0}; then g = η ◦ f is as required. Take b ∈ ∆ such that a = b2 /∈ E;
consider the involution ga (as usual, ga(z) = (z− a)/(ā z− 1)) which then is never 0 on E, and take that
square root v : E → ∆ of ga such that v(0) = b. We define η : E → ∆ by η(z) = gb ◦v(z). Then η(0) = 0.
To prove that η has the ”dilation” property |η(z)| > |z| for z ∈ E � {0}, we construct ψ : ∆ → ∆ which
is a left inverse for η, i.e. such that ψ(η(z)) = z for every z ∈ E. First use the involution gb to map
0 to b, then use the squaring map p2(z) = z2; under p2 ◦ gb the origin 0 is mapped to b2 = a; apply
the involution ga to send a back to 0; define then ψ = ga ◦ p2 ◦ gb. We prove that ψ ◦ η = idE : in
fact ψ ◦ η = ga ◦ p2 ◦ gb ◦ gb ◦ v = ga ◦ p2 ◦ v; and ga ◦ p2 ◦ v(z) = ga((v(z))2); but for z ∈ E we have
(v(z))2 = ga(z), by definition of v; hence ga((v(z))2) = ga(ga(z)) = z. Moreover ψ(0) = 0, and ψ cannot
be an automorphism of ∆ (it is factored through p2, which is not injective), in particular ψ is not a
rotation; by the Schwarz lemma we then have |ψ(z)| < |z| for z ∈ ∆ � {0}; if in that inequality we put
η(z) in place of z, we obtain |z| < |η(z)| for z ∈ E � {0}, as required. �

1.2.5. Characterization of isomorphisms.

. Let G be a proper region with the square root property. Given c ∈ G, let Ic(G) denote the set of
injective holomorphic mappings g : G → ∆ such that g(c) = 0. The following are then equivalent, for
every h ∈ Ic(G):

(i) h is an isomorphism (i.e., h(G) = ∆).
(ii) For every p ∈ G� {c} we have |h(p)| = sup{|g(p)| : g ∈ Ic(G)}.
(iii) For some p ∈ G� {c} we have |h(p)| = sup{|g(p)| : g ∈ Ic(G)}.

Proof. (i) implies (ii) see 1.2.3; (ii) implies (iii) trivial; (iii) implies (i) see 1.2.4. �
Remark. Observe that Ic(G) is non empty by 1.2.2.

1.2.6. Existence and uniqueness.

. Let G be a proper simply connected region. For every c ∈ G there exists a unique isomorphism
f : G → ∆ such that f(c) = 0, and f �(c) > 0.

Proof. We shall use only the square root property of G.
Uniqueness: two isomorphisms f, g : G → ∆ which coincide in c differ from one another by a rotation

of ∆, as it is clear from the Schwarz lemma; that is, there exists u ∈ U such that g(z) = u f(z), for every
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z ∈ G. Then g�(z) = u f �(z), and in particular g�(c) = u f �(c). If g�(c), f �(c) are both real and positive,
then g�(c)/f �(c) is also real and positive, and hence u = 1.

Existence: the proof of existence is deferred to the next section (2.7.2). But we can anticipate here
how it will be done: we shall introduce a topology on the set O(G,C) of all holomorphic functions on
G; in this topology, the evaluation maps f �→ f(p) are continuous from O(G,C) to C, for every p ∈ G;
moreover, the set Ic(G) ∪ {0} is compact, so that the map f �→ |f(p)| has an absolute maximum on this
set; this maximum is clearly not attained on the 0 map; any map f ∈ Ic(G) which realizes this maximum
is an isomorphism of G onto ∆, by the preceding result.

�

Exercise 1.2.6.1. The mapping z �→ z/
�
1 + |z|2 is the standard diffeomorphism of C = R2 onto

the unit disc; it is a C∞ diffeomorphism (in the real sense). Prove it, finding the inverse.

Exercise 1.2.6.2. (i) Let A and B be open subsets of C, and let ϕ : A → B be a homeomor-
phism of A onto B. Assume that zj is a sequence in A which converges to a point a ∈ ∂A, and
that ϕ(zj) converges to a point b ∈ C. Prove that b ∈ ∂B.

(ii) Let A = ∆� {0} = {z ∈ C : 0 < |z| < 1} be the punctured unit disc, and let B be the annulus
B = {z ∈ C : 1 < |z| < 2}. Prove that there exists no holomorphic isomorphism of A onto B
(Hint: for a holomorphic mapping f : A → B, 0 is a removable singularity . . . use then (i) . . . ).

(iii) Define explicitly a diffeomorphism of A onto B, with A, B as in (ii).

1.2.7. Local normal form. Very often Theorem 1.1.1 is stated in the following way:

. Let D be open in C, let f : D → C be holomorphic and not locally constant at c ∈ D; let m =
ord(f − f(c), c). Then

(i) existence There exist an open disc B ⊆ D centered at c, and an holomorphic isomorphism
h : B → h(B) such that f(z) = f(c) + (h(z))m for every z ∈ B.

(ii) uniqueness If B̃ ⊆ D is another disc centered at c, and h̃ : B̃ → h̃(B̃) another isomorphism
such that f(z) = f(c) + (h̃(z))p for every z ∈ B̃ and an integer p, then p = m and there is an
m−th root of unity ξ such that h(z) = ξ h̃(z) for z ∈ B ∩ B̃.

Proof. We assume that for m = 1 the theorem is known: that is we know that if f �(c) �= 0 then f is
locally biholomorphic at c.

Proof of existence: we have f(z) = f(c) + (z − c)m g(z), with g holomorphic on D and g(c) �= 0. On
every disc B ⊆ D centered at B on which g(z) is non–zero, there is an m−th root of g(z), say v(z). Put
h(z) = (z−c) v(z). Then (h(z))m = (z−c)m g(z), and h�(z) = v(z)+(z−c) v�(z), so that h�(c) = v(c) �= 0
(recall that (v(c))m = g(c) �= 0). Thus h is locally biholomorphic at c, and by restricting B if necessary
we can make h an isomorphism of B onto h(B).

Proof of uniqueness: We have (h(z))m = (h̃(z))p for every z ∈ B∩B̃ = C. Since h(c) = h̃(c) = 0, and
ord(h, c) = ord(h̃, c) = 1 (recall that h and h̃ are both bi–holomorphic at c), we have m = ord(hm, c) =
ord(h̃p, c) = p so that m = p. And (h(z))m = (h̃(z))m for every z ∈ C is equivalent to (h(z)/h̃(z))m = 1
for every z ∈ C, whence h(z)/h̃(z) maps continuously C into the group of m−th roots of unity; but C is
connected and this group is discrete, so the map is constant, say constantly ξ.

�

Exercise 1.2.7.1. An expansion on a region E of C containing 0 is a holomorphic map η : E → C
such that η(0) = 0 and |η(z)| > |z| for every z ∈ E � {0}. Prove that if η : E → C is an expansion then
|η�(0)| > 1 (use the minimum modulus theorem).

Exercise 1.2.7.2. Using the preceding exercise prove that if G is a region with the square root
property and c ∈ G, then f ∈ Ic(G,∆) is an isomorphism if and only if |f �(c)| = max{|g�(c)| : g ∈

Ic(G,∆)} (as before, Ic(G,∆) := {f ∈ O(G) : f(G) ⊆ ∆, f(c) = 0, f injective}.

Problem 1.2.7.3. Let ∆ = {z ∈ C : |z| < 1} be the open unit disc. Recall that for every c ∈ ∆�{0}
the mapping gc(z) = (z − c)/(c̄ z − 1) is an involution of ∆ which exchanges 0 and c.

(i) Are there other involutions in Aut(∆) which exchange 0 and c? For c = 0, find all involutions
of Aut(∆) which keep 0 fixed.

Let now f : ∆ → ∆ be holomorphic.
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(ii) Prove that for every w ∈ ∆ we have

|f �(w)| ≤
1− |f(w)|2

1− |w|2
,

and that equality holds for some w ∈ ∆ if and only if f is an automorphism of ∆, in which case
equality holds for every w ∈ ∆ (consider g = gf(w) ◦ f ◦ gw . . . ).

Problem 1.2.7.4. Recall that for every open set D of C we denote by Aut(D) the group of holomor-
phic automorphisms of D. For every subset S ⊆ D we denote by AutS(D) the subset of Aut(D) consisting
of all automorphisms under which S is invariant, i.e. AutS(D) = {f ∈ Aut(D) : f(S) = S}; plainly
AutS(D) is a subgroup of Aut(D). We shorten Aut{c}(D) to Autc(D) when {c} ⊆ D is a singleton.

(i) Assume that D is a region and that S has empty interior and is closed in D. Prove that the
restriction map f �→ f|D�S is an injective group homomorphism of AutS(D) into Aut(D � S).

(ii) With D = C and S = {0}, observe that in general the preceding restriction monomorphism is
not an isomorphism.

(iii) However, with D = ∆, open unit disc, and S = {0}, f �→ f|∆�{0} is an isomorphism of
Aut0(∆) onto Aut(∆∗), where ∆∗ = ∆�{0} is the punctured disc (hint: for every holomorphic
self–mapping g of ∆∗, 0 is a removable singularity . . . (why?))

(iv) In fact, the preceding result can be substantially generalized. Prove that:

. Let D be a bounded region, and let S be a discrete subset of D, closed in D. Assume
also that ∂D has no isolated points. Then f �→ f|D�S is an isomorphism of AutS(D) onto
Aut(D � S).
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2. The topology of compact convergence

2.1. Definitions. Let D be open in C and let C(D) = C(D,C) denote the set of all continuous
complex–valued functions on D; C(D) has a natural structure of C−algebra under pointwise operations.
It is customary to topologize C(D) with the compact–open topology, also called topology of uniform
convergence on compacta, or simply topology of compact convergence.

Given a compact subset K of D, and an open subset U of C, we define

[K,U ] = {f ∈ C(D); f(K) ⊆ U},

the set of all continuous functions on D which map K inside U . The compact–open topology has as a
subbase all the sets [K,U ], with K varying in the set of all compact subsets of D, and U in the topology
of C. A base for the open sets of this topology is then the family of all finite intersections

[K1, U1] ∩ · · · ∩ [Km, Um], with Kj ⊆ D compact, Uj ⊆ C open, for j = 1, . . . ,m.

This description of the compact–open topology works also in very abstract settings; here, since C is
metrizable, there is an alternate description, perhaps more illuminating, that we shall hereafter use. For
every compact subset K of D and every f ∈ C(D) we set

�f�K = max{|f(z)| : z ∈ K} (sup–norm of f on K).

Clearly this maximum exists by Weierstrass theorem. The function f �→ �f�K is a seminorm on C(D):
by this we mean that it has the following properties, easily checked by the reader:

(i) �f�K ≥ 0, for every f ∈ C(D), and �0�K = 0 (positivity);
(ii) �f + g�K ≤ �f�K + �g�K , for every f, g ∈ C(D) (subadditivity);
(iii) �αf� = |α|�f�K , for every f ∈ C(D) and every α ∈ C (absolute homogeneity).

This family of seminorms, with K describing the set of all compact subsets of D, is used to give
C(D) the topology of uniform convergence on compacta: given f, g ∈ C(D) the number �f − g�K is the
(uniform) distance of f, g over K, and given f ∈ C(D) a neighborhood of f in this topology is any subset
of C(D) containing a subset of the form

BK(f, ε[= {g ∈ C(D) : �g − f�K < ε} for some compact K ⊆ D and some ε > 0;

BK(f, ε[ is the set of continuous functions that everywhere on K are ε−close to f , the open K−ball of
radius ε and center f . It is a topology because if K,L are compacta of D and ε > 0 then:

BK(f, ε[∩BL(f, ε[= BK∪L(f, ε[,

and K ∪ L is of course compact (is this enough? see 2.2.1) . Notice also that if K and L are compact
and K ⊆ L then �f�K ≤ �f�L, for every f ∈ C(D), since actually �f�K ∨ �f�L = �f�K∪L.

2.2. A metric for the compact–open topology. It is not difficult to prove that the two topolo-
gies previously introduced coincide (see 2.7.5). We observe instead that the topology in discussion is
metrizable. First, observe that

Lemma. For every open set D of C there exists a sequence (Kn)n∈N of compact subsets of D such
that for every n ∈ N we have Kn ⊆ int(Kn+1), and D =

�
n∈N Kn.

Proof. Simply take Kn = {z ∈ C : |z| ≤ 2n, dist(z,C � D) ≥ 1/2n)}. Every Kn is closed and
bounded, hence compact, it is contained in D, and

Kn ⊆ An = {z ∈ C : |z| < 2n+1, dist(z,C�D) > 1/2n+1
} ⊆ Kn+1,

and An is open. �
The usefulness of this sequence is due to the fact that given any compact subset K of D there

exists m ∈ N such that K ⊆ int(Km) (since K ⊆
�

n∈N int(Kn), and the sequence int(Kn) is monotone
increasing). In what follows we write �f�n in place of �f�Kn , and we define first the distance between 0
and a function f ∈ C(D): it is

[f ] = max{�f�n ∧ 2−n; n ∈ N};
by definition, �f�n∧2−n = min{�f�n, 2−n}; the maximum exists because every sequence of non negative
numbers with limit 0 has a maximum (prove it!). The function f �→ [f ] has the following properties:

(i) [f ] ≥ 0, [f ] = 0 iff f = 0;
(ii) [f + g] ≤ [f ] + [g];
(iii) If |α| ≤ 1, then [α f ] ≤ [f ], for every f ∈ C(D); moreover [α f ] = [f ] if |α| = 1.



12

(warning: f �→ [f ] is not a norm). The verification of these properties is left to the reader; we suggest
to prove first that if the function ρ : [0,+∞[→ [0,+∞[ is defined by ρ(t) = t ∧ c, where c > 0 is a given
constant, then ρ(t+ s) ≤ ρ(t) + ρ(s) (see 2.2.1).

We then define the distance between f, g ∈ C(D) as d(f, g) = [f − g], and it is immediate to prove
that this definition makes C(D) into a metric space; moreover d is also translation invariant, in the sense
that d(f, g) = d(f + h, g + h), for every f, g, h ∈ C(D). We prove that the topology of this metric d is
that of the seminorms � · �K .

Proposition. For every ε > 0 there exists a compact subset K = Kε of D, and a δ = δε > 0 such
that �f − g�K < δ implies [f − g] < ε.

Conversely, given a compact subset K of D, and ε > 0, there is δ = δε > 0 such that [f − g] < δ
implies �f − g�K < ε.

Proof. Simply observe that we have, for every f ∈ C(D) and every m ∈ N:
[f ] < 2−m

⇐⇒ �f�m < 2−m.

In fact, [f ] < 2−m iff for every n ∈ N we have �f�n ∧ 2−n < 2−m; for n > m this poses no restriction,
for n = m implies that �f�m < 2−m; and since �f�n ≤ �f�m, and 2−m ≤ 2−n for n ≤ m, we have that
�f�m < 2−m implies also that [f ] < 2−m.

Moreover every compact subset K of D is contained in some Km, so that �f�K ≤ �f�m. The
conclusion is easy. �

The preceding proposition clearly proves that the two topologies, that of the metric d, and that of
the seminorms � · �K are the same; and also gives the following:

Corollary. A sequence (fk)k∈N of functions of C(D) converges to f ∈ C(D) in the metric d
(respectively, is a Cauchy sequence for the metric d) if and only if it converges to f in every seminorm
� · �K (respectively, is a Cauchy sequence in every seminorm � · �K).

From the above it is also clear that although the metric depends on the particular sequence (Kn)n∈N
of compacta used for its definition, any other such sequence will yield a uniformly equivalent metric, not
only with the same topology, but also with the same Cauchy sequences.

It is important to know that the compact–open topology is metrizable; but the metric [f−g] is rather
cumbersome, and we shall never use it; it is much more comfortable to work with the seminorms � · �K .

2.2.1. Minutiae. We collect here some minor punctualizations of the preceding proofs.
First, in section 2.1: we are essentially declaring that by defining a subset U of C(D) open if it coincides

with the union of the BK(f, ε[ it contains, we get a topology τc on C(D). Closedness of τc under arbitrary unions

is trivial by the definition; we have to verify closedness under (finite) intersection. For this it is convenient to

observe that if A ∈ τc, then for every f ∈ A there is δ > 0 and a compact K ⊆ D such that BK(f, δ[⊆ A: in other

words, a set is in τc iff it is also a union of balls centered at its elements. This can be proved directly for a ball

BK(f, r[ as in Analisi Due, 2.3.26, keeping K fixed. Then if A, B ∈ τc and f ∈ A∩B for some r, s > 0 and some

compact sets K,L we have BK(f, r[⊆ A and BL(f, s[⊆ B; and since BK∪L(f, r ∧ s[⊆ BK(f, r[∩BL(f, s[⊆ A ∩B
we are done. Thus B = {BK(f, ε[: f ∈ C(D), ε > 0, K ∈ K}, where K is the set of all compact subsets of D is a

basis for the topology τc.

Second: if c > 0 then ρ(t) = t ∧ c is subadditive on [0,+∞[ and ρ(λt) ≤ ρ(t) if 0 ≤ λ ≤ 1 is quite trivial; the

second fact follows from the fact that ρ is increasing; and if t, s > 0 then if s+ t < c we also have s, t < c so that

ρ(s) = s, ρ(t) = t and ρ(s + t) = s + t, i.e. ρ(s + t) = ρ(s) + ρ(t); if c ≥ s + t then ρ(s + t) = c. and ρ(s) ≤ s,

ρ(t) ≤ t, so that ρ(s)+ρ(t) ≤ s+ t ≤ c. This readily implies [f + g] ≤ [f ]+ [g]: in fact �f + g�n ≤ �f�n+�g�n, so

that �f + g�n ∧ 2
−n

≤ (�f�n + �g�n)∧ 2
−n

, and (�f�n + �g�n)∧ 2
−n

≤ �f�n ∧ 2
−n

+ �g�n ∧ 2
−n

as just observed;

this clearly implies [f + g] ≤ [f ] + [g]. All other requirements for [f ] are trivial to prove.

2.3. Completeness.

Proposition. The space C(D) is complete with respect to the metric of compact convergence.

Proof. Let (fj)j∈N be a sequence of C(D), Cauchy with respect to every seminorm �·�K . In particular
(take K = {z}), for every point z ∈ D the sequence fj(z) is Cauchy in C, hence converges in C to a
limit which we call f(z). We claim that f ∈ C(D), and that (fj)j∈N compactly converges to f . We first
prove the second claim: given a compact K ⊆ D and ε > 0, let nε ∈ N be such that �fj − fk�K ≤ ε for
j, k ≥ nε; this is equivalent to say that

|fj(z)− fk(z)| ≤ ε for every z ∈ K, j, k ≥ nε;
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keeping z and k fixed in the preceding inequality we let j tend to infinity, and we get

|f(z)− fk(z)| ≤ ε for every z ∈ K, k ≥ nε,

which shows that the sequence converges to f uniformly on K. To see that f is continuous, given z ∈ D
take K to be a compact neighborhood of z in D; given ε > 0 and k ≥ nε such that the above inequality
holds, choose a neighborhood B(z, δ] ⊆ K of z such that |fk(w) − fk(z)| ≤ ε for w ∈ B(z, δ]. Then, for
w ∈ B(z, δ]:

|f(w)− f(z)| ≤ |f(w)− fk(w)|+ |fk(w)− fk(z)|+ |fk(z)− f(z)| ≤ 2ε+ |fk(w)− fk(z)| ≤ 3ε,

and since ε > 0 is arbitrary we have proved the continuity of f in z. �
2.4. Continuity of the algebraic operations. With the compact–open topology C(D) is a topo-

logical algebra. That is, the operations that make C(D) into a C−algebra are continuous:

Proposition. The addition (f, g) �→ f + g and the multiplication (f, g) �→ f g are continuous
(as maps of C(D) × C(D), with the product topology, into C(D)). The multiplication (α, f) �→ αf is
continuous (as a map of C× C(D), with the product topology, into C(D)).

Proof. Given a compact K ⊆ D and ε > 0, it is immediate to observe that BK(f, ε/2[+BK(g, ε/2[⊆
BK(f + g, ε[. This proves continuity of addition. Multiplication is a little more delicate; let us prove
that there exists δ > 0 such that BK(f, δ[·BK(g, δ[⊆ BK(fg, ε[. Writing elements of BK(f, δ[, BK(g, δ[
as f + u and g + v respectively, with �u�K , �v�K < δ we have

�(f + u)(g + v)− fg�K =�fv + gu+ uv�K ≤ �fv�K + �gu�K + �uv�K ≤

�f�K�v�K + �g�K�u�K + �u�K�v�K ≤ (�f�K + �g�K + δ)δ;

we can take δ < min{ε/(1+�f�K+�g�K), 1}. Continuity of multiplication implies also the last statement
(in fact, on the constant functions the topology is that of C) �

Remark. In the language of functional analysis: C(D) with the topology of compact convergence is
a Fréchet space, that is, a locally convex metrizable and complete topological vector space.

Exercise 2.4.0.1. The set of units of the algebra C(D) is obviously the set U(D) = {f ∈ C(D) :
ZD(f) = ∅} of functions which do not assume the value 0 (here ZD(f) = {z ∈ D : f(z) = 0} is the
zero–set of f in D). As in every associative algebra with an identity element U(D) is a group under
multiplication. Prove that f �→ 1/f is a continuous self–map of U(D). Prove that U(D) is never open in
C(D).

2.4.1. O(D) is closed in C(D). When one has a linear topological space, continuous linear functionals,
that is continuous linear maps from the space to the field of scalars, are often significant. On the space
C(D) integration over a path is a very useful linear functional. Recall that a path in the open subset
D of C is a continuous piecewise C1 function α : [a, b] → D, where [a, b] is a compact interval of R; if
f ∈ C(D) we define the integral of f over α:

�

α

f(z) dz :=

�
b

a

f(α(t))α�(t) dt

(notice that the right–hand side is the integral of a function with at most a finite set of jump discontinuities
on the compact interval [a, b]; hence the integral exists, in the Riemann sense). The set [α] = α([a, b])
is called trace of the path α; it is clearly a compact subset of D; we shorten �f�[α] to �f�α; recall the
fundamental inequality: ����

�

α

f(z) dz

���� ≤
�

α

|f(z)| |dz| ≤ �f�α V (α),

where |dz| = |α�(t)| dt is the ”length element” of α and V (α) =
�
α
|dz| =

�
b

a
|α�(t)| dt is the length of the

path α. We leave it to the reader to prove that this inequality immediately implies

. For every path α in D the mapping
�
α
# : C(D) → C defined by f �→

�
α
f(z) dz is a continuous

linear functional on C(D).

Very important is the corollary:

Corollary. For every open subset D of C the set O(D) of holomorphic functions is a closed sub-
algebra of C(D).
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Proof. Recall that a continuous function f ∈ C(D) is holomorphic on D if and only if
�
γ
f(z) dz = 0

for every nullhomologous circuit γ of D. Much less also suffices: since the derivative of a holomorphic
function is also holomorphic, we know that a continuous function is holomorphic iff it has a complex
primitive on every open disc contained in D; and this happens if and only if

�
γ
f(z) dz = 0 for every

circuit γ whose trace [γ] is contained in a disc contained in D. Calling Γ the set of these circuits we then
have

O(D) =
�

γ∈Γ

Ker

��

γ

#

�
,

and Ker
��

γ
#
�
is closed in C(D) for every γ ∈ Γ, being the nullspace of a continuous linear form. �

Remark. Of course it is equivalent to observe that if fj is a sequence of holomorphic functions which

converges to the continuous function f , then
�
γ
fj tends to

�
γ
f for every path γ of D; if γ ∈ Γ then

�
γ
fj = 0

for every j, so that also
�
γ
f = 0. And we don’t even need all of Γ: remember Morera’s theorem: a continuous

function f : D → C is holomorphic if and only if for every triangle T ⊆ D we have
�
∂T

f(z) dz = 0. In any

case the closedness of O(D) in C(D) appears to be a consequence of continuity of integrals with respect to the

compact–open topology.

Other important linear functionals on C(D) are the point evaluations; for every c ∈ D we define
δc : C(D) → C by δc(f) = f(c); we leave it to the reader to prove that δc is continuous from C(D) to C,
for every c ∈ D.

2.5. Bounded and totally bounded subsets of C(D). A subset F of C(D) is said to be bounded
if for every neighborhood V of the zero function of C(D) there exists t > 0 such that F ⊆ tV , that is F
is absorbed by every neighborhood of 0 in C(D). It is easy to see that

Proposition. A subset F of C(D) is bounded if and only if it is uniformly bounded on every compact
subset of D; that is, for every compact K ⊆ D there exists MK > 0 such that �f�K ≤ MK , for every
f ∈ F .

Proof. The sets BK(0, ε[(= {g ∈ C(D) : �g�K < ε}) are neighborhoods of 0, for every compact
K ⊆ D and every ε > 0; since tBK(0, ε[= BK(0, tε[ for every t > 0 we see that F ⊆ tBK(0, ε[ if and only
if �f�K < tε for every f ∈ F . And since every neighborhood of 0 in C(D) contains BK(0, ε[ for some
compact K and some ε > 0, the proof is concluded. �

In other words, a subset F of C(D) is bounded if it is bounded for every seminorm � · �K , for every
compact subset K of D.

In finite dimensional normed linear spaces a subset is compact iff it is closed and bounded; in complete
metric spaces, a subset S is compact iff it is closed and totally bounded: this means that for every ε > 0
there exist f1, . . . , fm ∈ S such that S ⊆ B(f1, ε[∪ · · · ∪ B(fm, ε[ (see, e.g. the Chapter 0 of G.Folland,
Real Analysis (Wiley & Sons) for a proof of this theorem).

It is easy to see that in the metric d(f, g) = [f−g] introduced on C(D) a subset S is totally bounded
if and only if it is totally bounded in every seminorm � · �K for every compact subset K of D: in other
words, a subset S of C(D) is totally bounded iff for every compact K ⊆ D and every ε > 0 there exists
a finite subset F = {f1, . . . , fm} of C(D) such that S ⊆

�
m

j=1 BK(fj , ε[.
We leave as an exercise to the reader the proof of the fact that a totally bounded subset of C(D) is

also bounded (see at the end of the section). In general bounded subsets of C(D) are not totally bounded,
as the following example shows.

Example 2.5.0.1. Let ∆ = {z ∈ C : |z| < 1} be the open unit disc; let fn : ∆ → C be defined by
fn(z) = (nz)/(1 + n |z|), for n = 0, 1, 2, 3, . . . and z ∈ ∆. This sequence is clearly bounded (we have
|fn(z)| < 1 for all z ∈ ∆) but it is not totally bounded in C(∆). This will be clear from subsequent
results; however we can directly prove that if K = B(0, 1/2] then the sequence cannot be covered by a
finite set of balls BK(fj , 1/8[. In fact, we have

����
mz

1 +m |z|
−

nz

1 + n |z|

���� =
|m− n| |z|

(1 +m |z|)(1 + n |z|)
;

if n ≥ 2 then 1/n ∈ K; we compute the above for z = 1/n, and take m = kn with k > 1 an integer,
obtaining (k − 1)/(2(k + 1)); we have

k − 1

2(1 + k)
≥

1

4
⇐⇒ 2(k − 1) ≥ k + 1 ⇐⇒ k ≥ 3.
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Figure 1. Some functions fn, on the interval [−1, 1].

It follows that

�f3j − f3k�K ≥
1

4
for all j, k ≥ 1, j �= k,

and no BK(f, 1/8[ can contain two different members of the sequence f3k .

Exercise 2.5.0.2. Prove that a set S ⊆ C(D) is totally bounded if and only if for every compact K
and every ε > 0 there exist f1, . . . , fm ∈ C(D) such that S ⊆ BK(f1, ε[∪ · · · ∪ BK(fm, ε[ (i.e., it is not
necessary to assume that fj belongs to S). Show that every subset of a totally bounded set is also totally
bounded, and that the closure of a totally bounded set is also totally bounded.

Prove that a totally bounded subset of C(D) is bounded (if S ⊆ BK(f1, ε[∪ · · · ∪ BK(fm, ε[ take
MK = max{�fj�K}+ ε).

Example 2.5.0.3. The following is an example of a sequence bounded in O(∆), i.e. uniformly
bounded on every compact subset of ∆, not uniformly bounded on all of ∆; the sequence is fn(z) =�

n

k=0 z
k, sequence of partial sums of the series

�∞
n=0 z

n. Since, for |z| ≤ r < 1 we have

fn(z) =
1− zn+1

1− z
=⇒ |fn(z)| ≤

1 + |z|n+1

1− |z|
≤

2

1− r
,

and every compact subset of ∆ is contained in some disc rB = B(0, r] the first statement is proved; since

lim
x→1−

fn(x) = n+ 1,

we have �fn�∆ ≥ n+ 1, so that there is no common bound to all the fn’s on ∆.

Exercise 2.5.0.4. Observe that a subset F of C(D) is bounded iff it is locally uniformly bounded in
D, that is, for every c ∈ D there exists a neighborhood U of c and a constant MU such that |f(z)| ≤ MU

for every z ∈ U and every f ∈ F .

2.6. Equicontinuity and Ascoli’s theorem. Let us recall the definition of continuity of a function
f : D → C at a point z ∈ D: for every ε > 0 there exists a δ = δε > 0 such that if w ∈ B(z, δ] then
|f(w) − f(z)| < ε. Here δ depends on ε but also on f , it is really a δ(f, ε) if various functions f are
considered; clearly different functions f will have in general different δ for the same ε; equicontinuity is
the requirement that δ can be chosen to depend on ε only. That is:

Definitions. Given a set F ⊆ C(D) and z ∈ D, we say that F is equicontinuous at z if for every
ε > 0 there is a δε > 0 such that

|f(w)− f(z)| < ε for every w ∈ B(z, δε[, and every f ∈ F .

A set F ⊆ C(D) is said to be equicontinuous in D, or simply equicontinuous, if it is equicontinuous at
every z ∈ D.

Of course a finite set F of continuous functions is always equicontinuous; but the set of functions
{fn = nz/(1 + n |z|) : n = 0, 1, 2, 3 . . . } considered in the previous example is not equicontinuous at
z = 0; it can be easily shown that it is however equicontinuous at every nonzero z.

The following is a very neat characterization of total boundedness in C(D).

. Theorem of Ascoli–Arzelà. A subset of C(D) is totally bounded if and only if it is bounded
and equicontinuous.
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Proof. Let F be totally bounded in C(D). Every totally bounded set is bounded, as remarked
above. To show equicontinuity, given z ∈ D and ε > 0 fix a compact neighborhood K of z in D,
say K = B(z, r] ⊆ D, and pick f1, . . . , fm ∈ F such that F ⊆ BK(f1, ε[∪ · · · ∪ BK(fm, ε[. Since
every fj is continuous at z there exist δj > 0 such that |fj(w) − fj(z)| < ε for w ∈ B(z, δj ]. Let
δ = min{δ1, . . . , δm, r}. Given f ∈ F there exists j ∈ {1, . . . ,m} such that f ∈ BK(fj , ε[; if w ∈ B(z, δ]
we have, since w, z ∈ K:

|f(w)− f(z)| ≤ |f(w)− fj(w)|+ |fj(w)− fj(z)|+ |fj(z)− f(z)| ≤ 3ε,

proving equicontinuity of F at z.
Conversely, assume that F is equicontinuous and bounded. Take K ⊆ D compact, and ε > 0. We

have to prove that F is contained in the union of some finite family of K−balls of radius small with ε.
By equicontinuity, for every z ∈ K there exists δ(z) > 0 such that f(B(z, δ(z)[) ⊆ B(f(z), ε[, for every
f ∈ F . By compactness of K there exist z1, . . . , zp ∈ K such that K ⊆ B(z1, δ(z1)[∪ · · · ∪ B(zp, δ(zp)[.
Let us consider the mapping ρ : f �→ (f(z1), . . . , f(zp)) of C(D) into Cp. Since F is bounded, ρ(F )
is a bounded subset of Cp (if �f�K ≤ MK for every f ∈ F , then ρ(F ) is contained in the polydisc
(MK B)p). And since in finite dimensional spaces bounded sets are totally bounded there exists a finite
set {f1, . . . , fm} ⊆ F such that every ρ(f) ∈ ρ(F ) has distance less than ε from some ρ(fj), equivalently,
for every f ∈ F there exists fj in this finite set such that

|f(zk)− fj(zk)| ≤ ε for every k = 1, . . . , p.

With this same fj we have �f−fj�K ≤ 3ε: in fact, if z ∈ K then z ∈ B(zk, δ(zk)[ for some k ∈ {1, . . . , p},
and then

|f(z)− fj(z)| ≤ |f(z)− f(zk)|+ |f(zk)− fj(zk)|+ |fj(zk)− fj(z)| ≤ 3ε

(the first and the third term are smaller than ε for equicontinuity, the middle term because of the choice
of fj). Thus F is totally bounded. �

2.7. Compact convergence and holomorphic mappings. The topology of compact convergence
is eminently suited to the subalgebra of holomorphic mappings, as we now see. We first prove the
following:

(Cauchy estimate for a compact set). Let D be open in C, and let K be a compact subset
of D. If r > 0 is strictly smaller that the distance of K from the complement of D, we have, for every
f ∈ O(D):

�f �
�K ≤

�f�K+rB

r
.

Proof. For every c ∈ K the disc B(c, r] is contained in K + rB and we have

f �(c) =
1

2πi

�

∂B(c,r]

f(ζ)

(ζ − c)2
dζ,

by the Cauchy formula for the derivative; thus (Cauchy estimate of the derivative):

|f �(c)| ≤
1

2π

�

∂B(c,r]

|f(ζ)|

|ζ − c|2
|dζ| ≤

1

2π

�

∂B(c,r]

�f�∂B(c,r]

r2
|dζ| =

1

r
�f�∂B(c,r] ≤

�f�K+rB

r

Since this holds for every c ∈ K we get

�f �
�K ≤

�f�K+rB

r
for every f ∈ O(D).

�

Theorem. Let D be an open subset of C. Then

(i) The complex differentiation operator f �→ f � is continuous from O(D) into itself: in other
words, if a sequence of holomorphic mappings compactly converges to a limit function, then the
sequence of the derivatives of these mappings compactly converges to the derivative of the limit.

(ii) Every bounded subset of O(D) is totally bounded.
(iii) Montel’s theorem The compact subsets of O(D) are exactly the closed and bounded subsets

of O(D).
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Proof. (i) What was proved in the preceding Cauchy’s formula for compact sets clearly implies the
continuity of the map f �→ f � at the 0 function, and hence at every function by linearity of the derivative:
explicitly, given f ∈ O(D), ε > 0 and a compact subset K of D, pick r > 0 such that K + r B ⊆ D; for
every g ∈ O(D) we then have

�g� − f �
�K ≤

�g − f�K+r B

r
,

so that if g ∈ BK+rB(f, rε[ we have g� ∈ BK(f �, ε[.
(ii) We need to show that in O(D) every bounded set F is equicontinuous. We first observe that the

set F � = {f � : f ∈ F} of the derivatives of the elements of F is also bounded. Take in fact a neighborhood
V of 0 in O(D); by continuity of the derivation operator there exists a neighborhood U of 0 in O(D)
such that f ∈ U implies f � ∈ V . Let t > 0 be such that tU ⊇ F ; then tV ⊇ F �.

Given c ∈ D take r > 0 such that B(c, r] ⊆ D; there exists L > 0 such that �f ��B(c,r] ≤ L for every
f ∈ F , by boundedness of F �; then for every z ∈ B(c, r] we have, by the mean value theorem:

|f(z)− f(c)| ≤ �f �
�[c,z]|z − c| ≤ L |z − c|,

proving equicontinuity of F at c.
(iii) is now immediate, since the compact subsets of C(D) are the closed totally bounded ones; recall

that O(D) is closed in C(D) (see Corollary 2.4.1), so closed subsets of O(D) are closed also in C(D). �
Remark. An old–fashioned but still very common terminology calls normal families the bounded

sets of holomorphic functions. So: the relatively compact subsets of O(D) are exactly the normal families
(by a very ill–chosen terminology relatively compact means: having compact closure).

Exercise 2.7.0.5. Prove the following

. Theorem of Vitali Let D be a region of C, and let fn be a bounded sequence of O(D). Assume
that there is a subset C ⊆ D, with an accumulation point belonging to D, such that limn→∞ fn(z) exists
in C, for every z ∈ C. Then there exists a holomorphic function f ∈ O(D) such that fn converges
compactly to f in D.

(a solution is given at the end of the section).

2.7.1. Injective mappings and Hurwitz’s theorem. Recall a lemma on existence of zeroes on a disc,
which may be used to prove the open mapping theorem: if f is holomorphic on an open set containing
the closed disc B(c, r], and |f(z)| > |f(c)| for every z ∈ ∂B(c, r], then f(w) = 0 for some w ∈ B(c, r[.
This simple fact readily implies the following result:

Proposition. (Hurwitz) Let D be a region of C.
(i) If fn : D → C is a sequence of zero–free holomorphic functions which converges compactly on

D to a function f : D → C, then either f is identically zero, or it is zero–free.
(ii) If fn : D → C is a sequence of injective holomorphic functions which converges compactly on D

to a function f : D → C, then either f is constant, or it is injective.
(iii) If fn : D → C is a sequence of holomorphic functions which converges compactly on D to a

non–constant function f : D → C, and E is a set such that for every n we have fn(D) ⊆ E,
then also f(D) ⊆ E

Proof. (i) Assume that f(c) = 0 for some c ∈ D, with f not identically zero in D; then we can pick
a disc B(c, r] ⊆ D such that ZD(f) ∩B(c, r] = {c}; then min{|f(z)| : z ∈ ∂B(c, r]} = µ > 0 Take n̄ ∈ N
such that �f − fn�B(c,r] ≤ µ/3 for n ≥ n̄. Then |fn(c)| ≤ µ/3 < 2µ/3 ≤ min{|fn(z)| : z ∈ ∂B(c, r]}, so
that fn has a zero in B(c, r[, a contradiction. (ii) Given c ∈ D, each fn − fn(c) is zero–free in D � {c},
which is also connected; and if f were constant on D�{c} then it would be constant on D; then f −f(c)
is zero free on D � {c}, by (i). Since c is arbitrary in D, this shows that f is injective.

(iii) If w ∈ C�E then fn−w is zero–free and converges compactly on D to the non–constant function
f − w, which by (i) is then zero–free.

�
2.7.2. Completion of the proof of the Riemann mapping theorem. Given a region G with the square

root property, and c ∈ G, recall that we considered in 1.2.5 the set

Ic(G) = {f ∈ O(G) : f injective, f(G) ⊆ ∆, f(c) = 0}.

It is easy to show, by means of the above, that the closure of Ic(G) in the compact–open topology is
Ic(G) ∪ {0}. Given p ∈ G � {c}, the mapping f �→ |f(p)| is continuous and hence it takes its absolute



18

maximum on the compact set Ic(G)∪{0}. If g ∈ Ic(G) is a maximum point for this function, by 1.2.5 the
function g is an isomorphism. And if f = (|g�(c)|/g�(c)) g then f also an isomorphism, and is derivative
at c is f �(c) = |g�(c)| > 0.

Exercise 2.7.2.1. Describe the closure in O(D) of the set of injective mappings, when D is a region.

Solution. Calling In(D) this set, the closure is In(D) ∪ κ(C), where κ(C) is the set of all constant
mappings. In fact, clearly every mapping with constant value k is in the closure of In(D), as limit of the
sequence fn(z) = k + z/n. And by (ii) of Hurwitz’s theorem, a non constant limit of mappings in In(D)
is still in In(D). �

2.7.3. A more precise statement of Hurwitz’s theorem. (This fact is not needed in the sequel)
If a holomorphic function f : D → C is not locally constant at a point c ∈ D then the multiplicity ν(f, c) of

f at c is defined as the order of f − f(c) at c, i.e. the smallest natural number m ≥ 1 such that f (m)
(c) �= 0. We

have the following:

. Theorem of Hurwitz Let D be a region of C and let fn be a sequence in O(D), which compactly converges
on D to a non–constant function f on D. Let U be an open bounded set whose closure is contained in D. Assume
that w ∈ C � f(∂U). Then there is an index n(U,w) ∈ N such that for n ≥ n(U,w) the equations w = f(z) and
w = fn(z) have in U the same number of solutions, counting multiplicities: i.e. for n ≥ n(U,w) we have

�
{ν(f, z) : z ∈ U, f(z) = w} =

�
{ν(fn, z) : z ∈ U, fn(z) = w}.

Proof. The set f←
(w) ∩ U is finite, since f is by hypothesis not constant; put f←

(w) ∩ U = {z1, . . . , zp},
and choose δ > 0 so small that the discs B(zk, δ] , k = 1, . . . , p are contained in U and pairwise disjoint. By the

argument principle we have

I =

�
{ν(f, z) : z ∈ U, f(z) = w} =

p�

k=1

1

2πi

�

∂B(zk,δ]

f �
(z)

f(z)− w
dz.

Since K = Ū �
��p

k=1 B(zk, δ[
�
is compact, and w /∈ f(K), we have dist(w, f(K)) = ρ > 0; take n1 ∈ N such that

�f − fn�K < ρ if n ≥ n1. Then w /∈ fn(K) if n ≥ n1, so that f←
n (w) ∩ U ⊆

�p
k=1 B(zk, δ[ for n ≥ n1; thus, again

by the argument principle:

In =

�
{ν(fn, z) : z ∈ U, fn(z) = w} =

p�

k=1

1

2πi

�

∂B(zk,δ]

f �
n(z)

fn(z)− w
dz n ≥ n1.

Since the sequence f �
n(z)/(fn(z)−w) converges to f �

(z)/(f(z)−w) uniformly on
�p

k=1 ∂B(zk, δ], the integrals In
converge to the integral I, and since In and I are integers, there is n2 ∈ N such that for n ≥ n2 we have In = I.
We conclude, taking n(U,w) = max{n1, n2}. �

2.7.4. Inward spreading of uniform convergence.

Proposition. Let D be open in C, and let (fn)n∈N be a sequence of holomorphic functions on D.
Assume that fn converges uniformly on some compact subset K of D, and that a bounded component Z
of C �K is contained in D. Then (fn)n∈N converges uniformly on Z ∪K to a function continuous on
Z ∪K and holomorphic on Z.

Proof. Recall that ∂Z ⊆ ∂K ⊆ K, and recall that by the maximum modulus theorem we have
�g�Z̄ = �g�∂Z ≤ �g�K for every g continuous on Z ∪K and holomorphic in Z. If fn converges uniformly
on K then it is uniformly Cauchy on K, and since �fn − fm�K ≥ �fn − fm�Z̄ we have �fn − fm�K =
�fn − fm�K∪Z , so that the sequence is uniformly Cauchy on K ∪ Z, hence it converges uniformly on
K ∪ Z to a function continuous on K ∪ Z and holomorphic in Z. �

Corollary. Let D be open in C and let S be a locally finite subset of D. Assume that (fn)n∈N is
a sequence of functions holomorphic in D � S which converges compactly on D � S to f ∈ O(D � S).
If c ∈ S is a non removable singularity for f , then c is a non removable singularity for all but a finite
subfamily of the functions in the sequence.

Proof. Pick a disc B(c, r] ⊆ D such that B(c, r] ∩ S = {c}. Assume that for infinitely many n ∈ N
the function fn has a removable singularity at c. The subsequence so obtained converges uniformly on
∂B(c, r], hence, by the above observation on inward spreading of the convergence, also on B(c, r], to a
function holomorphic on B(c, r[; but on B(c, r[�{c} this function must coincide with f , which then has
a removable singularity at c.

�
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2.7.5. Addendum. We present here a proof of the following fact:

Proposition. The compact–open topology and the topology of uniform convergence on compacta
coincide on C(D).

Proof. Assume that f ∈
�

m

j=1[Kj , Uj ], where Kj is a compact subset of D and Uj an open subset of
C, for each j ∈ {1, . . . ,m}; we prove that for some compact K ⊆ D and some ε > 0 we have BK(f, ε[⊆�

m

j=1[Kj , Uj ]; this proves that the the topology of uniform convergence on compacta is finer than the
compact–open topology. For every j the set f(Kj) is a compact subset of the open set Uj , and hence
there exists δj > 0 such that f(Kj) + δjB ⊆ Uj . Take K =

�
m

j=1 Kj , and ε < min{δj : j = 1, . . . ,m}.
Assume that �g − f�K < ε, and let us show that g(Kj) ⊆ Uj , for every j = 1, . . . ,m. In fact, if z ∈ Kj ,
we have |g(z)− f(z)| < ε ≤ δj , hence g(z) ∈ f(zj) + δjB ⊆ Uj .

Conversely, let a compact K ⊆ D and ε > 0 be given, and let’s prove that there exist compact
sets Kj ⊆ D and open sets Uj such that

�
m

j=1[Kj , Uj ] ⊆ BK(f, ε[. For every z ∈ K pick δ(z) > 0
such that B(z, δ(z)] ⊆ D and f(B(z, δ(z)] ⊆ B(f(z), ε/2[, as allowed by the continuity of f . There
exist z1, . . . , zm ∈ K such that K ⊆ B(z1, δ(z1)] ∪ · · · ∪ B(zm, δ(zm)], by compactness of K. Set Uj =
B(f(zj), ε/2[, and Kj = B(zj , δ(zj)], and suppose g ∈

�
m

j=1[Kj , Uj ]. If z ∈ K, then z ∈ B(zj , δ(zj)] for
some j, hence:

|g(z)− f(z)| ≤ |g(z)− f(zj)|+ |f(zj)− f(z)| < ε/2 + ε/2 = ε,

so that g ∈ BK(f, ε[. �
2.7.6. Proof of the theorem of Vitali, exercise 2.7.0.5. Since {fn : n ∈ N} is bounded, it has compact

closure, and every subsequence of fn has a converging subsequence; pick one subsequence converging,
let’s say, to f ∈ O(D); clearly we have f(z) = limn fn(z), for every z ∈ C , since every subsequence of
fn(z) is pointwise convergent, for every z ∈ C, to the same limit. Any holomorphic function g ∈ O(D)
which is the limit of some subsequence of (fn)n in the compact topology then agrees with f on C; by the
identity theorem we have f = g on D. Then fn converges to f in the compact–open topology: simply
remember the well–known fact that in a topological space a sequence fn converges to a point f of the
space if every subsequence of this sequence has a subsequence converging to f .

2.7.7. More exercises.

Exercise 2.7.7.1. Let D be a region of C, and let fn be a sequence in O(D) such that f �
n
compactly

converges in D to a function g ∈ O(D). Prove that then fn compactly converges on D if and only if for
at least one c ∈ D the sequence fn(c) converges in C; and in this case the limit f of fn is a primitive of
g in D, i.e. f � = g on D.

Solution. Necessity is obvious.
Sufficiency: first of all notice that g indeed has a primitive on D: if γ is any loop in D, we have�

γ
f �
n
(z) dz = 0, and by uniform convergence on [γ] we get

�

γ

g(z) dz = lim
n

�

γ

f �
n
(z) dz = 0.

If limn fn(c) = � exists in C, denote by f that primitive of g on D whose value at c is �. Now the
sequence fn converges pointwise to f : given z ∈ D, we can consider a path α of origin c end extremity z
(by connectedness of D); then

fn(z) = fn(c) +

�

α

f �
n
(ζ) dζ ⇒ f(z) = f(c) +

�

α

g(ζ) dζ

(we can pass to the limit under the integral, by uniform convergence on the compact set [α]). And it
is now immediate to prove that we have uniform convergence on every compact disk contained in D: if
B(a, r] ⊆ D we have, for z ∈ B(a, r],

|f(z)−fn(z)| = |f(z)−f(a)+f(a)−fn(a)+fn(a)−fn(z)| ≤ |f(z)−f(a)−(fn(z)−fn(a))|+|f(a)−fn(a)|

Write now:

f(z)− f(a) =

�

[a,z]
g(ζ) dζ; fn(z)− fn(a) =

�

[a,z]
f �
n
(ζ) dζ,

so that

|f(z)− f(a)− (fn(z)− fn(a))| =

�����

�

[a,z]
(g(ζ)− f �

n
(ζ)) dζ

����� ≤
�

[a,z]
|g(ζ)− f �

n
(ζ)| |dζ| ≤
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�g − f �
n
�[a,z]|z − a| ≤ �g − f �

n
�B(a,r] r;

we get

|f(z)− fn(z)| ≤ �g − f �
n
�B(a,r] r + |f(a)− fn(a)| for every z ∈ B(a, r] and every n ∈ N,

so that fn converges to f uniformly on B(a, r]. Every compact subset of D is covered by a finite set of
such discs, so that convergence is uniform on every compact subset of D. �

The following exercise is practically contained in the previous one, still it can give another perspective.

Exercise 2.7.7.2. Let D be a region of C. Denote by O�(D) the set of all derivatives of holomorphic
functions in D, that is, O�(D) is the image of O(D) under the differentiation operator f �→ f �.

(i) Prove that O�(D) is a closed linear subspace of O(D).
(ii) Prove that for every c ∈ D there exists a linear continuous map Ic : O�(D) → O(D) such that

Icg(c) = 0 for every g ∈ O�(D), and Ic is a right inverse of the differentiation operator, that is
(Icg)� = g for every g ∈ O�(D).

Exercise 2.7.7.3. Consider the sequence fn(z) = n/(z + n); these functions are all holomorphic in
C � (−N). Determine the limit on C � (−N) and prove that on this open set the sequence converges
compactly to this limit.

In the previous example, the limit function is an entire function, even if the functions fn are not
defined on all of C. But for every compact subset K of C there exists a natural number nK such that for
n ≥ nK all functions fn are holomorphic on a neighborhood of K, and converge to the limit uniformly
on K. We often say in this case that the sequence fn converges to its limit compactly on C, even if C is
not the common domain of all the fn’s.

2.7.8. Compositional factorization of holomorphic functions. We prove here a ”homomorphism the-
orem” for holomorphic maps.

. Let D,E be open regions of C, assume that ϕ : D → E is a holomorphic surjective map, and that
f : D → C is holomorphic. Then the following are equivalent

(i) f is constant on the fibers of ϕ, that is, ϕ(a) = ϕ(b) for a, b ∈ D implies f(a) = f(b).
(ii) There exists g : E → C, holomorphic on E, such that f = g ◦ ϕ.

Moreover, g is unique.

Proof. It is well–known and easy to prove that g exists as a map of sets, and is unique, if and only
if (i) holds. We only have to prove that if (i) holds then g is holomorphic. Clearly ϕ is non constant,
hence it is an open mapping; then g is continuous (we have g←(A) = ϕ(f←(A)), for every A ⊆ C). We
first prove that g is holomorphic on the open subset W = ϕ(D � Z(ϕ�)) of E. Given w ∈ W , we have
w = ϕ(z) for some z ∈ D � Z(ϕ�); since ϕ�(z) �= 0, we have that ϕ induces a holomorphic isomorphism
ψ of some neighborhood U of z onto some neighborhood V of w; on V we then have g|V = f ◦ ψ−1,
composition of holomorphic functions, hence holomorphic, proving that g is holomorphic on W . Consider
the complement S = E�W of W in E, that is the set S of all w ∈ E such that ϕ←(w) ⊆ Z(ϕ�). Since ϕ is
non constant in the region D, the zero-set Z(ϕ�) of ϕ� is (closed and) discrete in D, and this immediately
implies that S is also (closed and) discrete in E: pick w ∈ S, and a point z ∈ ϕ←(w); there is a
neighborhood U of z such that U ∩ Z(ϕ�) = {z}, hence V = ϕ(U) is an open set containing w such that
V � {w} ⊆ W . All points of S are then isolated singularities for g, and since g is continuous on E, these
singularities are all removable. �
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2.8. Normal convergence of series. Examples. For a series of functions, the handier and
simplest criterion is that of normal convergence, which we now describe.

Definition. Let D be open in C and let
�

n≥ν
fn be series of functions in C(D). We say that this

series converges normally in D if for every compact subset K of D the series
�

n≥ν
�f�K is convergent.

Proposition. A normally convergent series of functions converges in the compact–open topology to
a function f , and every rearrangement has the same sum.

Proof. Clearly we have
������

k+p�

j=ν

fj −
k�

j=ν

fj

������
K

=

������

k+p�

j=k+1

fj

������
K

≤

k+p�

j=k+1

�fj�K ,

and the latter sum may be made smaller than any previously chosen ε > 0 for k large, since the series
of the seminorms is convergent. Moreover, for every z ∈ D the series

�
n≥ν

|fn(z)| is convergent, that
is, the numerical series

�
n≥ν

fn(z) is absolutely convergent ( |fn(z)| = �fn�{z}). It is well known that
every absolutely convergent series is commutatively convergent, which means that all its rearrangements
converge to the same sum. �

2.8.1. The zeta function. We define a function ζ(s) for σ = Re s > 1 (as customary in number theory
the complex variable is denoted by s, s = σ + i t, with σ = Re s, t = Im s) by letting

ζ(s) = 1 +
1

2s
+

1

3s
+ · · · =

∞�

n=1

1

ns
(Re s > 1);

it is of course intended that the power ns has the principal value i.e. ns := exp(s log n). Since |ns| =
| exp(s log n)| = exp((Re s) log n) = nσ, the series is normally convergent in the open half–plane {s ∈ C :
Re s = σ > 1}; in fact, if Re s ≥ a > 1 we have

����
1

ns

���� =
1

nRe s
≤

1

na
,

and the series
�∞

n=1 1/n
a is convergent, since a > 1. The sum is the famous zeta function of Riemann;

moreover we have

ζ �(s) =
∞�

n=1

− log n

ns
(Re s > 1).

2.8.2. A periodic function. Given α > 0 we prove that the formula

fα(s) =
∞�

n=−∞, n∈Z
e−α(s+n)2

defines an entire function, periodic of period 1. Given any compact subset K of C, there obviously exists
a > 0 such that |Re s|, | Im s| ≤ a for every s ∈ K; we then have

|e−α(s+n)2
| = | exp(−α((σ + n)2 − t2 + 2it(σ + n))| = exp(−α(σ + n)2 + αt2) ≤ eαa

2

e−α(|n|−a)2 ;

the (two–sided) series
�∞

n=−∞ eαa
2
e−α(|n|−a)2 is clearly convergent. Then fα exists and is holomorphic.

Periodicity of 1 is trivial, being a shift of indices in the summation; to be more precise, we could say that
fα is the limit, in the compact–open topology, of the sequence

gm(s) =
m�

n=−m

e−α(s+n)2 ,

so that
fα(s+ 1)− fα(s) = lim

m→∞
(gm(s+ 1)− gm(s)),

and

gm(s+ 1)− gm(s) =
m�

n=−m

e−α(s+1+n)2
−

m�

n=−m

e−α(s+n)2 =

m+1�

k=−(m−1)

e−α(s+k)2
−

m�

n=−m

e−α(s+n)2 = e−α(s+m+1)2
− e−α(s−m)2 ,
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which clearly tends to 0 as m nears infinity.
Some people say that fα has been obtained by replicating gα(s) = e−α s

2
in period 1; clearly this

technique works for any function holomorphic on a strip S = {s ∈ C : a < Im s < b} which falls off fast
enough at infinity on the strip, e.g as 1/|z|1+ε, for some ε > 0.

2.8.3. The cotangent series. Let us consider the two–sided series

∞�

n=−∞

1

z − n
on D = C� Z.

We consider as partial sums the functions

fm(z) =
m�

n=−m

1

z − n
, m ∈ N

and we prove that on D this sequence converges compactly to some function f ∈ O(D). In fact the series

1

z
+

∞�

n=1

2z

z2 − n2
,

has the same partial sums as the given two–sided series, and is normally convergent in C�Z, as we now
prove. Let K be a compact subset of C; clearly µ = max{|z| : z ∈ K} is finite, and for z ∈ K and n > µ
we then have ����

2z

z2 − n2

���� =
2|z|

|n2 − z2|
≤

2µ

n2 − µ2
,

Since the series
�∞

n=[µ]+1(2µ)/(n
2−µ2) is convergent, we conclude. Clearly the function f has first order

poles at every integer, with residue 1, since we can pass to the limit for m → ∞ in the integral

1 = Res(fm, n) =
1

2πi

�

∂B(n,1/2]
fm(z) dz (m > n).

It is also easy to see that f is periodic of period 1:

fm(z + 1)− fm(z) =
m�

n=−m

1

(z + 1)− n
−

m�

n=−m

1

z − n
=

m�

n=−m

1

z − (n− 1)
−

m�

n=−m

1

z − n
=

1

z + (m+ 1)
−

1

z −m

and the left–hand side tends to f(z+1)−f(z), the right–hand side to 0. The function π cotπz has exactly
the same poles and the same residues, hence g(z) = f(z)− π cotπz has only removable singularities, i.e.,
it is an entire function. Let us prove that it is identically zero. The pattern of proof is as follows: we
prove that it is bounded, and thus constant by Liouville’s theorem; next we prove that the constant is 0.

By periodicity, we only need to prove that g is bounded on every vertical strip of width one, let’s
say S = {z ∈ C : −1 ≤ Re z ≤ 0}. We observe that g(z̄) = g(z), hence we need to consider only
the half–strip with Im z ≥ 0; we take b > 0 and prove that for b large enough g is bounded on the set
T = {z ∈ C : −1 ≤ Re z ≤ 0, Im z ≥ b}; this concludes the proof, since clearly g is bounded on the
compact rectangle S ∩ {0 ≤ Im z ≤ b}. We use the inequality

|f(z)| ≤
1

|z|
+

∞�

n=1

2|z|

|z2 − n2|
;

on T , we have 1/|z| ≤ 1; if z = x+ iy, −1 ≤ x ≤ 0, y ≥ b we have

2|z|

|z2 − n2|
≤

2(|x|+ |y|)

|x2 − y2 + 2ixy − n2|
≤

2(1 + y)

y2 + n2 − x2
≤

2(1 + y)

y2 + n2 − 1
,

We set b = 2 and we estimate the sum
�

n≥1 2(1 + y)/(y2 + n2 − 1) by an integral; since for fixed y > 1

t �→ 2(1 + y)/(y2 + t2 − 1) is decreasing in [0,+∞[ we have

∞�

n=1

2(1 + y)

(y2 − 1) + n2
≤

� ∞

0

2(1 + y)

(y2 − 1) + t2
dt =

2(1 + y)�
y2 − 1

� ∞

0

dt/
�
y2 − 1

1 + (t/
�

y2 − 1)2
= π

1 + y�
y2 − 1

≤
√
3π;
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(the derivative of y �→ (1 + y)/
�
y2 − 1 is negative on [2,+∞[, hence this function decreases to the limit

1 as y → +∞, and assumes its maximum for y = 2). We conclude that for Im z ≥ 2 the function f is
dominated by

√
3π + 1. We recall next that

| cos(x+ iy)|2 = cos2 x cosh2 y + sin2 x sinh2 y = cos2 x+ sinh2 y;

| sin(x+ iy)|2 = sin2 x cosh2 y + cos2 x sinh2 y = sin2 x+ sinh2 y,

hence (assume y ≥ 1)

π| cot(π(x+ iy))| = π

�
cos2(πx) + sinh2(πy)

sin2(πx) + sinh2(πy)
≤ π

�
1 + sinh2(πy)

sinh2(πy)
= π

cosh(πy)

sinh(πy)
≤ π cotanh(π).

We have proved that g is bounded, and hence constant by Liouville’s theorem. To evaluate the
constant, let’s evaluate g(1/2); here π cot(π/2) = 0; to compute f(1/2) we use the first version of f :

m�

k=−m

1

(1/2)− n
=

1

1/2
+

−m�

n=−1

1

(1/2)− n
+

m�

n=1

1

(1/2)− n
=

2 +
m�

k=1

1

(1/2) + k
−

m�

n=1

1

n− (1/2)
= 2 +

m�

k=1

1

(k + 1)− 1 + 1/2
−

m�

n=1

1

n− (1/2)
=

(put k + 1 = n in the first sum)

2 +
m+1�

n=2

1

n− 1/2
−

m�

n=1

1

n− (1/2)
= 2 +

1

(m+ 1)− 1/2
−

1

1− 1/2
=

1

m+ 1/2
;

letting m tend to infinity we get 0, hence f(1/2) = 0. It follows that g = 0. We have proved:

π cot(πz) =
∞�

n=−∞

1

z − n
=

1

z
+

∞�

n=1

2z

z2 − n2
z ∈ C� Z,

(where the first sum is intended as limm→∞
�

m

n=−m
1/(z − n)).

We have proved that the two–sided series

∞�

n=−∞

1

z − n
,

when summed symmetrically compactly converges to a function f ∈ O(C � Z). Differentiating term by
term the two sided series above we get

∞�

n=−∞

−1

(z − n)2

where this series is now normally convergent in C� Z, and we obtain

π2

sin2(πz)
=

∞�

n=−∞

1

(z − n)2
.

With the same ideas we get:

Example 2.8.3.1. The function
π

sin(πz)
has first order poles at every n ∈ Z, with residue (−1)n. We

conjecture that the sum of the series

f(z) :=
∞�

n=−∞

(−1)n

z − n

�
:= lim

m→∞

m�

n=−m

(−1)n

z − n

�
=

1

z
+

∞�

n=1

(−1)n2z

z2 − n2
,

coincides with π/ sin(πz). We can closely follow the argument given for the cotangent, and the same
estimates work; we can also observe that if z = x+ iy, with |y| ≥ b > 0, b large enough, we have

π

| sin(πz)|
=

π�
sin2(πx) + sinh2(πy)

≤
π�

sinh2(πy)
=

π

| sinh(πy)|
≤

π

sinh(πb)
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To conclude we need only to prove that the two functions f and π/ sin(π·) agree on a point; to this end

we prove that g(z) = f(z) − 1/z =
�∞

n=1

(−1)n2z

z2 − n2
, agrees with π/ sin(πz) − 1/z = (πz − sin(πz))/z at

some point; it is immediate to see that at 0 both functions are 0.

2.8.4. Another proof of the preceding formulae. There is another way of proving the preceding for-
mulae for the cotangent and sine functions, perhaps easier, but less direct.

For every integer n ≥ 1 we consider a rectangular loop γn, the polygonal path of vertices (n+1/2)+n i,−(n+
1/2) + n i, −(n+ 1/2)− n i, (n+ 1/2)− n i, (n+ 1/2) + n i. Let us estimate cotan(πz) on this path; as observed

we have, if z = x+ iy

| cotan(πz)|2 =
cos

2 πx+ sinh
2
(πy)

sin
2
(πx) + sinh

2
(πy)

,

so that on the vertical sides of the rectangle we get

| cotan(π(±(n+ 1/2) + i y))|2 =
sinh

2
(πy)

1 + sinh
2
(πy)

≤ 1,

while on the horizontal sides:

| cotan(π(x± n i))|2 =
cos

2 πx+ sinh
2
(πn)

sin
2
(πx) + sinh

2
(πn)

≤
1 + sinh

2
(πn)

sinh
2
(πn)

≤ 2.

Thus � cotan(π·)�γn ≤
√
2 for n ≥ 1. Consider the integral

�

γn

cotan(πζ)
ζ2 − z2

dζ;

with z /∈ Z, and n > |z|. By the residue theorem this integral is (we write for simplicity f(ζ) in place of

cotan(πζ)/(ζ2 − z2)):
�

γn

cotan(πζ)
ζ2 − z2

dζ = 2πi

�
Res(f, z) + Res(f,−z) +

n�

k=−n

Res(f, k)

�
;

the residues are easily computed:

Res(f, z) =
cotan(πz)

2z
; Res(f,−z) =

cotan(π(−z))
−2z

=
cotan(πz)

2z
;

moreover

Res(f, k) =
cos(πk)/(k2

− z2)
π cos(πk)

=
1

π(k2 − z2)
.

If we estimate the integral:

����
�

γn

cotan(πζ)
ζ2 − z2

dζ

���� ≤
�

γn

| cotan(πζ)|
|ζ2 − z2|

|dζ| ≤

�

γn

√
2

n2 − |z|2
|dζ| =

√
2

8n+ 2

n2 − |z|2
,

we see that the integral tends to 0 as n tends to infinity. We thus get

0 =
cotan(πz)

z
+

1

π

∞�

k=−∞

1

k2 − z2
(z ∈ C� Z);

but of course
∞�

k=−∞

1

k2 − z2
= −

1

z2
+

∞�

n=1

2

n2 − z2
,

so that:

π cotan(πz) =
1

z
+

∞�

n=1

2z
z2 − n2

(z /∈ Z).

A similar computation yields the result for π/ sin(πz).

2.8.5. Fourier series. Functions which are holomorphic and periodic can be expanded into Fourier
series. We want to prove it by using only complex–variable methods. Assume that f : S → C is
holomorphic and 1−periodic, where S is an open strip which for simplicity will be assumed to contain
the real axis; i.e. there exist a, b, with −∞ ≤ a < 0 < b ≤ ∞, such that S = {s ∈ C : a < Im s < b}.
The function ex : s �→ e2πis maps the strip S onto the annulus A = {z ∈ C : e−2πb < |z| < e−2πa}.
Moreover, for every 1−periodic holomorphic function f : S → C there exists a holomorphic g : A → C
such that g(e2πis) = f(s), for every s ∈ S. In fact, if e2πis = e2πit then e2πi(t−s) = 1, which happens
iff t − s = n is an integer; but then f(t) = f(s + n) = f(s). In other words, f is constant on the fibers
F (z) = ex−1(z) = {s ∈ S : e2πis = z}, of the map ex, for z ∈ A: we then get a well defined map
g : A → C if we set g(z) = f(s), whenever z = e2πis, and g is holomorphic (see 2.7.8). As every function
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holomorphic in an annulus, g can be developed in a Laurent series; that is, with normal convergence on
compact subsets of A we have:

g(z) =
∞�

n=−∞
cn z

n where cn =
1

2πi

�

γ

g(ζ)

ζn+1
dζ,

with γ(t) = e2πit = ex(t), t ∈ [0, 1] the unit circle. Substitution into the formula for cn gives

cn =
1

2πi

� 1

0

g(e2πit)

e2πi(n+1)t
(2πi) e2πit dt =

� 1

0
f(t) e−2πint dt,

the n-th Fourier coefficient of f .
We then have

. Fourier series Assume that f : S → C is holomorphic and 1−periodic, where S = {s ∈ C : a <
Im s < b}, a < 0 < b. Then, with normal convergence on closed substrips of S:

f(s) =
+∞�

n=−∞
cn e

2πins where cn =

� 1

0
f(t) e−2πint dt, for every n ∈ Z.

2.8.6. Poisson formula. Assume now that the periodic f : S → C has been obtained by replication
in period 1 of a holomorphic function h : S → C falling to zero quickly enough at infinity (see 2.8.2).
Then

cn =

� 1

0

� ∞�

m=−∞
h(t+m)

�
e−2πint dt;

clearly normal convergence of the series allows the exchange of series and integral; hence

cn =
∞�

m=−∞

� 1

0
h(t+m) e−2πint dt =

∞�

m=−∞

�
m+1

m

h(θ) e−2πin(θ−m) dθ =
∞�

m=−∞

�
m+1

m

h(θ) e−2πinθ dθ =

� ∞

−∞
h(θ) e−2πinθ dθ.

We have obtained

. Poisson’s formula Let h : S → C be holomorphic on the open strip S = {s ∈ C : a < Im s < b},
with a < 0 < b, and such that if s ∈ S we have |h(s)| ≤ K/(1 + |s|)1+ε for some K, ε > 0. Then for
every s ∈ S we have, with normal convergence on (compact subsets of) the strip:

∞�

n=−∞
h(s+ n) =

∞�

n=−∞

�h(n) e2πins in particular, if s = 0:
∞�

n=−∞
h(n) =

∞�

n=−∞

�h(n),

where �h(n) =
� +∞
−∞ h(x) e−2πinx dx is the value at n of the Fourier transform �h of h, the function �h : R → C

defined by �h(ξ) =
� +∞
−∞ h(x) e−2πiξx dx.

2.8.7. Example. With h(s) = e−α s
2
we get

cn =

� ∞

−∞
e−α s

2

e−2πins ds =

� ∞

−∞
e−α (s2+2(πin/α)s) ds =

� ∞

−∞
e−α (s2+2(πin/α)s−π

2
n
2
/α

2+π
2
n
2
/α

2) ds =

e−π
2
n
2
/α

2
� ∞

−∞
e−α (s+πin/α)2 ds

It is now easy to see that, for every w ∈ C we have
� ∞

−∞
e−α(x+w)2 dx =

� ∞

−∞
e−α x

2

dx =
�

π/α;

in fact, if w = p+ iq then clearly, by translation invariance of the integral:
� ∞

−∞
e−α(x+w)2 dx =

� ∞

−∞
e−α((x+p)+iq)2 dx =

� ∞

−∞
e−α(t+iq)2 dt,

and if we integrate e−α z
2
on polygonal paths [−r, r, r + iq,−r + iq,−r] and let r tend to infinity we see

that � ∞

−∞
e−α t

2

dt =

� ∞

−∞
e−α(t+iq)2 dt.
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We have obtained cn =
�
π/α e−(π2

/α)n2
, so that

g(z) =
�
π/α

∞�

n=−∞
e−(π2

/α)n2

zn; z ∈ C� {0};

substituting z = e2πis we get:

fα(s) :=
∞�

n=−∞
e−α(s+n)2 =

�
π/α

∞�

n=−∞
e−(π2

/α)n2

e2πins s ∈ C, α > 0.

In particular, for s = 0:
∞�

n=−∞
e−αn

2

=
�
π/α

∞�

n=−∞
e−(π2

/α)n2

α > 0.

2.8.8. A theta function formula. In the derivation of the functional equation for the Riemann’s zeta
function we shall use the function θ(x) =

�∞
n=−∞ e−n

2
πx, i.e. with α = π x; then, putting π/x in place

of α in the preceding formula we get:

θ(1/x) :=
∞�

n=−∞
e−n

2
π/x =

√
x

∞�

n=−∞
e−n

2
π x =

√
x θ(x) x > 0,

a formula which we shall later put to use.
2.8.9. The cotangent development by Poisson’s formula. If a > 0 the function ha(s) = 1/(a2 + s2) is

holomorphic on the strip {s ∈ C : −a < Im s < a}; we have for its Fourier transform, for every ξ ∈ R:

�ha(ξ) =

� ∞

−∞

e−2πiξx

a+ x2
dx =

π

a
e−2πa|ξ|

(this is a classical exercise in the computation of integrals via residue theorem), and Poisson’s formula
2.8.6 then gives

+∞�

n=−∞

1

a2 + n2
=

π

a

+∞�

n=−∞
e−2πa|n|;

a little work on the right–hand side yields
+∞�

n=−∞
e−2πa|n| = 1 + 2

∞�

n=1

e2πan = 1 + 2
e−2πa

1− e−2πa
=

1 + e−2πa

1− e−2πa
=

eπa + e−πa

eπa − e−πa
= cotanh(πa),

while the left–hand side is
+∞�

n=−∞

1

a2 + n2
=

1

a2
+ 2

∞�

n=1

1

a2 + n2
,

so that we get

π cotanh(πa) =
1

a
+

∞�

n=1

2a

a2 + n2
(a > 0).

Interpreted as a series of functions of the complex variable a, it is easy to see that the right–hand side
converges normally on C � iZ to a holomorphic function, which coincides with π cotanh(πa) on the
positive real line. By the identity theorem we then have on all of C� iZ, with normal convergence:

π cotanh(πz) =
1

z
+

∞�

n=1

2z

z2 + n2
;

and setting i z in place of z we get, noting that cosh(i w) = coshw and sinh(i w) = i sinw:

π

i
cotan(πz) =

1

i z
+ i

∞�

n=1

2z

n2 − z2
hence π cotan(πz) =

1

z
+

∞�

n=1

2z

z2 − n2
.
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2.9. Holomorphic functions defined by integrals.

Theorem. Let D be open in C, let I be an interval of R, and let f : D × I → C be a function
such that for every given x ∈ I the function f(·, x) : D → C given by s �→ f(s, x) is holomorphic on D.
Assume that

• for every compact subset K of D there exists a function ρK : I → [0,+∞[ such that ρK ∈ L1(I)
and for every (s, x) ∈ K × I we have |f(s, x)| ≤ ρK(x).

• for every s ∈ D the function x �→ f(s, x) is measurable;

Then the formula

F (s) =

�

I

f(s, x) dx,

defines a holomorphic function F : D → C, whose derivative is obtained by differentiating with respect to
s under the integral sign:

F �(s) =

�

I

∂sf(s, x) dx.

Proof. Given s ∈ D, and a sequence sj in D � {s} converging to s, we prove that

lim
j→∞

F (sj)− F (s)

sj − s
=

�

I

∂sf(s, x) dx,

(it will be proved also that the integral on the right side exists). Pick r > 0 such that B(s, r] ⊆ D; then
sj ∈ B(s, r] for j large enough and

F (sj)− F (s)

sj − s
=

�

I

f(sj , x)− f(s, x)

sj − s
dx;

if we let j tend to infinity, inside the integral the limit is exactly ∂sf(s, x); if we find a function u ∈ L1(I)
such that ����

f(sj , x)− f(s, x)

sj − s

���� ≤ u(x) for j ∈ N large enough, and (almost) every x ∈ I,

then Lebesgue dominated convergence theorem allows us to conclude.
By the hypothesis there is ρ ∈ L1(I) such that |f(s, x)| ≤ ρ(x) for every (s, x) ∈ B(s, r]× I. Pick t,

with 0 < t < r; we then have, if sj ∈ B(s, t]:
����
f(sj , x)− f(s, x)

sj − s

���� ≤ max{|∂sf(z, x)| : z ∈ [s, sj ]} ≤ max{|∂sf(z, x)| : z ∈ B(s, t]} :

the first inequality is simply the mean value theorem, the second is due to the fact that the segment [s, sj ]
is contained in the disc B(s, t] if sj ∈ B(s, t]. Remember now that for every g holomorphic on B(s, r] we
have (recall 2.7)

�g��B(s,t] ≤
�g�B(s,r]

r − t
;

thus

max{|∂sf(z, x)| : z ∈ B(s, t]} ≤
1

r − t
max{|f(z, x)| : z ∈ B(s, r]} ≤

ρ(x)

r − t
= u(x).

�
Remark. In exactly the same way the following more general theorem could be proved:

. Let (X,S, µ) be a measure space. Let D be open in C and let f : D×X → C be a function such that
for every x ∈ X the function s �→ f(s, x) is holomorphic on D. Assume that for every compact subset K
of D there exists a function ρK ∈ L1

µ
(X) such that for every (s, x) ∈ K ×X we have |f(s, x)| ≤ ρK(x),

and that for every s ∈ D the function x �→ f(s, x) is measurable. Then the formula

F (s) =

�

X

f(s, x) dµ(x),

defines a holomorphic function F : D → C, whose derivative is obtained by differentiating with respect to
s under the integral sign:

F �(s) =

�

X

∂sf(s, x) dµ(x).
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Holomorphic functions defined by normally convergent series fall in the scope of this theorem (with
µ the counting measure on N).

Example 2.9.0.1. Let I =]1,+∞[ and let ω : I → C be bounded, measurable and such that
ω ∈ O(e−εξ) for a given ε > 0 as ξ → ∞ (that is, there exist L, a > 0 such that |ω(ξ)| ≤ Le−εξ for
ξ ≥ a). Then, for every a, b ∈ C the formula

F (s) =

� ∞

1
ξas+bω(ξ) dξ (s ∈ C)

defines an entire function F ∈ O(C). In fact, let a compact K ⊆ C be given; since ξ > 0 we have

|ξas+bω(ξ)| = |ξas+b
| |ω(ξ)| = ξRe(as+b)

|ω(ξ)|;

now since ξ > 1 we have:

ξRe(as+b)
≤ ξ|Re(a s+b)|

≤ ξ|as+b|
≤ ξ|a||s|+|b|

≤ ξ|a|µ+|b|,

where µ = max{|s| : s ∈ K}; then, if s ∈ K and ξ ∈ [1,+∞[ we have

|ξas+bω(ξ)| ≤ L ξ|a|µ+|b|e−εξ,

(since ω is bounded it is clear that by enlarging L we can make |ω(ξ)| ≤ Le−εξ on all of [1,+∞[). This
last function ξ �→ L ξ|a|µ+|b|e−εξ is clearly in L1([1,+∞[), since ε > 0.

Example 2.9.0.2. Let I = [0, 1]; assume that ω : I → C is bounded and measurable. Then the
formula

F (s) =

� 1

0
ξs−1ω(ξ) dξ,

defines a function F holomorphic at least in the right half–plane S = {s ∈ C : Re(s) > 0}. In fact, if
K ⊆ S is compact, then a = min{Re s : s ∈ K} > 0 and we have:

|ξs−1
| = ξRe s−1

≤ ξa−1 for every s ∈ K and 0 < ξ ≤ 1.

Then, in K×]0, 1], if M = �ω�∞ = sup{|ω(ξ)| : ξ ∈ [0, 1]}:

|ξs−1ω(ξ)| ≤ ξa−1M and since a− 1 > −1 the function ξ �→ Mξa−1 is in L1([0, 1]).

If ω is also bounded away from 0 in a right neighborhood of 0, then in general the function F will have
a singularity at s = 0; for instance, it is easy to see that s �→

� 1
0 ξs−1 e−ξ dξ tends to ∞ if s → 0+

(with s ∈ R). If on the contrary limξ→0+ ω(ξ) = 0, then F may be holomorphic in a larger half–
plane. For instance, if for some α > 0 we have that ω is O(ξα) as ξ → 0+, then F is holomorphic in
Sα = {s ∈ C : Re s > −α}. In fact we have |ω(ξ)| ≤ λξα for ξ ∈]0, δ], for some δ, 0 < δ < 1, and some
λ > 0 and if Re s ≥ a > −α we have

|ξs−1 ω(ξ)| = ξRe s−1
|ω(ξ)| ≤ ξa−1λξα = λξ(a+α)−1 for 0 < ξ < δ.

As integrable dominating function we can take ρ(ξ) = λξ(a+α)−1 for ξ ∈]0, δ], ρ(ξ) = M ξa−1 in [δ, 1].
For instance the function

F (s) =

� 1

0
ξs−1(eξ − 1) dξ,

is holomorphic in the half plane {Re s > −1}

Example 2.9.0.3. Prove that the formula (B(p, q) is to be read ”beta of p, q”)

B(p, q) =

� 1

0
ξp−1(1− ξ)q−1 dξ Re p,Re q > 0,

defines a function on S × S holomorphic in both variables (keeping one fixed, it is holomorphic in the
other; S is the right half–plane); verify that B(p, q) = B(q, p); this is Euler’s beta function.
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2.9.1. The Gamma function as an integral. The gamma function will be defined as an infinite product
(3.4.3); we describe here its integral representation. The integral

Γ(s) =

� ∞

0
ξs−1 e−ξ dξ,

is absolutely convergent if Re s > 0, and so defines a function Γ : S → C, where S = {Re s > 0} is
the right open half–plane. And Γ is holomorphic on this half–plane: to take advantage of the previous
examples write

Γ(s) =

� 1

0
ξs−1 e−ξ dξ +

� ∞

1
ξs−1 e−ξ dξ = F1(s) + F2(s),

with obvious meaning of the symbols; by 2.9.0.1 F2 is an entire function, and by 2.9.0.2 F1 is holomorphic
on Re s > 0, so that the sum is holomorphic on the right half–plane. Integrating by parts we get the
functional equation for Γ:

Γ(s+ 1) =

� ∞

0
ξs e−ξ dξ =

�
−ξs e−ξ

�∞
0

+

� ∞

0
s ξs−1 e−ξ dξ = sΓ(s)

that is Γ(s+ 1) = sΓ(s) (Re s > 0).

By induction we immediately get

Γ(s+m+ 1) = Γ(s) s(s+ 1) · · · (s+m) = Γ(s)
m�

k=0

(s+ k),

which, coupled with Γ(1) = 1 says that Γ(m+ 1) = m! for every m ∈ N, but more importantly allows us
to extend Γ to a holomorphic function on C� (−N) = C� {0,−1,−2, . . . } simply by defining

Γ(s) =
Γ(s+m+ 1)

s(s+ 1) · · · (s+m)
if− (m+ 1) < Re s.

We easily get that Γ has a simple pole at −m, and Res(Γ,−m) = (−1)m/m!. Next, an easy and nice
application of the Fubini’s theorem (see. e.g. [Remmert]) gives the addition formula for Γ in terms of
the beta function defined in 2.9.0.3:

Γ(p)Γ(q)

Γ(p+ q)
= B(p, q)

�
:=

� 1

0
ξp−1(1− ξ)q−1 dξ

�
Re p,Re q > 0;

from which it follows that, if 0 < σ < 1 we have

Γ(σ)Γ(1− σ) = B(σ, 1− σ) =

� 1

0
ξσ−1(1− ξ)−σ dξ =

� ∞

0

tσ−1

1 + t
dt,

(the last equality is obtained by the change of variable ξ = t/(1 + t)). This integral may be computed
via residue theorem, and we get:

Γ(σ)Γ(1− σ) =
π

sin(πσ)
0 < σ < 1.

Since s �→ Γ(s)Γ(1−s) is holomorphic in the region C�Z, by the identity theorem we get the remarkable
formula:

(Euler’s supplement) Γ(s)Γ(1− s) =
π

sin(πs)
s ∈ C� Z.

This formula shows, among other things, that Γ is zero–free; moreover we get Γ(1/2)2 = π, and since
Γ(σ) > 0 for σ > 0, we get Γ(1/2) =

√
π.

2.9.2. The functional equation for ζ. Following the original procedure by Riemann, we now obtain the
functional equation for the ζ function. Start with Γ(s/2) =

�∞
0 ξ(s/2)−1 e−ξ dξ, and substitute ξ = n2πx

in the integral, obtaining

Γ(s/2) =

� ∞

0
ns−2π(s/2)−1 x(s/2)−1e−n

2
πx(n2π) dx = nsπs/2

� ∞

0
x(s/2)−1e−n

2
πx dx (n = 1, 2, 3, . . . ),

equivalently

π−s/2Γ(s/2)

ns
=

� ∞

0
x(s/2)−1e−n

2
πx dx (n = 1, 2, 3, . . . ).
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Summing over all integers from 1 to ∞ we get, assuming that σ > 1:

π−s/2 Γ(s/2) ζ(s) =
∞�

n=1

� ∞

0
x(s/2)−1e−n

2
πx dx.

Moreover for σ > 1 the series of L1−norms
∞�

n=1

� ∞

0
|x(s/2)−1

|e−n
2
πx dx =

∞�

n=1

� ∞

0
x(σ/2)−1 e−n

2
πx dx =

∞�

n=1

π−σ/2Γ(σ/2)

nσ

is convergent; then we can exchange the series and the integral, obtaining:

π−s/2 Γ(s/2) ζ(s) =

� ∞

0
x(s/2)−1 ω(x) dx where ω(x) =

∞�

n=1

e−n
2
πx.

We can write:
� ∞

0
x(s/2)−1 ω(x) dx =

� 1

0
x(s/2)−1 ω(x) dx+

� ∞

1
x(s/2)−1 ω(x) dx = F1(s) + F2(s);

we observe that ω(x) is O(e−πx) as x → ∞; in fact, if x ≥ 1:

ω(x) = e−πx

�
1 +

∞�

n=2

e−(n2−1)πx

�
≤ Le−πx;

where L = 1+
�∞

n=2 e
−(n2−1)π. Hence the second term F2(s) is an entire holomorphic function. We now

put x = 1/t in the first of these integrals, obtaining:

F1(s) =

� 1

0
x(s/2)−1 ω(x) dx =

� ∞

1
t1−s/2 ω(1/t)

dt

t2
.

If we consider θ(x) =
�∞

n=−∞ e−n
2
πx, for x > 0 (one of Jacobi’s theta functions), we have θ(x) =

1 + 2ω(x), equivalently ω(x) = (θ(x) − 1)/2. It was proved in 2.8.8, with the help of the Poisson
summation formula, that:

θ(1/x) =
√
x θ(x) for x > 0;

thus:

ω(1/x) =
1

2
θ(1/x)−

1

2
=

1

2

√
x θ(x)−

1

2
=

√
x

2
(1 + 2ω(x))−

1

2
= −

1

2
+

√
x

2
+

√
xω(x).

Hence:

F1(s) =

� ∞

1
t1−s/2 ω(1/t)

dt

t2
=

� ∞

1
t−1−(s/2)

�
−
1

2
+

t1/2

2
+ t1/2 ω(t)

�
dt =

−
1

2

� ∞

1
t−1−(s/2) dt+

1

2

� ∞

1
t−1/2−(s/2) dt+

� ∞

1
t−1/2−(s/2)ω(t) dt =

1

2(−s/2)
−

1

2(1/2− (s/2))
+

� ∞

1
t−s/2−1/2 ω(t) dt =

−
1

s
+

1

s− 1
+

� ∞

1
t−s/2−1/2 ω(t) dt.

Writing again x in place of t in the second integral, we have obtained , if σ = Re s > 1:

π−s/2 Γ(s/2) ζ(s) =
1

s(s− 1)
+

� ∞

1
(xs/2−1 + x−s/2−1/2)ω(x) dx = G(s).

But, as observed, ω is O(e−πx) as x → +∞, so that the integral on the right hand side defines an entire
function of s, and the right hand side is a meromorphic function G with two simple poles at s = 0 and
s = 1. This means that we can define ζ(s) as

ζ(s) :=
πs/2

Γ(s/2)
G(s) =

πs/2

2(s− 1)Γ(s/2 + 1)
(1 + s(s− 1)ϕ(s)),
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where ϕ(s) =
�∞
1 (xs/2−1 + x−s/2−1)ω(x) dx is an entire function. Since Γ is zero–free, the only possible

pole of ζ is 1. Now 1 is indeed a pole for ζ, with residue π1/2/Γ(1/2) = 1. Notice that ζ(0) = −1/2.
Moreover the simple poles of Γ(s/2 + 1), that is s = −2n, n = 1, 2, 3, . . . are zeros for ζ (the so called
trivial zeros of ζ). Notice that the meromorphic function G does not change if we exchange s with 1− s,
i. e. G is symmetric with respect to the point s = 1/2. We then get the

Functional equation for ζ π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s)

which may also be written as

ζ(1− s) = γ(s) ζ(s), where γ(s) = π1/2−s
Γ(s/2)

Γ((1− s)/2)
;

notice that γ is meromorphic on C, with one simple pole at s = 0 (Res(γ, 0) = 2), and other simple poles
at the negative even integers, and simple zeros at the positive odd integers 2n+ 1, with n = 0, 1, 2, . . . .

It will be proved, with the representation of ζ as Euler’s infinite product, to be discussed later in
3.2.3, that ζ has no zeros in the half–plane σ > 1. From this and the functional equation it follows that
the only zeros of ζ for Re s < 0 are the trivial ones, and that they are all simple; with a little more work
one shows that there are no zeros on the line Re s = 1, so that the only non–trivial zeros of ζ must reside
on the open strip 0 < Re s < 1, the critical strip.

Moreover we have that ζ(s̄) = ζ(s) for every s ∈ C� {1}. Recall in fact that if D is an open subset
of C, f ∈ O(D), and D∗ = {s̄ : s ∈ D} is the symmetrical of D with respect to the real axis, then the
formula f∗(s) = f(s̄) defines a holomorphic function f∗ : D∗ → C. If D = C � {1} then D∗ = D, and
since ζ∗(σ) = ζ(σ) for σ > 1 (this can be shown in many ways, directly from the definition as series) we
have ζ(s̄) = ζ(s) for every s ∈ C� {1}, which we can write also ζ(s̄) = ζ(s), for every s ∈ C� {1}.

Of course, if s is a zero of ζ in the critical strip, then also ζ(1− s) = 0, from the functional equation,
and as above proved we also have ζ(s̄) = 0. So: zeros on the critical strip must be symmetrical with
respect to the point s = 1/2, and also with respect to the line Re s = 1/2. We close with a proof of the
fact that ζ(σ) < 0 for 0 < σ < 1: we estimate ω(x) for x > 1:

ω(x) =
∞�

n=1

e−n
2
πx,

with an integral: observe that t �→ e−t
2
πx is strictly decreasing and positive on [0,+∞[ so that

∞�

n=1

e−n
2
πx <

� ∞

0
e−t

2
πx dt =

1

2
√
x
;

and we can estimate the integral in the expression of G by
� ∞

1
(xσ/2−1 + x−σ/2−1/2)ω(x) dx <

1

2

� ∞

1
(xσ/2−3/2 + x−σ/2−1) dx =

1

2

�
−1

σ/2− 1/2
+

−1

−σ/2

�
=

1

σ(1− σ)
.

whence

G(σ) <
1

σ(σ − 1)
+

1

σ(1− σ)
= 0

Exercise 2.9.2.1. Write again Γ(s) =
� 1
0 ξs−1 e−ξ dξ +

�∞
1 ξs−1 e−ξ dξ; prove that

� 1

0
ξs−1 e−ξ dξ =

∞�

n=0

(−1)n

(s+ n)n!
(Re s > 0).

Prove that the series on the right hand–side is normally convergent in C � (−N). Deduce another
representation on C� (−N) of the Γ function (partial fraction development of Γ):

Γ(s) =
∞�

n=0

(−1)n

(s+ n)n!
+ ϕ(s),

where ϕ(s) =
�∞
1 ξs−1 e−ξ dξ is an entire function; check the residues at poles of Γ with this formula, and

verify the functional relation Γ(s+ 1) = sΓ(s).
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2.9.3. The function ζa. Let us prove that the series

∞�

n=1

(−1)n−1

ns

compactly converges in the open half–plane S = {s ∈ C : Re s > 0} to a holomorphic function ζa(s)
(zeta function with alternating signs). We use Abel’s summation formula: let αn be a sequence such that
αn − αn−1 = (−1)n−1, e.g. take α0 = 0,α1 = 1,α2 = 0, and in general αn = 0 for n even, αn = 1 for n
odd. Consider the m−th partial sum of the above series:

m�

n=1

(−1)n−1

ns
=

m�

n=1

αn − αn−1

ns
=

m�

n=1

αn

ns
−

m�

n=1

αn−1

ns
=

m�

n=1

αn

ns
−

m−1�

k=0

αk

(k + 1)s
=

αm

ms
+

m−1�

n=1

αn

ns
−

m−1�

n=1

αn

(n+ 1)s
=

αm

ms
−

m−1�

n=1

αn

�
1

ns
−

1

(n+ 1)s

�
.

We now prove that this last sequence compactly converges in S to a holomorphic function. Let K be
a compact subset of S; then µ = min{Re s : s ∈ K} > 0, hence |αm/ms| ≤ 1/mµ for s ∈ K, so that
the sequence αm/ms compactly converges to the zero function; the second term is the partial sum of the
series

∞�

n=1

αn

�
1

(n+ 1)s
−

1

ns

�
;

the conclusion is reached if we prove that this series normally converges in S. We have:

����
1

(n+ 1)s
−

1

ns

���� =
����
�

n+1

n

−s

xs+1
dx

���� ≤ |s|

�
n+1

n

dx

xσ+1
,

so that
����αn

�
1

(n+ 1)s
−

1

ns

�����
K

≤ M

�
n+1

n

dx

xµ+1
,

where M = max{|s| : s ∈ K}. We then have:

∞�

n=1

����αn

�
1

(n+ 1)s
−

1

ns

�����
K

≤

∞�

n=1

M

�
n+1

n

dx

xµ+1
= M

� ∞

1

dx

xµ+1
=

M

µ
,

and normal convergence in S = {s ∈ C : Re s > 0} is proved. Observe that if Re s ≤ 1 the series�∞
n=1(−1)n−1/ns does not converge absolutely, so that whenever a compact subset K of S contains a

point with Re s ≤ 1 the series of the K−norms will not converge. Notice that for Re s > 1 we have

ζ(s)− ζa(s) =
∞�

k=1

2

(2k)s
= 21−s

∞�

k=1

1

ks
= 21−s ζ(s) whence (1− 21−s) ζ(s) = ζa(s),

so that

ζ(s) =
ζa(s)

1− 21−s
Re s > 1;

if 1− 21−s �= 0, i.e. if s �= 1+ (2π/ log 2)k i but Re s > 0 the above formula makes sense, and allows us to
extend the zeta function to the half–plane Re s > 0, perhaps with poles at 1 + (2π/ log 2)k i, k ∈ Z. Now
s = 1 is indeed a simple pole: we have ζa(1) = log 2 �= 0, and the denominator 1− 21−s has a simple zero
at 1; the derivative of the denominator is 21−s log 2, so that the residue is 1. Since we have already seen
that ζ has a holomorphic extension to C� {1}, we can use this fact to show that ζa can be extended to
an entire function by the formula

ζa(s) = (1− 21−s) ζ(s);

hence ζa has zeros at 1 + (2π/ log 2)k i if k �= 0.
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2.9.4. Continuity of the composition. For every pair D,E of open subsets of C we denote by C(D,E)
the subset of C(D,C) consisting of functions such that f(D) ⊆ E; C(D,E) is topologized with the
topology induced by the compact–open topology. We want to prove the following result:

. Composition theorem Let D,E,G be open subsets of C; then the composition map (g, f) �→ g ◦f
is continuous as a map of C(E,G)× C(D,E), with the product topology, into C(D,G).

In other words, if gn ∈ C(E,G) converges compactly to g ∈ C(E,G) and fn ∈ C(D,E) converges
compactly to f ∈ C(D,E), then gn ◦ fn converges compactly to g ◦ f ∈ C(D,G). To prove this we use
the auxiliary notion of continuous convergence.

Definition. Let X be a metrizable space; denote by C(X,C) the set of continuous functions from
X to C. If (fn)n is a sequence of C(X,C) and f ∈ C(X,C), we say that the sequence (fn)n converges
continuously to f on X if for every x ∈ X and every sequence (xn)n in X converging to x we have that
limn fn(xn) = f(x).

We have the

Lemma. If f and fn are as above then (fn)n converges continuously to f if and only if (fn)n converges
to f uniformly on every compact subset of X.

Proof. Necessity Assume that (fn)n converges continuously to f ; arguing by contradiction, assume
that it does not converge to f uniformly on every compact subset of X; this means that there exists a
compact subset K of X such that �f −fn�K does not tend to 0 as n tends to ∞; in turn, this means that
there is α > 0 and a sequence ν(0) < ν(1) < . . . of natural numbers such that �f − fν(k)�K > α for every
k ∈ N; and then there exists a sequence (xν(k))k of points of K such that |f(xν(k)) − fν(k)(xν(k))| > α
for every k ∈ N. By compactness of K, the sequence xν(k) has a subsequence (xν(µ(j)))j converging to
x ∈ K. By continuous convergence we have limj→∞ |f(x)− fν(µ(j))(xν(µ(j)))| = 0, but:

|f(x)− fν(µ(j))(xν(µ(j)))| = |f(x)− f(xν(µ(j))) + f(xν(µ(j)))− fν(µ(j))(xν(µ(j)))| ≥

≥|f(xν(µ(j)))− fν(µ(j))(xν(µ(j)))|− |f(x)− f(xν(µ(j)))| > α− |f(x)− f(xν(µ(j)))|,

and by continuity of f the right hand side tends to α− 0 = α > 0, a contradiction.
Sufficiency Assume uniform convergence on compacta of (fn)n, and let (xn)n be a sequence of X

converging to x in X. Then K = {x}∪{xn : n ∈ N} is a compact subset of X, on which we have uniform
convergence of (fn)n to f . Then:

|f(x)− fn(xn)| =|f(x)− f(xn) + f(xn)− fn(xn)| ≤ |f(x)− f(xn)|+ |f(xn)− fn(xn)| ≤

≤ |f(x)− f(xn)|+ �f − fn�K ,

and the lemma is proved. �
Proof. (of the continuity of composition) Assume (zn)n is a sequence in D converging to z ∈ D.

Then fn(zn) converges to f(z), since uniform convergence on compacta implies continuous convergence;
for the same reason gn(fn(zn)) converges to g(f(z)). This implies that gn ◦ fn converges continuously to
g ◦f ; and since continuous convergence implies uniform convergence on compacta, the proof is concluded.

�
2.9.5. Composition lemma. A particular case is obtained by keeping fixed the function which operates

second (continuity of the post–composition map):

. Composition lemma Let E, D be open sets of C. Given ϕ ∈ C(E,C) the mapping

ϕ∗ : C(D,E) → C(D,C) given by ϕ∗(f) = ϕ ◦ f,

is continuous in the compact–open topologies.

2.9.6. Composition in the other direction. We also have continuity of the pre–composition map g �→

g ◦ ϕ, which is an algebra homomorphism, in particular a linear map. Given open subsets D and E of
C and a continuous map ϕ : D → E we have the map ϕ∗ : C(E) → C(D) given by ϕ∗(g) = g ◦ ϕ,
which clearly is a homomorphism of complex algebras. Continuity (with respect to the compact–open
topologies) is in this case immediate from the fact that �ϕ∗(g)�K = �g�ϕ(K).
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3. Infinite products

When D is a region, the identity theorem shows that the ring O(D) is an integral domain. However
the ring does not satisfy any finiteness condition; e.g., in the ring O(C) of entire functions the function
sin(πz) has infinitely many non–trivial divisors; the functions fn(z) = sin(πz)/pn(z), where pn(z) =
z
�

n

k=1(z
2 − k2) give a non stationary ascending chain of principal ideals:

(f0) � (f1) � (f2) � . . . ,

showing that the ring is non noetherian, and that is not a UFD. However, functions may be written as
infinite products; e.g we shall show that we have:

sin(πz) = πz
∞�

n=1

�
1−

z2

n2

�
, z ∈ C,

where the right–hand side has to be carefully explained.

3.1. Convergence of infinite products.

3.1.1. Heuristic foreword. The concept we want is of course the multiplicative analog of a convergent
infinite sum, i.e. of a convergent series. Tentatively, we might give the following definition: given a
sequence (an)n∈N of complex numbers, we form the sequence p0 = a0, p1 = a0 a1, . . . , pm = a0 · · · am
of partial products, and say that the product converges (to p) if this sequence converges to p. Some
complication is however introduced by the presence of 0. We want to be able to say that a converging
infinite product has value 0 if and only if some an is 0. Now if some an is 0 then clearly pm = 0 for
n ≥ m, regardless of the other members of the sequence an, so that two sequences might be eventually
equal, but have sequences of partial products with different asymptotic behaviour, or conversely have the
same sequence of partial products, being however wildly different in asymptotic behaviour. Moreover the
sequence 1/2, 1/2, 1/2, . . . has the sequence pm = (1/2)m+1 as sequence of partial products, so that very
easily a sequence of non–zero numbers would have, with the above definition, a zero product. Clearly
the role of 0 has to be peculiar when speaking of products; 0 is not in the multiplicative group C× of C,
where products of non–zero numbers are. Since spontaneously we also get sequences indexed not only by
N, but by sets like {n ∈ Z : n ≥ ν}, for some ν ∈ Z, we consider index sets like these.

3.1.2. Definition of convergence.

Definition. Let (an)n≥ν be a sequence of complex numbers. We say that the infinite product�∞
n=ν

an is convergent if there exists m such that the sequence of partial products

pm,n = am · · · an =
n�

j=m

aj n ≥ m

converges to a non–zero number a ∈ C× as n tends to infinity.
The value of the infinite product is then, by definition, p =

�∞
n=ν

an =
�

m−1
j=ν

aj · a.

This definition implies of course immediately that a convergent infinite product has value 0 if and
only if at least one of its members is 0, that an �= 0 but for a finite set of indices, and that eventually
equal sequences have the same convergence behaviour also as infinite products, as we have the right to
expect. Notice also

Proposition. If the infinite product
�∞

n=ν
an is convergent, then limn→∞ an = 1.

Proof. Simply note that an = pm,n/pm,n−1 for n > m, and that both pm,n and pm,n−1 converge to
the same non–zero complex number a as n tends to infinity. �

3.1.3. Logarithms of infinite products. Let us prove

Proposition. Let (an)n≥ν be a sequence of complex numbers. Then the following are equivalent:

(i) The infinite product
�∞

n=ν
an is convergent.

(ii) (Cauchy’s condition) For every neighborhood V of 1 in C there exists an index nV such that
for nV ≤ m ≤ n then pm,n ∈ V (all the partial products are in V , for an index large enough).

(iii) There is an index m̄ such that for n ≥ m̄ the logarithm log an is defined and moreover the series

log am̄ + log am̄+1 + · · · =
∞�

n=m̄

log an,

is convergent.
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Moreover, if (iii) holds, then the value of the product is
��

m̄−1
j=ν

aj
�
es, where s is the sum of the series

in (iii).

Proof. (i) implies (ii) There is an index m̄ such that the sequence pm̄,n converges to a non zero a ∈ C.
By continuity of the division (the map (w, z) �→ w/z = w z−1, from C× × C× to C×) at the point (a, a),
given a neighborhood V of 1 we find a neighborhood U of a in C× such that U U−1 ⊆ V ; and since
limn→∞ pm̄,n = a, given U we find nU = nV such that if n ≥ nV then pm̄,n ∈ U . If nV < m ≤ n we then
have

pm̄,n p
−1
m̄,m−1 ∈ U U−1

⊆ V, that is, pm̄,n p
−1
m̄,m−1 = pm,n ∈ V.

(ii) implies (iii). First of all, let T = {z ∈ C : Re z > 0} be the right–half plane; take an index m̄ such
that pm̄,n ∈ T for n ≥ m̄. Given ε > 0, we can find a neighborhood V of 1 such that log V ⊆ B(0, ε[;
we can also assume that V is contained in T . By (ii) we have pm,n ∈ V for m ≤ n and m large enough;
since V ⊆ T , log pm,n is then defined, and since an = pn−1,n ∈ T also log an is defined; moreover

log pm,n = log am + log am+1 + · · ·+ log an ∈ B(0, ε[

(if all the ajs, and their product belong to T , then the logarithm of the product is the sum of the
logarithms of the ajs). This proves that the series

∞�

n=m̄

log an,

is convergent, having a sequence of partial sums which satisfies the Cauchy condition.
(iii) implies (i). Simply apply the function exp to the partial sums of the series

�∞
n=m

log an; the
sequence so obtained will converge to exp s �= 0, if s =

�∞
n=m

log an is the sum of the series, by continuity
of the exponential function.

�
Example 3.1.3.1. Consider the sequence an = 1 + 1/n(= (n+ 1)/n) for n ≥ 2. Then

p2,n =
2 + 1

2
·
3 + 1

3
· · ·

n+ 1

n
=

n+ 1

2
;

since limn→∞ p2,n = ∞, the infinite product
�∞

n=2(1 + 1/n) diverges (to infinity).
Consider now an = 1− 1/n(= (n− 1)/n) for n ≥ 2. Then

p2,n =
2− 1

2
·
3− 1

3
· · ·

n− 1

n
=

1

n
;

thus limn→∞ p2,n = 0; the infinite product
�∞

n=2(1 − 1/n) diverges to 0. Notice that these products
diverge, although in both cases we have limn→∞ an = 1.

Finally consider an = 1− 1/n2, n ≥ 2. By the preceding examples we immediately have

p2,n =
n+ 1

2
·
1

n
=

1 + 1/n

2
;

then the infinite product converges and
�∞

n=2(1− 1/n2) = 1/2.

3.1.4. Absolute and commutative convergence. Of course the infinite product of the absolute values
of the elements of a convergent infinite product will always converge to the absolute value of the product;
and convergence of

�
n≥ν

|an| does not imply convergence of
�

n≥ν
an. The notion of absolute convergence

for a product has to be given through the corresponding infinite series of logarithms.

Remark. What we are exploring is convergence in the multiplicative group C× of nonzero complex
numbers. The metric |w − z| that this groups inherits from C is not suitable for it; e.g. with this metric
C× is non complete, and the metric is not adapted to the group structure, that is, it is not invariant
under the ”translations” of the group, the mappings z �→ az (with a ∈ C× fixed). A good metric for
C× is defined as follows: let ρ(z) = | log z| for z ∈ C×; prove that ρ is continuous on C×, and that
ρ(wz) ≤ ρ(w) + ρ(z) for every w, z ∈ C×; observe that ρ(z−1) = ρ(z) and that ρ(z) = 0 if and only if
z = 1. The metric dρ(w, z) = ρ(w/z) = | log(w/z)| is translation invariant, topologically compatible, and
makes C× complete. This remark should motivate the subsequent definition.

Definition. Let (an)n≥ν be a sequence of complex numbers. We say that the infinite product�∞
n=ν

an is absolutely convergent if there exists m ∈ N such that Re an > 0 for n ≥ m, and the series�∞
n=m

log an is absolutely convergent.
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It is customary to write the infinite product
�

n≥ν
an in the form

�
n≥ν

(1 + bn), with bn = (an − 1).
For the next proposition we need the following

Lemma. If |z| ≤ 1/2, then

|z|

2
≤ | log(1 + z)| ≤

3

2
|z|.

Proof. Put u(z) = z − log(1 + z). Then, if |z| < 1:

u(z) =

�

[0,z]
u�(ζ) dζ =

�

[0,z]

ζ

1 + ζ
dζ;

so that if |z| ≤ 1/2 we have (use the parametrization ζ = t z, t ∈ [0, 1] for the last equality):

|u(z)| =

�����

�

[0,z]

ζ

1 + ζ
dζ

����� ≤
�

[0,z]

|ζ|

|1 + ζ|
|dζ| ≤

�

[0,z]

|ζ|

1/2
|dζ| = 2|z|2

� 1

0
t dt = |z|2.

Thus |u(z)| ≤ |z|2 ≤ (1/2)|z| if |z| ≤ 1/2; then ||z|− | log(1 + z)|| ≤ |z − log(1 + z)| ≤ |z|/2, which gives
easily the statement. �

We recall also that a rearrangement of a sequence (bn)n≥ν is a sequence (bσ(n))n ≥ ν, where σ is a
permutation, that is, a self–bijection, of the set {ν, ν + 1, ν + 2, . . . } of indices.

Proposition. Any absolutely convergent product
�

n≥ν
an =

�
n≥ν

(1+bn) is convergent. Moreover,
the following are equivalent:

(i)
�

n≥ν
(1 + bn) is absolutely convergent.

(ii) The series
�∞

n≥ν
bn is absolutely convergent.

(iii) Every rearrangement
�

n≥ν
(1 + bσ(n)) is convergent.

And all the rearrangements converge to the same product.

Proof. The first assertion is an obvious consequence of the proposition in the preceding section, since
absolute convergence of a series implies convergence.

(i) is equivalent to (ii): use the lemma. (iii) is equivalent to (i): recall that a series is commutatively
convergent iff it is absolutely convergent; and that all rearrangements of an absolutely convergent series
converge to the same sum.

�

Exercise 3.1.4.1. Let (bn)n≥ν be a sequence of positive real numbers, converging to 0. Prove that
the infinite products

∞�

n=ν

(1 + bn)
∞�

n=ν

(1− bn)

converge if and only if the series
�∞

n=ν
bn is convergent.

Solution. By the hypothesis limn→∞ bn = 0, we can pick m so that for n ≥ m we have 0 ≤ bn ≤ 1/2.
We know that the infinite products are convergent if and only if the series

�

n≥m

log(1 + bn), respectively
�

n≥m

log(1− bn)

are convergent (see proposition 3.1.3). These series have terms of constant sign, all positive the first, all
negative the second, so that their convergence is equivalent to absolute convergence, which is equivalent,
by the preceding theorem, to convergence of the series

�
n≥m

bn. �

3.2. Convergence of infinite products of holomorphic functions. Since we shall use almost
only the notion of normally convergent product we define it first; the general notion of compact conver-
gence for an infinite product will be relegated to an exercise (3.2.5).
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3.2.1. Normally convergent infinite products. The infinite product
�

n≥ν
fn will be frequently written�

n≥ν
(1 + gn), with gn = fn − 1.

Definition. Let D be an open subset of C, and let (fn)n≥ν be a sequence of functions holomorphic
on D. We say that the infinite product

�
n≥ν

fn =
�

n≥ν
(1 + gn) converges normally on D if the series�

n≥ν
gn =

�
n≥ν

(fn − 1) is normally convergent on D.

Then we have:

Theorem. Let D be a region of C, and let (fn)n≥ν be a sequence of functions holomorphic on D,
none of which is identically zero. Assume that the infinite product

�
n≥ν

fn =
�

n≥ν
(1 + gn) is normally

convergent on D. Then there exists a holomorphic function f : D → C, not identically zero, such that
the sequence pm =

�
m

n=ν
fn converges to f , uniformly on compact subsets of D. Moreover:

(i) For every compact subset K of D there exists mK such that if n ≥ mK then fn has no zero on
K, and the sequence pmK ,m =

�
m

n=mK
fn converges uniformly on K to a function nowhere zero

on K.
(ii) c ∈ D is a zero of f if and only if c is a zero of some function fn, and we have ord(f, c) =�

n≥ν
ord(fn, c);

(iii) The product is commutatively convergent: every rearrangement compactly converges to the same
function.

(iv) Logarithmic differentiation The series
�

n≥ν

f �
n

fn
of the logarithmic derivatives of the func-

tions fn converges normally on D � ZD(f) to the logarithmic derivative f �/f of the infinite
product:

f �

f
=

�

n≥ν

f �
n

fn
with normal convergence in D � ZD(f).

Proof. Given a compact subset K of D there exists an index mK such that for n ≥ mK the functions
fn have no zero on K. In fact, since the series

�
n≥ν

�gn�K is convergent, there exists mK such that for
n ≥ mK we have �gn�K ≤ 1/2; then Re fn(z) ≥ 1/2 for z ∈ K, in particular fn is non–zero; and the
series �

n≥mK

log(1 + gn)

is normally convergent on K, to a function sK , since by the lemma 3.1.4 we have

� log(1 + gn)�K ≤ (3/2)�gn�K .

By the composition lemma 2.9.5 we have that the sequence exp
��

m

n=mK
log(1+ gn)

�
=

�
m

n=mK
(1+

gn) =
�

m

n=mK
fn converges uniformly on K to the function exp sK , never zero on K. So (i) has been

proved; and (ii) is now easy: on K we have

f =

�
mK−1�

n=ν

fn

�
exp(sK);

if f(c) = 0 we take K = B(c, r], with B(c, r] ⊆ D. Then exp(sK) is holomorphic on B(c, r[ and then

ord(f, c) = ord

�
mK−1�

n=ν

fn, c

�
+ ord(exp(sK), c) =

mK−1�

n=ν

ord(fn, c) + 0.

Statement (iii) is immediate: pointwise, the product converges absolutely, hence commutatively.
Statement (iv) is simply obtained differentiating termwise the series of the logarithms, as we now

explain in detail. Given a compact subset K of D let r > 0 be such that L = K + rB ⊆ D; there exists
then mL such that for n ≥ mL we have �gn�L ≤ 1/2, thus, by the Cauchy estimate for the derivative:

����
f �
n

fn

����
K

=

����
g�
n

1 + gn

����
K

≤
1

r
� log(1 + gn)�L ≤

3

2r
�gn�L,

As above the series
�

n≥mL
log(1 + gn) converges normally on K to a function sK continuous and

holomorphic on the interior of K; in this interior we have

s�
K

=
�

n≥mL

g�
n

1 + gn
=

�

n≥mL

f �
n

fn
,
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with normal convergence of the series. Since we have

f =

�
mL−1�

n=ν

fn

�
exp(sK) on K,

logarithmic differentiation gives, in the interior of K

f �

f
=

mL−1�

n=ν

f �
n

fn
+ s�

K
=

�

n≥ν

f �
n

fn
.

�
Statement (ii) is one of the most important facts to be remembered: the zero set of the product is the

union of the zero sets of the factors, and the multiplicities are obtained by adding multiplicities: exactly
as in the case of finite products!

Example 3.2.1.1. The infinite product z
�∞

n=1(1−z2/n2) is plainly normally convergent on all of C.
In fact if K is compact and µ = max{|z| : z ∈ K} we have |−z2/n2| ≤ µ2/n2, and the series

�
n≥1 µ

2/n2

is convergent. The product is an entire function with simple zeros at every integer, and no other zero.
Euler proved that this product is sin(πz)/π. In fact, calling the product f , by logarithmic differentiation
we get

f �(z)

f(z)
=

1

z
+

∞�

n=1

−2z/n2

1− z2/n2
=

1

z
+

�

n=1

2z

z2 − n2
;

but in 2.8.3 we saw that the right hand–side is π cotan(πz) = π cos(πz)/ sin(πz), which is the logarithmic
derivative of sin(πz). Two functions with the same logarithmic derivative differ by a multiplicative
constant, so f(z) = kπ sin(πz) for every z ∈ C. We have that limz→0 f(z)/z =

�∞
n=1 1 = 1, while

limz→0 sin(πz)/z = π, so that k = 1/π2, hence f(z) = sin(πz)/π. We have the formula

sin(πz) = πz
∞�

n=1

(1− z2/n2).

Example 3.2.1.2. The infinite product z
�∞

n=1(1 + z/n) e−z/n normally converges on all of C. Let
us estimate (1+ z/n)e−z/n − 1; put u(z) = (1+ z) e−z; we have u�(z) = e−z − (1 + z)e−z = −ze−z; since
we have

|u�(z)| ≤ |z| e−Re z
≤ |z|e|z|, we get |u(z)− u(0)| ≤ |z|2e|z|;

(mean value theorem); thus on the disc rB we have, since |z|/n ≤ r/n:
���
�
1 +

z

n

�
e−z/n

− 1
��� ≤

r2

n2
er/n.

Notice that the factors e−z/n do not introduce zeros, but force the product to converge: without them,
the product

�∞
n≥2(1 + x/n) does not converge, for no x > 0 (3.1.4.1). The value H(z) of the infinite

product is an entire function with simple zeros at 0,−1,−2,−3, . . . . It has half the factors of the sine
function, and in fact we easily have

H(z)H(−z) = −z2
∞�

n=1

�
1−

z2

n2

�
= −

z

π
sin(πz).

The value H(1) is
�∞

n=1(1 + 1/n)e−1/n; thus

logH(1) =
∞�

n=1

�
log

�
1 +

1

n

�
−

1

n

�
= lim

m→∞

�
m�

n=1

�
log(n+ 1)− log n−

1

n

��
=

lim
m→∞

�
log(m+ 1)−

m�

n=1

1

n

�
= −γ,

where γ is called Euler’s constant; it is known that 0 < γ < 1. Since H(1) = e−γ , we have that

∆(z) = eγzH(z) = z eγz
∞�

n=1

(1 + z/n) e−z/n,

is an entire function such that ∆(1) = 1, which has simple zeros at 0,−1,−2, . . . . This is the Weierstrass
∆−function, whose reciprocal is the Euler’s Γ function.
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3.2.2. Unordered normally convergent products. Since a normally convergent product is commuta-
tively convergent, its definition may be given for an unordered index set (necessarily countable). If we
have a family (fd)d∈S of functions holomorphic on a region D, indexed by some countable set S, we shall
say that the infinite product

�
d∈S

fd =
�

d∈S
(1 + gd) is normally convergent on D if for every compact

subset K of D the sum

�
d∈S

�gd�K
�
:= sup

��
d∈F

�gd�K : F finite subset of S
��

is finite.

The same considerations may of course be applied to normally convergent series.

. Let D be a region of C, and let (fd)d∈S be a family on holomorphic functions on D such that the
infinite product

�
d∈S

fd is normally convergent on D to f ∈ O(D). Assume that no fd is identically zero
on D. Then

�
d∈S

(1/fd) converges normally on D � ZD(f) to 1/f .

Proof. Exercise. �

3.2.3. The Euler’s product. We now consider the infinite product

�

p∈primes

(1− p−s)−1,

and prove that the product normally converges in the open half–plane S = {Re s > 1}. Moreover, the
convergence is to the Riemann’s zeta function, thus proving that ζ has no zeros in this half–plane. First,
take a compact subset K ⊆ S, and let a = min{Re s : s ∈ K}; we have a > 1. Let us estimate the
sup–norm on K of (1− p−s)−1 − 1:

����
1

1− p−s
− 1

���� =
����

p−s

1− p−s

���� ≤
|p−s|

1− |p−s|
=

p−σ

1− p−σ
≤

(1− 2−σ)−1

pσ
≤

L

pa
(L = (1− 2−a)−1).

Clearly the series
�

p∈primes 1/p
a is convergent for a > 1, since

�
p∈primes 1/p

a <
�

n≥1 1/n
a. Fix now a

finite set F of primes; we prove that

ζ(s) =

�
�

n∈F �

1

ns

�
�

p∈F

(1− p−s)−1, (Re s > 1)

where F � is the set of positive integers whose factorization does not contain primes belonging to F . We
prove the formula by induction over the cardinality of F ; it is trivially true by definition of ζ(s) when
F = ∅. Assuming it true for a finite set F of primes, we consider G = F ∪ {q} where q is a prime not in
F ; we notice that any number in F � has a unique representation as a product mqk, where m ∈ G� and
k ≥ 0 is an integer: this is a consequence of the existence of a unique factorization of a positive integer
into (positive) primes. Thus we have

�

n∈F �

1

ns
=

�

m∈G�




�

k≥0

1

(mqk)s



 =
�

m∈G�

1

ms




�

k≥0

1

(qs)k



 =
1

1− q−s

�

m∈G�

1

ms
,

which immediately yields the above formula for G. It is clear that as the set F gets larger, e.g. by taking
an increasing sequence Fm of finite sets of primes whose union is the set of all primes, then the right
hand side of the above formula tends to the infinite product

�
p∈primes(1− p−s)−1; in fact

�
n∈F �

m
1/ns

tends to 1, because F �
m

is a decreasing sequence and
�

m
F �
m

= {1} (this last because every integer has a
finite factorization into primes). Thus we get

Euler’s product formula ζ(s) =
�

p∈primes

(1− p−s)−1 with normal convergence in {Re s > 1}.

This formula prompted Euler to give another proof of Euclid’s theorem about the existence of infinitely
many primes: if the set of primes were finite then the right–hand side would have a finite limit for s → 1,
but the representation of ζ as a series easily implies that limσ→1+,σ∈R ζ(σ) = +∞. As a consequence the
infinite product

�
p∈primes(1− p−1)−1 is divergent, and hence the series

�
p∈primes 1/p diverges to +∞.
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3.2.4. Logarithms of an infinite product. If we have on a region a finite product of zero–free functions,
and each function has a logarithm, then the product also has a logarithm, namely the sum of the
logarithms of the factors. Some caution must be used for an infinite product, even normally convergent:
not necessarily a sum of arbitrary logarithms of the factors will converge. However, it is always possible
to choose the arbitrary additive constants in 2πiZ to make the series of the logarithms converge normally
to a given logarithm of the product: simply fix a point c ∈ D; the series

�
n≥ν

log fn(c), where log is the
principal logarithm, is convergent, hence the series of the primitives of f �

n
/fn with value log fn(c) at c is

normally convergent in D (see exercise 2.7.7.1); it clearly converges to a primitive of f �/f , by the above
theorem on logarithmic differentiation and its value at c is

�
n≥ν

log fn(c), which clearly is a logarithm
of f(c); by adding to the logarithm of the first function a suitable multiple of 2πi by an integer we can
of course make the sum of this series equal to any prescribed logarithm of f(c). Summing up:

Proposition. Let D be a region of C, and let f =
�

n≥ν
fn be a normally convergent product of

zero–free functions, each admitting a logarithm on D. Then f has a logarithm on D, and for any fixed
logarithm Log f of f we can choose logarithms Log fn of the factors such that

Log f =
�

n≥ν

Log fn with normal convergence on D.

3.2.5. Compactly convergent infinite products. As stated in 3.2, the notion of normally convergent
product is the most important one. For completeness we say that one can prove the following:

Proposition. Let D be a region of C, and let (fn)n≥ν be a sequence of functions holomorphic on
D. Assume that the sequence pm =

�
m

n=ν
fn converges compactly on D to a function f not identically

zero. Then:

(i) c ∈ D is a zero of f if and only if c is a zero of some function fn, and we have ord(f, c) =�
n≥ν

ord(fn, c);
(ii) For every compact subset K of D there exists mK such that if n ≥ mK then fn has no zero on

K, and the sequence pmK ,m =
�

m

n=mK
fn converges uniformly on K to a function nowhere zero

on K.

(iii) Logarithmic differentiation The series
�

n≥ν

f �
n

fn
of the logarithmic derivatives of the func-

tions fn converges compactly on D � ZD(f) to the logarithmic derivative f �/f of the infinite
product:

f �

f
=

�

n≥ν

f �
n

fn
with compact convergence in D � ZD(f).

Proof. It is a (quite strenuous, if not overly difficult) exercise.

�

3.2.6. Zeroes of ζ on Re s = 1. To complete our collection of results on the zeta function we prove
that it has no zero of real part 1. We use Euler’s product, which has been proved to be normally
convergent to ζ(s) for σ = Re s > 1 (see 3.2.3). We can take a logarithm of this product (see 3.2.4),
where we assume the logarithms in the series to be real for s = σ > 1 real:

log ζ(s) =
�

p∈primes

log(1− p−s)−1 =
�

p∈primes

∞�

m=1

1

mpms
;

We get

3 log ζ(s) =
�

p,m

3

mpms
; 4 log ζ(s) =

�

p,m

4

mpms
Re s > 1;

we recall that, whatever the determination of the logarithm logw, we have Re logw = log |w|, so that,
given s = σ + i t with σ > 1:

log |ζ3(σ) ζ4(σ + i t) ζ(σ + 2i t)| =
�

p,m

1

mpmσ
Re(3 + 4p−imt + p−2imt);

now we have

Re(3 + 4p−imt + p−2imt) = 3 + 4 cos(mt log p) + cos(2mt log p) = 3 + 4 cosϑ+ cos(2ϑ) =

3 + 4 cosϑ+ 2 cos2 ϑ− 1 = 2(cosϑ+ 1)2 ≥ 0, for every ϑ ∈ R.
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Exponentiating we have

|ζ3(σ) ζ4(σ + i t) ζ(σ + 2i t)| ≥ 1; σ > 1, t ∈ R

from this we get

|(σ − 1)ζ(σ)|3
����
ζ(σ + i t)

σ − 1

����
4

|ζ(σ + 2i t)| ≥
1

σ − 1
σ > 1;

this gives the required contradiction: if ζ(1 + i t) = 0 for some t (necessarily nonzero) then the left hand
side has a finite limit for σ → 1+, namely |ζ �(1 + it)|4 |ζ(1 + 2i t)|, whereas the right hand side tends to
+∞. If we recall that

ζ(1− s) = γ(s) ζ(s), where γ(s) = π1/2−s
Γ(s/2)

Γ((1− s)/2)
;

and that γ only zeros are at the positive odd integers, we obtain that ζ has no purely imaginary zero:
the non trivial zeros of ζ are in the interior of the critical strip.

3.3. The Weierstrass product theorem. The identity theorem makes holomorphic functions
extremely rigid: in general we cannot manufacture holomorphic functions to specification. Quite sur-
prisingly we can however construct holomorphic functions with prescribed set of zeros, with prescribed
multiplicities, if that set is of course locally finite in the region D.

3.3.1. Factorization in the ring of holomorphic functions. The ring of complex polynomials C[z] is
a factorial domain (even a principal ideal domain), and every nonzero polynomial can be written as
p(z) = a (z− d1) · · · (z− dm), where d1, . . . , dm are the (not necessarily distinct) zeros of the polynomial,
and a is a unit of C[z], i.e., a nonzero constant. The elements z − d are exactly the irreducible elements
of the ring C[z]. If we consider the integral domain O(D) of holomorphic functions over a region D, if
a function f ∈ O(D) has a finite set of zeros d1, . . . , dm, each repeated according to multiplicity, we can
easily prove that we have

f(z) = u(z)
m�

n=1

(z − dk) where u is a unit of O(D), i.e. u ∈ O(D) has no zeros in D.

(notice that in every region D functions like eh, with h ∈ O(D), are units of O(D); and when D is
simply connected, then every unit in O(D) is of this form). A function with infinitely many zeros will
have infinitely many irreducible factors, e.g. sin(πz) has all z − n, n ∈ Z as factors. Can we hope for a
factorization in infinitely many factors? In general, of course, a product such as z

�∞
n=1(z

2 − n2) will
not converge; however in this case we can write it as k z

�∞
n=1(1 − z2/n2), with k a suitable constant,

and the product will converge to sin(πz), as we have seen. For other functions with infinitely many zeros
the situation is not so simple. But: assume that the function f ∈ O(D) has infinitely many zeros, and
arrange them in a sequence d1, . . . , dm, . . . , where each zero is repeated according to multiplicity. We
shall prove that there exists a sequence u, uj of units of O(D) such that

f(z) = u(z)
∞�

n=1

(z − dn)un(z),

where the convergence of the infinite product is normal in D. And even more, given a sequence
d1, . . . , dn, . . . in D, which has no cluster point in D, we can find a sequence un of units of O(D)
such that the product

∞�

n=1

(z − dn)un(z)

converges normally on D, necessarily to a function f ∈ O(D) with zero–set Z(f) = {d1, d2, . . . }, and each
d ∈ Z(f) has multiplicity equal to the number of times it appear in the sequence, ord(f, d) = Card({n ∈

N : dn = d}). We first have to observe the following elementary fact: divisibility in the ring O(D) is
completely determined by the order function, in this sense:

Proposition. Let D be a region, and let f, g be holomorphic on D and not identically zero. Then
f divides g in the ring O(D) if and only if ord(f, z) ≤ ord(g, z) for every z ∈ D; and f, g are associate
in O(D) if and only if ord(f, z) = ord(g, z), for every z ∈ D.
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Proof. If g = f h with h ∈ O(D) then ord(g, z) = ord(f, z) + ord(h, z) so that ord(g, z) ≥ ord(f, z).
Conversely, consider h = g/f ; it is a function holomorphic on D � ZD(f); every point of ZD(f) is
an isolated singularity for h, and if c ∈ ZD(f) then ord(g, c) ≥ ord(f, c) shows that the singularity is
removable. Then h ∈ O(D). The remaining part of the proof is left to the reader: we simply recall that
f and g are said to be associate in the ring O(D) if there exists a unit u ∈ O(D) such that g = f u. �

3.3.2. Weierstrass factors. For n = 1, 2, 3, . . . define En(z) = (1−z) exp(z+z2/2+z3/3+· · ·+zn/n),
while E0(z) = 1− z. These factors are interpolated in infinite products to ensure convergence.

Lemma. For |z| ≤ 1 and every n ∈ N we have |En(z)− 1| ≤ |z|n+1.

Proof. Differentiating we get

E�
n
(z) =(−1 + (1− z)(1 + z + · · ·+ zn)) exp(z + z2/2 + z3/3 + · · ·+ zn/n) =

− zn exp(z + z2/2 + z3/3 + · · ·+ zn/n).

Thus

|E�
n
(z)| = |z|n | exp(z + z2/2 + z3/3 + · · ·+ zn/n)| ≤ |z|n exp(|z|+ |z|2/2 + · · ·+ |z|n/n).

Since En(0) = 1 we have

En(z)− 1 = En(z)− En(0) =

�

[0,z]
E�

n
(ζ) dζ =

� 1

0
z E�

n
(tz) dt,

so that

|En(z)− 1| ≤ |z|

� 1

0
|E�

n
(tz)| dt;

now, the above estimate for E�
n
(z) implies:

|E�
n
(tz)| ≤ tn|z|n exp(t|z|+ t2|z|2/2 + · · ·+ tn|z|n/n);

if |z| ≤ 1 then we have

exp(t|z|+ t2|z|2/2 + · · ·+ tn|z|n/n) ≤ exp(t+ t2/2 + · · ·+ tn/n),

so that

|E�
n
(tz)| ≤ |z|n(tn exp(t+ t2/2 + · · ·+ tn/n)) = |z|n(−E�

n
(t)).

Thus, if |z| ≤ 1

|En(z)− 1| = |En(z)− En(0)| ≤ |z|

� 1

0
|z|n(−E�

n
(t)) dt = |z|n+1(En(0)− En(1)) = |z|n+1.

�

3.3.3. The construction for a diverging sequence.

Lemma. Let d1, d2, . . . be a sequence of non zero complex numbers, such that limn→∞ dn = ∞. Let
(kn)n≥1 be a sequence of natural numbers such that

�∞
n=1(r/|dn|)

kn+1 < ∞, for every r > 0. Then the
infinite product

f(z) =
∞�

n=1

Ekn(z/dn)

is normally convergent in C, and defines an entire function whose zero set is exactly {dn : n ≥ 1}, each
zero with a multiplicity equal to the number of repetitions in the sequence, ord(f, d) = Card({n ≥ 1 :
dn = d}).

Proof. By the lemma, the infinite product is normally convergent: since dn diverges, given r > 0
there exists nr ∈ N such that r/|dn| ≤ 1 for n ≥ nr, hence |z/dn| ≤ 1 for n ≥ nr and |z| ≤ r, and the
lemma implies

|Ekn(z/dn)− 1| ≤ (|z|/|dn|)
kn+1

≤ (r/|dn|)
kn+1 n ≥ nr, |z| ≤ r.

Notice also that the factor Ekn(z/dn) has a first order zero at dn, and no zeros in C� {dn}, so the zeros
of the product are the dn, counted as many times as they appear in the sequence. �
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Remark. Notice that since the sequence diverges no term can be repeated infinitely many times.
Observe also that given an arbitrary divergent sequence we can find a sequence kn of non negative integers
such that

�∞
n=1(r/|dn|)

kn+1 < ∞, for every r > 0: it suffices to take kn = n−1: if |dn| ≥ 2r for n ≥ n̄ we
have (r/|dn|)kn+1 ≤ (1/2)n for n ≥ n̄. In general of course it is better to choose kn as small as possible,
to make the Weierstrass factors as simple as possible.

. Weierstrass product theorem for C. For every entire function f there exists a sequence of
entire functions v, v1, v2, . . . such that

f(z) = ev(z) zm
∞�

n=1

(z − dn) e
vn(z) m = ord(f, 0),

where dn is the sequence of all non zero–zeros of f , each repeated according to multiplicity, and the product
is normally convergent in C.

Proof. We may take, for instance, vn in such a way that Ekn(z/dn) = (z − dn) evn(z). �
3.3.4. Orders. Given an open region D of C an order on D is a function d : D → Z whose support

S = {z ∈ D : d(z) �= 0} is a locally finite subset of D. Every non identically zero meromorphic function
f ∈ M(D) gives an order, its order function, z �→ ord(f, z). Such orders are called principal orders. The
Weierstrass product theorem will imply that on C every order is a principal order; and we shall prove
that this is true for every region in 3.3.5. Positive principal orders on D correspond then to functions
holomorphic on D, without poles. We have that ord(f, z) = 0 identically if and only if f is a unit in
O(D); on simply connected regions we know that this is equivalent to the existence of a logarithm, i.e.
units are exactly elements of the form exp g(z), for some g ∈ O(D). Every order d may be written as the
difference of two positive orders, d = d+ − d−, in the usual way. Given a positive order d : D → Z, let
d1, d2, . . . , be a sequence (which terminates if the support of d is finite) in which all nonzero elements d
in the support of d appear exactly d(d) times. A Weierstrass product for the order d is a product (finite
or infinite)

f(z) = zd(0)
�

n≥1

(z − dn)un(z),

which is normally convergent on D, and where each un is a unit of O(D). It is immediate to check that
if f is a Weierstrass product for d, then ord(f, ·) = d.

. Factorization theorem for a region For every positive order on a region D there exists a
Weierstrass product. For every order d on D there exist functions f, g ∈ O(D) such that ord(f/g, z) =
d(z), for every z ∈ D. In particular, for every f ∈ O(D) there exists a sequence u, un of units of O(D)
such that

f(z) = u(z) zm
∞�

n=1

(z − dn)un(z) m = ord(f, 0),

where dn is the sequence of all non–zero zeros of f , each repeated according to multiplicity, and the product
is normally convergent in D.

Proof. In 3.3.6. �
Here is a reap of corollaries, whose proofs are left as exercises; D is a region:

• Every meromorphic function on D is the quotient of two functions holomorphic on D, hence
M(D) is the field of fractions of the integral domain O(D).

• If D is simply connected, then a function f has an m-th root in O(D) if and only if ord(f, z) is
divisible by m, for every z ∈ D (here m ≥ 2 is an integer).

• As in every integral domain we can speak of divisibility in O(D): f divides g means that
there exists h ∈ O(D) such that g = h f . We have observed that f divides g if and only if
ord(f, z) ≤ ord(g, z) for all z ∈ D, and that two nonzero elements are associate if and only if
they have the same order function. Recalling that a greatest common divisor (gcd) for a subset
S ⊆ O(D) is a divisor of every element of S, which is divided by every other common divisor of
the elements of S, it is immediate to see that any function f such that

ord(f, z) = min{ord(g, z) : g ∈ S},

is a gcd for S: notice that to prove existence of f we need the product theorem, even if S has
only two elements!
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3.3.5. Product theorem in bounded regions. Observe that if d, c ∈ C , c �= d, and m ≥ 1 then the
function

Em

�
d− c

z − c

�
where Em(s) = (1− s) exp(s/1 + s2/2 + · · ·+ sm/m),

has a simple zero for z = d, and is holomorphic in C � {c}. These functions will serve as Weierstrass
factors for the product theorem in arbitrary regions. Suppose that we have an infinite discrete subset
S of C (discrete means discrete in the induced topology, i.e., no point of S is an accumulation point of
S). If S�, set of accumulation point of S, is empty, then every surjective sequence n �→ dn on N onto
S, in which no value is assumed infinitely many times (i.e., for no d ∈ S the set {n ∈ N : dn = d} is
infinite) will have ∞ as limit. Assume on the contrary that S� is non empty, and moreover that we can
arrange the elements of S in a sequence dn such that limn→∞ dist(dn, S�) = 0. For every n ∈ N pick a
point cn ∈ S� such that |dn − cn| = dist(dn, S�) (this is possible because S� is closed in C). Let kn be
a sequence of natural numbers such that the series

�∞
n=1(r|dn − cn|)kn+1 converges for every r > 0. In

these hypotheses

. The infinite product
∞�

n=1

Ekn

�
dn − cn
z − cn

�
,

converges normally on C�S� to a holomorphic function, which has zeros exactly at the points of S, with
a multiplicity equal to the number of times they appear in the sequence dn.

Proof. Given a compact subset K of C � S� we have min{dist(z, S�) : z ∈ K} = ρ > 0, so that, if
z ∈ K we have |z − cn| ≥ ρ for every n, hence

����
dn − cn
z − cn

���� ≤
|dn − cn|

ρ
;

since |dn − cn| = dist(dn, S�) tends to 0 as n → ∞, there is n̄ ∈ N such that ρ−1|dn − cn| < 1 for n ≥ n̄;
thus we get ����Ekn

�
dn − cn
z − cn

�
− 1

���� ≤ (ρ−1
|dn − cn|)

kn+1 for n ≥ n̄,

and since the series
�

n≥n̄
(ρ−1|dn − cn|)kn+1 is convergent, we conclude. �

Exercise 3.3.5.1. Let S be discrete in C, and let S� be the set of accumulation points of S in C;
assume that S� is non empty. Call proper enumeration of S a map n �→ zn of N onto S, such that no
element of S is repeated an infinite number of times. Prove that the following are equivalent:

(i) There is a proper enumeration n �→ zn of S such that limn→∞ dist(zn, S�) = 0.
(ii) For every ε > 0 the set {z ∈ S : dist(z, S�) ≥ ε} is finite.
(iii) For every proper enumeration n �→ zn of S we have limn→∞ dist(zn, S�) = 0.

3.3.6. Product theorem in arbitrary regions. We prove here the factorization theorem for a region,
stated in 3.3.4. Given a region D of C, and an infinite subset S of D discrete in D, its derived set
S�(=set of accumulation points of S), if non empty, is contained in the boundary ∂D of D. We want to
be able to apply the preceding arguments for C and for bounded domains (Weierstrass product theorem
and 3.3.5). To do this we split S into two disjoint subsets A and B, where A has no accumulation
point in C, and B is such that B� = S�, and if B� is non empty, then we can arrange B in a sequence
dn such that limn→∞ dist(dn, B�) = 0; either one of these sets may be empty, in which case we could
apply directly one of the preceding theorems. Simply take A = {z ∈ S : |z| dist(z, S�) ≥ 1} and
B = {z ∈ S : |z| dist(z, S�) < 1}. Then A has no accumulation point in C; in fact, if c is such a point,
and zj a sequence in A converging to c, then |zj | dist(zj , S�) tends to |c| dist(c, S�) = |c|0 = 0, and cannot
be larger than 1. Next, for every ε with 0 < ε < 1 the set Bε = {z ∈ B : dist(z, S�) ≥ ε} is finite: in fact
it is bounded, since if z ∈ Bε we have |z| ≤ 1/ε, and if it were infinite it would have an accumulation
point c, for which we have dist(c, S�) = 0. It is now clear, given an order function d : D → Z, how to
construct a meromorphic function with that order; we can of course assume that the order is positive and
split the support S of the order into two disjoint subsets A and B as above; arrange the terms of A, if A is
infinite, in a sequence repeated according to multiplicity, and use 3.3.3 to get an entire function fA with
A as a zero set, with the prescribed multiplicities. For B do the same, but use 3.3.5, to get a function
fB holomorphic on C�B� ⊇ D with zero–set B, with the right multiplicities; finally take f = fA fB .
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3.4. The Γ function.

3.4.1. Weierstrass ∆ function. We consider again the infinite product:

∆(z) = eγz z
∞�

n=1

�
1 +

z

n

�
e−z/n, γ := lim

m→∞

�
m�

n=1

1

n
− logm

�
;

which in 3.2.1.2 has been shown to be normally convergent in C; we can confirm it by observing that
∆(z) = zeγz

�∞
n=1 E1(−z/n), and that the series

�∞
n=1(r/n)

2 is convergent for every r > 0. We note
Gauss limit formula:

∆(z) = lim
m→∞

z(z + 1) · · · (z +m)

m!mz
z ∈ C;

In fact we can write

eγz z
m�

n=1

n+ z

n
exp

�
−z

m�

n=1

1

n

�
=

z(z + 1) · · · (z +m)

m!
exp

�
−z

�
m�

n=1

1

n
− γ

��
;

we multiply and divide by mz = exp(z logm) and we obtain for the m−th partial product:

z(z + 1) · · · (z +m)

m!mz
exp

�
−z

�
m�

n=1

1

n
− logm− γ

��
;

for any given z the last term tends to 1, so the limit formula is proved. Notice that ∆(1) = 1. This
immediately implies the functional equation

z∆(z + 1) = ∆(z) for every z ∈ C.

in fact, assuming z �= 0:

∆(z + 1) = lim
m→∞

(z + 1)((z + 1) + 1) · · · ((z + 1) +m)

m!mz+1
=

1

z
lim

m→∞

z (z + 1)(z + 2) · · · (z + (m+ 1))

(m+ 1)! (m+ 1)z
(m+ 1)z+1

mz+1
=

∆(z)

z
.

We can also observe that the factors of ∆ are roughly half the sine factors; considering the product
∆(z)∆(−z) we get

∆(z)∆(−z) =eγzz
∞�

n=1

�
1 +

z

n

�
e−z/n e−γz(−z)

∞�

n=1

�
1−

z

n

�
ez/n = −z2

∞�

n=1

�
1−

z2

n2

�
=

−
z

π

�
πz

∞�

n=1

�
1−

z2

n2

��
= −

z

π
sin(πz).

Since ∆(−z)/(−z) = ∆(1− z) we get

∆(z)∆(1− z) =
sin(πz)

π
.

3.4.2. The multiplication formula. For future use we prove that:

. If m ≥ 2 is an integer then:
m−1�

k=1

∆(k/m) =

√
m

(
√
2π)m−1

.

Proof. Observe that
m−1�

k=1

∆(k/m) =
m−1�

k=1

∆(1− k/m),

so that
�

m−1�

k=1

∆(k/m)

�2

=
m−1�

k=1

∆(k/m)∆(1− k/m) =
m−1�

k=1

sin(πk/m)

π
=

1

πm−1

m−1�

k=1

sin(πk/m);
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now we have

m−1�

k=1

sin(πk/m) =
m−1�

k=1

eiπk/m − e−iπk/m

2i
=

1

(2i)m−1

m−1�

k=1

eiπk/m(1− e−2iπk/m) =

1

(2i)m−1

m−1�

k=1

eiπk/m
m−1�

k=1

(1− e−2iπk/m) =
eiπ(m−1)/2

(2i)m−1

m−1�

k=1

(1− e−2iπk/m) =

1

2m−1

m−1�

k=1

(1− e−2iπk/m).

Since e−2πik/m, for k = 1, . . . ,m − 1 are exactly the non trivial m−th roots of 1, we have, for every
indeterminate X,

�
m−1
k=1 (X − e−2iπk/m) =

�
m−1
j=0 Xj ; thus the last product has value m. We have

obtained
m−1�

k=1

sin(πk/m) =
m

2m−1
,

hence
�

m−1�

k=1

∆(k/m)

�2

=
m

(2π)m−1
,

and observing that ∆(x) > 0 for x > 0 we conclude. �

3.4.3. Euler’s gamma function. For s ∈ C� (−N) we define:

Γ(s) :=
1

∆(s)
=

e−γs

s

∞�

n=1

es/n

1 + s/n
.

The infinite product on the right is normally convergent in C� (−N) (see 3.2.2).
The functional equation z∆(z + 1) = ∆(z) becomes

Functional equation for Γ Γ(s+ 1) = sΓ(s).

which by induction gives

Γ(s+m+ 1) = s(s+ 1) · · · (s+m)Γ(s),

and immediately implies

Res(Γ,−m) =
(−1)m

m!
m ∈ N.

Next we have:

Euler’s Supplement Γ(s)Γ(1− s) =
π

sin(πs)
s ∈ C� Z.

Moreover we have

Gauss product Γ(s) = lim
m→∞

m!ms

s(s+ 1) · · · (s+m)
.

Notice, from the very definition as a product, that Γ(s̄) = Γ(s), hence Γ(σ) is real if σ is real, and from
Gauss product representation we get, observing that |ns| = nRe s and that |n+s| ≥ n+Re s for Re s > 0:

|Γ(s)| ≤ Γ(σ) ifσ = Re s > 0;

so that Γ is bounded on every vertical strip a ≤ Re s ≤ b, if 0 < a < b < ∞; this is important in the
characterization of Γ (Wielandt’s uniqueness theorem).
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3.4.4. Integral representation. The Gauss product representation yields easily (if a little misteriously)
the integral representation. Consider in fact the sequence of functions

um(ξ) = ξs−1

�
1−

ξ

m

�m

χm(ξ), where χm is the characteristic function of the interval [0,m].

A classical result of analysis says that

�
1−

ξ

m

�m

χm(ξ) is increasing and converges on [0,∞[ to e−ξ, so

that if σ = Re s > 0 we can apply the dominated convergence theorem and deduce that

lim
m→∞

�

[0,∞[
ξs−1

�
1−

ξ

m

�m

χm(ξ) dξ =

� ∞

0
ξs−1 e−ξ dξ.

First substitute ξ = mt to get
�

m

0
ξs−1

�
1−

ξ

m

�m

dξ = ms

� 1

0
ts−1(1− t)m dt,

and then integrate by parts m times:
� 1

0
ts−1(1− t)m dt =

1

s
[ts(1− t)m]10 +

m

s

� 1

0
ts(1− t)m−1 dt =

m

s(s+ 1)
[ts+1(1− t)m−1]10 +

m(m− 1)

s(s+ 1)

� 1

0
ts+1(1− t)m−2 dt.

This is the second iteration; after m iterations we then get
� 1

0
ts−1(1− t)m dt =

m!

s(s+ 1) · · · (s+m− 1)

� 1

0
ts+m−1 dt =

m!

s(s+ 1) · · · (s+m− 1)(s+m)
;

we have obtained �
m

0
ξs−1

�
1−

ξ

m

�m

dξ =
m!ms

s(s+ 1) · · · (s+m)
,

exactly Gauss representation. Passing to the limit we obtain:

Γ(s) =

� ∞

0
ξs−1 e−ξ dξ Re s > 0.

3.4.5. Wielandt’s uniqueness theorem. To what extent does the functional equation determine the
Γ function? clearly any constant multiple of Γ verifies the same functional equation, so we have to
fix a value at some point, let us say at 1. Still this does not determine the function; it is easy to see
that multiplying by any function ϕ periodic of period 1 the functional equation is still verified, e.g. Γ
and cos(2πs)Γ(s) both verify the functional equation, and have value 1 at 1. Assuming that we have a
function f holomorphic in the right half plane T = {Re s > 0}, which satisfies the functional equation
f(s+ 1) = s f(s) for s ∈ T , it is easy to see that it can be uniquely extended to a function holomorphic
in C� (−N), using the functional equation, by the formula

f(s) =
f(s+m)

s(s+ 1) · · · (s+m− 1)
m ≥ 1, Re s > −m, s /∈ −N,

and that if f(1) = 0 then the formula actually defines f as an entire function (if Re s > −1, then we define
f(s) = f(s + 1)/s, and if f(1) = 0 we have that 0 is a removable singularity for f , with f(0) = f �(1);
by induction we get a similar extension to every negative integer). Having extended f to C � (−N) we
can consider g : C � Z → C defined by g(s) = f(s) f(1 − s). We prove that g(s + 1) = −g(s); hence
g(s + 2) = −g(s + 1) = g(s), so that g is periodic of period 2, and in general g(s +m) = (−1)mg(s) for
every integer m. In fact we have

g(s+ 1) = f(s+ 1)f(1− (1 + s)) = s f(s)f(−s) = −f(s)(−s f(−s)) = −f(s)f(1− s) = −g(s).

Notice also that, by linearity of the functional equation with respect to the unknown function, every
linear combination of solutions of the functional equation is still a solution. Now we can prove:

. Wielandt’s uniqueness theorem The Γ function is the unique solution of the functional equa-
tion Γ(s+ 1) = sΓ(s) which is bounded on the strip S = {1 ≤ Re s ≤ 2}, and is such that Γ(1) = 1.
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Proof. If Φ is another solution bounded in the same strip, with Φ(1) = 1, the difference u is a solution
of the functional equation with u(1) = 0, bounded in S, say |u(s)| ≤ L for s ∈ S; by the observation above,
u extends to an entire function. Now we have that u is also bounded in the strip S0 = {0 ≤ Re s ≤ 1}: it
is clearly bounded on the compact intersection of this strip with {−1 ≤ Im s ≤ 1}, and if 0 ≤ Re s ≤ 1,
and | Im s| > 1 we have

|u(s)| =
|u(s+ 1)|

|s|
≤

L

| Im s|
< L.

Consider now the function v(s) = u(s)u(1 − s); this entire function is symmetrical with respect to the
point s = 1/2, and is then also bounded in S0. But then v is bounded by the same constant on every
strip {m ≤ Re s ≤ m+1}, since v(s+m) = (−1)m v(s), hence v is bounded in C. By Liouville’s theorem
v is constant; since v(1) = u(1)u(0) = 0, v is identically zero, and hence u is identically zero. �

Exercise 3.4.5.1. Given a ∈ C, with a �= 0, 1, consider the functional equation

f(s+ 1) = a f(s);

it has an obvious solution: the entire function s �→ as; by definition, as := exp(s log a), with log a =
log |a| + i arg a the principal logarithm. Prove that all holomorphic solutions of the functional equation
are of the form as ϕ(s), where ϕ is a holomorphic function periodic with period 1. Assuming a > 0 (hence
a ∈ R), prove that k asare the only solutions bounded on vertical strips with compact base; k ∈ C is a
constant.

3.4.6. Multiplication formula. Taking reciprocals in the multiplication formula for ∆ we get

m−1�

k=1

Γ(k/m) =
(
√
2π)m−1

√
m

,

but, as was first proved by Gauss, more is true.
We seek a function ϕm such that:

Γ(z) = F (z) :=
m−1�

k=0

Γ((z + k)/m)ϕm(z).

Imposing the functional equation:

F (z + 1) =
m−1�

k=0

Γ((z + 1 + k)/m)ϕm(z + 1) = ϕm(z + 1)
m�

j=1

Γ((z + j)/m) =

ϕm(z + 1)
m−1�

j=1

Γ((z + j)/m)Γ(z/m+ 1) = ϕm(z + 1)
z

m

m−1�

j=0

Γ((z + j)/m) =

z
ϕm(z + 1)

mϕm(z)
F (z),

so that the functional equation is verified by F if ϕm(z) = cmz, with c a suitable constant. The function

F (z) = cmz

m−1�

k=0

Γ((z + k)/m)

is clearly bounded in the strip {1 ≤ Re z ≤ 2} (observe that |mz| = mRe z, and that Γ is bounded in
strips like {1/m ≤ Re z ≤ 2}. Next we have

F (1) = cm
m−1�

k=0

Γ((1 + k)/m) =
cm

�
m−1
j=1 ∆(j/m)

=
cm

√
m/(

√
2π)m−1

;

so that to have F (1) = 1 we need c = 1/(
√
m (

√
2π)m−1). Setting z = ms we conclude with:

Multiplication Formula Γ(ms) =
mms

(
√
2π)m−1

√
m

m−1�

k=0

Γ(s+ k/m) m ≥ 2,
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Remark. For m = 2 we get

Legendre’s duplication formula Γ(2s) =
22s−1

√
π

Γ(s+ 1/2)Γ(s).

discovered by Legendre in 1811, a year before Gauss gave the more general multiplication formula.

3.4.7. Logarithmic derivative of Γ. As recalled in 3.4.3, we have Γ(s) = (e−γs/s)
�∞

n=1 e
s/n/(1+s/n)

with normal convergence in C� (−N). Hence, with normal convergence in the same region:

ψ(s) :=
Γ�(s)

Γ(s)
= −γ −

1

s
+

∞�

n=1

�
1

n
−

1

s+ n

�
.

Substituting s = 1 in this formula we get Γ�(1) = −γ. Differentiating we get

ψ�(s) =
Γ��(s)Γ(s)− (Γ�(s))2

(Γ(s))2
=

1

s2
+

∞�

n=1

1

(s+ n)2
,

which is strictly positive for s = σ > 0, thus showing that Γ is logarithmically convex in ]0,+∞[, i.e., the
function logΓ is a (strictly) convex function on ]0,+∞[. There is the following characterization of the
real gamma function, due to the danish mathematicians Bohr and Möllerup:

. If f : ]0,+∞[→]0,+∞[ is logarithmically convex (that is, log f is a convex function), f(x + 1) =
x f(x) for every x > 0, and f(1) = 1, then f(x) = Γ(x) for every x > 0.

For a proof see [Conway], 7.13.
3.4.8. de Moivre–Stirling formula. We want an asymptotic estimate of Γ for values of the variable

with large absolute value. The character of the function, which has poles on the negative integers,
makes the estimate good only far from the negative real axis. Heuristically, we start with the integral
representation and real positive values s = σ of the variable:

Γ(σ + 1) =

� ∞

0
ξσ e−ξ dξ,

and we presume that for large values of σ the integral concentrates around the maximum of the integrand,
which occurs for ξ = σ; to better study this guess, we set this maximum at 1 by means of ξ = σx, obtaining

Γ(σ + 1) =σσ+1

� ∞

0
xσe−σx dx = (x = 1 + u) = σσ+1e−σ

� ∞

−1
(1 + u)σ e−σu du ≈

σσ+1e−σ

� 1

−1
(1 + u)σ e−σu du =

σσ+1e−σ

� 1

−1
exp(−σ(u− log(1 + u))) du;

using Taylor approximation of u− log(1 + u) near 0 we write u2/2 in place of u− log(1 + u):

σσ+1e−σ

� 1

−1
e−σu

2
/2 du ≈ σσ+1e−σ

� ∞

−∞
e−σu

2
/2 du = σσ+1e−σ

�
2π/σ.

We thus guess that the asymptotic formula

Γ(σ + 1) ∼
√
2π σσ+1/2e−σ equivalently Γ(σ) ∼

√
2π σσ−1/2e−σ (σ → +∞)

holds. Therefore we try to write
Γ(s) =

√
2π ss−1/2e−s eµ(s),

where µ is holomorphic in the slit plane C−, and µ(s) tends to 0 as s tends to infinity (in a sense to
be made precise, remaining far from the negative real axis). We put F (s) =

√
2π ss−1/2e−s eµ(s) and we

impose to it the functional equation. To determine µ, we observe that we must have, by the functional
equation:

s =
(s+ 1)s+1−1/2 e−(s+1) eµ(s+1)

ss−1/2 e−s eµ(s)
=

exp ((s+ 1/2) log(s+ 1)− (s− 1/2) log s− 1 + µ(s+ 1)− µ(s)) ,

which, writing s as elog s certainly holds if

µ(s+ 1)− µ(s) = 1− (s+ 1/2)(log(s+ 1)− log s).
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To solve this difference equation we use the following representation of the principal logarithm:

log s =

� ∞

0

�
1

ξ + 1
−

1

ξ + s

�
dξ, s ∈ C−,

easily obtained from log s =
�
[1,s] dζ/ζ = (s−1)

� 1
0 dt/(1+t(s−1)) by the change of variable t = 1/(1+ξ).

We have from this formula:

log(s+ 1)− log s =

� ∞

0

�
1

ξ + s
−

1

ξ + (s+ 1)

�
dξ = lim

r→+∞

�
r

0

�
1

ξ + s
−

1

ξ + (s+ 1)

�
dξ;

but �
r

0

dξ

ξ + (s+ 1)
=

�
r+1

1

dη

η + s
,

so that �
r

0

�
1

ξ + s
−

1

ξ + (s+ 1)

�
dξ =

� 1

0

dξ

ξ + s
−

�
r+1

r

dξ

ξ − s
,

and we finally obtain

log(s+ 1)− log s =

� 1

0

dξ

ξ + s
.

Substitution into the above formula for the increment of µ gives

µ(s+ 1)− µ(s) = 1− (s+ 1/2)

� 1

0

dξ

ξ + s
=

� 1

0

�
1−

s+ 1/2

ξ + s

�
dξ =

� 1

0

ξ − 1/2

ξ + s
dξ,

so that

µ(s+ 1)− µ(s) =

� 1

0

ξ − 1/2

ξ + s
dξ

inspired by the above formula for the increment of the logarithm we observe that the right hand side is
exactly the increment of the function defined by

µ(s) =

� ∞

0

p(x)

x+ s
dx,

where p : R → R is the sawtooth function defined as p(x) = 1/2 − x for x ∈]0, 1[, p(0) = 0, and
then extended by 1−periodicity. It is easy to see that the preceding formula actually defines a function
holomorphic in the slit plane; observe in fact that p has a bounded primitive on R, the function q(x) =
x(x− 1)/2 for x ∈ [0, 1], and then extended by periodicity; then an integration by parts gives

µ(s) =

�
q(x)

x+ s

�∞

0

+

� ∞

0

q(x)

(x+ s)2
dx =

� ∞

0

q(x)

(x+ s)2
dx,

and it is now easy to see that µ is holomorphic in the slit plane. If s = σ + it, we have, assuming first
t > 0:

|µ(s)| ≤
1

8

� ∞

0

dx

|x+ s|2
=

1

8

� ∞

0

dx

(x+ σ)2 + t2
=

1

8t
[arctan((x+ σ)/t]∞0 =

1

8t

�π
2
− arctan(σ/t)

�
=

1

8t
arccot(σ/t).

If s = |s|eiϕ, with −π < ϕ < π we get σ = |s| cosϕ and t = |s| sinϕ so that arccot(σ/t) = ϕ if 0 < ϕ < π;
hence

|µ(s)| ≤
1

8|s|

arg s

sin arg s
s /∈ R−

(since µ(s̄) = µ(s) we get the formula also for arg s < 0; and if arg s = 0 it is understood that
arg s/ sin arg s = 1). Since θ �→ θ/ sin θ is increasing in [0,π[, in the angular sector Wδ = {s ∈ C :
−π + δ ≤ arg s ≤ π − δ}, for 0 < δ < π, we get the estimate

|µ(s)| ≤
1

8|s|

π − δ

sin δ
in particular in the right half–plane |µ(s)| ≤

π

16|s|
.

We have to complete the proof: we have seen that F (s) =
√
2π ss−1/2e−seµ(s) verifies the functional

equation of the Γ function. Let us verify that F is bounded on the strip {1 ≤ Re s ≤ 2}. For future use
we prove more, studying also the asymptoticity of |F (σ + it)| as t → ±∞.
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. For every σ ∈ R we have

|F (σ + it)| ∼
√
2π |t|σ−1/2 e−π|t|/2

|t| → ∞,

uniformly when σ varies in a compact subset of R.

Proof. Since F (σ − it) = F (σ + it) we can consider only t → +∞; now

|F (σ + it)| =
√
2π|e(s−1/2) log s

| |e−s
| |eµ(s)|;

and

|e(s−1/2) log s
| = exp(Re((σ−1/2+it)(log |s|+i arg s))) = exp((σ−1/2) log |s|−t arg s) = |s|σ−1/2 e−t arg s,

so that, recalling that arg s = cotan(σ/t) = π/2− arctan(σ/t), since t > 0:

|F (σ + it)| =
√
2π|s|σ−1/2 e−σ−tπ/2+t arctan(σ/t) eRe(µ(s)) =

√
2π tσ−1/2 e−tπ/2

|s/t|σ−1/2 exp(−t(σ/t− arctan(σ/t)) + Re(µ(s)).

Assuming that σ ∈ [−a, a] for some given large a > 0, we have to prove that given ε > 0 there is tε > 0
such that ���|s/t|σ−1/2 exp(−t(σ/t− arctan(σ/t)) + Re(µ(s))− 1

��� ≤ ε for t ≥ tε.

In fact
|s/t|σ−1/2 = exp((2σ − 1) log(1 + (σ/t)2)/4),

and, if a > 1:
|(2σ − 1) log(1 + (σ/t)2)/4| ≤ ((2a+ 1)/4)(a/t)2;

and since |x− arctanx| ≤ |x|3/3 for 0 ≤ |x| ≤ 1 we also have

|− t(σ/t− arctan(σ/t))| ≤ t |(σ/t)|3/3 ≤ a3/(3t2);

moreover µ(s) tends to 0 as s tends to infinity, on every vertical strip. Asymptoticity is proved.
�

That F is bounded in the strip {1 ≤ Re s ≤ 2} is now clear, since by continuity F is bounded on
compact rectangles {1 ≤ Re s ≤ 2}, {−b ≤ Im s ≤ b}, for every b > 0. It remains to prove that F (1) = 1.
Assuming F (1) = a, Wielandt’s theorem implies that F (s)/a = Γ(s); by Legendre’ s duplication formula
we get, for x > 0:

1

a

√
2π (2x)2x−1/2 e−2x eµ(2x) = 2π

1

a2
22x−1

√
π

(x+ 1/2)x e−(x+1/2) eµ(x+1/2) xx−1/2 e−x eµ(x);

thus
a 22x x2x−1/2e−2x eµ(2x) = 22x (x+ 1/2)x xx−1/2 e−2x e−1/2 eµ(x+1/2)+µ(x);

simplifying

a eµ(2x)−µ(x+1/2)−µ(x) = (1/
√
e)

�
1 +

1

2x

�x

Taking the limit of both sides as x tends to ∞ we get

a = (1/
√
e)
√
e i.e. a = 1.

Summing up:

. de Moivre–Stirling formula. In the slit plane C− there is a holomorphic function µ such that

Γ(s) =
√
2π ss−1/2e−s eµ(s),

where µ tends to 0 as s tends to infinity in every sector which excludes the negative real axis; more
precisely we have, given 0 < δ < π

|µ(s)| ≤

�
π − δ

8 sin δ

�
1

|s|
if − π + δ ≤ arg s ≤ π − δ.

In the course of the proof we have also obtained:.

Corollary. For every σ ∈ R we have

|Γ(σ + it)| ∼
√
2π |t|σ−1/2 e−π|t|/2

|t| → ∞,

uniformly when σ varies in a compact subset of R.
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3.4.9. Hankel contour integral for the Gamma function. The integral representation of the Gamma
function is valid only in the right half–plane. There is another representation with a contour integral
which is valid in all of C � (−N), found by the german mathematician Hankel (circa 1860). Given
c = a + i b, with a, b ∈ R, and b > 0, we call γ = γc the contour obtained by the juxtaposition of the
following lines:

• The half line s−(t) = c̄+ t = (a+ t)− i b, t ∈]−∞, 0];
• The arc of circle ρ(θ) = ε eiθ, θ ∈ [− arg c, arg c] of radius ε = |c|, counterclockwise from c̄ to c;
• The half line s+(t) = c− t = (a− t) + i b, t ∈ [0,+∞[.

We can assume that γ is parametrized as t �→ γ(t), with t ∈ R and limt→±∞ Re γ(t) = −∞, whereas
limt→±∞ Im γ(t) = ±b. We now consider the function u : C × C− → C, where C− = C � R− is
the slit plane, given by u(s, z) = z−sez (of course z−s := exp(−s log z), where log z = log |z| + i arg z
is the principal branch of the logarithm). If s = σ + i t and z = x + i y, with z /∈ R−, we have
|z−s| = | exp(−s log z)| = exp(−σ log |z|+ t arg z) = |z|−σet arg z ≤ |z|−σeπ|t|; Then we have

|z−sez| ≤ |z|−σeπ|t| ex,

and if z ∈ [γ] we have:

|u(s, z)| ≤ |z|−σ eπ|t| ex.

Assume now that s is contained in a vertical strip with compact base, Sk = {−k ≤ Re s ≤ k}. If z ∈ [γ]

|z|−σ = (x2 + y2)−σ/2
≤ (1 + x2 + |c|2)k/2;

since on [γ] we have x = Re z ≤ |c| we obtain that there is a constant Lk > 0 such that

(*) |u(s, z)| ≤ Lk e
π|t| ex/2 for every s ∈ Sk, z ∈ [γ]

(simply observe that limx→−∞(1+x2+ |c|2)k/2 ex/2 = 0, and take Lk = max{(1+x2+ |c|2)k/2 ex/2 : x ≤

|c|}). If s varies in a given compact subset K of C, there is k > 0 such that K ⊆ kB, hence

|u(s, z)| ≤ Lk e
πk ex/2 for every s ∈ K, z = x+ i y ∈ [γ]

so that the function

h(s) :=
1

2πi

�

γ

u(s, z) dz =
1

2πi

�

γ

z−s ez dz

is an entire function. Observe also that if s ∈ Sk we have, from inequality (*):

(**) |h(s)| ≤
Lk

2π
eπ|t|

�

γ

e−x/2
|dz| ≤ Mk e

π|t|.

Notice that the integrand z �→ z−m ez is holomorphic on the punctured plane C� {0} when s = m is an
integer. We now prove that h(1) = 1, and that h(−n) = 0, for every n ∈ N. Given r > |a| we consider
the loop αr given by the segment from −r − i b to c̄ = a − i b, then the arc of circle σ from c̄ to c, then
the segment from c to −r+ i b and then the segment from −r+ i b to −r− i b. If βr is the contour given
by the horizontal half–line from −∞ to −r − i b, followed by the segment from −r − i b to −r + i b, next
by the half–line from −r + i b to −∞ we have

h(m) =
1

2πi

�

αr

z−m ez dz +
1

2πi

�

βr

z−m ez dz for every r > |a|.

It is easy to see that for every given integer m we have

lim
r→+∞

�

βr

z−m ez dz = 0

(the integral is dominated by 2Lk eπk
�
r

−∞ ex/2 dx+ 2bLk eπk e−r/2, if |m| ≤ k), so that

h(m) =
1

2πi
lim

r→+∞

�

αr

z−m ez dz.

If s = m ∈ Z, z �→ z−m ez is an entire function if −m ≥ 0, so that the integral on αr is always 0;
hence h(m) = 0 if m ≤ 0 is an integer; otherwise 0 is a pole of order m, with residue 1/(m − 1)!; thus
h(m) = 1/(m− 1)! if m ≥ 1 is an integer, in particular, h(1) = 1.

We now get the functional equation h(s) = s h(s+ 1). Integrate by parts:
�

γ

z−s ez dz =
�
z−s ez

�z=γ(+∞)

z=γ(−∞)
+ s

�

γ

z−s−1 ez dz = 0 + s h(s+ 1)
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(notice in fact that |γ(t)−s eγ(t)| ≤ Lk eπbeRe γ(t)/2 tends to 0 as Re γ(t) tends to −∞). Next we consider:

F (s) =
1

2i sin(πs)

�

γ

zs−1 ez dz = π
h(1− s)

sin(πs)
.

The functional equation for h gives:

F (1 + s) = π
h(−s)

sin(π(s+ 1))
= π

(−s)h(−s+ 1)

− sin(πs)
= sπ

h(1− s)

sin(πs)
= s F (s).

Notice that h(1 − s) has zeros at every strictly positive integers; these are then removable singularities
for F ; and F has first order poles exactly at the points of −N, where h(1 − s) is non zero, as observed
(h(n) = 1/(n−1)! for n ≥ 1 an integer). In particular, F is holomorphic on the right half–plane {Re s > 0}.
Observe that F is bounded on the strip {1 ≤ Re s ≤ 2}; in fact from (**) we have |h(1 − s)| ≤ M2 eπ|t|

is s = σ + i t is in this strip; moreover

| sin(πs)| =
|eiπs − e−iπs|

2
≥

||eiπs|− |e−iπs||

2
=

|e−πt − eπt|

2
= sinh(π|t|).

Hence, assuming t �= 0:

|F (s)| ≤ π
M2 eπ|t|

sinh(π|t|)
= 2π

M2

1− e−2π|t| 1 ≤ Re s ≤ 2, t = Im s;

continuity of F on the strip shows boundedness also near t = 0. The uniqueness theorem of Wielandt
then shows that for every s ∈ C� (−N) we have F (s) = dΓ(s), with d = F (1). Write Euler’s complement
formula:

Γ(s)Γ(1− s) =
π

sin(πs)
whence Γ(s) dΓ(1− s) =

πd

sin(πs)
;

then

Γ(s)F (1− s) =
πd

sin(πs)
, that is Γ(s)π

h(s)

sin(πs)
=

πd

sin(πs)
,

which simplifies to Γ(s)h(s) = d; for s = 1 we get h(1) = d; since h(1) = 1, we conclude that h(s) =
1/Γ(s) = ∆(s), and that F (s) = Γ(s).

We observe that there is considerable latitude for the choice of the contour: since the integrand is
holomorphic in the slit plane , we only have to take a contour γ : R → C− which turns around the origin
and such that limt→±∞ Re(γ(t)) = −∞, while Im(γ(t)) remains bounded. In particular, we can take both
half–lines on the negative real axis, taking care of considering the two values of z−s which come from
taking limits on the upper or on the lower half–plane. To be more precise: assume that Re c = a < 0,
and consider the contour given by the half–line λ−(t) = a + t with t ∈] −∞, 0], the circle ρ(t) = |a| eiθ,
θ ∈ [−π,π], and the half–line λ+(t) = a− t, t ∈ [0,+∞[. It is not difficult to see that one has

2πih(s) =

� 0

−∞
exp(−s(log(−(a+ t))− iπ))ea+t dt+

� ∞

0
exp(−s(log(t−a)+ iπ))ea−t (−dt)+

�

ρ

z−sez dz.

Put a+ t = ξ in the first of these integrals, and a− t = ξ in the second, obtaining

2πih(s) = eiπs
�

a

−∞
|ξ|−s eξ dξ − e−iπs

�
a

−∞
|ξ|−s eξ dξ +

�

ρ

z−sez dz,

that is, putting also a = −ε, and ρε in place of ρ:

h(s) =
sin(πs)

π

� −ε

−∞
|ξ|−s eξ dξ +

1

2πi

�

ρε

z−sez dz for every s ∈ C, ε > 0.

Recalling that Γ(s) = πh(1− s)/ sin(πs) we get also

Γ(s) =

� −ε

−∞
|ξ|s−1 eξ dξ +

1

2i sin(πs)

�

ρε

zs−1ez dz for every s ∈ C� (−N), ε > 0.

Now the first term will not have a finite limit for ε → 0+ unless Re s > 0. If this happens also the integral
over the circle tends to 0, and we obtain

Γ(s) =

� 0

−∞
|ξ|s−1 eξ dξ =

� ∞

0
ts−1 e−t dt Re s > 0.
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3.5. Jensen’s formula. The Weierstrass product theorems say that we can give arbitrarily the
zeros for a holomorphic functions on a region D, provided that the obvious necessary condition, that they
accumulate only outside of D, holds. If we impose some other condition to the holomorphic function,
e.g. boundedness, or some growth condition, the situation is quite different. A quantitative condition
which gives some information is Jensen’s formula, which we now derive. Recall that we proved that
there is a Möbius involution of the unit disk ∆ which exchanges 0 and d, with 0 < |d| < 1, given by
gd(z) = (z − d)/(d̄ z − 1) (see 1.1.6). By conjugation with z → r z we get:

. For every r > 0 and every d ∈ r∆ � {0} there exists a unique Möbius involution of the disk r∆,
which preserves the boundary of r∆ and exchanges 0 and d. This involution is given by

gd,r = r2
z − d

d̄ z − r2
.

What we are asserting is then: gd,r(r∆) = r∆; g−1
d,r

= gd,r, and |gd,r(z)| = r if |z| = r.
We need the simple:

Lemma. (i) If g is holomorphic and never zero on an open set containing the closed disk rB, we
have

log |g(0)| =
1

2π

� 2π

0
log |g(r eiϑ)| dϑ.

(ii) � 2π

0
log |1− eiϑ| dϑ = 0.

Proof. (i) g is nonzero on an open disk (r+ε)∆, for some ε > 0. Then g has a logarithm log g on this
convex set. Cauchy formula says that log g(0) is the average of the values of log g on the circle ∂(rB);
the real part of log g(z) is log |g(z)|, so that the above formula is simply Cauchy formula for the real part
of log g, at the origin 0.

(ii) Since |1− eiϑ| =
�
(1− cosϑ)2 + sin2 ϑ =

√
2− 2 cosϑ = 2| sin(ϑ/2)|, we have

� 2π

0
log |1− eiϑ| dϑ = 2

�
π

0
log(2 sin(ϑ/2)) dϑ = 2π log 2 + 2

�
π

0
log sin(ϑ/2) dϑ;

Now:

I =

�
π

0
log sin(ϑ/2) dϑ =

�
π

0
log sin((π − t)/2) dt =

�
π

0
log cos(t/2) dt,

so that

2I =

�
π

0
log(sin(t/2) cos(t/2)) dt =

�
π

0
log sin t dt− π log 2,

and �
π

0
log sin t dt =

� 2π

0
log sin(ϑ/2)

dϑ

2
=

�
π

0
log sin(ϑ/2) dϑ = I,

so that I = −π log 2.
�

(Jensen’s formula). Let f be holomorphic on an open set containing the closed disk rB; assume
that f(0) �= 0. Let d1, . . . , dn be the zeros of f in rB, repeated according to multiplicity. Then we have

|f(0)|
n�

j=1

r

|dj |
= exp

�
1

2π

� 2π

0
log |f(r eiϑ)| dϑ

�
.

Proof. Let d1, . . . , dm be the zeros of f in r∆, and c1, . . . , cp be the zeros on ∂rB, all repeated
according to multiplicity. Consider the function

h(z) =
m�

j=1

r
z − dj
d̄jz − r2

p�

k=1

ck − z

ck
;

notice that each of the factors in the first product has absolute value 1 if z ∈ ∂rB. If we define

g(z) =
f(z)

h(z)
= f(z)

m�

j=1

d̄jz − r2

r(z − dj)

p�

k=1

ck
ck − z

,



3. INFINITE PRODUCTS 55

the function g is holomorphic on an open set containing rB and never 0 on rB, so that by the lemma

log |g(0)| =
1

2π

� 2π

0
log |g(r eiϑ)| dϑ;

Remember now that

����
�

m

j=1

d̄jz − r2

r(z − dj)

���� = 1 if |z| = r; if ck = r eiαk for k = 1, . . . , p we have

1

2π

� 2π

0
log |g(r eiϑ)| dϑ =

1

2π

� 2π

0
(log |f(r eiϑ)|−

p�

k=1

log |1− ei(ϑ−αk)|) dϑ =
1

2π

� 2π

0
log |f(r eiϑ)| dϑ,

using also the other observation on the integral of the chords. The computation of |g(0)| gives

|g(0)| = |f(0)|
m�

j=1

r

|dj |

p�

k=1

1,

and the proof ends.
�

We can write also, if �f�r = max{|f(z)| : |z| = r}, observing that log |f(r eiϑ)| ≤ log �f�r:

(Jensen’s inequality) |f(0)| =
1

rn

n�

j=1

|dj | exp

�
1

2π

� 2π

0
log |f(r eiϑ)| dϑ

�
≤

n�

j=1

|dj |
�f�r
rn

Let us derive the following corollary:

Corollary. Let f ∈ O(∆) be bounded. Assume that f(0) �= 0, and order the zeros of f in a sequence
(dn)n≥1 such that |dn| ≤ |dn+1|. Then, for every m ∈ N we have

|f(0)| ≤
m�

n=1

|dn| �f�∆.

Proof. Given m, take r such that if m(r) = {n ≥ 1 : |dn| ≤ r} we have m(r) ≥ m. We have

|f(0)| ≤

m(r)�

n=1

|dn|

r
�f�r ≤

m(r)�

n=1

|dn|

r
�f�∆,

and since |dn|/r ≤ 1 we have also

m(r)�

n=1

|dn|

r
≤

m�

n=1

|dn|

r
,

so that

|f(0)| ≤
m�

n=1

|dn|

r
�f�∆,

for every r < 1 large enough. Passing to the limit as r → 1− we get

|f(0)| ≤
m�

n=1

|dn| �f�∆

as required. �

Then the infinite product
�∞

n=1 |dn| converges to a real number not smaller than |f(0)|/�f�∆ (notice
that the sequence of partial products is decreasing). This of course happens if and only if the series�∞

n=1 log |dn| is convergent, and since this series has negative terms, its convergence is absolute, and
equivalent to the convergence of the series

�∞
n=1(1− |dn|).
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3.6. Functions with prescribed singular parts. Given d ∈ C, a singular part at d is a function
q ∈ O(C� {d}) with limit 0 at infinity; q has a unique representation as a Laurent series

q(z) =
∞�

n=1

c−n(d)

(z − d)n
,

where the series converges for every z ∈ C � {d}. We call finite a singular part when d is a pole for q,
that is, all but a finite number of the c−n(d) vanish; equivalently q is a rational function. If a function
h is holomorphic on a region D except for isolated singularities then the set of these singularities is
locally finite in D, and at every isolated singularity d the function h has a well defined singular part
h−
d
∈ O(C�{d}), so that h has a singular part distribution, a function hD defined on D, which associates

to every d ∈ D the singular part h−
d
of h at d, whose support is then the set of non–removable singularities

of h; it is of course a locally finite subset of D.
The problem we now pose is the following:
Given a singular part distribution on D with support a locally finite subset S of D, find a function

h holomorphic on D � S whose singular parts at every d ∈ S are the given ones.
Of course this is trivial if S is finite: simply take the sum of the singular parts.
3.6.1. Mittag–Leffler series. A Mittag–Leffler series for the singular part distribution (qd)d∈S is a

series
�

d∈S
(qd−gd), such that each gd is holomorphic on D, and the series normally converges in D�S.

The terms gd are often called convergence summands for the singular part distribution. In fact if these
gd exist then it is clear that:

Proposition. If
�

d∈S
(qd − gd) is a Mittag–Leffler series for the singular part distribution (qd)d∈S,

then the sum h of this series is holomorphic on D � S, and at every d ∈ S has singular part qd.

Proof. The only statement which needs proof is the last. Given d ∈ S, take r > 0 such that
B(d, r] ⊆ D, and B(d, r]∩ S = {d}. If γ = ∂B(d, r] then the negative coefficients of the Laurent series of
h at d are given by

c−m =
1

2πi

�

γ

h(ζ) (ζ − d)m−1 dζ; m = 1, 2, 3 . . . .

Since [γ] is a compact subset of D � S we have by uniform convergence:
�

γ

h(ζ) (ζ − d)m−1 dζ =
�

c∈S

�

γ

(qc(ζ)− gc(ζ)) (ζ − d)m−1 dζ,

and since all functions, but for c = d, are holomorphic on the whole disc B(d, r] all these integrals vanish,
but for c = d; the integral with gd vanishes, too, so the only one left is

�

γ

qd(ζ) (ζ − d)m−1 dζ,

obviously equal to c−m(d) 2πi. The proof is concluded.
�

3.6.2. Mittag–Leffler theorem.

Theorem. Let S be a locally finite subset of the open subset D of C, and let (qd)d∈S be a singular part
distribution. There exists a family (gd)d∈S of rational functions holomorphic in D such that

�
d∈S

(qd−gd)
is a Mittag–Leffler series for the given distribution. More precisely, we can choose the functions gd as
either polynomials, or rational functions with a single pole at the boundary of D and limit 0 at infinity.

Proof. As in the factorization theorem we partition the set S into two disjoint sets, A with no
accumulation points in C, and B such that given a bijective enumeration n �→ dn of the points of B we
have limn dist(dn, S�) = 0 (either set may be empty). We treat 0 apart, removing it from A if it belongs
to it. Given a bijective enumeration n �→ dn of A, we prove that there is a sequence of polynomials gn
such that the series

�∞
n=1(qn − gn) converges normally in C � A (here qn = qdn , gn = gdn). We simply

take as gn a polynomial in the Taylor development of qn at 0, the polynomial of smallest degree kn such
that for z ∈ B(0, |dn|/2] we have |qn(z) − gn(z)| ≤ 1/2n. In this way we get a Mittag–Leffler series for
(qd)d∈A: given any compact subset K of C, since limn→∞ |dn| = +∞ there exists nK ∈ N such that
K ⊆ B(0, |dn|/2] for n ≥ nK ; then for n ≥ nK we get �qn − gn�K ≤ 1/2n, and normal convergence
follows. The sum fA of the series is then holomorphic in C�A, and as observed above (3.6.1) has qn as
singular part at every dn ∈ A.
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In the case of B we fix a bijection n �→ dn of {1, 2, 3, . . . } onto B, and for every n we pick cn ∈ S� = B�

such that |dn − cn| = dist(dn, S�), exactly as in the proof of the product theorem 3.3.6. We then
consider the Laurent development of qn = qdn in the annulus {|z − cn| > |dn − cn|}, outside of the disc
B(cn, |dn − cn|]; it is a series of the form

qn(z) =
c−1(cn)

z − cn
+

c−2(cn)

(z − cn)2
+ · · ·+

c−k(cn)

(z − cn)k
+ . . . ,

(remember that limz→∞ qn(z) = 0, so that there can be no terms with non negative exponents). The
convergence to qn(z) is uniform on every annulus like {|z − cn| ≥ r} for every r > |dn − cn|, so that we
can pick kn ≥ 1 to have

�����qn(z)−
kn�

k=1

c−k(cn)

(z − cn)k

����� ≤
1

2n
for every z such that : |z − cn| ≥ 2|dn − cn|.

Setting

gn(z) =
kn�

k=1

c−k(cn)

(z − cn)k
,

we get a Mittag–Leffler series for (qd)d∈B , in C� S�. In fact, if K is a compact subset of C disjoint from
S� we have that µ = min{dist(z, S�) : z ∈ K} > 0; if nK ∈ N is such that dist(dn, S�) < µ/2 for n ≥ nK ,
then for n ≥ nK we have K ⊆ C � B(cn, 2|dn − cn|[ (remember that |dn − cn| = dist(dn, S�)), hence
�qn − gn�K ≤ 1/2n for n ≥ nK . The sum fB of the series is then holomorphic in C � (B ∪ S�) and has
qd as singular part at d ∈ B (3.6.1). Finally, f = fA + fB is holomorphic on D� S and has the required
singular parts. �

Remark. For future use we note that in the case of B the rational function constructed has as
residue exactly the coefficient c−1(d) of the function qd, for every d ∈ B. This follows immediately from
the residue theorem applied to qd, integrating qd = qdn on a circle centered at c = cn of radius larger
than |d− c| = |dn − cn|, and from the characterization of the coefficients of the Laurent development.

3.6.3. A corollary.

Corollary. Let D be a region, let S be a locally finite subset of D, and let f : D � S → C be
holomorphic; assume that qd is the singular part of f at d ∈ S. There is then a family (gd)d∈S of rational
functions with pole set in C �D, such that the series

�
d∈S

(qd − gd) is normally convergent in D � S,
and a function ϕ holomorphic on D such that:

f(z) =
�

d∈S

(qd(z)− gd(z)) + ϕ(z).

Proof. By the preceding theorem the sequence gd of rational functions with the stated properties
exists; the singular part at d ∈ S of the sum h(z) =

�
d∈S

(qd(z)− gd(z)) is exactly qd, so that f − h has
no singularity at any point of D; that is, the difference ϕ = f −

�
d∈S

(qd(z)− gd(z)) is holomorphic on
D. �

3.6.4. An application to ideals of the ring O(D). In this numberD is always a region of C, a connected
open set. As an application of the product theorem for regions we have seen that in the integral domain
O(D) every non empty subset S has a g.c.d., any element whose order function is d(z) = min{ord(f, z) :
f ∈ S}. As an application of the Mittag–Leffler theorem we now prove that O(D) is a Bézout domain:
given f1, . . . , fn ∈ O(D) there exist u1, . . . , un ∈ O(D) such that

gcd(f1, . . . , fn) =
n�

k=1

uk fk.

It is enough to prove the following particular case

. If f, g ∈ O(D) are coprime, i.e. gcd(f, g) = 1, then there exist u, v ∈ O(D) such that

u f + v g = 1.

Proof. (Wedderburn) We assume f, g both nonzero and nonunits. Coprimality is then equivalent
to asserting that the zero–sets Z(f) and Z(g), both non–empty, are disjoint. Consider the meromorphic
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function 1/(fg); by the preceding corollary there exist rational functions (gd)d∈Z(f)∪Z(g), whose pole sets
are contained in C�D, and ϕ ∈ O(D), such that

1

f g
=

�

d∈Z(f)∪Z(g)

(qd − gd) + ϕ,

where qd is the singular part of 1/(fg). Write

1

f g
=




�

d∈Z(g)

(qd − gd) + ϕ



+




�

d∈Z(f)

(qd − gd)



 ,

and deduce that

1 =




�

d∈Z(g)

(g qd − g gd) + ϕ g



 f +




�

d∈Z(f)

(f qd − f gd)



 g.

It is now easy to see that

u =
�

d∈Z(g)

(g qd − g gd) + ϕ g; v =
�

d∈Z(f)

(f qd − f gd),

are holomorphic on D (the series are normally convergent in D � (Z(f) ∪ Z(g)), actually on all of D by
inward spreading of compact convergence, see 2.7.4) and all singularities are removable, as is immediate
to check). �

The general case follows easily from the particular case, in every integral domain (if gcd(f, g) = h then
f/h and g/h are coprime, so that u(f/h) + v(g/h) = 1 for some u, v in the domain, hence h = u f + v g,
and the assert is true for two functions. An easy induction, using associativity of the gcd, yields the
result. We have obtained the following:

Proposition. If D is a region, in the ring O(D) of functions holomorphic on D every finitely
generated ideal is principal.

3.6.5. Mittag–Leffler osculation theorem.

. Let D be open in C, and let S be a locally finite subset of D. Assume that for every d ∈ S we
are given a series vd(z) =

�
k≤n(d) ck (z − d)k which converges normally in C� {d}; n(d) is an integer.

Then there exists a function h, holomorphic on D�S, such that at every d ∈ S the Laurent development
of h at d has

�
k≤n(d) ck (z − d)k as a ”section”, that is, for n ≤ n(d) the coefficients of the Laurent

development of h at d coincide with cn(d).

Proof. We pick for every d ∈ S an integer m(d) > 0 strictly larger than n(d); by the product theorem
3.3.4 we have a function f holomorphic on D such that ord(f, d) = m(d) for d ∈ S. Let qd be the singular
part of vd(z)/f(z), for every d ∈ S, so that vd/f = qd + ud with ud holomorphic in a neighborhood of
d. By Mittag–Leffler theorem 3.6.2 there is g ∈ O(D � S) whose singular part at every d ∈ S is qd.
We claim that h = f g has the desired properties. Clearly h is holomorphic on D � S. We prove that
ord(h − vd, d) ≥ m(d)(> n(d)): this proves that the Laurent development of h − vd at d has all the
coefficients of index < m(d) equal to zero, as required. We have vd = f qd + f ud in a nbhd of d, so that

h− vd = f g − f qd − f ud = f (g − qd − ud);

since g − qd and ud are holomorphic around d, so is wd = q − qd − vd; hence ord(wd, d) ≥ 0, so that

ord(h− vd, d) = ord(f wd, d) = ord(f, d) + ord(wd, d) ≥ ord(f, d) = m(d),

as required. �

The osculation theorem implies in particular that given a region D, a locally finite subset (dn)n∈N of
D, and a sequence (bn)n∈N of complex numbers, there exists a function f ∈ O(D) such that f(dn) = bn.
The construction of such an f may be made more explicit in the case D = C, as the following exercise
(taken almost verbatim from [Remmert]) shows.
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Exercise 3.6.5.1. Let (dn)n∈N be a sequence of distinct points in C, with d0 = 0 and limn→∞ |dn| =
+∞. Let f ∈ O(C) be such that ord(f, dn) = 1 for every n ∈ N, and f(z) �= 0 if z /∈ {d0, d1, d2, . . . }.
Then for every sequence (bn)n∈N there exists a sequence kn ∈ N such that the series

b0
f(z)

f �(0) z
+

∞�

n=1

bn
f(z)

f �(dn) (z − dn)

�
z

dn

�kn

converges normally in C to an entire function g such that g(dn) = bn.
This is to be compared with Lagrange’s interpolation theorem: if d0, . . . , dm are m+1 distinct points

of C, and b0, . . . bm ∈ C then

p(z) =
m�

k=0

bk




�

0≤j≤m, j �=k

z − dj
dk − dj





is the polynomial of degree ≤ m such that p(dk) = bk, for k = 0, . . . ,m.

3.6.6. Logarithmic integration. Assume that D is a region, and that f ∈ O(D) is not identically zero.
A necessary condition for f to be a logarithmic derivative of some h ∈ O(D) is that for every loop γ

in D
1

2πi

�

γ

f(z) dz is an integer.

In fact if f = h�/h it is easy to see that the above integral is indh◦γ(0), the winding number of h ◦ γ
around the origin. We show that the preceding condition is also sufficient. Fix c ∈ D. For every z ∈ D
pick a path αz in D originating at c and ending at z. We prove that the function

g(z) = exp

��

αz

f(ζ) dζ

�
,

is well–defined on D. In fact, if βz is another path in D with the same endpoints, we get

exp

��

αz

f(ζ) dζ −

�

βz

f(ζ) dζ

�
= exp

��

αz .β̃z

f(ζ) dζ

�
= exp(2π im) = 1,

(β̃z is the path opposite to βz) so that

exp

��

αz

f(ζ) dζ

�
= exp

��

βz

f(ζ) dζ

�
.

It is now easy to prove that g�(z)/g(z) = f(z) for every z ∈ D. In fact, given any point a ∈ D, and a
disc B(a, r[⊆ D, for every z ∈ B(a, r[ we can write (α is a path from c to a, fixed once and for all):

g(z) = exp

��

α

f(ζ) dζ +

�

[a,z]
f(ζ) dζ

�
= exp

��

α

f(ζ) dζ

�
exp

��

[a,z]
f(ζ) dζ

�
= g(a) eh(z),

having set h(z) =
�
[a,z] f(ζ) dζ for z ∈ B(a, r[; it is well known that h�(z) = f(z) for every z ∈ B(a, r[. It

follows that g is holomorphic in B(a, r[ and that we have:

g�(z) = g(a) eh(z) h�(z) = g(z) f(z) for every z ∈ B(a, r[.

The conclusion is now immediate.
It is quite easy now to give a proof of the product theorem by way of Mittag–Leffler theorem and

logarithmic integration, avoiding even infinite products. A function f has a zero of order m ≥ 1 at d
if and only if its logarithmic derivative has singular part m/(z − d) at d: this is well–known and easy
to prove. Assume that D is a region and S is a locally finite subset of D, and that we are given an
integer m(d) ≥ 1 for every d ∈ S. Given the singular part distribution d �→ m(d)/(z − d) find for it a
Mittag–Leffler series

�

d∈S

�
m(d)

z − d
− gd

�
;

remember that gd is a polynomial, or a rational function such as

m(d)

z − c
+

n(d)�

k=2

c−k

(z − c)k
,
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with the same residue as the given singular part (see 3.6.2 and the remark at the end). We claim that if
h ∈ O(D � S) is the sum of the above Mittag–Leffler series, then h is a logarithmic derivative. In fact
let γ be a loop whose trace [γ] is contained in D � S. By normal convergence on [γ] we have

1

2π i

�

γ

h(z) dz =
�

d∈S

�
1

2π i

�

γ

m(d)

z − d
dz −

1

2π i

�

γ

gd(z) dz

�
;

the first integral in parentheses is m(d) indγ(d); the second is zero if gd is a polynomial, and otherwise is
m(d) indγ(c(d)). Then the parentheses are integers, so that the series

�

d∈S

�
1

2π i

�

γ

m(d)

z − d
dz −

1

2π i

�

γ

gd(z) dz

�

is a converging series of integers, and then is actually a finite sum of integers.
Any logarithmic primitive of h is a function which has zeros exactly on the points of S, with the

prescribed multiplicities.

Exercise 3.6.6.1. Let m ≥ 2 be an integer, D a region. Prove that f ∈ O(D) has an m−th root in
O(D) if and only if

1

2πi

�

γ

f �(z)

f(z)
dz ∈ mZ,

(i.e., it is divisible by m) for every loop γ in D � Z(f); describe a construction of a root.
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4. Runge theory

We want to address the question of approximating holomorphic functions by particularly simple
holomorphic functions, e.g. polynomial or rational functions. For instance, given a region D of C is it
always possible to approximate every f ∈ O(D) by polynomials, uniformly on every compact subset of
D? The answer is in general no: the function 1/z, holomorphic on C∗ = C�{0} cannot be approximated
uniformly by a sequence of polynomials on the circle ∂B: in fact

�
∂B

p(z) dz = 0 for every polynomial,
while

�
∂B

dz/z = 2πi. However, rational functions suffice, as we shall see in this section. The theory has
interesting topological asides.

4.0.7. Connected components. We recall that every topological space (X, τ) can be partitioned into
connected components: given a ∈ X we consider the union Ca of all connected subsets of X containing
a; this is by definition the connected component of X containing a; it is a connected subset of X, and is
the largest connected subset of X containing a, since the union of two non disjoint connected subsets of
X is still connected. Since the closure of a connected subset is still connected, Ca is also closed in X. If
we consider a subset S of C, and Z is a connected component of C� S, then ∂Z ⊆ ∂S (if c ∈ ∂Z, every
disc B(c, r[ centered at c contains points of Z and points of C�Z; if B(c, r[∩S = ∅, then B(c, r[⊆ C�S,
and hence Z ∪B(c, r[ is connected, disjoint from S, and properly containing Z, a contradiction if Z is a
component of C� S).

Recall that every open subset of C has open connected components; if K is compact, K is closed,
hence C � K has open connected components. If r > 0 is such that rB ⊇ K, then since C � rB is
connected it is contained in a component of C �K, which then has only one unbounded component. If
D is open in C, then C�D is closed, hence its connected components, closed in the relative topology of
C �D, are also closed in C; the bounded components of C �D are then compact, and are called holes
of D.

Every open subset D of C can also be considered an open subset of C∞ = C ∪ {∞}, the Riemann
sphere, one point compactification of C. The connected component of C∞�D containing ∞ is obtained in
this way: let E be the union of all unbounded components of C�D; then the component is clC(E)∪{∞}.
In fact, if E is the set of unbounded components of C�D in C, every C ∈ E has ∞ in its closure; the set�

C∈E C ∪ {∞} is then connected, and its closure in C∞, clearly coinciding with clC
��

C∈E C
�
∪ {∞}, is

the required component.
Notice that, in particular, if the set E of unbounded components of C � D is finite (with D open)

then the component of C∞ �D containing ∞ is
�

C∈E C ∪ {∞}.
But we shall see in 4.2 that in fact, for every open subset D of C the union of unbounded components

of C�D is actually closed in C; hence the component of C∞ �D containing ∞ is simply E ∪ {∞}, with
E the union of all unbounded components of C�D. If K is a compact subset of C then the components
of C∞ � K are exactly the bounded components of C � K and {∞} ∪ E, where E is the unbounded
component of C�K.

4.0.8. A negative result. Let K be compact in C; assume that Z is a bounded component of C�K.
Pick c ∈ Z and consider 1/(z − c); this function has then a non-zero minumum modulus in K, that is
µ = min{1/|z − c| : z ∈ K} > 0. Then, if g is holomorphic on some open set containing Z ∪K, we have
�1/(z − c) − g(z)�K ≥ µ. For, assuming the contrary we get |1 − (z − c) g(z)| < |z − c|µ ≤ 1 for every
z ∈ K, hence �1− (z − c) g(z)�K < 1. This is impossible; in fact by the maximum modulus theorem we
get (by the preceding observations ∂Z ⊆ ∂K ⊆ K):

�1− (z − c) g(z)�Z∪∂Z = �1− (z − c) g(z)�∂Z ≤ �1− (z − c) g(z)�K < 1,

but c ∈ Z, and for z = c we have 1 − (c − c) g(c) = 1, which implies �1 − (z − c) g(z)�Z∪∂Z ≥ 1, a
contradiction.

4.0.9. Approximation of Cauchy transforms by rational functions.

Proposition. Let α : [a, b] → C be a path, let u : [α] → C be continuous, and let

fu : C� [α] → C, fu(z) =
1

2πi

�

α

u(ζ)

ζ − z
dζ,

be the Cauchy transform of u. If K is a compact subset of C disjoint from [α], and ε > 0, there exists a
rational function R, all of whose poles lie in [α], such that

�fu −R�K ≤ ε.

Proof. The function h : (z, ζ) �→ (1/(2πi))u(ζ)/(ζ−z) is continuous, and hence uniformly continuous,
on the compact set K × [α]. Given ε > 0 we can find δ > 0 such that if max{|z� − z��|, |ζ � − ζ ��|} ≤ δ then



62

|h(z�, ζ �) − h(z��, ζ ��)| ≤ ε; by uniform continuity of α on [a, b] we find ρ > 0 such that if t�, t�� ∈ [a, b],
|t� − t��| ≤ ρ, then |α(t�)− α(t��)| ≤ δ. Take points a0 = a < a1 < · · · < am = b such that ak − ak−1 ≤ ρ,
and let αk = α|[ak−1,ak] for k = 1, . . . ,m; moreover let wk = α((ak−1 + ak)/2) for k = 1, . . . ,m, and put
ζk = α(ak), for k = 0, . . . ,m. We have, for z ∈ K:

fu(z) =

�

α

h(z, ζ) dζ =
m�

k=1

�

αk

h(z, ζ) dζ;

now the smallness of the arc αk makes
�
αk

h(z, ζ) dζ very close to h(z, wk)(ζk − ζk−1); and we can write:
�

αk

h(z, ζ) dζ =

�

αk

(h(z, ζ)− h(z, wk) + h(z, wk)) dζ =

�

αk

(h(z, ζ)− h(z, wk)) dζ+

+
1

2πi

�

αk

u(wk)

wk − z
dζ =

�

αk

(h(z, ζ)− h(z, wk)) dζ +
u(wk)(ζk − ζk−1)

2πi

1

wk − z
,

with the first term small; thus

fu(z)−
m�

k=1

ck
z − wk

=
m�

k=1

�

αk

(h(z, ζ)− h(z, wk)) dζ, z ∈ K,

where ck = (u(wk)(ζk−1 − ζk)/(2πi); we estimate the right hand side:
����
�

αk

(h(z, ζ)− h(z, wk)) dζ

���� ≤
�

αk

|h(z, ζ)− h(z, wk)| |dζ| ≤

�

αk

ε |dζ| = εV (αk),

where V (αk) is the length of the arc αk; thus�����

m�

k=1

�

αk

(h(z, ζ)− h(z, wk)) dζ

����� ≤
m�

k=1

����
�

αk

(h(z, ζ)− h(z, wk)) dζ

���� ≤
m�

k=1

εV (αk) = εV (α),

for every z ∈ K. The function R(z) =
�

m

k=1 ck/(z − wk) is then a rational function whose pole set is
contained in {w1, . . . , wm} ⊆ [α] which approximates fu on K to less than εV (α). �

4.0.10. Pole shifting. For every compact subset K of C the set C(K) of complex valued functions
continuous on K, with the topology of uniform convergence, i.e. normed with � ·�K , is a Banach algebra,
hence the closure of every subalgebra of C(K) is still a subalgebra of C(K): it is here intended that a
subalgebra contains the constant functions.

. Pole shifting theorem Let K be a compact subset of C; for every c ∈ C�K denote by Ac(K)
the uniform closure in C(K) of the algebra of polynomials in 1/(z − c). Then Aa(K) = Ab(K) if a and
b belong to the same connected component of C �K; and if a is in the unbounded component of C �K
then Aa(K) coincides with the closure A∞(K) of the subalgebra of C(K) consisting of the polynomial
functions.

Proof. Since Ac(K) is a closed subalgebra of C(K), we have that Ab(K) ⊆ Ac(K) if and only if
1/(z − b) ∈ Ac(K). Pick a component Z of C�K, and take a ∈ Z. Let S = {b ∈ Z : Ab(K) ⊆ Aa(K)}.
We prove that if c ∈ S, and B(c, r[⊆ Z, then B(c, r[⊆ S. In fact:

1

z − b
=

1

(z − c)− (b− c)
=

1

z − c

1

1− (b− c)/(z − c)
;

if z ∈ K we have |z − c| > r > |b− c|; hence |(b− c)/(z − c)| ≤ |b− c|/r < 1; this proves that the series

1

z − b
=

1

z − c

1

1− (b− c)/(z − c))
=

∞�

n=0

(b− c)n

(z − c)n+1

is normally convergent in K, hence 1/(z − b) belongs to Ac(K). We leave it to the reader to show that
this implies S = Z. We have proved that Ab(K) ⊆ Aa(K) for every a, b ∈ Z; then Aa(K) = Ab(K) for
every a, b ∈ Z. If Z is the unbounded component of C � K, pick a ∈ Z with |a| > max{|z| : z ∈ K};
then we have, with normal convergence on K:

1

z − a
=

1

a

1

z/a− 1
=

−1/a

1− (z/a)
=

∞�

n=0

−1

an+1
zn,

which proves that Aa(K) ⊆ A∞(K); and if r > max{|z| : z ∈ K} then by Cauchy formula z =�
∂(rB) ζ/(ζ − z) dζ/(2πi) for every z in the interior of rB; by the preceding proposition z is uniformly
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approximable on K by rational functions with poles in ∂(rB). This means that z|K is in Aa(K) for a in
the unbounded component of C�K; hence A∞(K) ⊆ Aa(K). �

Remark. Using 4.0.8, we actually see that if a and b belong to different components of C�K, then
Aa(K) �= Ab(K).

4.0.11. A contouring cycle. By cycle in an open set E we mean, roughly speaking, a finite set of
loops in E; the precise concept belongs to homology theory; its usage in the next theorem will be in any
case clear from the proof.

Theorem. Let D be open in C, and let K be a compact subset of D. Then there is a cycle γ in
D �K such that for every f holomorphic in D and every z ∈ K we have

f(z) =
1

2πi

�

γ

f(ζ)

ζ − z
dζ.

Proof. Let ρ = dist(K,C � D) = min{dist(z,C � D) : z ∈ K}. Let δ > 0 be such that δ
√
2 < ρ,

and let p1, p2, q1, q2 ∈ R be such that the compact rectangle R = {p1 ≤ Re z ≤ p2, q1 ≤ Im z ≤ q2}
contains K in its interior. We pick n ∈ N so large that (p2 − p1)/n < δ and (q2 − q1)/n < δ. The lines
Re z = ak = p1 + k (p2 − p1)/n and Im z = bk = q1 + k(q2 − q1)/n, k = 0, . . . , n divide the rectangle R
into a finite set of small rectangles Q, each with diameter smaller than δ

√
2 < ρ, with pairwise disjoint

interiors. A typical rectangle Q will have a boundary ∂Q identified with the polygonal loop

[aj−1 + i bk−1, aj + i bk−1, aj + i bk, aj−1 + i bk, aj−1 + i bk−1],

oriented in this way. It is not difficult to prove that for every function f holomorphic on an open set
containing Q the following Cauchy formula holds:

f(z) =
1

2πi

�

∂Q

f(ζ)

ζ − z
dζ z ∈ intC(Q),

0 =
1

2πi

�

∂Q

f(ζ)

ζ − z
dζ z ∈ C�Q.

Consider now the set F of all rectangles Q which have non–empty intersection with K; each Q ∈ F is
contained in D, since the diameter of Q is smaller than dist(K,C � D). Let P =

�
Q∈F

Q; plainly we
have K ⊆ P ⊆ D. If A =

�
Q∈F

intC(Q) and z ∈ A we evidently have

f(z) =
1

2πi

�

Q∈F

�

∂Q

f(ζ)

ζ − z
dζ

(z belongs to exactly one Q ∈ F , hence all the terms in the sum are zero, except the one corresponding
to the Q containing z, whose value is f(z)). Of course A is in general strictly contained in intC(P ), but it
is dense in P . Consider now the segments which are sides of more than one rectangle Q ∈ F . If σ is one
such segment, observe that σ is oriented in opposite ways as part of the boundary of the two rectangles;
in the sum of the integrals over the boundaries the integrals over these segments then cancel out. In
other words we have, for every u continuous on

�
Q∈F

∂Q:

�

Q∈F

�

∂Q

u(ζ) dζ =
�

j∈J

�

σj

u(ζ) dζ,

where (σj)j∈J is a bijective indexing of the oriented segments contained in only one rectangle Q ∈ F ;
clearly the trace of every such segment is contained in D�K, otherwise all the rectangles containing the
segment, at least two, would be in F . We have our cycle γ: it is the family of oriented segments (σj)j∈J ,
and we agree to write: �

γ

u(ζ) dζ :=
�

j∈J

�

σj

u(ζ) dζ,

for every function continuous on the trace [γ] =
�

j∈J
[σj ] of γ (warning: in general γ is not a loop.

However it can be proved that it is a finite family of polygonal loops, see 4.1.2). Notice now that the
integral

1

2πi

�

γ

f(ζ)

ζ − z
dζ
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defines a continuous function of z on C� [γ], which coincides with f on A, and since A is dense in P , we
have by continuity:

f(z) =
1

2πi

�

γ

f(ζ)

ζ − z
dζ for every z ∈ P � [γ].

Now K ⊆ P � [γ]: we have observed that K ⊆ P and that K is disjoint from every segment σj . The
construction is concluded. �

4.0.12. A topological lemma and its corollary. We need one more lemma from topology:

Lemma. Let D be open in C and define L = {z ∈ C : dist(z,C�D) ≥ ρ} ∩ (rB), for some r, ρ > 0.
Then every bounded component of C � L contains a component of C � D. Moreover, in this situation
every component of C∞ � L contains a component of C∞ �D.

Proof. If we put

M = C� {z ∈ C : dist(z,C�D) ≥ ρ} = {z ∈ C : dist(z,C�D) < ρ} =
�

z∈C�D

B(z, ρ[;

then we have C � L = M ∪ (C � rB); since C � rB is connected, it is contained in the unbounded
component of C � L; every bounded component Z of C � L is therefore disjoint from C � rB, hence
contained in M . Thus B(c, ρ[∩Z �= ∅ for some c ∈ C�D; but then B(c, ρ[⊆ Z, and hence c ∈ Z (every
disk B(c, ρ[, being disjoint from L and connected is contained in a connected component of C � L; if it
intersects the bounded component Z of C � L it is then contained in it). The connected component of
C�D containing c is then contained in Z (since C�D ⊆ C� L, every connected component of C�D
is contained in some connected component of C� L).

For C∞ notice that the component of C∞ � L containing ∞ is simply {∞} ∪ E, where E is the
unbounded component of C�L, and the other components of C∞ �L are unaltered. All the unbounded
components of C�D (if any exist) are contained in {∞} ∪ E, as is also ∞. Every bounded component
of C�L contains a point of C∞ �D, as we have just seen, and hence also a component of C∞ �D. �

Corollary. Let D be open in C, and let K be a compact subset of D. Then there exists a compact
subset L of D such that K ⊆ L, and every bounded component of C�L contains a component of C�D.

Proof. In the preceding lemma simply take ρ such that 0 < ρ < dist(K,C � D), and r such that
K ⊆ rB. �

4.1. Runge’s approximation theorem.

. Runge theorem.

(i) Runge theorem for compact sets Let K be a compact subset of C, and let P be a set which
intersects every bounded component of C�K. Then every function holomorphic on an open set
containing K can be uniformly approximated on K by rational functions, all of whose poles lie
in P .

(ii) Runge theorem for open sets Let D be open in C, and let P be a set whose closure inter-
sects every hole of D. Then every f ∈ O(D) can be compactly approximated on D by rational
functions, all of whose poles lie in P .

Proof. (i) Given a compact subset K of C, contained in some open subset D of C, and f ∈ O(D), we
take a cycle γ in D�K as in 4.0.11; by 4.0.9 the function f is approximable on K by rational functions
with poles in [γ]; that is, given ε > 0 there is a rational function

Rε(z) = pε(z) +
�

c∈F

pc

�
1

z − c

�
such that �f −Rε�K ≤ ε/2;

here pε and pc are polynomials, and F is a finite subset of [γ]. Since [γ] is contained in the complement
of K, we can write

�

c∈F

pc

�
1

z − c

�
=

�

Z∈H

�
�

c∈F∩Z

pc

�
1

z − c

��
,

where H is the set of bounded components Z of C�K such that Z ∩ F is non empty.
Now the rational function

AZ(z) =
�

c∈F∩Z

pc

�
1

z − c

�
,
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can be approximated on K by rational functions with a single pole in Z ∩ P ; pick one such function RZ

which differs from AZ on K by less that ε/(2m), where m is the cardinality of F . The conclusion is
immediate: the rational function

pε +
�

Z∈H

RZ

has its poles in P , and approximates f on K to less that ε. The proof of (i) is concluded.
(ii) Given a compact subset K of D, we first enlarge it to a compact subset L of D such that every

bounded component Z of C� L contains a component of C�D, as in lemma 4.0.12. Since P̄ intersects
every hole of D, for every bounded component Z of C � L the set P ∩ Z is non empty. We now apply
(i). �

4.1.1. A corollary on nullhomologous loops. Runge’s approximation theorem yields easily the follow-
ing:

Theorem. Let D be an open region, and let γ be a loop in D. Then the following are equivalent:

(i)
�
γ
f(z) dz = 0, for every f ∈ O(D).

(ii) γ is nullhomologous in D, that is, for every z ∈ C�D we have indγ(z) = 0.

Proof. (i) implies (ii) is trivial since ζ �→ 1/(ζ − z) is holomorphic in D if z ∈ C�D.
(ii) implies (i) Given f ∈ O(D) pick a sequence Rn of rational functions, all of whose poles lie outside

D, which uniformly approximates f on the trace [γ] of γ. Then Rn is of the form:

Rn(z) = pn(z) +
�

a∈Fn

�
Res(Rn, a)

z − a
+

ma�

k=2

c−k(a)

(z − a)k

�
,

where pn is a polynomial and Fn is the pole set of Rn, a finite subset of C�D. Hence the integral
�

γ

Rn(z) dz = 2πi
�

a∈Fn

indγ(a)Res(Rn, a)

is zero because indγ(a) = 0 for a /∈ D, by the hypothesis made on γ. By uniform convergence we have
�

γ

f(z) dz = lim
n→∞

�

γ

Rn(z) dz = 0.

�
4.1.2. About cycles. The notion of cycle pertains to algebraic topology. Without entering too deeply

into the subject, we say that a finite family α = (αj)j∈J of paths (all parametrized on the interval
[0, 1]) is a cycle if its homological boundary

�
j∈J

(αj(1)− αj(0)) is 0: this sum is a formal sum, that is

αj(1),αj(0) are not summed as complex numbers, but as elements of the free abelian group Z(C), direct
sum of Card(C) copies of Z; thus for it to be 0 means that for every c ∈ C we have

Card({j ∈ J : αj(1) = c})− Card({j ∈ J : αj(0) = c}) = 0

(that is, for every c ∈ C the number of paths ending at c is the same as the number of paths beginning
at c). Let us prove:

. The finite family α = (αj)j∈J of paths is a cycle if and only if for every polynomial p we have

�

α

p(z) dz



:=
�

j∈J

�

αj

p(z) dz



 = 0.

Moreover a cycle can be decomposed into a finite set of loops.

Proof. If P �(z) = p(z) we have, letting S = {αj(1),αj(0) : j ∈ J} be the set of extremities and
origins of the paths αj�

α

p(z) dz =
�

j∈J

�

αj

p(z) dz =
�

j∈J

(P (αj(1))− P (αj(0))) =

�

c∈S

((Card({j ∈ J : αj(1) = c})− Card({j ∈ J : αj(0) = c}))P (c).

Clearly this expression is zero for every polynomial p if and only if α is a cycle (for every given c ∈ S
there exists a polynomial which is nonzero at c, and zero at every other d ∈ S). Now we can observe



66

that γ, as constructed in the proof of 4.0.11 is such that
�
γ
g(ζ) dζ = 0 for every function g holomorphic

on D (given z ∈ K, apply the formula to f(ζ) = (ζ − z) g(ζ)). Thus we have
�
γ
p(z) dz = 0 for every

polynomial, and γ is indeed a cycle.
By induction on the cardinality of J it is easy to prove that α can be decomposed in a finite set

of loops; we say that a finite set {α1, . . . ,αm} of paths is a loop if, up to a permutation, we have
αj(1) = αj+1(0) for j = 1, . . . ,m− 1, and αm(1) = α1(0). Clearly a loop is a cycle; and if {αj : j ∈ J} is
a cycle, and {α1, . . . ,αm} is a loop, with {α1, . . . ,αm} ⊆ {αj : j ∈ J}, then {αj : j ∈ J}� {α1, . . . ,αm}

is still a cycle. It should now be clear how to proceed: start with any c0 ∈ S and let c1 be the extremity
of a path α1 beginning at c0; then get c2 extremity of a path α2 beginning at c1, etc.; by this process
we select points in S, until we get ck = cj for some j < k. At the first such repetition we consider
αj+1, . . . ,αk which clearly is a loop. We now remove the paths of this loop from the original cycle, and
we get a cycle of strictly smaller cardinality, to which induction may be applied. �

4.1.3. Characterizations of simple connectedness.

Theorem. Let D be an open region of C. Then the following are equivalent:

(i) D is simply connected, that is, every loop of D is nullhomotopic in D (=the fundamental group
π1(D, c) is trivial, for any c ∈ D).

(ii) For every loop γ of D, and every f holomorphic on D we have
�

γ

f(z) dz = 0

(iii) O�(D) = O(D), that is, every holomorphic function on D has a primitive on D
(iv) Every unit of D has a holomorphic logarithm.
(v) D has the square root property: that is, every unit of D has a holomorphic square root.
(vi) D is homeomorphic to the open unit disc.
(vii) For every loop γ of D, and every z ∈ C�D we have

indγ(z) :=
1

2πi

�

γ

dζ

ζ − z
= 0

(this condition is sometimes expressed by saying that D is homologically simply connected; it
is equivalent to asserting that the first homology group of D vanishes, i.e. H1(D) = 0).

(viii) C∞ �D is connected.
(ix) Every function holomorphic on D can be compactly approximated on D by polynomials.
(x*) D has no holes, i.e. C�D has no bounded components.

Proof. (i) implies (ii): invariance of the integral under loop homotopy; that (ii) is equivalent to (iii)
is well known; (iii) implies (iv): given a unit f ∈ O(D) recall that a logarithm of f is any primitive g of
f �/f such that for some c ∈ D we have that eg(c) = f(c); (iv) implies (v): if g is a logarithm of the unit
f , then eg/2 is a square root of f ; (v) implies (vi): if D = C, then z �→ z/

�
1 + |z|2 is a homeomorphism

of C onto the open unit disc. If D is not C, apply the Riemann mapping theorem. Finally, simple
connectedness is a topological condition, hence preserved by homeomorphisms; then (vi) implies (i) and
the first six conditions are equivalent.

Next we prove that (ii) implies (vii): if z ∈ C�D, then ζ �→ 1/(ζ − z) is holomorphic on D.
Proof that (vii) implies (viii), by contradiction: if C∞�D is not connected we have C∞�D = K∪L,

where K and L are closed disjoint non empty in C∞ �D. If ∞ ∈ L, then K is a compact subset of C,
and C∞ � L = D ∪K is open in C∞ and hence E = D ∪K is an open subset of C. By theorem 4.0.11
there is a cycle γ in E �K = D around K such that

indγ(z) =
1

2πi

�

γ

dζ

ζ − z
= 1 for every z ∈ K.

The cycle can be decomposed into a finite set γ1, . . . , γp of loops; since

indγ(z) =
�

p

j=1 indγj (z), for every z ∈ K,

we have indγj (z) �= 0 for at least one j and z ∈ K, contradicting (vii).
(viii) implies (ix): take a compact subset K of D; by enlarging it if necessary we can assume that

every bounded component Z of C�K contains a hole C of D (4.0.12). By hypothesis there is only one
component of C∞ �D, that containing ∞; there cannot be bounded components of C�K, for any such
component Z contains a bounded component C of C � D, which is also a component of C∞ � D; in
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fact Z is a neighborhood of C disjoint from all unbounded components of C�D (if Z ∩ E �= ∅ for some
unbounded component of C�D then E ⊆ Z, absurd since Z is bounded and E is unbounded). It follows
immediately from Runge’s theorem for compact sets that every function holomorphic on a neighborhood
of K can be uniformly approximated on K by polynomials.

(ix) implies (ii): If f is holomorphic on D and γ is a loop in D we choose a sequence pn of polynomials
which converges to f uniformly on [γ]; we then have

�

γ

f(z) dz = lim
n→∞

�

γ

pn(z) dz = 0,

since each integral
�
γ
pn(z) dz is zero.

�

Remark. (x*) has a special status to be discussed later (4.2). It trivially implies (viii), or (ix) by
Runge’s theorem, but the converse is not as easy as one might expect.

4.2. Holes of open subsets of C. We complete here the analysis of the characterization of simple
connectedness begun in 4.1.3. Recall that a locally compact (Hausdorff) space is a Hausdorff topological
space in which every point has a compact neighborhood; it is well known that then the compact neigh-
borhoods of a point are a base for the neighborhood system of the point, for every point of the space.
We need a simple

Lemma. In a compact space X, let (Fλ)λ∈Λ be a family of closed subsets; assume that the intersection�
λ∈Λ Fλ is contained in an open set W . Then there exists a finite subfamily (Fλ)λ∈M (M a finite subset

of Λ) such that
�

λ∈M
Fλ is also contained in W .

Proof. If F = X�W , consider (F ∩Fλ)λ∈Λ; this family of closed sets has empty intersection, so that
some finite subfamily has also empty intersection. �

We now prove the following theorem

. Šura–Bura’s theorem. Let X be a locally compact Hausdorff space. Let C be a connected
component of X. If C is compact, then C is the intersection of all the open compact subsets of X
containing it.

Proof. We first assume that X is compact. Take the family of all clopen (=open and closed) subsets
of X containing C (this family contains at least X), and consider its intersection K; it is a closed subset
of X containing C, and we claim that it coincides with C. If not, then K cannot be connected, hence
K = A ∪ B, with A and B closed disjoint and non empty; since C is connected we have either C ⊆ A
or C ⊆ B; we assume C ⊆ A. By normality of X there are open disjoint sets U and V with A ⊆ U and
B ⊆ V . Now the family of all clopen subsets of X containing C has intersection K ⊆ U ∪ V ; by the
lemma, there is a finite family O1, . . . , Om of clopen subsets of X containing C such that

K ⊆ O =
m�

k=1

Ok ⊆ U ∪ V.

Now O is clopen, hence O ∩ U is open, but also closed, since O ∩ U = O ∩ (X � V ). Thus O ∩ U is a
clopen subset containing C, but not containing K, a contradiction.

We now reduce the locally compact case to the previous one. For every x ∈ C we pick an open
neighborhood U(x) of x inX with compact closure Ū(x) inX; by compactness of C there are x1, . . . , xm ∈

C such that C ⊆ U = U(x1)∪ · · ·∪U(xm); let T be the closure of this open set U , that is T = clX(U) =�
m

k=1 clX(U(xk)). Clearly T is a compact subspace of X containing C. Then C is a connected component
also of T , and by what we have just proved C is the intersection of the clopen subsets of T containing
C. Since U is open in X, and hence in T , by the lemma there are clopen subsets of T containing C and
contained in U ; these are then open in U and hence in X, and are compact, being closed in the compact
space T . �

We now consider the case X = C � D, where D is an open subset of C; it is a closed subspace of
C, hence locally compact in the induced topology. Its compact components are exactly what we called
holes of D (4.0.7). Trivially, a subset A of C�D is open in the relative topology of C�D if and only if
D∪A is open in C. As a first consequence of Šura–Bura’s theorem we have that unbounded components
cannot accumulate on holes of C�D:
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. For every open subset D of C the union of the unbounded connected components of C�D is closed
in C.

Proof. We show that if p ∈ C is not in this union E, then some neighborhood of p is disjoint from
E. If p ∈ D, then D is the required neighborhood. Otherwise p is in some hole C of D; by the previous
theorem, there is a compact subset A of C � D which is open in the relative topology of C � D and
contains C. Since A is clopen in C�D, if it intersects a connected component of C�D it must contain
it, but being compact it cannot contain unbounded sets. Then A∪D is open in C, has empty intersection
with E, and contains C; since p ∈ C ⊆ A, the set A ∪D is a neighborhood of p disjoint from E. �

Hence:

Proposition. If D is open in C, then the components of C∞ �D are the holes of D, and the union
of all the unbounded components of C�D, with ∞ added. Consequently, a connected open subset of C is
simply connected if and only if C∞ �D is connected, and if and only if it has no holes.
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5. The maximum modulus theorem

We recall the following version of the maximum modulus theorem for holomorphic functions, which
is an immediate corollary of the Open Mapping Theorem:

. Maximum modulus theorem, I Let D be a region of C, and let f : D → C be holomorphic. If
c ∈ D is a point of local maximum for |f |, then f is constant.

We shall present some results related to this theorem. In this section we use the following notation:
if E is a set, and f : E → C is a function, then

�f�E := sup{|f(z)| : z ∈ E}, finite or +∞.

We also use this terminology: if D is a region, D̄ = D ∪ ∂D is the closure of D, and f : D̄ → C is
continuous and holomorphic on D, then f is said to be c−holomorphic on D.

Remark. If D is a region, f : D → C is holomorphic non constant, and M ≥ 0 is a real number such
that |f(z)| ≤ M for every z ∈ D, then actually |f(z)| < M for every z ∈ D: otherwise, if |f(c)| = M for
some c ∈ D, then c is a point of absolute maximum for |f | on D, so that f is constant on D.

5.0.1. Bounded regions. It is easy to see that:

. Maximum modulus theorem, II Let D be a bounded region of C, and let f : D̄ → C be continu-
ous on D̄ = D ∪ ∂D and holomorphic on D (i.e, f is c−holomorphic on D). Then �f�D̄ = �f�∂D, and
if f is non constant then |f(z)| < �f�∂D for every z ∈ D.

Proof. By Weierstrass theorem max{|f(z)| : z ∈ D̄} = �f�D̄ exists by continuity of f and compact-
ness of D̄; then |f(z)| ≤ �f�D̄ for every z ∈ D, and by the preceding remark we have |f(z)| < �f�D̄
unless f is constant on D. For f nonconstant the maximum modulus is then attained only on ∂D. �

5.1. Unbounded regions. We have just seen that on bounded regions, the supremum of a c−holo-
morphic mapping is assumed on the boundary, and only on the boundary if the function is non–constant.
If we remove the boundedness assumption for D this is no longer true; e.g. the exponential function has
modulus constantly 1 on iR = ∂T , where T = {Re z > 0} is the right half–plane, but clearly � exp �T = ∞.
As a second example, consider the function f(z) = exp(eiz) in the strip D = {z ∈ C : |Re z| < π/2},
whose closure is D̄ = {z ∈ C : |Re z| ≤ π/2}; we have, if z = x+ i y:

|f(z)| = exp(Re(ei x−y)) = exp(Re(e−y (cosx+ i sinx))) = exp(e−y cosx);

on ∂D = (π/2 + iR)∪ (−π/2 + iR) we have |f(z)| = 1, constantly; but clearly f(iy) = exp(e−y) → ∞ if
y → −∞. But if we assume f bounded on all of D̄, then we still have:

. Maximum modulus theorem, III Let D be an unbounded region of C, and let f : D̄ → C be
c−holomorphic on D. If �f�D̄ < ∞, then �f�D̄ = �f�∂D, and if f is non constant then |f(z)| < �f�∂D
for every z ∈ D.

Proof. We assume f non constant. We first prove the theorem under the extra assumption that

lim
z∈D̄, z→∞

f(z) = 0.

Let µ be any real number, µ > �f�∂D; we prove that K = {|f | ≥ µ} := {z ∈ D̄ : |f(z)| ≥ µ} is empty.
In fact, K is closed in D̄ by continuity of |f |, hence also closed in C; and since limz∈D̄, z→∞ f(z) = 0 we
find R > 0 such that if z ∈ D̄ and |z| > R we have |f(z)| < µ. Then |z| ≤ R if z ∈ K, so that K is also
bounded, and hence compact. Clearly K ∩ ∂D = ∅ (on ∂D we have |f(z)| ≤ �f�∂D < µ). If K is non
empty then |f | has a maximum on K, which clearly is also the absolute maximum of |f | on D (outside
of K we have |f(w)| < µ); if this maximum is attained on c ∈ K ⊆ D, by the first theorem we get f
constant on D; the proof with the extra assumption is concluded.

We now turn to the general case. Fix a ∈ D, and consider the auxiliary function g : D̄ → C, where
g(z) = (f(z) − f(a))/(z − a) for z ∈ D̄ � {a}, g(a) = f �(a); it is easy to see that g is bounded and
c−holomorphic on D, with limit 0 at infinity, hence so also is ϕ(z) = f(z) g(z). By what just proved we
get �ϕ�D̄ ≤ �ϕ�∂D. Since �ϕ�∂D ≤ �f�∂D �g�∂D ≤ �f�∂D �g�D̄ we have

|ϕ(z)| = |f(z)| |g(z)| ≤ �f�∂D �g�D̄ for every z ∈ D

The same can be repeated for ϕn = fn g, for every n = 1, 2, 3, . . . , obtaining

|ϕn(z)| = |f(z)|n |g(z)| ≤ �f�n
∂D

�g�D̄ for every z ∈ D,
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so that, if z ∈ D with g(z) �= 0 we have:

|f(z)|n ≤
�f�n

∂D
�g�D̄

|g(z)|
⇒ |f(z)| ≤ �f�∂D

�g�1/n
D̄

|g(z)|1/n
,

for every n ≥ 1 and every z ∈ D � Z(g); letting n tend to infinity we have

|f(z)| ≤ �f�∂D for every z ∈ D � Z(g),

and since D � Z(g) is dense in D̄ we conclude.

Remark. Notice that if f is bounded on D and zero on the boundary then it is identically zero on
all of D.

�
Exercise 5.1.0.1. Prove that boundedness of f on D can be replaced by the hypothesis that f is

O(log |z|) as z → ∞, that is, there are A, r > 0 such that |f(z)| ≤ A log |z| for z ∈ D and |z| ≥ r.

5.1.1. A generalization. In all the preceding theorems, and in the ones to follow, the hypothesis that
f be c−holomorphic, that is continuously extendable to the boundary of its domain, can be dropped if
�f�∂D is replaced with

�f�∂D := sup{ lim sup
w∈D,w→z

|f(w)| : z ∈ ∂D}.

We also consider the boundary ∂∞D of D in the extended plane C∞ = C ∪ {∞}, so that for D ⊆ C we
have ∂∞D = ∂D if D is bounded, and otherwise ∂∞D = ∂D ∪ {∞}. Let’s prove the generalization of
the preceding proposition:

. Let D be a region of C, and let f : D → C be holomorphic. Then, unless f is constant, we have

|f(z)| < �f�∂∞D for every z ∈ D;

and if �f�∂∞D < ∞ then �f�∂D = �f�∂∞D.

Proof. If �f�∂∞D = ∞ there is nothing to prove. Otherwise, let µ > �f�∂∞D be any real number. We
prove that K = {w ∈ D : |f(w)| ≥ µ} is empty. For any z ∈ ∂∞D there is a set U(z) containing z, open
in C∞, such that sup{|f(w)| : w ∈ U(z) ∩D} < µ (if z = ∞ we can assume U(∞) = C∞ � rB). Since
∂∞D is compact there exist z1, . . . , zm ∈ ∂D such that ∂∞D ⊆ U , where U = U(z1)∪ · · ·∪U(zm). Then
D�U = (D ∪ ∂∞D)�U is a compact subset of D (it is closed in C∞, hence compact); since |f(w)| < µ
for w ∈ U we have that K = {w ∈ D : |f(w)| ≥ µ} = {w ∈ D�U : |f(w)| ≥ µ} is compact. If K is non–
empty there is c ∈ K such that |f(c)| = max{|f(w)| : w ∈ K} then also |f(c)| = max{|f(w)| : w ∈ D},
and by the Maximum modulus theorem I we conclude. The last assertion, �f�∂D = �f�∂∞D, is obtained
as above, multiplying by a function g such that limz∈D, z→∞ f(z) g(z) = 0 . . . . �

5.1.2. The three lines lemma. We know that |Γ(σ + i t)| ≤ Γ(σ) for σ > 0 (by the integral represen-
tation or directly from the Gauss limit); in other words we have Γ(σ) = max{|Γ(σ + i t)| : t ∈ R} =
�Γ�Re s=σ; and we have seen that the real gamma function is logarithmically convex on ]0,∞[, equiva-
lently that Γ(α a+ β b) ≤ (Γ(a))α (Γ(b))β , for a, b,α,β > 0 and α+ β = 1. In this sense the behavior of
the gamma function is shared by all holomorphic functions bounded on strips, as we now see.

. Three lines lemma. Let f : S̄ → C be c−holomorphic, and bounded on the strip

S = {z ∈ C : a < Re z < b}, a, b ∈ R, a < b.

Then, unless f is identically zero, the function µ : [a, b] → [0,∞[ defined by µ(x) = sup{|f(x+ i y)| : y ∈

R} is strictly positive and logarithmically convex in [a, b], that is

0 < µ(αx+ β y) ≤ (µ(x))α (µ(y))β x, y ∈ [a, b], α,β ≥ 0,α+ β = 1.

Proof. It is clearly enough to prove the statement with x = a and y = b. We shall also prove that
µ(a), µ(b) > 0; in this proof A is any real number strictly larger than 0, if f(a+ i y) = 0 for every y ∈ R,
otherwise A = µ(a); same for B and µ(b). Given x ∈ [a, b], let us find the weights α,β ≥ 0 such that
x = α a + β b and α + β = 1: we get α = (b − x)/(b − a) and β = (x − a)/(b − a). Let us consider the
entire function

g(z) = A(b−z)/(b−a) B(z−a)/(b−a) = exp

�
b− z

b− a
logA+

z − a

b− a
logB

�
;
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we have, if z = x+ i y:

|g(z)| = ARe((b−z)/(b−a)) BRe((z−a)/(b−a)) = A(b−x)/(b−a) B(x−a)/(b−a),

so that, in particular, |g(a+ i y)| = A and |g(b+ i y)| = B for every y ∈ R; moreover 1/|g(z)| is bounded
in S (by max{1/A, 1/B}). Then f(z)/g(z) is bounded on S, and is bounded by 1 on the boundary of S,
so that the preceding theorem implies |f(z)|/|g(z)| ≤ 1 for every z ∈ S̄; in particular

|f(x+ i y)| ≤ |g(x+ i y)| = A(b−x)/(b−a) B(x−a)/(b−a), x ∈ [a, b], y ∈ R,
so that

µ(x) ≤ A(b−x)/(b−a) B(x−a)/(b−a) for every x ∈ [a, b],

and letting A → µ(a)+ and B → µ(b)+ the proof is concluded; notice that since µ(x) > 0 for x ∈]a, b[
(by the identity theorem) we must have µ(a), µ(b) > 0. �

Remark. With S = {z ∈ C : 0 < Re z < 1} we get, for every x ∈ [0, 1] and every y ∈ R:
|f(x+ i y)| ≤ (µ(0))1−x (µ(1))x.

Hölder’s inequality may be interpreted in this context: let (X,M, µ) be a measure space, and let u, v :
X →]0,∞[ be strictly positive functions in L1(µ). Then, for s ∈ S̄ the function

ϕ(s) =

�

X

u1−s vs dµ

is c−holomorphic (differentiation under the integral sign); moreover |ϕ(σ+i t)| ≤ ϕ(σ) for every σ ∈ [0, 1],
so that by the three lines lemma:

ϕ(σ) ≤ (ϕ(0))1−σ (ϕ(1))σ that is

�

X

(u(x))1−σ (v(x))σ dµ(x) ≤

��

X

u dµ

�1−σ ��

X

v dµ

�σ

,

and setting σ = 1/q, 1− σ = 1/p, u = |f |p, v = |g|q we get the familiar Hölder’s inequality.

5.1.3. As a corollary:

. Three circles theorem (Hadamard) Let f : Ā → C be c−holomorphic, where A = {z ∈ C :
u < |z| < v} is an annulus, 0 < u < v < ∞. For r ∈ [u, v] let M(r) = max{|f(z)| : |z| = r}. Then, if
α,β ≥ 0, α+ β = 1 we have

M(uα vβ) ≤ (M(u))α (M(v))β .

Proof. Consider g : S̄ → C defined by g(s) = f(es), where S̄ = {s ∈ C : log u ≤ Re s ≤ log v}; for
u ≤ r ≤ v we have µ(log r) := sup{|g(log r + i t)| : t ∈ R} = M(r). The three lines lemma says that

µ(α log u+ β log v) ≤ (µ(log u))α (µ(log v))β that is µ(log(uα vβ)) ≤ (M(u))α (M(v))β ,

or also
M(uα vβ) ≤ (M(u))α (M(v))β .

�

The three circles theorem may be expressed by saying that logM(r) is a convex function of log r.

5.2. The Phragmen–Lindelöf theorem for a strip. Even if it is bounded on the boundary of the
unbounded region D, a c−holomorphic function is not necessarily bounded on the region, as seen at the
beginning of 5.1. However, if the growth at infinity is ”not too fast”, where this notion of ”fast” depends
on the shape and size of D, then we can still deduce boundedness from boundedness on the boundary.
We first state and prove the theorem for strips. Essentially the theorem says that if f is bounded on the
boundary of the strip, and at infinity is O(exp(eb|z|)) for some b, with 0 < b < π/(width of the strip),
then f is bounded on the strip; there is also a more general result.

. Phragmen–Lindelöf theorem Let S = {z ∈ C : d − l < Re z < d + l} be a vertical strip with
bounded base (d ∈ R, l > 0). Let D be a region of C contained in S, and assume that f : D → C is
c−holomorphic and non constant on D, and that �f�∂D is finite. Put a = π/(2l).

(a) If there is b, with 0 < b < a, and A,B > 0 such that

|f(z)| ≤ A exp(B eb|z|) for every z ∈ D,

then |f(z)| < �f�∂D for every z ∈ S.
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(b) If for every ε > 0 there exists Aε > 0 such that

|f(z)| ≤ Aε exp(ε ea|z|) for every z ∈ D,

then |f(z)| < �f�∂D for every z ∈ D.

Proof. Before going to the proof notice that since |z| is rotationally invariant the theorem holds for
any strip with bounded base, horizontal, vertical or oblique, and that we may also translate the strip
(this changes |z|, but it is easy to see that the hypotheses are still valid, since |z|− |c| ≤ |z−c| ≤ |z|+ |c|).
So we consider the strip S = {−l < Re z < l}.

(a) We pick c with b < c < a, and consider the function gε(z) = exp(ε cos(cz)), with ε > 0 arbitrary.
Notice that |gε(z)|−1 < 1 on S: in fact

|gε(z)|
−1 = | exp(−ε cos(cz)| = exp(−ε Re(cos(cz)));

recalling that Re(cos(cz)) = cos(cx) cosh(cy) if x = Re z and y = Im z, since |cx| = c|x| ≤ c l < π l/(2l) =
π/2 we have, for x ∈ [−l, l], cos(cx) ≥ cos(cl) > 0 so that −εRe(cos(cz)) < −ε cos(cl) cosh(cy) < 0 for
every z = x+ iy ∈ S̄, hence

|gε(z)|
−1

≤ exp(−ε cos(cl) cosh(cy)) < 1 for every z ∈ S.

If we define Fε(z) = f(z) (gε(z))−1 for z ∈ D, we then have |Fε(z)| ≤ |f(z)| for every z ∈ D̄, in particular
also �Fε�∂D ≤ �f�∂D. We now prove that limz→∞, z∈D Fε(z) = 0; this implies that Fε is bounded on D;
by Maximum Modulus III we then get

|Fε(z)| ≤ �Fε�∂D ≤ �f�∂D for every z ∈ D,

then
|f(z)| ≤ �f�∂D exp(ε cos(cz)) for every z ∈ D,

which implies, letting ε → 0+, the assert.
Using the previous estimate for |gε(z)|−1 and the hypothesis we get

|Fε(z)| ≤ A exp(B eb|z|) exp(−ε cos(cl) cosh(cy)) ≤ A exp(B eb(l+|y|
− ε cos(cl) cosh(c|y|));

let’s prove that limy→±∞(B eb(l+|y|) − ε cos(cl) cosh(c|y|)) = −∞; in fact

B eb(l+|y|)
− ε cos(cl) cosh(c|y|) = B eb(l+|y|)

− ε cos(cl)
ec|y| + e−c|y|

2
=

ec|y|
�
B ebl e(b−c)|y|

− ε cos(cl)
1 + e−2c|y|

2

�
;

since b < c the expression in parentheses tends to −ε cos(cl)/2 < 0, and the entire expression has limit
−∞, as y → ±∞.

(b) Given ε > 0 consider again gε(z) = exp(ε cos(az)); again we have |gε(z)|−1 < 1 in S (but this
time |gε(z)|−1 = 1 on ∂S), so that if Fε(z) = f(z) (gε(z))−1 we still have �Fε�∂D ≤ �f�∂D. We want to
prove that Fε is bounded on the set D ∩ iR, intersection of D with the imaginary axis iR; this proves
that Fε is bounded on the boundary of the sets D− = D ∩ {Re z < 0} and D+ = D ∩ {Re z > 0}; since
these sets are contained in the strips S− = S ∩ {Re z < 0} and S+ = S ∩ {Re z > 0}, whose width is half
that of S, we can apply part (a) of the theorem, replacing b with a, and a by 2a, to obtain boundedness
of Fε on D±, and hence on D. By Maximum Modulus III then |Fε| is bounded by �f�∂D ≥ �Fε�∂D, so
that, as above

|f(z)| ≤ �f�∂D | exp(ε cos(az))| for every z ∈ D,

and we conclude immediately, letting ε → 0+.
Take then δ with 0 < δ < ε/2; by hypothesis there is A > 0 such that

|f(z)| ≤ A exp(δ ea|z|) for every z ∈ D ∩ (iR);
Then, for z = i y ∈ D ∩ (iR):

|Fε(z)| ≤ A exp(δ ea|y|) exp(−ε cosh(ay)) = A exp(δ ea|y| − ε cosh(ay)),

and consider the exponent

δ ea|y| − ε cosh(ay) = ea|y|(δ − (ε/2)(1 + e−2a|y|));

since δ − ε/2 < 0, this exponent has limit −∞ as y → ±∞, so that y �→ A exp(δ ea|y| − ε cosh(ay)) is a
continuous function zero at infinity, hence it is bounded. The proof ends. �
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Notice how delicate these estimates are: on the strip {−π/2 < Re z < π/2} the function f(z) =
exp(eiz) is unbounded but of modulus constantly 1 on the boundary (5.1).

5.3. The Phragmen–Lindelöf theorem for an angle. Here the critical value is π/α, where
0 < α ≤ 2π is the aperture of the angle.

. Phragmen–Lindelöf theorem Let A = {r eiϑ : r > 0, ϕ−α/2 < ϑ < ϕ+α/2}, with 0 < α ≤ 2π
be an angle,and let D be a region of C contained in D. Assume that f : D̄ → C is c−holomorphic on D,
with �f�∂D < ∞.

(i) If for some b, with 0 < b < a = π/α and A, B > 0 we have

|f(z)| ≤ A exp(B |z|b) for every z ∈ D,

then |f(z)| ≤ �f�∂D for every z ∈ D.
(ii) If for every ε > 0 there exists a constant Aε > 0 such that

|f(z)| ≤ Aε exp(ε |z|a) for every z ∈ D

(where, again, a = π/α), then |f(z)| ≤ �f�∂D for every z ∈ D.

Proof. Clearly the theorem is rotation invariant, and is is not restrictive to assume ϕ = 0; in other
words A = {r eiϑ ∈ C : r > 0, |ϑ| < α/2}. We can reduce this case to the case of a strip: observe
that, if 0 < α ≤ 2π the exponential function gives an holomorphic isomorphism of the horizontal strip
S = {s ∈ C : −α/2 < Im s < α/2} onto the angle A of the theorem; set g(s) = f(es), for s ∈ E = {s ∈

S : es ∈ D}, and observe that the hypothesis f ∈ O(exp(B |z|b) for z tending to infinity in D becomes
g ∈ O(exp(B exp(b Re s))) for Re s → +∞ with s ∈ E, hence also g ∈ O(exp(B exp(b |s|))), and similar
arguments work for case (ii). �

Note again that the balance in the preceding theorem is delicate: if we consider f(z) = exp(za), with
a = π/α, then we have |f(z)| = 1 on ∂D, where z = r e±iα/2, yet f(x) = exp(xa) → ∞ as x → ∞ on the
positive reals, so that f is unbounded.

For α = 2π we have a function bounded on a ray, and the critical value is 1/2. So:

Corollary. If an entire function f : C → C is bounded on a ray, and for every ε > 0 we have that

f is O(eε
√

|z|) as z → ∞, then f is a constant.

Proof. By Phragmen–Lindelöf f is bounded, and by Liouville’s theorem it is then constant. �
The function z �→ cos(

√
z) is a non–constant entire function bounded on the positive ray R+, and

is O(e
√

|z|), but it is asymptotic to e
√

|z|/2 as |z| = r → ∞ on the ray {−r : r ≥ 0}. But there are
nonconstant entire functions that are O(exp(|z|ε)), for every ε > 0; they are of course unbounded on
every ray (see, e.g. Bak–Newman, Complex Analysis, 15.7).

5.3.1. Entire functions of finite order. The previous results suggest the following:

Definition. An entire function is said to be of finite order if it is O(exp(|z|b)), for some b > 0. The
order of an entire function is the infimum of the set of all b > 0 such that the function is O(exp(|z|b)).

Exercise 5.3.1.1. Prove that if an entire function of finite order has polynomial growth on the
boundary ∂S of a strip, then it has polynomial growth of the same order on S (that is, if there is m ∈ N
such that f(z) is O(zm) for z → ∞, z ∈ ∂S, then f(z) is also O(zm) for z → ∞, z ∈ S (hint: consider
f(z)/(z − c)m with c /∈ S̄ . . . ).

Solution. Following the hint, let g(z) = f(z)/(z − c)m with c /∈ S̄ fixed. Then g is bounded on
the boundary of S. Moreover, if f ∈ O(exp(|z|c) for some c > 0 as |z| → ∞, z ∈ S, then clearly
g ∈ O(exp(eb|z|)) for every b > 0: in fact

|g(z)| exp(−eb|z|) ≤ |f(z)| |z − c|−m exp(−eb|z|) ≤ A exp(|z|c) |z − c|−m exp(−eb|z|);

Setting for simplicity r = |z| we easily see that the preceding expression has limit 0 as r → +∞ (note
also that |z − c|−m ∼ r−m as r → +∞):

A exp(rc − eb r) r−m
→ 0 for r → +∞,

since, clearly, limr→+∞(rc−eb r) = −∞. Taking b < π/a, with a the width of S, we get that g is bounded
on S, by �g�∂S . Then

|f(z)| ≤ C|z − c|m for every z ∈ S, with C = �g�∂S .
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�
Exercise 5.3.1.2. Suppose that f is a nonconstant entire function bounded on every ray. Prove that

f is not of finite order (if not we can divide the plane into a finite number of small wedges. . . ).

Solution. If f had finite order, then f ∈ O(exp(eb|z|)) for some b > 0. Let us divide the plane into
angles of aperture α = 2π/m such that b < π/α = m/2: that is, we pick m > 2b, and partition the plane
into m equal angles. Since f is by hypothesis bounded on every ray it is bounded on the boundary of
each of these angles, hence bounded on each of these angles by the Phragmen–Lindelöf theorem; but then
f is bounded on C, and by Liouville’s theorem f is a constant. �
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