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Chapter 1

An overview of Lagrangian mechanics

1.1 From Newton to Lagrange equations

The mathematical structure of Newtonian mechanics is the theory of ordinary differential equa-
tions (ODEs) of second order of the form

MẌ = F (X, Ẋ, t) , (1.1)

where t 7→ X(t) ∈ RN is the unknown vector valued function (curve), M is a N ×N constant,
symmetric, positive definite matrix, F : R2N+1 → R is a given vector field1. The great success
of such a theory consists in the solution of important problems in celestial mechanics, starting
with the two body problems. Modern results of non-perturbative celestial mechanics (n-body
problem) are still based on the study of the Newton equations (1.1), and in particular on their
well posedness (existence, uniqueness and regularity of the solution).

Newtonian mechanics displays some limits, most of them technical in character and due
to the fact that one has to work with differential equations. Thus, for example, determining
the presence of symmetries and/or first integrals and using them to reduce the dimensionality
of the problem can be quite cumbersome. Also the treatment of perturbation problems can
be very difficult. However, the most important shortcomings of Newtonian mechanics is the
difficulty in treating constrained systems. Indeed, when geometrical constraints are imposed
on a given system, on the right hand side of the Newton equation (1.1) one has to add to the
”active force” F a force, or reaction R, which is necessary to render the motions compatible
with the constraint (e.g., one needs a force to constrain a mass point to move on a sphere
subject to gravity). As sketched below, for a certain class of constrained problems, the reaction
R can be computed as a function of X, Ẋ and t. However, such a computation turns out to
be extremely involved in practice. As a matter of fact, it was such a difficulty that led to the
formulation of Lagrangian mechanics.

Lagrangian mechanics is the mathematical theory describing the dynamics of mechanical
systems subject to constraints. In the case of (bilateral) holonomic constraints the mechanical

1In the specific case of n mass points moving in the d-dimensional physical space one has N = nd, and M
is block diagonal with each of the n diagonal blocks of the form miId, mi being the mass of the i-th particle
(i = 1, . . . , n) and Id denoting the d× d identity.
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6 CHAPTER 1. AN OVERVIEW OF LAGRANGIAN MECHANICS

system is supposed to move on a given L-dimensional manifold M (smooth surface of co-
dimension N − L in RN) given by an implicit equation of the form Φ(X, t) = 0, where Φ :
RN × R → RN−L (here 1 ≤ L ≤ N − 1; the limit case L = N means unconstrained systems).
Let us denote by TXM the L-dimensional tangent plane, or space, at each point X ∈M . The
fundamental hypothesis that allows to solve the problem for holonomic constraints is that of
ideal constraints (the so-called D’Alambert principle), namely

R · ξ = 0 ∀ξ ∈ TXM . (1.2)

Indeed, condition (1.2) means that the reaction R pointwise belongs to the normal space NXM
at X ∈M , which is equivalent to the requirement

R =
N−L∑
r=1

cr(X, t)∇XΦr(X, t) , (1.3)

where the Φr are the N −L components of Φ, whereas the cr are unknown coefficients2. Notice
that the above mentioned hypothesis of the implicit function theorem, allowing the parametric
representation of the constraint manifold of dimension L, is that of linear independence of the
N −L gradients ∇Φr, so that R = 0 iff cr = 0 for any r. Now, by explicitly computing the two
identities

d

dt
Φ(X(t), t) = 0 ;

d2

dt2
Φ(X(t), t) = 0 ,

and making use of the Newton equation Ẍ = M−1(F+R) one shows that the constraint reaction
R can be explicitly computed a priori as a function of X, Ẋ and t (i.e. one determines the
coefficients cr entering (1.3)). Finally, one can reduce the dimension of the Newton equations
from N to L. Such an approach obviously reveals rather involved in practice.

The alternative Lagrange approach works as follows. Under the usual hypotheses of the
implicit function theorem the constraint manifold M is (locally) described in the parametric
form RL 3 q 7→ X(q, t) ∈ RN . The free parameters q = (q1, . . . , qL) are the so-called free, or
generalized, or Lagrangian coordinates, and the L vectors ∂X/∂qi are linearly independent and
span the tangent space TXM . Condition (1.2) is then locally expressed by

R · ∂X
∂qi

= 0 ∀i = 1, . . . , L , ∀t . (1.4)

Upon scalar multiplication of the Newton equation MẌ = F + R by ∂X/∂qi the, due to
condition (1.4), the contribution of the reaction disappears and one is left with the L projections
of the Newton equation onto the tangent space to the constraint manifold, namely

MẌ · ∂X
∂qi

= Qi ; Qi := F · ∂X
∂qi

. (1.5)

2One has Φr(X, t) = 0 for any r = 1, . . . , N − L. Let s 7→ γ(s) a smooth curve on M such that γ(0) = X;
then ξ := γ′(0) ∈ TXM . The identity Φr(γ(s), t) = 0 holds for any s in some interval containing s = 0, which
implies

0 =
d

ds
Φr(γ(s), t)

∣∣∣
s=0

= ∇XΦr(X, t) · ξ .
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The generalized force Qi on the right hand side is just the definition of the projection of F
along the i-th coordinate direction. The left hand side is instead worked out by writing it as

MẌ · ∂X
∂qi

=
d

dt

(
MẊ · ∂X

∂qi

)
−MẊ · d

dt

∂X

∂qi

and taking into account the two identities

∂X

∂qi
=
∂Ẋ

∂q̇i
;

d

dt

∂X

∂qi
=
∂Ẋ

∂qi
. (1.6)

Defining the kinetic energy K := (Ẋ ·MẊ)/2 of the system, one easily shows that the equations
(1.5) take on the form

d

dt

∂K

∂q̇
− ∂K

∂q
= Q , (1.7)

to be meant by components. This is the most general form of Lagrange equations. In the case
of conservative force F , i.e. if a function U(X, t) exists such that F = −∇XU , one easily checks
that the Lagrange equations (1.7) read

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 , (1.8)

where
L (q, q̇, t) := K(q, q̇, t)− U(q, t) (1.9)

is the Lagrange function, or Lagrangian of the system. In the definition (1.9) we have set, with
abuse of notation

K(q, q̇, t) :=
1

2
Ẋ ·MẊ

∣∣∣
Ẋ=

∑
j
∂X
∂qj

q̇j+
∂X
∂t

and
U(q, t) := U(X(q, t), t) .

Once one has solved the Lagrange equations determining the motion t 7→ q(t) of the system,
one inserts X(q(t), t) into the original Newton equation and solves for R = MẌ − F , which
allows to completely close the problem, in principle.

1.2 General properties of Lagrange equations

The Lagrange equations for conservative systems, i.e. for system subject to purely conservative
forces (F = −∇XU), take on the simple standard form

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 , (1.10)

with L = K − U as specified above. All the properties of the Lagrange equations reported in
the sequel are easily checked by means of direct simple computations, and are independent of
the mechanical origin of the equations.
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1. The L-equations are left invariant in form by any (possibly) time dependent (inverse)
change of coordinates

q = q(Q, t) ; q̇ =
∂q

∂Q
Q̇+

∂q

∂t
. (1.11)

Such a property is directly checked by showing that the left hand side λ(L ) of the
Lagrange equations (1.8) and its transformed Λ via the transformation (1.11) are related
by Λ = (∂q/∂Q)Tλ.

2. For any constant c 6= 0 and any function F (q, t) whose total derivative with respect to
time is denote by Ḟ =

∑
j(∂F/∂qj)q̇j+∂F/∂t, the Lagrangians L and L ′ := cL + Ḟ are

equivalent, in the sense that their associated L-equations are the same. Such a property
is easily checked by noting that the L-equations are linear in L and that λ(Ḟ ) ≡ 0. The
change of Lagrangian L → L ′ is referred to as a gauge transformation.

3. If ∂L /∂t = 0 then the function

H (q, q̇) :=
∂L

∂q̇
· q̇ −L (q, q̇) (1.12)

is a constant of motion, or first integral, of the system (i.e. a function whose value is
preserved along the solutions of the L-equations). This is directly checked by showing
that ˙H |λ=0 = 0. The function H is known as the Jacobi first integral which, in the
conservative mechanical case, L = K−U , is the total energy of the system: H = K+U .

Exercise 1.1. Show that if H (L ) is the Jacobi integral corresponding to L (q, q̇), the
Jacobi integral H ′ := H (L ′) corresponding to the gauge-equivalent Lagrangian L ′ =
cL + Ḟ , where ∂F/∂t = 0, is given by H ′ = cH (hint: H is linear in L ; compute
H (Ḟ )).

4. Consider a one-parameter group of coordinate transformations q 7→ Q = Φs(q), s ∈ R,
such that Φ0(q) = q. The group operation ◦ here is the composition of transformations,
namely Φs◦Φr = Φs+r ∀s, r ∈ R, which is easily checked to display the three fundamental
group properties.3. The one-parameter (commutative) group {Φs}s∈R is said to be a
symmetry group of (or admissible for) the Lagrangian system defined by L (q, q̇, t) if it
leaves the Lagrangian invariant, namely

L

(
Φs(q),

d

dt
Φs(q), t

)
= L (q, q̇, t) ∀s ∈ R . (1.13)

3We recall that a group is a pair set-operation (G, ◦), where ◦ : G × G → G is an associative application
with a unit element e and inverse element g−1 of any element g ∈ G. More precisely:

(a) (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) ∀g1, g2, g3 ∈ G;

(b) ∃e ∈ G such that g ◦ e = e ◦ g = g ∀g ∈ G;

(c) ∀g ∈ G ∃g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

A commutative or Abelian group is such that g1 ◦ g2 = g2 ◦ g1 ∀g1, g2 ∈ G.
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Let u(q) := ∂Φs(q)/∂s|s=0 be the generator vector field of the group. Then, the Nöther
theorem holds:

Theorem 1.1 (Nöther). Let {Φs} be a one parameter symmetry group of the Lagrangian
L (in the sense (1.13)). Then Ju := u · ∂L /∂q̇ is a first integral.

The Theorem is easily proven by showing that

0 =
∂

∂s
L

(
Φs(q),

d

dt
Φs(q), t

) ∣∣∣
s=0

∣∣∣
λ=0

=
∂L

∂q
· u+

∂L

∂q̇
· u̇
∣∣∣
λ=0

=
dJu
dt

. (1.14)

Observe that mechanical Lagrangians are quadratic forms in q̇ so that Ju is always linear in
q̇. A particular case of the Nöther theorem is that of an ignorable or cyclic coordinate, e.g.
q1, such that ∂L /∂q1 = 0. In this case the symmetry group is Φs(q) = (q1 +s, q2, . . . , qL),
and the quantity p1 := ∂L /∂q̇1 is constant, as also follows directly from the L-equations.
We recall that if R over L coordinates are ignorable, then the dynamics of the problem
is determined by the Routh Lagrangian depending on L − R degrees of freedom4. One
can prove that the case of one ignorable coordinate (R = 1) is the fundamental one:
if Φs is a one-parameter group of symmetry for L , then there exists a change to new
coordinates such that one of them, say the first one, is ignorable. Such a Theorem is
proven by exploiting the transformation that rectifies the vector field u generating the
group Φs. The inverse of such a transformation is explicitly given by

q = ΦQ1(σ(Q2, . . . , QL)) , (1.15)

where σ : RL−1 → RL defines an arbitrary surface of co-dimension 1 transversal to u(σ)
in the configuration space, whose equation is Q1 = 0, i.e., by (1.15), q = σ(Q2, . . . , QL).
The transversality condition is expressed

det

(
∂q

∂Q

) ∣∣∣
Q1=0

= det

(
u(σ),

∂σ

∂Q2

, . . . ,
∂σ

∂QL

)
6= 0 . (1.16)

Due to condition (1.13), when the transformation (1.15) is plugged into the Lagrangian
L, the result is independent of Q1 (it depends however on Q̇1, since Q1 depends in turn
on t). One can alternatively compute how Ju = u ·∂L /∂q̇ transforms under (1.16). Since

∂L

∂Q̇j

=
∑
j

∂L

∂q̇i

∂q̇i

∂Q̇j

=
∑
j

∂L

∂q̇i

∂qi
∂Qj

then

Ju = u(q(Q)) ·
(
∂q

∂Q

)−T
∂L

∂Q̇
=

[(
∂q

∂Q

)−1

u(q(Q))

]
· ∂L
∂Q̇

=
∂L

∂Q̇1

,

4The Routh reduced Lagrangian is R = L −
∑

r pr q̇r|q̇r=fr(q,p), where pr := ∂L /∂q̇r, the sum
∑

r ranges
over the R ignorable coordinates, and the relations q̇r = fr(q, p) are obtained by inverting the R relations
pr := ∂L /∂q̇r. Such relations are finally used to reconstruct the complete motion after the L-equations
associated to R are solved.



10 CHAPTER 1. AN OVERVIEW OF LAGRANGIAN MECHANICS

the last step being due to the fact that the vector field u is rectified by the transformation
(1.15)5. One is then naturally led to ask whether in the presence of two one-parameter
symmetry groups {Φs} and {Ψr} it is still possible to find a transformation to new
coordinates such that two of them are ignorable at the same time. It turns out that such
a transformation exists iff Φs ◦Ψr = Ψr ◦ Φs for all s, r ∈ R.

Exercise 1.2. Consider the Lagrangian of a particle of mass m and charge q moving in a given
electromagnetic field, namely

L (x, ẋ, t) = m
|ẋ|2

2
+
q

c
A(x, t) · ẋ− qφ(x, t) , (1.17)

being A and φ the vector and scalar potential, respectively, and c the velocity of light.

1. Show that the Lagrange equation read

mẍ = q

(
E +

1

c
ẋ ∧B

)
, (1.18)

where, in the Lorentz force on the right hand side, the electric field E and the magnetic
field B are defined in terms of the potentials by

E := −∇xφ−
1

c

∂A

∂t
; B := ∇x ∧ A . (1.19)

2. Observe that E and B are invariant with respect to the gauge transformation of the po-
tentials

A 7→ A′ = A+∇χ ; φ 7→ φ′ = φ− 1

c

∂χ

∂t
, (1.20)

so that the Lagrange equation (1.18) is invariant as well.

3. Show that under the gauge transformation (1.20) L 7→ L ′ = L + Ḟ , with F := (q/c)χ.

4. Show that in the autonomous case (i.e. ∂A/∂t = 0, ∂φ/∂t = 0), the Jacobi integral is
given by

H (x, ẋ) =
m|ẋ|2

2
+ qφ(x) , (1.21)

and explain why this is obviously invariant under gauge transformations of the e.m. po-
tentials that are independent of time.

5Consider the system of ODEs q̇ = u(q). A transformation q = g(Q) rectifies the vector field u if the system
of ODEs in the new coordinates reads Q̇ = ê1 := (1, 0, . . . , 0)T , for example. Now, since g′(Q)Q̇ = u(g(Q)),
then the rectification condition reads (g′(Q))−1u(g(Q)) = ê1. The latter relation can also be written g′(Q)ê1 =
u(g(Q)), or ∂g/∂Q1 = u(g(Q1, . . . , QL)), which justifies the definition (1.15). Notice that, by definition, given
a one parameter group {Φs}, one can associate to it the generator u = dΦs/ds|s=0. Viceversa, given the system
of ODEs q̇ = u(q), its flow is the one parameter group generated by u. Indeed, one has

dΦs(Q)

ds
= lim

h→0

Φs+h(Q)− Φs(Q)

h
= lim

h→0

Φh(Φs(Q))− Φs(Q)

h
=

dΦh(Φs(Q))

dh

∣∣∣
h=0

= u(Φs(Q)) .
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Exercise 1.3. Consider the case of a particle in a constant uniform magnetic field B = B0ez,
with vector potential A(x) = B0(ez ∧ x)/2, and plane scalar potential φ that is a function of
x2 + y2. Find the conservation laws due to translation and rotation symmetry.

1.3 Hamilton first variational principle

Let us denote by Ca,b the space of smooth curves [t1, t2] 3 t 7→ q(t) ∈ RL with fixed ends
q(t1) := a, q(t2) := b. Then, for any given Lagrangian, the so-called action functional AL :
Ca,b → R is defined by

AL [q] :=

∫ t2

t1

L (q(t), q̇(t), t) dt . (1.22)

Notice that the curve t 7→ q(t) appearing on the right hand side of the latter formula denotes
any element of Ca,b (containing also the curve solution of the Lagrange equations with fixed
ends, if any). Pay attention to such abuses of notation made here and in the sequel.

The weak, or Gateaux differential of AL in q ∈ Ca,b with increment δq ∈ C0,0 is defined by

δAL :=
d

dε
AL [q + εδq]

∣∣∣
ε=0

= lim
ε→0

AL [q + εδq]− AL [q]

ε
. (1.23)

Such a quantity is also known as Lagrange first variation of AL, and is the linear part of the
increment of the functional. Notice that the increment δq is a finite curve with fixed ends set
to zero.

Remark 1.1. A more precise notation for δAL would be dAL [q]h := dAL [q+εh]/dε|ε=0, where
h denotes the increment curve (δq). However, for later convenience, we keep on making use of
the simpler δ-notation introduced above, also because it is the most widespread one in theoretical
physics.

Now, according to definition (1.23), a simple calculation shows that

δAL =

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· δq dt . (1.24)

The critical points of AL are those points of Ca,b where δAL = 0 independently of the increment.
The following proposition, characterizing the critical points of the action AL , is known as the
Hamilton first variational principle.

Proposition 1.1.

δAL = 0 ∀δq ⇐⇒ d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (1.25)

C PROOF. The implication ⇐ is obvious. The opposite one follows by contradiction (re-
ductio ad absurdum): if the Lagrange equations do not hold, then one can properly choose the
increment δq in such a way that δAL 6= 0. B

In words, the critical points of the action AL are the solutions of the Lagrange equations
in Ca,b. We stress that the latter is a boundary value problem that, depending on the interval
[t1, t2], may have no solution, unique solution, or infinitely many solutions.
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Exercise 1.4. For the harmonic oscillator with unit frequency L = (q̇2 − q2)/2, and the
Lagrange equation is q̈ = −q. Take t1 = 0 and t2 = T , q(0) = a and q(T ) = b. Show that

• if T 6= kπ, k ∈ Z, then the boundary value problem has unique solution (write it);

• if T = kπ and b = (−1)ka the problem has infinitely many solutions, namely a one
parameter family of them (write it);

• if T = kπ and b 6= (−1)ka there is no solution.

Exercise 1.5. Consider the boundary value problem in general. The Lagrange equations can be
written in second order form q̈ = g(q, q̇, t). Denote the unique solution of the associate initial
value problem with initial conditions q(t1) = a and q̇(t1) = v by q(t) = φ(t, t1; a, v). Now, in
the boundary value problem the initial velocity v is not known. Find under which condition
v is uniquely determined by the boundary data t1, t2 and a, b. Check such a condition on the
harmonic oscillator case.

Remark 1.2. The condition of the exercise above is violated, in general for special choices of
the end time t2 when t1 and the initial point (a, v) of the phase space are fixed.

We observe that by means of the Hamilton principle some of the properties of Lagrangian
systems listed above become obvious. For example, the gauge invariance of the L-equations is
immediately proven: the action associated to cL + Ḟ (for any constant c 6= 0 and any function
F (q, t)) is cAL + ∆F , where ∆F := F (b, t2) − F (a, t1) is a constant that vanishes under
differentiation with fixed ends. Also the invariance in form of the L-equations under point
transformations q 7→ Q(q, t) is easily proven: the critical points of the action AL ′ associated
to the transformed Lagrangian L ′(Q, Q̇, t) := L (q(Q, t), q̇(Q, t), t) are the solutions of the
L-equations in the new variables.

In the autonomous case, i.e. ∂L /∂t = 0, the flow of the L-equations preserves the Jacobi
integral H = p · q̇ −L , where p := ∂L /∂q̇. In such a case, one can formulate a variational
principle taking into account such a fact, which means restricting to curves t 7→ (q(t), q̇(t)) and
on the surface ΣE := {(q, q̇) : H (q, q̇) = E}. In this case, the action reads

AL [q] =

∫ t2

t1

L dt =

∫ t2

t1

(p · q̇ −H ) dt =

∫ t2

t1

(p · q̇) dt− E(t2 − t1) := AE[q]− E(t2 − t1) ,

where the reduced actionAE :=
∫ t2
t1

(p·q̇)dt has been defined. The constant contribution vanishes
under differentiation, which suggests the formulation of the following variational principle.

Proposition 1.2.

δAE = 0 ∀δq ⇐⇒ d

dt

∂L

∂q̇
− ∂L

∂q
= 0 . (1.26)
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1.4 Functional differentiation

Let us consider the space C
(n−1)
a0b0,...an−1bn−1

of curves [t1, t2] 3 t 7→ q(t) ∈ RL such that the (vector)
values of q(t) and of its derivatives of any order up to n− 1 included are fixed:

dj

dtj
q(t)

∣∣∣
t=t1

= aj ,
dj

dtj
q(t)

∣∣∣
t=t2

= bj , j = 0, . . . , n− 1 . (1.27)

Obviously C0
a0b0

= Cab, the space previously considered in the formulation of the Hamilton
principle, with a = a0 and b = b0.

Let us consider a functional FF : C
(n−1)
a0b0,...an−1bn−1

→ R

Ff [q] :=

∫ t2

t1

f
(
q(t), q(1)(t), . . . , q(n)(t), t

)
dt (1.28)

defined through a function f : R(n+1)L × R→ R. Here the shorthand notation adopted is

q(j)(t) :=
dj

dtj
q(t) , j = 0, . . . , n ,

where q(0) = q is understood. The action functional AL defined by a given Lagrangian L
is a particular example of such a functional in the case n = 1 (a Lagrangian is assumed to
depend on q and q̇ and not on q̈ and higher order derivatives). Let δq be any increment curve

in the space C
(n−1)
00,...00, with all the derivatives equal to zero up to order n − 1 included. Then,

by repeated use of integration by parts one easily gets

δFf =

∫ t2

t1

δFf
δq
· δq dt , (1.29)

where
δFf
δq

:=
∂f

∂q
− d

dt

∂f

∂q̇
+

d2

dt2
∂f

∂q̈
− · · · =

n∑
k=0

(−1)k
dk

dtk
∂f

∂q(k)
(1.30)

is the so-called functional gradient of Ff with respect to q; the ith component of such a quantity,
denoted by δFf/δqi is called functional derivative of Ff with respect to qi. The notation is lent
from differential calculus of functions of real variables, where

dF =
d

dε
F (x+ εh)

∣∣∣
ε=0

= ∇F (x) · h ,

where we notice that the gradient is the object multiplying the increment h with respect to
the Euclidean scalar product “·”. The similarity to such a case becomes even more evident if
the space L2([t1, t2];RL) is introduced, namely the space of curves in RL defined in the interval
[t1, t2], such that

∫ t2
t1
|x(t)|2dt < +∞ and endowed with the scalar product

〈x, y〉L2([t1,t2];RL) :=

∫ t2

t1

x(t) · y(t) dt , (1.31)
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where x, y : [t1, t2] → RL and the · denotes the ordinary Euclidean scalar product. One easily
checks that the fundamental properties of the scalar product hold for (1.31): it is a positive,
symmetric and bilinear form. The Euclidean space L2 just defined turns out to be complete
with respect to the norm ‖x‖ :=

√
〈x, x〉 induced by the scalar product, so that it is a Hilbert

space. One can now rewrite (1.30) as follows

δFf =

〈
δFf
δq

, δq

〉
L2([t1,t2];RL)

, (1.32)

which completely resembles the case of functions of real variables. For such a reason the
functional gradient is also called L2-gradient, which explicitly makes reference to the relevant
scalar product in the problem: δFf/δq = ∇L2Ff .

The same formula (1.30) for the functional gradient holds in the case of a functional Ff :
Cper
T → R defined on the space Cper

T of T -periodic curves in RL, namely curves q : R/TZ→ RL.
In such a case one can choose the increments δq ∈ Cper

T and perform the integral
∫
fdt on any

period of length T .

More in general, one can consider functionals depending on functions of more than one
independent variable. For example, let us consider the functional

Ff [u] =

∫
D

f(u, ux, uy, x, y) dxdy , (1.33)

where u : D → R is a function of two variables. Consider the case where D = [0, p]× [0, q] is a
rectangle with sides of length p and q and either u|∂D = 0, or u is p periodic in the x direction
and q periodic in the y direction, which can be also written as D = R/(pZ)×R/(qZ). In both
cases the increments δu satisfy the same boundary conditions of the functions u. One then
easily proves that the functional derivative of Ff is given by the formula

δFf
δu

=
∂f

∂u
− d

dx

∂f

∂ux
− d

dy

∂f

∂uy
. (1.34)

1.5 Beaded string and its continuum limit I: Lagrangian

formulation

Consider a system of N − 1 identical moving mass points, of mass m, in the x, y plane, the jth
mass moving along the vertical line at the fixed abscissa xj = ja, j = 1, . . . , N − 1. The jth
mass is connected to its nearest neighbors j− 1 and j+ 1 by an ideal spring of elastic constant
γ, and it is connected to the the point (xj, 0) by an ideal spring of elastic constant k. The first
γ-spring on the left is connected to the the origin(0, 0), whereas the last γ-spring on the right
is connected to the the point (L, 0), where L = Na. Such a system represents a kind of beaded
string with masses concentrated in N − 1 points.
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1.5.1 Solution of the discrete problem

We are interested in solving explicitly the equations of motion of the system first, and then in
performing the continuum limit a → 0, N → ∞ such that L = Na is kept fixed, everything
being done within the Lagrangian formalism. Such a study is divided into the following steps.

1. Show that the Lagrangian of the system is

LN =
N−1∑
j=1

mẏ2
j

2
−

N−1∑
j=0

[
k
y2
j

2
+ γ

(yj+1 − yj)2

2

]
− γNa

2

2
(1.35)

with fixed-ends boundary conditions y0(t) = 0 = yN(t) for any t.

2. Show that the L-equations are

mÿj = −kyj + γ(yj+1 + yj−1 − 2yj) , j = 1, . . . , N − 1 , (1.36)

always taking in mind that y0 = 0 = yN .

3. Solve the equations of motion (1.36) by separation of variables, looking for solutions of
the form

yj(t) = c(t)zj , (1.37)

where c is an unknown function of time and z is a parameter. Start to look for space
periodic solutions of period 2N , namely yj+2N = y2N for any j ∈ Z. Show that there
exist 2N independent complex solutions of the form (1.37), namely

y
(s)
j (t) = cs(t)e

ı 2πsj
2N , s = 0, 1, . . . , 2N − 1 , (1.38)

where cs is the solution of
c̈ = −ω2

sc , (1.39)

and

ω2
s =

k

m
+ 4

γ

m
sin
( πs

2N

)
, s = 0, 1, . . . , 2N − 1 , (1.40)

is the dispersion relation of the system (frequency vs. mode number).

4. Show that a 2N -periodic, odd initial condition satisfying yj+2N = yj and y−j = yj for any
j ∈ Z at t = 0, and the same for ẏj, evolves according to equation (1.36) preserving such
a property for any t. In particular, show that this implies that the problem with fixed
ends is a sub-case of the periodic one (consider what happens from −N to N).

5. By exploiting the linearity of the equations (1.36), show that the solutions (1.38) can be

written in the real form. Then, imposing y
(s)
0 = 0 = y

(s)
N , show that the N−1 independent

solutions of the equations (1.36) with fixed ends are

y
(s)
j (t) = qs(t)ϕs(j) , ϕs(j) :=

√
2

N
sin

(
πjs

N

)
, (1.41)

where here and in (1.40) s = 1, . . . , N −1, whereas qs(t) is a real solution of the harmonic
oscillator equation (1.39).
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6. Show that the functions ϕs(j) constitute an orthonormal set, namely they satisfy

〈ϕr, ϕs〉 :=
N−1∑
j=1

ϕr(j)ϕs(j) = δr,s , (1.42)

where δr,s denotes the Kronecker delta whose value is 1 if r = s and zero otherwise (Hint:
make use of the identity

N−1∑
n=0

cos(πJn/N) =

{
N if J = 2sN , s ∈ Z
1 if J = (2s+ 1) , s ∈ Z

which in turn can be proven by means of the geometric sum).

7. Show that the solution of the problem with initial conditions yj(0) = ξj, ẏj(0) = ηj,
j = 1, . . . , N − 1 is given by

yj(t) =
N−1∑
s=1

[
〈ϕs, ξ〉 cos(ωst) +

〈ϕs, η〉
ωs

sin(ωst)

]
ϕs(j) . (1.43)

The method of solution just exposed is known as reduction to normal modes of the given
Lagrangian problem. The sth normal mode of the beaded string is the solution y

(s)
j (t) =

qs(t)ϕs(j), characterized by a space profile ϕs(j) oscillating at the frequency ωs. The general
solution of the problem is a linear combination of all the normal modes of the system.

1.5.2 Continuum limit

We are interested in studying the continuum limit of the beaded string with a fixed length L,
as N → ∞ and, as a consequence, a = L/N → 0. In order to do this, we start by supposing
that there exists a smooth interpolating function u(t, x) defined on the interval [0, L], vanishing
at its ends and such that

yj(t) = u(t, ja) , j = 0, . . . , N . (1.44)

The following three hypotheses are made:

1. the linear mass density ρ := lima→0Nm/L = lima→0m/a exists;

2. the tension τ := lima→0 γa exists;

3. the local square frequency ω2 := (lima→0 k/a)/ρ exists.

Thus the mass of the particles and the elastic constants of the springs connecting them must
depend in a precise way on the step a = L/N .

1. Show that as a→ 0, the limit of the dispersion relation (1.40) exists and is given by

lim
a→0

ω2
s = ω2 +

(πcs
L

)2

, s = 1, 2 . . . . (1.45)
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2. Show that if yj, as given by (1.44), satisfies the L-equations (1.36), then u satisfies the
one-dimensional Klein-Gordon (1DKG) equation

utt = c2uxx − ω2u , c2 := τ/ρ , (1.46)

whereas, in the same limit (i.e. a→ 0 or N →∞)

LN → L∞[u, ut] :=

∫ L

0

[
ρ

(ut)
2

2
− ρω2u

2

2
− τ (ux)

2

2

]
dx . (1.47)

As a consequence, the action functional

AN :=

∫ t2

t1

LNdt→
∫
t1

t2L∞ =: A∞[u] . (1.48)

3. Show that the differential of any Lagrangian functional of the form

L [u, ut] =

∫ L

0

L(u, ut, ux) dx , (1.49)

and defined on functions that vanish at x = 0 and x = L, is given by

δL [u, ut] =

∫ L

0

[(
∂L
∂u
− d

dx

∂L
∂ux

)
+
∂L
∂ut

]
dx . (1.50)

Show that, as a consequence, the Hamilton variational principle

δA = 0 ∀ δu ⇔ δA

δu
=
∂L
∂u
− d

dx

∂L
∂ux
− d

dt

∂L
∂ut

= 0 (1.51)

holds for the action functional A =
∫

L [u, ut]dt.

4. Write down explicitly the Lagrange equation on the right hand side of (1.51) for the
Lagrangian L∞ defined in (1.47), and show that it coincides with the 1D KG equation
(1.46).

5. Suppose that the initial conditions ξ, η of the beaded string be given by two C∞ functions
u0 and v0 that vanish at x = 0 and x = L, as follows:

ξj = u0(ja) ; ηj = v0(ja) , j = 0, . . . , N .

Write the corresponding solution (1.43) and find the interpolating function u(t, x) sup-
posed to exist at the beginning of our treatment of the continuum limit. Find the limit of
such a solution and check that it solves the 1D KG equation (Hint: study first the limit
of 〈ϕs, ϕr〉 = δsr).

6. Solve directly the 1D KG equation (1.46) by separation of variables and linear superpo-
sition of the normal mode solutions.
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Chapter 2

Hamiltonian formalism

2.1 Hamilton equations

The L-equations in second order form q̈ = g(q, q̇, t) can always be written as an equivalent
system of first order: q̇ = v, v̇ = g(q, v, t). This is not the only way of doing that. Another
approach is to make use of the Lagrangian momentum

p :=
∂L

∂q̇
(q, q̇, t) (2.1)

in place of the velocity q̇ as a variable. This is possible if one can express q̇ in terms of p. From
(2.1), it follows that if the Hessian of L with respect to the velocities (∂2L/∂q̇2) is non singular,
then there exists a function f such that

q̇ = f(q, p, t) . (2.2)

Definition 2.1. The function

H(q, p, t) := p · q̇ − L
∣∣∣
q̇=f

= p · f(q, p, t)− L(q, f(q, p, t), t) (2.3)

is called Hamilton function, or Hamiltonian, of the given Lagrangian system.

Observe that H is the Legendre transformation of L. The following proposition holds.

Proposition 2.1. The Lagrange equations ṗ = ∂L/∂q are equivalent to the Hamilton (H)
equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (2.4)

Moreover, ∂H/∂t = −∂L/∂t.

C PROOF. Recalling that p = ∂L/∂q̇, one finds

dH = −∂L
∂q
· dq + f · dp− ∂L

∂t
,

19
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which in turn implies
∂H

∂q
= −∂L

∂q
;
∂H

∂p
= f ;

∂H

∂t
= −∂L

∂t
.

The statement of the proposition follows now by taking into account that q̇ = f (equivalent to
the definition of p) and the L-equations ṗ = ∂L/∂q. B

One easily checks that in the autonomous case (∂H/∂t = 0) the Hamiltonian H is a constant
of motion, i.e. Ḣ = 0 along the solution of the H-equations. On the other hand, by the identity
∂H/∂t = −∂L/∂t = 0, the Jacobi integral H is constant along the solution of the L-equations.
From the definitions (2.3) of the Hamiltonian and (1.12) of the Jacobi integral, one immediately
finds that

H(q, p) = H (q, f(q, p)) . (2.5)

where q̇ = f(q, p) as explained above.

Example 2.1. Consider a mechanical Lagrangian L = K(q, q̇) − U(q), with kinetic energy
given by K(q, q̇) = (q̇ · M(q)q̇)/2, M(q) being the mass or kinetic matrix (symmetric and
positive definite). In this case H = K + U . On the other hand, p = M(q)q̇, so that q̇ =
f(q, p) := M−1(q)p, and the Hamiltonian is given by H = (p ·M−1(q)p)/2 + U(q).

Exercise 2.1. Consider the Lagrangian (1.17) of a charged particle in a given e.m. field. Show
that the corresponding Hamiltonian is

H(x, p, t) =
|p− (q/c)A(x, t)|2

2m
+ qφ(x, t) . (2.6)

Show that, in the autonomous case (i.e. ∂A/∂t = 0, ∂φ/∂t = 0), formula (2.5) holds with the
Jacobi integral (1.21).

Exercise 2.2. Show that, if H(q, p, t) is the Hamiltonian associated to L(q, q̇, t), the Hamilto-
nian H ′(q, p, t) associated to the gauge equivalent Lagrangian L′ = aL + Ḟ (a a constant) is
given by

H ′(q, p, t) = aH

(
q,
p−∇qF

a
, t

)
− ∂F

∂t
. (2.7)

Notice that the momentum conjugated to q is p = a∂L/∂q̇ +∇qF . Compute the Hamiltonian
H ′ corresponding to the gauge displaced Lagrangian L′ of a charged particle in an e.m. field
(where a = 1 and F = (q/c)χ).

The procedure described above fails if the Hessian of L with respect to the velocities is
singular. This happens for example in the case of Lagrangians that are linear in the velocity
q̇. However, a Hamiltonian formulation of the dynamics may exist even in such pathological
cases.

Example 2.2. Consider a particle of zero mass and charge q moving in the (x, y) plane subject
to a constant, uniform magnetic field B0 orthogonal to the plane and to an electric potential
φ(x, y). The Lagrangian of the system is

L =
q|B0|

2c
(xẏ − yẋ)− qφ(x, y) ,
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which can be obtained by (1.17) setting m = 0, A = (B0∧x)/2 and φ = φ(x, y). The components
of the momentum p are px = −(qγ/2)y and py = (qγ/2)x, where γ := |B0|/c. The L-equations
read

ẏ =
1

γ

∂φ

∂x
; ẋ = −1

γ

∂φ

∂y
. (2.8)

The Jacobi integral in this case is H = qφ(x, y). The Legendre transformation here obviously
fails, and one can check that, for example, ṗx 6= −∂H /∂x. On the other hand, upon setting
y = q, x = p and h(q, p) := φ(p, q)/γ, the L-equations (2.8) take on the standard Hamiltonian
form q̇ = ∂h/∂p, ṗ = −∂h/∂p.

2.2 Hamilton second variational principle

The definition of the the Hamiltonian (2.3) and the Proposition 2.1 lead to the following vari-
ational principle.

Proposition 2.2. The solutions of the Hamilton equations q̇ = ∂H/∂p, ṗ = −∂H/∂q are the
critical points (i.e. curves) of the Hamiltonian action functional

AH [q, p] :=

∫ t2

t1

[p · q̇ −H(q, p, t)] dt (2.9)

in the space of the smooth curves t 7→ (q(t), p(t)) such that q(t1) and q(t2) are fixed.

C PROOF. The differential of AH at (q, p) with increments (δq, δp) satisfying δq(t1) = 0
and δq(t2) = 0, is

δAH =

∫ t2

t1

[(
q̇ − ∂H

∂p

)
· δp+

(
−ṗ− ∂H

∂q

)
· δq
]

dt+ p · δq
∣∣∣t2
t1
. (2.10)

The boundary term vanishes, and δAH = 0 ∀ δq, δp iff the Hamilton equations hold. B

Remark 2.1. The critical points of the action AH are the solutions of the Hamilton equations
with fixed ends on q(t) and no boundary condition on p(t). On the other hand, since the
Hamilton equations are of first order, the associated boundary value problem with p(t1) and
p(t2) also fixed has no solution, in general (try to understand why).

2.2.1 The action as a function

The Hamilton principle means that the value of the action (2.9) does not change close to
a critical curve t 7→ (q, p)(t) solution of the Hamilton equations with boundary conditions
q(t1) = a and q(t2) = b. More precisely, if a curve is ε-close to the critical one, then the
variation of AH is O(ε2). Of course the specific value of the action at the critical point depends
on the boundary conditions. One can thus consider the action (2.9) as a function S(q, t) of the
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arrival time t2 := t and of the arrival coordinate q(t) := q along a critical path, for example.
One thus defines

S(q, t) :=

∫ t

t1

(p(s) · q̇(s)−H(q(s), p(s), s)) ds , (2.11)

the integral on the right being computed on a critical curve t 7→ (q, p)(t) solution of the Hamilton
equations with boundary conditions q(t1) = a, thought of as fixed, and q(t) = q. Taking the
differential (or the total time-derivative) of (2.11) one gets

dS =
∂S

∂q
· dq +

∂S

∂t
dt = p · dq −Hdt ,

which is equivalent to

p =
∂S

∂q
;
∂S

∂t
+H(q, p, t) = 0 . (2.12)

Remark 2.2. Observe that the variation of p(t) := p does not affect S, which means ∂S/∂p = 0.

The two relations (2.12) together give rise to a partial differential equation, namely the
Hamilton-Jacobi equation

∂S

∂t
+H

(
q,
∂S

∂q
, t

)
= 0 , (2.13)

on which we will come back later. We here notice only that the action function S satisfies (i.e.
is a solution of) the Hamilton-Jacobi equation, and its deep meaning will be clarified below, in
the framework of the theory of the transformations of H-systems.

2.3 General properties of Hamiltonian systems

The following general properties of the H-equations (2.4) can be easily checked to hold, in-
dependently of the fact that the H-system at hand correspond to a L-system via a Legendre
transformation.

1. Along the solutions of the H-equations q̇ = ∂H/∂p, ṗ = −∂H/∂q

dH

dt
=
∂H

∂q
· q̇ +

∂H

∂p
· ṗ+

∂H

∂t
=
∂H

∂t
, (2.14)

so that H is a first integral, or conserved quantity, iff H does not depend (explicitly) on
time.

2. The Hamiltonians H and H ′ = H+ψ(t) are equivalent, i.e. the H-equations are invariant
under any time-dependent translation of the Hamiltonian.

3. Given a non-autonomous (i.e. explicitly time-dependent) Hamiltonian H(q, p, t), (q, p) ∈
R2n it is always possible to associate to it the equivalent autonomous problem defined by

K(q, ξ, p, η) = H(q, p, ξ) + η ; ξ(0) = 0 ,

where (ξ, η) ∈ R2 is a pair coordinate-momentum (so that ξ̇ = ∂K/∂η = 1).
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4. By introducing the quantities

x :=

(
q
p

)
; ∇xH(x, t) :=

(
∂H/∂q
∂H/∂p

)
,

and

J2n :=

(
On In
−In On

)
, (2.15)

the Hamilton equations take on the simpler and more compact form

ẋ = J2n∇xH(x, t) . (2.16)

The matrix (2.15) is called standard symplectic matrix, and its fundamental role, proper-
ties and meaning are going to be discussed below. The lighter notation J∇H will be also
used in the sequel, when no confusion is possible.

5. The x-space, or (q, p)-space of a Hamiltonian system is referred to as phase space and
usually denoted by Γ ⊆ R2n. Hamiltonian systems are those dynamical systems defined
by a vector ordinary differential equation (ODE) of first order ẋ = u(x, t) whose vector
fiels u is the symplectic gradient of a given function H : Γ×R→ R, namely a vector field
of the form

u(x, t) = J∇H(x, t) := XH(x, t) . (2.17)

The algebra1 of real smooth functions F defined on Γ × R is the so-called algebra of
observables (i.e. the space of all possible Hamiltonians). To each function F in the
algebra is associated its vector field XF = J∇F , i.e. its symplectic gradient.

6. The solution of the Hamilton equations ẋ = J∇H at time t with initial condition ξ at
time t = t0 is called the flow of the given Hamiltonian system, or the H-flow in short,
and denoted by Φt,t0

H (ξ). The H-flow has the following properties:

Φt0,t0
H = idΓ ; Φt2,t0 = Φt2,t1

H ◦ Φt1,t0
H

where idΓ denotes the identity on Γ and t0 ≤ t1 ≤ t2 are arbitrary times. Of course, in
the autonomous case (∂H/∂t = 0) Φt,t0

H = Φt−t0
H . Such properties are general and hold for

flows of any ODE. Notice that the H-flow is a one parameter group, with the property
Φt
H ◦ Φs

H = Φt+s
H only in the autonomous case and only if the solution is global for any

initial condition, i.e. if Φt
H(ξ) exists for any t ∈ R and ξ ∈ Γ (in such a case the flow is also

said to be complete). In the autonomous case the Hamiltonian H is a constant of motion
and the dynamics takes place on the surface ΣE := {x ∈ Γ : H(x) = E} := H−1(E). A
sufficient condition for global existence of the solution is the compactness of ΣE.

Exercise 2.3. Check that in the autonomous case XH = J∇H is tangent to ΣE (Hint:
∇H is orthogonal to ΣE).

In the sequel no distinction is made between global and local H-flows, unless strictly
necessary.

1An algebra is a vector, or linear space closed with respect to a product that is distributive with respect to
the sum.
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2.3.1 Symplectic structure

Let us consider in some detail the algebraic and geometric structure of H-systems ẋ = XH(x, t) =
J∇H(x, t), where J = J2n is the standard symplectic matrix defined in (2.15). One immedi-
ately checks that JT = J−1 = −J , and J2 = −I2n, the latter implying | det J | = 1; actually
det J = 1, as can be easily proven. Indeed, consider the eigenvalue problem Jξ = λξ; λ 6= 0
since det J 6= 0. Setting ξ = (u, v)T one gets v = λu and −u = λv, so that u = 0 iff v = 0, and
(1 + λ2)u = 0. Thus λ = ±ı, ı denoting the imaginary unit. Since J is real, the eigenvalues
come in complex conjugate pairs, and the product of them is one.

The matrix J is called standard symplectic matrix for the following reason. Consider the
skew-symmetric bilinear form on R2n

ω(x, y) := x · Jy , (2.18)

called the symplectic product (which is not a scalar product since ω(x, x) = 0 for any x). Now
look for the linear transformations x 7→ Sx, y 7→ Sy that leave such a form invariant, namely
ω(Sx, Sy) = ω(x, y) for any x, y. One gets STJ2nS = J2n, whose solutions S define the so-called
symplectic group Sp(2n,R) of 2n × 2n real matrices. Indeed one easily checks that S, S ′ ∈
Sp(2n,R) implies SS ′ ∈ Sp(2n,R), and the matrix product is associative; I2n ∈ Sp(2n,R),
so that a unit element exists. Moreover, S ∈ Sp(2n,R) is non singular and, multiplying
STJS = J by S−1 from the right and by S−T from the left one verifies that S−1 ∈ Sp(2n,R),
so that the inverse element exists. This shows that Sp(2n,R) is a group (with respect to
the matrix product). A further property that is easily checked is that S ∈ Sp(2n,R) implies
ST ∈ Sp(2n,R), i.e. also SJST = J holds. Obviously, J ∈ Sp(2n,R). From the relation
SJST = J it follows that | detS| = 1. Actually detS = det J = +1. Indeed,

pS(λ) := det(S − λI) = det(−JS−TJ − λI) = det(−J(S−T − λI)J) =

= det(S−T (I− λST )) =
λ2n

detS
det(ST − λ−1I) =

=
λ2n

detS
pS(1/λ) . (2.19)

From such an identity, and from the fact that pS is a polynomial with real coefficients, it
follows that the eigenvalues of S occur in quartets: λ, 1/λ, λ̄, 1/λ̄ (an overbar denoting complex
conjugation). Moreover, one easily checks that the algebraic multiplicity of the four members
of a quartet is the same. Then, the product of the eigenvalues is one.

The dimension dimSp(2n,R) of the symplectic group is defined as the number of indepen-
dent parameters that uniquely determine any of its elements. Indeed, due to the fundamental
relation SJST = J , the 4n2 real elements of the matrix S are not independent of each other.
It turns out that dimSp(2n,R) = n(2n + 1). In order to show this, let us write the generic
symplectic matrix S in block form, namely

S =

(
a b
c d

)
,
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where a, b, c, d are n× n blocks. Then, the fundamental relation SJST = J is easily shown to
be equivalent to the following three conditions

abT = (abT )T

cdT = (cdT )T

adT − bcT = In
.

The first two relations require a matrix to be symmetric, so that they give rise 2n(n− 1)/2 =
n2−n equations; the last one gives rise to n2 equations. The number of independent entries of
S is given by 4n2 − (n2 − n)− n2 = 2n2 + n = n(2n+ 1).

As will be shown below, it is interesting to characterize the tangent space of the group
Sp(2n,R) at the identity I2n, namely TISp(2n,R) := sp(2n,R). In order to do this, let us
consider a curve t 7→ S(t) in the symplectic group passing through the identity, namely S(t) ∈
Sp(2n,R) as t varies in a real interval containing t = 0, and S(0) = I2n. Call M := Ṡ(0)
the tangent vector to such a curve in the symplectic group. Taking the time derivative of
S(t)JST (t) = J with respect to t and setting t = 0 one gets

MJ + JMT = 0 . (2.20)

The relation above defines the vector space sp = TISp (that this is a vector space follows from
the fact that (2.20) is linear and homogeneous in M). One easily proves that M ∈ sp implies
MT ∈ sp. Moreover, one checks that if M,M ′ ∈ sp then the commutator

[M,M ′] := MM ′ −M ′M ∈ sp . (2.21)

Such a properties implies that the vector space sp with the product [ , ] : sp × sp → sp is a
Lie algebra2. Matrices satisfying (2.20) are also called Hamiltonian matrices. An important
characterization of sp is the following: M ∈ sp iff M = JB with B = BT . The proof is
immediate: observe that J is nonsingular and plug M = JB into the left hand side of (2.20),
thus getting MJ + JMT = J(B − BT )J . One can observe that the dimension of the tangent
vector space sp(2n,R) coincides with the dimension of the symplectic group (Hint: compute
the number of independent parameters needed to specify a symmetric 2n × 2n matrix). As a
final remark, it is observed that

M ∈ sp ⇔ S(t) = etM ∈ Sp . (2.22)

This is easily proven by setting W (t) := etMJetM
T
; by differentiating with respect to t one gets

the equation Ẇ = MW +WMT , and notice that W (0) = J is a solution of such equation. The
conclusion W (t) = W (0) = J is obtained by uniqueness. {etM}t∈R is a one parameter subgroup
of Sp.

2A Lie algebra L = (V, [ , ]) is a vector space V endowed with a “product” [ , ] : V × V → V that is skew-
symmetric, bilinear and Jacobi; here V is the matrix vector space sp and [ , ] is the ordinary commutator which
is easily checked to satisfy the Jacobi identity, namely [[M,M ′],M ′′] + [[M ′,M ′′],M ] + [[M ′′,M ],M ′] ≡ 0 for
any triple M,M ′,M ′′.
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What has been just shown is an example of a general result. Actually the symplectic group
Sp(2n,R) is a Lie group of dimension N = n(2n + 1). A Lie group G of dimension N is a
group with a structure of N -dimensional differentiable manifold compatible with the group
structure. In practice this means that there exists a smooth map RN 3 µ 7→ g(µ) ∈ G (the
compatibility of the manifold structure with the group one is already understood by requiring
the closure: g(µ) ◦ g(ν) = g(ω) means that there exists a function ϕ : RN × RN → RN such
that ω = ϕ(µ, ν). Other properties of ϕ are easily inferred by the group properties). A general
theorem states that the tangent pace g := TeG to G at its identity e has a natural structure of
Lie algebra (and is referred to as the Lie algebra of the given Lie group). For matrix groups, the
skew symmetric bilinear product characterizing the Lie algebra g is always the commutator.
Moreover, in general, m ∈ g iff etm ∈ G for any t. The following are the most important
examples of matrix Lie groups and their Lie algebras.

• O(n), the orthogonal group, which is the invariance group of the real, Euclidean, scalar
product x · y in Rn. The fundamental relation is RTR = I. The dimension of the group
is n(n − 1)/2. The component connected to the identity of the group, whose matrices
have determinant detR = +1, is the special orthogonal group SO(n), or the group of
proper rotations in Rn, whose Lie algebra so(n) is the algebra of skew symmetric matrices
AT + A = 0. One parameters subgroups of SO(n) have the form R(t) = etA.

• U(n), the unitary group, which is the invariance group of the complex, Euclidean, scalar
product x · y in Cn. The fundamental relation is U †U = I, where U † = ŪT denotes
complex conjugation and transposition. The dimension of the group is n2. The component
connected to the identity of the group, whose matrices have determinant detU = +1, is
the special unitary group SU(n), or the group of proper rotations in Cn, whose Lie algebra
su(n) is the algebra of anti Hermitian matrices A†+A = 0. Notice that the dimension of
SU(n) and its algebra is n2−1: the determinant of the unitary group has unit modulus in
C. A anti Hermitian matrix is always of the form A = ıH, where H† = H is Hermitian and
ı is the imaginary unit. One parameters subgroups of SU(n) have the form R(t) = eıtH .

The symplectic group naturally arises when one consider a H-system ẋ = J∇xH and performs
a linear change of coordinates y(t) = Sx(t). The gradient transforms according to

∂

∂xj
=
∑
k

∂yk
∂xj

∂

∂yk
⇔ ∇x =

(
∂y

∂x

)T
∇y = ST∇y ,

which implies
ẏ = SJST ∇yH̃ , H̃(y) := H(S−1y) .

The transformed system (in the y-variables) is Hamiltonian if ∂y/∂x = S is symplectic:
SJST = J . A linear transofrmation of coordinates with symplectic Jacobian is an example
of canonical transformation (whose definition, properties and characterizations will be given in
the sequel). The symplectic algebra naturally arises in considering H-systems linearized around
a non degenerate critical point x0 of H: ∇H(x0) = 0, ∂2H(x0) nonsingular (∂2H = ∂2H/∂x2

denotes the Hessian matrix of H). Setting x = x0 + ξ and linearizing one gets

ξ̇ = Mξ := J∂2H(x0)ξ . (2.23)
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Then M = J∂2H(x0), the Jacobian of the linear Hamiltonian vector field, is a Hamiltonian
matrix, i.e. an element of the symplectic algebra. The solution of equation (2.23) is ξ(t) =
etMξ0, and the Jacobian etM of such a Hamiltonian flow with respect to the initial condition is
symplectic.

2.3.2 Poisson bracket

Let us consider the evolution of any smooth function (or observable) F : Γ×R→ R : (q, p, t) 7→
F (q, p, t) along a H-flow, namely

Ḟ :=
d

dt
F (q(t), p(t), t) =

∂F

∂q
· q̇ +

∂F

∂p
· ṗ+

∂F

∂t
=

=
∂F

∂q
· ∂H
∂p
− ∂H

∂q
· ∂F
∂p

+
∂F

∂t
:= {F,H}+

∂F

∂t
. (2.24)

Such a formula holds even if the flow is not globally defined. In the last step of (2.24) the
Poisson (P) bracket {F,G} of two functions F and G defined on Γ (possibly depending on time
explicitly) has been defined:

{F,G} =
∂F

∂q
· ∂G
∂p
− ∂G

∂q
· ∂F
∂p

=
n∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)
. (2.25)

One easily checks that in the notation introduced above the P-bracket reads

{F,G} = ω(∇F,∇G) = ω(XF , XG) , (2.26)

where ω(·, ·) is the symplectic product defined in (2.18) (check it explicitly). It is also observed
that the P-bracket is invariant with respect to linear symplectic transformations y = Sx, with
S ∈ Sp. Indeed

{F,G}x = ω(∇xF,∇xG) = ω(ST∇yF̃ , S
T∇yG̃) = ω(∇yF̃ ,∇yG̃) = {F̃ , G̃}y ,

where F̃ (y) = F (S−1y) and G̃(y) = G(S−1y).
The P-bracket is a function defined on Γ× R, and one can check by direct inspection that

the following properties hold:

1. {F,G} = −{G,F} (skew-symmetry);

2. {aF + bG,H} = a{F,G}+ b{G,H} (left-linearity);

3. {F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} ≡ 0 (Jacobi identity);

4. {FG,H} = F{G,H}+ {F,H}G (Leibniz rule),

for any triple of functions F,G,H and any pair of real numbers a, b.
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Remark 2.3. The algebra of observables, i.e. functions defined on Γ × R, endowed with the
operation { , } has the structure of a Lie algebra (properties 1., 2., and 3.) of Leibniz type
(property 4.). A Lie-Leibniz algebra is called a Poisson (P) algebra.

In terms of the P-bracket, one can rewrite the H-equations as follows:

ẋ = {x,H} , (2.27)

to be meant by components, which is an alternative (and equivalent) definition of Hamiltonian
system.

2.3.3 Hamiltonian flows and vector fields

It has been shown above that the Jacobian of a linearized Hamiltonian vector field is a Hamil-
tonian matrix (an element of the symplectic algebra), whereas the Jacobian of the H-flow of a
linearized system is a symplectic matrix. Actually, such two properties characterize Hamilto-
nian vector fields and flows, in general.

Proposition 2.3. Consider an ODE

ẋ = u(x, t) (2.28)

in R2n, with solution x(t) = Φt,t0(ξ) corresponding to the initial condition x(t0) = ξ.

1. The vector field of (2.28) is Hamiltonian iff its Jacobian ∂u/∂x is Hamiltonian.

2. The flow of (2.28) is Hamiltonian iff its Jacobian ∂x/∂ξ is symplectic.

C PROOF. 1. If u is Hamiltonian then u = J∇xH, so that ∂u/∂x = J∂2
xH which is of the

Hamiltonian form. On the other hand, if ∂u/∂x ∈ sp then it satisfies (∂u/∂x)J+J(∂u/∂x)T =
0. Set u := Jv, which defines v. Then ∂u/∂x = J(∂v/∂x) and

0 =
∂u

∂x
J + J

(
∂u

∂x

)T
= J

[
∂v

∂x
−
(
∂v

∂x

)T]
J := J (rot(v)) J .

Thus rot(v) = 0, which implies v = ∇H and u = J∇H.
2. Define J (ξ, t) := ∂x/∂ξ. One easily checks that J̇ = (∂u/∂x)J . Define also W (ξ, t) :=

J JJ T . By taking the time derivative of W one finds

Ẇ =
∂u

∂x
W +W

(
∂u

∂x

)T
; W (t0) = J . (2.29)

Thus, if J is symplectic then W (t) = J for any t and Ẇ = 0, so that (2.29) implies that ∂u/∂x
is Hamiltonian, u = J∇H and the flow of (2.28) is a Hamiltonian flow. On the other hand, if
the flow of (2.28) is Hamiltonian, then u = J∇H and ∂u/∂x is a Hamiltonian matrix. Then
W (t) = W (t0) = J is a solution of the linear system of ODEs (2.29). By uniqueness this is the
solution of (2.29), which implies J symplectic. B
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2.3.4 Liouville equation and statistical mechanics

As an application of the above properties, let us consider again the ODE (2.28) in Γ ⊆ RN ,
where N is not necessarily even. Let us imagine to choose, on the phase space Γ, a probability
measure ρ(x, t)dV (x), where ρ(x, t) is the probability density at (x, t) and dV (x) = dNx is the
volume element. Such a measure defines the probability to find the system in a set Ω0 ⊆ Γ at
a given time t0, say, namely

Prob(ξ ∈ Ω0|t0) :=

∫
Ω0

ρ(ξ, t0)dV (ξ) . (2.30)

Of course Prob(x ∈ Γ|t) =
∫

Γ
ρdV = 1. Let Ωt be the evolution at time t > t0 of the set Ω0

along the flow of (2.28), namely Ωt := {x(t) ∈ Γ : ẋ = u; x(t0) = ξ ∈ Ω0}. The following
hypothesis allows to get a partial differential equation satisfied by ρ:

Prob(x(t) ∈ Ωt|t) = Prob(ξ ∈ Ω0|t0) , (2.31)

which can be interpreted as a law of mass conservation in absence of sources or sinks. By taking
the time derivative of (2.31) and using the definition (2.30), one gets

0 =
d

dt

∫
Ωt

ρ(x(t), t)dV (x(t)) =
d

dt

∫
Ω0

ρ(x(t), t) det

(
∂x(t)

∂ξ

)
dV (ξ) =

=

∫
Ω0

[
∂ρ

∂t
+ u · ∂ρ

∂x
+
Ḋ

D
ρ

]
D(ξ, t)dV (ξ) , (2.32)

where D(ξ, t) := det
(
∂x(t)
∂ξ

)
. By a direct computation one easily finds

Ḋ

D
= tr

(
∂u

∂x

)
= (∇x · u) . (2.33)

Exercise 2.4. Prove formula (2.33). Hint: apply the definition of derivative.

Equations (2.32) and (2.33) together imply that ρ has to satisfy the continuity equation

∂ρ

∂t
+∇x · (ρu) = 0 . (2.34)

Such an equation describes the time evolution of the probability density once the initial condi-
tion ρ(ξ, t0) is specified.

Now let us restrict to consider Hamiltonian systems (N = 2n). In such a case u = XH :=
J∇xH(x, t) and

∇x ·XH ≡ 0 =
n∑
i=1

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)
≡ 0 ,

which in turn implies, by (2.33), D(ξ, t) = D(ξ, t0) = 1. Such a statement is usually referred to
as the Liouville theorem on conservation of the phase space volume along Hamiltonian flows:

dV (x(t)) = D(ξ, t)dV (ξ) = dV (ξ) .
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An alternative way to get such a conclusion, which does not make use of the general equation
(2.33), consists in using the fact that ∂x(t)/∂ξ is symplectic and its determinant is one. As a
further remark, we notice that in the Hamiltonian case

∇x · (ρXH) = ∇xρ ·XH = ∇xρ · J∇xH = {ρ,H} ,

so that the continuity equation simplifies to

∂ρ

∂t
+ {ρ,H} = 0 . (2.35)

The latter equation is known as the Liouville equation, describing the time evolution of the
probability density in the phase space of a Hamiltonian system.

Statistical mechanics is the theory that reconstructs equilibrium thermodynamics of Hamil-
tonian systems starting from a the microscopic properties. In a nutshell, it consists in choosing
particular stationary measures, i.e. probability densities independent of times, such that one is
able to consistently formulate the first and second principle of thermodynamics for reversible
transformations. The condition ∂ρ/∂t = 0 in the Liouville equation implies {ρ,H} = 0 (where
∂H/∂t = 0 is also understood). If H does not display non trivial first integrals, one is led to the
condition ρ = f(H). The (essentially unique) right choice to build up thermodynamics is the
so-called Gibbs density, namely f(H) = e−βH/Z, where β = 1/T is the inverse temperature and
Z =

∫
Γ
e−βHdV is a normalization constant. The fastest way to get the Gibbs distribution is

to observe that if one artificially puts together two noninteracting systems, whose Hamiltonian
is the sum of the two, namely H = H1 +H2, the they must be statistically independent of each
other:

f(H1 +H2) = f(H1)f(H2) ,

which immediately leads to the exponential function.

2.4 Canonical transformations

A natural question is the following. As stressed above, the L-equations are left invariant in form
by any point transformation q 7→ Q(q, t). Which are the transformations that leave invariant in
form the H-equations (2.4) or (2.16)? It has been shown above that linear transformations of
coordinates defined by a symplectic Jacobian (constant) matrix map any Hamiltonian system
into a Hamiltonian system, preserving the Hamiltonian and the Poisson bracket. In order
to characterize the transformations of coordinates that map any Hamiltonian system into a
Hamiltonian system, it is first convenient to consider how a general system transforms under a
general change of variables.

Let us consider the system
ẋ = u(x, t) ; x ∈ RN , (2.36)

where N is any dimension (not necessarily even) and u(x, t) is a given vector field. Consider
then the time-dependent change of variables

x 7→ y = f(x, t) ; y 7→ x = g(y, t) . (2.37)
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First of all, one easily checks that, by differentiation, the identities x = g(f(x, t), t) and y =
f(g(y, t), t) imply

∂f

∂x

∂g

∂y
= IN =

∂g

∂y

∂f

∂x
;
∂f

∂x

∂g

∂t
+
∂f

∂t
= 0 =

∂g

∂y

∂f

∂t
+
∂g

∂t
. (2.38)

Then, taking the time derivative of one of the two relations y = f(x, t) or x = g(y, t), and
taking into account (2.36), one finds that the new variable y(t) evolves according to

ẏ = v(y, t) , (2.39)

where the transformed vector field v is given by

v(y, t) :=

[
∂f

∂x
u(x, t) +

∂f

∂t

] ∣∣∣
x=g(y,t)

=

(
∂g

∂y

)−1 [
u(g(y, t), t)− ∂g

∂t

]
. (2.40)

The vector field v (u, respectively) is said to be the conjugate of u (v) by the transformation f
(g). This is completely general. Now, restricting to the Hamiltonian case (N = 2n now), and
taking into account that

∂

∂xi
=
∑
j

∂yj
∂xi

∂

∂yj
⇔ ∇x =

(
∂f

∂x

)T
∇y ,

one finds that the vector field v conjugate to the Hamiltonian vector field u = XH := J∇xH(x, t)
by f is

v(y, t) =
∂f

∂x
J

(
∂f

∂x

)T ∣∣∣
x=g(y,t)

∇yH̃(y, t) +
∂f

∂t

∣∣∣
x=g(y,t)

= (2.41)

=

(
∂g

∂y

)−1

J

(
∂g

∂y

)−T
∇yH̃(y, t)−

(
∂g

∂y

)−1
∂g

∂t
, (2.42)

where the transformed Hamiltonian

H̃(y, t) := H(g(y, t), t) (2.43)

has been defined. The following definition is now naturally suggested by the above formulas.

Definition 2.2. The change of variables, or transformation f (defined by the formulas (2.37))
is said to be canonical if it conjugates any Hamiltonian vector field u = XH to a Hamiltonian
vector field v = XK.

An equivalent definition formulated in terms of coordinates and momenta is the following

Definition 2.3. A change of variables, or transformation

(q, p) 7→ (Q,P ) = (V (q, p, t), U(Q,P, t)) ; (Q,P ) 7→ (q, p) = (v(Q,P, t), u(Q,P, t)) (2.44)

is said do be canonical if to any Hamiltonian H(q, p, t) and its Hamilton equations it associates
a Hamiltonian K(Q,P, t) and its associated Hamilton equations.
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Observe how extracting the information written down above in terms of the latter notation
would be rather cumbersome (though perfectly possible). According to the definition 2.2 of
canonical transformation, one is led to find the necessary and sufficient conditions under which
the vector field v defined in (2.41)-(2.42) turns out to be of the form J∇yK(y, t), specifying K.
More precisely, we want to characterize the transformations f such that, for any Hamiltonian
H(x, t) there exists a Hamiltonian K(y, t) satisfying

J∇yK(f(x, t), t)
∣∣∣
x=g(y,t)

=
∂f

∂x
J

(
∂f

∂x

)T ∣∣∣
x=g(y,t)

∇yH̃(y, t) +
∂f

∂t

∣∣∣
x=g(y,t)

, (2.45)

or, equivalently

J∇yK(y, t) =

(
∂g

∂y

)−1

J

(
∂g

∂y

)−T
∇yH̃(y, t)−

(
∂g

∂y

)−1
∂g

∂t
, (2.46)

with H̃ as defined in (2.43). The following theorem characterizes completely the canonical
transformations.

Theorem 2.1 (Characterization of canonical transformations). The following statements are
equivalent.

1. f is canonical;

2. J = ∂f/∂x is symplectic; then K = H̃ + K0, where either f depends explicitly on time
and is the flow associated to K0, or K0 is a constant.

3. f preserves the P-bracket of any two functions, namely {F,G}x = {F̃ , G̃}y, where F̃ (y, t) =
F (g(y, t), t) and G̃(y, t) = F (g(y, t), t);

4. {fi, fj}x = {yi, yj}y = Jij for any i, j = 1, . . . , 2n;

5. for any H(x, t) there exists a Hamiltonian K(y, t) such that the difference of the differ-
ential 1-forms πH(x, t) := 1

2
(Jx) · dx−H(x, t)dt and πK(y, t)|y=f(x,t) is exact.

C PROOF. 1.⇒ 2. If f is canonical then (2.45) holds for any H; in particular, it holds for
H = 0. If f depends explicitly on time, then this implies

∂f

∂t
= J∇yK0 , (2.47)

where K0 denotes the Hamiltonian corresponding to H = 0. Then f(x, t) is the flow of the
Hamiltonian K0 and its Jacobian J , due to Proposition 2.3, is symplectic. By lifting a gradient
in (2.45) one gets K = H̃ + K0. If instead f does not explicitly depend on time, then, upon
multiplying (2.45) by −J , one gets M∇yH̃ = ∇yK, where M := −JJ JJ T . By properly
choosing the form of the Hamiltonian H̃ one easily proves that M = cI, where c 6= 0 is a real
constant (i.e. independent of y; it cannot depend of t because f does not by hypothesis). This
implies J JJ T = cJ . Now, one excludes negative values of c by requiring that the class of
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transformations is connected to the identity (where J = I and c = 1), after which one can set
c = 1 by the rescaling f → f/

√
c. Then J is symplectic and K = H̃ (up to a constant K0).

2.⇒ 1. This is trivial by (2.45).
2.⇒ 3. The Poisson bracket transforms through f as follows:

{F,G}x = ∇xF · J∇xG = ∇yF̃ · (J JJ T )∇yG̃ . (2.48)

The latter expression coincides with {F̃ , G̃}y if J is symplectic (no matter whether f depends
or not explicitly on time).

3. ⇒ 2. Viceversa, if {F,G}x = {F̃ , G̃}y for any pair of functions F and G, then (2.48)
implies

∇yF̃ · (J JJ T − J)∇yG̃ = 0 .

By the arbitrariness of F and G this implies that J is symplectic.
3.⇒ 4. Take F = fi and G = fj. Then {fi, fj}x = {yi, yj}y = Jij.
4.⇒ 3. Notice that {fi, fj} = Jij is the ij element of the matrix relation J JJ T = J .
5.⇔ 2. Since

πK(f(x, t), t) =
1

2
(Jf) · df −Kdt =

1

2
(J TJf) · dx+

(
1

2
(Jf) · ∂f

∂t
−K

)
dt ,

The difference of 1-forms

∆π := πH(x, t)− πK(f, t) = α · dx+ βdt (2.49)

turns out to be defined by the quantities

α :=
1

2

(
Jx− J TJf

)
; β := K −H − 1

2
(Jf) · ∂f

∂t
. (2.50)

At this stage H is any given Hamiltonian and K is arbitrary. One easily checks that

∂α

∂x
−
(
∂α

∂x

)T
= J − J TJJ ; (2.51)

∂α

∂t
− ∂β

∂x
= −∂(K −H)

∂x
− J TJ

∂f

∂t
. (2.52)

From the latter relations one sees that ∆π is exact (i.e. the left hand sides of (2.51) and (2.52)
vanish) iff J T , and thus J , is symplectic, and

∂f

∂t
= JJ −T∇x(K −H) = J∇y(K − H̃) ,

which concludes the proof. B
It is convenient to rewrite some of the canonicity conditions in terms of the canonical variables
x = (q, p) and y = (Q,P ). Observe that, from what has been shown above, the notation
f : (q, p,H) 7→ (Q,P,K) is more appropriate to specify a canonical transformation.



34 CHAPTER 2. HAMILTONIAN FORMALISM

First of all let us rewrite the Poincaré-Cartan 1-form as follows

πH(q, p, t) :=
1

2
(Jx) · dx−H(x, t)dt =

1

2
(p · dq − q · dp)−H(q, p, t)dt =

= p · dq −H(q, p, t)dt− 1

2
d(p · q) := π̂H(q, p, t) + dϕ(q, p) ,

where π̂H := p · dq−Hdt and ϕ(q, p) = −(p · q)/2. One sees that the 1-forms πH and π̂H differ
by an exact differential. The 1-form π̂H is suggested by the structure of the Hamiltonian action.
The condition 5. of exactness of ∆π := πH − πK is equivalent to the condition of exactness of
the equivalent 1-form ∆π̂ := π̂H − π̂K = dF , namely

dF (q,Q, t) = p · dq − P · dQ+ (K −H)dt , (2.53)

The latter relation implies

∂F

∂q
= p ;

∂F

∂Q
= −P ;

∂F

∂t
= K −H . (2.54)

The canonical transformation defined in this way is given implicitly, since F depends on both
the old and the new coordinates. In order to determine it explicitly, one has to make the further
hypothesis

det

(
∂2F

∂q∂Q

)
6= 0 , (2.55)

which allows (by the implicit function theorem) to invert either the first or the second of relations
(2.54). Indeed, starting from the first of (2.54) one gets Q = V (q, p, t) which, substituted in
the second relation yields P = −∂F/∂Q(q, V, t) = U(q, p, t). On the other hand, starting
from the second relation one gets q = v(Q,P, t) and substituting it in the first one yields
p = ∂F/∂q(v,Q, t) = u(Q,P, t). Using the latter expressions and substituting them in the
third of (2.54) yields the new Hamiltonian K(Q,P, t) = [H(v, u, t) + ∂F/∂t(v,Q, t)].

Very often one needs to generate canonical transformations by means of a generating func-
tion of q and P , for example. This is easily realized starting from (2.53) and defining the
generating function S(q, P, t) := F (q,Q, t) +Q · P , satisfying

dS = p · dq +Q · dP + (K −H)dt , (2.56)

which implies
∂S

∂q
= p ;

∂S

∂P
= Q ;

∂S

∂t
= K −H . (2.57)

The canonical transformation generated by S is explicitly determined under the condition

det

(
∂2S

∂q∂P

)
6= 0 , (2.58)

with reasonings similar to those made above for F .
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Exercise 2.5. Consider the Hamiltonian H ′(q, p, t), defined in (2.7) and corresponding to the
a gauge shifted Lagrangian with a = 1. Show that the time-dependent transformation (q, p) 7→
(Q,P ) defined by P = (p−∇F ), Q = q, is a canonical transformation, generated by S(q, P, t) =
q · P + F (q, t) + ψ(t). Show that the new Hamiltonian is

K(Q,P, t) = H ′(Q,P, t) +
∂F

∂t
+ ψ̇ = H(Q,P, t) + ψ̇ .

Observe that H and H + ψ̇(t) are equivalent. Apply all this to the case of the particle in the
e.m. field described by the Hamiltonian (2.6).

Exercise 2.6. Given a time-dependent point transformation q 7→ Q = V (q, t), show that this
is canonically complemented by

P =

(
∂V

∂q

)−T
(p−∇ϕ(q, t)) ,

where ϕ(q, t) is an arbitrary function of its arguments. Show that the transformation is gener-
ated by S(q, P, t) = V · P + ϕ; write down the new Hamiltonian.

Exercise 2.7. Repeat the previous exercise complementing the point transformation on the mo-
menta, namely p 7→ P = U(p, t). Hint: look for a generating function of the kind F ′(p,Q, t) =
F (q,Q, t) + q · p, where F is determined by (2.53); as an alternative, invert first P = U(p, t)
and then look for S(q, P, t).

Let us rewrite now the condition of symplectic Jacobian J JJ T = J , where J = ∂f/∂x, in
canonical variables. If x = (q, p) and y = (Q,P ) = f(q, p), one has(

On In
−In On

)
=

(
∂(Q,P )

∂(q, p)

)(
On In
−In On

)(
∂(Q,P )

∂(q, p)

)T
,

which is equivalent to the relations[
∂Q

∂q

(
∂Q

∂p

)T
− ∂Q

∂p

(
∂Q

∂q

)T]
ij

=
n∑
s=1

(
∂Qi

∂qs

∂Qj

∂ps
− ∂Qi

∂ps

∂Qj

∂qs

)
:= {Qi, Qj}q,p = 0 ;[

∂P

∂q

(
∂P

∂p

)T
− ∂P

∂p

(
∂P

∂q

)T]
ij

=
n∑
s=1

(
∂Pi
∂qs

∂Pj
∂ps
− ∂Pi
∂ps

∂Pj
∂qs

)
:= {Pi, Pj}q,p = 0 ;[

∂Q

∂q

(
∂P

∂p

)T
− ∂Q

∂p

(
∂P

∂q

)T]
ij

=
n∑
s=1

(
∂Qi

∂qs

∂Pj
∂ps
− ∂Qi

∂ps

∂Pj
∂qs

)
:= {Qi, Pj}q,p = δij ,

for all i, j = 1, . . . , n. Such relations are the necessary and sufficient conditions for a change of
variables to be canonical in Hamiltonian mechanics. Condition 3. of the theorem above state
that a transformation is canonical iff it preserves the Poisson bracket of any two observables,
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namely {F,G}q,p = {F̃ , G̃}Q,P , whereas condition 4. states that this is the case iff the transfor-
mation preserves the fundamental brackets, namely the brackets of any two canonical variables.
Indeed the relations

{Qi, Qj}q,p = {Qi, Qj}Q,P = 0 ;

{Pi, Pj}q,p = {Pi, Pj}Q,P = 0 ;

{Qi, Pj}q,p = {Qi, Pj}Q,P = δi,j ,

are equivalent to those written above (here the computation is made on the right hand side of
each relation and is trivial, recalling that the Q’s and P ’s are independent of each other).

2.5 Canonical rescaling

Let us see which rescalings of the canonical variables, Hamiltonian and time leave the Hamilton
equations invariant in form. This means setting

Qi = αiqi , Pi = βipi (i = 1, . . . , n) ; K = aH , T = bt , (2.59)

α1, . . . , αn, β1, . . . , βn, a and b being 2n + 2 real parameters. Assuming now that dqi/dt =
∂H/∂pi and dpi/dt = −∂H/∂qi, one gets,

dQi

dT
=

(
αiβi
ab

)
∂K

∂Pi
,

dPi
dT

= −
(
αiβi
ab

)
∂K

∂Qi

. (2.60)

One thus sees that the rescaling (2.59) leaves the Hamilton equations invariant in form, and is
thus canonical in extended sense, if the condition

αiβi = ab , ∀i = 1, . . . , n (2.61)

holds. Notice that if one restricts to the case ab = 1, which includes that of no time-rescaling
a priori, i.e. b = 1, and no rescaling of the Hamiltonian a priori, then condition (2.61) reduces
to αiβi = 1 for any i. One can easily prove that the rescaling in this case is canonical in strict
sense, namely the Jacobian of the transformation (2.59) is symplectic. Indeed, one has

J :=
∂(Q,P )

∂(q, p)
= diag(α1, . . . , αn, β1, . . . , βn) ,

and one checks that the latter matrix is symplectic, i.e. J JJ T = J . In the general case (2.61),
the latter computation yields J JJ T = (ab)J .

2.6 Complex Birkhoff variables and harmonic angle-action

variables

Let us consider the Hamiltonian of a harmonic oscillator H = (p2 + ω2q2)/2. The equations of
motion are q̇ = p, ṗ = −ω2q. One can then introduce the complex variable

z :=
ωq + ıp√

2ω
eıθ , (2.62)
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where θ is an arbitrary angle. In terms of the latter variable, the Hamilton equations read
ıż = ωz = ∂H/∂z̄, where H = ω|z|2, so that z(t) = z(0)e−ıωt. One easily checks that such a
complex form of the Hamilton equations is actually canonical. Indeed, one easily computes the
Poisson bracket

{z, z̄} =
1

2ω
{ωq + ıp, ωq − ıp} = −ı ,

while obviously {z, z} = 0 = {z̄, z̄}. Thus, setting π := ız̄, one easily finds that the harmonic
oscillator problem can be rewritten in complex canonical form with Hamiltonian H = −ıωzπ
and equations of motion ż = ∂H/∂π and π̇ = −∂H/∂z. The harmonic oscillator can be conve-
niently treated in terms of another canonical pair of variables, namely the so-called harmonic
angle-action variables (ϕ, I) defined by z =

√
Ie−ıϕ, or I = |z|2 and ϕ = 1

2ı
ln(z̄/z). One

easily shows that the variables (ϕ, I) are canonical, since {ϕ, I} = 1. The Hamiltonian of the
oscillator becomes H = ωI and the corresponding equations of motion read ϕ̇ = ∂H/∂I = ω,
İ = −∂H/∂ϕ = 0, so that ϕ(t) = ϕ(0) + ωt and I(t) = I(0).

The harmonic oscillator problem treated above motivates the introduction of the canonical
transformation R2n 3 (q, p) 7→ (z, π) ∈ C2n to the complex Birkhoff variables defined by

zj :=
ajqj + ıpj√

2aj
eıθj ; πj := ız̄j , (2.63)

where a1, . . . , an are positive parameters and θ1, . . . , θn angles. The variables (2.63) are canon-
ical: {zj, πk} = δjk, {zj, zk} = 0 = {πj, πk} for any j, k = 1, . . . , n. The Poisson bracket of any
pair of functions F,G expressed in terms of the complex Birkhoff variables reads

{F,G} =
n∑
j=1

(
∂F

∂zj

∂G

∂πj
− ∂F

∂πj

∂G

∂zj

)
= −ı

n∑
j=1

(
∂F

∂zj

∂G

∂z̄j
− ∂F

∂z̄j

∂G

∂zj

)
. (2.64)

The Birkhoff variables (2.63) turn out to be the right variables when studying systems of
noninteracting harmonic oscillators and their perturbations. In such a case, the parameters aj
are chosen to coincide with the frequencies of the oscillators. In complete analogy with what
done for a single harmonic oscillator, one can introduce the canonical, harmonic angle-action
variables (ϕ, I) defined by zj =

√
Ije
−ıϕj for any j = 1, . . . , n.

2.7 Hamilton-Jacobi equation

Suppose that one looks for a canonical change of variables (q, p,H) 7→ (Q,P,K) such that
K = K(P, t) depends on the new momenta P and time only. This amounts to look for a
canonical transformation, generated by Ŝ(q, P, t) such that the new momenta P do not evolve
in time. More precisely, the Hamilton equations in the new variables read Q̇ = ∂K/∂P and
Ṗ = −∂K/∂Q = 0, so that P is constant and Q(t) = Q(0) +

∫ t
0
∇PK(P, s)ds. With this in

mind, the first and the third of relations (2.57) yield the equation

∂Ŝ

∂t
+H

(
q,
∂Ŝ

∂q
, t

)
= K(P, t) , (2.65)
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a first order PDE in the unknown function Ŝ(q, P, t) and K(P, t). However,one can eliminate
the latter by defining a new generating function S(q, P, t) := Ŝ(q, P, t) −

∫ t
0
K(P, s)ds, which

satisfies the same relations (2.57) with K ≡ 0. Then S(q, P, t) satisfies the Hamilton-Jacobi
equation

∂S

∂t
+H

(
q,
∂S

∂q
, t

)
= 0 , (2.66)

introduced in a previous section. Notice that, among the possible solutions of equation (2.66),
we are interested in the so-called complete integrals, namely those solutions depending on n
parameters P1, . . . , Pn and such that (2.58) holds.

A complete integral of the Hamilton-Jacobi equation (2.66) generates a canonical transfor-
mation (q, p,H) 7→ (Q,P, 0).

Exercise 2.8. Show that if Ŝ generates a canonical transformation to K(P, t) such that Q(t) =
Q′+

∫ t
0
∇PK(P, s)ds, then S = Ŝ−

∫ t
0
K(P, s)ds generates a canonical transformation to a null

Hamiltonian such that Q(t) = Q′. Hint: make use of (2.56).

Now, the Hamilton equations in the new variables read Q̇ = 0 and Ṗ = 0, so that Q
and P are constant. As already seen, by means of equations (2.57), one can get either q =
v(Q,P, t) and p = u(Q,P, t) that solve the H-equations with Hamiltonian H, or their inverse
Q = V (q, p, t) and P = U(q, p, t). By construction, Q and P thus obtained are preserved
by the flow of the original Hamiltonian. In particular, by hypothesis, the functions Ui are n
independent first integrals of H:

Ṗi = {Ui, H}q,p +
∂Ui
∂t

= 0 i = 1, . . . , n . (2.67)

Moreover, the functions Ui are new momenta and as a consequence {Ui, Uj}q,p = {Pi, Pj}Q,P =
0. In conclusion, to a complete integral of the H-J equation (2.66) there correspond n first
integrals in involution (each pair of them having zero P-bracket) and the H-equations can be
solved, in principle.

Remark 2.4. If no other particular hypothesis is made, solving the H-J equation is as difficult
as solving the original Hamilton equations, and such a method turns out to be useless.

If H is independent of time, and one looks for time-independent canonical transformations
(∂S/∂t = 0) such that the new Hamiltonian K = K(P ) depends on the momenta P only,
equation (2.65) yields the time-independent H-J equation

H

(
q,
∂S

∂q
(q, P )

)
= K(P ) . (2.68)

Notice that the new Hamiltonian K is an unknown of the problem and cannot be eliminated.
In this case the Hamilton equations are immediately solved: Q(t) = Q(0) + t(∂K/∂P ), at
constant P . Such canonical transformations rectify the flow of the given Hamiltonian system.
Here again, a complete integral of equation (2.68) yields n first integrals in involution (namely
the Pi = Ui(q, p)) and allows to solve the original H-equations, in principle.



Chapter 3

Integrable systems

3.1 Introduction

A dynamical system is integrable if it possesses a number of first integrals (i.e. functions defined
on the phase space not evolving in time along the flow of the system) which is high enough
to geometrically constraint the motion, a priori, on a curve. For a generic system of the form
ẋ = u(x) in Rn, integrability would require, a priori, n − 1 first integrals (the intersection of
the level sets of m first integrals has co-dimension m and dimension n−m). However, it turns
out that the Hamiltonian structure reduces such a number to half the (even) dimension of the
phase space.

In order to understand this, we start by supposing that the system admits n independent
first integrals f1(q, p, t), . . . , fn(q, p, t), but we do not suppose, for the moment, that such first
integrals are in involution. Without any loss of generality, as a condition of independence of
the first integrals one can assume

det

(
∂f

∂p

)
= det

(
∂(f1, . . . , fn)

∂(p1, . . . , pn)

)
6= 0 , (3.1)

in such a way that the level set Ma = {(q, p) : f(q, p, t) = a} of the first integrals, an n-
dimensional differentiable manifold, can be represented, by means of the implicit function
theorem, as

p1 = u1(q, t; a) ; . . . pn = un(q, t; a) . (3.2)

The above relations must hold at any time if they hold at t = 0. Differentiating the relation
pi(t) = ui(q(t), t; a) (i = 1, . . . , n) with respect to time and using the Hamilton equations one
gets

∂ui
∂t

+
n∑
j=1

(
∂ui
∂qj
− ∂uj
∂qi

)
∂H

∂pj
= −∂H

∂qi
−

n∑
j=1

∂uj
∂qi

∂H

∂pj

∣∣∣∣∣
p=u(q,t;a)

. (3.3)

Notice that, for the sake of convenience, the same sum of terms is artificially added on both
sides of the equation. By introducing the quantities

rot(u) :=

(
∂u

∂q

)
−
(
∂u

∂q

)T
, (3.4)

39
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v(q, t) :=
∂H

∂p

∣∣∣∣
p=u(q,t;a)

, (3.5)

and

h(q, t) := H(q, u(q, t; a), t) , (3.6)

the equations (3.3) can be rewritten in compact, vector form as

∂u

∂t
+ rot(u)v = −∇qh . (3.7)

To such an equation, we can associate a continuity equation for an unknown density ρ associated
to the vector velocity field (3.5), i.e. to the vector ODE q̇ = v(q, t), namely

∂ρ

∂t
+∇q · (ρv) = 0 . (3.8)

The meaning of ρ(q, t) is that of a probability density to find the representative point of the
system “close” to the point q in the configuration space at time t.

We now notice the similarity of the system (3.7)-(3.8) with the Euler equations of ideal
hydrodynamics, namely

∂u

∂t
+ rot(u)u = −∇

(
|u|2

2
+ w

)
; (3.9)

∂%

∂t
+∇ · (%u) = 0 , (3.10)

where % is the mass density, u is the velocity field, w is the enthalpy function such that
∇w = ∇p/% (assuming a functional dependence of %(p) or p = p(%)), and rot(u)u = ω ∧ u,
ω := ∇ ∧ u being the vorticity of the fluid. The similarity of (3.7) and (3.9) is completely
evident in the case of natural mechanical systems, whose Hamiltonian has the form

H(q, p, t) =
p ·M−1(q, t)p

2
+ V (q, t) ,

where M−1(q, t) is a n × n positive definite matrix. In such a case v = M−1u and equation
(3.7) takes the rather simple form

∂u

∂t
+ rot(u)M−1u = −∇q

(
u ·M−1u

2
+ V

)
. (3.11)

In particular, in those cases such that G = In the latter equation is the Euler equation in space
dimension n, with the potential energy V playing the role of the enthalpy function.

Remark 3.1. Attention has to be paid to the fact that for the Euler equation (3.9) the enthalpy
w depends on the density %, while nothing similar holds in equation (3.7). A dependence of
the effective potential energy on the probability density ρ is instead characteristic of quantum
mechanics.
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Now, by analogy with the case of fluids, we look for curl-free, i.e. irrotational solutions of
the Euler-like equation (3.7) (we recall that in fluid dynamics, looking for a solution of the Euler
equation (3.9) of the form u = ∇φ leads to the Bernoulli equation for the velocity potential φ,
namely ∂φ/∂t+ |∇φ|2/2 +w = constant). In simply connected domains (of the n-dimensional
configuration space), one has

rot(u) = 0 iff u = ∇S ,

where S = S(q, t; a). Upon substitution of u = ∇S into equation (3.7) and lifting a gradient,
one gets

∂S

∂t
+H(q,∇qS, t) = K(t; a) . (3.12)

One can set K(t; a) ≡ 0 without any loss of generality, and the latter equation becomes the

time-dependent Hamilton-Jacobi equation (if ϕ 6≡ 0 then S̃ := S −
∫
Kdt satisfies equation

(3.12) with zero right hand side). Thus, The Hamilton-Jacobi equation is the analogue of the
Bernoulli equation for the hydrodynamics of Hamiltonian systems. The interesting point is
that the curl-free condition rot(u) = 0 is equivalent to the condition of involution of the first
integrals f1, . . . , fn. Indeed, starting from the identity

fi(q, u(q, t; a), t) ≡ ai , (3.13)

and taking its derivative with respect to qj one gets

∂fi
∂qs

+
n∑
r=1

∂fi
∂pr

∂ur
∂qs

= 0

for any i = 1, . . . , n. Thus

{fi, fj} =
n∑
s=1

(
∂fi
∂qs

∂fj
∂ps
− ∂fi
∂ps

∂fj
∂qs

)
=

n∑
r,s=1

(
∂fi
∂ps

∂fj
∂pr

∂ur
∂qs
− ∂fj
∂ps

∂fi
∂pr

∂ur
∂qs

)
=

=
n∑

r,s=1

∂fj
∂pr

(
∂ur
∂qs
− ∂us
∂qr

)
∂fi
∂ps

=

[(
∂f

∂p

)
rot(u)

(
∂f

∂p

)T]
ji

,

which implies rot(u) = 0 iff {fi, fj} = 0 for any i, j = 1, . . . , n (the direct implication is obvious,
the reverse one requires the independence condition det(∂f/∂p) 6= 0). This is the key point: the
condition of involution of the first integrals is equivalent to that of irrotational, i.e. gradient,
velocity fields of the hydrodynamic equation (3.7). The velocity potential S(q, t; a) satisfies the
Hamilton-Jacobi equation and is actually a complete integral of the latter. In order to see this,
one can start again from identity (3.13), setting there u = ∇S and taking the derivative with
respect to aj, getting the i, j component of the matrix identity(

∂f

∂p

)(
∂2S

∂q∂a

)
= In ,
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which, by the independence condition of the first integrals, yields det(∂2S/∂q∂a) 6= 0. We finally
notice that if the first integrals and thus the velocity field u are known, then the potential S
can be obtained by a simple integration, based on the identity dqS = u · dq, such as

S(q, t; a)− S(0, t; a) =

∫
0→q

u(q′, t; a) · dq′ =
∫ 1

0

u(λq, t; a) · qdλ ,

where S(0, t; a) may be set to zero. The function S(q, t; a), satisfying the Hamilton-Jacobi
equation (3.12) with K = 0, generates a canonical transformation (q, p,H) 7→ (b, a, 0) to a
zero Hamiltonian, transformation defined by the implicit equations p = ∇qS(q, t; a), b :=
∇aS(q, t; a). The restriction to the case where H, f1, . . . , fn are independent of time is com-
pletely analogous to that just treated and is left as an exercise.

What has just been shown above motivates the following definition of integrable Hamiltonian
system.

Definition 3.1. The system defined by the Hamiltonian H(q, p, t), is said to be integrable in Γ ⊆
R2n, in the sense of Liouville, if it admits n independent first integrals f1(q, p, t), . . . , fn(q, p, t)
in involution, i.e., for any (q, p) ∈ Γ and t ∈ R

1. ∂fj/∂t+ {fj, H} = 0 for any j = 1, . . . , n;

2.
∑n

j=1 cj∇fj(q, p, t) = 0 ⇒ c1 = · · · = cn = 0 (equivalently: the rectangular matrix of the
gradients of the integrals has maximal rank n; e.g. (3.1) holds) for any (q, p, t);

3. {fj, fk} = 0 for any j, k = 1, . . . , n.

The following theorem holds.

Theorem 3.1 (Liouville-Jacobi). Let the Hamiltonian system defined by H(q, p, t) is Liouville-
integrable and evolves on the n-dimensional time-dependent invariant manifold

Ma := {(q, p) ∈ Γ : f1(q, p, t) = a1, . . . , fn(q, p, t) = an}

iff there exists a complete integral S(q, t; a) of the Hamilton-Jacobi equation.

C PROOF. It has essentially been given in all details and left as an exercise. B

Remark 3.2. If H(q, p) does not depend explicitly on time, then in the above definition of
integrable system all the fj are independent of time as well, and condition 1. is replaced by
{fj, H} = 0. In such a case, the generating function S(q; a) appearing in the Liouville theorem
is a complete integral of the time-independent Hamilton-Jacobi equation H(q,∇aS) = K(a),
thus generating a canonical transformation C : (q, p) 7→ (b, a) such that H(C −1(b, a)) = K(a).

Example 3.1. The Hamiltonian system of central motions is Liouville-integrable. Indeed, if

H = |p|2
2m

+ V (|r|) is the Hamiltonian of the system, then it is easily proven that the angular
momentum L = r∧p is a vector constant of motion (the Hamiltonian is invariant with respect
to the “canonical rotations” (r,p) 7→ (r′,p′) = (Rr, Rp), where R is any orthogonal matrix;
the conservation of the angular momentum is a consequence of the Nöther theorem). The phase
space of the system has dimension 2n = 6, and three independent first integrals in involution
are f1 := H, f2 := |L|2 and f3 := Lz, for example (show that).
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Example 3.2. The Hamiltonian of n noninteracting systems, H =
∑n

j=1 hj(qj, pj), is obviously
Liouville integrable, with the choice fj := hj(qj, pj), j = 1, . . . , n. As an example, consider the
case of harmonic oscillators, where hj(qj, pj) = (p2

j + ω2
j q

2
j )/2.

A fundamental result in the theory of integrable systems is the following theorem due to
Arnol’d, whose proof is not reported.

Theorem 3.2 (Arnol’d). Let the Hamiltonian system defined by H be integrable in Γ ⊆ R2n in
the sense of Liouville, and let a ∈ Rn such that the level set

Ma := {(q, p) ∈ Γ : f1(q, p) = a1, . . . , fn(q, p) = an} (3.14)

Ma is non empty; let also M ′
a denote a connected and compact component of Ma. Then M ′

a is
diffeomorphic to the n-dimensional torus Tn = T1×· · ·×T1 (n times), where T1 = R/(2πZ), the
(group of) real numbers modulo 2π. Moreover, there exists a neighborhood U of M ′

a in Γ that is
canonically diffeomorphic to Tn×B, where B ⊂ Rn

+, i.e. there exists a canonical transformation
C : U → Tn×B : (q, p) 7→ (ϕ, I) to angle-action variables, such that H(C −1(ϕ, I)) = E(I) and
fj(C −1(q, p)) = Φj(I) for any j = 1, . . . , n.

Thus, for Liouville-integrable Hamiltonian systems displaying compact families of level sets,
canonical action-angle coordinates (ϕ, I) can be introduced, such that both the Hamiltonian and
all the first integrals depend on the action variables I only. In terms of the variables (ϕ, I), the
dynamics of the system becomes trivial: the Hamilton equations ϕ̇ = ∂E/∂I, İ = −∂E/∂ϕ = 0
imply that I(t) = I(0) and ϕ(t) = ϕ(0) + ω(I(0))t, where

ω(I) :=
∂E(I)

∂I
. (3.15)

The phase space of the system is thus locally foliated into invariant tori, on each of which the
motion is a translation with a frequency vector (3.15) depending, in general, on the value of
the action I0 labeling the torus Tn.

Example 3.3. Consider a system of n noninteracting harmonic oscillators with Hamiltonian
H =

∑n
k=1(p2

k + ω2
kq

2
k)/2. In this case, fk = (p2

k + ω2
kq

2
k)/2, and the invariant manifold Ma is

the product of n ellipses (which ones?). Passing to Birkhoff comeplex variables first, defined
by z := (ωkqk + ıpk)/

√
2ωk, one gets H =

∑
k ωk|zk|2. Then, canonical, harmonic angle-action

variables (ϕ, I) are introduced by setting zk =
√
Ike
−ıϕk , which yields H =

∑
k ωkIk, so that the

dynamics takes place on the torus Tn labelled by the constant vector I. Observe that if a term
+λ
∑

k q
4
k, λ > 0, is added to H, then one can still pass to the harmonic angle-action variables,

but the Hamiltonian will no longer depend only on I: the harmonic angle-action variables are
not those predicted by the Arnol’d theorem in this case.

3.2 Separable systems

Integrable systems (in the sense of Liouville-Arnol’d) display a “trivial” dynamics, linear in the
co-ordinates (angles), the conjugate momenta (actions) being constant. However, even when
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one knows a priori that a given system is integrable, i.e. one is able to write down the n first
integrals in involution, finding the canonical transformation to action-angle variables may be
completely non trivial. A class of integrable systems for which action-angle variables can be
found “in principle”, i.e. solving integrals, is that of separable systems.

Definition 3.2. A Liouville integrable, autonomous Hamiltonian system defined by H is said
to be separable if the corresponding HJ equation (2.68) admits a (local) complete integral of the
form

S(q, P ) =
n∑
i=1

Si(qi, P ) . (3.16)

Separability of course depends both on the Hamiltonian and on the particular choice of the
canonical coordinates: for a given H, a system can result separable with certain coordinates
and not with other ones. On the other hand, integrability is independent of the coordinates.
Separability is equivalent to state that pi = ui(qi, P ) := ∂Si/∂qi depends only on qi.

Example 3.4. Of course, if n = 1 the system is always separable. Indeed, H(q, p) = E implies
p = u(q, E) = ∂S/∂q, locally (think of a Hamiltonian quadratic in the momenta: then in
writing p as a function of q one has to make a choice of sign). Here E = K(P ) = P is the new
Hamiltonian, coinciding with the new momentum; then Q̇ = ∂K/∂P = 1 implies that the new
coordinate Q is time, up to translation.

Example 3.5. Suppose that H =
∑n

i=1Hi(qi, pi) is the sum of one degree of freedom Hamil-
tonians. The n Hamiltonians Hi are clearly first integrals in involution, since Hi and Hj

are functions of different pairs of canonical coordinates for i 6= j. Thus Hi(qi, pi) = Pi, and
pi = ui(qi, P i) = ∂Si/∂qi, locally. In this case H = K(P ) =

∑n
i=1 Pi. As a consequence,

Q̇i = ∂K/∂Pi = 1 and Qi = t+Qi(0).

Example 3.6. Suppose H(q, p) = K(Φ1(q1, p1), . . . ,Φn(qn, pn)). Then the Φi are n fist integrals
in involution (prove it). Setting Φi(qi, pi) = Pi one gets pi = ui(qi, Pi) = ∂Si/∂qi locally, and the
new Hamiltonian K(P1, . . . , Pn). As a consequence, Q̇i = ∂K/∂Pi and Qi = (∂K/∂Pi)t+Qi(0).

Example 3.7. A less trivial example is the following. Suppose that the Hamiltonian of the
system has the matryoshka structure

H(q, p) = Φn(qn, pn, ξn−1) ; ξj = Φj(qj, pj, ξj−1) , j = 1, . . . , n− 1 , ξ0 = 0 . (3.17)

Now, Φi(qi, pi, ξi−1) depends only on the canonical pairs (q1, p1), . . . , (qi, pi), so that

{Φi,Φj}i>j =
n∑
k=1

(
∂Φi

∂qk

∂Φj

∂pk
− ∂Φi

∂pk

∂Φj

∂qk

)
=

j∑
k=1

(
∂Φi

∂qk

∂Φj

∂pk
− ∂Φi

∂pk

∂Φj

∂qk

)
=

=

j∑
k=1

(
∂Φi

∂ξi−1

∂Φi−1

∂ξi−2

. . .
∂Φk

∂qk

∂Φj

∂ξj−1

∂Φj−1

∂ξj−2

. . .
∂Φk

∂pk
+

− ∂Φi

∂ξi−1

∂Φi−1

∂ξi−2

. . .
∂Φk

∂pk

∂Φj

∂ξj−1

∂Φj−1

∂ξj−2

. . .
∂Φk

∂qk

)
≡ 0 .

(3.18)
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Thus the Φi are first integrals in involution (why they are first integrals?). Let us set Φ1(q1, p1) =
P1, Φ2(q2, p2, P1) = P2,. . . , Φi(qi, pi, Pi−1) = Pi,. . . ,Φn(qn, pn, Pn−1) = Pn. Then p1 = u1(q1, P1) =
∂S1/∂q1, pi = ui(qi, Pi−1, Pi) = ∂Si/∂qi. The new Hamiltonian is thus K(P ) = Pn, so that
Qi(t) = δi,nt+Qi(0).

In all the treated examples S(q, P ) =
∑n

i=1 Si(qi, P ) =
∑n

i=1

∫ qi ui(s, P )ds.

3.2.1 The Stäckel theorem

An interesting question naturally arises: is it possible to characterize the separable systems?
In other words, do necessary and sufficient conditions exist for separability? A positive answer
exists in the case of those Hamiltonian systems whose kinetic energy that is a diagonal quadratic
form in the momenta, with coefficients possibly depending on the coordinates, namely:

H(q, p) = K(q, p) + U(q) :=
n∑
i=1

ci(q)
p2
i

2
+ U(q) . (3.19)

Such systems will be simply referred to as diagonal or orthogonal. The reason for the latter
definition arises in the Lagrangian formalism for constrained systems whose constraint manifold
is defined by Rn 3 q 7→ X(q) ∈ RN (n ≤ N ; if n = N the system is not constrained and the
latter map just defines a change of coordinates). Then, if M denotes the diagonal matrix of
the particle masses, the kinetic energy of the system is

K =
Ẋ ·MẊ

2
=

n∑
i,j=1

1

2

(
∂X

∂qi
·M∂X

∂qj

)
q̇iq̇j .

The system of Lagrangian coordinates q is orthogonal, by definition, if

∂X(q)

∂qi
·M∂X(q)

∂qj
=

1

ci(q)
δi,j ,

i.e. if the coordinate curves on the manifold intersect orthogonally to each other (with respect
to the scalar product defined by M). In this case K =

∑n
i=1 q̇

2
i /(2ci) and the Hamiltonian

corresponding to the Lagrangian L = K − U , where U(q) := U(X(q)), takes the form (3.19)
(show it explicitly). Let us denote by c(q) the n-dimensional vector whose components are the
coefficients ci(q) entering K in (3.19); let us also denote by êk the k-th vector of the canonical
basis of Rn: (êk)j = δj,k. The following interesting theorem characterizing diagonal systems
holds.

Theorem 3.3 (Stäckel). The diagonal Hamiltonian system (3.19) is separable iff a vector ψ(q)
and a non singular matrix A(q) can be found such that

1. ψi = ψi(qi), Aij = Aij(qi), for any i, j = 1, . . . , n;

2. c(q) · ψ(q) = U(q), AT (q)c(q) = êk, for some k = 1, . . . , n.
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C PROOF. As a preliminary comment, let us observe that the index k in the statement is
arbitrary: if AT c = êk, then suitably exchanging the rows of AT one moves k from 1 to n.

Let us first prove necessity. Suppose that the system is separable. Then there exists a
complete integral S(q, P ) =

∑n
i=1 Si(qi, P ) of the HJ equation:

n∑
i=1

ci(q)
1

2

(
∂Si
∂qi

)2

+ U(q) = K(P ) . (3.20)

We can always redefine the constant parameters P 7→ α in such a way that αk = K(P ), αi = Pi
for i = 1, . . . , n, i 6= k, where the index k is so chosen that ∂K/∂Pk 6= 0. Then the inverse
transformation α 7→ P is obtained by making Pk explicit from K(. . . , αk−1, Pk, αk+1, . . . ) = αk.
The HJ equation (3.20) reads then

n∑
i=1

ci(q)
1

2

(
∂Si
∂qi

(qi, α)

)2

+ U(q) = αk . (3.21)

Let now ᾱ be any fixed value of the vector α of the parameter for which S(q, ᾱ) solves (3.21).
By a suitable translation in the space of parameters we can always assume ᾱ = 0. Let us set
Gi(qi, α) := (∂Si/∂qi)

2, and expand the left hand side of (3.21) around α = ᾱ = 0. This yields

n∑
i=1

ci(q)

2

[
Gi(qi, 0) +

n∑
j=1

αj
∂Gi

∂αj
(qi, 0) +O(|α|2)

]
+ U(q) = αk

which, upon defining

ψi(qi) := −1

2
Gi(qi, 0) ; Aij(qi) :=

1

2

∂Gi

∂αj
(qi, 0) , (3.22)

reads
−c(q) · ψ(q) + U(q) + c(q) · A(q)α +O(|α|2) = αk .

The latter identity implies c · ψ = U and (by the arbitrariness of α) AT c = êk. It is left as an
exercise to check that the completeness of S implies that the matrix A, defined in (3.22), is
non singular. This proves the necessity of the above conditions 1. and 2. to separability.

On the contrary, let us suppose that conditions 1. and 2. are satisfied. Let us define
Gi(q) := (∂S/∂qi)

2. The HJ equation then reads

c(q) ·
[

1

2
G(q) + ψ(q)

]
= αk , (3.23)

where we have set K(P ) = αk, the index k being given by the hypothesis (this defines a
transformation P 7→ α of the parameters, as above). Now, AT c = êk implies c = A−T êk;
moreover αk = êk · α. Equation (3.23) then becomes

êk ·
[
A−1

(
1

2
G+ ψ

)
− α

]
= 0 . (3.24)
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By the arbitrariness of k, the square bracket must vanish identically, which in turn implies
G = −2ψ + 2Aα or, in components

Gi(q) :=

(
∂S

∂qi

)2

= −2ψi(qi) + 2
n∑
j=1

Aij(qi)αj . (3.25)

Thus ∂S/∂qi is a function of qi only, so that S(q, α) =
∑n

i=1 Si(qi, α), i.e. the system is
separable. B

Example 3.8. Let us consider the Hamiltonian of a particle of mass m moving in the 3-
dimensional space subject to a conservative force of potential energy U(x). In cartesian co-
ordinates the Hamiltonian reads H(x, p) = |p|2/(2m) + U(x). Here ci = 1/m, i = 1, 2, 3.
By the Stäckel theorem the system is separable if there exist ψi(xi) such that U(x) = c · ψ =∑3

i=1 ψi(xi)/m, i.e. if the potential energy is the sum of terms each depending on one of the
coordinates only. This is the kind of separability of the Example 3.5: calling vi(xi) := ψi(xi)/m,

the Hamiltonian reads H =
∑3

i=1[
p2i
2m

+ vi(xi)] :=
∑3

i=1 Hi(xi, pi). One has Hi = Pi constant.
Then, setting P1 + P2 + P3 = α1, P2 = α2 and P3 = α3, the HJ equation H(x, ∂S/∂x) = α1,
with S = S1 + S2 + S3, splits into the three HJ equations(

∂S1

∂x1

)2

= −2mv1(x1) + 2m(α1 − α2 − α3) ;(
∂S2

∂x2

)2

= −2mv2(x2) + 2mα2 ;(
∂S3

∂x3

)2

= −2mv3(x3) + 2mα3 .

Comparing with (3.25), one easily finds that

A =

 m −m −m
0 m 0
0 0 m


satisfies AT c = ê1, consistent with the choice H = K = α1.

As already stressed, separability depends on the choice of the coordinates.

Example 3.9. Let us reconsider the problem of the latter example in spherical polar coordinates
(r, θ, ϕ), such that x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)T . One easily checks that ∂x/∂r, ∂x/∂θ
and ∂x/∂ϕ are mutually orthogonal. The square of the infinitesimal displacement is (ds)2 =
(dr)2 + (rdθ)2 + (r sin θdϕ)2, so that the Kinetic energy is K = mṡ2/2 and the Lagrangian is

L =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2)− U(r, θ, ϕ) .

The corresponding Hamiltonian (show it) is

H =
p2
r

2m
+

p2
θ

2mr2
+

p2
ϕ

2mr2 sin2 θ
+ U(r, θ, ϕ) . (3.26)
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Here c = (1/m, 1/(mr2), 1/(mr2 sin2 θ))T . The Stäckel theorem in this case requires, for sepa-
rability, the existence of a vector ψ = (ψr(r), ψθ(θ), ψϕ(ϕ)) such that U = c · ψ, namely

U(r, θ, ϕ) =
ψr(r)

m
+
ψθ(θ)

mr2
+

ψϕ(ϕ)

mr2 sin2 θ
:= u(r) +

v(θ)

r2
+

w(ϕ)

r2 sin2 θ
. (3.27)

This is the most general form of separable potential energy in spherical polar coordinates. Ob-
serve that it includes the fundamental case of central motions, with U = u(r) (i.e. v = 0 = w).
Upon rewriting the Hamiltonian (3.26) as follows

H =
p2
r

2m
+ u(r) +

1

r2

[
p2
θ

2m
+ v(θ) +

1

sin2 θ

(
p2
ϕ

2m
+ w(ϕ)

)]
, (3.28)

one realizes that this is a separable system of the matryoshka kind, treated in Example 3.7.
Setting then S = Sr(r, α) + Sθ(θ, α) + Sϕ(ϕ, α), the HJ equation splits into

1

2m

(
∂Sr
∂r

)2

+ u(r) +
α2

r2
= α3(=: K) ;

1

2m

(
∂Sθ
∂θ

)2

+ v(θ) +
α1

sin2 θ
= α2 ;

1

2m

(
∂Sϕ
∂ϕ

)2

+ w(ϕ) = α1 ;

The latter system can be rewritten in vector form and compared with (3.25), which yields (∂Sr/∂r)
2

(∂Sθ/∂θ)
2

(∂Sϕ/∂ϕ)2

 = −2

 mu(r)
mv(θ)
mw(ϕ)


︸ ︷︷ ︸

ψ

+2

 0 −m/r2 m
−m/ sin2 θ m 0

m 0 0


︸ ︷︷ ︸

A

 α1

α2

α3

 .

One easily checks that AT c = ê3, consistent with the choice H = K = α3.

3.2.2 Action-angle variables

We now show how to construct the action-angle variables for separable systems, whose existence
is guaranteed, under the hypothesis of compactness of the level set of the first integrals, by the
Theorem 3.2. Now, first of all, the separability conditions (3.16) is equivalent to say that the
n first integrals in involution of the system, the momenta Pi or suitable functions of them, are
each a function of a pair of canonical variables (qi, pi). The sufficiency of such a condition to
separability is trivial, its necessity is a bit less trivial to be proven. This implies that the level
set of first integrals of the separable system is of the form fi(qi, pi, P ) = αi, i = 1, . . . , n. The
compactness condition, in this case, implies two possibilities only: either the level curve fi = αi
is closed, or is open and periodic and qi is essentially an angle (viceversa, if qi is an angle, the
level curve can be closed). In the latter case, regarding the motion of qi on the circle, one gets
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again a closed (thus compact) curve. Thus, a compact level set fi = αi of a separable system
consists of the product of n closed curves γi : s 7→ (qi(s), pi(s)), or cycles, that admit local
representations of the graph form pi = ui(qi) = ∂Si/∂qi, for any i = 1, . . . , n.

Definition 3.3. The quantities

Ii :=
1

2π

∮
γi

pidqi (3.29)

are called action variables of the separable system at hand.

The action variables thus defined are functions of the parameters α defining the level set
of the first integrals, i.e. I = F (α), so that α = G(I). Such relations allow to pass from the
momenta α to the new ones, the action variables I. If the canonical transformation (q, p) 7→
(β, α) is generated by S(q, α) such that

dS = p · dq + β · dα ,

then, the transformation (β, α) 7→ (ϕ, I) is generated by W (q, I) = S(q,G(I)), namely

dW = p · dq + β · ∂G
∂I

dI = p · dq + ϕ · dI ,

where ϕ := (∂G/∂I)Tβ = ∂W/∂I. In order to prove that the new coordinates ϕ are angles, one
proves that the variation of ϕj along any cycle γi amounts to 2π if j = i and zero otherwise.
Indeed, ∮

γi

dϕj =

∮
γi

∂ϕj
∂qi

dqi =
∂

∂Ij

∮
γi

∂W

∂qi
dqi =

∂

∂Ij
2πIi = 2πδij ,

where use has been made of ϕj = ∂W/∂Ij and pi = ∂S/∂qi = ∂W/∂qi.

Example 3.10. Autonomous Hamiltonian systems with one degree of freedom (n = 1) are
obviously integrable. Any connected and compact component of the level curve H(q, p) = E, not
containing critical points of H, is a periodic orbit. In that case the action I = 1

2π

∮
pdq. The

latter quantity is obviously a function of the energy level E: I = f(E) and E = g(I). In the
simplest mechanical case where H = p2/2 + V (q), one has

I =
1

π

∫ q+

q−

√
2(E − V (q)) dq , (3.30)

where V (q±) = E and V ′(q±) 6= 0. As an example, for the harmonic oscillator, with V (q) =
ω2q2/2, one finds I = E/ω (show this).

Example 3.11. A further example is the pendulum of length `, whose potential energy is
V (q) = ω2(1− cos q), where ω2 = g/` and q is the angle with respect to the vertical axis. Here
one has to distinguish between the values of the energy E < 2ω2 and E > 2ω2. In the former
case the motion consists of oscillations between the turning points ±q̄, being V (±q̄) = E and
the formula for I is given by (3.30); in the limit E → 0+ one finds I → E/ω (why? show this).
In the latter case the pendulum rotates and one has I = 1

2π

∫ π
−π

√
2(E − V (q)) dq. In the limit

E → +∞ one finds I ∼
√

2E, or E ∼ I2/2.
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Example 3.12. The case of the (attracting) Kepler problem goes as follows. The Hamiltonian
of the system in spherical polar coordinates is

H =
p2
r

2m
+

1

2mr2

(
p2
θ +

p2
ϕ

sin2 θ

)
− k

r
, (3.31)

which is of the matryoshka type. The three first integrals in involution are pϕ (observe that ϕ is
ignorable: ∂H/∂ϕ = 0), p2

θ +p2
ϕ/ sin2 θ and H. One finds by a direct computation that pϕ = Lz,

the z component of the angular momentum L = x ∧ p, whereas p2
θ + p2

ϕ/ sin2 θ = |L|2. As a
consequence, the three action variables of such a separable system can be computed by means of
elementary (though long) integrations, yielding

Iϕ =
1

2π

∮
pϕdϕ = Lz ; (3.32)

Iθ =
1

2π

∮
pθ dθ =

1

π

∫ π/2+θ0

π/2−θ0

√
|L|2 − L2

z

sin2 θ
= |L| − Lz , (3.33)

where sin2(π/2± θ0) = cos2(θ0) = L2
z/|L|2;

Ir =
1

2π

∮
pr dr =

√
2m

π

∫ r+

r−

√
E +

k

r
− |L|

2

sinθ
dr = k

√
m

−2E
− |L| , (3.34)

where r± are the zeroes of the integrand square root. The overall result, expressing the energy
E as a function of the actions, is

E(I) = − mk2

2(Ir + Iθ + Iϕ)2
. (3.35)

Exercise 3.1. Prove (3.33). Hints. Make use a first change of variables introducing the angle
ψ such that cos θ = sin θ0 sinψ. Make then use of a second change of variables introducing
u = tanψ.

Exercise 3.2. Find first, explicitly r±(E); call c := (r+ + r−)/(r+ − r−). Then rewrite the
integral in (3.34) as

Ir =
sqrt−2mE

π

∫ r+

r−

√
(r+ − r)(r − r−) dr .

Introduce the changes of variable

r =
r+ + r−

2
+
r+ − r−

2
ξ ,

then ξ = cosφ, and finally τ = tan(φ/2). One thus finds Ir = π[c −
√
c2 − 1] which, by the

explicit expression of c, leads to (3.34).
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The energy in (3.35) depends on the sum of three actions. One can thus transform to new
angle-action variables (θ, J) defined by J1 = Ir+Iθ+Iϕ, J2 = Iθ+Iϕ, J3 = Iϕ, the corresponding
angles being obtained by canonically completing the transformation. Then

E(J) = −mk
2

2J2
1

; θ̇1 =
∂E

∂J1

=
mk2

J3
1

, (3.36)

all the other canonical variables (the three actions and the other two angles θ2 and θ2) being
constant. One finds in this way that the Kepler motions corresponding to negative energy
values are all periodic in time, i.e. the torus predicted by the Arnol’d theorem in this case has
dimension one.

Exercise 3.3. Find the Kepler law T 2/a3 = const., where T is the period of the orbit and a =
(r+ +r−)/2 its linear dimension (the semi-major axis of the ellipse). Hint: T = 2π/ω = 2π/θ̇1;
express a as a function of J1.


