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”If a leaden ball, projected from the top of a mountain
by the force of gunpowder with a given velocity, and in a
direction parallel to the horizon, is carried in a curve line
to the distance of two miles before it falls to the ground;
the same, if the resistance of the air were taken away, with
a double or decuple velocity, would fly twice or ten times
as far. And by increasing the velocity, we may at pleasure
increase the distance to which it might be projected, and
diminish the curvature of the line, which it might describe,
till at last it should fall at the distance of 10, 30, or 90
degrees, or even might go quite round the whole earth before
it falls; or lastly, so that it might never fall to the earth,
but go forward into the celestial spaces, and proceed in its
motion in infinitum. And after the same manner that a
projectile, by the force of gravity, may be made to revolve
in an orbit, and go round the whole earth, the moon also,
either by the force of gravity, if it is endued with gravity, or
by any other force, that impels it towards the earth, may
be perpetually drawn aside towards the earth, out of the
rectilinear way, which by its innate force it would pursue;
and would be made to revolve in the orbit which it now
describes; nor could the moon without some such force, be
retained in its orbit. If this force was too small, it would
not sufficiently turn the moon out of a rectilinear course: if
it was too great, it would turn it too much, and draw down
the moon from its orbit towards the earth. It is necessary,
that the force be of a just quantity, and it belongs to the
mathematicians to find the force, that may serve exactly
to retain a body in a given orbit, with a given velocity; and
vice versa, to determine the curvilinear way, into which
a body projected from a given place, with a given velocity,
may be made to deviate from its natural rectilinear way,
by means of a given force.”

I. Newton, Book I of the Philosophiae Naturalis Prin-
cipia Mathematica, 1687 [34].
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Preface

The present notes deal with classical mechanics and its mathematical methods, which means
making use of advanced tools of analysis, geometry and algebra in order to solve classes of
problems relevant to physics first, and, in so doing, to get a more abstract, higher level formu-
lation of the physical laws of motion which is relevant far beyond mechanics (what is usually
referred to as “formalism”).

The notes are meant to be an integration of, or complement to the class lectures, where
most of the problems are worked out in a complete way. A complete preparation to the exam is
based on the use of both of them. I intentionally avoid to write down the detailed solutions of
exercises and problems in the notes, but for examples, with the aim to stress the importance,
for the students, to attend the class lectures and realize which kind of ideas and technical efforts
are required, and how long it takes to solve specific problems up to the end, in a complete way.
However, almost all exercises and problems are formulated in a step by step guided form. In the
present notes I distinguish exercises, which are of a purely, maybe minor technical content, from
problems, that have instead more physical relevance, require something new to be tackled, or
constitute the starting point for the introduction of advanced tools. The topics in the notes are
reported according to the sequence of those treated in the class lectures, although sometimes
the correspondence can be a bit different, for the obvious reasons concerning the difference in
between giving lectures at the blackboard and writing lecture notes.

The approach to the subject, in my course, is partially founded on problem solving. In
tackling an interesting problem, one is required to understand completely what has to be done,
to thus plan a strategy of solution, and to finally perform detailed computations; a complete
check of the procedure and of the final formulas is required at the end. The method of solution
of a specific problem is not unique, and the choice is a matter of convenience, time, and taste.
In order to simply get the final answer one may certainly choose the shortest path. However,
one can consider to follow also longer, alternative ways to the solution, where the use of, and
the need to develop higher mathematics is required. This is the point where building up a
general theory and its mathematical apparatus emerges, and this is exactly the way it works in
research (with a nontrivial additional ingredient: also the problem is new there, and one does
not even know whether it is solvable in advance). Although mathematics plays a dominant
role in this course, I recommend the students to always make use of physical intuition during
the preliminary analysis of the problem at hand, and in the final stage, when a result in closed
mathematical form has been obtained. The dimensional correctness and the physical meaning
of a formula, or a theorem, must always be considered.

Concerning the role and effectiveness of mathematics in physics (see e.g. [43]), and viceversa,
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a remark is in order. The truth value in mathematics is given by the proof: a statement within
a certain axiomatic framework is true if it is proven. On the other hand, the truth value in
physics is given by the experimental evidence. Every experiment requires a reference, theoretical
model defining the quantities to be measured and related to each other, and any theory is built
up on, and must refer to experimental results, tests and facts. The relevance of any physical
theory, whatever be the level of generality, rigour and difficulty involved, is based on its ability to
explain experimental facts and to predict new ones. The history of theoretical and mathematical
physics works this way. The mathematical apparatus of classical mechanics built up first by
Newton, was founded on the experiments and data of Brahe, Kepler, Galilei, Boyle, Hooke and
others, and was then extended by Euler, Laplace, Lagrange, Hamilton, Poincaré, Einstein (just
to mention a few of them) to the impressive actual level leading to space explorations, to the
prediction and measurement of gravitational waves, and to the evidence of dark matter. The
overall process took, if we just start from Renaissance, five centuries, but almost four millennia
if we start from the birth of astronomy within the Sumerian and Babylonian civilizations [28].

Padova, April 2, 2025

Antonio Ponno



Chapter 1

Newtonian mechanics

Part of the material contained in this chapter maight be known to the reader, at the level of a
general physics course; a good reference is [25]. Newtonian mechanics is not only necessary as a
basis for its subsequent developments, namely the Lagrangian and the Hamiltonian formulation,
but also useful to solve fundamental problem of physics.

1.1 The Newton equation

The extreme synthesis of the monumental work of Newton [34] is encoded in the equation ruling
the motion of a point mass, or particle, subject to a given force, i.e. ma = f , where m is the
mass of the particle, a its acceleration, and f the force acting on it. The Newton equation,
written in more explicit form, reads

mẍ(t) = f(x(t), ẋ(t), t) , (1.1)

where over-dots denote total derivatives with respect to time t, one per dot. Here the curve
R 3 t 7→ x(t) ∈ Rd is referred to as the trajectory, or motion of the particle, which gives the
position of the latter in the physical space Rd (d = 1, 2, 3) at time t. The components of the
vector position x(t) = (x1(t), . . . , xd(t)), are determined with respect to a given reference frame
(a basis in Rd), and each of them is supposed to be smooth enough in t (class C2, at least).
We recall that the instantaneous velocity of the particle is the local tangent vector to the curve
t 7→ x(t), namely

v(t) =
dx(t)

dt
= ẋ(t) := lim

h→0

x(t+ h)− x(t)

h
,

whereas the instantaneous acceleration is the local tangent vector to the velocity curve t 7→ v(t),
namely

a(t) =
dv(t)

dt
= v̇(t) =

d2x(t)

dt2
= ẍ(t) .

The force acting on the particle, in the Newtonian scheme, is the known, vector valued function
f : Rd × Rd × R → Rd appearing on the right hand side of (1.1). Once the form of the force
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8 CHAPTER 1. NEWTONIAN MECHANICS

is specified, the Newton equation (1.1) becomes a vector valued, ordinary differential equation
(ODE) of second order in normal form: the derivative of highest order - the second one - is
given by a function of the derivatives of lower order and of time. Once specified the force,
the unknown of the Newton equation is the motion t 7→ x(t), which is uniquely determined,
locally in time, by assigning the initial conditions x(t0) = x0, ẋ(t0) = v0, i.e. the position and
the velocity of the particle at some initial instant t0, when f is smooth enough (e.g. C1 in all
arguments).

Remark 1.1. The fact that the force f depends on the position and the velocity of the particle
is an assumption, which allows to solve the problem of predicting the motion and turns out
to be in agreement with a wide experimental evidence. However, there are situations where
such an assumption does not work. An example is found in classical electrodynamics of point
charges: the force exerted on a charged particle by the electromagnetic field generated by the
particle itself is proportional to the derivative of the acceleration. Starting with a finite size
particle, a non trivial limit procedure, which also requires a mass renormalization, leads to the
Abraham-Lorentz radiation reaction force [24, 36]

frad =
2q2

3c3
ȧ =

2q2

3c3

...
x , (1.2)

where q is the charge of the particle and c is the speed of light. Which is the general solution
of the non Newtonian equation ma = frad for the free charge? This is known as the runaway
problem. Hint: look for solutions of the form x(t) = eλtξ, where ξ is a constant vector.

�Problem 1.1. Consider equation (1.1) in dimension d = 1, with initial conditions x(t0) := x0

and ẋ(t0) := v0. Show that x(t) is uniquely determined in a suitable neighbourhood of t0. Hint:
assume f(x, v, t) smooth enough and Taylor expand x(t0 +h) in h, to third order included (with
a remainder of order h4). Result:

x(t0 + h) = x0 + v0h+
1

m
f(x0, v0, t0)

h2

2
+

1

m

[
∂f

∂x
(x0, v0, t0)v0+

+
∂f

∂v
(x0, v0, t0)

1

m
f(x0, v0, t0) +

∂f

∂t
(x0, v0, t0)

]
h3

6
+O(h4) . (1.3)

Hint: start with the identity

x(t0 + h) = x(t0) +

∫ t0+h

t0

ẋ(s1) ds1 ;

Go on by writing ẋ(s1) = ẋ(t0) +
∫ s1
t0
ẍ(s2)ds2. You need other two steps. Can you write down

explicitly the remainder O(h4)?

The Newton equation (1.1) can be rewritten in the equivalent first order form
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{
ẋ = v
v̇ = 1

m
f(x, v, t)

. (1.4)

The mathematical problem of solving (1.1), or (1.4), once the initial conditions x(t0) and
ẋ(t0) are specified, thus determining the motion of the particle, is named Cauchy problem, or
initial value problem. The first order form (1.4) of the Newton equation clarifies that the state
of a particle is determined by its position and its velocity at the same time: (x(t), v(t)). The
space of states is thus Rd × Rd, i.e. the space of ordered pairs position-velocity. The space of
states is also called, in jargon, the phase space, and the curve t 7→ (x(t), v(t)) is called phase
curve, to be distinguished from the trajectory, or orbit, i.e. its projection t 7→ x(t) onto the
physical space of positions. The right hand side of (1.4) is called the vector field of the system,
which is the tangent vector to the phase curve passing through (x, v) at time t. It may be
useful to rewrite system (1.4) in the differential form{

dx = v dt
dv = 1

m
f(x, v, t) dt .

(1.5)

The meaning of (1.5) is the following: in a time dt the state (x, v) of the particle evolves to
(x′, v′) = (x+ dx, v + dv) = (x+ vdt, v + (f/m)dt).

Remark 1.2. By dx(t) = v(t)dt we mean here a shorthand notation for the standard Taylor
expansion ∆x(t) := x(t+∆t)−x(t) = v(t)∆t+o(∆t) as ∆t→ 0; the same for dv(t). Writing the
Newton equation in the differential form (1.5) is not only convenient, but becomes mandatory
when, for example, the force contains stochastic terms, as in the theory of Brownian motion,
where derivatives become rigorously meaningless. If one replaces the differential symbol d with
the finite difference symbol ∆ in (1.5), which is equivalent to neglect the o(∆t) remainder in the
first order Taylor expansion, one gets a (first, rough) numerical algorithm to be implemented
on a computer in order to numerically solve the initial value problem.

�Problem 1.2. Consider, for d = 1, the finite difference approximation of system (1.5) by
replacing dx and dt with ∆x and h := ∆t, respectively. You get{

x(t+ h) = x(t) + v(t)h
v(t+ h) = v(t) + 1

m
f(x(t), v(t), t)h

; t = 0, h, . . . , nh . (1.6)

This is the so called Euler algorithm, the simplest one to numerically integrate the Newton
dynamics on a computer. The initial conditions are x0 := x(0) and v0 := v(0). Setting t = 0
in (1.6), you can determine x1 := x(h) and v1 := v(h). More in general, substituting into (1.6)
t = (k − 1)h, you can rewrite it as follows:{

xk = xk−1 + vk−1h
vk = vk−1 + 1

m
fk−1h

; k = 1, . . . , n , (1.7)

where xk := x(kh), vk := v(kh) and fk−1 := f(xk−1, vk−1, (k − 1)h). Now, system (1.7) is in
the form of a recurrent sequence, or iterated map, namely (xk, vk) = M(xk−1, vk−1), which is
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what a computer is able to solve: compute the right hand side, get the new value, reinsert it on
the right and side and so on for a finite number n of steps. Now, fix the time-step h and the
number of steps n such that nh = T , a prefixed time.

1. Solve analytically system (1.7) for the three cases: f = 0, f = −mg, f = −kx, i.e. get
an explicit formula for xk and vk.

2. You could make use of a computer to solve (1.7). Play the game choosing h small enough
and n large enough. Plot the sequence {xk, vk}k=1,...,n in the phase plane (x, v), for the
three cases. What about the third one?

3. Solve the ”real” Newtonian system (1.4) in the three cases, getting explicit formulas for
xreal(t) and vreal(t) in terms of the initial conditions x0 and v0.

4. Compute the exact errors Ex = |xreal(T ) − xn| and Ev = |vreal − vn| for the three cases.
What general conclusion can be drawn? What about the limit of the errors as n→∞, or
h→ 0 at fixed T = nh?

Hint: in the third case, f = −kx, you might consider to write the recurrent map for the complex
variable zk := (ωxk + ıvk)/

√
2, where ω :=

√
k/m and ı is the imaginary unit.

Excellent references on ODEs and much of the mathematics around them are [2] and [23].
Perhaps the best reference on numerical algorithms for ODEs is [22].

1.2 Force models and their properties

Solving “explicitly” the Newton equation (1.1) is certainly not possible in the general case.
However, in certain special cases where the force displays a particular dependence on its ar-
guments. As an example, if the force f does not depend explicitly on time, i.e. ∂f/∂t = 0,
the Newton equation (1.1), or (1.4), is said to be autonomous, as opposed to the general, non-
autonomous case. Such a uniformity of the force with respect to time may help solving some
problems in some particular cases, when the force is also independent of the position x, or when
the force is independent of the velocity, or when the dimension of the problem is d = 1. In such
cases, also depending on the space dimension d of the problem, one can determine, completely
or in part, the main features of the motions. Some relevant cases are analyzed below.

1.2.1 Spatially uniform forces

This is the case of forces dependent only on the velocity (and time). In such a case, the second
of Newton equations becomes a vector valued, first order ODE for the velocity: mv̇ = f(v, t).
If the latter equation can be solved for v(t), the motion is then determined by an integration
with respect to time: x(t) = x(t0) +

∫ t
t0
v(s)ds. Such a procedure works, for example, when

f(v, t) is a linear (non homogeneous, in general) function of the velocity. An interesting solvable
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sub-case is the autonomous one-dimensional case: f(v), d = 1. In the latter case the velocity
equation can be solved by separation of variables:

v̇ =
1

m
f(v) := g(v) ; ⇔ dv

g(v)
= dt ; ⇔ F (v) = t+ c ,

the last step being obtained by indefinite integration of both sides, with F a primitive of 1/g. In
those intervals where F is monotonic, one finally gets v(t) = F−1(t+c). However, in general one
will not be able to find the function F or, even if able, will not be able to invert it. Moreover,
also supposing that a closed formula in terms of elementary functions has been obtained, this
will be unreadable but for a few trivial cases, and extracting simple informations concerning
the behaviour of the solution may turn out to be very difficult.

Remark 1.3. In fact, a much more effective technique works here. Indeed, it is sufficient
to draw the graph of g(v) = f(v)/m. Then, the equation v̇ = f(v)/m tells us that v(t) is a
monotonically increasing (decreasing) function of time where f(v) > 0 (f(v) < 0, respectively),
and that the zeroes of f are constant velocity motions. In particular, if v∗ is a zero of f
such that f(v) > 0 for v < v∗, and f(v) < 0 for v > v∗, then v∗ is locally attracting, i.e.
limt→+∞ v(t) = v∗ for all initial conditions v(0) close enough to v∗.

1.2.2 Positional, potential and conservative forces

Positional forces are independent of the velocity. In such a case, the Newton equation reads
mẍ = f(x, t). Here too, if f(x, t) is a linear (non homogenous) function of x, for example, the
problem can be solved. Relevant sub-cases are the following.

• Potential forces are those positional forces that are minus the gradient of a given scalar
function U(x, t):

f(x, t) = −∇xU(x, t) = −∂U
∂x

(x, t) . (1.8)

The scalar function U is named potential energy. Such a condition is not sufficient, in
general, to solve the Newton equation. However, large part of physics rests on such an
assumption, which is the standard one in both classical and quantum mechanics.

• Conservative forces are potential forces independent of time:

f(x) = −∇xU(x) . (1.9)

The jargon is due to the fact that in such a case there exists a conservation law, namely
the energy conservation law. Indeed, the following important theorem holds.
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Proposition 1.1. The total energy function

H(x, ẋ) := K + U :=
m|ẋ|2

2
+ U(x) , (1.10)

sum of the kinetic energy K := m|v|2/2 and of the potential energy U(x), is constant along
the solutions of the Newton equation mẍ = −∇xU(x). The same holds for mẍ = f , for any
force of the form f = −∇xU(x) + ẋ × b, where b(x, ẋ, t) is any vector valued function of its
arguments. The constant energy value E is determined by the initial data: E = H(x(0), ẋ(0)).

Proof. The time derivative of H(x(t), ẋ(t)), by the chain rule and making use of the
Newton equation mẍ = f , reads

d

dt
H(x(t), ẋ(t)) =

∂H

∂x
· ẋ+

∂H

∂ẋ
· ẍ =

∂U

∂x
· ẋ+mẋ · 1

m
f =

= ẋ ·
(
f +

∂U

∂x

)
≡ 0 (1.11)

under the hypotheses made. Thus H(x(t), ẋ(t)) = H(x(0), ẋ(0)) := E.

The geometric consequence of this theorem is that the phase curve of a particle subject to
a conservative force lies on the sub-manifod of the phase space determined by the equation
H(x, v) = E, i.e. the set H−1(E) = {(x, v) : H(x, v) = E}, the value E of the energy
being determined by the initial condition: E = H(x(0), ẋ(0)). Such a conclusion can be also
understood by checking that the gradient of H is orthogonal to the vector field of the Newton
system, namely (

∇xU
mv

)
·
(

v
− 1
m
∇xU + 1

m
v × b

)
= 0

The constant energy manifold, embedded in the 2d-dimensional phase space, has dimension
2d− 1, or co-dimesdion 1.

Remark 1.4. In particular, if d = 1, the constant energy manifold H−1(E) consists of (the
union of) curves, which implies that motions can be determined geometrically.

Force terms orthogonal to the velocity of the particle are called gyroscopic. One example
is the magnetic part of the Lorentz force, i.e. (q/c)v ×B, acting on a charged particle (charge
q) moving in a given magnetic field B. Another example is the Coriolis “apparent” force, i.e.
2mv×ω, acting on a particle moving in a non inertial frame rotating with instantaneous angular
velocity ω.
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1.2.3 Central forces: angular momentum and areal velocity

Central forces are those forces parallel to the vector position x when this is referred to a
particular origin O, called the center of the force, namely:

f(x, v, t) = ψ(x, v, t)x = ϕ(x, v, t)x̂ , (1.12)

where ψ, ϕ : Rd×Rd×R→ R are given scalar functions, ϕ(x, v, t) = ψ(x, v, t)|x| and x̂ = x/|x|.
In such a case there exists another conservation law.

Proposition 1.2. The vector valued function angular momentum

`(x, ẋ) := x×mẋ (1.13)

is constant along the solutions of the Newton equation mẍ = ϕx̂. In such a case the trajectory
of the particle in the physical space Rd lies on the plane orthogonal to ` = x(0)×mẋ(0) if the
latter is different from zero. The invariant plane of motion has equation ` · x = 0. If x(0) is
parallel to ẋ(0), then ` = 0 for all times, and x(t) is parallel to ẋ(t) for any t, the motion taking
place on a line.

Proof. Taking the time derivative of the angular momentum (1.13) along the solu-
tions of the Newton equation mẍ = f (any f for the moment), one gets

d

dt
`(x(t), ẋ(t)) = ẋ×mẋ+ x×mẍ = x× f .

The latter quantity, called the moment of the force, is zero if (and actually only if)
f is a central force, i.e. f = ϕx̂. Since x(t) · `(0) = x(t) · `(t) ≡ 0, the orbit lies on
the plane of equation ` · x = 0, orthogonal to ` and passing through the center of
force, if ` 6= 0. If ` = 0, then x(t) is parallel to ẋ(t) for all times, which means that
the motion takes plane on the line connecting the particle with the center of force
at the initial time.

A significant property of central forces is that the vector position x(t) sweeps equal areas in
equal times, or, which is the same, that the area swept by x(t) increases linearly with time.
When referred to planetary motions, this is called the second Kepler law, but is actually a
property of all central motions, i.e. motions of particles subject to a central force, and is a
consequence of the law of conservation of angular momentum.

�Problem 1.3. Show that the area A(t) swept by the vector position satisfies

Ȧ(t) =
|`(t)|
2m

, (1.14)

whatever the motion of the particle, i.e. whatever be the force f . Then, in particular, for central
forces `(t) = `(0) and the areal velocity Ȧ is constant, i.e. A(t) = A(0) + |`|

2m
t. Hint: start by

observing that, by the definition of cross product, the area swept by the vector position in a time
dt is dA = |x× dx|/2.
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1.2.4 Central, positional, autonomous conservative forces

Among the central forces, a special role is played by those forces of the form

f(x) = ϕ(|x|)x̂ = −∇U(|x|) ; U(|x|) = −
∫
ϕ(s) ds

∣∣∣
s=|x|

. (1.15)

Forces of this kind are, among others, the Newton-Hooke gravitational force ϕ(r) = −GMm/r2,
where M is the mass of the star placed at the center of force, m the mass of the planet, and
G the Newton gravitational constant; the Coulomb electrostatic force ϕ(r) = qQ/r2, where
q is the charge of the particle and Q is the other charge placed at the center of force; the
Hooke elastic force ϕ(r) = −kr, k being the elastic constant. The spherical symmetry of the
force (1.15) implies that the Newton equation mẍ = f(x) is invariant under any rotation R:
if x = Rξ, then f(Rξ) = Rf(ξ) (why?), and ξ̈ = f(ξ). Recall that RTR = 1d, where the
superscript T denotes transposition, whereas 1d is the d× d identity.

Exercise 1.1. Prove the right hand side of (1.15), i.e. that if f(x) = ϕ(|x|)x̂ then there
exists U(|x|) such that f = −∇U . Hint: show first that ∇U(|x|) = U ′(|x|)x̂; recall that
|x|2 = x2

1 + · · ·+ x2
d.

Exercise 1.2. Show that the hypothesis of spherical symmetry can be removed: a central (po-
sitional, autonomous) conservative force is necessarily spherically symmetric. In other words,
you have to prove that ϕ(x)x̂ = −∇U implies that ϕ, and thus U , are functions of |x| only.
Hint: (d = 3) pass to spherical polar coordinates (r, θ, φ) and show, making use of the chain
rule, that ∂U/∂θ = ∂U/∂φ = 0. What about d = 2?

Central, positional, autonomous, conservative (spherically symmetric) forces are extremely
interesting because in this case both energy and angular momentum are constants of motion,
and this in turn allows to reduce the study of the motion to a one-dimensional Newtonian
problem (that of the radial motion). Thus, such motions are “integrable”, i.e. solvable (in a
geometric sense, in general, i.e. without explicitly solving the Newton equation, in general).

1.3 Problems of single particle motion

In this Section some physically relevant Newtonian problems are presented, grouped together
according to the classification made above.

1.3.1 The 3D harmonic oscillator

The first important example of central conservative motion is that of a particle of mass m
attracted by the center of force by the Hooke elastic force, i.e. connected to the origin by an
ideal spring of zero rest length. The Newton equation is

mẍ = −kx , x ∈ R3 , (1.16)
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where k > 0 is the elastic constant (we will also comment about the case k < 0; see below).
In the notations introduced above, the force is of the form f = ϕ(|x|)x̂, where ϕ(|x|) = −k|x|
(recall that x = |x|x̂). By defining ω =

√
k/m one can rewrite (1.16) in the form ẍ = −ω2x,

i.e. the 3D version of the harmonic oscillator equation. The problem we want to solve here, is
to determine the form of the orbit, i.e. the form of the curve t 7→ x(t).

Due to the conservation of the angular momentum ` = x×mẋ, the motion takes place on
the plane of equation ` · x = 0. We can then rotate the axes of the reference frame in such a
way to bring the unit vector ê3 to coincide with ˆ̀. Thus, x and ẋ have two components only
(with respect to an arbitrary basis ê1, ê2 on the plane of motion), and (1.16), by components,
reads {

ẍ1 = −ω2x1

ẍ2 = −ω2x2
; ω =

√
k/m . (1.17)

These are two equations of 1D harmonic oscillator, and their general solutions read{
x1(t) = a cos(ωt+ ϕ)
x2(t) = b cos(ωt+ ψ)

, (1.18)

where a, b, ϕ, ψ are arbitrary constants. With no loss of generality we can choose the amplitudes
a, b > 0 (one can always fix a sign playing with the phases ϕ and ψ. Now, defining δ := ψ−ϕ,
and θ := ωt+ ϕ, we rewrite (1.18) as{

x1(t) = a cos(θ)
x2(t) = b cos(θ + δ)

. (1.19)

This is clearly the equation of a 2π-periodic plane curve in parametric form (the parameter is
the angle θ). We are going to show that such a curve is precisely an ellipse whose axes are
rotated, in general, with respect to the canonical ones.

As a preliminary remark, we observe that when δ = 0, (1.18) describes a segment on the line
of Cartesian equation x2 = (b/a)x1, the segment being determined by the condition |x1 ≤ a,
which implies |x2| ≤ b; both of them being due to | cos θ| ≤ 1. Thus the motion corresponding
to δ = 0 is linear. The same holds for δ = π, where the line equation becomes x2 = −(b/a)x1.
The cases of linear motion δ = 0, π (and thus δ = nπ, for any integer n) must corresponds to
` = 0, when the 3D equation (1.16) degenerates into an identical 1D equation. In the sequel
we will suppose ` 6= 0.

By eliminating cos θ and sin θ in (1.19) we get

x2
1

a2 sin2 δ
+

x2
2

b2 sin2 δ
− 2x1x2 cos δ

ab sin2 δ
= 1 , (1.20)

that can be rewritten in the form x ·Mx = 1; explicitly

(
x1

x2

)
·

 1
a2 sin2 δ

− cos δ
ab sin2 δ

− cos δ
ab sin2 δ

1
b2 sin2 δ


︸ ︷︷ ︸

M

(
x1

x2

)
= 1 . (1.21)
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The matrix M defining the homogeneous quadratic form on the right hand side is real symmetric,
and by the spectral theorem [15] is orthogonally similar to a real diagonal one: there exists a
rotation matrix R, RTR = 12, such that RTMR = diag(λ−, λ+), where λ− and λ+ are the two real
eigenvalues of M, whereas the two columns of R are the corresponding, mutually orthogonal,
unit eigenvectors of u− and u+ (in this order). As a consequence, the change of coordinates
y = RTx diagonalizes the quadratic form x ·Mx. Indeed, upon substituting x = Ry in the latter
expression, we get

(Ry) ·MRy = y · (RTMR)y = y · diag(λ−, λ+)y ,

i.e. we map equation (1.21) into
λ−y

2
1 + λ+y

2
2 = 1 . (1.22)

This is the Cartesian canonical equation of a conic section. The possible cases are: an ellipse,
if λ− and λ+ are both positive, or a hyperbola, if one is positive and the other one is negative
(both negative is impossible). The latter case is not expected on physical grounds: the force is
attractive and grows with the distance from the center, which excludes unbounded motions. In
fact, by a quick inspection of the matrix M, one gets tr(M) = λ− + λ+ > 0, det(M)=λ−λ+ > 0,
which imply 0 < λ− < λ+, so that (1.22) is the equation of an ellipse whose lengths of the
major and minor semi-axes are 1/

√
λ− and 1/

√
λ+, respectively. The explicit computation of

the eigenvalues yields

λ± =
a2 + b2 ±

√
(a2 + b2)2 − 4a2b2 sin2 δ

2a2b2 sin2 δ
. (1.23)

Exercise 1.3. Check that λ+ > λ− > 0.

Remark 1.5. Concerning the form of the matrix R whose (ordered) columns are the eigenvec-
tors u− and u+, one can obviously compute it. On the other hand, the unit vector u− ∈ R2

can always be written in the form u− = (cosφ, sinφ)T . The only choices for the unit vector u+,
orthogonal to u−, are u+ = ±(− sinφ, cosφ)T (check it). The two choices of sign yield

R+(φ) =

(
cosφ − sinφ
sinφ cosφ

)
, R−(φ) =

(
cosφ sinφ
sinφ − cosφ

)
.

One has det(R+) = +1 and, in particular, R+(0) = 12 = diag(1, 1). On the other hand,
det(R−) = −1 and R−(φ) does not coincide with the identity for any value of φ; in partic-
ular, R−(0) = diag(1,−1). Recall that the relation RTR = 12 implies det(R) = ±1. Thus,
proper rotations are orthogonal matrices with determinant +1: they rotate the Cartesian axes
preserving their mutual initial orientation. Orthogonal matrices with determinant −1 cor-
respond to the initial inversion of an axis (the second one), followed by a proper rotation:
R−(φ) = R+(φ)diag(1,−1) (check it).

�Problem 1.4. Prove that unbounded solutions of (1.16) are forbidden, a priori, by the energy
conservation law (reduction to plane motion can be used, but is not necessary).
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�Problem 1.5. Suppose to reverse the sign of the elastic constant k in (1.16). This is the
equation of the 3D hyperbolic oscillator (but nothing oscillates), or harmonic repulsor (but there
is nothing harmonic here). Set k = −|k| and call ω =

√
|k|/m. You arrive at (1.17) with a

plus sign on the right hand side. The solution of the two equations can be written in the form
xi(t) = aie

ωt + bie
−ωt, i = 1, 2 (check it). Eliminate the exponentials and get an equation of the

form x ·Mx = 1. Prove that this can be diagonalized to the canonical equation of a hyperbola.
Hint: eωte−ωt = 1. What about the energy conservation law in this case?

The conclusion of this section is the following: the orbits of problem (1.16) are ellipses if
k > 0 and hyperbolas if k < 0.

Exercise 1.4. Start from the geometric definition of ellipse as the locus of points of the plane
such that the sum of their distances d1 and d2 from two fixed points F1 and F2, called foci, is
constant: d1 + d2 = 2a, with the focal distance F1F2 = 2f . Set the foci F2 and F1 on the x
axis of the Cartesian plane at (f, 0) and (−f, 0), respectively. First, check that when the point
is on the y axis its distance b from the origin is given by b2 = a2 − f 2. Now, check that the
distances of a point P = (x, y) on the locus are given by d2

1 = (x− f)2 + y2, d2
2 = (x+ f)2 + y2,

respectively. Now obtain the Cartesian canonical equation of the ellipse, namely

x2

a2
+
y2

b2
= 1 , (1.24)

where a and b are the lengths of the major and minor semi-axes, respectively. Hint: square
d1 + d2 = 2a, isolate 2d1d2 and square again.

Exercise 1.5. Set x = f + r cos θ and y = r sin θ into (1.24), so that r is the distance from the
focus F1 and θ the inclination angle of F1P with respect to the x axis (counterclockwise). Now
obtain the polar equation of the ellipse, namely

r =
p

1 + ε cos θ
, (1.25)

where the quantities

ε :=
f

a
; p :=

a2 − f 2

a
(1.26)

are called eccentricity (ε) and parameter (p) of the ellipse, respectively. Hint: substitute x =
f + r cos θ, y = r sin θ in (1.24) written in the form (a2 − f 2)x2 + a2y2 = a2(a2 − f 2); solve for
r; recall that r > 0.

Remark 1.6. Equation (1.34) defines all the conic sections. When ε = 0, (1.34) is the equation
of a circle: r(θ) = p. For proper ellipses, 0 < ε = f/a < 1. When ε = 1, (1.34) is the polar
equation of a parabola. Finally, if ε > 1 (1.34) defines hyperbolas. Observe that when ε ≥ 1 the
denominator on the right hand side of (1.34) vanishes at at two finite angles: ±π at ε = 1 and
±θ̂(ε) at ε > 1. In the latter case the angle ±θ̂ are the inclination angles of the asymptotes of
the hyperbola (one branch). See [14] for further details.

For a complete introduction to the geometry and physical relevance of the conic sections (and
much more) see [4].
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1.3.2 The Kepler-Newton problem

The so called Kepler-Newton problem consists in the study of the motion of a particle of mass
m subject to a conservative central force inversely proportional to the square of the distance
from the center, namely

mẍ = − k

|x|2
x̂ = − k

|x|3
x , x ∈ R3 , (1.27)

where k 6= 0 is a constant. The physically relevant cases of attractive force, with k > 0, are the
gravitational one, where k = GMm, G being the gravitational Newton constant, m the mass
of a planet and M the mass of a star (at rest in the center), or the Coulomb one, where, for
example, k = e2, e being the common charge of the electron and the proton, which is the case
of the Hydrogen atom (with the proton at rest in the center). A repulsive force, with k < 0,
rules the dynamics of a particle of given charge q repelled by a center of equal charge q; here
k = −q2.

The (invention and) study of problem (1.27) was motivated by the three empirical laws
induced by Kepler on the basis of the analysis of the data collected by Brahe. The three Kepler
laws are the following.

1. Planets move on elliptical orbits, with the Sun in one of the foci.

2. The vector Sun-planet sweeps equal areas in equal times (constant areal velocity).

3. If, for any planet, T and a denote the revolution period and the length of the orbital
major semi-axis, then the ratio T 2/a3 is a constant, independent of the planet.

Modern data relative to the orbits in the solar system are reported in the Table below.

Planet a [A.U.] T (years) ε α mP/mS

Mercury 0.39 0.24 0.205 7o00 1.6 10−7

Venus 0.72 0.61 0.006 3o23′ 2.4 10−6

Earth 1 1 0.016 0o00′ 3.0 10−6

Mars 1.52 1.88 0.093 1o51′ 3.2 10−7

Jupiter 5.20 11.83 0.048 1o18′ 0.9 10−3

Saturn 9.55 29.43 0.055 2o29′ 2.8 10−4

Uranus 19.22 84.18 0.046 0o46′ 4.4 10−5

Neptune 30.11 164.56 0.008 1o46′ 0.5 10−4

Pluto 39.60 247.47 0.246 17o07′ 1.7 10−6

Table 1.1: In the present table, for each planet, a is the major semi-axis length, in astronomic
units (A.U.), i.e. referred to the value of a for the Earth; T is the revolution period, in years
(again referred to the value of T for the Earth); ε is the eccentricity, α the inclination angle of
the orbital plane with respect to that of the Earth; mP/mS is the ratio mass of the planet to
mass of the Sun.
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Exercise 1.6. Plot T versus a in log-log scale. Check whether the data are compatible with a
fitting line of slope 3/2.

In what follows, we study equation (1.27) with k > 0 under the hypothesis ` 6= 0, with the
aim of deducing (and extend) the three Kepler laws. As in the case of the 3D harmonic oscillator,
we rotate the reference system in such a way that ê3 = ˆ̀. On the plane of motion, orthogonal to
`, we could rewrite equation (1.27) in Cartesian (two) components. However, to our purposes
here, this is not the convenient choice. Instead, we pass to plane polar coordinates. We attach
to each point in the plane a local, orthonormal polar basis, defined as follows. Consider the
transformation to plane polar coordinates defined by{

x1 = r cos θ
x2 = r sin θ

. (1.28)

Then the unit vectors êr and êθ tangent to the coordinate lines θ = constant and r = constant,
respectively, are given by

êr :=
∂x

∂r
=

(
cos θ
sin θ

)
; êθ =

1

r

∂x

∂θ
=

(
− sin θ
cos θ

)
. (1.29)

Observe that the vectors êr and êθ depend only on the angle θ; moreover, the the polar basis
êr, êθ preserves the orientation of the plane: êr(0) = ê1 = (1, 0)T , êθ(0) = ê2 = (0, 1)T . One
easily checks the fundamental relations:

dêr
dθ

= êθ ;
dêθ
dθ

= −êr . (1.30)

We now start from the obvious relation x = rêr(θ) (we are just rewriting (1.28) making use of
the expression (1.29) of êr). Along the motions, i.e. the solutions of (1.27), r and θ depend on
time. Thus, starting from x(t) = r(t)êr(θ(t)), one easily finds

ẋ = ṙêr + rθ̇êθ ; (1.31)

ẍ = (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ . (1.32)

Such a computation makes use of the chain rule together with repeated use of (1.30). Upon
substitution of (1.32) into the left hand side of (1.27), now thought of in the plane (x ∈ R2),
one gets

m(r̈ − rθ̇2)êr +m(2ṙθ̇ + rθ̈)êθ = − k
r2

êr ,

i.e., since êr and êθ are linearly independent,{
m(r̈ − rθ̇2) = − k

r2

m(2ṙθ̇ + rθ̈) = 0
. (1.33)

This is equation (1.27) written on the plane of motion in plane polar coordinates. The sec-
ond equation, i.e. the θ component, expresses nothing but the conservation of the angular
momentum. Indeed, multiplying it by r, one gets

0 = m(2rṙθ̇ + r2θ̈) =
d

dt
(mr2θ̇) .
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On the other hand, the angular momentum in polar coordinates reads

` = x×mẋ = rêr ×m(ṙêr + rθ̇êθ) = mr2θ̇ê3 , (1.34)

where ê3 = ˆ̀= êr × êθ. Thus, mr2θ̇ = `3, and system (1.33) can be rewritten in the form{
mr̈ =

`23
mr3
− k

r2

θ̇ = `3
mr2

. (1.35)

Remark 1.7. In what did up to now we have never made use of the specific form of the force
ϕ(r). Convince yourself that, for a central force of the form f = ϕ(r)êr (in the plane of motion),
one gets, in place of (1.35), the system{

mr̈ =
`23
mr3

+ ϕ(r)

θ̇ = `3
mr2

. (1.36)

Now the radial equation (the first one) in (1.35) involves only the variable r(t), so that the
problem has been reduced to study the one-dimensional radial motion (we will com back below
to such an analysis). In principle, solving for r(t), one then determines θ(t) from the second
of equations (1.35). Such a procedure is possible but does not lead to a solution expressed in
simple closed form. However, the form of the orbit can be explicitly determined in the polar
form θ 7→ r(θ) since, if `3 > 0, for example, then θ̇ > 0 and the function t 7→ θ(t) is invertible,
so that t(θ) exists for all θ ∈ R. By the chain rule, and identifying r(θ) = r(t(θ)), we get

dr

dθ
=

dr

dt

dt

dθ
=
mr2

`3

ṙ ⇔ ṙ =
`3

mr2
r′(θ) . (1.37)

Of course, in the case `3 < 0 we would arrive exactly at the same result, the sign of `3

determining only the direction of rotation (counter-clockwise if `3 > 0). Now, instead of re-
applying the chain rule and to express r̈ in terms of r′′(θ), we follow another way, making use
of the energy conservation law. The latter law, for equation (1.27), reads

m|ẋ|2

2
− k

|x|
= E . (1.38)

Substituting inside the latter x = rêr and ẋ = ṙêr + rθ̇êθ, and θ̇ from (1.35) (the second
equation), yields

mṙ2

2
− k

r
+

`2
3

2mr2
= E . (1.39)

Observe that such an expression depends only on r and ṙ. Now, substituting ṙ form (1.37), one
gets

`2
3

2m

[
(r′)2

r4
+

1

r2

]
− k

r
= E . (1.40)
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The latter energy conservation law is extremely simplified if one rewrites it in terms of the
variable

u(θ) :=
1

r(θ)
, (1.41)

which is due to Binet; one gets

`2
3

2m

[
(u′)2 + u2

]
− ku = E . (1.42)

Taking the derivative of the latter equation with respect to θ, and taking into account that E
does not depend on it, and that u′(θ) cannot be identically zero (i.e. zero on any interval),
yields the Binet equation

u′′ + u− km

`2
3

= 0 . (1.43)

The general solution of the latter equation is easily checked to be given by

u(θ) =
km

`2
3

+ A cos(θ − θ0) , (1.44)

where A and θ0 are arbitrary constants. We can choose, without any loss of generality, A > 0
and θ0 = 0 (convince yourself about it). Recalling that u = 1/r, we can rewrite (1.44) as

r(θ) =

`23
km

1 +
`23A

km
cos θ

, (1.45)

i.e. a conic section in polar form, with parameter p = `2
3/(km) and eccentricity ε = `2

3A/(km)
(go back to Remark 1.6 and what said before it). In order to determine the value of the
constant A > 0, and thus of the eccentricity in terms of E and `3 (and thus in terms of the
initial conditions), we reinsert (1.44) into the energy conservation law (with θ0 = 0). Elementary
calculations lead to determine

A2 =
k2m2

`4
3

+
2mE

`2
3

,

so that the eccentricity ε = `2
3A/(km) of the orbit is given by

ε =

√
1 +

2`2
3E

k2m
. (1.46)

Our first conclusion is that the orbits of the Kepler-Newton problem are conic sections of the
form

r(θ) =

`23
km

1 +

√
1 +

2`23E

k2m
cos θ

. (1.47)

For planetary motions (k = GMm) this implies the following.

• If E = −km/(2`2
3), ε = 0, r(θ) = `2

3/(km) is constant and the orbit is circular; the angular
velocity is also constant and given by θ̇ = `3/(mr

2) = k2m/`3
3.
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• If −km/(2`2
3) < E < 0, 0 < ε < 1 and the orbits are ellipses. This is the first Kepler law

(recall that the in the polar form r refers to one of the foci).

• To E = 0, i.e. ε = 1, there corresponds a parabolic orbit.

• Finally, if E > 0, i.e. ε > 1, the orbits are hyperbolas.

The second Kepler law concerns the constancy of the areal velocity, which has been proven in
general, for central forces. We here recall it, namely

Ȧ =
`3

2m
⇔ A(t) = A(0) +

`3

2m
t . (1.48)

Consider now the case of elliptic motions. Imagine to set t = 0 when θ = 0 (at the orbital
perihelion), with A(0) = 0. After one complete revolution, denoting by T the revolution period,
one has A(T ) = `3T/(2m), where A(T ) is the area of the ellipse. Thus

T =
2m

`3

πab =
2πm

`3

a
√
a2 − f 2 =

2πm

`3

a3/2

√
a2 − f 2

a
=

=
2πm

`3

a3/2√p = 2π

√
m

k
a3/2 .

Recalling that k = GMm, we get
T 2

a3
=

4π2

GM
, (1.49)

i.e. the third Kepler law with an explicit constant which depends only on the mass of the star
(the Sun, for example) and is independent of the mass of the planet.

Exercise 1.7. The Binet equation (1.43) can be obtained by re-applying the chain rule (1.37)
to first get r̈ as a function of r, r′ and r′′, and substitute it into the first of equations (1.35).
Then, by setting r = 1/u one obtains the result.

1.3.3 The eccentricity vector

An alternative way to treat the Kepler-Newton problem rests on the introduction of another
vector valued constant of motion, namely what is usually referred to as the Laplace-Runge-
Lenz vector, whose discovery perhaps goes back to Laplace and Hamilton, who introduced it
independently of each other; see the historical notes [19, 20]. The eccentricity vector e, as we
will refer to in the sequel, is defined as follows:

e :=
1

k
v × `− x̂ , (1.50)

where reference is made to the Kepler-Newton equation (1.27): k is the Kepler constant, x,
v = ẋ and ` = x × mv being the position, the velocity and the angular momentum of the
particle. The following proposition holds.
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Proposition 1.3. The eccentricity vector e (1.50) is constant along the solutions of the Kepler
Newton equation mẍ = −kx̂/|x|2; |e| = ε, the latter being the orbital eccentricity; for elliptic
orbits e lies on the focal axes, in the direction of the pericenter.

Proof. We here recall that x̂ = êr, mv̇ = −kêr/r2, ` = mr2θ̇ê3, the latter being a
constant vector, and êr, êθ, ê3 is a right-handed basis. We have

de

dt
=

1

k

(
− k

mr2
êr

)
× (mr2θ̇ê3)− θ̇êθ = (θ̇ − θ̇)êθ ≡ 0 .

Now, taking into account that v = ṙêr + rθ̇êθ, writing ` = `3ê3, and eliminating θ̇
form mr2θ̇ = `3, the vector e turns out to be given by

e =

(
`3rθ̇

k
− 1

)
êr −

(
`3ṙ

k

)
êθ =

(
`2

3

kmr
− 1

)
êr −

(
`3ṙ

k

)
êθ .

The square modulus of the latter vector is

|e|2 =

(
`2

3

kmr
− 1

)2

+

(
`3ṙ

k

)2

=

= 1 +
2`2

3

mk2

(
mṙ2

2
− k

r
+

`2
3

2mr2

)
= 1 +

2`2
3E

mk2
= ε2 ,

where (1.39) and (1.46) have been used. This proves that |e| = ε. Now, to end
up the proof, we take the scalar product of the eccentricity vector (1.50) with the
position vector x = rêr. On the left we get

e · x = |e| |x| cos θ = ε r cos θ ,

where θ is the angle between e and x (we already give it the same name of the
orbital angle because it turns out to be exactly the same). On the other hand,

e · x =
1

k
(v × `) · x− x · êr =

1

k
(x× v) · `− r =

=
1

km
(x×mv) · `− r =

`2
3

km
− r ,

where we used the known property of the mixed product (a× b) · c = (b× c) · a =

(c× a) · b valid for any triple of vectors a, b, c ∈ R3. We thus get ε r cos θ =
`23
km
− r,

i.e.

r =

`23
km

1 + ε cos θ
,

identical to the orbital equation (1.47). This also proves that, having called θ the
angle between e and the vector position x(t), the constant eccentricity vector e lies
on the focal axis of the ellipse, in the direction of the pericenter.
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1.3.4 Levi-Civita - Bohlin regularization

The 3D harmonic and hyperbolic oscillator, and the Kepler-Newton problem display orbits that
are conic sections for all initial conditions. This is not by chance since, from a mathematical
point of view, the two problems are one and the same. This was first obtained by Levi-Civita
[31], and independently by Bohlin [8] (we here follow the subsequent, more synthetic treatment
by Bohlin). Let us rewrite the Kepler-Newton equation in the form

ẍ = − c

|x|3
x ; c = k/m > 0 . (1.51)

The energy conservation law reads

|ẋ|2

2
− c

|x|
= E ; E = E/m . (1.52)

Let us introduce, in the former case (1.51), the complex variable z = x1 + ıx2, where ı is the
imaginary unit. One can then write (1.51) and (1.52) in the form

z̈ = − c

|z|3
z ; (1.53)

|ż|2

2
− c

|z|
= E , (1.54)

with z = x1 + ıx2 ∈ C. Observe that |z|2 = x2
1 + x2

2 = |x|2. The Levi-Civita - Bohlin map
C→ C : (z, z̄, t) 7→ (w, w̄, τ) is defined by the relations

z = w2 ; dt = |w|2dτ . (1.55)

By the chain rule, one gets
dz

dt
=

dz

dw

dw

dτ

dτ

dt
=

2ww′

|w|2
,

where w′ = dw/dτ . Substituting the latter and z = w2 into (1.54), yields

2|w′|2 − E|w|2 − c = 0 . (1.56)

Taking the derivative with respect to τ , and taking into account that both c and E do not
depend on it, yields

(2w′′ − Ew)w̄′ + (2w̄′′ − Ew̄)w′ = 0 , (1.57)

One easily proves that the above identity holds if and only if

w′′ =
E
2
w . (1.58)

The latter complex equation, when we write w = w1 + ıw2, is equivalent to the real system{
w′′1 = (E/2)w1

w′′2 = (E/2)w2 .
(1.59)

The latter system represents a 2D harmonic oscillator if E/2 := −ω2 < 0, and a 2D hyperbolic
oscillator if E/2 := ω2 > 0. Such a correspondence maps the Kepler-Newton elliptic/ hyperbolic
motions into the harmonic/hyperbolic oscillator ones. See also [4] and [5].
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Exercise 1.8. Prove that identity (1.57) holds if and only if (1.58) holds. Hint: the if is trivial;
for the only if start by examining the condition Re(z1z̄2) = 0 for two complex numbers z1, z2.

The Kepler-Newton problem and the harmonic oscillator one are really special. Indeed, a
theorem due to Bertrand [7] states that the sole central potentials U(r) all of whose bounded
motions consist of closed orbits are the harmonic potential U(r) = kr2/2, and the Kepler one,
U(r) = −k/r (k > 0 in both cases); see [1] for a complete proof.

1.3.5 1D conservative Newtonian motions

One-dimensional (1D) conservative Newtonian motions are ruled by the Newton differential
equation mẍ = f(x) = −U ′(x), where the potential energy U(x) = −

∫
f(x)dx always exists,

since x ∈ R. The Newton equation is equivalent to the system{
ẋ = v
v̇ = − 1

m
U ′(x)

. (1.60)

The phase space of the system is the plane R2 3 (x, v).
The simplest (and relevant) solutions of (1.60) are the equilibria, or equilibrium points,

namely the zeros of the vector field, i.e. those points of the phase space where the right hand
side of (1.60) vanishes. Thus the equilibria of 1D conservative systems are of the form

(x, v) = (x̄, 0) ; f(x̄) = −U ′(x̄) = 0 ,

i.e. they are the points of the x axis (zero velocity) whose abscissae are the critical points of
the potential energy (zero force). To the single equilibrium point (x̄, 0) there corresponds the
motion t 7→ (x̄, 0) for all t ∈ R, i.e. the unique solution of (1.60) corresponding to the initial
condition (x̄, 0).

For system (1.60), the total energy H(x, v) is preserved, namely

H(x, v) :=
mv2

2
+ U(x) = E , (1.61)

where x(t) and v(t) is understood in the latter expression. The constant value E of the function
H along the phase curve t 7→ (x(t), v(t)), i.e. the unique motion corresponding to a specific
initial condition (x(0), v(0)), is determined by the the latter: E = H(x(0), v(0)). One thus
concludes that the phase curves, i.e. the possible motions, belong to the E-level set of H, i.e.

H−1(E) := {(x, v) ∈ R2 : H(x, v) = E} . (1.62)

The latter set consists, when not empty, of one or more connected curves, some of them possibly
degenerating into single points. The picture of the level sets (1.62), where one distinguishes the
traces and the directions of the possible phase curves, or motions, corresponding to all possible
values of E, is named phase portrait, or diagram of system (1.60). This is the most complete
description of the dynamics of the 1D Newtonian system.
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Example 1.1. For the harmonic oscillator H = mv2/2 + kx2/2 = E ≥ 0. To E = 0 there
corresponds the origin (0, 0) of the phase plane, the only equilibrium point. The corresponding
motion is the phase curve t 7→ (0, 0) for all t ∈ R. The level set for any E > 0 is an ellipse
of canonical equation x2/a2 + v2/b2 = 1, where a :=

√
2E/k and b :=

√
2E/m are the length

of the two semi-axes. This corresponds to the periodic motions of the harmonic oscillator,
namely x(t) = x(0) cos(ωt) + [v(0)/ω] sin(ωt), where T = 2π/ω is the period of the motion and
ω :=

√
k/m the pulsation. The point mass oscillates on the real axis sweeping back and forth

a segment of extremes x± = ±a = ±
√

2E/k, the two turning points, where the particle stops
and inverts the motion. The ellipse in the phase plane is swept clockwise (why?) once per
period T of motion. Due to the structure of the phase portrait, the equilibrium point (0, 0) of
the harmonic oscillator is referred to as an elliptic (equilibrium) point, or center.

Example 1.2. For the harmonic repulsor, or hyperbolic oscillator, defined by the Newton
equation mẍ = +kx (k > 0), the energy function is H(x, v) = mv2/2 − kx2/2. The level
set H−1(E) is non empty for any E ∈ R. In particular, H−1(0) consists of the two lines
v = ±(k/m)x. Since such a set contain the equilibrium point (0, 0), by the uniqueness of
the solutions of the Newton system, H−1(0) contains five distinct motions, or phase curves,
namely the origin and four half-lines, two entering and two exiting the origin. For all values
of E = −|E| < 0, H−1(E) consists of two distinct phase curves, namely the two branches (left
and right) of hyperbola of equation x2/a2 − v2/b2 = 1, where a =

√
2|E|/k, b =

√
2|E|/m. On

the other hand, for all values of E > 0, H−1(E) consists of the two branches (up and down)
of hyperbola of equation x2/a2 − v2/b2 = −1, where a =

√
2E/k, b =

√
2E/m. Observe that

H−1(0) consists, from a geometrical point of view, of the asymptotes of the hyperbolas. The
equilibrium point (0, 0) in this case is referred to as a hyperbolic (equilibrium) point, or saddle
point.

Exercise 1.9. Consider the graph of the energy function H(x, v), i.e. the subset of R3 define
by {(x, v, z) : z = H(x, v)}. The level sets of H are then the intersections of the graph of
H with the horizontal planes z = E. Sketch the graphs of H for the harmonic and hyperbolic
oscillator, realizing that one has a paraboloid with elliptic section in the former case, and a
mountain pass, or saddle-shaped graph in the latter. The origin (0, 0) of the phase plane (the
only equilibrium point in both cases) is called a center for the harmonic oscillator, and a saddle
for the hyperbolic one. You can make use of a computer.

The particular structure of the energy function (1.61) imposes some restrictions on the
structure of the E-level sets of H.

1.3.6 Rules to draw a phase portrait

These are the general rules to draw a phase portrait.

�Suggestion 1.1. Draw any graph of a function U(x) displaying local minima and maxima,
and understand each item below on the picture. Draw a corresponding sketch of the phase
portrait on the (x, v) phase plane reported just below the plane with the graph of U(x), with the
two x-axes parallel.
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• Equilibria lie on the x-axis. The orientation of the phase curves is left-to-right in the upper
half plane {(x, v) : v > 0}, and right to left in the lower half plane {(x, v) : v < 0}.
This follows from ẋ = v, so that x(t) is monotonically increasing in the upper half phase
plane, and monotonically decreasing in the lower one. In particular, all closed curves are
clockwise oriented.

• Since mv2/2 = E−U(x) ≥ 0, the possible values of x for motions of a given energy value
E are those belonging to the E-sub-level set of U , i.e. the allowed values of x are such
that U(x) ≤ E.

• If U(x) displays an absolute minimum value Um, then E cannot assume values lower than
it: for E < Um there are no possible motions. If U is unbounded from below, then E can
take on any real value. Remark: U is defined up to an arbitrary constant, that must be
chosen once and for all.

• H is symmetric in v, i.e. H(x,−v) = H(x, v), which implies reflection symmetry of any
level set with respect to the x-axis. More precisely, solving (1.61) for v, one gets

v±(x) = ±
√

2

m
[E − U(x)] , (1.63)

which means that to any allowed x there correspond two values of v, v+ ≥ 0 and v− =
−v+ ≤ 0. The two branches v± may be either connected to each other or disconnected.

• The even symmetry of H in v corresponds to the so-called time-reversal symmetry of
system (1.60): the equations are invariant by changing (x, v, t) into (x,−v,−t)

• The simple zeros of the equation U(x) = E are called turning points. Indeed, if U(ξ) = E,
and U ′(ξ) > 0 (< 0), at the turning point ξ, the particle coming from the left (right) of
ξ stops there by the energy conservation law. Starting at the stop time with the initial
condition (ξ, 0), the force on the particle is f(ξ) = −U ′(ξ)/m < 0 (> 0), and the particle
starts at rest and moves to the left (right).

• The previous point describes the elastic smooth reflection of a particle by a potential
barrier: when the particle arrives at a turning point it rebounds inverting the direction
of motion, assuming at the same positions equal and opposite velocities (this is implied
by the v → −v symmetry of H).

• Taking the derivative of v+, from (1.63), one gets

v′+(x) =
−U ′(x)√

2m [E − U(x)]
. (1.64)

From this formula one sees that v+ → −∞ as x → ξ−, where ξ is a right turning point
such that U ′(ξ) > 0. Analogously, v+ → +∞ as x → ξ+, where ξ is a left turning point
such that U ′(ξ) < 0. By the reflection symmetry v → −v it then follows that the tangent
to a phase curve at the phase turning point (ξ, 0) is vertical, and the curve is locally
smooth.
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• Another implication of (1.64) is that, for values of E larger than the local minimum
(maximum) value of U(x), the local maximum (minimum) points of v+(x) coincide with
the local minimum (maximum) points of U(x).

• Equilibrium points (x̄, 0) corresponding to nondegenerate critical points of U(x) (i.e.
those x̄ such that U ′(x̄) = 0 and U ′′(x̄) 6= 0) are locally elliptic if U ′′(x̄) > 0, and locally
hyperbolic if U ′′(x̄) < 0. In other words, the phase portrait around (x̄, 0) resembles, in
such two cases, either that of the harmonic or that of the hyperbolic oscillator. This
easily follows by the energy conservation law (1.61), expanding U(x) around x̄ to second
order in x− x̄, and taking an energy value E = U(x̄) + ∆E. This yields

mv2

2
+
U ′′(x̄)

2
(x− x̄)2 = ∆E +O(|∆E|3/2) .

Neglecting the small remainder on the right hand side, when |∆E| is very small, leads
to the conclusion by one and the same analysis performed for the harmonic and the
hyperbolic oscillator, with U ′′(x̄) and ∆E in place of ±k and E, respectively.

• To an interval of allowed values of x with extrema two turning points x±(E), two consec-
utive simple zeros of U(x) = E, there corresponds a closed phase curve CE, i.e. a periodic
motion.

• To an interval of allowed values of x with extrema a turning point and a nondegenerate
local maximum x̄ of U(x) there corresponds a closed curve connecting the equilibrium
point (x̄, 0) to itself. Such a closed curve is called homoclinic connection, or loop. The
time to reach the equilibrium along such a phase curve is infinite. The possible motions
of the system in this case are two: the equilibrium one and the homoclinic motion.

• To an interval of allowed values of x with extrema two nondegenerate local maxima x̄1

and x̄2 of U(x), there correspond two symmetric phase curves, one above and one below
the x-axis, connecting the equilibria (x̄1, 0) and (x̄2, 0). Such curves are called heteroclinic
connections. The possible motions of the system in this case are four: the two equilibria
and the two heteroclinic motions.

1.3.7 Periods and flight times

Concerning the times the particle takes to move along a given phase curve, there are two
interesting cases, namely the case of bounded closed curves (periodic motions), and that of
unbounded curves.

Consider first a closed phase curve CE, corresponding to a periodic motion. From the law
of conservation of energy it follows that the period of such a motion T (E) is given by

T (E) =

∮
CE

dx

v
= 2

∫ x+(E)

x−(E)

dx√
2
m

[E − U(x)]
(1.65)
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The area enclosed by the closed phase curve CE in the (x, p) phase plane, where p := mv is the
momentum, is

A(E) =

∮
CE

p dx = 2

∫ x+(E)

x−(E)

√
2m [E − U(x)] dx . (1.66)

The latter quantity is related to the period of motion (1.65) by the following fundamental
relation:

T (E) =
dA

dE
, (1.67)

which is easily proved by a direct calculation.
In the case of an unbounded phase curves (or motion), to be specific, suppose that U(x)→

−∞ as x→ +∞. Let ξ be such that E − U(x) > 0 for all x ∈ [ξ,+∞[. The time the particle
takes to reach +∞, starting at ξ, is

τ∞(E) =

∫ +∞

ξ

dx√
2
m

[E − U(x)]
. (1.68)

Such a time turns out to be finite (which means off to infinity in a finite time, i.e. a blow-up)
if |U | → +∞ faster than x2 as x→ +∞.

1.3.8 The first quantum theory

In the first 20 years of the past century, in trying to establish a new theory in agreement with
many experimental results that classical electrodynamics was unable to explain, Planck, Ein-
stein, Bohr, Sommerfeld and Born [9] developed what is known today as the ”first quantum
theory”. Quantum mechanics in its modern form was developed starting from 1925, by Heisen-
berg, Schrödinger, Pauli and Dirac, with the fundamental and definitive contribution of Von
Neumann on the mathematical formulation of the theory.

The basis of the first quantum theory is the following. Consider a 1D conservative Newto-
nian system. For bounded periodic motions, consider the formulas (1.65), (1.66) and (1.67),
expressing the period of the motion T (E), the area A(E) inside the closed phase curve CE, and
their relation, respectively. Then one observes that A(E) =

∮
CE
pdx has the dimension of an

action, i.e. energy times time, or momentum times length. The principle of quantization set
up by the founders of quantum physics requires that for bounded periodic motions A(E) must
take on only integer multiple values of the Planck constant h = 6.626 10−27erg · s, i.e.

A(E) = nh , n = 0, 1, 2 . . . (1.69)

An equivalent formulation of such a principle of quantization of the area is obtained by defining
the action variable

I(E) :=
A(E)

2π
=

1

2π

∮
CE

p dx . (1.70)

According to (1.69), I(E) = n~, where ~ := h/(2π) = 1.055 10−27erg · s. Now, observing
that dI/dE = T/2π > 0, one can invert (1.70) to get E(I). One then finds the following
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consequence of the quantization principle: I = n~ implies that the energy values of a bounded
periodic motion are also quantized, the allowed values being En := E(n~). The sequence of
such energy values is the so-called energy spectrum of the system.

Example 1.3. For the harmonic oscillator the frequency ω does not depend on the energy.
From dI/dE = T/2π = 1/ω, one gets E = ωI. Another way to get this result is to consider
the law of conservation of energy in the (x, p) plane, namely

p2

2m
+
kx2

2
= E .

Then the phase curve corresponding to E > 0 is an ellipse of semi-axes a =
√

2E/k and

b =
√

2mE. The area of the ellipse is A = πab = 2πE/ω (recall that ω =
√
k/m), so that

I = E/ω. The energy spectrum of the quantum harmonic oscillator is then

En = ~ωn , n = 0, 1, 2 . . . . (1.71)

Example 1.4. Let us consider again the third Kepler law, namely

T = 2π

√
m

k
a3/2 . (1.72)

Now, recalling that the parameter p of the ellipse is linked to a and f by the relation p = a2−f2
a

=
a(1− ε2), one gets

a =
p

1− ε2
= − k

2E
.

This gives
T

2π
=
k
√
m

2
√

2
(−E)−3/2 =

dI

dE
.

By a simple integration we get I = k
√
m/
√
−2E, and finally

E(I) = −mk
2

2I2
. (1.73)

For the Hydrogen atom, k = e2 and the principle of quantization yields the energy spectrum

En = − me4

2~2n2
, n = 1, 2, . . . (1.74)

first found by Bohr (1913).

Example 1.5. Consider a particle in an infinitely high, rectangular box of basis 2`. From the
conservation of energy, at energy E the particle has velocity v± = ±

√
2E/m, and momentum

p± = ±
√

2mE. Thus A = 2p+2` = 4`
√

2mE, so that E = A2/(32m`2) = π2I2/(8m`2). By
quantizing the action I one gets the energy spectrum of the quantum particle in a box, namely

En =
π2~2n2

8m`2
. (1.75)
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1.3.9 Two examples of constrained motions

In the sequel we treat two examples of constrained motions, namely the physical pendulum and
the free motion of a particle on a sphere.

Physical pendulum

A ”physical pendulum” of length ` is realized by letting a bead of mass m free to slide on a
circular wire of radius `. The Newton equation is

mẍ = −mgê2 +R , (1.76)

where x = x1ê1 + x2ê2 ∈ R2, (ê1, ê2) being the canonical basis, whereas R is the unknown
reaction force exerted by the wire on the particle (bead). Observe that R is strictly necessary:
if R = 0 the particle falls down. The problem is conveniently studied by introducing the polar
coordinates {

x1 = r sin θ
x2 = −r cos θ

, (1.77)

θ being the angle between the vector x and the vertical axis, counter-clockwise oriented, and
such that x = −rê2 when θ = 0. The corresponding polar basis (êr, êθ) is defined by

êr(θ) =
∂x

∂r
=

(
sin θ
− cos θ

)
; êθ(θ) =

1

r

∂x

∂θ
=

(
cos θ
sin θ

)
.

The two polar vectors satisfy the relations dêr/dθ = êθ, dêθ/dθ = −êr. We can now rewrite
the Newton equation (1.76) in polar coordinates, starting with x(t) = r(t)êr(θ(t)) and setting
R = Rrêr +Rθêθ. The result is{

m(r̈ − rθ̇2) = −mg sin θ +Rr

m(2ṙθ̇ + rθ̈) = mg cos θ +Rθ
.

Exercise 1.10. Get the above system making all the computations.

Now we insert the constraint: the bead has to move on the wire, so that r(t) ≡ ` (i.e. for all
times), and, as a consequence, ṙ ≡ 0, r̈ ≡ 0. We thus get{

m`θ̈ = −mg sin θ +Rθ

−m`θ̇2 = mg cos θ +Rr
. (1.78)

Here comes the fundamental point. In order to solve the above system, one has to make some
hypothesis one the reaction force R. Due to the way the constraint is realized (a bead sliding on
the wire), it is quite evident that the tangential reaction Rθ is due to to the friction exerted by
the wire on the particle. One possibility, is to neglect such a friction force. Such a hypothesis
of ideal constraint, i.e. Rθ = 0, means that the reaction force is, at each point, orthogonal to the
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constraint manifold (the circle) on which the particle has to move, and it allows to completely
solve the problem. Indeed, in this case system (1.78) becomes{

`θ̈ = −g sin θ

Rr = −m`θ̇2 −mg cos θ .
. (Rθ = 0) (1.79)

Here the first equation determines the motion t 7→ θ(t) of the particle, whereas the second one
yields the constraint reaction Rr(t) at any time t along the given motion.

�Problem 1.6. Solve the equation of the pendulum dynamics (the first of equations (1.79))
under the hypothesis of small oscillations: |θ| � 1, |θ̇| � 1 (i.e. θ and θ̇ very small). Compute
the corresponding reaction Rr. Hint: sin θ ' θ, cos θ ' 1−θ2/2 to third and fourth order terms,
respectively.

�Problem 1.7. Suppose |θ̇| � 1 (i.e. θ̇ very large), which is the case of fast rotations. Find
the motion of the pendulum and the corresponding reaction. Hint: make use of the energy
conservation law.

”Free” particle on a sphere

As a second example, we consider the case of a particle of mass m constrained to move on the
surface of a sphere of radius ρ, subject to no field of force. The Newton equation, together with
the constraint one, read {

mẍ = R
|x| = ρ

. (1.80)

Here again, observe that the reaction R is necessary to keep the particle on the sphere, for
otherwise the particle would move on uniform rectilinear motion. Now we apply the rule learnt
in the previous example, and suppose that the constraint is ideal, i.e. that R is orthogonal to the
surface of the sphere at each point. As a consequence, we also conclude that R must be directed
towards the center of the sphere, for otherwise the particle would deviate outwards (think of it).
Anyway, this means that the only force acting on the particle, namely the constraint reaction
R, is a central force. The consequences are that the angular momentum ` = x × mv is a
constant vector, that the motion takes place on the plane orthogonal to ` of equation ` · x = 0,
and that such a plane passes through the center of the sphere (x = 0 satisfies the equation
` · x = 0). Thus, the motion of the particle takes place on the intersection of the sphere with
the plane of motion passing through its center, namely on {x : |x| = ρ} ∩ {x : ` · x = 0}. The
latter intersection consists of a circle of maximal radius ρ, i.e. an equator of the sphere, so
that the particle moves on a circle of maximal radius ρ. Moreover, since ` = x×mv, and the
instantaneous velocity ẋ = v has to be tangent to the sphere (why?), then |`| = m|x||v| = mρ|v|.
Since ` is a constant vector, its modulus |`| is also constant, so that |v| = |`|/(mρ) is constant
too. Conclusion: the particle moves on an equator of the sphere performing a uniform circular
motion. A particular case is ` = 0, i.e. v = 0, in which case the particle stays at rest in the
initial position.

The solution of the above problem, and that of the previous one, rest strongly on the hy-
pothesis of ideal constraint, namely the hypothesis that the constraint reaction R is orthogonal
to the constraint manifold (a surface here, a curve in the previous problem) at each point.
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1.3.10 A guided list of problems

�Problem 1.8. Show that the energy conservation law for a particle moving in a central po-
tentials U(r), in the plane of motion, and eliminating the angular velocity from the conservation
law of angular momentum, reads

mṙ2

2
+ Ue(r) = E ; Ue(r) :=

`2
3

2mr2
+ U(r) , (1.81)

where Ue(r) is called the ”effective radial potential”. Perform a detailed study of the phase
portrait of the radial motion for the cases U(r) = −k/r, k > 0 and k < 0, and U(r) = kr2/2,
k > 0 (Kepler, attractive and repulsive, and the 2D harmonic oscillator).

�Problem 1.9. Study the phase portrait of the ideal pendulum of length `, described by the
equation

`θ̈ = −g sin θ , (1.82)

g being the gravitational acceleration. Call ω :=
√
g/l and take U(θ) = ω2(1 − cos θ). Write

the energy conservation law. Which is the frequency of the small oscillations around θ = 0?
Which is the energy value separating oscillations from rotations? Which is the frequency of fast
rotations as E → +∞? (Answers: ω; 2ω2; |θ̇| ∼

√
2E).

�Problem 1.10. A common potential mimicking certain chemical bonds in molecules (e.g.
the hydrogen bonds linking complementary bases in DNA molecules) is the Morse one:

U(x) =
D

2
(e−αx − 1)2 . (1.83)

Draw the phase portrait of mẍ = −U ′(x). Pay attention to the phase curve at E = D/2,
separating bounded from unbounded motions. Which is the frequency of the small oscillations
of the system as E → 0+?

�Problem 1.11. A particle in a box is described by the sequence of smooth potentials of the
form

Un(x) = ε
(x
`

)2n

, n = 1, 2, . . . (1.84)

1. Compute the limit U∞ := limn→∞ Un(x) for any x ∈ R.

2. Draw the phase portrait of mẍ = −U ′n(x) for increasing values of n. Which is the limit
phase portrait as n→∞? Which are the corresponding physical motions of the particle?

3. Which is the period of the motion at a given energy E in the limit n → ∞? Hint: use
the previous results.

�Problem 1.12. Study the phase portraits corresponding to the potentials U(x) = kx2/2 +
λx4/4 as k and λ vary in R (in an interval around zero).
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�Problem 1.13. An important partial differential equation (PDE) in physics is the nonlinear
Klein-Gordon equation

utt = c2uxx − ω2u− λu3 , (1.85)

where u(x, t) is a certain real function of the two variables (x, t) (i.e. a scalar field defined on
a 2-dimensional space-time). The equation is ruled by the three parameters c, ω and λ. Solving
equation (1.85) in general is impossible, unless λ = 0 (i.e. the equation is linear). However, in
many applications one can be interested in finding special solutions called solitary, or traveling
waves, namely special solutions of the form u(x, t) = ϕ(x − vt), where ϕ(ξ) is a function of
one real variable and v is a parameter. Such solutions describe profiles that translate at the
constant velocity v.

1. Determine the equation satisfied by ϕ(ξ), where ξ := x− vt.

2. Distinguish the three cases v2 > c2, v2 = c2, and v2 < c2; call m = v2−c2 in the first case,
m = 0 in the second, and m = c2 − v2 in the third case. Interpret ϕ(ξ) as the abscissa at
”time” ξ of a particle of mass m moving on the real line and subject to a certain force.

3. Draw the phase portraits in the various cases (let λ vary around zero) and determine the
possible forms of the traveling waves of (1.85).

�Problem 1.14. Study the phase portrait of the Newton system mẍ = +kx3. Hint: start
drawing the level set H−1(0). Compute the time of flight to infinity starting from x(0) = ξ > 0
with positive velocity and zero energy.



Chapter 2

Lagrangian mechanics

We go on studying the motions of particle systems described by the Newton laws. As we shall
show, such motions, under a certain restrictive hypothesis (the existence of a potential energy),
are described by a set of equations invented by Lagrange and equivalent to the Newton ones,
both in the case of ideal constrained systems and of unconstrained ones.

2.1 Potential Newtonian systems

Let us consider a system of n particles of masses m1, . . . ,mn moving in the physical space Rd

(d = 1, 2, 3). The Newton equations, describing (or defining) the dynamics of the system, read

miẍ
(i) = f (i) , i = 1, . . . , n , (2.1)

where x(i) is the vector position of particle i and f (i) is the force acting on it, the latter being
a specified function of the positions and velocities of all the particles of the system and of the
time. This is the most general case. In the sequel, we make the following restriction.

Definition 2.1. System (2.1) is said to be a potential (Newtonian) system if there exists a
function

U : Rnd × R→ R : (x(1), . . . , x(n), t) 7→ U(x(1), . . . , x(n), t) (2.2)

such that the force f (i) acting on the i-th particle is given by

f (i) = − ∂U

∂x(i)
:= −∇x(i)U =


∂U

∂x
(i)
1
...
∂U

∂x
(i)
d

 . (2.3)

The function U is called the potential energy of the system.

We henceforth focus on potential systems, whose Newton equations of motion are

miẍ
(i) = −∇x(i)U , i = 1, . . . , n . (2.4)

35
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If the potential energy U does not depend explicitly on time t, the system above is said to be
conservative, for the following reason.

Proposition 2.1. If ∂U/∂t = 0, the the total energy function

H :=
n∑
i=1

mi|ẋ(i)|2

2
+ U(x(1), . . . , x(n), t) (2.5)

is a constant of motion, i.e. is preserved along the solutions of (2.4).

Proof. Taking the time derivative of H and making use of the chain rule we get

dH

dt
=

n∑
i=1

ẋ(i) ·
(
miẍ

(i) +∇x(i)U
)

+
∂U

∂t
.

By (2.4), each term of the sum vanishes, which implies Ḣ = ∂U/∂t, in general, and
Ḣ = 0 under the hypothesis made.

To later purposes, and for mathematical convenience, we now introduce a more abstract no-
tation. We start by defining the configuration, or position vector X of the system, defined
by

X :=

 x(1)

...
x(n)

 ∈ RN , N := nd . (2.6)

The space RN is called the configuration space of the system: a point in such a space is uniquely
determined by assigning the n vector positions x(i) of each particle of the system, and vice versa.
In an analogous way, we define the velocity and acceleration vectors

Ẋ :=

 ẋ(1)

...
ẋ(n)

 ; Ẋ :=

 ẍ(1)

...
ẍ(n)

 , (2.7)

and the gradient of the potential energy U(X, t), namely

∂U

∂X
:= ∇XU =

 ∇x(1)U
...

∇x(n)U

 , (2.8)

Finally, we define the N ×N mass matrix

M := diag(m1, . . . ,m1︸ ︷︷ ︸
d times

, . . . ,mn, . . . ,mn︸ ︷︷ ︸
d times

) , (2.9)
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namely the N × N diagonal matrix with the first d entries equal to m1, the second d entries
equal to m2, and so on so forth, up to the last d entries equal to mn. It is now an easy exercise
to check that the potential system 

m1ẍ
(1) = −∇x(1)U

...
mnẍ

(n) = −∇x(n)U

can be rewritten in the compact form

MẌ = −∇XU . (2.10)

The latter equation is the Newton equation of a potential system in the N -dimensional config-
uration space, which is also equivalent to the first order system{

Ẋ = V

V̇ = −M−1∇XU
. (2.11)

The space RN × RN 3 (X, V ), where the initial conditions uniquely determine the motion, is
called the phase space of the system.

�Problem 2.1. Prove that the energy function (2.5) in the phase space notation reads

H(X, V, t) = K + U =
1

2
V ·MV + U(X, t) . (2.12)

Making use of equations (2.11), prove the relation Ḣ = ∂U/∂t.

Our purpose, in the sequel, will be the study of the dynamics of system (2.10), or its
equivalent (2.10), when we impose a restriction of geometrical character on the motions, namely
that they are constrained on a certain differentiable sub-manifold embedded in the configuration
space.

2.2 Differentiable manifolds

We here recall the notion of differentiable manifold, or, more precisely, of a differentiable man-
ifold embedded in RN [39].

Definition 2.2. Given a function Φ : RN × R → RM : (X, t) 7→ Φ(X, t), of class Ck (k ≥ 1),
with M < N , its inverse image of {0} ⊂ RM , or zero level set

Mt := Φ−1(0) = {X ∈ RN : Φ(X, t) = 0}

defines, for any fixed t ∈ I ⊆ R, a differentiable manifold embedded in RN , of class Ck,
dimension L := N −M , and co-dimension M , if for any X ∈ Φ−1(0) the Jacobian matrix

∂Φ

∂X
=
∂(Φ1, . . . ,ΦM)

∂(X1, . . . , XN)

has maximal rank M .
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In the above definition, the time t plays the role of a parameter: t 7→ Mt describes the motion
of the manifold. Recall that the rectangular M ×N Jacobian ∂Φ/∂X has maximal rank M if
it contains an M ×M nonsingular minor, which is also equivalent to the linear independence
of the gradients ∇XΦi, i = 1, . . . ,M . In particular, none of such gradients can vanish (why?).
Since ∇XΦi is orthogonal to {Φi = 0}, i = 1, . . . ,M , then at each X ∈Mt

NXMt := span{∇XΦ1, . . . ,∇XΦM} (2.13)

is the normal space ofMt at X, a vector space of dimension M orthogonal toMt at X (recall
that span{u, v, . . . } is the vector sub-space generated by u, v, . . . , namely the set of vectors of
the form w = αu + βv + · · · , for all real α, β, . . . ). This easily seen by considering a curve
s 7→ X(s) ∈ Mt. Then Φ(X(s), t) ≡ 0 (i.e. for each s) and, by taking the derivative with
respect to s yields

0 =
d

ds
Φi(X(s), t) =

N∑
k=1

∂Φi

∂Xk

dXk

ds
= ∇XΦi ·

dX

ds
, i = 1, . . . ,M .

In other words, the tangent vector dX/ds to an arbitrary curve onMt is orthogonal to all the
gradients ∇XΦi.

Example 2.1. The equation Φ1(X, t) := X2
1 + · · · + X2

N − R2(t) = 0 defines a differentiable
manifold of dimension L = N − 1, namely the surface of a sphere whose radius depends on
time. The rank condition is expressed by ∇XΦ1 = 2X 6= 0 on Φ−1

1 (0), which is true for all t
such that R(t) > 0. Notice that Φ1 = 0 can be rewritten as |X| = R(t); when R(t) = 0 the
sphere collapses to a point. Observe that ∇XΦ1 = 2X is orthogonal to the sphere at each point.
Here the normal space has dimension M = 1.

Example 2.2. In the case N = 3, M = 2, the set Φ−1(0) = {Φ1 = 0} ∩ {Φ2 = 0} defines a
manifold of dimension L = N −M = 1, i.e. a curve, if the gradients ∇XΦ1 and ∇XΦ2 are
not parallel to each other; in particular they must be different from zero (why?). Since ∇XΦi

is orthogonal to {Φi = 0}, i = 1, 2, it follows that span{∇XΦ1,∇XΦ2} is the plane orthogonal
to the curve at each point.

A direct consequence of the implicit function theorem by Dini [39] is that the differentiable
manifoldMt := Φ−1(0) can always be locally represented as the Cartesian graph of a function.
More precisely, there exists a function g such that, locally and up to a relabelling of the variables,

X1 = g1(XM+1, . . . , XN , t)
...
XM = gM(XM+1, . . . , XN , t)

. (2.14)

The above representation of the manifold implies that we can always choose a local parametric
representation h : RL → RN : u 7→ X = h(u, t). Indeed, by introducing any change of
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coordinates (XM+1, . . . , XN) 7→ (u1, . . . , uL), whose inverse is defined by defined by XM+i =
fi(u1, . . . , uL), i = 1, . . . , L, composing with (2.14) one gets

X1 = g1(f1(u), . . . , fL(u), t) := h1(u, t)
...
XM = gM(f1(u), . . . , fL(u), t) := hM(u, t)
XM+1 = f1(u) := hM+1(u, t)
...
XN = fL(u) := hN(u, t)

.

The conclusion is that we can always think of our manifoldMt as locally defined in parametric
form RL 3 u 7→ X(u, t) ∈ RN (with some abuse of notation we write X(u, t) in place of
X = h(u, t)). Notice that by construction, L = N −M < N . On the other hand, we will also
consider below the case L = N . In such a case, the map RN 3 u 7→ X(u, t) ∈ RN defines a local
change of coordinates, depending explicitly on time. In other words, we identify the manifold
Mt with an open subset of RN .

Exercise 2.1. Work out carefully the examples of the unit circle in R2 and of the (surface of
the) unit sphere of in R3. Can you imagine a parametrization of the circle or of the sphere
different from the polar one?

The parametric representation of the manifold Mt provides a convenient way to build up
the tangent vectors to the manifold at any given point. Indeed, let us consider X(u, t), and let
us fix a point ū, so that X(ū, t) is a fixed point onMt. Now, let us keep fixed all the u’s but one,
say u1. Then, the map u1 7→ X(u1, ū2, . . . , ūL, t) defines a curve on Mt in the neighbourhood
of ū1 (in all these reasonings the time t is thought of as fixed). As a consequence, the vector

∂

∂u1

X(u1, ū2, . . . , ūL, t)
∣∣∣
u1=ū1

is tangent to Mt at X(ū, t). Repeating the same reasoning with u2, . . . , uL, one builds up
exactly L vectors tangent to Mt at X(ū, t). It is again a consequence of the hypothesis of
maximal rank of the Jacobian ∂Φ/∂X, and of the definition of the parametrization given above
(as a change of the ”free” coordinates), that the tangent vectors just built up are linearly
independent. The conclusion is that

TXMt := span

{
∂X

∂u1

, . . . ,
∂X

∂uL

}
(2.15)

is the tangent space of Mt at X(u, t), a vector space of dimension L tangent to the manifold
at the point X.

Example 2.3. Consider a surface embedded in R3 expressed in parametric form. Draw a
picture of what said above. Consider the unit sphere expressed in spherical polar coordinates.
Build up the tangent plane of the sphere at any point and the normal space (line).
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2.3 Constrained potential systems

We are now ready to face the problem of constrained potential systems, which includes, as a
limit case, that of expressing the equations of motion of the unconstrained system in arbitrary
coordinates. The problem is defined as follows.

Definition 2.3. A Newtonian potential system subject to holonomic, bilateral, ideal constraints
is defined by the problem  MẌ = −∇XU(X, t) +R

X(t) ∈Mt

R ∈ NXMt ∀X ∈Mt

, (2.16)

where Mt is a given, moving, constraint manifold of dimension L defined in the (local) para-
metric form RL 3 q 7→ X(q, t) ∈ RN , with L < N . In the case L = N , R ≡ 0.

Let us explain the jargon. The constraint is called holonomic since the constraint manifold
is embedded in the configuration space. Bilateral constraint refers to the fact that one requires
X(t) ∈ Mt: the point in configuration space cannot enter any of the local half-spaces on the
two sides of the manifold. The ideality of the constraint is expressed by the requirement that
the constraint reaction R is orthogonal to Mt at each point and each time t. We stress again
the following fact: when L = N there is no constraint, the manifold is just an open subset of the
configuration space RN and we are just performing an arbitrary change of coordinates. Observe
that now, in order to attain to tradition, the parametric, or ”free” coordinates are denoted by
q1, . . . , qL. The following fundamental theorem, due to Lagrange, holds.

Theorem 2.1 (Lagrange). The dynamics of system (2.16) on Mt is described by the Lagrange
equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 ; i = 1, . . . , L , (2.17)

where L := (K−U)|Mt is the Lagrangian (or Lagrange function) of the system, K := Ẋ ·MẊ/2
being the total kinetic energy. The constraint reaction R along the known motion t 7→ q(t) is
determined a fortiori by R(t) = (MẌ + ∇XU)|Mt. The Lagrange equations are invariant in
form under any reparametrization of Mt.

Proof. The condition R ∈ NXMt ∀X ∈ Mt is equivalent to R ⊥ TxMt at each
point X ∈ Mt, and TXMt is generated by the L local tangent vectors ∂X/∂qi,
i = 1 . . . , L. Projecting the Newton equation MẌ = −∇XU + R onto TXMt, i.e.
scalarly multiplying it by ∂X/∂qi, and taking into account that R · ∂X/∂qi = 0 for
each i = 1, . . . , L, yields

MẌ · ∂X
∂qi

= −∇XU ·
∂X

∂qi
, ∀i = 1, . . . , L . (2.18)
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On the right hand side, by the chain rule, we obtain

−∇XU ·
∂X

∂qi
= − ∂

∂qi
U(X(q, t), t) = − ∂

∂qi
U |Mt , (2.19)

where we have defined U |Mt := U(X(q, t), t) is the restriction of the potential energy
U on Mt. Working out the right hand side of (2.18), we get

MẌ · ∂X
∂qi

=
d

dt

(
MẊ · ∂X

∂qi

)
−MẊ · d

dt

∂X

∂qi
. (2.20)

Notice that here and henceforth, an over-dot is the same as a total derivative with
respect to time t, and Ẋ means

Ẋ =
d

dt
X(q(t), t) =

∂X

∂qj
q̇j +

∂X

∂t
. (2.21)

By means of the above relation, one easily gets

∂X

∂qi
=
∂Ẋ

∂q̇i
;

d

dt

∂X

∂qi
=
∂Ẋ

∂qi
. (2.22)

Using the latter identities, we rewrite (2.20) as follows

MẌ · ∂X
∂qi

=
d

dt

(
MẊ · ∂Ẋ

∂q̇i

)
−MẊ · ∂Ẋ

∂qi
(2.23)

Recalling that K := (Ẋ ·MẊ)/2 is the kinetic energy of the system, we can write
(2.23) in the simple form

MẌ · ∂X
∂qi

=
d

dt

(
∂

∂q̇i
K|Mt

)
− ∂

∂qi
K|Mt , (2.24)

where K|Mt = Ẋ(q, t) · MẊ(q, t)/2 is the restriction to Mt of the kinetic energy.
By equating (2.24) with (2.19), we get

d

dt

(
∂

∂q̇i
K|Mt

)
− ∂

∂qi
K|Mt = − ∂

∂qi
U |Mt . (2.25)

Finally, by defining the Lagrange function, or Lagrangian

L (q, q̇, t) :=
1

2
Ẋ(q, t) ·MẊ(q, t)− U(X(q, t), t) = (K − U)|Mt , (2.26)

and observing the ∂U/∂q̇i = 0, one easily checks that equations (2.25) can be
rewritten in the final form of the Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 ; i = 1, . . . , L . (2.27)
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Once the motion on the constraint manifold Mt is obtained by solving the latter
equations, the formula

R = (MẌ +∇XU)|Mt (2.28)

follows by restricting toMt the Newton equation. Observe that the right hand side
must belong to the normal space NXMt by definition.

As a final remark, we observe that we never used a specific parametrization of the
manifold Mt in order to deduce the Lagrange equations (2.27). It follows that,
if imagine to (locally) re-parametrize Mt from the beginning, by means of new
coordinates, say q′, we must get the same result. More precisely, we will get the
Lagrange equations

d

dt

(
∂L ′

∂q̇′i

)
− ∂L ′

∂q′i
= 0 ; i = 1, . . . , L , (2.29)

where the ”new” Lagrangian L ′ is linked to the ”old” one by

L ′(q′, q̇′, t) = L (g(q′), ġ(q′), t) , (2.30)

where g is the map defining the change of coordinates: q′ 7→ q = g(q′).
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[7] M.J. Bertrand, Théorème relatif au mouvement d’un point attiré vers un centre fixe,
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