
INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION

Nucl. Fusion 42 (2002) 247–257 PII: S0029-5515(02)34651-9

New insights into MHD dynamics of
magnetically confined plasmas from
experiments in RFX
P. Martina, S. Martini, V. Antonia, L. Apolloni, M. Bagatina,
W. Baker, O. Barana, R. Bartiromo, P. Bettini, A. Boboc,
T. Bolzonella, A. Buffaa, A. Cantona, S. Cappello, L. Carraro,
R. Cavazzana, G. Chitarin, S. Costa, F. D’Angelo, S. Dal Bello,
A. De Lorenzi, D. Desideri, D. Escande1, L. Fattorini, P. Fiorentin,
P. Franza, E. Gaio, L. Garzotti, L. Giudicottia, F. Gnesotto,
L. Grando, S.C. Guo, P. Innoccente, A. Intravaiaa, R. Lorenzini,
A. Luchetta, G. Malesani, G. Manduchi, G. Marchiori,
L. Marrelli, E. Martines, A. Maschio, A. Masiello, F. Milani,
M. Morescoa, A. Murari, P. Nielsen, M. O’Gorman, S. Ortolani,
R. Paccagnella, R. Pasqualotto, B. Pégourié2, S. Peruzzo,
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Saint-Paul-lez-Durance, France

E-mail: martin@igi.pd.cnr.it

Received 8 October 2000, accepted for publication 8 October 2001
Published 20 March 2002
Online at stacks.iop.org/NF/42/247

Abstract
The experimental and theoretical activity performed in the RFX device has allowed a deeper insight into the MHD
properties of the reversed field pinch (RFP) configuration. A set of successful experiments has demonstrated the
possibility of influencing both the amplitude and the spectrum of the magnetic fluctuations which characterize the
RFP configuration. A new regime (quasi-single-helicity states) where the dynamo mechanism works in a nearly
laminar way and a helical core plasma is produced has been investigated. With these studies a reduction of magnetic
chaos has been obtained. The continuous rotation of wall locked resistive tearing modes has been obtained by an
m = 0 rotating perturbation. This perturbation induces rotation of m = 1 non-linearly coupled modes.

PACS numbers: 52.30.-q, 52.55.Lf

1. Introduction

The search for advanced and innovative confinement scenarios
is one of the major challenges in the studies on magnetic
confinement of fusion plasmas. An important aspect in

a Also at: Istituto Nazionale di Fisica della Materia, UdR Padova, Padua,
Italy.

this task is the optimization of magnetic equilibrium and
the understanding and control of MHD phenomena. MHD
instabilities are often the origin of confinement degradation
and/or sudden plasma termination. Many of their important
properties depend on basic properties of the magnetic field
configuration, and can be studied in several devices. To
this extent, a well diagnosed large reversed field pinch (RFP)
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experiment like the RFX device (major radiusR = 2 m, minor
radius a = 0.46 m) [1] represents an excellent test bench for
many MHD studies, since these display a variety of features
in RFP.

MHD instabilities are important in RFPs, as they break
the toroidal symmetry of the magnetic field and drive the self-
generation of the reversed toroidal magnetic field through a
mechanism traditionally called the dynamo effect [2]. The RFP
equilibrium in cylindrical co-ordinates is in fact characterized
by a safety factor q(r) = rBϕ(r)/RBϑ(r) which is typically
close to a/2R in the plasma core and decreases to a slightly
negative value at the edge. This means that the poloidal
magnetic field in RFPs is of the same order of magnitude as the
toroidal magnetic field. Moreover, sustainment of magnetic
field reversal requires that there are poloidal electric currents
in the plasma. These currents cannot be directly driven by the
inductive toroidal electric field produced by the transformer
effect, and a Lorentz ‘dynamo-like’ contribution v × B is
therefore necessary. This implies the existence of a self-
organized velocity field in the plasma, which couples to part
of the magnetic field to produce the required electric field.

A series of numerical simulations [3–5] and experimental
results (see, for example, Refs [2,6] and the references quoted
therein) have shown that the magnetic field and velocity
fluctuations associated with MHD tearing modes provide a
robust mechanism with which to produce a dynamo electric
field. Owing to the shape of the q profile, in fact, many tearing
modes, resonant on closely spaced rational surfaces, can indeed
be simultaneously destabilized. As a result, the instabilities
generating the dynamo have, typically, a wide k spectrum.
Many m = 0 and m = 1 modes with different toroidal mode
numbers n and similar amplitudes are in fact simultaneously
present in the standard multiple helicity (MH) RFP state. This
is shown in Fig. 1, where typical MHm = 0 andm = 1 toroidal
spectra measured in RFX are reported. The global normalized
fluctuation amplitude is observed in RFX to scale with the
magnetic Lundquist number S as b/B ∝ S−0.16±0.02 [7], which
is close to the output of numerical simulations [5]. These
magnetic fluctuations destroy closed magnetic surfaces in the
plasma core and induce magnetic chaos over large portions of
the plasma volume. This produces a high transport in the radial
direction and therefore spoils particle and energy confinement.
Moreover, through phase locking of the modes, a toroidally
localized distortion of the magnetic equilibrium and a bulging
of the plasma are produced. When modes also lock to the wall
in a particular toroidal position, for example, because of field
errors, this results in a strong plasma–wall interaction [8]. This
latter feature, despite the different origin, is shared with other
toroidal configurations.

The study of the mechanisms driving MHD instabilities
and of the techniques to control them is therefore crucial
for RFP research, both for understanding the basic physics
underlying the configuration and for assessing its fusion
perspectives. A substantial amount of work has been done
within the RFP community on this subject. In particular, a
major effort has been performed in the RFX device. RFX has,
in fact, among the other RFP devices, unique features in terms
of plasma current, geometrical size and diagnostic capabilities.
RFX is the largest RFP device nowadays in operation and is
where the highest plasma current has been achieved (1.1 MA).
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Figure 1. Typicalm = 0 andm = 1 toroidal spectra for an MH RFX
plasma. The k spectrum of MHD modes is wide in this condition.

Moreover, a significant number of diagnostics, including
several profile diagnostics, enable efficient monitoring of the
plasma dynamics.

In this article we describe therefore the main recent
theoretical and experimental results on MHD studies obtained
in RFX. Our purpose is to guide the reader along a path that,
starting from a standard RFP plasma,

(a) Presents a more updated understanding of relevant
experimental and theoretical aspects of MHD physics in
RFPs,

(b) Describes the results of effective techniques for the control
of MHD instabilities,

(c) Indicates possible guidelines for confinement perfor-
mance improvement,

(d) Describes the modifications to the RFX device that allow
it to cope better with the problem of active interaction
with the MHD phenomena.

Experiments and theory in RFX have in fact been directed
towards the analysis of MHD mode dynamics, of the non-linear
coupling between modes, of the transitions between turbulent
and laminar dynamo regimes, of the process underlying mode
locking and of the techniques devoted to the control of
magnetic turbulence and to the induction of wall locked mode
active rotation.

To fulfil our aim the article is organized as follows:
Section 2 is dedicated to results about the turbulent (MH)
RFP dynamo and in particular to the behaviour of m = 0 and
m = 1 modes and to their influence on confinement, and to the
analysis of phase locking of tearing modes. Sections 3, 4 and 5
contain a description of the experimental and theoretical results
concerning a new self-organized laminar dynamo regime, i.e.
the quasi-single-helicity (QSH) regime. In Section 6 we will
present the new techniques for active control of magnetic
fluctuations which have been successfully developed in RFX.
Future directions for work in the RFX device are the subject
of Section 7, and conclusions are drawn in Section 8.
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Figure 2. A sequence of discrete dynamo events during RFX
discharge 7423. (a) Magnetic toroidal flux �. Periodic flux
generation events are evident. (b) Magnetic toroidal field at the wall
Bϕ(a). (c) Total magnetic volume energy density stored in the
m = 1 modes with n = 7–14. (d) Total magnetic volume energy
density stored in the m = 0 modes with n = 1–5. (e) Core electron
temperature Te0. (f) Electron energy analyser collector output
current (proportional to the suprathermal electron flux at the plasma
edge).

2. The RFP turbulent dynamo

Self-organization processes have been observed since the
very beginning of RFP experimental activity [9, 10]. In
fact, independently from the initial conditions, the state
with a reversed toroidal field is reached spontaneously and
maintained with enough applied toroidal voltage against
resistive diffusion. It is the plasma that provides the conversion
of the supplied poloidal magnetic flux into toroidal magnetic
flux through a self-organization mechanism traditionally called
a dynamo. The dynamo operates because of plasma MHD
instabilities: the basic mechanism of relaxation and field
reversal generation has been recognized in the non-linear
evolution of anm = 1 resistive kink instability in the presence
of an externally applied toroidal electric field [3, 11–13].
As a result the RFP dynamics is governed by current sheet
reconnection [5]. This MHD picture of the MH (or turbulent)
field generation mechanism is based on rather convincing
evidence, in particular in those cases where the dynamo acts
in discrete events, such as those shown in Fig. 2. During
the discharge reported in this figure periodic and macroscopic
toroidal field generation events are visible, as shown by the
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Figure 3. Polar plot of the probability distribution for the three
mode phase differences defined as ψ∗ = ψ1,n+i − ψ1,n − ψ0,i

(i = 1–4). For each angle ψ∗ the point gives the probability of that
angle. The ensemble is formed of 140 measurements.

magnetic toroidal flux � and the edge magnetic toroidal field
Bϕ(a) waveforms (Figs 2(a) and (b), respectively). The
generation of an average magnetic toroidal flux is associated
with an increase of toroidal field reversal. During these events
sudden bursts of magnetic fluctuation energy are recorded.
Figures 2(c) and (d) show the global energies of the m = 1
and m = 0 modes, respectively. Both of them peak as
magnetic flux is generated. As a result of the increased
magnetic chaos generated by these modes, the hot plasma core
is short-circuited with the cooler edge and there is a significant
increase of energy loss, as indicated by the sudden crash of
the core electron temperature trace shown in Fig. 2(e). During
these discrete macroscopic events a growth of the suprathermal
electron flow measured at the plasma edge by an electrostatic
energy analyser is observed (Fig. 2(f)). This enhanced
suprathermal electron flow is consistent with the acceleration
of those particles in the current sheets generated during the
reconnection events triggered by the increased MHD activity
[5] and also with the classical Spitzer–Harm distortion of the
Maxwellian distribution function. This latter picture is also
supported by a recent investigation of the trajectory deflection
of frozen hydrogen pellets launched into the RFX plasma [14].
This study has allowed diagnosis of the suprathermal electrons
in the plasma and, to this end, the electron distribution function.
The results of Ref. [14] indicate that the pellet trajectory can
be described using the classical Spitzer–Harm distortion of the
Maxwellian distribution function caused by the MHD dynamo
electric field. This provides further confirmation that a dynamo
mechanism based on a local mean field electrodynamics theory
can account for the observed magnetic field.

Them = 0 andm = 1 resistive tearing modes driving the
RFP dynamo are found to be systematically phase locked in
RFX. They determine a toroidally localized non-axisymmetric
perturbation called the locked dynamo mode (LDM). The
LDM is always locked to the wall in RFX so that the
perturbation is stationary in the laboratory frame. In a recent
analytical formulation [15, 16] the LDM is described as the
result of the non-linear interaction between the m = 0 and
m = 1 modes. Moreover, this theory predicts that under
locking conditions the phase difference of the interactingm =
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0, 1 modes belongs to one of the two intervals [−π/4, π/4]
or [3π/4, 5π/4]. We have studied the experimental phase
relation between the m = 1 and m = 0 modes that
are involved in the locked mode phenomenology of RFX.
Assuming for the perturbed quantities the standard tearing
mode definitions [15, 17], we find that the phase differences
between the m = 1 and m = 0 modes follow the relation
ψ1,n+i − ψ1,n − ψ0,i = ψ∗, with ψ∗ distributed over a rather
large interval ranging between ≈0 and ≈135◦ [18]. ψ1,n is
the phase of the (m = 1, n) mode and ψ0,i is the phase of
the (m = 0, i) mode. The results are displayed in Fig. 3,
which shows in a polar plot the frequency distributions of the
measured ψ∗ values that are spread over a wide range. The
RFX experimental results are therefore not consistent with
the theoretical prediction of ψ∗ ∈ [−π/4, π/4] or ψ∗ ∈
[3π/4, 5π/4]. This discrepancy could be due to the theoretical
assumption [15] that the m = 0 modes are intrinsically
stable, which implies that they are generated only by the non-
linear interaction of the dominant m = 1 perturbations. This
assumption possibly holds true for plasmas bounded by a close
fitting conducting shell, as indicated for example by 3-D MHD
numerical simulations. The actual RFX situation is different,
since the conducting shell is about 8 cm distant from the
plasma, which corresponds to a ratio between the shell and the
plasma radii of about 1.2. In this case a linear MHD stability
analysis [17] indicates that the RFX boundary condition should
correspond to unstable m = 0 modes. The measured m = 0
modes in RFX are therefore likely to be the outcome of two
processes: linear instability and non-linear coupling ofm = 1
modes. This latter process is possibly the most important one
when there is more need of a turbulent dynamo, as during the
discrete dynamo events shown in Fig. 2. To summarize, we
find that the MH state in RFX is consistent with the MHD
dynamo with the inclusion of an m = 0 mode both linearly
and non-linearly driven.

3. Experimental results on QSH states

Recent experimental measurements in RFX [19–21] have
shown that a new MHD dynamo regime is present, where
magnetic field topology can be rather different from that
observed in the standard wide spectrum MH case. In this
regime, dubbed the quasi-single-helicity (QSH) regime, the
m = 1 magnetic field fluctuation spatial spectrum is dominated
by one individual (m = 1, n ≈ 2R/a) MHD mode. In this
case the symmetry breaking required to have a stationary RFP
equilibrium in a resistive plasma is provided by the saturation
of a resistive kink mode. This is different from the helical state
predicted by Taylor [22].

QSH states are reproducibly obtained in RFX either
transiently (for several milliseconds) or in stationary
conditions (i.e. during the whole pulse duration) [20]. Figure 4
illustrates the difference between an MH and a QSH plasma in
terms of MHD modes. The two plasmas have similar global
parameters, but in the QSH case the predominance of the
(m = 1, n = 8) mode is evident. On the contrary in the MH
case all the m = 1 modes between n = 7 and n = 12 have
comparable amplitudes, within a factor of 2. To quantify the
difference between the two spectra it is convenient to introduce
a measurement of the ‘width’ in the toroidal mode number n
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Figure 4. Toroidal spectra of m = 1 magnetic modes for (a) an MH
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Figure 5. Radial electron pressure profile during a QSH state.

of them = 1 spectrum. This is done using the spectral spread,
Ns defined as

Ns =
[∑

n

(
Wn,ϕ∑
m Wm,ϕ

)2
]−1

[23], whereWn,ϕ is the energy of the (m = 1, n) mode. Ns is
an indicator of the effective number of nmodes composing the
spectrum. A pure single helicity (SH) spectrum has Ns = 1.
For the cases shown in Fig. 4 we have Ns ≈ 3.7 for the MH
plasma and Ns ≈ 1.2 for the QSH state. The exploration
of the plasma core reveals that a different magnetic topology
is associated with QSH states. The imaging of the plasma
core, obtained through soft X ray (SXR) tomography [21],
shows a poloidally symmetric emissivity in the MH state.
In contrast a ‘bean’-like hot m = 1 structure is evident in
the QSH case. While a relatively small m = 1 component
in the SXR emissivity profile is present in the MH state,
mostly due to the Shafranov shift, in the QSH case there
is a m = 1 component, radially localized and of the same
order of magnitude as the m = 0 component [20]. The
location of the m = 1 island systematically coincides with
the resonance radius and poloidal phase angle of the dominant
m = 1 magnetic mode. This evidence suggests that helically
symmetric closed magnetic surfaces are generated.

The improvement of the magnetic flux surfaces in the
plasma core is proven also by direct electron temperature
and density profile measurements performed by multipoint
Thomson scattering, which indicate that this helical structure
confines a higher pressure than the plasma nearby [19, 21].
A pressure profile, measured for the first time in an RFP,
taken during a QSH state is shown in Fig. 5. We note the
radial asymmetry of the profile corresponding to the increased
pressure into the helical coherent structure. Indeed helical hot
regions where the electron temperature can be more than 50%
higher than the neighbouring bulk plasma are systematically
observed in RFX during QSH states.
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Figure 6. Time evolution of the profile along the toroidal angle ϕ of the energy stored in the global magnetic perturbation of the edge
toroidal field b2

ϕ for (a) an MH plasma and for (b) a QSH stationary plasma. The red stripes alternate with green stripes in the QSH case
indicating a modulation with toroidal mode number n = 8, whereas in the MH case a magnetic perturbation localized in space is evident.

The onset of a QSH state has relevant consequences
not only for the plasma core, but also for the edge and
for the plasma–wall interaction [24] due to LDM. Figure 6
compares the time evolution of the profile, measured along the
toroidal angle ϕ, of the energy stored in the global magnetic
perturbation of the edge toroidal field b2

ϕ for an MH plasma
and for a QSH stationary plasma. The red stripes alternate
with green stripes in the QSH case indicating a modulation
with the toroidal mode number n = 8, whereas in the MH
case a magnetic perturbation localized in space is evident (as
expected because of the wide spectrum in k space, due to the
large number of toroidal m = 1 modes). The decrease in
the toroidal localization of the plasma bulge in the QSH case
is evident. Effects on the plasma–wall interaction are also
described with the help of Fig. 7, where the effects of MHD
modes on the LCFS in MH and QSH plasmas are discussed.
The displacement�(ϕ) of the LCFS versus the toroidal angle
in MH conditions is shown in Fig. 7(a). �(ϕ) is reconstructed
from magnetic measurements [25]. In the toroidal region
where modes lock to the wall�(ϕ) is almost 4 cm. Figure 7(b)
shows the horizontal component of the displacement �h(ϕ),
which also has a well pronounced maximum. This perturbation
produces a localized plasma–wall interaction, whose typical
signature is a significant local increase of the total radiation
emissivity, which in some cases can reach extremely high
values (up to 100 MW/m3) [26]. In principle, if we had a pure
SH state such as that predicted by numerical simulations [27],
the plasma would assume a helical shape. The displacement
of the LCFS would therefore be constant as a function of
the toroidal angle ϕ and indeed there would by no localized
perturbation at all. In fact, in experimental QSH cases we
do not obtain a pure SH state and the ‘secondary’ modes have
non-zero amplitude. Nonetheless, the maximum displacement
�(ϕ) changes significantly in QSH states: Fig. 7(c) indicates
that when the plasma is in a QSH state the �(ϕ) function
does not show a pronounced maximum and it is more uniform,
oscillating around a pedestal due to the helical distortion
associated with the dominant m = 1 mode. The dominant
n = 8 modulation is evident in the �h(ϕ) waveform, shown
in Fig. 7(d).
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Figure 7. Maximum displacement �(ϕ) of the LCFS and its
horizontal component �h(ϕ) versus the toroidal angle ϕ for an MH
state (discharge 13250, t = 55 ms) (frames (a) and (b)) and for a
QSH state (discharge 11407, t = 36 ms) (frames (c) and (d)).

4. Theoretical aspects of single helicity

Toroidal field reversal implies the loss of axisymmetry. This
is easily shown for a cylindrical RFP. Indeed if cylindrical
symmetry is assumed, the parallel Ohm’s law implies that
the reversal of the toroidal field means the reversal of the
parallel current. As, according to Ampère’s law, the azimuthal
component of the current is the opposite of the radial derivative
of the axial field, current reversal implies that the axial field is
a minimum at its reversal point, which is self-contradictory. It
is interesting to note that the Cowling theorem [28] has been
traditionally invoked to explain why an axisymmetric RFP is
impossible. This theorem states that axisymmetric magnetic
fields cannot be maintained by axisymmetric dynamo action,
i.e. by a given axisymmetric velocity field. This theorem does
not apply to stabilized Z pinches, since non-axisymmetry of
the magnetic field is not a general rule as for the kinematic
dynamo: it is not necessary for the paramagnetic pinch, but it
is for the RFP. Indeed the kinetic energy of these pinches is
much smaller than their magnetic energy, their velocity field
is not directly driven, and the poloidal part of their field is
naturally provided through the forced toroidal (axial) current.
For the RFP a deformation of the plasma with at least one
helicity must be present. The kink instability is the natural
origin of this deformation since q < 1.

The possibility of having an RFP plasma in a pure SH
state has been put forward since 1983 through two dimensional
numerical simulations [29–33] where a stationary RFP state
was found by forcing SH. The SH states have a laminar dynamo
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produced by a single mode and its harmonics and correspond to
a magnetic field with good flux surfaces, a feature favourable to
good confinement. They are not Taylor states, since the sign of
their helical pitch is opposite to that in Taylor’s theory [22]. In
fact, an intuitive description of the magnetic field self-reversal
process allows the SH state to be viewed as the non-linear
state of a resistive kink mode self-stabilized by outer toroidal
field reversal, if toroidal flux conservation is imposed in the
relaxation process [34]. In a tokamak the stabilization of the
m = 1 kink mode is made possible by the plasma itself because
the helical deformation it drives costs energy in the whole
q > 1 domain. No such mechanism is available in the RFP
where q < 1 everywhere, and outer field reversal is necessary
to stabilize the kink mode.

The loss of axisymmetry of the magnetic surfaces induces
a modulation of the current density along the field lines. This
modulation is driven by an electrostatic field produced by
charge separation. This electric field and the induction electric
field produce an E × B velocity field which is the dynamo
velocity field of the RFP [34]. Therefore the origin of the
dynamo in the SH state of the RFP is a simple consequence
of the pinch effect and of the breaking of axisymmetry due to
the resistive kink mode: the helical magnetic equilibrium has
an electrostatic helical counterpart which provides the helical
part of the dynamo velocity field, a slave laminar field. This
picture is the physical interpretation of the scheme proposed in
reference [35] for the calculation of SH states. The SH ohmic
states of the RFP have been studied in the framework of the
resistive MHD model in cylindrical geometry with and without
pressure [35–37]. (In relation to Ref. [36], see also p. 114 of
Ref. [2].) In the force-free case we solved the Grad–Shafranov
equation in helical co-ordinates by assuming a polynomial
dependence of λ = J · B/B2 on the helical flux function
χ . This equation is found to have two basins of solution: in
the first one the axisymmetric part of the helical flux function
χ0 has a local maximum in the plasma region (at the resonance
radius), while χ0 is a monotonic function of r in the second
one. The two basins correspond to a resonant or non-resonant
helical term, respectively. When the pressure is taken into
account a polynomial dependence of

λ̃ = J · B/B2 − p′g/B2

on the helical flux function χ is assumed, where p is the
pressure, p′ = dp/dχ and g = mBz − krBϑ is the helical
magnetic field; the pressure is assumed to depend linearly
on the helical flux function p(χ) = p0 + p1χ , where p0 =
−p1χ0(a) since p must vanish at the plasma boundary. It
is then possible to find ohmic solutions where 〈Bz〉 (axial
magnetic field averaged over the helical flux surface) does not
reverse in the outer plasma region, while the axisymmetric
field B(0,0)z does (Fig. 8); λ is found to be almost constant far
from the edges. The corresponding poloidal contour plot of
the helical flux function

χ(r, u) = χ0(r) + χ1(r) cos u

in a poloidal section shows a bean shaped helical structure in
the plasma core, rather similar to that experimentally observed.
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curve) and to a pure SH regime (blue curve). The value of the
Hartmann number H for each simulation is shown in the plot.

The RFP dynamics is studied with a simple viscoresistive
MHD model [5, 38]:

∂B

∂t
= ∇ × (v × B)− ∇ × (ηJ) (1)

∂v

∂t
+ (v · ∇)v = J × B + ∇2(νv) (2)

with J = ∇ × B and ∇ · B = 0. Here time and velocity
are normalized to the Alfvén time and velocity, respectively,
and the other variables to macroscopic values: in these units
η is the inverse Lundquist number η = τA/τR ≡ S−1 and ν
corresponds to the inverse magnetic Reynolds number, ν =
τA/τV ≡ R−1, for a scalar kinematic viscosity.

A transition from MH to SH has been known to occur in
this model when viscosity increases at fixed S [5,35,38,39]. A
recent scaling approach to this model reveals that the Prandtl
number acts only through the inertia term [39]. When this term
is negligible the dynamics is ruled by the Hartmann number
H = (η/ν)−1/2 only. This occurs for the dynamics of the
RFP, as shown by 3-D numerical simulations of the model.
Therefore it is interesting to revisit the SH/MH transition with
H as the unique control parameter. An order parameter for the
transition can be found by noticing that EMm=0, the magnetic
energy of the m = 0 mode, vanishes in SH states due to the
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Figure 10. Time evolution of the m = 1 modes with n = 7–16 for
RFX discharge 9712. Switching between two QSH states with
different dominant modes (n = 7, red curve; n = 9, blue curve) is
evident. An MH phase is present between the two QSH regimes.
This experiment is reminiscent of the intermittent behaviour
observed in numerical simulations [40] close to the bifurcation
critical point.

lack of coupling of differentm = 1 modes. In the MH state, on
the contrary, EMm=0 remains at a finite, nearly constant, value
throughout the discharge. This is shown in Fig. 9, where the
time evolution of EMm=0 is displayed for three different plasma
regimes. In the MH simulation, obtained with H = 4080,
EMm=0 is almost flat in time until t/τA ≈ 1800 (τA is the Alfvén
time). From this point on, the simulation is advanced with
H = 1040 and the plasma enters an SH state. We note the
exponential decay towards zero of EMm=0. An intermediate
behaviour is observed in the QSH case, which is obtained
starting the simulation with H = 3300. In this case after
an initial exponential decay EMm=0 changes slope and ends on
a plateau value, though much smaller than the MH case. This
evidence is summarized by plotting EMm=0 versus H : a sharp
transition around H ≈ 2500 is found [40]. When H is small,
the system remains in an SH state and two basins of SH are
shown to coexist. In the vicinity of H = 2500 the system
displays a temporal intermittency whose laminar phases are of
QSH type. For higherH values the system reaches an MH state
whose features, in particular magnetic chaos, are analogous to
the traditional turbulent state of RFP plasmas. The result is
seen to be independent of the Lundquist number S.

The intermittent behaviour of QSH states obtained in
numerical simulations around the critical value of H is
consistent with experimental observations. The switching
of the dominant toroidal mode number found in numerical
simulations, discussed in [40], is also observed in the
experiment. An example is shown in Fig. 10, where a QSH
state with a dominant (1,7) mode is momentarily interrupted by
an MH phase and then restarted but with a different geometrical
helicity, which in this case is (1,9).

The SH–MH transition is analogous to a second order
phase transition, whereEMm=0 is the order parameter andH the
control parameter, and where the intermediate QSH regime
corresponds to the critical divergence of the correlation scales.
This approach raises the difficult issue of the definition of
viscosity in magnetic fusion plasmas. The importance ofH in
fusion physics has been raised previously in Refs [41–44].

A final point concerns the resilience to chaotic perturba-
tions of a one parameter one degree of freedom Hamiltonian
dynamics, which increases when its corresponding separatrix

vanishes due to a saddle–node bifurcation. This is important
for the magnetic chaos of QSH states of the RFP [45]. Indeed
for a high enough amplitude of a resonant SH mode, the mag-
netic separatrix of this mode bifurcates out, which makes this
SH mode more resilient to the chaos induced by the smaller
modes with other helicities of the QSH state [45]. This sup-
plies a rationale for the confinement improvement of helical
domains found experimentally for QSH plasmas [20]. Such
a feature would not be expected from the classical resonance
overlap picture, as the separatrix disappearance occurs when
the amplitude of the dominant mode increases.

5. The aspect ratio issue

Starting from the evidence of the shrinking of them = 1 mode
toroidal spectrum in QSH states, an analysis of the shape of
the m = 1 mode behaviour as a function of the aspect ratio
R/a has been performed. Simple equilibrium considerations
indicate in fact that, as the aspect ratio is decreased,

(a) The innermost resonant mode scales with the aspect ratio
as n ≈ 2R/a, since in the RFP

q(0) ≈
(

1

2
− 2

3

)
a

R
≈ 1

n

(b) The resonance surfaces of the (1, n) modes are more
widely spaced.

In addition to that, numerical simulations indicate that fewer
toroidal modes contribute to the m = 1 spectrum as R/a
becomes smaller. This is shown, for example, in Fig. 11,
where we report the spectra of m = 1 modes, obtained with
the Specyl code [5], at a fixed S value equal to S = 3.3 × 103

for three values of the aspect ratio (R/a = 1.2, 2, 4). The
effective number of modesNs in the spectra takes the following
values: Ns(R/a = 1.2) ≈ 3, Ns(R/a = 2) ≈ 3.2,
Ns(R/a = 4) ≈ 8.2. This result is in agreement with the
scaling laws presented in Ref. [23]. The RFX data in MH
conditions follow these scaling laws, as Ns typically ranges
between 4 and 10. These results suggest that in an RFP at low
aspect ratio a simpler mode structure might be present and the
achievement of QSH might be facilitated.

6. Active control of MHD modes

As discussed in Section 2, the many MHD modes acting
simultaneously in an MHD dynamo lock in phase and in
RFX also to the wall, thus producing a stationary magnetic
perturbation and a toroidally localized plasma–wall interaction
(Figs 6 and 7). To overcome this problem, experiments on
the active control of the MHD modes with a rotating external
perturbation [46, 47] have been extensively pursued and the
physical mechanism of mode interaction with external fields
has been analysed. This allowed us to develop an operational
strategy to produce active rotation of the LDMs through the
current flat-top phase.

Active rotation of the modes is obtained with the rotating
toroidal field modulation (RTFM) technique [46], through
current modulation in the 12 sectors of the toroidal winding
[48]. In this way a rotating toroidally localized m = 0
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Figure 11. m = 1 spectra for different aspect ratios from numerical
simulations (circles, R/a = 1.2; triangles, R/a = 2; squares,
R/a = 4). The bars on the top of the figure give an indication of the
width of the spectra.

perturbation of the toroidal field is applied to the plasma. The
rotating perturbation is most effective if its rotation frequency
is ω < 35 Hz and its toroidal mode content is mainly n = 1.
When continuous rotation sets in, the LDM rotates with a
toroidal velocity equal to the driving perturbation and the latter
leads the LDM by an angle of less than π/2. An example of
the results obtained with this technique is shown in Fig. 12,
where the time evolution of the LCFS maximum displacement
profile along the toroidal co-ordinate is reported for a discharge
without an RTFM (Fig. 12(a)) and for one with an RTFM
(Fig. 12(b)).

The observed LDM behaviour can be explained by the
interaction of the external field with the tearing modes. The
basic interaction is between the external m = 0 perturbation
and the internally resonant m = 0 mode. Then the effects are
transferred to the m = 1 internally resonant modes due to the
non-linear three wave interaction mechanism which underlies
the LDM [49]. In particular, the external m = 0 magnetic
field interacts with the plasma inducing a sheet current at the
resonant surface that is the field reversal surface at r = r0. The
current is proportional to the radial component of the external
fieldB0,1

r (r0). In this way, an electromagnetic torque is exerted
on the m = 0 mode given by

T 0.1
ext,z ∝ b0.1

r B
0.1
r (r0) sin(�ψ) (3)

where b0,1
r is the radial field associated with the width of the

magnetic island generated by the (0,1) mode and �ψ is the
phase shift between the mode and the perturbation. In (3)
only the toroidal component T 0,1

ext,z is considered, because of
the strong damping of the poloidal rotation in a torus. In order
to induce rotation of the LDM, T 0,1

ext,z must be high enough to
overcome the braking torque on the m = 0 mode due to static
error fields. Once that is true, the m = 0 mode can hook
up to the applied perturbation. To this end a balance must be
reached between the drag torque due to plasma viscosity and
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Figure 12. Time evolution of the LDM: the radial displacement of
the plasma surface on the poloidal plane as a function of toroidal
angle is shown during the current flat-top for (a) a standard
discharge and (b) a discharge with RTFM.

eddy currents in the vessel [16] (both proportional to ω) and
T

0,1
ext,z. This means that �ψ saturates at a value in the interval

0–π/2, i.e. in the stable range where the applied torque is an
increasing function of�ψ .

The applied torqueT 0,1
ext,z is transferred to them = 1 modes

via the non-linear coupling. For any pair ofm = 1 modes with
toroidal numbers n and n + 1, the torque due to the three wave
interaction with the m = 0 mode are in fact given by [50]:

T 0.1
z ∝ Cn sin(ψ1,n+1 − ψ1,n − ψ0.1) = Cn sin(�ψ3w) (4a)

T 1,n
z ∝ nCn sin(ψ1,n+1 − ψ1,n − ψ0.1) = nCn sin(�ψ3w)

(4b)

T 1,n+1
z ∝ −(n + 1)Cn sin(ψ1,n+1 − ψ1,n − ψ0.1)

= −(n + 1)Cn sin(�ψ3w) (4c)

where Cn is a coefficient proportional to the amplitude of the
modes and to their overlap integral, ψm,n is the phase of the
(m, n) mode and �ψ3w = ψ1,n+1 − ψ1,n − ψ0.1. It is seen
that the torque on the m = 1 modes is larger than that on
the m = 0 mode by a factor n (with n > 7 for a typical
spectrum in RFX). Such a leverage effect is responsible for
the fact that the electromagnetic torque given by (2) is strong
enough to maintain the phase locking of all of them = 1 modes
(i.e. to hold �ψ3w ≈ const) both in standard discharges
and in those with active mode rotation. In the latter cases
the external perturbation induces a linear rate of change of
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Figure 13. Phases of the externally applied magnetic perturbation
and of the m = 1 modes with n = 8–13 for a discharge with RTFM.
The (1,8) mode travels backwards and the rotation frequency
increases with n for n > 10.

ψ0,1, hence the phase locking condition requires either ψ1,n

or ψ1,n+1 to follow the rotation: it is a dynamic equilibrium
where the action of T 0,1

ext,z rotates both the m = 0 mode and
one of the m = 1 modes (the one subject to less braking
torque). The other m = 1 mode remains stationary because
of the phase locking condition which makes �ψ3w saturate
at a value such that the torque given by (2) is just sufficient
to match the braking torque on the rotating m = 1 mode.
Iterating the scheme for all of the [n; n + 1] couples of modes
one sees that the m = 1 mode subject to the highest braking
torque can never be hooked up by the perturbation, hence its
phase remains stationary. Such a mode is typically the one
with the largest amplitude, for example, the n = 9 mode
in Fig. 13. The condition �ψ3w ≈ const also implies that
the mode with n = nstat + 1 must co-rotate with the external
perturbation, whereas the one with n = nstat − 1 has to go
backward. nstat is the toroidal mode number of the mode
which remains stationary. Moreover, the next adjacent m = 1
mode n = nstat + 2 must rotate relative to the n = nstat + 1
mode, i.e. it moves at 2ω in the laboratory frame; and so on
for modes with higher or lower n. All the above features are
found in the example shown in Fig. 13, which is remarkable
evidence of the non-linear coupling underlying the LDM.

The recipe to obtain mode rotation through the current flat-
top entails enforcing a toroidal position of the LDM during the
current rise phase by applying a stationarym = 0 perturbation,
which acts as a seed for mode locking. Then the RTFM is
applied with an initial phase which satisfies the �ψ < π/2
condition. The reliable rotation of the locked modes constitutes
a major step towards routine operation at high currents in RFX,
with good control of particle recycling and of plasma density
[51]. Carbon blooming, a typical consequence of earlier high
current operation, is avoided by spreading the heat load on the

first wall. The driving field required for rotation increases with
plasma current and density, and with rotation frequency. The
last relationship is readily understood in terms of the linear
dependence of the drag torque on ω. The density dependence
is probably due to the associated effect on the temperature, and
hence on the drag torque linked to plasma viscosity. Finally, the
current scaling could be due to the decrease of the amplitude of
them = 0 modes which show a scaling stronger than them = 1
ones. With the present power supplies, a rotation frequency of
20 Hz is obtained up to the density limit for current below the
megamp level, whereas in discharges with plasma current ≈1–
1.2 MA active mode rotation is possible only at 10 Hz and with
density corresponding to an I/N parameter of 3 × 10−14 A m.

7. Future directions

The results presented in this article, together with the existing
literature, indicate that the next step in the RFP experimental
and theoretical research should be aimed at exploiting the full
synergy between the various techniques discussed. All these
techniques are directly or indirectly linked to the crucial issue
of MHD instability active control. This in fact appears to be
one of the major factors in determining the fusion relevance of
the RFP configuration. It is expected that this could be realized
by the simultaneous action of a large number of active coils
which produce harmonic magnetic and electric fields in the
outer plasma region, also by means of feedback techniques.
This has the goal of substantially improving the capability of
interacting with MHD modes.

To this end the magnetic front end of the RFX device is
undergoing substantial modification, with the principal aim
of extending the MHD studies along the new paths opened
by the recent results. This will be accomplished by the new
components of the magnetic system consisting of a thinner and
closer shell (τs ≈ 50 ms, b/a ≈ 1.1 compared with the old
τs ≈ 400 ms, b/a ≈ 1.2) and of a high spatial resolution active
coil array (4 poloidal coils × 48 toroidal coils). The new close
fitting shell, installed directly over the vacuum vessel, will
provide a passive boundary for both the dynamo modes and
the resistive wall modes (RWMs) for times up to ≈50–100 ms.
The new coil system will allow active control over timescales
of the order of ≈50 ms or longer.

In comparison with the previous assembly, the modified
system will have several new features. In particular,

(a) Passive stabilization of both the fast dynamics (τ � τs)
of the internal dynamo resistive tearing modes and of the
external kink RWM for discharges of up to ≈50–100 ms
will be allowed.

(b) It will be possible to address the issue of active control of
RWMs for discharges longer than ≈100 ms.

(c) With the new coil system it will be possible to produce
the harmonics of the experimental MHD spectrum up to
m = 1, n ≈ 16, in a frequency band from DC to ≈50 Hz
either for induced mode rotation experiments or to affect
individual mode amplitude and phase.

(d) The systems offer new possibilities of feedback
controlling a wide spectrum of modes for radial field
minimization at the plasma boundary.
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Finally, much better axisymmetric equilibrium due to the close
fitting shell (Shafranov’s shift ≈1 cm) and to the feasible
dynamic equilibrium control because of the thinner shell will
be possible.

With this modified assembly we plan to address several
experimental topics that should contribute to a better
understanding of magnetically confined plasmas and also
provide precious information on the future perspectives of the
RFP as a viable reactor concept. In particular, we plan to extend
the study of the induced rotation of non-linearly coupledm = 1
andm = 0 modes bym = 0 rotating perturbations and to apply
this technique also to pulsed poloidal current drive (PPCD) and
oscillating poloidal current drive (OPCD) [52,53] experiments.
The possibility of producing direct induced rotation of the
m = 1 dynamo modes by m = 1 rotating perturbations will
also be explored. Particular effort will also be devoted to the
study of induced occurrence of QSH states with controllable
amplitudes. The boundary conditions of the theoretical SH
states imply, in fact, the existence of a continuous distribution
of helical boundary currents. The existence of cuts in the shells
of present RFPs prevents these currents from flowing properly
and induces return currents generating MH error fields. Unless
a good correction of this error field is performed, the shell acts
like an ergodic divertor exciting a broad spectrum of resonant
modes in the plasma core. This suggests an evolution of the
RFP into a forced SH RFP where most of the helical boundary
currents are provided by external windings. Such an RFP
would still produce most of the confining magnetic field by
plasma currents, but it would be intermediate between the
tokamak (because of the toroidal current) and the stellarator
(because of helical external windings).

A new category of experiments, possibly also relevant
for non-RFP magnetic configurations, will be done on the
active stabilization of RWMs on timescales longer than the
shell time constant. In particular, by prolonging the pulse
length well beyond ≈100 ms we will enter a regime where
the shell timescale becomes significantly less than the pulse
length. In this case, we should therefore be able to address
thoroughly the issue of feedback control of RWMs and, if
successful, demonstrate that a thick passive stabilizing shell
is not necessary for the RFP.

8. Conclusions

Recent experimental and theoretical studies have allowed
a deeper insight into the MHD properties of the RFP
configuration, and, in particular, into the RFP dynamo
mechanism and into the MHD instabilities behaviour. A
comprehensive picture of these MHD subjects has been
presented in this article, where an effort to unify various
experiments and theoretical descriptions has been performed.
A set of successful experiments has demonstrated the
possibility of influencing both the amplitude and the spectrum
of the magnetic fluctuations which characterize the RFP
configuration. With these studies a reduction of magnetic
chaos has been obtained. Continuous rotation of wall locked
resistive tearing modes has been obtained by anm = 0 rotating
perturbation. This perturbation induces rotation ofm = 1 non-
linearly coupled modes. Besides important information on the
non-linear origin of the torque acting on the internally resonant

modes, this rotation experiment proves the possibility of high
current RFP operation without severe plasma–wall interaction.
The simultaneous exploitation of several techniques for edge
and core magnetic stochasticity reduction appears promising
for the future of the RFP configuration [51]. Experiments like
PPCD or OPCD have, in fact, demonstrated in principle the
possibility of access to regimes with significantly enhanced
confinement by active suppression of MHD instabilities.

A way to a stationary reduction of magnetic chaos has
also been indicated by the discovery of experimental QSH
states, where a better confined helical core is produced. It
is interesting to note that SH states could be linked with the
q = 1 mode of the tokamak and with the helical states of
the stellarator. In the future the theoretical analysis should be
addressed to the issue of stability, accessibility and robustness
of SH states by incorporating new elements: a shell radius
larger than the plasma radius, heat transport (filamentation
effects might be present), the pinch parameter, the aspect ratio.
In particular, linear stability theory should be developed for
helically symmetric profiles. Future work should be dedicated
to assessing the value of viscosity to be used in the Hartmann
number so as to predict the scaling of this number towards
more collisionless regimes.

Continuing along the guidelines indicated by this article,
the RFX device is presently being modified. The most
important modifications have been described here.
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