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Abstract

In the present contribution we justify and discuss the scaling laws
characterizing the first phase of the energy transfer from large to small
spatial scales in a chain of nonlinear oscillators (the so-called Fermi-
Pasta-Ulam α-model). By means of qualitative estimates, we show
that large scale initial excitations (long wavelength Fourier modes)
produce injection of energy into smaller scales on times t > τc ∼ ε−3/4

and up to a cutoff spatial scale `c ∼ ε−1/4 , where ε is the energy per
degree of freedom of the system.

Introduction

In the present work we will discuss some aspects characterizing the dynamics
of the oscillator chain defined by the Hamiltonian function

H(q, p) =
N+1∑
n=0

p2
n

2
+

N∑
n=0

[
(qn+1 − qn)2

2
+ α

(qn+1 − qn)3

3

]
, (1)

where q = (q0, q1, . . . , qN+1) and p = (p0, p1, . . . , pN+1) are the two sets of
canonically conjugate coordinates, while α > 0 is the nonlinear coupling
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constant. We will consider a chain with fixed ends, namely q0 = qN+1 = 0
and p0 = pN+1 = 0; as a consequence, the Hamiltonian system (1) has N
degrees of freedom. One can regard the system as modeling a nonlinear string
as well as a one dimensional crystal with a nonlinear interaction between
nearby particles.

Such a model was introduced in 1954 by Fermi, Pasta and Ulam (FPU)
[1], with the explicit purpose of measuring (numerically) the time rate of
approach to equilibrium of the system, starting with energy initially given
to the fundamental (longest wavelength) Fourier mode. In agreement with
the prescriptions of classical statistical mechanics, FPU used as an indicator
of equilibrium the (approximate) equipartition of energy among the Fourier
modes of the system. What they got was essentially a negative result: energy
was observed to be shared by a small fraction of modes only, within the times
accessible to numerical computation.

Since then, the explanation of such a lack of complete equipartition ob-
served in systems of the kind (1), known as the FPU paradox, has been the
object of thorough investigations. We skip here most of the story (see for ex-
ample [2, 3, 4] and references therein), and come directly to what we consider
to be the most significant problem in the field, namely that of understand-
ing whether the FPU paradox survives the thermodynamic limit: N → ∞,
H = E →∞, the specific energy ε = E/N being constant. Were the answer
negative, the phenomenology described by FPU would not be relevant to
classical statistical mechanics.

The way to an affermative answer to the above fundamental question was
paved by the numerical work of Bocchieri et al. in 1970 [5]. Since then, other
results have been confirming the thesis that the FPU paradox might be of
actual relevance to statistical mechanics (see e.g. [4] and references therein).

In particular, we will refer here to some recent numerical findings [6, 7]
which show that large scale (long wavelength) initial excitations in system (1)
inject energy to small scales (short wavelengths) up to a cutoff spatial scale
`c ∼ α−1/2ε−1/4, and that a state of partial equipartition involving modes of
wavelength λ > `c sets in on a time scale larger than τc ∼ `3

c ∼ α−3/2ε−3/4.
This means that, if the specific energy of the system is low enough, the FPU
paradox persists in the thermodynamic limit. An analytical explanation of
these results based on soliton theory and inspired to the work of Zabusky
and Kruskal [8] can be found in [9].

The aim of the present work is to give an elementary justification of the
above fundamental scaling laws by using arguments of canonical perturbation
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theory and statistics. We start by exploiting an idea of Shepelyansky [10]
which consists in taking into account the fact that long wavelength Fourier
modes are nearly resonant in order to obtain a suitable averaged system.
Anyway, we do not follow the author in using the criterion of resonance
overlapping [11, 12] (the reason is briefly explained in Remark 1 in the last
section of the paper). We proceed instead by analogy with turbulence theory
[13], as follows. The flow of energy from long wavelength modes (the integral
scale) to shorter wavelength modes is determined by the nonlinearity, respon-
sible for mode-coupling. Thus, the dynamics of the modes involved in the
cascade process and sharing their energy has to be dominated by the nonlin-
ear term appearing in the equations of motion (the interval of spatial scales
corresponding to such strongly coupled modes is the analog of the inertial
range in turbulence). For such a reason, by assuming that at a given time
the set of interacting modes is in a state of energy equipartition, we show
that the energy cascade is interrupted at scales corresponding to modes for
which the linear term appearing in the equations of motion, responsible for
mode-dispersion, is of the same order of magnitude of the nonlinear one.
Here dispersion plays a role analogous to that of dissipation in turbulence
(though, of course, energy is conserved in Hamiltonian systems). The time-
scale characterizing the dynamics of the interacting modes is also estimated,
showing that high modes (close to the border of the inertial range) reach
the equipartition level more quickly than the low ones (close to the integral
scale). We thus produce estimates of all the relevant quantities.

1 Model and setting

For the present purposes, it is convenient to rewrite the Hamiltonian (1)
in the usual complex canonical coordinates z, z∗ (the star denotes complex
conjugation). The canonical change of variables (q, p) 7→ (z, z∗) is given by
the formulæ

qn =

√
2

N + 1

N∑
k=1

[
zk − z∗k
i
√

2ωk

]
sin

(
πkn

N + 1

)
(2)

pn =

√
2

N + 1

N∑
k=1

[√
ωk

2
(zk + z∗k)

]
sin

(
πkn

N + 1

)
,
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from which one sees that the k-th Fourier (harmonic) component of qn and pn

is characterized by a wavelength λk = 2(N + 1)/k. It has to be kept in mind
that if one regards zk as a coordinate (k = 1, . . . , N), its conjugate canonical
momentum turns out to be −iz∗k (i =

√
−1). In terms of the z-variables the

Hamiltonian of the system becomes

H(z, z∗) =
N∑

k=1

ωk|zk|2 + H3(z, z
∗) , (3)

where the dispersion relation (frequency spectrum) of the linearized system

ωk = 2 sin

(
πk

2N + 2

)
, k = 1, . . . , N (4)

has been introduced, while the cubic part of the Hamiltonian reads

H3(z, z
∗) =

iα

12
√

N + 1

N∑
k1,k2,k3=1

Sk1k2k3

3∏
j=1

√
ωkj

(zkj
− z∗kj

) . (5)

The coefficient

Sk1k2k3 ≡ δk1+k2−k3,0 + δk1−k2+k3,0 + δk1−k2−k3,0 − δk1+k2+k3,2N+2 (6)

appearing in (5) defines the exact structure of mode-coupling due to the
nonlinearity.

The zk variables determine the amplitude of the k-th Fourier mode of the
system. In the linear approximation (H3 = 0), the modes of the system are
uncoupled and their energies

Ek = ωk|zk|2 , k = 1, . . . , N (7)

are constants of motion. Instead, for the full (nonlinear) system a variation
in time of the modal energies Ek due to nonlinear mode-coupling is expected,
with a consequent transfer of energy to modes which were initially switched
off. In the next section we try to quantify the effectiveness of such a transfer
in the case of long wavelength initial excitations.

2 Nearly resonant averaging

As pointed out first by Ford [14], energy sharing in the FPU problem is
mainly due to the almost resonant character of low modes (k � N). Indeed,
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by expanding (4) in powers of k/(N + 1) one gets ωk ' πk/(N + 1), which
implies ωk ' kω1 up to an error increasing with k. The first to take into
account this fact in a smart way (at least within the context of canonical
perturbation theory) was Shepelyansky [10], who performed an averaging of
Hamiltonian (3) over the unperturbed flow of low modes with frequencies
almost linearly dependent on k. Quasi-resonance of low modes can be taken
into account by performing the time dependent canonical change of variables
(z, z∗) 7→ (ζ, ζ∗) given by

zk = exp

(
i

πk

N + 1
t

)
ζk , z∗k = exp

(
−i

πk

N + 1
t

)
ζ∗k . (8)

This is easily seen to transform the Hamiltonian (3) into

K(ζ, ζ∗) =
N∑

k=1

Ωk|ζ|2 + H3(ζ, ζ∗) + Ĥ3(ζ, ζ∗, t) (9)

where

Ωk = ωk −
πk

N + 1
' − 1

24

(
πk

N + 1

)3

, (10)

H3 =
∑

1≤k1+k2≤N

i
√

ωk1ωk2ωk1+k2

4
√

N + 1
(ζ∗k1

ζ∗k2
ζk1+k2 − ζk1ζk2ζ

∗
k1+k2

) , (11)

while
Ĥ3(ζ, ζ∗, t) ≡ H3 −H3 .

This is the part of the coupling Hamiltonian that explicitly depends on time
and has the property that its time average, with all the ζk’s kept constant, is
zero. At this stage, one simply neglects the contribution of the oscillating part
Ĥ3, and conjectures that the dynamics of the system is correctly described
by the averaged Hamiltonian

K =
N∑

k=1

Ωk|ζk|2 + H3(ζ, ζ∗) . (12)

By construction, the quantity

J =
N∑

k=1

(
πk

N + 1

)
|ζk|2 (13)
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is a constant of motion for the averaged system (12). Moreover, if energy
is localized mainly over large spatial scales (low k’s), it represents approx-
imately the sum of the harmonic energies of the excited modes and its
value is almost equal to that of the total energy E of the original system:
J ' ∑

k Ek ≈ E ≡ Nε, where ε denotes the specific energy of the system.

3 Estimates

Now we come to the main point. The equations of motion of system (12)
read

ζ̇k = iΩkζk + i
∂H3

∂ζ∗k
. (14)

The first term on the right hand side represents the effect of dispersion which,
alone, would cause the mode variable ζk to oscillate at the frequency Ωk de-
fined in (10). The second term represents instead the effect of the nonlin-
earity and couples the motion of the k-th mode to that of the other ones.
Were dispersion (first term) dominant, then the mode would oscillate almost
freely and would not exchange energy with the other ones; in particular, were
such a mode initially switched off, it would remain so afterwards too. In the
opposite case, namely if the nonlinearity (second term) prevails, the mode
is strongly coupled to other modes and shares its energy with them. Thus,
what we have to estimate, for a given k, is the ratio (in a sense to be specified
below) of Ωkzk to ∂H3/∂z∗k. In order to do this, we suppose the system to be
in a “typical” configuration, characterized by partial equipartition between
the first kc modes, all of them having approximately the same value of modal
energy Ec, while the other ones (for k > kc) are essentially at rest. Further,
we suppose kc/N small, so that ωk ' πk/(N + 1) for all k ≤ kc. Such a
configuration is given by

ζk =

√
Ec

ωk

eiφk , k = 1, . . . , kc

(15)

ζk = 0 , k = kc + 1, . . . , N ,

where the phases φ1, . . . , φkc are considered as independent random variables,
each of them being uniformly distributed over [0, 2π]. We come back to the
hypothesis (15) in Remark 2 in the last section. For the moment one can
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accept it as the simplest possible one. Now, by inserting (15) into (13) we
get a first relation linking Ec and kc, namely

kcEc = J ≈ Nε . (16)

As an estimate for the ratio of the dispersive to the nonlinear term appearing
in the right hand side of equation (14) we use the ratio

R(k) =

√〈
|Ωkζk|2

〉
φ√√√√〈∣∣∣∣∂H3

∂ζ∗
k

∣∣∣∣2
〉

φ

, (17)

where both the numerator and the denominator are calculated on the con-
figuration (15), 〈 〉φ denoting average over the random phase distribution.
Notice that the simple phase average of both Ωkζk and ∂H3/∂ζ∗k is zero. Of
course, the function R is defined for values of k smaller than kc. An easy
computation yields

R(k) =
π2

6

(
k

N+1

)2

α
√

Eh

√
4 kc

N+1
− 3 k

N+1

, (18)

showing that R(k) is in fact a monotonically increasing function of k/(N +1).
Thus, the higher k/(N + 1) is, the greater is the effect of dispersion with
respect to that of nonlinearity for the corresponding mode k. Our criterion
to determine kc consists in requiring R(kc) = 1, which, by exploiting (13),
for large N , yields

kc

N + 1
=

√
6

π

√
α ε1/4 . (19)

The meaning of the relation R(kc) = 1 is almost obvious: it means that kc

is the first mode for which dispersion compensates nonlinearity, so that kc

represents the highest mode of the inertial (nonlinear) scale. Remembering
that the wavelength of the k-th mode is λk = 2(N + 1)/k, one then has that
energy is injected on spatial scales larger than `c = λkc ∼ α−1/2ε−1/4. By
inserting (19) into (13) one gets (for large N)

Ec =
π√
6

ε3/4

√
α

, (20)
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which gives the scaling of the partial equipartition level.
Finally, the characteristic time scale over which such a state of partial

relaxation sets in can be estimated through the formula

T (k) =

√√√√〈|ζk|2〉φ
〈|ζ̇k|2〉φ

, (21)

where ζ̇k stands for the right hand side of equation (14). The dimensional
meaning of the above formula is obvious: T (k) represents the time scale
characterizing the dynamics of the k-th mode. Here too, both the numerator
and the denominator have to be calculated on the configuration (15). Noting
that 〈|ζ̇k|2〉φ = 〈|Ωkζk|2〉φ + 〈|∂H3/∂ζ∗k |2〉φ, an easy computation yields for
(21)

T (k) =
24[(

πk
N+1

)3
+ 36α2Ec

(
πk

N+1

)2 (
4 kc

N+1
− 3 k

N+1

)]1/2
, (22)

showing that T (k) too depends in fact on k/(N + 1). Anyway, at variance
with R(k), the quantity T (k) is not a monotonic function of its argument,
at least if the specific energy is low enough. The time scale of interest here
corresponds to τc ≡ lim1≤k≤kc T (k) = T (k̂); the mode k̂ thus determined is
the quickest one to reach the ”plateau” of partial equipartition at Ec. It can
be easily shown that τc has the same order of magnitude of T (kc), which can
be easily computed, yielding

τc ≈ T (kc) =
6

33/2

1

α3/2ε3/4
. (23)

It can also be immediately checked that for those low modes such that k/(N+
1) → 0 as N →∞, one has T (k) ∼ (N + 1)/(kαε1/2), a time which is much
longer than τc and diverges with N . This represents the characteristic time
scale of those first few modes that approach the partially relaxed state on
times diverging with the size of the system.

What we can conclude is the following: if the specific energy of the system
is low enough, say α2ε � 1, the system is expected to relax to a state
of partial equipartition involving only a small fraction of long wavelength
modes. Such a state is reached in times larger than a first characteristic time
scale which depends only on intensive quantities and, in practical (numerical)
computations, might be quite large.
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One can expect that this first stage of the cascade be followed by a second
stage, which takes place on much lomger times t � τc, possibly leading to
full equipartition. The existence of extremely long time scales of such a type
(stretched exponentials of 1/ε) is supported by numerical evidence (see e.g.
[15, 16]). An analytical description of such phase of the relaxation process is
beyond the scope of the present work.

4 Concluding remarks

Remark 1 - In the quoted paper of Shepelyansky [10] use is made of the
resonance overlap criterion along the lines of Chirikov [11, 12]. In applying
such a principle, one compares the so called nonlinear frequency shift of mode
k with the difference of frequencies of modes k and k + 1. In our opinion,
such a criterion cannot be applied to the FPU models for two reasons. The
first one is that no resonance of the form Ωk+1 − Ωk appears in the FPU
system (12). For such a system dangerous (quasi-)resonances (appearing as
small denominators in the first step of canonical perturbation theory) have
the form Ωp+q−Ωp−Ωq. The second problem is due to the use of action-angle
variables (I, ϕ) in the theory, which involves quantities such as the frequency
of a given mode (ϕ̇k) and its nonlinear correction. When one considers a
nearly unexcited high mode k, the value of its action Ik almost vanishes and
the action-angle coordinates become singular. This reflects in the fact that,
the cubic part of the Hamiltonian being dependent on

√
Ik, its derivative

with respect to Ik (which yields the nonlinear frequency correction) becomes
artificially large. That is why, we think, the results of Shepelyansky seem not
to persist in the thermodynamic limit. But in our opinion this is an artifact
of the method, and not a property of the system.

Remark 2 - Our result is essentially based on the hypothesis that the
state of the system at a given time t > 0 has the form (15). The assumption
of complete equipartition between the first kc modes has been made here just
for the sake of simplicity. One could relax it and obtain the ratio R(k) (17)
as a functional of the unknown energies E1, . . . , Ekc . The minimization of
R constarined to the conservation of the second integral J ' ∑

k Ek would
then yield a more realistic distribution of the modal energies (Ek vs. k).
This is deserved to further research. At present, an estimate of the spectral
distribution of modal energies, based on soliton theory, is given in [9]. The
connection between the present approach and that given in [9], namely the
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rigorous justification of the Korteweg-de Vries equation as a resonant Hamil-
tonian normal form of system (1) is the object of a joint work in progress
with Dario Bambusi.

Remark 3 - It is sometimes objected that the cubic potential in the Hamil-
tonian (1) is not bounded from below and the chain could, in principle, break-
down (blow-up of some coordinates and momenta in a finite time). Anyway,
break-down is caused by possible highly localized excitations on the chain,
which requires very short wavelengths having a consistent amount of energy,
i.e. the energy cascade to be really effective. The results of the present paper
confirm that, under suitable conditions, small scale motions are frozen over
rather long times, which implies absence of break-down. In references [2, 17]
numerical runs over large times display no pathology, even when the system
approaches equipartition.
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