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ENERGY CASCADE IN FERMI-PASTA-ULAM MODELSA. PONNO AND D. BAMBUSIUniversit�a degli Studi di Milano,Dipartimento di Matematia \F. Enriques",Via Saldini 50, 20133 Milano, ItalyE-mail: ponno�mat.unimi.it; bambusi�mat.unimi.itWe show that, for long{wavelength initial onditions, the FPU dynamis is de-sribed, up to a ertain time, by two KdV-like equations, whih represent theresonant Hamiltonian normal form of the system. The energy asade taking plaein the system is then quantitatively haraterized by arguments of dimensionalanalysis based on suh equations.1. IntrodutionThe problem posed by Fermi, Pasta and Ulam (FPU) [1℄ onerns \in large"the dynamial haraterization of the approah to equilibrium of nearly-integrable Hamiltonian systems with many degrees of freedom, whih isobviously relevant to build up a meaningful statistial mehanis. FPUonsidered weakly nonlinear osillator hains, for initial onditions withenergy in the lowest Fourier mode (the longest wavelength mode) and nu-merially integrated the equations of motion paying speial attention to theevolution in time of the modal energies. As is well known, the expeted fasttrend to energy equipartition among the Fourier modes was not observed,whih is what is known sine then as the FPU paradox. For referenes onhistory, onsequenies and relevant results in the �eld see [2, 3, 4℄.The aim of the present ontribution is to look at the FPU problem froma somehow new point of view, whih allows us to give some quantitativeestimate of physially relevant quantities haraterizing the transfer of en-ergy from large spatial sales, where it is put initially, to small ones or,in other words, from low Fourier modes (large wavelength) to high (shortwavelength) Fourier modes. We will refer to suh a proess as to the energyasade, or simply the asade. The term is borrowed from the theory ofhydrodynami turbulene, whih atually displays a phenomenology similarto that of the FPU problem. 1
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2 In the present paper, in order to avoid tehnial diÆulties of minorimportane, in plae of onsidering the FPU model itself, we study thesimpler problem of a lass of PDEs whih are naturally related to it.The struture of the paper is the following. First of all it is realledhow ertain PDEs arise in the study of the FPU problem. Then we endowsuh PDEs with a proper Hamiltonian struture and suitably simplify themby performing one step of averaging. Finally, through dimensional analysiswe give an estimate of the e�etive number neff of degrees of freedomsharing the energy and thus atually involved in the dynamis. We alsoestimate the time � needed to reah this state of partial equipartition. Aswill be shown, suh estimates turn out to be in agreement with some reentnumerial results available in the literature.The presentation is quite informal; the material onsists essentially of\snapshots" taken from a quite longer work in progress by the presentauthors.2. Boussinesq equations modeling FPU hainsThe equations of motion of a weakly nonlinear osillator hain are�rn = [�(r + grp�1)℄n ; n = 0; : : : ; L : (1)Here rn = qn+1 � qn, where qn is the displaement of the n-th partilefrom its equilibrium position on the hain; � is the usual disrete laplaian([�f ℄n � fn+1 + fn�1 � 2fn), while g > 0 is the oupling onstant andthe integer p � 3 is the degree of nonlinearity (in the potential). We willsuppose the hain to be periodi of period L, i.e. r0(t) = rL(t), for anyt � 0.Now, for long{wavelength initial exitations, whih is the problem ofinterest in the present work, �nite di�erenes, suh as rn+1� rn, are small;one an then formally expand the operator � = 4 sinh2(�n=2) appearingin (1) in powers of �n and retain the �rst few terms in the r.h.s. of theequation. Renaming the spatial independent variable n as x, we get a PDEfor the ontinuous �eld r(x; t), namelyrtt = �r + (1=12)rxx + grp�1�xx ; r(0; t) = r(L; t) : (2)Suh a PDE is a generalized Boussinesq (gB) equation, and was onsideredas a starting point in approahing the FPU problem e.g. in [5℄ and [6℄.In introduing a PDE, we pass from a system with a �nite number(preisely L) of degrees of freedom to a system possessing in�nitely many
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3degrees of freedom. But of ourse the gB system is meaningful, i.e. it repre-sents a good approximation of the original system, only if �nite di�erenesremain small, that is to say only if long{wavelength Fourier modes take partin the evolution in a signi�ant way. The onsisteny of the approximationbreaks down when modes of wavelength of order one (the size of the lattiestep of the original hain model) reeive a signi�ant amount of energy or,in other words, when a number of degrees of freedom of order L is exited.From now on, we will fous on the gB equation (2).3. Hamiltonian struture of the gB equationTo our knowledge, the Hamiltonian struture of the gB equation (2) waspointed out �rst by Zakharov [6℄, in a famous paper where he showedthat the (properly said) Boussinesq equation, orresponding to the asep = 3 is in fat integrable (in the Lax and in the Hamiltonian sense).Zakharov introdued an auxiliary �eld � (periodi on [0; L℄) thought ofas the oordinate, while r was thought of as the orresponding onjugatemomentum. Then, if one de�nes the HamiltonianH [r;�℄ = Z L0 ��2x + r22 � r2x24 + g rpp � dx ; (3)the orresponding pair of Hamilton equations assoiated to H , namely8<:�t = ÆH=Ær = r + (1=12)rxx + grp�1rt = �ÆH=Æ� = �xx ; (4)turns out to be equivalent to the seond order gB equation. Notie that theow of equations (4) preserves R L0 r dx, whih has to be set to zero, sinein the original periodi lattie one always has PL�1n=0 rn � 0.Now, for our purposes, it is quite onvenient to perform a nonanonialhange of variables whih is analogous to that used e.g. by Craig and Groves[7℄ in approahing the water wave problem. Let us introdue the hange ofvariables (r;�) 7! (�; �), where� = r +�xp2 ; � = r � �xp2 : (5)Then, after substitution, the Hamiltonian (3) readsH [�; �℄ = Z L0 ��2 + �22 � (�x + �x)248 + g (� + �)p2p=2p � dx ; (6)



July 30, 2004 14:23 Proeedings Trim Size: 9in x 6in spt04ponno
4while the equations of motion (4) transform into8<: �t = [� + (1=24)(� + �)xx + (g=2p=2)(� + �)p�1℄x�t = �[� + (1=24)(� + �)xx + (g=2p=2)(� + �)p�1℄x : (7)The latter equations an be quite onveniently rewritten in Hamiltonianform, namely � ���t = b��x� ÆH=Æ�ÆH=Æ�� ; (8)where b� denotes the diagonal Pauli matrix diag(1;�1). It an be eas-ily heked that b��x is a degenerate Poisson operator. The orrespond-ing Casimir invariants of the system are the linear funtionals of the formR L0 (1�+2�) dx, with arbitrary onstants 1 and 2. By the de�nition of thevariables � and � given in (5) and by the geometri ondition R L0 r dx = 0one dedues that the physially meaningful Casimir leaf is the one de�nedby R L0 � dx = R L0 � dx = 0.4. AveragingOne has to keep in mind that a typial long{wavelength initial datum forequations (7) is �0(x) = �0(x) = p" os(2�x=L) ; (9)where " plays the role of the spei� energy (energy per degree of freedom)in the original FPU system. Indeed, substituting (9) in the expression of theHamiltonian (6) yields H [�0; �0℄ � E = "L+o("L), the leading ontribution"L oming from the �rst two terms of the Hamiltonian. Moreover, if oneevaluates the r.h.s. of equations (7) on the initial datum (9), one realizesthat the leading terms in the evolution equations for � and � are �x and��x, respetively. The other terms turn out to be small beause both "and 1=L are supposed to be small quantities. As a onsequene, one anregard the Hamiltonian (6) as being a perturbation ofH0 = Z L0 �2 + �22 dx : (10)Aording to a standard tehnique in perturbation theory [8℄, one an thenaverage the whole Hamiltonian (6) over the ow generated by the unper-turbed Hamiltonian H0 (10), and thus simplify the dynamis. Suh a ow,
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5ating on vetor{valued funtions periodi on [0; L℄, is given by�t = etb��x (�L = �0 = I) ; (11)and the averaged Hamiltonian H � R L0 H [�s(�; �)℄ds=L turns out to beH[�; �℄ = Z L0 ��2 + �22 � (�x)2 + (�x)248 �+ Lg2p=2p pXn=0Cpnh�nih�p�ni : (12)In the above expression, Cpn � p!=(n!(p� n)!) while hf ji � R L0 f j dx=L; wewill refer to the latter as to the moment of f of order j, or simply the j-thmoment of f . The equations of motion assoiated to H are8<: �t = �x + (1=24)�xxx + (g=2p=2)Pp�1n=1 Cp�1n h�p�n�1i(�n)x�t = ��x � (1=24)�xxx � (g=2p=2)Pp�1n=1 Cp�1n h�p�n�1i(�n)x : (13)These are generalized Korteweg-de Vries (gKdV) equations. One an easilyhek that for p = 3 and p = 4 they yield, respetively, the KdV and themodi�ed KdV equation, whih are both integrable.Notie that now, as a onsequene of averaging, the two moments ofseond order of � and � are onstants of motion for system (13). Momentsof order greater than two will be time{dependent, and as a onsequenethe above equations are atually oupled and of integro-di�erential type forp � 6.Up to this point we have shown that, for long{wavelength initial data,the gKdV equations onstitute the resonant hamiltonian normal form ofthe FPU system (atually represented by the gB equation). We reall thatin the ase of short{wavelength initial onditions the resonant normal formhas been shown to be onstituted by nonlinear Shroedinger equations [9℄.5. Dimensional analysisThe fundamental role played by the KdV equation in the FPU problem (inthe ase p = 3) was pointed out �rst by Zabusky and Kruskal [10℄. In suha work they pointed out that the ow of suh an equation displays twodistint regimes, whih we reall here. Keeping in mind one again thatinitial data for the problem in study have the form (9), at very short timesthe derivatives will be small, and the dispersive terms �xxx and �xxx anbe negleted in the equations of motion (7); as a onsequene one gets twogeneralized Hopf (or invisid Burgers) equations whose ow would displaysingularities in a �nite time. Anyway, in going towards the singularity
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6the derivatives inrease and at a ertain time the terms �xxx and �xxx anno longer be negleted. Then dispersion beomes important and a sort ofbalane between dispersion and nonlinearity prevents the shok formation,thus giving rise to solitons (for a reent aprroah to the FPU problemstrongly based on solitons see [11℄). At this stage one expets a stateof partial equilibrium to have been reahed. So, there remains only totranslate in quantitative terms what has been just said, and this is easilyahieved through dimensional analysis. An enlightening treatment of themathematial foundations of dimensional analysis an be found in the bookof Gallavotti [12℄.If one denotes by M the typial value of the �elds � and � at time tand by ` the typial length{sale of variation of the same �elds, one thenestimates e.g. �x � M=`. Analogously, if � denotes the typial time{saleof variation of the �elds, then one has e.g. �t �M=� .Now, in the equations of motion (7), following what pointed out byKruskal, one an neglet the dispersive term if the ratio of the dispersiveterms to the nonlinear ones appearing on the r.h.s. of the equations is lessthan 1, namely if �xxxg(�p�1)x � 1g`2Mp�2 < 1 : (14)One the other hand, if suh an inequality holds, the dynamis is ruled by thea generalized Hopf equation, and this has the property that the maximumof its solution is a onstant of motion. Thus, realling (9), one an setM = p", whih inserted in (14) yields` > `min � g�1=2 "�(p�2)=4 : (15)The latter inequality must be interpreted as follows: `min gives the orderof magnitude of the smallest spatial sale to whih energy ows; at smallerspatial sales the dynamis is essentially dispersive and the orrespondingFourier modes of the system are almost frozen. The relaxation time �relneeded for the energy to ow up to the spatial sale `min is the one forwhih dispersion beomes important and �t � �xxx, namely�rel � `3min = g�3=2 "�3(p�2)=4 : (16)It must also be stressed that if the minimal wavelength to whih energyis transfered is � � `min, then the highest Fourier mode involved in thedynamis is the one orresponding to kmax=L � 1=`min. Suh a value ofkmax=L of oinides with the fration neff of degrees of freedom of thesystem atually sharing the energy.



July 30, 2004 14:23 Proeedings Trim Size: 9in x 6in spt04ponno
76. CommentsFirst of all it has to be pointed out that from the estimates (15) and (16) onerealizes that the quantities haraterizing the asade are intensive: theydepend only on the spei� energy " = E=L. Thus, at least at a formallevel, suh estimates hold in the thermodynami limit E ! 1, L ! 1at E=L �xed. Of partiular signi�ane is the fat that neff � "3(p�2)=2,whih is a small number if " is small, so that the system does not reahequipartition at least on time sales of order �rel.The numerial results available in the literature are mostly onernedwith the ase p = 3. In suh a ase, the saling kmax � "1=4 was observedboth by Berhialla et al. [13℄ and by Biello et al. [14℄, while in referene[14℄ the saling law �rel � "�3=4 too was measured. The agreement with thesimple preditions given in the present paper seems thus to be promising.AknowledgmentsThe authors thank G. Benettin, A. Carati, L. Galgani, A. Giorgilli and S.Paleari for the many enlightening disussions that \randomly" take plaeon the subjet.Referenes1. E. Fermi, J. Pasta and S. Ulam, in E. Fermi \Colleted Papers", Universityof Chiago Press (1965).2. G. Benettin, in \Moleular dynamis simulation in lassial statistial me-hanial systems", Proeedings of the E. Fermi Summer Shool of Varenna(1986); ed. by G. Ciotti and W. G. Hoover.3. J. Ford, Phys. Rep. 213, 271-310 (1992).4. A. Carati, L. Galgani, A. Ponno and A. Giorgilli Il Nuovo Cimento B 117,1017-1026 (2002).5. N. J. Zabusky, in \Nonlinear Partial Di�erential Equations", Aademi Press,New York (1967); ed. by W. F. Ames.6. V. E. Zakharov, Sov. Phys. JETP 38, 108-110 (1974).7. W. Craig and M. D. Groves, Wave Motion 19, 367-389 (1994).8. J. A. Sanders and F. Verhulst, \Averaging Methods in Nonlinear DynamialSystems", Springer-Verlag, New York (1985).9. D. Bambusi, A. Carati and A. Ponno, Disrete and Continuous DynamialSystems-Series B 2, 109-128 (2002).10. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15, 240-243 (1965).11. A. Ponno, Europhysis Letters 64, 606-612 (2003).12. G. Gallavotti, \Foundations of Fluid Dynamis", Springer-Verlag, Berlin(2001).
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