July 30, 2004 14:23 Proceedings Trim Size: 9in x 6in spt04ponno

ENERGY CASCADE IN FERMI-PASTA-ULAM MODELS

A. PONNO AND D. BAMBUSI

Universita degli Studi di Milano,
Dipartimento di Matematica “F. Enriques”,
Via Saldini 50, 201338 Milano, Italy
E-mail: ponno@mat.unimi.it; bambusi@mat.unimi.it

We show that, for long—wavelength initial conditions, the FPU dynamics is de-
scribed, up to a certain time, by two KdV-like equations, which represent the
resonant Hamiltonian normal form of the system. The energy cascade taking place
in the system is then quantitatively characterized by arguments of dimensional
analysis based on such equations.

1. Introduction

The problem posed by Fermi, Pasta and Ulam (FPU) [1] concerns “in large”
the dynamical characterization of the approach to equilibrium of nearly-
integrable Hamiltonian systems with many degrees of freedom, which is
obviously relevant to build up a meaningful statistical mechanics. FPU
considered weakly nonlinear oscillator chains, for initial conditions with
energy in the lowest Fourier mode (the longest wavelength mode) and nu-
merically integrated the equations of motion paying special attention to the
evolution in time of the modal energies. As is well known, the expected fast
trend to energy equipartition among the Fourier modes was not observed,
which is what is known since then as the FPU paradox. For references on
history, consequencies and relevant results in the field see [2, 3, 4].

The aim of the present contribution is to look at the FPU problem from
a somehow new point of view, which allows us to give some quantitative
estimate of physically relevant quantities characterizing the transfer of en-
ergy from large spatial scales, where it is put initially, to small ones or,
in other words, from low Fourier modes (large wavelength) to high (short
wavelength) Fourier modes. We will refer to such a process as to the energy
cascade, or simply the cascade. The term is borrowed from the theory of
hydrodynamic turbulence, which actually displays a phenomenology similar
to that of the FPU problem.
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In the present paper, in order to avoid technical difficulties of minor
importance, in place of considering the FPU model itself, we study the
simpler problem of a class of PDEs which are naturally related to it.

The structure of the paper is the following. First of all it is recalled
how certain PDEs arise in the study of the FPU problem. Then we endow
such PDEs with a proper Hamiltonian structure and suitably simplify them
by performing one step of averaging. Finally, through dimensional analysis
we give an estimate of the effective number n.rs of degrees of freedom
sharing the energy and thus actually involved in the dynamics. We also
estimate the time 7 needed to reach this state of partial equipartition. As
will be shown, such estimates turn out to be in agreement with some recent
numerical results available in the literature.

The presentation is quite informal; the material consists essentially of
“snapshots” taken from a quite longer work in progress by the present
authors.

2. Boussinesq equations modeling FPU chains

The equations of motion of a weakly nonlinear oscillator chain are
in=[AFr+grP V], , n=0,...,L. (1)

Here r, = gn+1 — qn, where ¢, is the displacement of the n-th particle
from its equilibrium position on the chain; A is the usual discrete laplacian
([Afln = fax1 + fn—1 — 2fn), while ¢ > 0 is the coupling constant and
the integer p > 3 is the degree of nonlinearity (in the potential). We will
suppose the chain to be periodic of period L, i.e. 7o(t) = r1.(¢), for any
t>0.

Now, for long—wavelength initial excitations, which is the problem of
interest in the present work, finite differences, such as r, 1 —ry, are small;
one can then formally expand the operator A = 4sinh?(8,/2) appearing
in (1) in powers of 8, and retain the first few terms in the r.h.s. of the
equation. Renaming the spatial independent variable n as =, we get a PDE
for the continuous field r(z,t), namely

ree = [+ (1/12)rpe +gr* ], 7(0,t) =r(L,t) . 2)

T

Such a PDE is a generalized Boussinesq (gB) equation, and was considered
as a starting point in approaching the FPU problem e.g. in [5] and [6].

In introducing a PDE, we pass from a system with a finite number
(precisely L) of degrees of freedom to a system possessing infinitely many
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degrees of freedom. But of course the gB system is meaningful, i.e. it repre-
sents a good approximation of the original system, only if finite differences
remain small, that is to say only if long—wavelength Fourier modes take part
in the evolution in a significant way. The consistency of the approximation
breaks down when modes of wavelength of order one (the size of the lattice
step of the original chain model) receive a significant amount of energy or,
in other words, when a number of degrees of freedom of order L is excited.
From now on, we will focus on the gB equation (2).

3. Hamiltonian structure of the gB equation

To our knowledge, the Hamiltonian structure of the gB equation (2) was
pointed out first by Zakharov [6], in a famous paper where he showed
that the (properly said) Boussinesq equation, corresponding to the case
p = 3 is in fact integrable (in the Lax and in the Hamiltonian sense).
Zakharov introduced an auxiliary field ® (periodic on [0, L]) thought of
as the coordinate, while r was thought of as the corresponding conjugate
momentum. Then, if one defines the Hamiltonian

L 2 2 2
i3 P
H[nq;]:/o <z7+7"_r_z+g%> e | 3)

the corresponding pair of Hamilton equations associated to H, namely

&, =0H/6r =71+ (1/12)ry, + grP~!

; (4)
ry = —(5H/(Sq> = q>mv

turns out to be equivalent to the second order gB equation. Notice that the
flow of equations (4) preserves fOL r dx, which has to be set to zero, since
in the original periodic lattice one always has Zﬁ;& rn = 0.

Now, for our purposes, it is quite convenient to perform a noncanonical
change of variables which is analogous to that used e.g. by Craig and Groves
[7] in approaching the water wave problem. Let us introduce the change of

variables (r, ®) — (£,7), where

r+ &, _r—=9%,
V2 1T

Then, after substitution, the Hamiltonian (3) reads

L 2 2 2 14
H[f,n] _ /0 |:£ +1 (&2 +12) (E+n) de

&=

2 48 9, ’
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while the equations of motion (4) transform into

& =€+ (1/24)(E+M)aw + (9/27/2) (€ + )P~ s
(7)
M=~ + (1/24) (€ + 0)ze + (9/2°72)(€ +n)P~ ',

The latter equations can be quite conveniently rewritten in Hamiltonian

form, namely
§\ _ ., (O0H/OE
(n)t_gax <5H/5n> ’ ®)

where ¢ denotes the diagonal Pauli matrix diag(1l,—1). It can be eas-
ily checked that 7, is a degenerate Poisson operator. The correspond-
ing Casimir invariants of the system are the linear functionals of the form
fOL (c1&+can) dz, with arbitrary constants ¢; and ¢o. By the definition of the
variables £ and 7 given in (5) and by the geometric condition fOL rdr=20
one deduces that the physically meaningful Casimir leaf is the one defined

by [\ € dx = [} n dz =0.

4. Averaging

One has to keep in mind that a typical long—wavelength initial datum for
equations (7) is

éo(z) = no(w) = Vecos(2rz/L) , (9)

where ¢ plays the role of the specific energy (energy per degree of freedom)
in the original FPU system. Indeed, substituting (9) in the expression of the
Hamiltonian (6) yields H[¢o,n0] = E = eL+o0(eL), the leading contribution
eL coming from the first two terms of the Hamiltonian. Moreover, if one
evaluates the r.h.s. of equations (7) on the initial datum (9), one realizes
that the leading terms in the evolution equations for ¢ and n are &, and
—1ngz, respectively. The other terms turn out to be small because both ¢
and 1/L are supposed to be small quantities. As a consequence, one can
regard the Hamiltonian (6) as being a perturbation of

L ¢2 2
Hoz/ S/ (10)
0 2

According to a standard technique in perturbation theory [8], one can then
average the whole Hamiltonian (6) over the flow generated by the unper-
turbed Hamiltonian Hy (10), and thus simplify the dynamics. Such a flow,
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acting on vector—valued fucntions periodic on [0, L], is given by
B! =7 (L =" =1T), (11)
and the averaged Hamiltonian H = fOL H[®%(¢,n)]ds/L turns out to be

. Lre2gyp2 2 + (0, Py
H[&n]:/0 F - —(5)48(" } 2p/2 ZOf - (12)

In the above expression, C? = p!/(n!(p — n)!) while (/) = f fi dz/L; we
will refer to the latter as to the moment of f of order j, or simply the j-th
moment of f. The equations of motion associated to H are

& = & + (1/24)6ona + (9/277) S0y CETH P 1) (€7,
(13)

e =~ — (1/24)0220 — (9/2p/2) Zp b cn- P (™)

These are generalized Korteweg-de Vries (gKdV) equations. One can easily
check that for p = 3 and p = 4 they yield, respectively, the KdV and the
modified KdV equation, which are both integrable.

Notice that now, as a consequence of averaging, the two moments of
second order of £ and n are constants of motion for system (13). Moments
of order greater than two will be time—dependent, and as a consequence
the above equations are actually coupled and of integro-differential type for
p > 6.

Up to this point we have shown that, for long—wavelength initial data,
the gKdV equations constitute the resonant hamiltonian normal form of
the FPU system (actually represented by the gB equation). We recall that
in the case of short—wavelength initial conditions the resonant normal form
has been shown to be constituted by nonlinear Schroedinger equations [9].

5. Dimensional analysis

The fundamental role played by the KdV equation in the FPU problem (in
the case p = 3) was pointed out first by Zabusky and Kruskal [10]. In such
a work they pointed out that the flow of such an equation displays two
distinct regimes, which we recall here. Keeping in mind once again that
initial data for the problem in study have the form (9), at very short times
the derivatives will be small, and the dispersive terms &,,, and 7;,, can
be neglected in the equations of motion (7); as a consequence one gets two
generalized Hopf (or inviscid Burgers) equations whose flow would display
singularities in a finite time. Anyway, in going towards the singularity
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the derivatives increase and at a certain time the terms &,,, and 7,,, can
no longer be neglected. Then dispersion becomes important and a sort of
balance between dispersion and nonlinearity prevents the shock formation,
thus giving rise to solitons (for a recent aprroach to the FPU problem
strongly based on solitons see [11]). At this stage one expects a state
of partial equilibrium to have been reached. So, there remains only to
translate in quantitative terms what has been just said, and this is easily
achieved through dimensional analysis. An enlightening treatment of the
mathematical foundations of dimensional analysis can be found in the book
of Gallavotti [12].

If one denotes by M the typical value of the fields & and n at time ¢
and by £ the typical length—scale of variation of the same fields, one then
estimates e.g. &, ~ M/f. Analogously, if 7 denotes the typical time—scale
of variation of the fields, then one has e.g. & ~ M/7.

Now, in the equations of motion (7), following what pointed out by
Kruskal, one can neglect the dispersive term if the ratio of the dispersive
terms to the nonlinear ones appearing on the r.h.s. of the equations is less
than 1, namely if

£$$$ ~ 1
g(&r")e  glPMP2
One the other hand, if such an inequality holds, the dynamics is ruled by the
a generalized Hopf equation, and this has the property that the maximum

of its solution is a constant of motion. Thus, recalling (9), one can set
M = /e, which inserted in (14) yields

0> bpin = g~ /2 e=0=2/4 (15)

<1 . (14)

The latter inequality must be interpreted as follows: £,,;, gives the order
of magnitude of the smallest spatial scale to which energy flows; at smaller
spatial scales the dynamics is essentially dispersive and the corresponding
Fourier modes of the system are almost frozen. The relaxation time 7,
needed for the energy to flow up to the spatial scale £,,;, is the one for
which dispersion becomes important and & ~ £, namely

Trel ™~ é?nzn = 9_3/2 8_3(1)_2)/4 . (16)

It must also be stressed that if the minimal wavelength to which energy
is transfered is A ~ fp;in, then the highest Fourier mode involved in the
dynamics is the one corresponding t0 kpmqz/L ~ 1/min. Such a value of
kmaz/L of coincides with the fraction n.sy of degrees of freedom of the
system actually sharing the energy.
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6. Comments

First of all it has to be pointed out that from the estimates (15) and (16) one
realizes that the quantities characterizing the cascade are intensive: they
depend only on the specific energy ¢ = E/L. Thus, at least at a formal
level, such estimates hold in the thermodynamic limit £ — oo, L — oo
at E/L fixed. Of particular significance is the fact that n.p; ~ *(P=2)/2,
which is a small number if £ is small, so that the system does not reach
equipartition at least on time scales of order ...

The numerical results available in the literature are mostly concerned
with the case p = 3. In such a case, the scaling k4, ~ el/* was observed
both by Berchialla et al. [13] and by Biello et al. [14], while in reference
[14] the scaling law 7,.e; ~ £73/4 to0 was measured. The agreement with the
simple predictions given in the present paper seems thus to be promising.
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