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ENERGY CASCADE IN FERMI-PASTA-ULAM MODELSA. PONNO AND D. BAMBUSIUniversit�a degli Studi di Milano,Dipartimento di Matemati
a \F. Enriques",Via Saldini 50, 20133 Milano, ItalyE-mail: ponno�mat.unimi.it; bambusi�mat.unimi.itWe show that, for long{wavelength initial 
onditions, the FPU dynami
s is de-s
ribed, up to a 
ertain time, by two KdV-like equations, whi
h represent theresonant Hamiltonian normal form of the system. The energy 
as
ade taking pla
ein the system is then quantitatively 
hara
terized by arguments of dimensionalanalysis based on su
h equations.1. Introdu
tionThe problem posed by Fermi, Pasta and Ulam (FPU) [1℄ 
on
erns \in large"the dynami
al 
hara
terization of the approa
h to equilibrium of nearly-integrable Hamiltonian systems with many degrees of freedom, whi
h isobviously relevant to build up a meaningful statisti
al me
hani
s. FPU
onsidered weakly nonlinear os
illator 
hains, for initial 
onditions withenergy in the lowest Fourier mode (the longest wavelength mode) and nu-meri
ally integrated the equations of motion paying spe
ial attention to theevolution in time of the modal energies. As is well known, the expe
ted fasttrend to energy equipartition among the Fourier modes was not observed,whi
h is what is known sin
e then as the FPU paradox. For referen
es onhistory, 
onsequen
ies and relevant results in the �eld see [2, 3, 4℄.The aim of the present 
ontribution is to look at the FPU problem froma somehow new point of view, whi
h allows us to give some quantitativeestimate of physi
ally relevant quantities 
hara
terizing the transfer of en-ergy from large spatial s
ales, where it is put initially, to small ones or,in other words, from low Fourier modes (large wavelength) to high (shortwavelength) Fourier modes. We will refer to su
h a pro
ess as to the energy
as
ade, or simply the 
as
ade. The term is borrowed from the theory ofhydrodynami
 turbulen
e, whi
h a
tually displays a phenomenology similarto that of the FPU problem. 1
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2 In the present paper, in order to avoid te
hni
al diÆ
ulties of minorimportan
e, in pla
e of 
onsidering the FPU model itself, we study thesimpler problem of a 
lass of PDEs whi
h are naturally related to it.The stru
ture of the paper is the following. First of all it is re
alledhow 
ertain PDEs arise in the study of the FPU problem. Then we endowsu
h PDEs with a proper Hamiltonian stru
ture and suitably simplify themby performing one step of averaging. Finally, through dimensional analysiswe give an estimate of the e�e
tive number neff of degrees of freedomsharing the energy and thus a
tually involved in the dynami
s. We alsoestimate the time � needed to rea
h this state of partial equipartition. Aswill be shown, su
h estimates turn out to be in agreement with some re
entnumeri
al results available in the literature.The presentation is quite informal; the material 
onsists essentially of\snapshots" taken from a quite longer work in progress by the presentauthors.2. Boussinesq equations modeling FPU 
hainsThe equations of motion of a weakly nonlinear os
illator 
hain are�rn = [�(r + grp�1)℄n ; n = 0; : : : ; L : (1)Here rn = qn+1 � qn, where qn is the displa
ement of the n-th parti
lefrom its equilibrium position on the 
hain; � is the usual dis
rete lapla
ian([�f ℄n � fn+1 + fn�1 � 2fn), while g > 0 is the 
oupling 
onstant andthe integer p � 3 is the degree of nonlinearity (in the potential). We willsuppose the 
hain to be periodi
 of period L, i.e. r0(t) = rL(t), for anyt � 0.Now, for long{wavelength initial ex
itations, whi
h is the problem ofinterest in the present work, �nite di�eren
es, su
h as rn+1� rn, are small;one 
an then formally expand the operator � = 4 sinh2(�n=2) appearingin (1) in powers of �n and retain the �rst few terms in the r.h.s. of theequation. Renaming the spatial independent variable n as x, we get a PDEfor the 
ontinuous �eld r(x; t), namelyrtt = �r + (1=12)rxx + grp�1�xx ; r(0; t) = r(L; t) : (2)Su
h a PDE is a generalized Boussinesq (gB) equation, and was 
onsideredas a starting point in approa
hing the FPU problem e.g. in [5℄ and [6℄.In introdu
ing a PDE, we pass from a system with a �nite number(pre
isely L) of degrees of freedom to a system possessing in�nitely many
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3degrees of freedom. But of 
ourse the gB system is meaningful, i.e. it repre-sents a good approximation of the original system, only if �nite di�eren
esremain small, that is to say only if long{wavelength Fourier modes take partin the evolution in a signi�
ant way. The 
onsisten
y of the approximationbreaks down when modes of wavelength of order one (the size of the latti
estep of the original 
hain model) re
eive a signi�
ant amount of energy or,in other words, when a number of degrees of freedom of order L is ex
ited.From now on, we will fo
us on the gB equation (2).3. Hamiltonian stru
ture of the gB equationTo our knowledge, the Hamiltonian stru
ture of the gB equation (2) waspointed out �rst by Zakharov [6℄, in a famous paper where he showedthat the (properly said) Boussinesq equation, 
orresponding to the 
asep = 3 is in fa
t integrable (in the Lax and in the Hamiltonian sense).Zakharov introdu
ed an auxiliary �eld � (periodi
 on [0; L℄) thought ofas the 
oordinate, while r was thought of as the 
orresponding 
onjugatemomentum. Then, if one de�nes the HamiltonianH [r;�℄ = Z L0 ��2x + r22 � r2x24 + g rpp � dx ; (3)the 
orresponding pair of Hamilton equations asso
iated to H , namely8<:�t = ÆH=Ær = r + (1=12)rxx + grp�1rt = �ÆH=Æ� = �xx ; (4)turns out to be equivalent to the se
ond order gB equation. Noti
e that the
ow of equations (4) preserves R L0 r dx, whi
h has to be set to zero, sin
ein the original periodi
 latti
e one always has PL�1n=0 rn � 0.Now, for our purposes, it is quite 
onvenient to perform a non
anoni
al
hange of variables whi
h is analogous to that used e.g. by Craig and Groves[7℄ in approa
hing the water wave problem. Let us introdu
e the 
hange ofvariables (r;�) 7! (�; �), where� = r +�xp2 ; � = r � �xp2 : (5)Then, after substitution, the Hamiltonian (3) readsH [�; �℄ = Z L0 ��2 + �22 � (�x + �x)248 + g (� + �)p2p=2p � dx ; (6)
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4while the equations of motion (4) transform into8<: �t = [� + (1=24)(� + �)xx + (g=2p=2)(� + �)p�1℄x�t = �[� + (1=24)(� + �)xx + (g=2p=2)(� + �)p�1℄x : (7)The latter equations 
an be quite 
onveniently rewritten in Hamiltonianform, namely � ���t = b��x� ÆH=Æ�ÆH=Æ�� ; (8)where b� denotes the diagonal Pauli matrix diag(1;�1). It 
an be eas-ily 
he
ked that b��x is a degenerate Poisson operator. The 
orrespond-ing Casimir invariants of the system are the linear fun
tionals of the formR L0 (
1�+
2�) dx, with arbitrary 
onstants 
1 and 
2. By the de�nition of thevariables � and � given in (5) and by the geometri
 
ondition R L0 r dx = 0one dedu
es that the physi
ally meaningful Casimir leaf is the one de�nedby R L0 � dx = R L0 � dx = 0.4. AveragingOne has to keep in mind that a typi
al long{wavelength initial datum forequations (7) is �0(x) = �0(x) = p" 
os(2�x=L) ; (9)where " plays the role of the spe
i�
 energy (energy per degree of freedom)in the original FPU system. Indeed, substituting (9) in the expression of theHamiltonian (6) yields H [�0; �0℄ � E = "L+o("L), the leading 
ontribution"L 
oming from the �rst two terms of the Hamiltonian. Moreover, if oneevaluates the r.h.s. of equations (7) on the initial datum (9), one realizesthat the leading terms in the evolution equations for � and � are �x and��x, respe
tively. The other terms turn out to be small be
ause both "and 1=L are supposed to be small quantities. As a 
onsequen
e, one 
anregard the Hamiltonian (6) as being a perturbation ofH0 = Z L0 �2 + �22 dx : (10)A

ording to a standard te
hnique in perturbation theory [8℄, one 
an thenaverage the whole Hamiltonian (6) over the 
ow generated by the unper-turbed Hamiltonian H0 (10), and thus simplify the dynami
s. Su
h a 
ow,
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5a
ting on ve
tor{valued fu
ntions periodi
 on [0; L℄, is given by�t = etb��x (�L = �0 = I) ; (11)and the averaged Hamiltonian H � R L0 H [�s(�; �)℄ds=L turns out to beH[�; �℄ = Z L0 ��2 + �22 � (�x)2 + (�x)248 �+ Lg2p=2p pXn=0Cpnh�nih�p�ni : (12)In the above expression, Cpn � p!=(n!(p� n)!) while hf ji � R L0 f j dx=L; wewill refer to the latter as to the moment of f of order j, or simply the j-thmoment of f . The equations of motion asso
iated to H are8<: �t = �x + (1=24)�xxx + (g=2p=2)Pp�1n=1 Cp�1n h�p�n�1i(�n)x�t = ��x � (1=24)�xxx � (g=2p=2)Pp�1n=1 Cp�1n h�p�n�1i(�n)x : (13)These are generalized Korteweg-de Vries (gKdV) equations. One 
an easily
he
k that for p = 3 and p = 4 they yield, respe
tively, the KdV and themodi�ed KdV equation, whi
h are both integrable.Noti
e that now, as a 
onsequen
e of averaging, the two moments ofse
ond order of � and � are 
onstants of motion for system (13). Momentsof order greater than two will be time{dependent, and as a 
onsequen
ethe above equations are a
tually 
oupled and of integro-di�erential type forp � 6.Up to this point we have shown that, for long{wavelength initial data,the gKdV equations 
onstitute the resonant hamiltonian normal form ofthe FPU system (a
tually represented by the gB equation). We re
all thatin the 
ase of short{wavelength initial 
onditions the resonant normal formhas been shown to be 
onstituted by nonlinear S
hroedinger equations [9℄.5. Dimensional analysisThe fundamental role played by the KdV equation in the FPU problem (inthe 
ase p = 3) was pointed out �rst by Zabusky and Kruskal [10℄. In su
ha work they pointed out that the 
ow of su
h an equation displays twodistin
t regimes, whi
h we re
all here. Keeping in mind on
e again thatinitial data for the problem in study have the form (9), at very short timesthe derivatives will be small, and the dispersive terms �xxx and �xxx 
anbe negle
ted in the equations of motion (7); as a 
onsequen
e one gets twogeneralized Hopf (or invis
id Burgers) equations whose 
ow would displaysingularities in a �nite time. Anyway, in going towards the singularity
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6the derivatives in
rease and at a 
ertain time the terms �xxx and �xxx 
anno longer be negle
ted. Then dispersion be
omes important and a sort ofbalan
e between dispersion and nonlinearity prevents the sho
k formation,thus giving rise to solitons (for a re
ent aprroa
h to the FPU problemstrongly based on solitons see [11℄). At this stage one expe
ts a stateof partial equilibrium to have been rea
hed. So, there remains only totranslate in quantitative terms what has been just said, and this is easilya
hieved through dimensional analysis. An enlightening treatment of themathemati
al foundations of dimensional analysis 
an be found in the bookof Gallavotti [12℄.If one denotes by M the typi
al value of the �elds � and � at time tand by ` the typi
al length{s
ale of variation of the same �elds, one thenestimates e.g. �x � M=`. Analogously, if � denotes the typi
al time{s
aleof variation of the �elds, then one has e.g. �t �M=� .Now, in the equations of motion (7), following what pointed out byKruskal, one 
an negle
t the dispersive term if the ratio of the dispersiveterms to the nonlinear ones appearing on the r.h.s. of the equations is lessthan 1, namely if �xxxg(�p�1)x � 1g`2Mp�2 < 1 : (14)One the other hand, if su
h an inequality holds, the dynami
s is ruled by thea generalized Hopf equation, and this has the property that the maximumof its solution is a 
onstant of motion. Thus, re
alling (9), one 
an setM = p", whi
h inserted in (14) yields` > `min � g�1=2 "�(p�2)=4 : (15)The latter inequality must be interpreted as follows: `min gives the orderof magnitude of the smallest spatial s
ale to whi
h energy 
ows; at smallerspatial s
ales the dynami
s is essentially dispersive and the 
orrespondingFourier modes of the system are almost frozen. The relaxation time �relneeded for the energy to 
ow up to the spatial s
ale `min is the one forwhi
h dispersion be
omes important and �t � �xxx, namely�rel � `3min = g�3=2 "�3(p�2)=4 : (16)It must also be stressed that if the minimal wavelength to whi
h energyis transfered is � � `min, then the highest Fourier mode involved in thedynami
s is the one 
orresponding to kmax=L � 1=`min. Su
h a value ofkmax=L of 
oin
ides with the fra
tion neff of degrees of freedom of thesystem a
tually sharing the energy.
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76. CommentsFirst of all it has to be pointed out that from the estimates (15) and (16) onerealizes that the quantities 
hara
terizing the 
as
ade are intensive: theydepend only on the spe
i�
 energy " = E=L. Thus, at least at a formallevel, su
h estimates hold in the thermodynami
 limit E ! 1, L ! 1at E=L �xed. Of parti
ular signi�
an
e is the fa
t that neff � "3(p�2)=2,whi
h is a small number if " is small, so that the system does not rea
hequipartition at least on time s
ales of order �rel.The numeri
al results available in the literature are mostly 
on
ernedwith the 
ase p = 3. In su
h a 
ase, the s
aling kmax � "1=4 was observedboth by Ber
hialla et al. [13℄ and by Biello et al. [14℄, while in referen
e[14℄ the s
aling law �rel � "�3=4 too was measured. The agreement with thesimple predi
tions given in the present paper seems thus to be promising.A
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