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Introduction
Let Ω be a domain in RN. We consider the Neumann eigenvalue
problem problem for the biharmonic operator

∆2u − τ∆u = λu, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ∂u
∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = 0, on ∂Ω.

(1.1)

L.M. Chasman. An isoperimetric inequality for fundamental tones of free plates. Comm.

Math. Phys. (303), 2:421–449, 2011,

and the Steklov eigenvalue problem for the biharmonic operator
∆2u − τ∆u = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ∂u
∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = λu, on ∂Ω.

(1.2)

D. Buoso, L. P.. A few shape optimization results for a biharmonic Steklov problem. J.

Differential Equations (259), 1778–1818, 2015.
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Introduction

In both cases we have a sequence

0 = λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · ↗ +∞

A physical interpretation: for N = 2

Neumann eigenvalues represent the squares of the normal
frequencies of vibration of a free plate, which occupies at rest
a region of shape Ω.

Steklov eigenvalues represent the squares of the normal
frequencies of vibration of a free plate, whose mass is
displaced on the boundary.

The parameter τ is related to the external tension. In this talk
we consider only the case τ > 0. In this case λ2 > 0.
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Neumann vs Steklov
The two problems are strictly related.

Consider the Neumann
problem with a weight ρε, i.e., a non homogeneous plate. In
particular, let M > 0 be fixed and let ε > 0 small and

ωε =
{
x ∈ Ω : dist(x, ∂Ω) < ε

}
Let ρε : Ω→ R+ be defined by

ρε =

ε, in Ω \ ωε,
M−ε|Ω\ωε |
|ωε |

, in ωε

Note that
∫

Ω
ρεdx = M for all

ε > 0.

Ω

ωϵ
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Neumann vs Steklov
We consider the Neumann problem with density ρε∆2u − τ∆u = λρεu, in Ω,

∂2u
∂ν2 = τ∂u

∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = 0, on ∂Ω,

For each fixed ε we have an increasing sequence

0 = λ1(ε) ≤ · · · ≤ λj(ε) ≤ · · · ↗ +∞

Theorem (Buoso, P.)

For all j ∈ N, limε→0 λj(ε) = λj , where λj are the eigenvalues of
∆2u − τ∆u = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ∂u
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|∂Ω|λu, on ∂Ω.

5 of 17



Neumann vs Steklov
We consider the Neumann problem with density ρε∆2u − τ∆u = λρεu, in Ω,

∂2u
∂ν2 = τ∂u

∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = 0, on ∂Ω,

For each fixed ε we have an increasing sequence

0 = λ1(ε) ≤ · · · ≤ λj(ε) ≤ · · · ↗ +∞

Theorem (Buoso, P.)

For all j ∈ N, limε→0 λj(ε) = λj , where λj are the eigenvalues of
∆2u − τ∆u = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ∂u
∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = M
|∂Ω|λu, on ∂Ω.

5 of 17



Neumann vs Steklov
We consider the Neumann problem with density ρε∆2u − τ∆u = λρεu, in Ω,

∂2u
∂ν2 = τ∂u

∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = 0, on ∂Ω,

For each fixed ε we have an increasing sequence

0 = λ1(ε) ≤ · · · ≤ λj(ε) ≤ · · · ↗ +∞

Theorem (Buoso, P.)

For all j ∈ N, limε→0 λj(ε) = λj , where λj are the eigenvalues of
∆2u − τ∆u = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ∂u
∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = M
|∂Ω|λu, on ∂Ω.

5 of 17



Shape sensitivity and optimization

We are interested in the problem

Ω 7→ λj[Ω]

for both Neumann and Steklov problems.

Is this map Continuous?
Differentiable? Analytic? What about

max|Ω|=const. λj[Ω] and min|Ω|=const. λj[Ω]?

Critical points?
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Analyticity and derivatives

The set of domains has not a linear structure, so we formulate the
problem in an alternative way.

Let Ω be a fixed domain of class C1 and let

Φ(Ω) =
{
φ ∈

(
C2(Ω̄)

)N
: φ injective and inf

Ω
|detDφ| > 0

}
.

Then we study the Steklov problem on φ(Ω). We denote
λj[φ] := λj[φ(Ω)] and study the map

φ 7→ λj[φ].

The space Φ(Ω) is a linear space.
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Analyticity and derivatives

Let F ⊂ N be fixed. We introduce the following quantity

AΩ[F ] =
{
φ ∈ Φ(Ω) : λl[φ] , λj[φ] ∀j ∈ F , ∀l ∈ N \ F

}

For example, if F = {1}, then AΩ[F ] =
{
φ ∈ Φ(Ω) : λ1[φ] is simple

}
.

Then we consider the symmetric functions of the eigenvalues, for
s ∈ {1, ..., |F |}

ΛF ,s[φ] =
∑

j1<···<js∈F

λj1 [φ] · · · λjs [φ]

Such functions turn out to be important objects of study in shape
differentiability and shape optimization problems.
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Analyticity and derivatives

Theorem (Buoso, P. - ‘Analyticity’)

Let Ω be a bounded domain in RN of class C1. Let F be a finite
non-empty subset of N. Then

i) The set AΩ[F ] is open in Φ(Ω).

ii) The function ΛF ,s[φ] from AΩ[F ] to R is real analytic.
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Analyticity and derivatives

Theorem (Buoso, P. - ‘Derivatives, Neumann’)

Let φ̃ ∈ AΩ[F ] be such that λj[φ̃] = λF [φ̃] for all j ∈ F and such that
φ̃(Ω) is of class C4. Let v1, ..., v|F | be a orthonormal basis of the
eigenspace associated with λF [φ̃]. Then

d|φ=φ̃ (ΛF ,s) [ψ] = −λs−1
F [φ̃]

(
|F | − 1
s − 1

) |F |∑
j=1

∫
∂φ̃(Ω)

(
λF [φ̃]v2

j

−τ|∇vj |
2 − |D2vj |

2
)
ψ ◦ φ̃(−1) · νdσ,

for all ψ ∈
(
C2(Ω̄)

)N
.
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Analyticity and derivatives

Theorem (Buoso, P. - ‘Derivatives, Steklov’)

Let φ̃ ∈ AΩ[F ] be such that λj[φ̃] = λF [φ̃] for all j ∈ F and such that
φ̃(Ω) is of class C4. Let v1, ..., v|F | be a orthonormal basis of the
eigenspace associated with λF [φ̃]. Then

d|φ=φ̃ (ΛF ,s) [ψ] = −λs−1
F [φ̃]

(
|F | − 1
s − 1

) |F |∑
j=1

∫
∂φ̃(Ω)

(
λF [φ̃]Kv2

j

+λF [φ̃]
∂(v2

j )

∂ν
− τ|∇vj |

2 − |D2vj |
2

ψ ◦ φ̃(−1) · νdσ,

for all ψ ∈
(
C2(Ω̄)

)N
, where K denotes the mean curvature of

∂φ̃(Ω).
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Critical domains
Now we turn our attention to extremum problems of the type

min
|φ(Ω)|=const.

/ max
|φ(Ω)|=const.

ΛF ,s[φ].

In particular, all φ’s realizing the extremum are critical points under
measure constraint.
LetV0 > 0 and let V(V0) =

{
φ ∈ Φ(Ω) : |φ(Ω)| = V0

}
. We have

the following

Theorem (Buoso, P.)

Let Ω be a bounded domain of RN of class C1. Let φ̃ be such that
φ̃(Ω) is a ball. Let λ̃ be an eigenvalue of problem (1.1) or (1.2) in
φ̃(Ω), and let F be the set of j ∈ N such that λj[φ̃] = λ̃. Then ΛF ,s

has a critical point at φ̃ on V(|φ̃(Ω)|), for all s = 1, ..., |F |.

Hence, balls are critical domains for all simple eigenvalues and for
all the symmetric functions of all multiple eigenvalues under
measure constraint.
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An isoperimetric inequality

Can we say more on the critical nature of balls for the Steklov
eigenvalues?

Yes, we have the following

Theorem (Chasman; Buoso, P.)

Among all bounded domains of class C1 with fixed measure, the
ball is the unique maximizer of the first non-negative eigenvalue of
problem (1.1) (Chasman) and of problem (1.2) (Buoso, P.), that is

λ2(Ω) ≤ λ2(Ω∗),

where Ω∗ is a ball with the same measure as Ω
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An isoperimetric inequality

It is natural now to consider the issue of the stability of the
inequality.

First we need a definition of “distance among shapes”.
Let

A(Ω) = inf
{
|Ω4B |
|Ω|

: B ball with |B | = |Ω|
}

be the so-called Fraenkel Asymmetry.

Fraenkel Asymmetry measures the “distance”
in the L1 sense of a generic set from the “fam-
ily” of balls.
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An isoperimetric inequality

We have the following

Theorem (Buoso, Chasman, P., ‘Neumann’; Buoso, P.,
‘Steklov’)

For every domain Ω in RN of class C1 the following estimate holds:

λ2(Ω) ≤ λ2(Ω∗)
(
1 − cNA(Ω)2

)
, (2)

where cN is a suitable constant and Ω∗ is a ball with the same
measure as Ω.

This is the isoperimetric inequality in quantitative form.
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Sharpness of the exponent

Finally we consider the issue: is the isoperimetric inequality (2)
sharp?

This means, is the exponent 2 for the Fraenkel asymmetry optimal?

To do so we shall exhibit a family {Ωε} of sets approaching the unit
ball B such that

A(Ωε) '
|Ωε4B |
|Ωε|

' ε and λ2(B) − λ2(Ωε) ' ε
2 , ε � 1.
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Sharpness of the exponent
We define a family {Ωε} in this way

Ωε =
{
x ∈ RN : |x | < 1 + εψ(x/|x |)

}
,

where ψ ∈ C∞(∂B)

and satisfies
1

∫
∂B ψdσ = 0;

2
∫
∂B(a · x)ψdσ = 0 for all a ∈ RN;

3
∫
∂B(a · x)2ψdσ = 0 for all a ∈ RN.

This family of sets is such thatA(Ωε) ' ε and λ2(B)− λ2(Ωε) ' ε
2,

proving that the exponent 2 is sharp.

B

Ωϵ

B

Ωϵ

B

Ωϵ

17 of 17



Sharpness of the exponent
We define a family {Ωε} in this way

Ωε =
{
x ∈ RN : |x | < 1 + εψ(x/|x |)

}
,

where ψ ∈ C∞(∂B) and satisfies
1

∫
∂B ψdσ = 0;

2
∫
∂B(a · x)ψdσ = 0 for all a ∈ RN;

3
∫
∂B(a · x)2ψdσ = 0 for all a ∈ RN.

This family of sets is such thatA(Ωε) ' ε and λ2(B)− λ2(Ωε) ' ε
2,

proving that the exponent 2 is sharp.

B

Ωϵ

B

Ωϵ

B

Ωϵ

17 of 17



Sharpness of the exponent
We define a family {Ωε} in this way

Ωε =
{
x ∈ RN : |x | < 1 + εψ(x/|x |)

}
,

where ψ ∈ C∞(∂B) and satisfies
1

∫
∂B ψdσ = 0;

2
∫
∂B(a · x)ψdσ = 0 for all a ∈ RN;

3
∫
∂B(a · x)2ψdσ = 0 for all a ∈ RN.

This family of sets is such thatA(Ωε) ' ε and λ2(B)− λ2(Ωε) ' ε
2,

proving that the exponent 2 is sharp.

B

Ωϵ

B

Ωϵ

B

Ωϵ

17 of 17



Sharpness of the exponent
We define a family {Ωε} in this way

Ωε =
{
x ∈ RN : |x | < 1 + εψ(x/|x |)

}
,

where ψ ∈ C∞(∂B) and satisfies
1

∫
∂B ψdσ = 0;

2
∫
∂B(a · x)ψdσ = 0 for all a ∈ RN;

3
∫
∂B(a · x)2ψdσ = 0 for all a ∈ RN.

This family of sets is such thatA(Ωε) ' ε and λ2(B)− λ2(Ωε) ' ε
2,

proving that the exponent 2 is sharp.

B

Ωϵ

B

Ωϵ

B

Ωϵ

17 of 17



Essential bibliography

L. Brasco, G. De Philippis, and B. Ruffini,
Spectral optimization for the Stekloff-Laplacian: the stability issue,
J. Funct. Anal., 262(11):4675–4710, 2012.

L. Brasco and A. Pratelli,
Sharp stability of some spectral inequalities,
Geom. Funct. Anal., 22(1):107–135, 2012.

D. Buoso, L. M. Chasman, and L. Provenzano,
On the stability of some isoperimetric inequalities for the fundamental tones
of free plates,
Preprint, 2015

D. Buoso and L. Provenzano,
A few shape optimization results for a biharmonic Steklov problem,
J. Differential Equations, 259(5):1778–1818, 2015.

L. M. Chasman,
An isoperimetric inequality for the fundamental tones of free plates,
Comm. Math. Phys., 303(2):421–449, 2011.

17 of 17



THANK YOU
17 of 17


	Introduction

