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Riassunto

In questa tesi studiamo la dipendenza degli autovalori di operatori diffe-
renziali alle derivate parziali di tipo ellittico da perturbazioni della densita
di massa su aperti dello spazio euclideo N-dimensionale. In particolare,
proviamo risultati di dipendenza continua e analitica degli autovalori di o-
peratori poliarmonici e li applichiamo ad alcuni problemi di ottimizzazione.
Per provare i risultati di analiticita, adoperiamo una tecnica generale svilup-
pata da P.D. Lamberti e M. Lanza de Cristoforis, ottenendo formule per i
differenziali di Frechét degli autovalori che ci permettono di caratterizzare
le densita critiche sotto il vincolo di massa fissata. Inoltre, enunciamo un
‘principio di massimo’ per la classe di problemi di ottimizzazione conside-
rata. In seguito, prendiamo in esame una famiglia particolare di densita
di massa, ovvero densita che si concentrano al bordo degli aperti dove i
problemi differenziali sono definiti. In questo caso, studiamo il comporta-
mento asintotico degli autovalori e delle autofunzioni dei problemi di Neu-
mann per 'operatore di Laplace e 'operatore biarmonico quando la massa
si concentra al bordo. Proviamo in entrambi i casi, adattando una tecnica
generale sviluppata da J.M. Arrieta, che gli autovalori e le autofunzioni del
problema di Neumann convergono agli autovalori e alle autofunzioni di ap-
propriati problemi limite di tipo Steklov. In particolare, il problema di tipo
Steklov per 'operatore biarmonico cosi formulato viene introdotto per la
prima volta in questa tesi, dove ne vengono poi studiate alcune proprieta.
Nel caso dell’operatore di Laplace, proviamo la validita di un’espansione
asintotica degli autovalori e delle autofunzioni del problema di Neumann
fino al primo ordine ed otteniamo formule esplicite per i primi termini delle
espansioni. Per ottenere questi risultati adattiamo al nostro problema delle
tecniche di analisi asintotica utilizzate da M.E. Pérez e S.A. Nazarov per
lo studio di sistemi vibranti con masse concentrate in punti o lungo certe
curve. Per quanto riguarda il problema di Steklov per 'operatore biarmo-
nico, consideriamo anche il problema della dipendenza degli autovalori dal
dominio. Utilizzando sempre la tecnica generale sviluppata da P.D. Lam-
berti e M. Lanza de Cristoforis, proviamo che le palle sono domini critici
per tutti gli autovalori. Inoltre, adattando l'argomento di F. Brock e R.
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Weinstock per il problema di Steklov per 'operatore di Laplace, riusciamo
a mostrare che la palla massimizza il primo autovalore positivo del pro-
blema di Steklov per I'operatore biarmonico tra tutti gli aperti limitati di
misura fissata. Proviamo infine una versione quantitativa di questa disug-
uaglianza isoperimetrica, mostrando poi che I'’esponente che compare nella
disuguaglianza e ottimale.

La tesi e organizzata come segue. Il Capitolo 1 & dedicato ad alcuni pre-
liminari. Nel Capitolo 2 consideriamo problemi di perturbazione di massa
per operatori differenziali ellittici soggetti a diverse condizioni al bordo o-
mogenee. Proviamo risultati di analiticita per gli autovalori e calcoliamo le
formule per i differenziali di Frechét che poi verranno usate per caratteriz-
zare le densita di massa critiche sotto il vincolo di massa fissata. Quindi
proviamo che per un’ampia famiglia di operatori e condizioni al bordo non
esistono densita di massa critiche sotto il solo vincolo di massa. Succes-
sivamente proviamo che gli autovalori sono debolmente* continui, il che
permette di stabilire una sorta di ‘principio di massimo’ per la classe di
problemi di ottimizzazione considerata nel capitolo. Nel Capitolo 3 conside-
riamo il problema agli autovalori per I'operatore di Laplace con condizioni
al bordo di Neumann e densita di massa che si concentrano al bordo e mos-
triamo che gli autovalori e le autofunzioni convergono agli autovalori e alle
autofunzioni di un opportuno problema di tipo Steklov per 'operatore di
Laplace. 1l risultato e ottenuto provando la convergenza in norma degli
operatori risolventi. Inoltre, studiamo la dipendenza degli autovalori del
problema di Steklov dalla densita di massa e mostriamo che sulla palla la
densita costante & una densita di massa critica per un’opportuna famiglia di
funzioni simmetriche degli autovalori. Nel Capitolo 4 discutiamo il compor-
tamento asintotico degli autovalori del problema di Neumann per I'operatore
di Laplace quando la massa si concentra al bordo. In particolare, nel caso
della palla troviamo una formula esplicita per le derivate degli autovalori del
problema di Neumann nel problema limite e deduciamo che localmente gli
autovalori del problema di Steklov minimizzano gli autovalori del problema
di Neumann. Inoltre, studiamo il comportamento asintotico degli autovalori
del problema di Neumann su aperti limitati del piano e proviamo la validita
di un’espansione asintotica per gli autovalori e le autofunzioni del problema
di Neumann fino al primo ordine. Otteniamo formule esplicite per i primi
termini delle espansioni in termini di soluzioni di opportuni problemi diffe-
renziali ausiliari. Nel Capitolo 5 formuliamo il problema agli autovalori per
I’operatore biarmonico con condizioni di Neumann e di Steklov. Mostriamo
che il problema di Steklov per 'operatore biarmonico puo essere ottenuto a
partire dal problema di Neumann con densita di massa che si concentra al
bordo. In seguito, studiamo la dipendenza degli autovalori del problema di
Steklov da perturbazioni del dominio provando formule di tipo Hadamard,
e caratterizziamo i domini critici. Quindi, proviamo che per i problemi di
Steklov e di Neumann le palle sono critiche. Per quanto riguarda il problema
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di Steklov, in aggiunta, proviamo che la palla massimizza il primo autovalore
positivo tra tutti gli aperti limitati di misura fissata. Infine, all’interno del
Capitolo 6 presentiamo alcuni risultati aggiuntivi su problemi di tipo Neu-
mann. In particolare, studiamo la dipendenza degli autovalori dell’operatore
biarmonico con condizioni di Neumann dal coefficiente di Poisson. Studia-
mo anche il comportamento degli autovalori del problema di Neumann per
I'operatore di Laplace e per 'operatore biarmonico sulla corona quando la
differenza dei due raggi tende a zero.
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Abstract

In this thesis we study the dependence of the eigenvalues of elliptic par-
tial differential operators upon mass density perturbations on open subsets
of the N-dimensional euclidean space. We prove continuity and analytic-
ity results for the eigenvalues of poly-harmonic operators and apply them
to certain optimization problems. In order to prove analyticity, we use a
general technique of P.D. Lamberti and M. Lanza de Cristoforis, and we ob-
tain formulas for the Frechét differentials of the eigenvalues which are used
to characterize critical mass densities under the constraint that the total
mass is preserved. Then we state a sort of ‘maximum principle’ in spectral
optimization problems for elliptic operators subject to mass density pertur-
bations. Moreover, we consider a special class of densities, namely densities
which concentrate near the boundary of open subsets of the N-dimensional
euclidean space. We study the asymptotic behavior of the eigenvalues of
Neumann-type problems for the Laplace and the biharmonic operator. By
adapting a general technique of J.M. Arrieta, we prove that the Neumann
eigenvalues converge to the appropriate limiting Steklov eigenvalues. In this
way, we formulate a genuine Steklov eigenvalue problem for the biharmonic
operator. In the case of the Laplace operator we prove the validity of an
asymptotic expansion of the Neumann eigenvalues and eigenfunctions and
provide formulas for the first terms in the expansions. We adapt to our
case asymptotic analysis techniques used by M.E. Pérez and S.A. Nazarov
to describe vibrating systems with masses concentrated at points or along
curves. Moreover, we consider the problem of domain perturbations for the
biharmonic Steklov problem obtained with this mass concentration proce-
dure and prove that balls are critical domains for all the eigenvalues. Then
we adapt the arguments of F. Brock and R. Weinstock to prove that the
ball is actually a maximizer for the first positive eigenvalue among bounded
domains of given measure. Moreover, we provide a quantitative version of
such an isoperimetric inequality, showing also that it is sharp.

This thesis is organized as follows. Chapter 1 is dedicated to some pre-
liminaries. In Chapter 2 we consider mass density perturbation problems
for general elliptic operators of higher order subject to various homoge-



b'e Abstract

neous boundary conditions. We prove analyticity results for the eigenvalues
and compute the Frechét differentials for the symmetric functions of the
eigenvalues which are used to provide a characterization of critical mass
densities under mass constraint. Then we prove that for a large class of
operators and boundary conditions there are no critical mass densities un-
der the constraint of preservation of the total mass. Moreover, we prove
weak™ continuity of the eigenvalues which allows to state a sort of ‘maxi-
mum principle’ for a class of spectral optimization problems. In Chapter
3 we consider the Neumann eigenvalue problem for the Laplace operator
and mass densities which concentrate at the boundary. We prove that the
Neumann eigenvalues converge to the appropriate limiting Steklov eigenval-
ues by proving strong convergence of the resolvent operators. Moreover, we
consider the problem of mass density perturbations for the Steklov prob-
lem for the Laplace operator and show that in the case of the ball there
exist critical mass densities under the sole constraint of preservation of the
mass. In Chapter 4 we discuss the asymptotic behavior of the Neumann
eigenvalues in the mass concentration phenomenon described in Chapter
3. In particular, in the case of the ball, we prove explicit formulas for the
derivatives of the Neumann eigenvalues at the limiting Steklov problem and
show that the Steklov eigenvalues locally minimize the Neumann eigenval-
ues. Moreover, we study the asymptotic behavior of the eigenvalues and
the eigenfunctions of the Neumann problem in the case of bounded planar
domains. We obtain explicit formulas for the first and second terms of the
corresponding asymptotic expansions in terms of solutions to certain aux-
iliary boundary value problems. In Chapter 5 we introduce the Neumann
eigenvalue problem and formulate the Steklov eigenvalue problem for the
biharmonic operator. We show that the biharmonic Steklov problem which
we introduce can be considered as a limiting Neumann problem for the bi-
harmonic operator in a mass concentration phenomenon. Then we study the
dependence of the symmetric functions of the eigenvalues of both Neumann
and Steklov problems upon domain perturbations providing Hadamard type
formulas, and we give a characterization of critical domains under volume
constraint. Then we show that for Neumann and Steklov problems balls are
critical domains. Regarding the Steklov problem, we also prove that the ball
is a maximizer for the first positive eigenvalue among all bounded open sets
of given measure. Finally, in Chapter 6 we include some additional results
on Neumann-type problems. In particular, we study the dependence of the
Neumann eigenvalues of the biharmonic operator upon the Poisson’s ratio.
Moreover, we study the behavior of the Neumann eigenvalues of the Laplace
and the biharmonic operator on an annulus when the difference between the
two radii goes to zero.



Introduction

Boundary value problems for linear elliptic partial differential equations arise
in several models describing various physical phenomena and have been ex-
tensively studied for a long time. Omne of the most famous problems is
perhaps the Poisson problem for the Laplace operator

{—Au =f, in Q,

(0.0.1)
u =0, on 0f2,

which arises for example in the study of the deformation of a fixed mem-
brane of shape  C R? subject to an exterior force which is represented by
the function f (see e.g., [31], 94 [105] for a detailed discussion and historical
information). Problem is a prototype of second order elliptic prob-
lems. The theory of linear second order elliptic equations is well developed
and is considered nowadays classical.

However, many other phenomena in the applied sciences are modeled
by higher order equations. It was already known at the beginning of the
nineteenth century that the study of the bending of a clamped plate leads
to the analysis of the following fourth order problem

{Azu =f, in Q,

u=3, =0, ondQ,

where 0 C R? represents the midplane of the plate and the function f
represents the applied load. It was then natural to consider more general
equations involving the polyharmonic operators (—A)™, m € N, subject to
different types of homogeneous boundary conditions. It is worth mentioning
the pioneeristic papers of Almansi [6, [7] and the book of Nicolesco [90] on
this subject. These authors were among the first to study the properties
of polyharmonic functions and higher order elliptic equations. Since then
the interest for polyharmonic operators has grown but the theory of higher
order elliptic equations is far less developed than the theory of analogous
second order equations. As is well-known, this is also due to the fact that
for higher order equations a maximum principle does not hold in general.
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A general theory for boundary value problems for linear elliptic operators
of order 2m has been developed by Agmon-Douglis-Nirenberg [2 B [4]. We
also mention the recent book [47] which is devoted to an extensive study of
boundary value problems for polyharmonic operators.

In this thesis we are mainly interested in eigenvalue problems for elliptic
operators of second and higher order depending on a parameter p which
plays the role of a mass density for the underlying physical system. In the
case of the Laplace operator subject to Dirichlet boundary conditions such
problem can be written as

—Au=\pu, inQ
{ U AP (0.0.2)

u =0, on 052,

where p is a measurable positive and bounded function on 2. Here and in
the sequel  is an open subset of RY with sufficiently smooth boundary.
We also consider the eigenvalue problem for the Laplace operator subject to
Neumann boundary conditions

“Au=Apu, inQ
{ U= A, R (0.0.3)

% =0, on 0f2.

As for the biharmonic operator subject to Dirichlet boundary conditions,
the eigenvalue problem reads

2 _ .
{A u = Apu, in €, (0.0.4)

u=3,=0, ondQ.

Also for the biharmonic operator, we consider different types of homogeneous
boundary conditions such as Neumann boundary conditions

A2y = \pu, in €,
%u A, . 2 (005)
s = Gt +divag (D u'y)zo, on 0,
and intermediate boundary conditions
A%y = Npu, inQ,
o7 (0.0.6)
u = B = 07 on 89

As we have said, keeping in mind important problems in linear elasticity
(see e.g., [31]), we shall think of the weight p as a mass density. In fact, for
N = 2 problems ((0.0.2) and (0.0.3) are related to the study of the transverse
vibrations of a thin elastic membrane which has a fixed or a free frame
respectively, and the mass of which is displaced on © C R? with density p.

On the other hand, problems (0.0.4)), (0.0.5) and are related to the

study of the transverse vibrations of an elastic plate with density p which
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is clamped, free, and hinged, respectively. We shall refer to the quantity
Jq pdz as the total mass of the body.

As for higher order operators, we consider the following eigenvalue prob-
lem

(—A)™u = Apu, in €,
gu—0,Vj=0,...,k—1 on0Q, (0.0.7)

Bju=0, Vj=1,...,m—k on 0Q,

where B; are uniquely defined ‘complementing’ boundary operators (we refer
to [88] for details). We observe that when m = 1, k = 1 problem gives
(0.0.2)), while for m = 1,k = 0 we have problem (0.0.3). When m = 2 and
k = 2,1 and 0 we have problems (0.0.4]), (0.0.6) and (0.0.5)), respectively,
for suitable operators B;. Problem ((0.0.7) motivates the study of a more
general class of eigenvalue problems for higher order operators of the form

Z (—1)“"DO‘ (Aa5D5u> = A\pu,

0<]el,[B|<m

subject to homogeneous boundary conditions on an open subset © of RV,
(We remark that the space dimension does not play any relevant role in our
discussion and restriction to the case N = 2 will be done only in Subsection
12).

In this thesis we study the dependence of the solutions of the above men-
tioned problems upon perturbation of the density p, with special attention
for the behavior of the eigenvalues.

We note that there is a vast literature on the dependence of the eigenval-
ues of the Laplace operator subject to Dirichlet and Neumann boundary
conditions upon mass density perturbations.

One of the fundamental problems concerns the study of the qualita-
tive behavior of the eigenvalues when the density is perturbed and the
corresponding results concern continuity, differentiability and analyticity of
the eigenvalues. A related fundamental problem concerns the optimization
(maximization or minimization) of the eigenvalues (or suitable functionals
of the eigenvalues) with respect to the variable p under suitable constraints,
such as fQ pdx = const. We refer to the monographs [14, [31], [46], 59, [66, 92,
95] and to the papers [43, 44, [69] for an introduction to this subject. We
also refer to the recent papers [27, 32], 33| B34} [73] for qualitative results on
mass density perturbations problems and for information on the properties
of maximizers and minimizers of certain functionals of the eigenvalues of
composite membranes.

Another important problem concerns the study of particular classes of
mass distributions p which are of order ¢! in e-neighborhoods of points
or hypersurfaces contained in 2 and of order ¢ in the rest of €2, as € goes
to zero. There is a vast literature concerning vibrating systems containing
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concentrated masses along curves or around certain points. We mention
the extensive monographs [63], 82, [83], [87, O], 97, I01] and the survey paper
[81] for an introduction to the asymptotic analysis techniques for vibrating
systems with concentrated masses. We also refer to the recent papers [49, 50,
511, 52| (53], 541 55, [56], 80] for more information and results on the asymptotics
of the eigenvalues and the eigenfunctions of vibrating systems containing
stiff or heavy regions. We also mention the alternative approach of [9] [10),
11, 64, 65, [96], where the authors consider the asymptotic behavior of the
solutions of elliptic or parabolic equations with terms concentrating at the
boundary. In these cases, the results are obtained by means of functional
analysis techniques and resolvent estimates for elliptic operators. It is also
worth mentioning another approach for singularly perturbed problems based
on potential theory and functional analysis proposed in [35, [79].

In this thesis we face three main problems. First, we study the qualita-
tive behavior of the eigenvalues and, in particular, we prove continuity and
analytiticy results for the dependence of suitable functions of the eigenvalues
of elliptic operators upon mass density perturbations. These results are ap-
plied to certain optimization problems. Second, keeping in mind the above
mentioned optimization problems, we consider some classes of mass densi-
ties concentrating at the boundary or at points, and study the asymptotic
behavior of the eigenelements of elliptic operators under these singular mass
density perturbations. Third, we define a genuine Steklov problem for the
biharmonic operator by means of a family of Neumann-type problems with
mass density concentrating at the boundary, and we study the dependence
of its eigenvalues upon perturbation of €.

Concerning the first type of problems, our study is motivated by well-
known results of Krein [69] and Cox and McLaughlin [32, 33],[34] concerning
the description of optimal mass densities for the eigenvalues of the Dirich-
let Laplacian under the assumption that the total mass is fixed and the
additional condition A < p < B, where A and B are fixed positive con-
stants. Complete solution to this problem for N = 1 was given by Krein
in [69], where explicit formulas for the minimizers and the maximizers of
all the eigenvalues were established. In particular, it turns out that opti-
mal mass densities are bang-bang solutions, i.e., they satisfy the condition
(p—A)(B—p)=0o0n Q. The case N > 1 is discussed in [33], 34] and it is
proved that maximizers and minimizers of the first eigenvalue of the Dirich-
let Laplacian are bang-bang solutions. Moreover, we remark that Friedland
[43] proves that the minimizers of suitable functionals of the eigenvalues are
bang-bang as well.

Here, we prove the continuity of the eigenvalues not only with respect to
the strong topology of L*°(€2), but also with respect to the weak* topol-
ogy, which is more relevant in optimization problems, see Theorem [2.1.5] In
this sense we generalize a result of Cox and McLaughlin [32] [33], 34] for the
Dirichlet Laplacian. Then we address the problem of the analyticity of the
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eigenvalues. We use the general technique developed by Lamberti and Lanza
de Cristoforis in [75] for compact self-adjoint operators in Hilbert spaces and
prove that all simple eigenvalues and the elementary symmetric functions
of multiple eigenvalues are real analytic functions of p, see Theorem [2.2.1]
We remark that in general one cannot exepect to prove analyticity of the
eigenvalues with respect to p. This is due to well-known bifurcation phenom-
ena which prevent multiple eigenvalues from being differentiable functions of
the parameters involved in the equation. In order to avoid such a situation,
in the case of multiple eigenvalues we consider the elementary symmetric
functions of the eigenvalues which have the effect of bypassing the splitting
phenomenon. Then we compute the appropriate formulas for the Frechét
differentials of the symmetric functions of the eigenvalues which are used to
address extremum problems. We remark that the general technique of [75]
has been used to study domain perturbation problems for different types
of operators and boundary conditions, see e.g., [22, 23] [74] [76, [77]. As for
mass density perturbation problems, we mention the paper of Lamberti [73]
where it is considered the problem of the dependence of the eigenvalues of
the Dirichlet Laplacian. In the spirit of [73], here we prove that for a large
class of differential operators and boundary conditions, there are no criti-
cal mass densities under mass constraint, see Theorem Moreover, we
prove a sort of ‘maximum principle’ in optimization problems which can be
stated as follows: if C' is a weakly® compact set of mass densities with pre-
scribed total mass, then ‘all simple eigenvalues and the symmetric functions
of multiple eigenvalues admit point of maximum and minimum in C with
mass constraint and such points of mazximum and minimul belong to 0C",
see Corollaries [2.3.5] and [2.4.] for the precise statement.

The above mentioned maximum principle and the corresponding absence of
critical mass densities has led us to consider a slightly different kind of prob-
lems, where the mass density concentrates at the boundary. In this case,
Steklov-type problems arise. Recall that the classical Steklov eigenvalue
problem for the Laplace operator reads

Au =0, in Q,
(0.0.8)

% = Apu, on 0f),
where p is a measurable positive and bounded function defined on the bound-
ary 0f). This problem has a rather different nature from the eigenvalue
problems mentioned above. In fact, for this problem it is possible to find in
some cases critical mass densities for the symmetric functions of the eigen-
values under the sole mass constraint |, s Ppdo = 0. For example, in the
case of the ball in RY it is possible to prove that the constant density is a
critical point for suitable families of symmetric functions of the eigenvalues,
see Corollary This is not surprising. Indeed, it has been proved by
Hersch, Payne and Schiffer in [61] for N = 2, that the constant density is a
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maximizer for the product of the first two positive eigenvalues (in particular,
it is a maximizer for the first positive eigenvalue). We also refer to the book
of Bandle [14] for more results and further discussions on the dependence
of the eigenvalues of the Steklov Laplacian upon density perturbations on
planar domains.

Moreover, for what concerns the minimization problem, we prove that there
there are no minimizers for the first positive eigenvalue of the Steklov Lapla-
cian under mass density perturbations preserving the total mass, see Theo-
rems [3.3.3] [3.5.10] and [3.3.19]

We refer to [99] for the physical derivation of problem (0.0.8). We also refer
to the recent survey [48] for more information on the Steklov eigenvalues
and to [74] for other related problems.

We note that for N = 2 problem provides the vibration modes
of a free elastic membrane the total mass of which is concentrated at the
boundary with dentisy p. We provide an explanation of this known concen-
tration phenomenon in terms of spectral convergence of operators. Namely,
for any € > 0 we define a suitable ‘mass density’ p. in the whole of {2 which
is of order £~! in a e-neighborhood of the boundary 02, as € goes to zero,
while it is of order € in the rest of Q, and such that [, p.dz = const. Then
we consider the eigenvalues of problem with density p. and show that
such eigenvalues converge to the eigenvalues of problem as € goes to
zero, see Theorem and Corollary This result can be proved
by using the notion of compact convergence for the resolvent operators but
can also be obtained as a consequence of the more general result proved
in [10]. We refer to [9) 10, 11l [64, 65, ©O6] for a general approach to this
kind of problems. Thus the Steklov problem can be considered as a limiting
Neumann problem.

Then we address the problem of describing the asymptotic behavior of
the Neumann eigenvalues in this mass concentration phenomenon. In par-
ticular we show that Neumann eigenvalues are differentiable with respect
to € in a small neighborhood of ¢ = 0 and provide explicit formulas for
their derivatives. First, we consider the case of the unit ball centered at
zero in RY and next the case of smooth bounded domains in R%. In the
case of the ball we prove that the Neumann eigenvalues have a monotone
behavior near their limiting Steklov eigenvalues, and we can conclude that
the Steklov eigenvalues locally minimize the Neumann eigenvalues for £ > 0
small enough, see Theorem [£.1.20] and Corollary [£.1.22] It is interesting to
compare these results with those in [89] where authors consider the Neu-
mann problem on the annulus 1 — ¢ < |z| < 1 and prove that for N = 2 the
first positive eigenvalue is a decreasing function of .

We note that the techniques that we use for the description of the asymp-
totic behavior of the Neumann eigenvalues in the case of the ball in R and
in the case of general open subsets of R? are completely different. In the
case of the unit ball centered at zero we use Bessel functions to recast the
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eigenvalue problem in the form of an equation F'(\, &) = 0 in the unknowns
A,e. Then after some preparatory work it is possible to apply the Implicit
Function Theorem and conclude. We note that, despite the idea of the proof
is rather simple and also used in other contexts (see e.g., [78]) this method
requires lenghty computations, suitable Taylor’s expansions and estimates
on the corresponding remainders, as well as recursive formulas for the cross-
products of Bessel functions and their derivatives. Importantly, we remark
that the multiplicity of the eigenvalues which is often an obstruction in the
application of standard asymptotic analysys, does not affect our method.
On the other hand, in the case of a general open and bounded subset 2 of
R?, we show the validity of an asymptotic expansion of the eigenvalues and
of the eigenfunctions of problem as € goes to zero. In addition we
provide explicit formulas for the first two coefficients in the expansions in
terms of solutions to suitable auxiliary problems, see Theorems and
In order to obtain our results, we follow the approach of [52 53].
The results concerning the asymptotic behavior of Neumann eigenvalues on
general domains in R? have been obtained in collaboration with Dr. Matteo
Dalla Riva (see also [36]).

The results on the behavior of the eigenvalues of the Neumann Laplacian
when the mass concentrates at the boundary motivates the study of an
analogous mass concentration problem for the biharmonic operator subject
to Neumann-type boundary conditions. Namely, we consider the following
Neumann-type problem

A%y — TAu = \p.u, in €, (0.0.9)
% = T% — BaAV“ — divgg (Dzu . 1/) =0, on 09, o

where 7 > 0 is a fixed non-negative constant and represents the ratio of
lateral tension due to flexural rigidity of the plate. Then the eigenvalues of
converge to the eigenvalues of the following Steklov-type problem for
the biharmonic operator

A%y — TAu =0, in Q,
Pu =0, on 0, (0.0.10)

A .
T% — % —divgg (D2u . I/) = Au, on 0f,

see Theorem and Corollary [5.3.12, Thus problem ((0.0.10)) can be con-

sidered as a problem modeling the free vibration modes of a plate the mass
of which is concentrated at the boundary, and therefore is a natural general-
ization to the biharmonic operator of the classical Steklov problem .

Moreover, we address the problem of the dependence of the eigenval-
ues of problem upon domain perturbations. We note that domain
perturbation problems have been widely studied in the case of the Laplace
operator subject to different homogeneous boundary conditions (Dirichlet,
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Neumann, Steklov, etc.), in particular for shape optimization problems. We
recall for instance the Faber-Krahn inequality proved in [41], [68], which says
that the ball minimizes the first eigenvalue of the Dirichlet Laplacian among
all domains with a fixed measure. Similar results have been shown also for
other boundary conditions in [19] [104] [I06]. As for the biharmonic operator
much less is known. The well-known Rayleigh conjecture on the minimiza-
tion of the first eigenvalue of the clamped plate has been solved by Nadi-
rashvili for N =2 in [86] and by Ashbaugh and Benguria for N = 3 in [12],
while the general case remains an open problem (see also [85, [100]). Re-
garding Neumann boundary conditions, Chasman [28] proved that the ball
is a maximizer for the first positive eigenvalue of problem . We refer
to [57, [60] for a general approach to domain perturbation problems and to
[59] for a comprehensive discussion on shape optimization problems for the
eigenvalues of elliptic operators. We also refer to [22] 23] where the authors
prove analiticity properties in the spirit of [75] for Dirichlet and intermediate
boundary conditions respectively, and show that balls are critical domains
for all elementary symmetric functions of the eigenvalues.

In this thesis, first, we prove analyicity results for the symmetric func-
tions of the eigenvalues of problem in the spirit of [75] (see Theorems
[5.4.3|and [5.4.15)) and show that balls are critical domains under volume coin-
straint (see Theorem . Second, we prove that the ball is actually a
maximizer for the first positive eigenvalue of problem among all
bounded open sets of given volume, for any constant 7 > 0, see Theorem
5.5.27, This is done by following the approach of [19, 28, 104]. We have
also considered the problem of the stability of the optimal shape. In fact,
we have provided a quantitative version of the isoperimetric inequality for
the first positive Steklov eigenvalue and of the analogue inequality for the
Neumann problem proved in [28]. Moreover, the two inequalities turn out
to be sharp (see Theorems [5.6.22| and |5.6.59). The results concerning prob-
lem have been obtained in collaboration with Dr. Davide Buoso
(see also [24] 25]). The results concerning the sharpness of the isoperimetric
inequalities have been obtained in collaboration with Dr. Davide Buoso and
Dr. Laura M. Chasman (see also [21]).

Note that problem should not be confused with another impor-
tant Steklov-type problem already discussed in the literature, namely

A%y =0, in Q,
u =0, on 0%, (0.0.11)
Ay = )\%, on 01},

which has a rather different nature. In fact, for the first positive eigenvalue
of problem the minimization is an interesting open problem (rather
than maximization), and explicit examples show that, surprisingly, the ball
is not a minimizer.
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At the end of this thesis we include some further results on Neumann-
type problems. In particular, we consider the behavior of the eigenvalues of
the biharmonic operator with Neumann boundary condition and non-zero
Poisson’s ratio o, namely

A%y = \u, in Q,
(1- U)% +oAu =0, on 052, (0.0.12)
88%,“ + (1 = o)divpq (D*u-v),, =0, on 09,

o0

where o € [0, 1[. We refer to [39], where the author studies the behavior of
the eigenvalues of the biharmonic operator on planar domains upon pertur-
bations of the Poisson’s ratio . We prove that all the eigenvalues of problem
(0.0.12) go to zero as ¢ — 1. Moreover, we show that problem
with ¢ = 1 admits an increasing sequence of positive eigenvalues of finite
multiplicity diverging to +o0 and which coincide with the eigenvalues of the
Dirichlet problem for the biharmonic operator.

Moreover, we consider the eigenvalue problem for the Laplace and bihar-
monic operator with Neumann boundary conditions on an annulus of radii
1 and 1 — ¢, with & €] — 00,0[U]0, 1[. In particular, we are interested in the
behavior of all the eigenvalues as € — 0. We mention the paper [89] where
the authors consider the first positive eigenvalue of the Laplace operator
with Neumann boundary conditions in the case N = 2, and prove that such
eigenvalue is continuously differentiable with respect to ¢ in a suitable inter-
val of R containing 0, and moreover, that it is an increasing function of ¢.
We prove an analogous result for all the Neumann eigenvalues of the Laplace
and biharmonic operator for all N > 2. Namely, we provide an asymptotic
expansion of all the Neumann eigenvalues at ¢ = 0. As a bypass product,
we prove that all the positive eigenvalues are strictly increasing with respect
to € in a suitable neighborhood of 0.

The thesis is organized as follows. Chapter 1 is dedicated to some pre-
liminaries. In Chapter 2 we consider mass density perturbation problems
for general elliptic operators of higher order subject to various homogeneous
boundary conditions. For all these cases we prove analyticity results for
the eigenvalues in the spirit of [75] and compute the Frechét differentials
for the symmetric functions of the eigenvalues which are used to provide
a characterization of critical mass densities under mass constraint. Then
we prove that for a large class of operators and boundary conditions there
are no critical mass densities under the sole mass constraint. Moreover, we
prove weak™® continuity of the eigenvalues which combined with the results
of non-existence of critical points for the eigenvalues, allow to state a sort
of ‘maximum principle’ for a class of optimization problems. In Chapter 3
we consider the Neumann eigenvalue problem for the Laplace operator and
mass densities which concentrate at the boundary. We prove that the Neu-
mann eigenvalues converge to the appropriate limiting Steklov eigenvalues
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by means of strong convergence of the resolvent operators. Moreover, we
consider the problem of mass density perturbations for the Steklov problem
for the Laplace operator and show that this problem has a rather different
nature than that of the problems considered in Chapter 2. In fact we show
that in the case of the open unit ball there exist critical mass densities un-
der the sole mass constraint. Moreover, in this chapter we consider other
examples of mass concentrations for the Steklov and Dirichlet Laplacian. In
Chapter 4 we discuss the asymptotic behavior of the Neumann eigenvalues
in the mass concentration phenomenon described in Chapter 3. In particu-
lar, in the case of the ball, we prove explicit formulas for the derivatives of
the Neumann eigenvalues at the limiting Steklov problem and show that the
Steklov eigenvalue locally minimize the Neumann eigenvalues. Moreover,
we study the asymptotic behavior of the eigenvalues and eigenfunctions of
the Neumann problem in the case of bounded planar domains. We obtain
explicit formulas for the first and second terms of the corresponding asymp-
totic expansions in terms of solutions to certain auxiliary boundary value
problems, in the spirit of [62] 53]. In Chapter 5 we consider the biharmonic
Neumann eigenvalue problem as described in [28] and problem (0.0.10). We
show that problem can be considered as a limiting Neumann prob-
lem for the biharmonic operator in a mass concentration phenomenon. Then
we study the dependence of the symmetric functions of the eigenvalues of
both Neumann and Steklov problems upon domain perturbations and pro-
vide Hadamard type formulas, which allow to give a characterization of crit-
ical domains under volume constraint. Then we show that for Neumann and
Steklov problems balls are critical domains. Regarding the Steklov problem
(10.0.10]), we also prove that the ball is a maximizer of the first positive eigen-
value among all bounded open sets of given measure. Finally, in Chapter
6 we collect some results on the Neumann eigenvalues of the Laplace and
the biharmonic operators. In particular, we study the dependence of the
Neumann eigenvalues of the biharmonic operator upon the Poisson’s ratio
o, with particular attention to the behavior of the eigenvalues as o — 1.
Moreover, we study the asymptotic behavior of the Neumann eigenvalues
both of the Laplace and the biharmonic operators on an annulus when the
difference between the two radii goes to zero.

Part of the results in this thesis have been published or accepted for
publication. The results in Chapter 2 on the dependence of the eigenvalues
of general elliptic operators of higher order on the mass density and the
corresponding ‘maximum principle’ have been published in [70]. The results
in Chapter 3 on the Steklov eigenvalues as limiting Neumann eigenvalues
have been partially published in [72]. The results in the first section of
Chapter 4 on the asymptotic behavior of the Neumann eigenvalues on the
ball are part of the paper [71], which has been accepted for publication.
The results in the second section of Chapter 4 on the asymptotic behavior



xxi

of the Neumann eigenvalues on planar domains are part of the paper [36] in
preparation. The results on the fourth order Steklov problem in Chapter 5
have been published in [24], 25]. The results on the quantitative isoperimetric
inequality for the Neumann problem and the sharpness of the Neumann and
Steklov inequalities are part of the paper [21] in preparation. The results in
the first section of Chapter 6 are part of the paper [93] in preparation.
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List of principal symbols

Np
f(fl)

L

B,0B

wN

do

%y
vk

lal, al, D
Df

D*f
divgoF

f(2) € O(g(2))

asz — 0

(natural numbers)
(natural numbers including 0)
(inverse function of an invertible function f)

(reciprocal of a real non-zero number and of a
non-vanishing function)

(open unit ball in RY and unit sphere in RV,
centered at zero)

(Lebesgue measure of the unit ball)
(outer unit normal to a smooth subset of RY)

(surface measure)

(normal k-th derivative of )
(multi-index notation)
(Jacobian matrix of f)
(Hessian matrix of f)

(tangential divergence of F' defined by
divooF = divF|,, — (DF -v) -v)

(there exists C' > 0 such that |f(z)| < Clg(2)]
for any z sufficiently close to zero)

(standard spherical coordinates in RY, see (A))

(Laplace-Beltrami operator on the unit sphere
OB of RV see (B))
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(A) Standard spherical coordinates (r,6) in RY, where 6 = (61,...0n_1).
The corresponding change of variables is

x1 = rcos(bh),
xg = rsin(fy) cos(hs),

xn—1 = rsin(f1)sin(fy)---sin(Oy_2)cos(On_1),
xy = rsin(fy)sin(fy) - --sin(@y—2)sin(fny-1),

with 61,...,0n—2 € [0,7], On—1 € [0,27[ (here it is understood that
0, € [0,2n[ it N = 2).

(B) Laplace-Beltrami operator on the unit sphere B in RY, defined by

A= S L O (i O
Sij=1 qj(sin 0;)N =71 06); ’ 96;)

q =1 ¢ = (sinfsinby-- -singjfl)z, ji=2,...,N—1,

(see e.g., [67]).



Contents

[Riassuntol v
[Abstract] ix
Introduction] xi
|[List of principal symbols| xxiii
I Prolm - ] ol 1
[I.1 Sobolev Spaces| . . . . . . ... oo 1
[1.2  Compact operators and symmetric functions ot the eigenvalues| 5
[1.3  FEigenvalues of elliptic operators| . . . . . . .. ... ... ... 8
[1.4  Bessel functions, modified Bessel functions and ultraspherical |

[ Bessel functionsl . . . . . . . . ... o o 10
41 Besselfunctiond. . . ... ... ... ... ... .... 10

[1.4.2 Modified Bessel function|. . . . . . ... ... ... .. 13

[1.4.3  Ultraspherical Bessel and modified Bessel functions|. . 14

[1.4.4  Spherical harmonics| . . . . . . .. ... 16

|2 Elliptic operators subject to mass density perturbations and |

|  maximum principles| 19
[2.1  Continuity of the eigenvalues| . . . . .. ... ... ...... 20
[2.2  Analyticity of the eigenvalues| . . . . . . .. ... ... ... . 22
2.3 Maximum principle|. . . . . . ..o o oo 25
[2.4  Poly-harmonic operators| . . . . . . ... ... ... ...... 27
[2.5  The Laplace operator with Neumann boundary conditions| . . 29

13 Mass concentration phenomena for second order operators| 33

3.1  Neumann to Steklov eigenvalues] . . . . ... ... ... ... 34
13.2  'The Steklov eigenvalue problem. Mass density perturbations] 49
[3.2.1  Continuity and analyticity of the eigenvalues| . . . . . 49
[3.2.2 Critical mass densities . . . .. ... .. ... ... .. 50
[3.3  Minimization of the first positive Steklov eigenvalue| . . . . . 52




XXVl Contents

13.3.2 The case of the ball in RY with N >3[. . ... .. .. 56

[3.3.3 The case of an arbitrary Q CR? . . . . ... ... .. 59

[3.4  On the optimization of the first positive Dirichlet and Neu- |

| mann eigenvalues| . . . . . .. ..o oL 62
[3.4.1  Optimization of the first Dirichlet eigenvalue] . . . . . 63

[3.4.2  Minimization of the first positive Neumann eigenvalue| 69

4 Neumann and Steklov problems: an asymptotic analysis| 73
41 The case of theballin RM . . . . ... ... ... ... . ... 74
[4.1.1  Asymptotic behavior of Neumann eigenvalues| . . . . . 75

4.1.2 Fstimates for the remaindersl . . . ... ... ... .. 84

413 Thecase N =1. . ... .. . .. ... ... ...... 86

|4.1.4 Behavior of the eigenvalues under dilations] . . . . . . 89

|4.1.5  Cross products of Bessel functions| . . . . .. ... .. 90

4.2 Bounded domains of class C* in R . . . . . . ... ...... 93

|4.2.1 Asymptotic expansions and derivatives of the eigen- |

values| . . . . .. 98

|4.2.2  First step of the proot of Theorems [4.2.10[ and |4.2.14 . 99
|4.2.3  Second Step of the proof of Theorems |4.2.10] and |4.2.14]107

4.2.4  Well-posedness of problem (4.2.31) . . . ... ... .. 120
. . 2

4.2.5 _The case of the unit ballin R4 . . ... ... ..... 122

|4.2.6  Heuristic determination of the expansions| . . . . . . . 123

B

Mass concentration phenomena for fourth order operators.

| A new biharmonic Steklov problem| 129
5.1 Formulating the problem|. . . . . . . ... .. ... ... ... 130
5.2 'The Steklov spectrum| . . . . . . ... .. ... ... ..... 133
5.3 Neumann problem and behavior of Neumann eigenvalues un- |

| der mass concentration at the boundary| . . . . . . ... ... 135
[5.4  Symmetric functions of the eigenvalues. Isovolumetric per- |

| turbations| . . . . . ... .o 140

[5.4.1  The Steklov problem| . . . . . . ... ... ... ... 141

[5.4.2  Isovolumetric perturbatons| . . .. ... ... ... .. 151

[5.4.3  The Neumann problem| . . . ... ... ... ... .. 154

[5.5  'The fundamental tone of the ball. An isoperimetric inequality| 156
[5.5.1  Kigenvalues and eigenfunctions on the ballf. . . . . . . 157

[5.5.2  The isoperimetric inequality]. . . . . . . . .. ... .. 163

2.5.3  Some remarksonthecase7 =0 . ........... 165

5.6 Neumann isoperimetric inequality in quantitative form. Sharp- |

| ness of Neumann and Steklov inequalities| . . . . . . . . . .. 171
[5.6.1  Quantitative isoperimetric inequality for the Neumann |

| problem| . . . . ... oo 173
[5.6.2  Sharpness ot the Neumann inequality] . . .. ... .. 177

[5.6.3  Sharpness ot the Steklov inequality] . . . . . . .. . .. 187




xXxVvii

|6 A few properties of the eigenvalues of Neumann-type prob-

[ Tems| 191
6.1 Neumann eigenvalues ot the biharmonic operatorf . . . . . . . 191
6.1.1  FEigenvalues of Neumann and Dirichlet problems| . . . 193

[6.1.2  Dependence of the Neumann eigenvalues upon the Pois- |

| son’sratiol . . . ... 197
16.1.3 Neumann and Dirichlet eigenvalues in the case ot the |

| unit balll . . . . . . .. o 199
6.2 Neumann eigenvalues on annulif . . . . . . ... .. ... ... 202
[6.2.1  Eigenvalues of the Laplace operator on the annulus of |

[ R . 203
16.2.2  Eigenvalues of the Laplace operator on the annulus of |

I RM . 209
[6.2.3  Figenvalues ot the biharmonic operator on the annulus |

I of RM o 211
6.2.4  Symbolic computations for the eigenvalues ot the bi- |

| harmonic operator on the annulus of R?| . . . . . . . . 213
|Bibliography| 215

|IRingraziamenti| 225




xxviil Contents



Chapter 1

Preliminaries and notation

In this chapter we set the notation and introduce certain preliminary results
which will be used in the sequel.

1.1 Sobolev Spaces

Let N € N. In the sequel we shall always consider N > 2 unless otherwise
indicated. For any set V in RV and p > 0 we denote by V, the set {x € V :
d(x,0Q) > p}. Here d(z,V) denotes the Euclidean distance from z to the
set V. Moreover, by a cuboid we mean any roto-translation of a rectangular
parallelepiped in RY.

Definition 1.1.1. Let p > 0, s,s' € N, ' < s and {V;}i_; be a family of
bounded open cuboids and {rj}jzl be a family of isometries in RY. We say
that A = (p,s,s’,{‘/}};’f:l,{rj}izl) is an atlas in RN with the parameters
py s, 8" AVt {rjtizy, briefly an atlas in RY. We denote by C(A) the
family of all open sets Q in RN satisfying the following properties:

(1) 2 C ,Ul(Vj)p and (Vj), N # 0;

J:
(ii) ViNOQ#D for j=1,...8, V;NOQ =0 for s < j<s;
(iii) for j =1,...,8
T’j(‘/}) = {:L’ e RV : aij < x; < bij, 1= 1,....,N}

and

ri(QNV;) ={z e RN : an; < 2y < g;(z), T € W;},

where T = (z1,...,an-1), W; ={Z € RN-1 . a;j <x; <bjj,i=1,...,N—-1}
and g;j is a continuous function defined on W; (it is meant that if ' < j <s
then g;(z) = by for all T € W;); moreover for j =1,...,s

anj +p < gj(7) < bnj — p,
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for allz € W,.

We say that an open set Q in RY is an open set with a continuous
boundary if Q is of class C(A) for some atlas A.

Let m € N,M > 0. We say that an open set § is of class Cy(A) if Q is

of class C(A) and all the functions g; in (iii) are of class C™(W ;) with

\gj|cm(Wj) = Z ||DangL°°(Wj) < M.

1<]al<m

We say that an open set Q in RN is an open set of class C™ if Q is of
class C}(A) for some atlas A, m € N and M > 0.

Let N,m € N, 1 < p < 0o and Q be an open set in RY. Let C>(Q) be
the space of those functions in C*°(2) which are compactly supported in .
We recall the following definitions.

Definition 1.1.2. The Sobolev Space W™P(Q) consists of all (real valued)
functions u in LP(Q)) with weak derivatives D*u in LP () for all |a| < m.

We consider the space WP (1) endowed with the norm defined by

HUHWm,p(Q) = Z ”DaUHLp(Q)» if p # oo,

laf<m

lllyymooy = Y 1Dl gy -

laj<m

We recall the definition of W;™"(€2).

Definition 1.1.3. Let 1 < p < co. We denote by Wy (Q) the closure of
C(92) in W™P(Q).

For p = 2, we write H™(Q2) = W™2(Q), H'(Q) = Wan’Q(Q). We recall
the following results on the approximation of functions in W"™P(€2).

Theorem 1.1.4. (Global approximation by smooth functions). Let £ be an
open set in RN. Let u € W™P(Q) for some 1 < p < oo. Then there exists
a sequence {uytreny C C°(Q) N W™P(Q) converging to u in WP (Q).

Theorem 1.1.5. (Global approximation by smooth functions up to the
boundary). Let Q be a bounded open set in RN of class C1. Letu € Wmp(Q)

for some 1 < p < oo. Then there exists a sequence {ug}ren C C°°(R)
converging to w in W™P(Q).

As a consequence of Theorem we have the following

Definition 1.1.6. Let Q be an open set in RN, 1 < p < oo, u € LP(Q). Then
u € WHP(Q) if and only if u coincides almost everywhere with a function i
such that for almost all lines | parallel to the coordinate axis, uy, is locally
ou ou

Borr o Bax which exist

absolutely continuous, and the classic derivatives
almost everywhere, belong to LP(S2).



Under suitable regularity assumptions on the open set €2 it makes sense
to define the trace of a function u € WP () on 0f).

Theorem 1.1.7. (Trace). Let Q2 be a bounded open set in RN of class C*.
Then there exists a bounded linear operator Tr from WP (Q) to LP(9S2) such
that:

i) Tr[u] = Uj,, if u € WhP(Q) N C(Q);

i) || Tr[u)l 1o o0y < Cllullyieq), Yu € WLP(Q), the constant C depending
only on p and 2.

Theorem 1.1.8. Let Q be a bounded open set in RN of class C*. Then
u € Wol’p(Q) if and only in Trlu] = 0.

The next results concern the embeddings of Sobolev Spaces.

Theorem 1.1.9. (Gagliardo-Nirenberg-Sobolev inequality). Forl <p < N
let the Sobolev exponent p* be defined by p* := NN—Z). Then there exists C > 0,
depending only on p and N, such that

[l o vy < C VUl Loy
for all w € W1P(RY).

Lemma 1.1.10. (Poincaré inequality). Let Q be an open set in RY of finite
measure, 1 < p < oo. Then there exists C' > 0, depending only on p, N and
Q such that

||UHLP(Q) <C ||vu||LP(Q) )
for all u € WyP(Q).

Theorem 1.1.11. (Rellich-Kondrakhov). Let © be a bounded open set in
RN of class C', 1 < p < N. Then WHP(Q) is compactly embedded into
Li(Q) for all1 < q < p*. If p > N, then WH'P(Q) is compactly embedded
into LY(Q) for all ¢ > 1.

Corollary 1.1.12. If Q is an open set of finite measure, then for all 1 <
p < 00, Wol’p(Q) is compactly embedded into LP(Y). If 2 is a bounded open
set of class C, then for all 1 < p < oo, W'P(Q) is compactly embedded into
LP(Q).

Theorem 1.1.13. (Poincaré-Wirtinger inequality). Let © be a bounded
open set in RN of class C', 1 < p < oco. Then there exists C > 0, depending
only on p, N and ) such that

lu = (WallLr@) < ClIVUllLr()
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From Theorem [1.1.11]it follows that the trace operator is compact.

Theorem 1.1.14. (Compact trace). Let Q be an open bounded set in RY
of class C1, 1 < p < co. Then the trace operator Tr : WLHP(Q) — LP(09) is
compact.

Remark 1.1.15. We observe that Theorem|1.1.11] and Theorem hold
even under lower regularity assumptions on the boundary. In fact Theorem

1.1.11 holds e.g., for Q of class C%' (see [88, Theorem 6.1]).

For all the proofs of the results contained in this subsection we refer to
[26].



1.2 Compact operators and symmetric functions
of the eigenvalues

In this section we recall some results from [75] which will be used in the
sequel. For all the proofs of the results contained in this subsection we refer
o [75].

Let X,), Z be real Banach spaces. Let £(X,)) be the Banach space of
bounded linear maps from X to ) endowed with the usual norm ||A|[ 7y 3 =
SUp|g| =1 [[Az[|y. Let B(X x Y, Z) be the space of bilinear continuous maps
from X x Y to Z, endowed with the usual norm of the uniform convergence
on the product of the unit ball of X and the one of Y. Let (H,< -,- >) be
a real Hilbert space, and ||-|| be the norm associated with a scalar product
< -,- > of H. We denote by Hg the vector space H endowed with the
scalar product @ = Q(-,-), and by |[|-[| the associated norm. We denote
by K(H, H) the subspace of L(H, H) of compact operators, which is closed
in L(H,H). We denote by Ks(Hg, Hg) the closed subspace of K(Hg, Hg)
of those T' such that Q(Tu,u) = Q(u,Tu) for all u,v € Hg. Let T be a
compact self-adjoint operator on H, and o(7T’) be the spectrum of 7', which
is well-known to be a finite or countable subset of R. The elements of
o(T) \ {0} are the eigenvalues of T', and 0 is the only possible accumula-
tion point for o(T"). For the characterization of the spectrum of a compact
self-adjoint operator we refer to [I8]. We denote by j*(7') the number of
positive eigenvalues of T', each counted according to its multiplicity, and by
j~(T") the number of negative eigenvalues of T', each counted according to
its multiplicity. Following [75] we set

JHT):={jeZ:1<j<j7(D)}
JT(T)={jeZ:—j(I)<j< -1}

Then there exists a unique function j — p;(T") of J(T) := JH(T) U J(T)
to R, which is decreasing on J~(T') and on J*(T), with

o(T) N0} = {wy(T) : j € J(D)},

and such that each eigenvalue is repeated according to its multiplicity. We
set

Bs(H? R) :={B € B(H*,R) : B(ui,us) = B(ug,u;) for all uy,us € H},
which is a closed subspace of B(H? ,R), and
Q(H?*R) := {B € Bs(H* R) : n[B] > 0},

where
B(u,u)

2
[l

n|B] ::inf{ uEH\{O}}.
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Note that the set Q(H) is the set of those scalar products on H which are
coercive with respect to the fixed scalar product < -,- >. We observe that
Q € Bs(H?,R) is a coercive scalar product if and only if the embedding of
Hg in H is a homeomorphism. Now we set

M :={(Q,T) € Bs(H*,R) x K(H,H) :
Q(Tu,v) = Q(u,Tv) for all u,v € H}.
The set M is closed in Bs(H?,R) x K(H, H). Moreover, we set
O:= MnN(QH?*R) x K(H, H))
={(Q.T) € QH*,R) x K(H,H) : T € Ks(Hq. Hq)}-
The set O is open in M. We have the following theorem (see [79]).

Theorem 1.2.1. Let H be a real Hilbert space, j € Z \ {0}. Then the set
A= {(@T) €0 jeT)

is open in M, and the function p;[-] which takes (Q,T) € A; to p;[T] is
CONtINUOUS.

We consider a fixed finite subset F' of Z \ {0}, and set
AlF]:={(@Q,T) € O : je J(T)Vj e F, m[T] & {y;[T] : j € F}
Vi e J(T)\ FY.

By Theorem it follows that A[F] is open in M and f;[-] are continuous
on A[F]. We consider the orthogonal projection Pr[Q,T] of Hg on the
subsapce E[T, F| generated by

{ue Hy : Tu=pu, I pe{pT) : je F}}.
We have the following lemma.

Lemma 1.2.2. Let H be a real Hilbert space and F be a finite subset of
Z\{0}. Then E[T, F] has dimension equal to the cardinality of F, and it is
an invariant subspace of H for T.

We recall the following result (see [66]).

Theorem 1.2.3. Let H be a real Hilbert space, F' be a finite subset of Z\{0}.
Then the map Pp which takes (Q,T) € A[F] to Pr|Q,T) € L(H,H) is
continuous.

The projection Pr[Q,T] depends analytically on (@, T), in the sense of
the following theorem.



Theorem 1.2.4. Let H be a real Hilbert space, F' be a finite non-empty
subset of Z\{0} and (Q,T) € A[F]. Then there exists an open neighbourhood
w of (Q,T) in Q(H? R) x L(H, H), and a real analytic operator Pﬁﬂ ofw
to L(H,H) such that PL[Q,T] = Pr[Q,T) for all (Q,T) € WnN A[F].

It is possible to choose a orthonormal basis of E[T, F| which depends
analitically on (@, T), as stated in the following lemma (see [75]).

Lemma 1.2.5. Let H be a real Hilbert space, F be a finite subset of Z\ {0}
and (Q,T) € A[F]. Let {i; : j € F} be an othonormal basis for E[T,F] in
Hp. Then there exists an open neighbourhood Wy of (Q,T) in Q(H? R) x

E(H, H) which is contained in the neighbourhood W of Theoremm , and
|F| real analytic operators u;[-,-], j € F, of Wy to H such that:

i) {u;[Q,T] : j € F} is an orthonormal set in Hg, for all (Q,T) € Wy,

ii) {u;[Q,T] : j € F'} is an orthonormal basis for the range of P}ﬁ,[Q,T},
which coincide with E[T,F], in Hg, for all (Q,T) € Wy N A[F],

iii) u;[Q,T) = @ for all j € F.
We need also the following lemma.

Lemma 1.2.6. Let H be a real Hilbert space, F' be a finite subset of Z\ {0}
and (Q,T) € A[F]. Let {1, -, u[p|} be an orthonormal basis of E[T,F] in

Hp, and {u;[Q,T] : j =1,...,|F|} as in the previous lemma and S the map
of Wy to the set Mip|(R) of |F'| x |F| matrices with real coefficients, defined
by

S(Q,T) = (SuklQ, TDhp=1,... |7 = (Q(Tug|Q, T], un[Q, T1)) b g=1,...|7| »

forall (Q,T) € Wy. Then S[-, ] is real analytic and S[Q, T] is symmetric for
all (Q,T) € Wo N A[F]. Moreover, if (Q,T) € Wo N A[F], then {1;[T]};er
are the eigenvalues of S[Q,T) repeated according to their multiplicity. Fi-
nally, if we assume that ,uj[f] assume a common value fi; for all j € F,
then the differential of S[-,-] in (Q,T) is given by the formula

dS[Q. T)(Q. T)

T
( Tuk,uh> T (O,T) € Bs(H2,R) x L(H,H).

Finally, as a consequence of Theorem Lemma and Lemma
we have the following theorem.

Theorem 1.2.7. Let H be a real Hilbert space and F be a finite non-empty
subset of Z\ {0}. Let

MF,S[T] = Z le[T] T :ujs[T]v Vse{l,...,[F|},

J1rends€F
11<-<Js
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for all (Q,T) € A[F], be the elementary symmetric functions of the eigen-
values p;[T] with indezes j € F. Let (Q,T) € A[F]. Then there exists an

open neighbourhood W of (Q,T) in Q(H?,R) x L(H,H), and real analytic
functions Mg,s[-, |, for s =1,...,|F|, of W in R such that

M, [Q.T) = Mp,[T],

for all (Q,T) € WNA[F), and for all s = 1, ..., |F|. If we further assume that
there exists fi € R such that ji = p;[T] for all j € F, and if {a1, ..., Up} is
an orthonormal basis for E[T, F]in HQ, then the partial derivative of Mfys
with respect to the variable T at (Q,T) is given by the formula

£ 1A T [Pl -1 1 G ;
dTMRs[Q? ](T) = < s—1 >las_ ZQ(T&laﬂl)7
=1

for all T € Ks(Hp, Hp), and for all s =1,.., |F|.

1.3 Eigenvalues of elliptic operators

Let Q be an open set in RV, m € N and V() be a closed subspace of
H™(Q) containing H{(2) and such that the embedding V(Q) C L?(9) is
compact. We shall assume that A,3 € L*(Q2) are fixed coeflicients such
that Aas = Aga for all a, 8 € NYY, with |af,[8] < m. Let p € L°(Q) be
such that essinfqp > 0. We consider the following eigenvalue problem

/ Z Ao D uDP pdx = )\/ pupdzr, Yo e V(Q), (1.3.1)
 0<lal|8|<m “

in the unknowns u € V() (the eigenfunction) and A € R (the eigenvalue).
It is convenient to denote the left-hand side of equation by Qlu, ¢].
It is also convenient to denote by L%(Q) the space L%(Q) endowed with the
scalar product defined by

< up,ug >pi= / puiuadr, Yuq,us € L2(Q).
Q

Note that the corresponding norm ||ul| r2(0) s equivalent to the standard
norm. We assume that the space V(Q2) and the coefficients A,z are such
that Garding’s inequality holds, i.e., we assume that there exist a,b > 0
such that

allul|Fmqy < Qlu,u] + bl|ull72 (g, (1.3.2)
for all w € V(). In many cases it will be convenient to normalize the
constants a, b in such a way that

al[ulfm gy < Qluuu] + bllul23 0, (1.3.3)



For classical conditions on the coefficients A,z ensuring the validity of ((1.3.2))
in the case V() = Hy*(Q2) we refer to [2, Theorem 7.6]. Moreover, we
assume that there exists ¢ > 0 such that

Qlu, u] < C”“H%}m(ny (1.3.4)

for all uw € V(€). Note that since the coefficients A, are bounded, inequality

(1.3.4) is always satisfied.
Under assumptions (1.3.3)), (1.3.4)), it is possible to prove that problem
(1.3.1) has a divergent sequence of eigenvalues bounded from below by —b.

For the sake of completeness, we recall here the standard procedure to recast
problem into an eigenvalue problem for a compact and self-adjoint
operator on a Hilbert space. We consider the bounded linear operator L
from V(Q) to its dual V()" which takes any u € V() to the functional L[u]
defined by L[u][g] := Qlu, ¢], for all ¢ € V(). Moreover, we consider the
bounded linear operator I, from Lg(ﬂ) to V(Q)" which takes any u € L%(Q)
to the functional I,[u] defined by I,[u][p] =< u,¢ >,, for all ¢ € V().
By inequalities , and by the boundedness of the coefficients
Aqp, it follows that the quadratic form defined by the right-hand side of
induces in V() a norm equivalent to the standard norm of H™(€2).
Hence by the Riesz Theorem, it follows that the operator L + bl is a linear
homeomorphism from V(Q) onto V(£2)’, where b is as in (1.3.3). Thus,
equation is equivalent to the equation

(L + pr>(_1) o Ip[u] = pu

where
p=(A+0)"" (1.3.5)
Thus, it is natural to consider the operator T}, from L%(Q) to itself defined
by
T,:=io(L+bl)Vol, (1.3.6)
where i is the embedding of V() into L2(Q). In the sequel, we shall omit
i and we shall simply write T, = (L + bI,)(=") o I,. Note that

< Tpuy, ug >p= L[us][(L + bI,)"Y o I,[uy]]
— (L4 B +B1,) Y o Lfur]J[(Z + 5I,) Y o I fus]),

for all uy,ug € L?)(Q). Thus, since the operator L+-bl, is symmetric it follows
that T}, is a self-adjoint operator in L?)(Q). Moreover, if the embedding
V() C L*(Q) is compact then the operator T, is compact. By inequality
, T, is injective. It follows that the spectrum of T}, is discrete and
consists of a sequence of positive eigenvalues of finite multiplicity converging
to zero. Then by and standard spectral theory, we easily deduce the
validity of the following theorem.
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Theorem 1.3.7. Let p € L>®(Q2) be such that essinfqp > 0. Assume that
inequalities (1.3.5) and (1.3.4) are satisfied for some a,b,c > 0. Then the
eigenvalues of equation have finite multiplicity and can be represented
by means of a divergent sequence A\;, j € N as follows

Aj = min max fQ Z|CV|:|5|§m AaﬂDaUDBudx
;=

ECV(Q) uek pu2dx
dim E=j u#0 fQ

(1.3.8)

Each eigenvalue is repeated according to its multiplicity and

a
Aj > —b+ —
||PHL°°(Q)

for all j € N. Moreover, the sequence j1; = (b+ )\j)_l, j € N, represents all
eigenvalues of the compact self-adjoint operator T),.

1.4 Bessel functions, modified Bessel functions and
ultraspherical Bessel functions

In this section we recall some facts from the theory of Bessel functions and
of spherical harmonics, which will be used in the sequel. For all the proofs
of the results concerning the Bessel functions contained in this section and
for more information on Bessel functions we refer to [I]. For all the proofs
of the results concerning the spherical harmonics and for an introduction to
the theory of spherical harmonics we refer to [42].

1.4.1 Bessel functions
Consider the (complex) Bessel equation

d? d
zzd—;}—i-zd—f—i-(zz—uz)wzo, z € C, (1.4.1)
where v € C. As is well-known the solutions of this equation are given by
the Bessel functions of the first kind J1,(z) and of the second kind Y, (z).
Such functions are holomorphic in the variable z € C\ R_. Functions J,(z2)
and J_,(z) are linearly independent except when v is an integer. J,(z) and
Y, (z) are linearly independent for all v. We recall some useful relations:
Y,(2) = Ju(2) cos'(mr) - J,,,(z)7 (14.2)
sin(7v)
Jon(z) = (=1)"Ju(2),
You(z) = (=1)"Ya(2),

where in the last two equations n € N. Note that if v = 0 or if v is an
integer, the right-hand side of the first equation is replaced by its limiting
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value.
We recall some useful recurrence relations between solutions of (1.4.1f):

Crmt(2) +Con() = 2C(),
Cor(z) = Cona(s) = 2)(2),
CY(z) = Comi(2) = G0,
Clz) = —Con(2)+2Cu(2),

where C,, denotes J,, Y, or any linear combination of these functions. We
also recall that

Jo(z) = =Ji(2),  Yg(2) = —Yi(2).
We have the following formulas for the derivatives:

e(z) = o (Comi(2) - (‘f) Cisal2)

+ (l;> Cokt1(2) — o + (‘UkCer(z))’

for k € Ny. We also recall the following Taylor expansion of J,(2):

()

J(2) = (5) kz;)k'r(wm (1.4.3)

Note that from (1.4.2) and (|1.4.3)) it follows that Y, (z) has a singularity at
z = 0. In particular Yp(2) = 2 In(2)+o(In(z2)), Y, (2) = ) (2) "+o(z™)

-7 s
when Re(v) > 0, as z goes to zero. We have the following formulas for the

Wronskians:

W(Ju(2), J-v(2)) = Jus1(2)J-u(2) + JV(Z)J*(lFFl)(Z) = —M,

mZ
2

W () Yol(2) = Jos1(2)Ye(2) = Ju(2) Vi (2) = —

w4
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We recall some useful facts on the zeros of cross products of Bessel functions.
Let v € R and A > 0. The zeros of the function which takes z € C to

Ju(2)Y,(A\z) — J,(A2)Y,(2)

are real and simple, in the sense that the derivative of the cross product
with respect to z does not vanish at the zeroes. Moreover, there exist count-
ably many zeroes of J,(2)Y,(Az) — J,(A\2)Y,(z). If A > 1, the asymptotic
expansion of the n-th zero with respect to A near A = 1 is given by

- — 4pg + 2
5+%+qﬁgp + 1 29;5 P o0 -1y, (1.4.4)
where
nm
B = s
_ k-l
Po= o
_ (p=DE-25(\ -1
7= 6(AN3N—1)
. (—1)(u? — 114p + 1073) (N5 — 1)

5(AA)5(A —1) ’

with u = 4v2. The asymptotic expansion of the large positive zeros of the
function which takes z € C to

T ()Y, (Az2) = T, (A2)Y(2)

is given by (|1.4.4) with the same S and

_ p+3
p = I
(2 46p—63)(N3 - 1)
7= 6(A3(A—1)
. (p3 4 18512 — 20534 + 1899)(\° — 1)

5AN5(A — 1)

The asymptotic expansion of the large positive zeros of the function which
takes z € C to

J(2)Y,(A\2) — J,(A\2)Y,(2)
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is given by (|1.4.4]) with
, _ =Y
A—1
) = (L+3)A—(p—1)
SBAA—1)
_ (P +46p — 63)N° — (u—1)(p — 25)
7= 6403\ — 1) ’

(p + 185u% — 2053 + 1899) A% — (pn — 1) (p? — 114 + 1073)
ro o= .

5ANP(A — 1)

1.4.2 Modified Bessel function

Consider the modified Bessel equation

d? d

sz—;;+zd—f—(zg+u2)w:O, z e C.
The solutions of this equation are given by the modified Bessel functions
of the first kind I4,(z) and of the second kind K, (z). Such functions are
holomorphic in the variable z € C\ R_. I[,(z) and I_,(z) are linearly
independent except when v is an integer. I,(z) and K,(z) are linearly
independent for all v. The functions I,(z) and K,(z) are real and positive

when v > —1 and z > 0. We recall some useful relations:

ml_y(z) — I,(2)
K = —-—— 1.4.
v(2) 2 sin(wv) (14.5)
I—n('z) = In(z)7 (146)
K_,(z) = Ku(2),

where in (|1.4.6)) the index n is an integer number.
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We recall some other useful recurrence relations:

Crr(2) = Crale) = 2C(2),

v-1(2) +Cy1(2) = 20{/(3)7
CY(z) = Coa(2) = Cu(2)
Cy(z) = ~Coa(2) + 2Cu(2),

where C,, denotes here any of the functions I,,, K, or any linear combination
of them. We also recall that

In(z) = In(2), Ky(z) = —Ki(2).

We have the following formulas for the derivatives:

) = e (Comate) + () Comnians)

1 (’;) Cory1(2) + ... + Cy+k<2)),

for k € Nyg. We have the following Taylor expansion of I,,(z):

)

L(2) = (5) ;W (1.4.7)

Note that from (|1.4.5)) and (1.4.7)) it follows that K, (z) has a singularity at

z = 0, in particular Ko(z) = —In(z)+o(In(2)), K, (2) = ¥ (2) " +o(z7")

when Re(v) > 0, as z goes to zero. We have the following formulas for the
Wronskians:
2sin(vm)

W(l,(2),1-,(2)) = IV(Z)I—(V+1)(Z)_IVJrl(Z)Iﬂ/(Z) -

Tz

W(Ky(2),1u(2)) = L(2)Kp1(2) + L4 (2) Ky (2) = P

1.4.3 Ultraspherical Bessel and modified Bessel functions

We recall the definitions of ultraspherical Bessel functions and modified
ultraspherical Bessel functions. Consider the ultraspherical Bessel equation
o d%w

dw 9
ZW—F(N—I)ZE-F(Z —Ill+N-2)w=0, z€C, (1.4.8)

and the modified ultraspherical Bessel equation

d*w dw
2 2 —
Pt (N — 1)z—dz —(Z+I(l+N-2)w=0, z€C, (1.4.9)
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for [ € Ny. The ultraspherical Bessel functions of the first and second kind
ji(z) and y;(z) are suitable linearly independent solutions of (L.4.8). The
modified ultraspherical Bessel functions of the first and second kind 7;(2)
and k(z) are suitable linearly independent solutions of (1.4.9). Namely,
the functions ji(z),y1(2),4(2) and k;i(z) are defined in terms of the Bessel
functions J,(2),Y,(2), I, (%), K, (%), as follows:

) = T (),
_N=2

y(z) = 2z~ 2 Y¥+l(2),

. _N=2

i(z) = 2z 2 I¥H(z),

ki(z) = 277 Knoa,(2)

The ultraspherical and modified ultraspherical Bessel functions have a num-
ber of recurrence relations which are inherited from those of the ordinary
Bessel functions. We recall some of these relations for j;(z) and ¢;(z):

T2 2506 = g+ i)

ilz) = éjz(z)—jm(Z):Jlfl(z)_mvf_zjl(z)’
N2 20 = o) — i),

i(z) = éiz(z)ﬂm(z}

Note that for IV = 2 the expressions above simplify to the corresponding re-
lations for the ordinary Bessel functions. We recall some recurrence relations
for the second derivatives:

2 _ —_
o = (S5 =) i+ T i),

z
12 —1 _ N-1,
(2’2 + 1> ll(z) - > ]l—l—l(z)-

Again, when N = 2 each relation simplifies to the analogue for the ordinary
Bessel functions. We have the following expansions of j;(z) and 4;(z):

i (2)

(_1)’f21—% <z>2k+l

M) = 2 s ) \2

)

Mz 11

21_% <z>2k+l

W@ =2 iy ¥ \2

(1.4.10)

e
Il
<)

From (1.4.10) it follows that i;(z) and its derivatives are all positive on
10, +o0l.
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1.4.4 Spherical harmonics

Let B be the unit ball in RY centered at zero. We denote by OB the
boundary of B, i.e., the unit sphere in RY. Let k € Ny and P}, be the space
of homogeneous polynomials of degree k& on R and let

M, = {P€P,: AP =0},

S = {PBB :PG%}.
The set 74 is the space of homogeneous harmonic polynomials of degree k
and .7 is the space of their restriction on the unit sphere. The elements of

%, are the so-called spherical harmonics of degree k. We denote by 72 the

quantity 72 = |z|> = Zévzl x?, where = (21,22, ...,xy) is a point in RV,

We have the following lemma.

Lemma 1.4.11. Let k € Ng. Then
Pr = 74, D TQPk_Q,
where r2Pj_g = {T2P :Pe Pk_g}.

Corollary 1.4.12.
k
Pk - @Tjt%alg,j
§=0

Corollary 1.4.13. The restriction to the unit sphere of any element of Py,
is a sum of spherical harmonics of degree at most k.

Let L?(0B) the Hilbert space of the square integrable functions on 0B
with respect to the N — 1 dimensional Haudorff measure of 9B, endowed
with the standard scalar product

< U,V >r2(9B)i= /8B uvdo,

for all u,v € L?(0B). Here do denotes the surface measure of 9B. We have
the following theorem on the representation of functions in L?(0B) in terms
of spherical harmonics.

Theorem 1.4.14. We have
o
L*(0B) = P #,
k=0

the expression on the right-hand side being an orthogonal direct sum with
respect to the standard scalar product on L?(0B).
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Let
dy, := dim.¥}, = dimJ%,.
We have an explicit formula for dj.
Lemma 1.4.15. We have for Py

) (k+N—1)!
d ==
P = SN =1

Corollary 1.4.16. We have for %

(k+ N —3)!

dy, = (2k+N—2)m.

Let us denote by Ag the Laplace-Beltrami operator on the unit sphere
OB in RY. We have the following lemma.

Lemma 1.4.17. The solutions of
—Ag¢p =k(k+ N —2)¢, on 0B,

are the spherical harmonics of order k.



18

Preliminaries and notation



Chapter 2

Elliptic operators subject to
mass density perturbations
and maximum principles

In this chapter we discuss eigenvalue problems for general elliptic operators
of arbitrary order subject to different homogeneous boundary conditions on
open subsets of RY. The class of operators and boundary conditions which
we consider is quite general and contains, for example, all the poly-harmonic
operators subject to Dirichlet, intermediate, Neumann or mixed boundary
conditions.

Let © be an open subset of RY and m € N. We consider the elliptic
partial differential operator £ defined by

Lu:= Y (—1)°‘Da(Aa5D5u) (2.0.1)

0<la,|Bl<m

subject to homogeneous boundary conditions. By R we denote the subset
of L>°(Q) of those p € L*>(Q) such that essinfgp > 0. Let p € R be fixed.
We consider the eigenvalue problem

Lu = A\pu. (2.0.2)
The weak formulation of problem (2.0.2)) is
/ Z AnsDuDPpdx = /\/ pupdz, Vo e V (), (2.0.3)
“ 0<al|8l<m “

in the unknowns u € V() (the eigenfunction) and A € R (the eigenvalue),
where V(Q2) € H™(Q) is the energy space associated with the boundary
conditions imposed on £. We assume that the coefficients 4,3 are bounded
real-valued functions such that A,3 = Ag,. Moreover, we assume that the
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space V() and the coefficients A,g are such that inequalities ((1.3.3) and
(1.3.4) hold. If the embedding V(Q2) C L?(2) is compact, from Theorem

it follows that problem ([2.0.3) admits a diverging sequence of eigen-
values of finite multiplicity

Mlp) < <Nl <

We prove a few results concerning the dependence of the eigenvalues A;[p]
upon variation of p.

2.1 Continuity of the eigenvalues

By the min-max principle ((1.3.8) it follows that X;[p] is a locally Lipschitz
continuous functions of p € R. In fact, one can easily prove that

min{A;[p1], Ajlpa]} + 20
min{essinf p1,essinf py}

[Ajlpi] = Ajlp2]] < o1 = palli(y,  (2.1.1)

for all p1,p2 € R satisfying [[p1 — p2/|p~() < min{essinf p1,essinf po}.
Indeed, for u € V() and p1, p2 € R we have

Owu] Q] | _ |Qhwull |folpr — pr)u?da]
Joprutde [ poulde| = ([ prulda) ([, peutdz)
1Qlu, u]| Jou’dzllp2 = pillre) _ 1QLu,ullllp2 — pill~ ()
- (fQ pluzdm) (fQ p2u2dx) - (fQ p1u2da:) essinf po
| Qlu,ul + b [, prutda — b [o pruPdal [ pa — pillLee o)
([ prudz) essinf ps

o ( Q| lp2 — /.)1”L°°(Q)' (2.12)
Jo prudz essinf po
From (2.1.2) it follows that
Qlu,ul [ lp2 = pill))  20lp2 — pillpee(e)
Jo prudz essinf po essinf po
Qlu, u]
= Jq p2uldx
< _Qlud () P2 PlHL (@) P2 ':01”L @ (913
Jo pruldz essinf po essinf po

If p1, p2 satisty ||p2 — p1|| o () < essinf p2, then taking the infimum and the

supremum in (2.1.3)) yields

Ajlpd] + 20

Ailp1] = Ajlpo]| <
Mol = Nileall < S22

o1 — p2ll Lo () (2.1.4)
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It is easy to see that formula still holds if in the right-hand side we
replace \j[p1] with A;[p2] and essinf po with essinf p;. This proves formula
@.1.1).

Actually, A;[p] depends with continuity on p not only with respect to the
strong topology of L>°(€2) but also with respect to the weak* topology, which
is clearly more relevant in optimization problems. The following theorem
was proved by Cox and McLaughlin [33] in the case of the Dirichlet Laplacian
and mass densities uniformly bounded away from zero and infinity. The
proof can be easily adapted to the general case. Moreover, it is possible to
replace the uniform lower bound for p by a weaker assumption.

Theorem 2.1.5. Let C C R be a bounded set. Assume that there exist

a,b,c > 0 such that inequalities and are satisfied for all p € C.
Then the functions from C to R which take any p € C to A\j[p] are weakly*

continuous for all j € N.

Proof. Since C' is bounded in L>(€2), it suffices to prove that given p € C
and a sequence p € C, k € N such that p, —* p as k — oo then \j[pi] —
Ajlp]. To do so, we first prove that for each j € N there exists L; > 0 such
that A;j[pr] < L; for all K € N. This is clearly trivial if we assume that
0 < a < pforall pe C,in which case \j[p] < \j[a]. Let j € N be fixed
and ui,...,u; € V() be linearly independent eigenfunctions associated
with the eigenvalues A\i[p], ..., \;[p], normalized by < u,,us >,= d,s for all
r,s =1,...,7. Note that

lim uruspkdx:/uruspdx,
Q

k—oo Jq

forall r,s=1,...,7. Thus

J 2 J 2
lim ’yruT> pkdac—/ < fyrur> pdzx, 2.1.6

uniformly with respect to v = (y1,...,7;) € R/ with |y| < 1. Let E be the
linear space generated by w1, ...,u;. By (2.1.6)) it follows that for any € > 0
there exists k. € N such that

Jo E\alwlém AapD*uDPudz < Jo Z|a|,m|gm AnpD*uDPudx
Jo u?prdx - Jo u?pdx
+e(Ajlp] + 2b) < Ajlp] + £(Az]p] + 20)

for all w € E, k > k.. By combining ([1.3.8) and (2.1.7)) we deduce that
Nilpk) < Ajlp] +e(Ajlp] + 2b) for all k > k., which implies the existence of a

uniform bound L; as claimed above. The rest of the proof follows the lines
of Cox [33]. Let u;[px], j € N be a sequence of eigenfunctions associated

(2.1.7)



22 Elliptic operators subject to mass density perturbations

with the eigenvalues \;[p;] normalized by < w;[px], w[pr] >,,= ;1 for all
J,l € N. Note that Qu;[pk],ujlpr]] = Ajlpx] for all & € N, where we
denoted by Q[u, ] the left-hand side of (2.0.3). By inequality (1.3.3), the
sequence uj[p], k € N is bounded in the space V() equipped with the
standard norm of H(Q). It follows that possibly passing to subsequences,
there exists u; € V() such that u;[p;] weakly converges to u; as k — oo
in V(9), and there exists A\; € R such \;[px] converges to \; as k — oo.
Moreover, since the embedding V() C L?(2) is compact we can directly
assume that u;[pg] converges to @; strongly in L?(2) as k — co. By passing
to the limit in the weak equation

Qlujlpr]; pl = Njlok] < wjlprls o >ps YV € V(Q),

it follows that 5\]- is an eigenvalue and of problem and %; a corre-
sponding eigenfunction. Note that < uj;,u; >,= dj; for all j,I € N, hence
Aj, j € Nis a divergent sequence. It remains to prove that A; = X;[p| for
all 7 € N. To do so, assume by contradiction that there exists an eigenfunc-
tion u € V(1) associated with an eigenvalue A of the weak problem
such that < #,4; >,= 0 for all j € N. Assume that % is normalized by
|all, = 1/(b+ A). By the Auchmuty principle [I3] applied to the operator
L +bl,, where L + bl, has been defined in Section we have

2
B 1 - Qlu, u] + bHuHL%k(Q)
2(b+ Ajlpr]) 2

= Paciptlzz, @) 0 (218)

for all w € V() and j,k € N. Here P;_; ,, u denotes the orthogonal projec-
tion in Lf,k (2) of u onto the space generated by ui[pg], ..., uj—1[p] for all
J = 2and Ryp,u=0. By setting u = u and passing to the limit in
as k — 0o, we obtain

for all j € N, which contradicts the fact that j\j — 00 as j — 00. O

2.2 Analyticity of the eigenvalues

By classical results in perturbation theory, one can prove that \;[p] depends
real-analytically on p as long as Aj[p] is a simple eigenvalue. This is no longer
true if the multiplicity of A;[p] varies. In the case of multiple eigenvalues,
analyticity can be proved for the symmetric functions of the eigenvalues.
Namely, given a finite set of indexes F' C N, we set

RIF) = {p€R: Mol # Nll, ¥ j € F,LeN\ F}
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and

AF,h[p] = E >‘J1 jh[ ]7 h:1,...,|F|.
J1yeJn€F
31< <Jn

Moreover, in order to compute formulas for the Frechét differentials, it
is also convenient to set

O[F] :={p e R[F]: Nlp] = Aplpl, V1,52 € F}.
Then we have the following result:

Theorem 2.2.1. Assume that there exist a,b,c > 0 such that inequalities
and are satisfied. Let F be a finite subset of N. Then R[F]
is an open set in L*°(Q) and the functions Apy, are real-analytic in R[F].
Moreover, if F' = Up_F}, and p € N}_,O[F}] is such that for each k =
1,...,n the eigenvalues \j[p] assume the common value Ap, [p] for all j € Fy,
then the differentials of the functions Agy, at the point p are given by the

formula
dApp p] ch Z / ulpdz (2.2.2)

k=1 lEFy,

for all p € L*=(Q), where

o= 3 (W I ()

0<h <|F | j=1
0<liy <|Fl 7k
h1++hn:h
and for each k =1,...,n, {u;}icp, is an orthonormal basis in L%(Q) of the
eigenspace associated with \g, [p].
Proof. We set
Apnlpl =" D> alel +0) - (N, lo] + 1),
JLredn€F
J1<-<Jh

for all p € R[F]. Note that by elementary combinatorics, we have

h

Applp] Z hk(“;’ ;)Am[] (2.2.3)

=0

where we have set Apo = AF,Q =1.
By adapting to the operator L + bI, the same argument used in [76] for
the Dirichlet Laplacian, thanks to Theorem and Theorem one
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can prove that R[F] is an open set in L>(2) and that App[p] depends real-
analytically on p € R[F]. Thus, by we deduce the real-analyticity of
the functions Agp,.

We now prove formula . First we assume that n = 1, hence
F = F) and p € O[F]. For simplicity, we write Ap[p] rather than Ag [p].
The same computations used in [76] yield the following formula for the
Frechét differential dA ralp] of A Fp at the point p € R[F7:

il = -0l 0 (T X < anfitu o,

for all p € L*°(2), where T}, is defined by (1.3.6) with w = p. By standard
calculus and by recalling that T,u; = (Ap[p] + b) 1w for all | € F, we have

< dT,[p)[w], w >p= —b < (L +bl,) tdI,[pl(L + bl,) " Ly, up >,

+ < (L+b1) Ldr [ ]ul,ul >p= )\:\[I;][L) < (L+b]) Ldr [ ]ul,ul >p
_ Arll 2 ode
= Gt

hence
dApplpllp] = —Arlp)(Ar[p] + )"~ 1(’F| >Z/ ui pde (2.2.4)
h=1/)7%
for all p € L*>°(Q2). By (2.2.3) and (2.2.4) we get
dArn[p)[p]
h
_ k=1, bk (1FI =1\ (|1F] = 2 i
= =D ArlaOl 51 (k_1)< IR
Fl =1\ = (A -1 b1k
— sl (Aol + ubpde,
()5 (o 5 [t

which immediately implies (2.2.2) for n = 1. We now consider the case
n > 1. By means of a continuity argument, one can easily see that there
exists an open neighborhood W of p in R[F] such that W C N}'_ R[F}].

Thus,
Apj, = > 11 AR (2.2.5)

0<hi<|F1l,....0<hn <|Fy| k=1

on W. By differentiating equality (2.2.5|) at the point p and applying formula
2.2.2)) for n = 1 to each function Ap, ,, we deduce the validity of formula
2.2.2|) for arbitrary values of n € N. O
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2.3 Maximum principle

In this section we consider the case of general intermediate boundary condi-
tions. This means that we assume that V' (Q) is a closed subspace of H™ (1)
satisfying the inclusion

V(Q) C Hi(Q). (2.3.1)

Moreover, we assume that € has finite measure. For all M > 0 we set

Ly = {peL"O(Q): /dex:M}.

The following theorem is a generalization of [76, Theorem 4.4] to the case of
intermediate boundary conditions and can be thought as a kind of maximum
principle.

Theorem 2.3.2. Let all assumptions of Theorem hold. Assume in
addition that Q has finite measure and inclusion holds. Then for
all h = 1,...,|F| the map App of R[F] N Ly to R which takes any p €
RIF] N Ly to Applp] has no points of local mazimum or minimum p such
that A;[p] have the same sign and A\;[p] # 0 for all j € F.

Proof. Tt is convenient to consider the real-valued function M defined on
L>*(Q) by Mlp] := [, pdx for all p € L>(Q2). Assume by contradiction
the existence of p as in the statement. Then p is a critical point for the
function Apj, subject to the mass constraint M[p] = M. This implies the
existence of a Lagrange multiplier, which means that there exists ¢ € R such
that dApp[p] = cdM|p] (see e.g., [37, Theorem 26.1]). By formula (2.2.2),
it follows that

Y Ccr ulz pdx =c | pdx,
JRPED> J

k=1 IeF, Q

for all p € L*°(€2). Note that ¢ are non-zero real numbers of the same sign.
Since p is arbitrary, it follows that

n

Z Ck Z ul | =¢, ae. in Q. (2.3.3)

k=1 leFk

Since u; € Hi(9), then by a standard argument one can prove that the
function (33 Y jep, ( e Ju1)?)'/? belongs to the space H} (Q2) and equals
V/|c| almost everywhere in Q. As is well-known the space HE(€2) does not
contain constant functions apart from the function identically equal to zero.
Thus ¢ = 0 and accordingly u; = 0 for all [ € F', a contradiction. O
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Remark 2.3.4. Theorem concerns mass densities p such that \;[p]
do not vanish and have the same sign for all j € F. This assumption
is clearly guaranteed for positively defined operators. Moreover, we note
that the sign of the eigenvalues is preserved by small perturbations of p.
Hence our assumption is not much restrictive in the analysis of bifurcation
phenomena associated with multiple eigenvalues different from zero.

Finally, by Theorems and we deduce the following;:

Corollary 2.3.5. Let all assumptions of Theorem hold. Let C' C R[F)|
be a weakly* compact set in L>°(2). Assume that there exist a,b > 0 such
that inequality 1s satisfied for all p € C. Let M > 0 be such that
C'N Ly is not empty. Assume that the eigenvalues Aj[p] have the same sign
and do not vanish for allj € F, p € C. Then for allh =1,...,|F|, the map
App from CN Ly to R which takes p € CN Ly to App[p] admits points of
maximum and minimum and all such points belong to OC N Lyy.

Proof. Recall that weakly™ compact sets are bounded. Thus, by Theorem
the functions Ap, are weakly™ continuous on C hence they admit both
maximum and minimum on the weakly*™ compact subset C' N Ly; of C. By
Corollary the corresponding points of maximum and minimum cannot
be interior points of C, hence they belong to dC' N L. O

Condition was used only to guarantee that V(€2) \ {0} does not
contain constant functions. Thus, one may replace condition by
slightly more general conditions. For example one may assume that V() C
H&F(Q) where H(%’F(Q) is the closure in H!(Q) of C*°-functions vanishing
in an open neighborhood of a suitable subset of I' of 0€2. In this case, one
would talk about mixed-intermediate boundary conditions. We can argue

as in the proof of Theorem and get to condition (2.3.3). Then we
1/2
note that the function (22:1 ZleFk( ‘Ck|ul)2) belongs to the space

H&F(Q) and equals y/|c| almost everywhere. The space H&F(Q) does not
contain non-zero constant functions and therefore u; = 0 for all [ € F, a
contradiction. Therefore Theorem and Corollary hold also in the
case V() C H&,F(Q).

Remark 2.3.6. If V(Q) is a closed subspace of H™(Q2) containing constant
functions different from zero, then we could argue as in the proof on The-
orem up to condition . Thus, in the general case one could
simply characterize the critical mass densities of the functions Apy, as those
mass densities for which condition 1s satisfied. Clearly, in the case of
simple eigenvalues condition reduces to u = const in Q which implies
that X = 0. Thus, we conclude that the mazimum principle stated in The-
orem holds for all simple eigenvalues and all homogeneous boundary
conditions under consideration. As for multiple eigenvalues we note that
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the analysis of condition is not straightforward as it may appear at
a first glance.

2.4 Poly-harmonic operators

In this sections we consider the case of poly-harmonic operators. Let m € N.
Consider and with Aag = dapm!/a! for all o, 8 € NoV with
la| = |B] = m, where d,3 =1 if @ =  and d,3 = 0 otherwise. Let I € Ny,
0 <1l <mand V(Q) = H™(Q) N H,(Q). Note that and
are satisfied for any b > 0 where a,c > 0 are suitable constants possibly
depending on b. Moreover, if 1 < [ < m and the open set {2 has finite
Lebesgue measure then the embedding V() C L%(Q) is compact. If [ = 0
and the open set €2 is bounded and has a Lipschitz continuous boundary
then the embedding V() C L?*(Q) is compact (actually it is enough to
assume that € is a bounded open set with a quasi-continuous boundary, see
[26, Theorem 8]). Under these assumptions all corresponding eigenvalues \;
are well-defined and non-negative.

Note that if [ = m then V() = H§*(Q2) and by integrating by parts one
can easily realize that the the bilinear form Q[u, ¢] can be written in the
more familiar form

Jo AZTuAZ odz, if m is even,
Q[u’ (p] = m—1 m—1 . .
fﬂ VA 7 uVA 2 @dzx, if misodd,

for all u, o € HJ*(€2). In this case we obtain the classical eigenvalue problem
for poly-harmonic operators subject to the Dirichlet boundary conditions.
The classical formulation of the Dirichlet problem problem is

(=A™ = Apu, in €,
u:%:“': gj"j&;:o, on 09,

where we denote by v the outer unit normal to 0. We recall that the
Dirichlet problem arises in the study of vibrating strings for N = 1 and
m = 1, membranes for N = 2 and m = 1, and clamped plates for N = 2
and m = 2. We refer to [31},147),94] for the physical derivation of the problem.

In the general case I < m, the classical formulation of the eigenvalue
problem is

(—A)™u = Apu, in Q,
Pu—0,Vj=0,...,0—1,  onoQ,

Biu=0,Vj=1,....,m—1  on 0f),
where B; are uniquely defined ‘complementing’ boundary operators. See
[88] for details. For N > 2, m =2 and [ = 1 we obtain the problem

A%y = \pu, in Q,
u =0, on 012,
Au— (N — l)ﬁ% =0, on0d9Q,
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where & is the mean curvature of the boundary of 2. This problem models
a hinged vibrating rod for N = 1 and a hinged plate for N = 2. See [47] for
further details.

Finally, we note that if m = 2 and [ = 0 then V(Q2) = H?(Q)) and
problem is the weak formulation of a Neumann-type problem for the
biharmonic operator

A%y = \pu, in Q,
% =0, on 052,
divoq (D*u-v) +28% =0,  on 0.

Here divgq is the tangential divergence and (D2u . l/) aq 1s the orthogonal
projection of D?u-v onto the tangent hyperplane to €. This prolem models
a free rod for N =1 and a free plate for N = 2. See also [2§].

We consider all the poly-harmonic operators subject to Dirichlet or in-
termediate boundary conditions, i.e., 1 <1 < m. From Theorem and
Theorem we deduce the following:

Corollary 2.4.1. Let m,l € N with 1 <1 < m. Consider problem
with Aap = Sapm!/al for all a, B € NY with |a| = |8] = m and V() =
H™(Q) N HY(Q). Assume that Q has finite measure. Then for all h =
L,....|F|, the map Apyp of R[F|N Ly to R which takes any p € RIF]N Ly
to App[p] has no points of local mazimum or minimum p. Moreover, let C C
R[F] be a weakly* compact set in L>(Q2) such that inf,ec essinf,cq p(x) >
0. Let M > 0 be such that C'N Ly is not empty. Then for allh =1, ..., |F|,
the map Afy admits points of mazimum and minimum and all such points
belong to OC N Ljy.

Proof. First we note that since inf e essinfzcq p(x) > 0, inequality
is satisfied for suitable constants a,b > 0 not depending on p € C'. Moreover,
the embedding H™(Q) N H}(Q) C L?*(Q) is compact. We also note that all
the eigenvalues A;j[p] are non-negative. The proof now is the same as that

of Theorem [2.3.2] and of Corollary O

We consider now a particular class of weakly™ compact sets. Let A, B €
L*>°(Q) be functions satisfying the condition
0 < ess inf A(x) < esssup B(x) < oo.
el €N
Let C := {p € L>*(Q) : A < p < B}. Clearly, C is a weakly® compact
set. Moreover, since all mass densities p are uniformly bounded away from
zero and infinity, inequality is satisfied for suitable constants a,b > 0
not depending on p € C. Thus Corollary is applicable to all non-zero
eigenvalues. It turns out that point of maximum and minimum p should
coincide with A(z) or B(z) in a set of positive measure.
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2.5 The Laplace operator with Neumann bound-
ary conditions

As we have observed at the end of Section the analysis of condition
in the case of multiple eigenvalues and energy spaces V({2) contain-
ing non-zero costant functions is not straightforward. We consider here the
prototypical case of the Laplace operator with Neumann boundary condi-
tions

—Au =\ in Q
APt TR (2.5.1)
% =0, on 0f).
The weak formulation of problem (2.5.1) is
/ Vu-Vedr = )\/ pupdz, Yo € HY(Q), (2.5.2)
Q Q

which correspond to the choice Ayg = dag, V(2) = H'(Q) in (2.0.3). From
Remark it follows that in the case V() = H'(Q2) we have that p is a
critical point for Agj, provided condition is satisfied. Under suitable
regularity assumptions on the eigenfunctions associated with a double eigen-
value, we may prove that the validity of implies that the eigenvalue
must be zero. This is proved in the following theorem.

Theorem 2.5.3. Let Q be a bounded domain in RN with a Lipschitz contin-
wous boundary, M > 0 and F' = {m,n} withm,n € N, m # n. Let p € R[F]
be continuous and moreover, assume that the solutions to problem
are classical solutions and the nodal domains are sucht that the Divergence
Theorem holds. Then for h = 1,2, p is not a critical mass density for the
function which takes p € R[F] to Apy[p] under the constraint p € RN L.

Proof. Let p € R[F] be fixed. Then we have one of the following cases:

Case 1) p € O[F]. In this case A\p = A, = Ay, is an eigenvalue of multiplicity
2. Then by (2.2.4)) it follows that

Aralgllf) = <N [ pla, + ),
Q

AAralfllf) = =X | e+ o),
where {u,,,u,} is a orthogonal basis in L%(Q) of the eigenspace

associated with Ap.

Case 2) p € (i, O[Fk], where F| = {m}, Fy = {n}. In this case A\p, =
Ams AR, = A are two simple eigenvalues. Then there exists an open
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neighborhood in R of j such that W C ({_, R[F}]. Then

dAF71[ﬁ] [p] = d(AFg,l + AFl,l)[ﬁ] [:0]

== | $Oku + ¥ )

dAr2[Pl[A] = d(Ar 1A R,1)[A][4]
== | FOn b+ A e,

where u,, is the eigenfunction associated with the eigenvalue A, , up,
is the eigenfunction associated with the eigenvalue Ap,, and wy,, uy,
are such that [, puZ,de =1, [ puids = 1.

Suppose now that p is a critical mass density for Apj, h = 1,2 in Lys. Then,

in both cases, from condition (2.3.3) it follows that there exist ¢, ¢y > 0,

¢ > 0 such that

(cnu2 + cmu?) = ¢, a.e. in Q.

Let us consider separately the different cases:

i) 5 € OIF), dApalpllf] = N3 fo 32, + u2)da (the case dAralf][j)] —
=A%, [o p(uZ, +u2)dz is analogous). Then, by differentiating the equal-
ity

u?, +ul =C (2.5.4)

we obtain
U, VUp, + UV, =0 (2.5.5)

which implies in particular

2 _ up () w ()2

for all x € Q such that u,,(x) # 0. Let us differentiate again in (2.5.5))
and use the fact that —Aw,,, = Appu,, and —Au, = Appu,. We obtain

V(@) + [Vun (@) = App (up, (2) + uf(2)) -

By combining (2.5.4), (2.5.5) and (2.5.6) we get

up () 2 _y =~
(u?n(:zj) + 1> |Vuy,(z)|” = AppC,

hence

(Vo (2)* = Appum(2)?, (2.5.6)
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for all x € Q such that wu,,(x) # 0. It is easy to see that holds
also if # € € is such that u,(z) = 0 because in this case u2 has a
maximum in z (see (2.5.4))), hence Vu,(z) = 0. In the same way one
can also show

|Vum(2)]* = Appu, (x).

ii) p € Mi_y OFk], dApalplld] = — Jo p(AEu2 + A% u2,)dz. In a similar
way as for Case 1), since )\%Qu% + )\%luil = C and —Auy, = Ap, pm,
—Auy, = Ap,puy,, we obtain the following relations:

AR,
|V () = C;Z p (Apyup, () + Ny up (2)) up (2); (2.5.7)
P
Y.
[Vun(2)|” = CX; 6 (Apup, () + A, (2)) up, ()
Fy
~ 2 ~1T . . 2 2 2 2
i) p € Mimy OFK, dAr2lpllp] = — [ AR AU + A ATy up,)dz. By

imposing A FIA%Qui + AR, /\%ﬂ1 u2, = C we obtain

)\2
rVum<w>|2=7F (W (o) + X2 (o) wd (@) (258)

L (N () + Ny (7)) iy ().

By (2.5.6)), (2.5.7) and (2.5.8) we observe that in all cases, the nodal set of

one of the two eigenfunctions coincides with the set where the gradient of
the other vanishes. We also note that there are no points in ) where both
U and Vu,, vanish (respectively w, and Vu,). This implies that nodal
sets of u,, are manifolds and coincide with the sets where Vu,, vanishes. We
observe that the nodal sets of the eigenfunctions u of problem are
not empty, since for such functions fQ pudx = 0, hence u changes its sign on
Q.

Let us consider a nodal domain €2, of u,,. The function wu,, doesn’t
change sign on €Q,,. The boundary 9, of €,, can be written as 92, =
'y Uy, where I'y € 09 and 'y C Q. First we show that I'; # (). Assume
by contradiction that I'y = (. The function u,|q,, is an eigenfunction of
problem with € replaced by (2, corresponding to the eigenvalue Ap,.
Indeed the equation —Au, = Ap,u, is clearly satisfied on €2, and BBL; =0
on 0, since Vu,, is zero on 0,. Since uy,|q,, is not identically zero, it
must change sign. Thus, there exist at least two non-empty nodal domains
for uy|q,, in Q,,. We claim that al least one of them, say €, , is relatively
compact in §2,. If this were false, then there would exist at least a point =
of 9y, such that u,(z) = 0, hence Vu,,(z) = 0. But we since I'y = () we
have up,(z) = 0. Thus uy(z) = um(x) = 0, hence C = 0, a contradiction.
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Thus there exists a nodal domain €2, of u,|q,, such that ﬁmn C Q,,. Now,
Um|Q,,, solves problem with Ap,, hence it must change sign Q,,,,.
But Q,,, is relatively compact in €2,,, and on this set u,, has constant sign,
a contradiction.

Thus we have proved that T'; # (). Recall that u,, has constant sign
on . Moreover, aau—l,” = 0 on I'y, while Vu, = 0 on I'y, since here
Uy = 0. Then uy,|q,, is solution of problem with  replaced by
2, corresponding to the eigenvalue A\p, and it changes sign on €),,. Let
O, be a nodal domain of u,|q,, . By the arguments above we have that
O, = T'1p UTe,, where 0 # I'y,, C 0y, and 'y, C Qp. We claim
that there exists at least one nodal domain €, such that I'y,, C 0. If
this were false, the boundary 0f,,, of each €, would be of the type:
0, = (1, NON) U (L1 N (0, \ (02N 0Q,))) UL, and each of
these partitions of 012,,, would be non-empty. Since £2,,, is connected,
(T N (O, \ (02N 0Ny,))) N Ty, # 0. On this set w,, and Vu,, vanish, a
contradiction. Thus there exists €2,,, such that I' ,, C 9€2. Then um|an is
a nontrivial solution of problem corresponding to the eigenvalue g,
and changes its sign on {2, , a contradiction. This concludes the proof. [

As a consequence of Theorem and Theorem we have the fol-
lowing

Corollary 2.5.9. Let Q be a bounded domain in RN with a Lipschitz con-
tinuous boundary, F' = {m,n} with m,n € N, m # n. Let C C R[F] be a
weakly™ compact subset of L*°(§2) such that inf ,cc essinfq p > 0. Let M > 0
and Ly = {p € L>®(Q) : [op = M}. Then for h = 1,2, the function which
takes p € CN Ly to Applp] has mazima and minima, and if for such points
the solutions of problem are classic solutions, they must belong to
oC N Ly.

Proof. The proof is identical to that of Corollary 2.3.5] O



Chapter 3

Mass concentration
phenomena for second order
operators

In this chapter we consider the eigenvalue problem for the Laplace operator
—A subject to Dirichlet and Neumann boundary conditions. In particular
we shall consider eigenvalue problems of the type

—Au = Ap:u

on a bounded open set Q in RV, where p. is a measurable and positive
function which depends on a small parameter € > 0 and which is of order
£~! in a e-neighborhood of points or hypersurfaces contained in € as € — 0

and is of order € in the rest of €2, as € — 0.

For N = 2 this problem is related to the study of the vibration of a
thin membrane which occupies at rest a planar region Q C R? and the mass
of which is displaced on the whole of £ with density p.. Roughly speak-
ing, we consider vibrating membranes the mass of which concentrates near
points or hypersurfaces contained in 2 and we investigate the behavior of
the eigenvalues, which represent the squares of the normal modes of vibra-
tion, as € — 0. Since the dimension does not play any relevant role in our
discussion, we consider from now on open bounded sets in R¥.

In the case of Neumann boundary conditions and mass densities which
concentrate near the boundary of (2, we obtain that the Neumann eigen-
values converge to the eigenvalues of the Steklov problem for the Laplace
operator, which in this sense can be considered a limiting Neumann prob-
lem. Then we shall discuss the dependence of the eigenvalues of the Steklov
problem upon mass density perturbations in the same spirit of Chapter 2.
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3.1 Neumann to Steklov eigenvalues
Let © be a bounded domain in RY of class C'. Let p € RS, where
RS = {p € L®(09) : essinf coap(z) > 0} . (3.1.1)

We consider the classical Steklov eigenvalue problem for the Laplace opera-
tor

{ Au =0, in Q, (3.1.2)

%Z = A\pu, on 0F2,

in the unknowns u (the eigenfunction), A (the eigenvalue). This problem
models a free vibrating membrane whose mass is concentrated at the bound-
ary with surface density p (see [99] for the derivation of the problem). We
consider the weak formulation of

/ Vu'Vgod:c:)\/ pupdo, Vo € HY(Q), (3.1.3)
Q o0

in the unknowns v € H'(Q), A € R. Actually, we shall consider a problem in
the space H'(Q)/R since we need to get rid of the constants, which generate
the eigenspace corresponding to the eigenvalue A = 0.

We denote by Tr the trace operator acting from H'(Q) to L?(09). We
denote by J. ps the continuous embedding of L?(0Q) into H'(Q)’ defined by

Jf[u][cp] ::/ pupdo, Yu € L*(09),p € HY(Q).
0N

We set
1,8 o . —
H,2(Q) = {u € HY(Q): / pudo = 0} ,
o0N
and we consider on H'(f2) the bilinear form
<u,v >i= / Vu - Vudz. (3.1.4)
Q

By the Poincaré-Wirtinger inequality, it turns out that the bilinear form
is a scalar product on H, ;’S(Q) whose induced norm is equivalent
to the standard one. In the sequel we will think of the space H;’S as en-
dowed with the scalar product (3.1.4). Let F(2) be defined by F(Q) :=
{G € H' () : G[1] = 0}. Then we consider the operator ./\/l;g acting from

H;’S(Q) to F'(Q), defined by

M‘g[u][gp] = /QVU -Veodr, Yue H;’S(Q),w € HY(Q).
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It turns out that ./\/l‘g is a homeomorphism of H ;’S(Q) onto F'(€2). We define
the operator 71';? from H'(Q) to H;’S(Q) by

Joq pudo
Joa pdo

for all u € HY(Q). We consider the space H'(Q)/R endowed with the
bilinear form induced by (3.1.4). Such bilinear form renders H'(Q)/R a
Hilbert space. We denote by 77%’8 the map from H'(Q)/R onto H,}’S(Q)

defined by the equality ﬂf = ﬂﬁ’s o p, where p is the canonical projection

of H'(Q)) onto H*(Q2)/R. The map 77,;3 turns out to be a homeomorphism.
Finally, we define the operator T;,S acting on H'(Q)/R as follows

Wf[u] =u— (3.1.5)

T,;S = (ﬂﬁ’s)fl o (M;f)*l o jf;s oTro Wg’s. (3.1.6)

Lemma 3.1.7. The pair (A, u) of the set Rx (H,}’S(Q)\{O}) satisfies
if and only if A\ > 0 and the pair (A\™1, p[u]) of the set R x ((H'(Q2)/R)\ {0})
satisfies the equation

A" plu] = T plul.

We have the following theorem.

Theorem 3.1.8. The operator T[;S is a compact self-adjoint operator in
HY(Q)/R, whose eigenvalues coincide with the reciprocals of the positive
etgenvalues of problem . In particular, the set of eigenvalues of prob-
lem is contained in [0,+o00] and consists of the image of a sequence
increasing to +0o. Fach eigenvalue has finite multiplicity.

Proof. For the self-adjointness, it suffices to observe that
< TSu,v > (o) r=< (15°) 7" o (M3) ™ 0 TF o Tro hSu, v > 1) /r

= MS[(MF) ! o TF o Tro mhSu[nhS ]
= Jf [Tro wf;su] [Wf;sv], Vu,v € HY(Q)/R,

and that J ‘;S [Troﬂ',ﬂ,’su] [w[ﬁ;sv] is symmetric. As for compactness, just observe
that the trace operator acting from H!(Q) to L?(9Q) is compact. The
remaining statements follow by standard spectral theory. O

Therefore the eigenvalues of (3.1.3]) can be represented by means of an
increasing sequence

The first positive eigenvalue is Ay as proved in the following theorem.
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Theorem 3.1.9. The first eigenvalue A1 of (3.1.3)) is zero and the corre-

sponding etgenfunctions are the constant functions on . Moreover, Ay > 0.

Proof. 1t is straightforward to prove that the constant functions on ) are
eigenfunctions of (3.1.3)) with eigenvalue A = 0. Suppose now that u is an
eigenfunction corresponding to the eigenvalue A = 0. Then we have

/ |Vul|?dz = 0.
Q

Therefore, since €2 is connected, u is constant. This concludes the proof. [J

We can characterize the eigenvalues of (3.1.3)) by means of the Rayleigh
Min-Max Principle:

Vul|?d
Aj = min maxM

5
ECH'(Q) ueE |, o pusdo
dimE=; u#0 o

(3.1.10)

Now we turn our attention to the Neumann eigenvalue problem. Let
p € R, where
R := {pe L>(Q) : ess ingp(x) >O}. (3.1.11)
BAS
We consider the classical Neumann eigenvalue problem for the Laplace op-
erator

{ —Au = Apu, in Q, (3.1.12)

gu =0, on 9N,

in the unknowns wu (the eigenfunction), A (the eigenvalue). This problem
models a free vibrating membrane of mass density p (see e.g., [31] for the
derivation of the problem). We consider the weak formulation of problem
B112)

/Vu-Vgodx:)\/ pupdr, Yo € H(Q), (3.1.13)
Q Q

in the unknowns u € H'(2), A € R. In the sequel we shall recast this
problem in H! () /R since we need to get rid of the constants, which generate
the eigenspace corresponding to the eigenvalue A = 0. We denote by ¢ the
canonical embedding of H!(2) into L?(2). We denote by J. ,fv the continuous
embedding of L?(Q) into H'(Q)’, defined by

jpj\/[u][gp] = / pupdr Yu € L2(Q),p € H(Q).
Q

We set
HIN () = {u e HY(Q) : /Qupdx _ 0} . (3.1.14)
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In the sequel we shall consider the space H ; N(Q) as endowed with the scalar

product (3.1.4). This scalar product induces on H,}’N(Q) a norm which is
equivalent to the standard one. Then we consider the operator /\/lﬁ/ acting

from HYN (Q) to F(Q) defined by

N — N
My [u][] .—/QVu-Vgodx, Vuerl (Q),p € HY().

The operator Mﬁf turns out to be a linear homeomorphism of H, ; N(Q) onto
F(Q2). We define the operator Wi)\/’ from H'(Q) to H,}’N(Q) as

™

Z\[[U] o fQ upda:7
Jo pdx

for all u € H'(2). We consider the space H'(£2)/R endowed with de bilinear
form induced by (3.1.4). Such form renders H'(2)/R a Hilbert space. We
denote by WB,’N the map from H'(Q)/R onto H, N(Q) defined by the equality
Tri,v = WE’N op, where p is the canonical projection of H'(2) onto H'(Q2)/R.

We define the operator T é\/ acting on H'(Q)/R as follows
N Ny—1 Ny-1 N N
TV = (wtN) o (M) o TN oiomt. (3.1.15)

Lemma 3.1.16. The pair (\,u) of the set R x (H,}N(Q) \ {0}) satis-
fies if and only if A > 0 and the pair (\~1,plu]) of the set R x
((HY(2)/R) \ {0}) satisfies the equation

Aplu] = T plu].

We have the following theorem.

Theorem 3.1.17. The operator Tlﬁv 18 a compact self-adjoint operator in
HY(Q)/R and its eigenvalues coincide with the reciprocals of the positive
etgenvalues of problem . In particular, the set of eigenvalues of
problem is contained in [0,+oo[ and consists of the image of a

sequence increasing to +00. Fach eigenvalue has finite multiplicity.

Proof. The proof is similar to that of Theorem Just note that the
embedding i from H'(Q) to L?(Q) is compact. O

We have the following theorem on the spectrum of problem (3.1.13)).

Theorem 3.1.18. The first eigenvalue A1 of (3.1.13)) is zero and the corre-
sponding eigenfunctions are the constants. Moreover, the second eigenvalue

A2 of (3.1.13) s positive.
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Now we consider problem (3.1.13)) with densities which concentrate in a
neighborhood of the boundary of €. Let us denote by w, the set defined by

we i={zx € Q:d(z,00) <e}. (3.1.19)

Let us fix a positive number M > 0 and define the family of densities
{petecio,o) € R as follows:

€, if x € Q\ e,
pe(x) = {M5|Q\wg| frew i (3.1.20)
|w£| ) [5)

for e €]0,e¢[, where ¢ is sufficiently small. We note that fQ pedx = M for
all € €]0,e9[. We refer to the quantity M as the total mass of the body.

Problem , and problem with density p. are strictly related.
In fact, under the assumption that € is of class C?, it is possible to prove
that the eigenvalues of problem with density p. converge to the
eigenvalues of problem with p = |87A/§[2|' This is a consequence of the
following theorem.

Theorem 3.1.21. Let Q be a bounded domain of class C? in RY. Let the
operator TS, and Tl{\gf be defined as in (3.1.6) and (3.1.15) respectively.

[0Q]
Then T[{\Ef converges in norm to TI‘ZLQI as e — 0.

We need some preliminary results in order to prove Theorem [3.1.21]
First of all we note that 7% = W%’S for all ¢ € R, with ¢ # 0. This can be
deduced from .

Now we recall some facts from standard calculus which will be used in the
sequel. Let M be a parametric hypersurface in RV of class C?, i.e., there ex-
ists a function ¢ € C?(D) from D to RY, where D is a bounded open subset
of RN=1 such that ¢(D) = M. We assume that rankD¢(y1, ..., yn_1) = N—1
for all (y1,...,yn—1) € D, where we denoted by D¢ the Jacobian matrix of
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¢. We set

M(e) :={o(y1, -, yn—-1) + tv(y1, .yyn—1) : (Y1,--,yn—1) € D,t €]0,¢[},

where v(y1, ..., ynv—1) is the normal vector to ¢(D) at the point ¢(y1, ..., yn—1)
given by

9% AL 9¢
O OYyn—1
V(Y1 ooy YN—1) 1= % 2% |
AR e

We consider the map v from D x ]0,¢[ onto M (e) defined by

Yyt yn—1,t) = dW1, s yn—1) + (Y1, .., yn—1)

for all (y1,...,ynv—1) € D, t € ]0,e][. We need to compute detDiy. We have

detDw = det [% te ay?\]dil V(yb (X3} yN—l):|
d¢ Ov Do ov )
+1 a0 a 2 v v o +
9 <8y1 Oy1 " Oyn-1 Oyn-—1
_ ¢ Ov 0 ov
+tN 1 B (’,..., Yy A )7
IN-1 oy’ Oy Oyn—1 Oyn—1

where g; are suitable compositions of sums and products of the first partial
derivatives of ¢ and v. As is known, the first term in the sum is equal to
0 0
9% .. ¢

BA
oy Oyn—1

i

which is the (N —1)-dimensional measure of the hypersurface. We are ready
to prove the following lemma. For the sake of completeness we include also
statement ).

Lemma 3.1.22. Let M be a parametric hypersurface and (D, ¢) a parame-

trization of M. Assume that infp g—fl A A ay?f_l } > 0. Assume also that

g0 > 0 is such that 1 is a diffeomorphism for all € €]0,e0[. Let fo, f €
HY(M(g9)) for all e > 0 be such that f- — f in H*(M(gg)) as e — 0. Then
we have

i)
o1
lim — fdx :/ fdo; (3.1.23)
e=0¢& Jp(e) M
i)
o1
lim — (fe = f)dz =0.

e—0 ¢ M(e)
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Proof. We write the proof in the case N = 3 for simplicity. The proof for
N > 3 is analogous and can be carried out by using the same arguments.
We consider

o f@te =2 [ om0 et do

and compute the limit as € — 0. We observe that

detDey = det [3y1 ,%é, V(ylva)}‘i‘tdet [83;1 g—;;, u(yl,yg)}
— tde t[3y2 aaTi, V(ylay2)} + t2det [8;1 (%”2, V(yl,yQ)}, (3.1.24)
Moreover
1 5]
S o) detDy dyndyea
0 JD
1 S
=2 [ et = (o 6)01.92.0) et Do dundyact
1 >
+€/ /(fow)(yl,yz,o)|detD1p|dy1dy2dt. (3.1.25)
0 JD

For the first summand in the right-hand side of (3.1.25)), we observe that for
a.e. (y1,y2) € D, we have

|(fow)(y1,y2,t) - (f0¢)(y17y2, | < f()
f € H'(M(¢)), we have

dt’. Then, since

Bt’ yl » Y2, t/)

i/ov /D |(f © w)(yl’y27t) - (f o ¢)(y17y2a0)| ‘detDQM dyldQth

Sl

Thus the first summand in the right-hand side of (3.1.25]) vanishes as ¢ — 0.
For the second summand, observe that for (y1,y2) € D

T~ t)‘ (det D dtdyrdys

1
< IM@)2 IV fll L2

0¢
26 _
ili%g/ |det Dy (y1, y2, 1) | dt = (det[yl, oy V(W 12) ‘ ’aylAayz

since the terms in (3.1.24)) containing ¢ vanish as € — 0. The last quantity
is exactly the area element of the surface. Then we get

1
lim — fdx z/ fdo.
M

e—0 € M(e)
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Now we prove statement i7). We consider

1/(6 (fe — f) da

EJm )
1 €
2] om0 = (7 0 6)0n.0,0) et Dt i
1 €
o 0 1.0) = (7 )0, 0)) et D s
1 a(f. no_ Af o) / /
+€/0 /D/O< at’ yhyg,t) 57 (y1,y2,t") | dt’ |det Dy| dy1dyadt
1
< g/o . [(fe 0 ¥) (Y1, 92,0) = (f 0 ¥) (Y1, y2, 0)[ |[det D[ dy: dyadt
1 ! I(fe ’ A(f o) / ’
+5/0 /D/O 825’ yl,yg,t)— 57 (y1,y2,t')| dt’ |det DY | dy; dyadt.
(3.1.26)
We set
¢ 0¢
G1(y1,y2) ‘det [Byl Dy V(y1>y2)] det [Byz R V(ybyZ)] )
Ga(y1,y2) = ‘det [ayl s V(y1,y2)”-

We have for the first summand of (3.1.26])

1/“/"Kﬁo¢o@hy%m——Uo¢0@hy%mumx0wdmdwdt
/ / |(fe o) (y1,12,0) — (f o ¥)(y1,y2,0)| ’gz /\gf’dyldygdt
+ 8/ / |(fe o) (y1,y2,0) — (f o ¥)(y1,y2, 0)| tG1(y1, y2)dy1dy2dt
0 D
+f//Wmow@mmm—uow@mmmﬂ@@mm@me
€Jo JD
— —— fld
Aﬂf fdo
5/ |(fe o) (y1,42,0) — (f o ¥)(y1,92,0)| G1(y1, y2)dy1dy2
< / (= ) (1,92, 0) — ( 0 9) (g1 92, 0)] Caly, y2)dyn

SC‘/les—fldJ,

where C is a positive constant which is bounded, uniformly in € > 0. Thus

the first summand in (3.1.26)) vanishes as ¢ — 0 because f. — f in L?(M)
hence in L'(M). Now we consider the second summand in (3.1.26). We
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have
! 8 / /
Ue o) (yr, )~ 2L 4,y )| i et D ayr
2 2
/ / (/ 8t’ oY) (y1,y2,t') — a(fa:,w) (y1,y2,t") dt') |det D | dy: dy2dt
0
1
Co[c 3 ) ) 2 p)
< ;/ 2 < fasw Y1,Y2,t) — (fa;,w) (y1,92,t")| - |detDy|dt dy1dyz) dt
0
1
< Ce2 [V (fe = P2 (e -
This concludes the proof. ]

We define the set (02)%° by

(09)% = {z e RN : d(z,09) <eo} .
Moreover, we denote by v(Z) the outer unit normal to 02 at a point

Z € 09). We recall the following theorem.

Theorem 3.1.27. (Tubular Neighborhood Theorem). Let Q2 be a bounded
domain in RN of class C?. Then there exists ¢g > 0 such that for each
x € (0Q)0 there exists a unique couple (T,s) € O] — e, e0[ such that
x = T + sv(Z), where v(T) is the outer unit normal to O at the point
Z. Moreover, T is the (unique) mearest to x point of the boundary and
s =d(z,09). Finally, possibly reducing the value of €g, the map x — (&, s)
is a diffeomorphism of class Ct from (92)0 onto OQx] — &g, £¢].

We are ready to prove the following lemma.

Lemma 3.1.28. Let Q be a bounded domain in RY of class C%. Let e > 0
and p: € R be as in (3.1.20). Then the following statements hold:

i) For all o € H'(Q)/R, wf)’sN[gp] — 7r§8[ ] in L*(Q) as ¢ — 0 (hence also
in H'(Q));

i) if ue — u in H'(2)/R as e — 0 then possibly passing to a subsequence,
iV ug] = 7S] in LA(Q) as e — 0;

iii) assume that us,we,u,w € HY(Q) are such that ue — u, we — w in
L%*(Q) as e — 0, and that ||VUSHL2(Q IVull 2y < Cs [Vwell 12y »
[IVwll 2y < C, uniformly in e > 0. Then

/ Pe (Ue — u) wedz — 0,
Q

and

/ pe (we — w) udzr — 0,
Q

as e — 0.
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Proof. We start by proving statement 7). It is sufficient to show that

Jo ppdz . Joo pdo
M |09

lim
e—0

p— 07
L2()

where ¢ € H'(Q) is such that ¢ = p[@]. Since the equality

M
S Jo " 108 oo™

holds by Lemma i), we have the desired result.

Now we prove statement iii). We note that since u — u, we — w as € — 0
in L2(Q) and u., w, are uniformly bounded in H*(€2), then u. — u, w. — w,
Tr[us] — Tr[u] and Tr[w,] — Tr[w] as € — 0. Then, in order to prove i) it
is sufficient to prove that

lim [ peuswedz =0
e—0 Q

whenever u. — 0 in L2(Q) and Tr[uc] — 0 in L?(99). We have that
/pgugwgdx = s/ uswedx + C(E)/ UeWedT, (3.1.29)
Q QN\we we

where C(e) = % . The first summand clearly is O(e) as ¢ — 0.
By multiplying and dividing the second summand by € and observing that
eC(e) < C" < +oo for e > 0 small enough, we obtain that the second

summand in the right-hand side of (3.1.29)) is less than or equal to

1
(o z-:/ |uewe| dz.
We

We now apply Theorem Let g9 > 0 be as in Theorem [3.1.27] and
let € €]0,¢0[. Let zg € 92 and Uy be a neighborhood of zg in RY such that
there exists Vy ¢ RV~1 and a parametrization ¢ € C?(Vp) such that the
map ¢ from Vx]0,e[ onto M (e) = {z € Q: d(z,00 N Up) < e} defined by

Y(p,t) = d(p) +tv(p), VY(p,t) € Vox]0,¢]

is a diffeomorphism from V;x]0,e[ onto M(e). Here p = (p1,...,pN—1) €
RM~! and v(p) denotes the unit inner normal to 9 at ¢(p). Now we
consider

. _ [ [7ldetDyl )
/M(g) ¢ [uewe| do = /V /0 — (w0 9) (0, )] [(w: 0 ¥)(p, )| dtdp.
(3.1.30)
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For almost every p € Vp, (u: o ¥)(p,t), (ws 0 9)(p,t) are absolutely contin-
uous on [0, ] and since this set is compact, also their product is absolutely
continuous. Let p € Vj be fixed. We have

(ue 0 1) (p, t)(we 0 P) (p, )
= (ue 0 9)(p, 0)(we 0 9)(p, 0)

ta(ua Ow) / / / 8(105 07/}) N,
+/0 T(pat )(we 0 9)(p, t) + (ue 0 P)(p, t )T(pat )dt’,
(10 0)0.8) = (w0 0)p.0) + [ X sy

g O(w; 0 1))

(waow)(pjt’):(wao¢)(p,0)+/0 Ds

(p,s)ds. (3.1.31)
We observe that, for fixed ¢ and for a.e. p € Vj, the quantity C(¢t,p) =

1
2 2
fo ‘ %St?w t p)‘ dt’) is increasing in 0 < ¢ < € hence C4(t,p) < Ci(e,p)
forall0 <t <e.

1
2 2
The same result holds for Cy(t,p) ( fo ’ %";,Ow t ,p)‘ dt’ ) . Then, for

0 <t <t<e wehave

|(ue 0 %) (p, )] < |(ue 0 4)(p,0)] + £2C1(t', p)
< |(us 09)(p,0)| + t2C1 (e, p), (3.1.32)

|(w= 0 ) (p,t")] < |(we 0 %) (p,0)] + 'ZCa(t, p)
< |(we 0 4)(p,0)| + t2Ca(e,p).  (3.1.33)

Now, let us consider the right hand side in (3.1.30)). By using (3.1.31)):
€ |detD
/ / |57w| |(ue 0 ) (p, )] [(we © ¥)(p, 1)| dtdp
Vo JO

< /V /ell(ugow)(p,on |(wz o ¥)(p, 0)| |det Dy dtdp

usow

oY p, l) |(we o ¥)(p, t/)| dt’ dtdp

+ ([ det DY || oo (v x [0,6])

o ¢

we 07
+||detD¢HLOQ(V0X[O76])/V/O g/0 |(u€o¢)(p,t/)|‘(m/)(p7t/) dt’ dtdp.

(3.1.34)

Now using (3.1.32)) and (3.1.33)) and the fact that || Vuc||r2(q), [|Vwel 12(q) <
C, it is easy to prove that the second and third summand in the right-hand
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side of (3.1.34)) vanish as € — 0. For the first summand in the right-hand
side of (3.1.34]), we observe that

detDy = det L%’i api¢_1 V(p1,~-,pN_1)}

+t91<8¢ ov . )0 ov >+

a7101’ 6772917 v (9PN—1’ OpN-1

gy (28,00 00 ov
N1 Ip1’ Op1” " Opn—1 Opn-1)’

where g; are suitable compositions of sums and products of the first partial
derivatives of ¢ and v. It is not restrictive to assume that

99 . ..p 92

> 0.
op1 OpN-1

inf
Vo

Now, using the same argument as in the proof of statement i) of Lemma
3.1.22) we obtain

1 €
c /VO/O |(ue 0 ) (p, 0)| [(we 0 1) (p,0)] |det Dy | dtdp

¢
OpN-1

1 [¢ P
Sff/() /VO|(UEO¢)(p70)||(w50w)(p70)|’8;51/\'“/\ dpdt

N—-1 1 c |
*?;@AKwawmmmwowmmwmmmwﬁ

<C |ue| |we| do,
oQNUy

where C' is uniformly bounded in ¢ €]0,ep[. Since Tr[u.] — 0 in L?(9Q)
as ¢ — 0, it follows that also the first summand in the right-hand side of
(3.1.34) vanishes as ¢ — 0.

Since w. can be covered by a finite number of open sets of the type M(e),
say we C |Ji%; M;(g), we have that

1 -y
- luewe| dz < E - |ucwe| de.
€ We i=1 € Ml(é‘)

This concludes the proof of statement 4ii).
We now prove statement ii). Let @z, a0 € HllN(Q) (see (3.1.14)) be such
that u. = plt.], u = p[a]. We have

N
Pe

[ue] - 4[]

\ .
L2(Q)

< HW‘E)’EJ\/[UE] — Wﬁ’!\/[u]‘

. (AT [“]Hm(m . (3.1.35)
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By statement i) it follows that the second summand in the right hand side
of (3.1.35)) goes to zero as € — 0. For the first summand, we have

Uedx udr
ﬂa_J;?p;[_@+f§2f;\}

| Jo, pe (e — @) deLQ(Q)

M
o Bk o
< ||U5—U||L2(Q) + W . st (Ua _U) dx

Now, if we prove that . — @ in L?(2) we are done, since the result follows
by statement iii) with w. = 1. Since ue — u in H*(Q)/R, then 4. — @
in HllN(Q) as € — 0. From the compactness of the embedding of HllN(Q)
into L2(f2) it follows that . — @ in L%(Q), as € — 0. This concludes the
proof of statement i) and of the theorem. O]

N
=l L2()

ue] = 7 ul

i
L2(Q)

< e = all 2y

We recall the following definition.

Definition 3.1.36. Let H be a real Hilbert space, IC(H, H) be the Banach
subspace of L(H,H) of those T € L(H, H) which are compact. A set K C
K(H, H) is said to be collectively compact if and only if the set

{K[z] : K € K,z € B},

where B is the open unit ball in H, has compact closure. We say that a
sequence of compact operators {Kn}neN compactly converges to the operator
K if {Kn}, ey is collectively compact and Ky[z,] — K[z] whenever x, — x
m H.

We refer to [8, 103 for details. We are now ready to prove Theorem

B.I1.21

Proof of Theorem [53.1.21 We prove that Tlf\af compactly converges to the
compact operator 79, . This implies, in fact, that

[09]

2
(T,ﬁ - TSM>
6%

Then, since the operators {T[{\Ef }66]0,60[ and T “2%‘ are self-adjoint, property

(3.1.37)) is equivalent to convergence in norm. We refer to [8, [103] for a
proof of (3.1.37) and for a more detailed discussion on compact convergence

of compact operators on Hilbert spaces. We recall that, by definition, T° ;\ef

lim
e—0

= 0. (3.1.37)
LOHY(Q)/R,HL(Q)/R)

compactly converges to TS, if the following requirements are fulfilled:
1891
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i) if [Jue|| g1y < C for all € €]0, 0], then the family {T Ue Fee)o,e0[ has
compact closure in H1(Q)/R;

i) if ue — uin HY(Q)/R, then TNu5—>TSM u in H'(Q)/R.

e

We prove i) first. Let u, o € H'(Q)/R. We have

. M 78 >
tim [ perf ful [ = lim pJﬂYH wh 1)) mfV el
i [ portlul (5N le] 1)) da
, 7 M Sio1 68
+ (g [ pert it Hwamagﬁwﬂuwﬂ
M £Sr 1 1S
+ — 77 [u]m [eldo. (3.1.38)

109 Jaq

By Lemma i71) we have that the first and second summands in the
right-hand side of go to zero as € — 0. As for the third summand,
from Lemma i) applied to the function f = 1 we have that |w.| =
e|0Q| + o(e) as € — 0. Therefore p. = % + o(1) as ¢ — 0. Thus, from
Lemma [3.1.22and formula it follows that also the third summand of
goes to zero as € — 0. Moreover, the equality (wgej\[) (Mﬁg)—l =
(77?’5)_1 o (M7)~! holds. Therefore, from it follows that Tg\efu is
bounded for each u € H'(Q)/R. Thus, by Banach-Steinhaus Theorem, there
exists C’ such that “Tg“L(Hl(Q)/R,Hl(Q)/R) < (' for all € €]0,e9[. Moreover,
since ||u5||Hl(Q)/]R < C for all € €]0, e[, possibly passing to a subsequence,
we have that u. — u in H'(Q)/R, for some u € H'(2)/R. This implies
that, possibly passing to a subsequence, Tg\!us — win HY(Q)/R as ¢ — 0,

for some w € H'(Q)/R. We show that w = T, u. To shorten our notation
109]

we set w, 1= T;\Efug. By Lemma [3.1.28] i) we have

liny | V(n NTw,)) - V(5N ] da

e—0

/v Sl - V(xS [p))da, (3.1.39)
for all p € HY(Q)/R.

On the other hand, since <./\/lN o nﬁﬂ) W, = (ij ogo 77?;’E >u5, we have
that

[ N )V ehde = [ iV iglds (3140
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Then, by Lemma [3.1.28] 7iz), (3.1.39)) and (3.1.40) we have

<w,¥ >H1Q)/R

= gl_rfl < We, @ >H1(Q)/R— hm P WﬁN[ e] ,ﬁoEN[SO]de

= lim ps( N [ue) — W?’S[U]) N plda

e—0

+ lim p W%S[U] (W,ﬂ)’sN[SO] - 7"%78 [@]) dx

e—0

+lim | e fulm}°lplda
M S S
=50 | 7S [t [pldo

=< T“Z%u, © > H2(Q)/Rs

hence w = TS, u. In a similar way one can prove that ||w|| HU(Q)R
Toq]

g e sy = Ty | e (mE o] = L] Voo

+ lim mﬁsm( M = 75w ) do

e—0

+lim | pertSlu] (nh ] - ] do

e—0

. S S
+lim | e fulm® [wlda

M
= a9 |l fwldo = fulli e -

This proves i). As for point 4i), let u. — u in H'(2)/R. Then there
exists C” such that [[uel| 1 (q)r < C” for all € €]0,&0[. Then, by the same
argument used for point ¢), for each sequence €; — 0, possibly passing to a

subsequence, we have T}] N JUe; = TS, u. Since this is true for each {gj}jem,
T8%]

we have the convergence for the whole family, i.e., TN ue — TS, u. This
o0

concludes the proof. O
We need the following well-known result.

Theorem 3.1.41. Let H be a real Hilbert space and {A:} ¢ 1 be a family
of bounded self-adjoint operators converging in norm to the bounded self-
adjoint operator A, i.e., limeo || Ae — Al gy gy = 0. Then isolated eigen-

values A of A of finite multiplicity are exactly the limits of the eigenvalues of
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A., counting the multiplicity. Moreover, the corresponding eigenprojections
converge in norm.

Thanks to Theorem [3.1.41} as an immediate corollary of Theorem [3.1.21
we have

Corollary 3.1.42. Let Q be a bounded domain in RY of class C2. Let \j[pe]
denote the eigenvalues of problem with density p: on Q) for all j € N.
Let \j, 7 € N denote the eigenvalues of problem corresponding to the
constant surface density IéVIiQI Then lim._,0 A\j[ps] = Aj for all j € N.

3.2 The Steklov eigenvalue problem. Mass density
perturbations

In this section we discuss the dependence of the eigenvalues of problem
on the weight p. We shall obtain results of continuity and real
analiticity of the eigenvalues in the spirit of Theorem and Theorem
We note that this problem has a rather different behavior under mass
density perturbations with respect to the operators considered in Chapter 2.
In fact, in some particular cases we are able to find mass densities which are
critical for the symmetric functions of the eigenvalues under mass constraint.
Through all this section €2 is a bounded domain of class C'. Moreover, we
shall denote the eigenvalues of problem by Aj[p] for all j € N.

3.2.1 Continuity and analyticity of the eigenvalues

By the min-max principle (3.1.10) it is possible to prove that A;[p] is a
locally Lipschitz continuous function of p € RS. In fact as in Section 2.1 it
is possible to prove that

min{\;[p1], Aj[p2]}

‘ j [Pl] J [02” = min{ess infaq p1, essinfyo /)2}

lp1 = p2llLe= (o) ;

for all p1, p2 € RS satisfying |p1—p2l| Lo (90) < min{essinfyq p1,essinfaq p2}.
The eigenvalues A;[p] depend with continuity on p also with respect the
weak™ topology of L (992). We have the following theorem.

Theorem 3.2.1. Let C C RS be a bounded set. Then the function which
takes p € C to \jlp] is continuous in the weak topology of L>°(0S).

Proof. The proof is analogous to that of Theorem and accordingly is
omitted. 0

We prove now that all simple eigenvalues and the symmetric functions of
the eigenvalues of problem (13.1.2)) depend real analitically on p and provide
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Hadamard-type formulas for the corresponding Frechét differentials. Let F
be a finite nonempty subset of N. We set

R[] == {p € RS : Njlo] # Mll, ¥j € FI€ N\ F}

O°[F] := {p € RE[F] : Njy[o] = Nps o], Vi, jo € F}.

Given p € RS, we denote by L%(@Q) the space L?(09Q) endowed with
the bilinear form
< U,V >pyagl—/ puvdo.
o0

Such bilinear form is a scalar product on L?(9€2) which induces on L?(992)
a norm equivalent to the standard one. Then we have the following result.

Theorem 3.2.2. Let F be a nonempty finite subset of N. Then RE[F] is
open in L™ (0Q) and the symmetric functions of the eigenvalues

AF,h[p]: Z Ajl[p]"')‘jh[p]v h:1,...,‘F‘,

J1yesJn€F
J1<Jh

are real analytic in RS[F]. Moreover, if F = Ul_  Fy and p € N{_,O°[F}]
is such that for each k =1,...,n the eigenvalues \;[p] assume the common
value Ap, [p] for all j € Fy, then the differentials of the functions Apy, at the
point p are given by the formula

Apnlolli = -3 e S /6 b (3.2.3)

k=1 leF,
for all p € L>(0N2), where

=y (’5’;':;)%’;@]12[(’Z’)A%[ph

0<h 1 <|F1| Jj=1
...... £k
0<hin<|Fl 7
hi+:+hn=h
and for each k = 1,...,n, {wlier, is an orthonormal basis in L3(8Q) of

the eigenspace associated with \p, [p].

Proof. The proof follows the same lines as that of Theorem [2.2.1] and is
accordingly omitted. O

3.2.2 Critical mass densities

We consider now the problem of finding critical mass densities for the sym-
metric functions of the eigenvalues under mass constraint, i.e., mass densities
p which satisfy KerdMp[p] C KerdApy[p], where My[p] := [, pdo. As a
consequence of Theorem and formula (3.2.3)) combined with the La-
grange Multipliers Theorem, we can give a characterization of such critical
mass densities.
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Corollary 3.2.4. Let all assumptions of Theorem hold. Then p € RS
is a critical mass density for Apy, for some h = 1,...,|F|, subject to mass
constraint if and only if there exists ¢ > 0 such that

zn: Z(TYU1)2 =c¢, a.e.on Of). (3.2.5)

k=11€F},

The analysis carried out in Chapter 2 has pointed out that for a large
class of non-negative elliptic operators subject to homogeneous boundary
conditions there are no critical mass densities for simple eigenvalues and
the symmetric functions of multiple eigenvalues. In the case of Steklov
boundary conditions the situation is much different. Indeed, if €2 is a ball,
then a critical mass density exists.

Corollary 3.2.6. Let B be the unit ball in RV . Let k € Ng. Let us denote by
ny the number of linearly independent spherical harmonics of degree strictly
less than k in RY and by di the number of linearly independent spherical

harmonics of degree k (see Corollary . Let F={np+1,..,n;+d}

and M > 0. Then the constant mass density p = % is a critical mass

density for Apy, for h =1,...,dy under the constraint faQ pdo = M.

Proof. 1t is well-known that the eigenvalues of problem (3.1.2]) on the unit
ball with constant density p = 8%]3' are of the form A\, = %, k € Np.
Each eigenvalue \; has multiplicity di and the eigenfunctions associated
with A; are exactly the homogeneous harmonic polynomials of degree k in
RY. Therefore, the set {ug; := ]m\kaJ};lil, where {HkJ};.lil is a basis
for the spherical harmonics of degree k in RY and {Hj, ; };l’“: , are normalized
such that %faB Hy jHy;do = 6;; for all 4,5 = 1,...,dy, is a basis for
the eigenspace associated with the eigenvalue ;. Thus condition ([3.2.5)) is
satisfied since it is well-known (see e.g., [40]) that

dy
E uiyj =c¢, on 0B,
j=1

for a suitable constant c¢; > 0. Then the constant density ‘8—]%' is a critical
mass density for Agp,. O

Remark 3.2.7. In the same hypothesis of Corollary [3.2.6, consider the

particular case of F = {2,...,N + 1}. We note that dy = N and the set
1

{ui; = cjacj}j-v:l, where ¢; = (‘8—]%' fan?da> for all j = 1,...,N 1is

a orthonormal basis in L?>(OB) of the eigenspace associated with the first
positive eigenvalue % of problem (3.1.2) on the unit ball with constant

density, which has multiplicity N. Then the constant density % 1$ a critical

mass density for Apy, for h =1,...,N under the constraint faB pdo = M.
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It is interesting to compare Corollary and Remark with a
classical result proved by Hersch, Payne and Schiffer [61] in the case of a
class of planar domains. We recall that in the case of the unit ball in R?
and constant density 27, we have that A2[32] = A3[2£] = 27. We have the
following theorem.

Theorem 3.2.8 (Hersch,Payne,Schiffer). Let Q be the unit disk in R? cen-
tered at zero and M > 0 be fized. Then

2

NlpNals] < oy

The equality is attained only at p = %

Thus in the case of a ball in R? the constant mass density is in fact the unique
maximizer for the first positive eigenvalue A\a[p] among all mass densities
preserving the total mass. We refer to [I4] for further discussions on the
problem of maximization of Steklov eigenvalues subject to mass density
perturbations.

In the next section we consider the problem of minimizing A2[p] among
all mass densities preserving the total mass.

3.3 Minimization of the first positive Steklov eigen-
value

Let © be a bounded domain in R of class C! and M > 0 be a fixed number.
Let A2[p] be the first positive eigenvalue of problem on €. We shall
prove that there exists a sequence p, of densities such that |, aq Pedo = M
and Az[p:] — 0 as € — 0. Therefore, the problem

min  Ag[p]
pERS
Joq pdo=M
has no solutions. In Subsection [3.3.1| we prove the result for the unit ball in
R2. In Subsection [3.3.2] we extend the result to the case of the unit ball in
RY for N > 3. Finally, in Subsection we consider the case of general
bounded domains of class C' in R2.

3.3.1 The case of the ball in R?

Through all this subsection, we consider problem (3.1.2) when 2 = B is the
unit ball in R? centered at zero. We denote by R,[u] the Rayleigh quotient
of a function u € H'(B):

_ fB |Vul?dzdy

R
P[u] faB pUQdO'
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where p € RS. From (3.1.10), we have the following variational representa-
tion of the first positive eigenvalue of (3.1.2)

A = i R,lul. 3.3.1
2lel = Lo plu] (3.3.1)
Jop Pudo=0

It is convenient to use polar coordinates (r,6) € Ry x OB in R? and the
corresponding change of variables z = rcos(6),y = rsin(f). Given M > 0,
we define the family of densities {p.} C L%*(0B) written in polar
coordinates as follows:

e€]0,e0(

pe(0) = {5, ifdele,m—elU[r+e2m—¢l, (33.2)

Moe@nite) it g € [0,e[Ulm — e, 7w + €[U]2m — &, 27,

for all € €]0,¢0] with gy sufficiently small. Note that | op Pedo = M for
all € €]0,e9[. The densities p. are piecewise constant and concentrate in
a neighborhood of two antipodal points, while they vanish in all the other
points, as € — 0. We have the following theorem.

Theorem 3.3.3. Let p. be defined by (3.3.2)). Let \a[p:] be the first positive
eigenvalue of problem (3.1.2)) with p = p. on the unit ball B in R%. Then

;l_r)r(l) A2[pe] = 0. (3.3.4)

Proof. Let BT be the ball of radius 1 centered at (1,0), B~ the ball of radius
1 centered at (—1,0), BX the ball of radius /2 — 2 cos(g) centered at (1,0)
and B the ball of radius /2 — 2 cos(e) centered at (—1,0). We introduce
the family of trial functions u. (see Figure given by

—In(y/(1—2)2+4?), if (x,y) € (BNB")\ BL,

—1In(e), if (x,y) € BN B,
ue(z,y) = ¢ In(y/ (1 +2)? +¢?),  if (z,y) € (BNB7)\ B,

In(e), if (z,y) € BN B_,

0, if (z,y) € B\ (BTUB").

By construction u. € H'(B) and by symmetry faB peusdo = 0 for all € €
10, e0[. Hence, u. is a suitable trial function for (3.3.1).
We have

A1fpe] < Rop. [ue], (3.3.5)

for all € €]0,ep[. Note that |u.|, |Vue| and p. are symmetric with respect to
the x and the y axes. Then we compute the integrals appearing in R, [u] re-
stricted to BN{(z,y) : > 0,y > 0}. We consider the numerator of R,_[u.]
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Figure 3.2: Trial function u. with € = 0.05.

first. We have

/ |Vue|?dedy = / |Vue|*dzdy
BN{z>0,y>0} BnBtN{y>0}

<

/ Vi |*dzdy, (3.3.6)
Btn{z<1,y>0}

where the first equality holds since u. = 0 in B\ (BT U B™) , and the last
inequality follows from the fact that we are integrating a positive function
on a larger set. Here we have denoted by . the function on BT defined
by de(z,y) = —In(y/(1 — )2 +y?2) for 2 — 2cos(e) < (1 — )2 +y? < 1
and i.(r,y) = —In(e) for (1 — 2)? + y®> < 2 — 2cos(e). Now we use
the polar coordinates (r,6) with respect to the point (1,0) and the cor-
responding change of variables (x,y) = ¥(r,8) = (1 + rcos(),rsin(0)),
with 7 € [0, +o0], § € [0,27]. In this new coordinates (¢ (r,0)) = —In(r)
for /2 —2cos(e) < r < 1and (¢(r,0)) = —1In(e), for 0 < r/2 — 2 cos(e).
In this new coordinates the right-hand side of is written as

/ Vi |*dady
Btn{z<1,y>0}

1
Zdrdf = —= In(y/2 — 2 cos(¢)).

T rl
_/g /1/2—2(308(6) r 2

We note that
In(y/2 — 2cos(e)) = In(e) + O(£?), (3.3.7)



95

as e — 0.
Now we consider the denominator of R,_[u.]. We have

CM—e(2n—4
peuldo :/ £(2m — de) (Ine)2df
0

4e

/8Bﬁ{z>0,y>0}

™

+/E3£[ln (28111 <§>>rd9
- <M_€(2”_4E)) (ln€)2+€/21 s

sin(5) /1 - &

- )> (Ine)? + COS’S(;) /Q;H(;)(ln 5)2ds
_ <M —e(2m — 45)) (ne)?

-2 () oo ()]

COSE(;) [2— 4sin (g) + 4sin (%) In (2sin (%))
o) o cin )]

= 2¢ + O(*(Ine)?),
as € — 0. From and , it follows that
fBﬁ{x>O,y>0} |Vue|*dzdy c_ 7 (In(e) + O(e?))
faBm{x>0,y>0} peutdo — o (W(ln )2 + 2+ O(e?(In 5)2)) 7

as € — 0. Then, from (3.3.5) and using a Taylor expansion, we have

2 4me (4 — (lne)?) g
A < 0
tlee] < M|1In(e)| * M?(lne)3 * In(e) )’
as € — 0, which yields (3.3.4). Moreover we have an upper bound for the
rate of convergence of A;[p:] to zero, as € — 0 (see Figure [3.3)). O

Remark 3.3.8. We note that a basis of the harmonic functions on the unit
ball B in R? is given (in polar coordinates) by

1,1n(r), ! cos(16), r' sin(10), 7' cos(10), r ' sin(16),
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AAAAAAAAAAAAAAAAAAAAAA

o 47re(4—7r(lns)2)
M) T 3 me)?

Figure 3.3: Plot of with M = 27 and ¢ €]0,0.2[.

forl € NJI > 1. When we consider problem , we require that the
solutions are regular in the interior of the domain. Therefore we consider
only the functions 1,7! cos(16),r'sin(16), I € N,1 > 1. In the case of problem
with density given by , the coefficient p. vanishes everywhere
but in two points, say pT,p~, where it blows up, as € — 0. Therefore,
intuitively the harmonic functions which better mimic the behavior of an
eigenfunction near these two points are exactly In(r),r " cos(10), ! sin(16),
translated in such a way that the singularity occurs at the points where the
coefficient blows up. In particular, we note that the harmonic function In(r)
corresponds to the value | = 0, i.e., it is candidate to be the “second eigen-
function” of the zero eigenvalue of the limiting problem. Intuitively, the
limiting problem (whatever it means), has a zero eigenvalue of multiplicity
2, and the eigenspace is spanned by the constant and by a suitable transla-
tions of In(r). By following this heuristic intuition, one could guess what
are the test functions to be used in Rayleigh quotient for the first positive
eigenvalue in the case of the unit ball B in RY, for N > 3.

3.3.2 The case of the ball in RY with N >3

Thorugh this subsection we denote by B be the unit ball in RV centered
at zero, with N > 3. We introduce the spherical coordinates (r,6) =
(r,01,....,0n_1) € Ry xOB in RN centered at 79 = (21,0, 72,0, .-, Zn0) € RY,
and the corresponding change of variables given by

x1 = 1,0+ rcos(br),
Ty = g0+ rsin(fy)cos(bz),
xz = x30 + rsin(f;)sin(bz) cos(h3),

TN—1 = xN-10+7rsin(b;)---sin(ny_2)cos(On_1),
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TN = INoT rsin(&l) ce- Sin(@N_g) sin(HN_l).
The spherical volume element in these coordinates is given by
do =1V "1sin(01)V 2 sin(0o)V 2 - - - sin(On_2)drdf1dbsy - - - dOn_.

We define the subsets of RV, Bt B~ B_+, B_ as follows

Bt := B((1,0,...,0),1),
B~ :=B((-1,0,...,0),1),
Bt := B((1,0,...,0),¢),
B := B((-1,0,...,0),¢)
We introduce the family of densities {pe}.¢o ., C L?(09) defined by
g, if z €9B\ (B uUB),
Pe(T) == Moc(Nuy—21C.]) . _ (3.3.9)
c {<2|g|2'> if 2 € BN (BF UBD),

where M > 0 is fixed, Nwy is the N — 1-dimensional measure of 0B and
C. :== BN BZ. Note that |0BN Bf| = |0B N B | =|C|. By construction
Jap p=do = M for all € €]0, o], for a suitable g9 > 0.

We have the following theorem.

Theorem 3.3.10. Let p. be defined by (3.3.9). Let A2[p:] be the first positive
eigenvalue of problem (3.1.2) with p = p. on the unit ball B in RYN. Then

lim Ao [p.] = 0. (3.3.11)
e—0

Proof. Let u. be the function on B defined by

(Voo 12+ = )M —1, ifxe Bn(Bt\BY),
xr1— o e S

u(x):: 1-— 1 . ifzeBN(B\B).
) (\/(x1+1)2+x§+--~+x?\,>N 2 ( \ BY)
1_51\%27 it x e BNB_,
L0, if € B\ (BTUB").

By construction, u. € H'(B) and [, p-u-do = 0 for all € €]0,e0[. Hence
ue is a suitable trial function for the Rayleigh quotient of Az[¢]. Indeed we
have

Aafpe] < Ry, [ue], (3.3.12)

for all € €]0,e0[. By the symmetry of |uc|, |Vue| and p. we can consider
the integrals appearing in the Rayleigh quotients restricted on BN{z; > 0}.
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We consider the numerator of R,_[u.] first and use the spherical coordinates
centered in (1,0,...,0). We have

N(N —2)? L
/ |Vue|?de < ()WN/ =Ny
BN{z1>0} 2 e

— N(Ngz)“”v <5N1_2 - 1> . (3.3.13)

where we extended the function u. to the whole of B* as we did in the proof
of Theorem Now we consider the denominator of R,_[u.]. We have

M—s(NwN—2|Ce|)< 1 _1>2

2
peuzdo = —
/83ﬁ{x1>0} oE 2 eN—2
2

1

—1| do. (3.3.14)

N-2
x1—1)2+x§+~-+x%v)

+e/a | (
BA(B+\ B2 (

We need to estimate the second term in the right-hand side of (3.3.14)). It
is straightforward to see that

2

1
—11 do

© /e)Bn(BﬂB;) (\/(

)
961—1)2—1—30%—1----4-30?\,)

1 2
zfs(W—l) 0B N (B \ BY)

1 2 1 2
:\8BﬂB+|<6N2—1> 5—\Ca|'<5zvz—1> e (3.3.15)

We note that |C.| € O(eN71) as e — 0. From (3.3.12)), (3.3.13), (3.3.14)
and (3.3.15)) we have

)\2[ps] <

N(N - 2)0.)]\[
2 (on=y — 1) (MEN=2AD o 9B 0 B - | Cl)

(3.3.16)

We perform a Taylor expansion of the right-hand side of (3.3.16)) and obtain

A2 [pe}

< N2

N(N - 2)w N(N —2)wn (20BN B*| — Nw
(MO Dl NV 2020805~ New)e )

which yields formula (3.3.11f). Moreover, we have an upper bound for the
rate of convergence of Ao[e] which depends on M and N (see Figure[3.4). O
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Figure 3.4: Plot of eN =2 (N(LM?)WN) with M = wy, € €]0,0.2[ and N = 3
(Blue), N =4 (Red), N =5 (Orange).

3.3.3 The case of an arbitrary () C R?

In this subsection we consider a bounded domain € in R? of class C'. We
shall consider only the case of R? since the computations are less involved.
The result for N > 2 can be obtained by following the same scheme (see
also Subection . Through this subsection we denote by = = (1, z2)
an element of R

Let x4, z_ € 092 be such that

dxy,z_) > d(z1,22), V1,29 € 0.

The distance function d from R? to R is continuous and 9 x 95 is a compact
set, therefore there it has a maximum. We write 24 = (241,24 2) and
r_ = (x_1,2_2). We set

d($+7 x*)
-5
We introduce the subsets B}, B, , BX, B- of R? defined in the following way

(see Figure [3.5):

d* =

B} := Bz, d*),
B, := B(x_,d"),
B := B(z4,¢),
BI := B(z_,¢).

Let M > 0 be fixed. For all € €]0, e[ with €9 small enough, we introduce

the family {pe}.cjo.[ C L?(0R) defined by

e, ifzxedQ\ (BfUB;),
pe(x) =4 py, if 2 €0QNBZ, (3.3.17)
p—, ifxedQnBZ,
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Figure 3.5: The regions Q, BX, BZ,QN B, QN B, .

where p4, p_ are suitable constants depending on M and e which solve the
following linear system

(3.3.18)

920 B [ps + 0920 B |p- + |09\ (B U BT)|e = M,
90N B |p. — |09 1 B |p- = 0.

Note that the determinant of the matrix associated with system is
given by —(|02N BX |01 B-])? and is different from zero for all € €]0, ¢|.
Moreover, M — |0Q\ (BX U B )|e # 0 for all € €]0, gg[ for gy small enough.
We solve system and obtain
M — |09\ (B UBD)|e

2100 N BY|
M — |09\ (B UB)|e

210920 B |

P+ =

p_
By construction, faﬂ pedo = M for all € €]0,eq].
We have the following theorem.

Theorem 3.3.19. Let Q be a bounded domain in R? of class C* and let p.

be defined by (3.3.17). Let \2[p| be the first positive eigenvalue of problem
(13.1.2) with p = p: on Q. Then

gl_I}(l] A2[pe] = 0. (3.3.20)
Proof. Let the function ul be defined by

o) = —In (%), if z € QN B,
e Ve —1n<'“””;73f+‘>, if 2 € QN (BF\B).
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Let a(e) € R be defined by

B 0Q N Bt |pyIn (5) + Efaﬂm(Bj\Bj) In <|x;f+‘> do

020 B |p- (&) + € [ygns-\p:) 0 (Iw:if_l) do

a(e) :

for € €]0,e0[. We define the function u_ by
B a(e)ln (£, if v € QN B,
Ue ({E) = <|x—x,| . _ _
afe)In (== ), ifzeQn (B \ BD).
Let the function u. from €2 to R be defined by

ul(z), if z € QN (B),

us(x) == quz (z), if x€Qn(B;),
0, if z€Q\ (B UB;).

By definition |, 9 Ptte = 0 for all € €]0, &0, where ¢¢ is small enough.

Figure 3.6: Trial function u, with € = 0.05.

We need more information on the coefficient (). We note that a(g) > 0
for all £ €]0, g9[. Moreover, we note that

ale) < 109N Bt |pyIn (£)
= |09 N B |p-In(F) + |02 N (B \ B=)|eln ()

- 109N B |pyIn (5)
02N B |p-In()

+ O(eln(e)) =14 O(eln(e)),
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as ¢ — 0. Hence, if g is small enough, a(¢) is strictly positive and bounded
away from zero and infinity, uniformly in € €]0, go[. Moreover lim._,o a(c) =
1, see the second equation in . Then u, is well-defined and belongs
to H'(Q). Therefore u. is a suitable test function. We have

A2[pe]

- meBj |Vue|2dz + fQﬁB: |Vue|2dz
B fanBJ p+uido + faQnB; p-uzdo + 5fanm(Bj\B;r) uzdo + Effmm(B;\B;) uzdo
fB:r \Vu5|2dx+f5: |Vue|2dz

a (pﬂ@ﬂ N BI |+ ae)2p_ 60N Bg_|) In (d%)2 +€fanm(3j\}33) u2do + ‘Sfaﬂm(B;\Bg) u2do
(@& +1) [y Ve Pda
- (p+\aﬂ N B | + p_a(e)?00n B;|) n (£)?
2 (af)? + 1) In (£)
(M—\BQ\(JQB’?UBE_)\E) (a(e)2 + 1) 1n (d%)?
4m

= . (3.3.21)
|In () | (M =199\ (BF U BD)|)

We use a suitable Taylor’s expansion in (3.3.21]) and obtain
- 4 47el0Q\ (BF U BD)| ( g2 )
~ Mlog (&) | M?|In (%) | In(e) )’

as € — 0 (see Figure . This yields formula (|3.3.20)). O

A2 [Pa]

€
0.05 0.10 0.15 0.20

: . 4
Flgure 3.7: Plot of W

og( 7 )|

with M = 2.9, d* = 1, ¢ €]0,0.2].

3.4 On the optimization of the first positive Dirich-
let and Neumann eigenvalues

In this section we consider the eigenvalue problem for the Laplace operator
subject to Dirichlet and Neumann boundary conditions and with density
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p € R, where R is given by . We show that there exist densities
preserving the total mass such that the first positive Dirichlet eigenvalue
is arbitrarily close to zero or arbitrary large. Also, we prove that there
exist densities preserving the total mass such that the first positive Neu-
mann eigenvalue is arbitrarily close to zero. The maximization of the first
Neumann eigenvalue among all densities preserving the total mass seems
to be a more complicated issue. Actually, we have been informed that this
problem has been solved by means of techniques from differential geometry.
The answer is that there exists a uniform upper bound for the Neumann
eigenvalues under the constraint that the mass is fixed. It is still unclear if
such an upper bound is attained or not. We refer to the paper [30] for a
geometric approach to the study of the spectrum of the Laplacian.

3.4.1 Optimization of the first Dirichlet eigenvalue

Let Q be a domain in RY with finite measure, p € R and M > 0 be a
fixed number. We consider the Dirichlet eigenvalue problem for the Laplace
operator

(3.4.1)

—Au = Apu, in €,
u =0, on 01,

in the unknowns u (the eigenfunction) and A (the eigenvalue). It is well-
known that for all p € R, problem (3.4.1)) admits a diverging sequence of
positive eigenvalues of finite multiplicity

0 < Mol < Aal] < - < Ajlol < -

The first eigenvalue A;[p] is positive and simple, and an eigenfunction asso-
ciated with A;[p] does not change sign in .

The aim of this subsection is to prove that there exist sequences p. and p.
in R such that [, pedz = [, pedx = M for all € €]0,¢¢[, and Ai[pe] = +o0,
A1[pe] = 0, as € — 0. Thus, the problems

max A
max A1 [p]
Jq pdz=M

and
i A
min 1[p]
Jq pdx=M
have no solutions.

We start with the problem of the maximization. In this case we need the
additional assumption that €2 is a bounded domain of class C2. Let p. = p.,
where p, is defined by (3.1.20). We note that [, p.dz = M for all € €]0, o],
for a suitable ey > 0 small. We have the following theorem.
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Theorem 3.4.2. Let Q be a bounded domain in RN of class C%. Let p. be
defined by . Let A\1[pe] be the first eigenvalue of problem with
p = pe. Then

lim Al[ﬁg] = +o0.

e—0
Proof. For all € €]0,&0[, with g9 > 0 small enough, let u. € H(Q) be the
unique eigenfunction associated with Ai[p¢] such that [, peuldr = 1. Then
it holds

Mpe] = /ﬂ Vue|2da,

for all € €]0, e9[. Assume by contradiction that there exists a constant C' > 0
which does not depend on £ > 0, such that A\[p;] < C, for all € €]0,eg].
Thus, [, |Vue[*dz < C and from the Poincaré inequality, uellr2) < C7,
for a constant C’ > 0 which does not depend on € > 0. Then there exists
u € H}(2) such that, possibly passing to a subsequence, u. — u in H}(€2),
as ¢ — 0, and u. — u in L?(Q), as ¢ — 0. From Lemma it follows
that lim._o [, peuide = % Jaq u*do = 0, which is a contradiction with
the fact that [, p-u?dz =1 for all € €]0,g0[. Thus A\ [p:] — +00 as € — 0.
This concludes the proof of the theorem. O

~N -

Figure 3.8: Eigenvalues of problem (3.4.1)) on the unit ball in R? with
p=pe, M =m, e €]0,1].
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Now we consider the problem of the minimization of the first Dirichlet
eigenvalue. Let Q be a domain in RY with finite measure. Let zo €  and
By be a ball centered at zq such that By C . We denote by r¢ the radius
of By. For all € €]0, /2], let B. the ball of radius ¢ centered at zo. Let the
function p. € L*>(£) be defined by

. {Ms(lw"%”, if z € B.,

ETWN

_ (3.4.3)
g, if x € Q\ B..

By definition, [, pedx = M for all € €]0,r/2[.

Figure 3.9: Test function u. on Q C R

We have the following theorem.

Theorem 3.4.4. Let Q be a domain in RN with finite measure. Let p. be

defined by (3.4.3). Let \i[p:] be the first eigenvalue of problem (3.4.1) with
p = pe. Then
lim A\ [pc] = 0. (3.4.5)

e—0

Proof. We distinguish the case N = 2 and N > 3. We start by proving
(3.4.5) in the case N = 2. Let u. € H}(Q2) be defined by

—1In i), if x € B,
us(z) :=<{ —1In M) , if z € By \ B,
0, lf.%GQ\EQ
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By definition, u. € H}(Q) for all £ €]0,79/2[. From the Min-Max principle

we have that
Jo IVuc|?dx

. 3.4.6
Jq Peuddx ( )

At[pe] <

It is convenient to use standard polar coordinates (r,0) € Ry x B in R?
with respect to the point zyg. We have for the numerator in ([3.4.6))

2T To 1
/ Ve |*de = / / —drdf = 2mIn (T—{)) . (3.4.7)
Q o Je T €

For the denominator we have

/psu da
_5/%/ <1n< )) rdrad + |Q|*7“5 /2”/ ( <>) Td:d@
=2 (-2 () (14 () e+ (1 — (0] - 7)) (m(é)) ,

(3.4.8)
Therefore, from (3.4.6)), (3.4.7) and (3.4.8)) we have
)\1[/35}
< 27 In (?0) N
Z(rd—e2—22In(2) (1+1n(2))) e+ (M — (| — me?)) (ln (%))
(3.4.9)

The right-hand side of (3.4.9)) clearly goes to zero as ¢ — 0. In fact, we
can make a Taylor expansion and obtain that the right-hand side of (3.4.9))
equals

2T €
M (e/ro)] ¢ <\ 1n<s>|> :

as € = 0. This concludes the proof in the case N = 2.
Consider now the case N > 3. Let u. € H}(£2) be defined by

61\%2 - TN%m if x € B,
0
ua(x) = |x_x;|1v—2 - TN1—2) it z € By \ B,
0
0, if € \ By.

By definition, u. € H}(Q) for all € €]0,7/2[. From the Min-Max principle,
A1[pe] satisfies the inequality (3.4.6]).
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It is convenient to use standard spherical coordinates (r,6) € Ry x 0B
in RV with respect to the point z9. We have for the numerator in ([3.4.6)

/ |V |*dx
Q

- /BB /TO(@ — N)rM2 Nl grde = Nwy (N — 2)(e* N — 27N,

For the denominator we have

/v 24 / /TO 1 1Y N-14,4
PeU AT = € ~N 5 N5 T rac
o o e\ T
2
M —¢e(|Q] — 1
+ = NwNE / / N3 rNldrdo
WNE OB TO

N —2)?
= wnN (Nrg N€2+7N—464 N réNsN—(N_LL) T§N>5

+ (M — (|9 = eNwn)) (rg™ —27N), (3.4.11)

if N >3 and N # 4, while

1\2
/ Pl de = 5/ / ( — 2) r3drdo
oB o
—e(|Q] - 1\?
al ‘4 it / / < 2) r3drdo
wy€ OB 7"0

(r§ — ) ((r§ — ) (M — £]Q) — 2rge’ws)

€
= —4 In{— 3.4.12
T354 cwyq In <r0> , )

if N = 4. Therefore, from (3.4.6)), (3.4.10), (3.4.11)) and (3.4.12)), we have

Al[ﬁs]
W (N'rgiN

if N >3, N#4, and

Nuwpy (N —2)(e2~N - p27)
— N-2)2 4
11454*1\’ 77"3 NeN _ 7(]\,_4) ré N)s+( M —e(1Q| — eNwp)) (7'3 N —e2-N)

(3.4.13)

<

8wi(e™2 —ry?)

222V ((r2—e2) (M —e|Q)—2r2e5 ’
(r2—e2)((r3—¢ )5884 e|Q)—2rdedws) dew, In (%)

A [pe] < (3.4.14)

if N =4.
The right-hand side of both (3.4.13) and (3.4.14)) clearly goes to zero as
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€ — 0. In fact, we can make a Taylor expansion and obtain that the right-
hand side of both (3.4.13]) and (3.4.14]) equals
N(N —2
(M )5N_2—|—O(5N_1)’

as € — 0. This concludes the proof in the case N > 3. ]

(a) Ai[pe] on the unit ball in R2, (b) A1[pe] (red) and mﬁ (blue),
M =m,e€]0,1]. €€]0,0.1[.
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3.4.2 Minimization of the first positive Neumann eigenvalue

Let Q be a bounded domain in RY of class C' and M > 0 be a fixed number.
We consider the eigenvalue problem . We recall that the first eigen-
value A1[p] of problem is zero, and the corresponding eigenfunctions
are the constant functions on Q. The second eigenvalue Aq[p| is positive.
The aim of this subsection is to prove that there exists a sequence p. € R
such that [, p.dz = M for all € €]0, gg[, for a suitable g9 > 0, and such that
A2[ps] = 0 as € — 0. Thus the problem

in A
min - A; (]
Jq pdx=M

has no solutions.

Let x1, 29 € Q, 21 # 2, and let 79 > 0 be such that B; € Q, By C Q
and By N By = (), where B; and By are balls of radius r¢ centered at x
and g, respectively. Let € €]0,79/2[ and let B, 1, Be 2 be the balls of radius
¢ centered at x; and x9, respectively. We introduce the function p. € R
defined by

£, if € Q\ (B:1 UBe,),
p=(x) = {Ms(9|25NwN) if 2 € By UB.o, (3.4.15)

2eNwn ’

for all € €]0,79/2[. We note that [, p.dz = M for all e €]0,79/2[.
We consider problem (3.1.12)) with p = p.. We have the following theorem.

Theorem 3.4.16. Let Q2 be a bounded domain in RN of class C'. Let p. be

defined by (3.4.15)). Let Aa[pc] be the second eigenvalue of problem (3.1.12))
with p = pe. Then

lim Ag[p:] = 0. (3.4.17)
e—0

Proof. Let u. € H'(Q) be defined by

(_1n (%)7 if x € B, 1,
I (2), if 2 € B.o,
us() ' =< —In <%) , if z € B\ Be1,
In (%) , if z € By \ B: g,
0, if x € Q\ (B1 U Ba),
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if N =2, and by

61\%2—7}1}\%2, if x € B.1,
—w%z—krév%g, if x € B; 2,

ue(x) = |m_th_2 - ré\,l_Q, if z € By \ B:1,
~fmp= e, 2 € By\ Bep,
0, if z€Q)\ (BLUBy),

\

if N > 3. Clearly u. € H*(Q) for all £ €]0,70/2[. Moreover, by definition,
Jo peucda = 0 for all € €]0,79/2[.

Figure 3.11: Test function u. on Q C R2.
We recall that by the Min-Max principle we have

Vuc|*d
Nolpe) = min Ja Vel
weH Q) [ peuld
Jq pedz=0
Then it follows that L 2
Vu
Y < JQl” el
2lpe] < Jq peuddx’
for all € €]0,r9/2[. Now the proof of (3.4.17)) follows the same lines as the

proof of formula (3.4.5)) in Theorem (3.4.4), and is accordingly omitted. In
particular, we prove that

lim —fﬂ Vel *dz =
e=0 [ peuldz

i



which implies the validity of (3.4.17)).
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Mass concentration phenomena for second order operators



Chapter 4

Neumann and Steklov
problems: an asymptotic
analysis

As we have highlighted in Chapter 3 (Theorem [3.1.21]and Corollary [3.1.42]),
we can consider the Steklov eigenvalues of the Laplace operator as limiting

Neumann eigenvalues in a problem of mass concentration at the boundary
of a bounded domain of class C? in RY. Through this chapter we shall
use a slightly different notation for the eigenvalues and the eigenfunctions
of problems (3.1.2) and (3.1.12) with respect to that used in Chapter 3.
The notation used in this chapter is more convenient in view of the analysis
which we shall carry out. We consider problem with constant density
p= %, namely

Au=0, in €, 401
%:%uu, on 0f), (4.0.1)

in the unknowns p (the eigenvalue) and u (the eigenfunction), where M > 0
is a fixed constant. We consider also problem (3.1.12) with density p = ps,

where p. is given by (3.1.20)), namely

{ —Au = Apeu, in ),

oy, on 00, (4.0.2)

in the unknowns A (the eigenvalue) and u (the eigenfunction).

In this chapter we discuss the asymptotic behavior of the Neumann eigen-
values and find explicit formulas for their derivatives at the limiting problem
in the case of the open unit ball in RY (Section and of general bounded
domain of class C? in R? (Section . In particular, in the case of the ball
in RY we deduce that the Neumann eigenvalues have a monotone behav-
ior in the limit and that Steklov eigenvalues locally minimize the Neumann
eigenvalues.
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The techniques used in Section [£.1] and Section [£.2] are completely dif-
ferent. In Section [£.I] we use the explicit form of the solutions of problem
4.0.2) on the unit ball in terms of Bessel functions. In this way problem
4.0.2)) is recasted in the form of an equation F'(\,e) = 0. Then we carry out
the analysis of this implicit equation and find a formula for the derivative
of the eigenvalues at ¢ = 0. In Section [4.2] we use classical techniques of
asymptotic analysis in the spirit of [50, 52], 53]. In particular, we postulate
an asymptotic expansion of the eigenelements of problem and justify
the expansion up to the first order.

We remark that the techniques used in Section allow to overcome the
problem of the multiplicity of the eigenvalues, which is usually an obstruction
in the application of the techniques of asymptotic analysis. In fact, the
analysis carried out in Section involves all multiple eigenvalues. On the
other hand, in Section the techniques of asymptotic analysis which we
used allow to deal only with simple eigenvalues.

4.1 The case of the ball in RY

Let B be the open unit ball centered at zero in RY, N > 2. We denote by
wy the measure of B. Therefore, the (N — 1)-dimensional measure of 0B is
given by Nwy. In this section we consider problem (4.0.1) with Q = B. As
is well-known (see also Corollary the eigenvalues of problem on
the unit ball with constant density N—]‘fN are given explicitly by the sequence

NCUN
= — 4.1.1
122 M la l e N0> ( )

and the eigenfunctions corresponding to p; are the homogeneous harmonic
polynomials of degree I. In particular, the multiplicity of p; is (214N —2)(I+
N =3)!I/(I(N —2)!), and only py is simple, the corresponding eigenfunctions
being the constant functions.

As in Chapter 3, for any ¢ €]0,1[, we consider a mass density p. in
the whole of B defined by . We recall that for any x € B we have
pe(x) = 0 as e — 0, and [z pedx = M for all ¢ > 0, which means that
the total mass M is fixed and concentrates at the boundary of B as ¢ — 0.
Then we consider problem (4.0.2)) on B with p = p..

The eigenvalues of on B with density p. have finite multiplicity
and form a sequence

Xo(e) < Mi(e) < Aafe) < -+,

depending on e, with A\g(¢) = 0. Recall that by Corollary [3.1.42| we have
that for any [ € Ny
Ai(e) = w, ase—0, (4.1.2)

(see also [10], [72]).
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In this section we study the asymptotic behavior of X\;(¢) as ¢ — 0.
Namely, we prove that such eigenvalues are continuously differentiable with
respect to € for € > 0 small enough, and that the following formula holds

_ 2 247

NO) = =5 NN (4.1.3)

In particular, for [ # 0, Aj(0) > 0 hence X;(¢) is strictly increasing and the
Steklov eigenvalues y; minimize the Neumann eigenvalues \;(¢) for € small
enough. We note that our analysis concerns all eigenvalues y; with arbitrary
indexes and multiplicity, and that we do not prove global monotonocity of
Ai(g), which in fact does not hold for any [; see Figures

In Subsection we prove formula . The proof of the results
relies on the use of Bessel functions which allows to recast problem
in the form of an equation F(\,e) = 0 in the unknowns A,e. Then, af-
ter some preparatory work, it is possible to apply the Implicit Function
Theorem and conclude. The application of this method requires suitable
Taylor’s expansions and estimates for the corresponding remainders, as well
as recursive formulas for the cross-products of Bessel functions and their
derivatives. The estimates for the remainders are contained in Subsection
H1.2 In Subsectiond.I.3we consider the case N = 1. In Subsection L. 1.4l we
study the behavior of the eigenvalues and their derivatives under dilations
of the domain. In Subsection [£1.5 we establish recursive formulas for the
cross-products of Bessel functions and their derivatives used in Subsection

RN}

4.1.1 Asymptotic behavior of Neumann eigenvalues
In the sequel we shall use the standard spherical coordinates (r,6) € Ry x0B

in RV,
We note that, when d(z,0B) < ¢, we have p.(z) = % To

shorten notation, in what follows we will denote by a and b the quantities

defined by
a:=VX(l—¢), and b:=+/Ap:(1—¢),

where

N M—sz(l—é‘N
wN<L—u—s)>'

fe =
We have the following lemma.

Lemma 4.1.4. Given an eigenvalue A of problem , a corresponding
eigenfunction u is of the form u(r,0) = S;(r)H;(0) where Hy(0) is a spherical
harmonic of some order | € Ny and

=2 J,, (Ver), ifr<l-—eg,
Sy(r) = (4.1.5)
=% (ady, (VABr) + BYy (VABer)), if1—e<r <1,
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W and «, B are given by

o= (T (@Y40) ~ LI, (@)Y 0))

wh ra , ,
8="5 (30 (@) = I, (0) (@)

Proof. Recall that the Laplace operator can be written in spherical coordi-
nates as

where v 1=

A= arr + Ear + %ASa
r r
where Ag is the Laplace-Beltrami operator on the unit sphere 9B of RY.
In order to solve the equation —Au = Ap.u, we separate variables so that
u(r,0) = S(r)H(#). Then using [({+ N —2), | € Ny, as separation constant,
we obtain the equations

128" 41 (N —1)8" +1?Xp.S — (1 + N —2)S =0 (4.1.6)

and
—AgH =1(l+ N —2)H. (4.1.7)

By setting S(r) = rl_%g(r) into l’ it follows that S(r) satisfies the

Bessel equation
2

N 1~ N
§"+ -8+ (m-i@)s_o.

Since the solutions u of problem are bounded on Q and Y}, (z) blows
up at z = 0, it follows that for r < 1 — e, S(r) is a multiple of the function
rl_%Jyl( Xer). For 1 —e < r < 1, S(r) is a linear combination of the
functions rlfgj,,l(\/r,é;r) and Tli%Yw(\/E’l“). On the other hand, the
solutions of equation are the spherical harmonics of order [. Thus u
can be written as in for suitable values of a, 8 € R.

Now it remains to compute the coefficient o and g in . Since the
right-hand side of the equation in is a function in L?(Q) then by
standard regularity theory a solution w of belongs to the standard
Sobolev space H2(2), hence o and 8 must be chosen in such a way that u
and J,u are continuous at r = 1 — ¢, that is

Ty (VAB:(1 =€) + BY,, (VAG(1 =€) = J, (VAe(1 =),
all, (VA1 = €)) + BY,(VAR(L — ) [J;l £(1-2).

Solving the system we obtain

_ Iul@)Yy, (0) — §77,(a)Ys, () _ 5 u(0)Jy(a) — T, (b)Jy,(a)

v

T (0)Yy, (b) = J7,(0)Y,, (b) T b)Yy, (0) = J}, (b)Y, (b) -

Note that Jyl(b)YV’l(b) J,, (b)Y, (D) is the Wronskian in b, which is known
to be 2 (see Section see also [I), §9]). This concludes the proof. O
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We are ready to establish an implicit characterization of the eigenvalues

of (L03).

Lemma 4.1.8. The nonzero eigenvalues A of problem are given
implicitly as zeros of the equation

(1 - g) Pi(a,b) + (1b6)P2(a, b) =0, (4.1.9)

b

Pz(a, b) — Jul(a) (Yyll(b)']l//z(l_g

RACACR)

)Y (8) T (- >) .

a
@) (2,0 2

—_
|
m

Proof. By Lemma [£.1.4] an eigenfunction u associated with an eigenvalue A
is of the form wu(r,0) = S;(r)H;(0), where for r > 1 —¢

mh _n a br
_MU1-3 _Z

=¥ | (@5 0§ L @V () (1)

+ (%Jm (), (@)= 7, ()T (a)) Yw<1b_rg>] :

We require that % = %‘ = 0, which is true if and only if
h N , a b
7 (1-3) | (@05 2 @) du( )
a b
(LI )~ 000 @) Yo 2
b2 , a , b
ot | (@Y - 3,7 0) ()
a b
# (70, 010,(@) ¥4 (20| =0
The previous equation can be clearly rewritten in the form (4.1.9). O

We now prove the following lemma.
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Lemma 4.1.10. FEquation can be written in the form

M 1 N (2 — N)Nwy
A2 - Ae (D oy g B )AWN
€<3NWN Vl(1+Vl)) + 8(2 nt 21/1(1+VZ)M>

2Nwyl  2Nwyl (N— 1 wy

= > > —M—yl)g—i—R(A,E) =0 (4.1.11)

—2)\

where R(A\, e) € O(ey/e) as e — 0.

Proof. We plan to divide the left hand-side of (4.1.9)) by J}, (a) and to analyze
the resulting terms using the known Taylor’s series for Bessel functions. Note
that J, (a) > 0 for all € small enough. We split our analysis into three steps.

1;2/(%,117))’ that is
Y

Step 1. We consider the term

T o ) -V e)
2 V0 - V0L ()] @

Using Taylor’s formula, we write the derivatives of the Bessel functions

in (4.1.12), call them C;,, as follows

, b
C (1—5

(n) n—1 n—1
Y " eb o Cu,’ () eb eb
_Cul(b)+cul(b)1_€+ +(n_1)' 1_¢ +o0 .

Then, using (4.1.13) with n =4 for J;, and Y, we get

Jw(a)[ (v ) ) — T, YD)

J}, (a) |1—¢
e’ / 1 / "
LTS (Y7, (6)75; (b) — .}, (b)Y} (1))
% ’ " / "
e I ICEAC R A OB 0)
eb

+ 1—¢

(T ()Y, (b) = Yo, (0)T7, (b))

vy

[ 0¥ (5= Y ), () +

2b2

S e

£

+2(1 —e)? (

TOYL!0) = Y OJL/0) + Rao)] - (111)

where R (b), Ra(b) are the appropriate remainders in the Taylor’s formulas.
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Let R3 be the remainder defined in Lemma We set

eb

R()\,E) = Rg(a) 1—-

(Y7, (6) 5, (b) =7, (b)Y, (b))

€2b2 ! 1" / "

o —op (Y7, (0).7) (b)— T, (b)Y, (b))
e%b? ’ 1 / "
oo (070, 0 0)]

3

+ R (b) |::l+2m2(c:l[+l/l):| +R2(b)%+R3(CL)R1 (b)

By Lemma [4.1.28 it turns out that R(\,e) € O(e3) as ¢ — 0.
We also set

f(e) = bi(e)ai(e) fule);

g(e) = bi(e)ar(e)gi(e) + ai(e)ga(e);
3
he) = an (e () + G )
_ai(e)
]{7(8) - b%(E) k1(€)7
where
()= ==(-¢)
bi(e):=b ;;
fp— 1 .
T el
1
9E) = 3 a o
o 1 € 62(3+2V12) .
92(€) := (14 p)(1—e) - w2(L+u)(l—e)? 6w2(l+un)(l—¢e)?
- 2 € e2(3 4 21,?) e
fn(e) := o9 Tu=2 Bu(i-eoF (1-o2
. 1 3¢ (vt 4+ 11%)
ho(e) = (14+uv)(1—e¢) B 21+ v)(1 —e)? + 6v2(1+ 1) (1 —¢)3’
F(e) =2+ 21 3%y N et +11y?) 2 e2(2 + v,?)

-9 (=22 Buii-op (-9 (=97

Note that functions f, g, h, k are continuous at e = 0 and f(0), g(0), h(0),
k(0) # 0.

Using in (4.1.14) formula ([4.1.24) for J,,(a)/J},(a) and the explicit for-
mulas for the cross products of Bessel functions given by Lemma [4.1.41] and
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Corollary [4.1.46, (4.1.12)) can be written as

eVEkE)+ e ven@ + 222 eg0) + X3 1) + RO ).

" (4.1.15)

Py (a,b)

7,(@ that is

Step 2. We consider the quantity

Ju, (a) / b / b
T Y0 () = 2 Y ()|

5 o) -

Proceeding as in Step 1 and setting

7 af(e)bi(e) ,
1) =~ ma s ma = o
_ . di(e) 1 g2 ~ai(e)bi(e)
96 =305 (mzu o) iy E)2> ur(l— )2

= L (ll(E) l 2e (l/l — 1) 2
e =3 (m i Tra =2t )
one can prove that (4.1.16) can be written as
eh(e) + Ae2g(e) + N23f(e) + R()\, e), (4.1.17)

where R(\, e) € O(e24/2) as € — 0, see Lemma [4.1.28
Step 3. We combine (4.1.15)) and (4.1.17)) and rewrite equation (4.1.9)

in the form

e(1— g)l}(e) + 812((?16(56)) + A% (1 — %)g(e) + /\sl;((i)il(;)
+A%e3(1 - g)f(s) + /\2522((15)5(;) + A3e3b;((i)f(;) +Ro(\e) =0, (4.1.18)
where
_ \/Xb1 (8) N ~
R()()\,E) = WR()\,g) -+ (1 — 2) R()\,g)
Note that Ro(A,e) € O(e%y/e) as ¢ — 0. Dividing by ¢ in and
setting Ri(\, ¢) == w, we obtain
N - bl(é)k‘(€) N - b1(€)h(€)
(1-— E)h(s) + T1—2) +Ae(1— 5)9(8) + )\m
)

+ A\%e2(1 - g)f(s) + AQEZ;:(e)g(;) + )\35272 (e)f(e
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We now multiply in (4.1.19)) by %%6_)6) which is a positive quantity for

all € €]0,1[. Taking into account the definitions of functions g, h, k, §, h, we
can finally rewrite (4.1.19)) in the form

o (Ple) 1 E_V 2—N
A 5( 3 Vl(1+1/l)> e < y T 2Vl(1+Vl)ﬁ(€)>
2l(1+€l/l)

ple)

—2) + +R(\e) =0,

where
M —wye(l —e)N
on (N = Me = 3 () (1)

and R(\,e) € O(ev/e) as € — 0. The formulation in (4.1.11)) can be easily
deduced by observing that

M M [N-1 wy ,
= 2 - — (0] 0.
e = Noow + Now < 1 2M> +0(e%), ase—

We are now ready to prove the main result of this section.

Theorem 4.1.20. All eigenvalues of problem have the following

asymptotic behavior

2l 247
A = 4.1.21
1(e) = w + ( 3 +N(2Z+N) e4o(e), ase—0, ( )

where p; are the eigenvalues of problem .

Moreover, for all l € Ny the functions defined by \i(¢) for ¢ > 0 and
N (0) =, are continuous in the whole of [0,1[ and of class C in a neigh-
borhood of € = 0.

Proof. By using the Min-Max Principle and related standard arguments, one
can easily prove that A\;(¢) depends with continuity on € > 0 (cfr. formula

(2.1.1), see also [70, [75]). Moreover, by using (4.1.2) the maps ¢ — N(¢g)

can be extended by continuity at the point e = 0 by setting A\;(0) = 1.
In order to prove differentiability of \;(¢) around zero and the validity

of (4.1.21)), we consider equation (4.1.11]) and apply the Implicit Function
Theorem. Note that equation (4.1.11)) can be written in the form F'(\,e) =0




82 Neumann vs Steklov: an asymptotic analysis

where F is a function of class C'! in the variables (), ) €]0, 00[x[0, 1[, with

2Nwyl

)

F(A\0) = —2)\+
F(\0) = -2
M 1 N (2 — N)Nwy
Fl(A\0) = N ~ A= gy 2 TN
6( ’ ) <3NwN I/l(l +Vl)> + (2 mt 21/1(1 —I—Z/Z)M>

_ 2Nwnl <N—1 WwN )

M 2 M

By ([.1.1)), sy = Nwnl/M hence F(uy,0) = 0. Since Fj(y,0) # 0, the
Implicit Function Theorem combined with the continuity of the functions
Ai(+) allows to conclude that functions );(-) are of class C! around zero.

We now compute the derivative of N\(-) at zero. Using the equality
Nwy/M = p;/l and recalling that v; =1+ N/2 — 1 we get

l 1
= )

B w(l+w)
(2 —N) 1 14
R o e O/ R YWY (e B o
+M< o rwy) "\ NI
_ 2 1 2-N -1+ i + % l
— M Vl(l—i-yl) 2l NI 3,Ul
4p? 4
S o ¥}
NZyani 3
Finally, formula \;(0) = —FZ(u,0)/F5 (1, 0) yields (4.1.3) and the validity
of ([A1.21). 0

Corollary 4.1.22. For anyl € N there exists §; > 0 such that the function
Ai(+) is strictly increasing in the interval [0,6;]. In particular, pu; < \i(e) for
all € €]0, 4.
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Figure 4.1: Solution branches of equation (4.1.9) with N = 2, M = 7 in the
region (g, A) €]0,1[x]0,150[ . The colors refer to the choice of I in (4.1.9),
in particular blue (I = 0), red (I = 1), green (I = 2), purple (I = 3), orange
(1=4).

Figure 4.2: Solution branches of equation with N =2, M = 7 in the
region (g, ) €]0,1[x]0,50[ . The colors refer to the choice of [ in (.1.9), in
particular blue (I = 0), red (I = 1), green (I = 2), purple (I = 3), orange
(l=4), cyan (I =5), pink (I =6) .
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4.1.2 Estimates for the remainders

This subsection is devoted to the proof of a few technical estimates used in
the proof of Lemma [4.1.10

Lemma 4.1.23. The function Rs defined by

J,,(z) =24 L
J(z) v 22(1+4v)

N

+ Ry(2), (4.1.24)

is O(2°) as z — 0.

Proof. Recall the following well-known representation of the Bessel functions
of the first species

—+00

v —1) j
Jo(z) = (%) ;yn;;lm (g)Qj . (4.1.25)
For clarity, we simply write
J,(2) = 2¥(ag + azz? + agz* + O(2%)), (4.1.26)
hence
J(2) = 2" YNwvag + (v + 2)agz® + (v + 4)agz? + O(2%)), (4.1.27)

where the coefficients ag, as, a4 are defined by (4.1.25)). By (4.1.26)), (4.1.27)
and standard computations it follows that

Ju(z) 2z 2a
J(z) v viag

which gives exactly (4.1.24]). O

Lemma 4.1.28. For any A > 0 the remainders R(\,€) and R(\, ) defined
in the proof of Lemma are O(g3), O(2\/€), respectively, as ¢ —

0. Moreover, the same holds true for the corresponding partial derivatives
8,\R()\,8), 3>\R()\,6).

2+ O(z5),

Proof. First, we consider R3(a) = R3(vAe(l — ¢)) where Rj3 is defined in
Lemma and we differentiate it with respect to A. We obtain

OR3(a)  aRj(a)

oA 2\

hence by Lemma {4.1.23| we can conclude that R3(a) and ‘9%}@ are O(e2,/¢)
as e — 0.
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Now consider R;(b) and Ra(b) defined in the proof of Lemma [4.1.10
Since A > 0, we have that b > 0 hence the Bessel functions are analytic in b
and we can write

_ - e e (k+1)
Ra(b) = X gy oy (WO 0) - LY @)
k=4
and
o
too k—1_k—1
- \/gl()i(i)s) 1;4 (k —bl)!(1€_ 2)k—1 (Yul(b)Jng)(b) - Ji(b)Yu(kH)(b))

/

+o00 ki
e 2 i e (U0 - LY )

Using the fact that b = \/\/ebi(e) and Lemma we conclude that
all the cross products of the form Y (b) ,SkH)(b) - JL(b)Y,,(kH)(b) and their
derivatives (Ylf(b)JﬁkH)(b) — J,’/(b)YV(kH)(b))’ are O(y/e) and O(e) respec-
tively, as € — 0. It follows that Ri(b) and 9\R;(b) are O(c%,/z) as € — 0.

Similarly,

too Epk
b .
RBo0) =3 =g (WOYSV0) - V)40 0)
k=3
and
ORs(b)
2VA A\
_eby(e) =3 ph—1gh—1

S VE(l—¢) 2 (k—1)I(1 — )k 1

k

(2 @YD) - Y (0) 75D )

b1(e) X ckpk " ) /
e

hence Ry(b) and 9y Rz (b) are O(e?) as ¢ — 0.

Summing up all the terms, using Lemma and Corollary we
obtain

R()e) = Rs(a) {W(fi&.) <Z§ - 1) +7r(16—25)2 (1 - 11]22)

N e3b? 1/4+111/273+2u2+1
3r(l—¢)3 bt b2

a a3

+ Ry (b) |:V + 21/2<1—|—V):| +R2(b)g+R3(a)R1(b)

We conclude that R(),¢) is O(e?) as € — 0. Moreover, it easily follows that

% is also O(g3) as ¢ — 0.
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The proof of the estimates for R and its derivatives is similar and we
omit it. O

Remark 4.1.29. According to standard Landau’s notation, saying that a
function f(z) is O(g(z)) as z — 0 means that there exists C > 0 such
that | f(z)| < Clg(2)| for any z sufficiently close to zero. Thus, using Lan-
dau’s notation in the statements of Lemmas understands the
existence of such constants C, which in principle may depend on X\ > 0.
However, a careful analysis of the proofs reveals that given a bounded inter-
val of the type [A, B] with 0 < A < B then the appropriate constants C' in
the estimates can be taken independent of A € [A, B.

4.1.3 The case N =1

We include here a description of the case N = 1 for the sake of completeness.
Let © be the open interval | — 1,1[. Problem (4.0.1)) reads

if z €l —1,1],

{ (@) =0 (4.1.30)

u'(£1) = £ p(£1),

in the unknowns p and u. It is easy to see that the only eigenvalues are
pwo =0and p; = % and they are associated with the constant functions and
the function u(x) = x, respectively. As in , we define a mass density
pe on the whole of | — 1, 1[ by

pe(z) = L _1+e %fme]—l,—l—i—a[u]l—s,l[,
€ ifrel—1+¢1—¢[

Note that for any x €]—1, 1] we have p.(z) — 0 ase — 0, and fil pedx = M
for all € > 0. Problem (4.0.2) for N =1 reads

—u"(z) = Ape(2)u(z), if x€]—1,1],
{ W(=1) = /(1) = 0. (4.1.31)
It is well-known from Sturm-Liouville theory that problem has an
increasing sequence of non-negative eigenvalues of multiplicity one. We de-
note the eigenvalues of by Ai(e) with [ € Ng. For any ¢ €]0, 1], the
only zero eigenvalue is A\g(¢) and the corresponding eigenfunctions are the
constant functions.

We establish an implicit characterization of the eigenvalues of (4.1.31)).

Lemma 4.1.32. The eigenvalues A of problem (4.1.31) are given implicitly
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as zeros of the equation

2, /e <J2‘§ - 1+s> cos (2VAe(1 — €)) sin <251/>\ (gi - 1+€>>
—2—]{ F14 <‘]2Z - 1+2€> cos (%,/A (JQZ - 1+€>> sin (2&(1 —a))

=0. (4.1.33)
Proof. Given an eigenvalue A > 0 of problem (4.1.31]), a corresponding so-
lution u of (4.1.31) is of the form

Acos (VApex) + Bsin (VApex), ifze]—1,-1+¢],

+

u(z) = Ccos(VApix) + Dsin(vVApiz), ifx€]l—14¢,1—¢],
E cos (v Apex) + Fsin (v Apex), if €]l —e,1],

where p; = €, pe = % —14eand A,B,C, D, E, F are suitable real numbers.
By imposing the continuity condition for u and u’ at the points z = —1 +¢
and x = 1 — ¢ and the boundary conditions, we obtain a homogeneous
system of six linear equations in six unknowns of the form Muv = 0, where
v=(A,B,C,D,E,F)and M is the matrix associated with the system given
by

[« —p — 1) 0 0

0 0 y 1) —a -6

o |vEs e —yms —ymr 0 0
00—y P BB —peo|

n ¢ 0 0 0 0
Lo 0 0 o 9 —C |

where

= cos (v/Ape(1 - ¢))
= sin (v/Ape(1 - 2))
= cos (v/Api(1 — €))
= sin (Vpi(1 - ))
= cos (v/Ape)

(67
B
gl
5
¢
U

We impose the condition det M = 0. Easy computations give

2(B0ny/pi-+adny/petadCyi—BrCpe ) (Byi/pi—adny/petarCy/pit BIC Ve
=0.

This yields formula (4.1.33)). 0
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Note that A = 0 is a solution of (4.1.33]) for all £ > 0, then we consider
only the case of nonzero eigenvalues. Using standard Taylor’s formulas, we
easily prove the following lemma.

Lemma 4.1.34. FEquation (4.1.33)) can be rewritten in the form

AM?  \M? M
M — + <1+>\ <2+2>> e+ R(\e) =0, (4.1.35)

2 6
where R(\, €) € O(g?) as e — 0.

Proof. 1t is sufficient to consider a suitable Taylor’s expansion in formula

(4.1.33). In particular we expand the functions sin <2€ A (QME -1+ E)>
and sin (2\/ Ae(1 — 5)) up to the third order, and the functions

cos (2v Ae(1 — €)) and cos (25 A (% -1+ 5)> up to the second order. We

obtain

F(\e) = 4\/%(% —€ +52) (1 —2Xe(1 — 5)2) (1 - %)\6(% —e+ 52))

+2¢E(1—5—M)[1—2—]{+(25—1+Q—A§)(1—2As(%—s+52))]

3
+ Ro(e) =0, (4.1.36)

where Ry(¢) € O(e2\/€). We divide the right-hand side of (4.1.36)) by 2v/\e

and set R(c) = £2E)  From standard computations formula (4.1.35)) easily
2V e

follows. O

Finally, we can prove the following theorem. Note that formula (4.1.38]

is the same as (4.1.21)) with N =1,1 = 1.
Theorem 4.1.37. The first nonzero eigenvalue of problem (4.1.31)) has the

following asymptotic behavior

2
Ai(e) = p1 + g(#l +p)e+o(e) ase—0, (4.1.38)
where p1 = 2/M s the only nonzero eigenvalue of problem (4.1.30). More-
over, for 1 > 1 we have that \j(¢) — +00 as e — 0.

Proof. The proof is similar to that of Theorem It is possible to prove
that the eigenvalues \;(¢) of depend with continuity on ¢ > 0.
We consider equation and apply the Implicit Function Theorem.
Equation can be written in the form F(\, ) = 0, with F of class C*
in 10, +00[x [0, 1[ with F(X,0) = M — 222 f/ (X 0) = =22 and F/(),0) =
AME () 4 A2+ A).
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Since pu; = %, F(p1,0) = 0 and F(u1,0) # 0, the zeros of equation
in a neighborhood of (), 0) are given by the graph of a C''-function
e — A(e) with A\(0) = p1. We note that A(e) = A1(g) for all £ small enough.
Indeed, assuming by contradiction that A(e) = A\;(¢) with [ > 2, we would
obtain that, possibly passing to a subsequence, A\i(¢) — X\ as ¢ — 0, for
some A € [0, \;[. Then passing to the limit in :4.1.35) as € = 0 we would
obtain a contradiction. Thus, A;(-) is of class C" in a neighborhood of zero
and X} (0) = —F/(\1,0)/F}(A1,0) which yields formula (4.1.38)).

The divergence of the higher eigenvalues \;(¢) with [ > 1, as ¢ — 0 is
deduced by the fact that the existence of a converging subsequence of the
form X\;(e,), n € N would provide the existence of an eigenvalue for the
limiting problem different from pg and pq, which is not admissible.

O

4.1.4 Behavior of the eigenvalues under dilations

We consider problems (4.0.1) and (4.0.2]) when Q = Bp, is the ball centered
in zero and of radius R in RN, N > 2. Let M > 0 be fixed. Let the function
pe,m,r € L°(BRr) be defined by

g, if € BR(lfs),

e T) = —ewn RN (1—e)V . Bpri_o
poste) = { Sy 2

We consider now the dependence of A;j(¢) and p; and their derivatives on
the radius R. We denote by \;(¢, M, R) the eigenvalues of problem
on Br with density p. v g, while we denote by (M, R) the eigenvalues of
problem on Bpr. We introduce the following quantity:

Vul? dx
R(u,e, M,R) := IBR [V

= . 4.1.39
fBR UZpva,Rd'r ( )

From the Min-Max Principle (see ((1.3.8))) we have

A(e,M,R) = min max R(u,e, M,R), VI€N,
ECH'(BR) 0#u€E
dimE=1+1

We perform the change of variables x = Ry in (4.1.39]). We obtain
9 M
R(u,e, M\,R) = R"“R | u(R-),¢, ook 1).
It follows that

_ M
A1(8’57 MvR) =R 2)\l(€7 ﬁa 1)
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Moreover, we have

M,R) = — " RN
/’Ll( 7R) M R Y
M INON
1) =
IU'Z(RNv ) M R )

therefore p; (RMN, 1) = R~21y(M, R). We rewrite formula 1| as

2 (M, 1 22M,1w
DoN(e, M, 1)|eep = (M, 1) 2p}(M, 1wy

3 N2l + N) °
‘We obtain
_ M
85)‘[(5’ Mv R)|€=0 =R 285)\l(5a RiN’ 1)’5:0
_ g (2G| 2
N2l + N)
_ gt 2w (M, R)  2R™?u?(M, R)
3 N2l + N)

4.1.5 Cross products of Bessel functions

We provide here explicit formulas for the cross products of Bessel functions
used in this section.

Lemma 4.1.40. The following identities hold:

V(L) = LY = -
V(L) — LY =
VI - L) = = (5 -1).

Proof. 1t is well-known (see Section see also [I], §9]) that

T (2)Yy(2) = Yo (2) ], (2) = Ju1(2)Ye(2) = Ju(2)Yisa(2) = %

which gives the first identity in the statement. The second identity holds
since

LY (2) — Vo)1) = (Ju(2)Yi(z) — Yul2)TL(2)) = (2) S

Tz T2
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The third identity holds since
Y)(2)J)/(2) = J,(2)Y)(2)

= Y1) (a2 = Z0()) = T0l) (Yoo () = S¥a(e))
= VU a(2) = TRV (2) 2 (VAR = T (2)Ya(2)

2 2 w3

- (mz)l (oa(z) = T (2)) = T2 (Va2 - m») L

(Yo (2)Ju—2(2) = J)(2)Yo—2(2))
2v

Y (2)0(2) = (Yo () + —

(J1(2)Yo(2) = Y)(2)Ju(2))
v—1 1 2v
_|_

P (Y (2)Jy—1(2) = J,(2)Yy—1(2)) — — + —

= (Jl,,l(z) (Yy,l(z) - le,(z)) -Y,_1(2) (Jl,,l(z) - gJy(z))>

2 2v

N =

= D e ea(e) ~ A Yea ()

2 V2
= — —]_—’——2 s
w4 z

where the first, second and fourth equalities follow respectively from the
well-known formulas C,,(z) = C,—1(2) — 2Cu(2), 2C,(2) = Cu—1(2) — Cuy1(2)
and Cy—2(2) +Cy(z) = MCl,_l(z), where C,(z) stands both for J,(z) and

z

Y, (%) (see Section see also [II, §9]). This proves the lemma. O

k l/,k ’ b

VUAIPE) — IYPE) = (gt Qual2),  (4.1.43)

TZ

Y, ()50 (2) = Ju(2)Y P (2) =

for all k > 2 and v > 0, where r,q; € {0,1,—1}, and Q,x(2), Ry r(2)
are finite sums of quotients of the form CZ”—,;f, with m > 1 and ¢, ) a suitable

constant, depending on v, k.

Proof. We will prove (4.1.42)) and (4.1.43)) by induction. Identities (4.1.42)
and (4.1.43)) hold for £ =1 and k = 2 by Lemma |4.1.40L Suppose now that

Yo(2)JP(2) = L ()Y () = = (ri+ Rul(2)),

v mZ

V) (2) I (2) = T ()Y P (z) = G+ Qui(2)),

—(
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hold for all v > 0. First consider

Y (2) I8V (2) = T (2) YD (2).
We use the recurrence relations Cp11(z) + Cy—1(2) = 2C,(z) and 2C(z) =

Cv—1(2) —Cy+1(2), where C,(z) stands both for J,(z) and Y, (2) (see [I}, §9]).
We have

YJ(Z)JIEk-&-l)(Z) — JL//(Z)YV(’“‘H)(Z) _ Ylll(z)(Jlll)(k)(z) _ JL(Z)(YV)(M(Z)
1

= 1 [(F1(2) = Yeri (2) (Domr(2) = Toa (2D

(D) Fea () (Yer (2) — Yora(2) V]
= 1 [("-1 @I ) = L (VB @) + (Ve (DITL () = T ()Y (2)
+ (S (V@) = Yema (I @) + (Jma YVLE) — Ve (2)781(2))]

(re + Ru—1,6(2) + 76 + Rut1,6(2))

] =
e

+ Z(LEYE = Vo2 I P () + L (@Y () - Vo) I 5 (=)

= (7Y@ = Yerr (I (@) + (DY (2) = Ve I () )]

1[4
=3 {E (2rk + Ry—1k(2) + Rug14(2))

+ 2 () (Vama () + Yot (20) Y = Yal2) (o (2) + Jm(z))““)}

1
(2r + Ru—1,6(2) + Rut1,6(2))

Tz

2 (10 (1) v (2a) )

2 1
=_ |:7’k + 5 (Ru—1,5(2) + Rut1,x(2))

V2 O l(—1)F 7
izt

> (rj + Ru,j(z))] . (4.1.44)
§=0

We prove now (|4.1.43))

V(20 E) = YA (E) = (@I @) = (Y0 ()

- (WP E) = YR )

_ 2 <_qk — Quilz) — e _ Ruik(2)
zZ z

Tz +R;Jk(2)> . (4.1.45)

This concludes the proof. O
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Corollary 4.1.46. The following formulas hold

2 (2412
()Y (2) =Yy (2)J"(z) = — —1);
G -vae = = ()
2 3v2
vy’ " 7 y - 2 (122,
V<Z)Ju (Z) JIJ<Z) v (Z) 22 ( 22 ) ’
2 34+202 vt 1102
vy’ 1111 — T (Y - 2 (1= .
R R

Proof. From Lemma |4.1.41] (see in particular (4.1.45)) it follows

Y (2) = V(o) T (2) = — 2 [—qz Q) - T2 - Be2) R;g(z)}

TZ z z

2 (2—i—1/2 )
== (22 1),
Tz z

Next we compute
Y)(2) ) (2) = T, (2)Y) (2)

2 V2 Ga 2(—1)27
= — T2+Ru,2(2)_ZZJ'(!ZQ—)J'H(TJ"_RVJ(Z))
j=0

Finally, by (4.1.44)) with k = 3, we have

VUL ) = V) = 2 [rt § (R + Rusnal)

2 3 3—j

v 6(—1)%7

- P E i1,3—j+1 (Tj +RV7j(Z))
=07

2 ( 34+ 212 V4+11V2>
1-— + .

2 4

z z

4.2 Bounded domains of class C? in R?

In this section we consider problems and on bounded domains
of class C? in R?. The aim of this section is to study the asymptotic behavior
of the eigenvalues A;(e) of problem and of the corresponding eigen-
functions which we shall denote here by u;., as € goes to zero. To do so, we
show the validity of an asymptotic expansion for A;(e) and u;. as € goes to
zero. In addition, we provide explicit formulas for the first two coefficients in
the expansions in terms of solutions to suitable auxiliary problems. In par-
ticular we establish a closed formula for the derivatives of \j(¢) at e = 0. We
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shall see that such formula in the case of the unit ball centered at zero in R?
agrees with formula when N = 2 (see Subsection . We remark
that asymptotic for vibrating systems containing masses concentrated along
curves or around certain points have been considered by several authors in
the last decades (see e.g., [50, 52, 53] 80, [08]). In particular we shall follow
the approach of [50, 2], 53].
For the sake of completeness, in Subsection[£.2.6|we shall also present the for-
mal heuristic computations which allow to postulate the expansions proved
in this section.

We denote by H.(£2) the Hilbert space consisting of the functions in the
standard Sobolev Space H'(f2) endowed with the bilinear form

(u,v), := / Vu-Vvdx—i—/,oEuvdx, Yu,v € He (). (4.2.1)
Q Q

The bilinear form (4.2.1) induces on H'(Q) a norm which is equivalent
to the standard one. We denote such a norm by || - ||.. We recall that
the weak formulation of problem (4.0.2) can be stated as follows: a pair
(A(e),ue) € R x HY(Q) is a solution of (4.0.2) in the weak sense if and only
if
/ Vue - Vodr = )\(6)/ peuspdr, Yo € HY(Q).
Q Q

We introduce the operator A, from H.(£2) to itself which maps a function
f € Ho(Q) to the uniquely determined u € H, satisfying the equation

/Vu-Vgodx—i—/pgu(pda::/psfgpdx, Vo € Ho(Q). (4.2.2)
Q Q Q

In the sequel we shall exploit the following lemma. We refer to [91], §I11.1]
for its proof.

Lemma 4.2.3. Let A: H — H be a linear, self-adjoint, positive and com-
pact operator from a separable Hilbert space H to itself. Let uw € H, with
|lullgr = 1. Let n,r > 0 such that ||[Au — nu||g < r. Then, there exists an
eigenvalue n* of the operator A which satisfy the inequality |n — n*| < r.
Moreover, for any r* > r there exists uv* € H with ||u*||g = 1, u* belonging
to the space generated by all the eigenspaces associated with an eigenvalue
of the operator A lying on the segment [n — r*,n + r*| and such that
lu —u*llm < —-

,r.*
We also need the following lemma.

Lemma 4.2.4. Let u € HY(Q) and p. be defined as in (3.1.20). Then there
exists Cq > 0 which does not depend on € > 0 and u, such that

1
U — M/ngud:l:

< CollVullr2(), Yue HY(Q).
L2(Q)
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Proof. Suppose by contradiction that for any k& € N there exists ¢, with
er, — 0 as k — 400, and u, € H'(Q) such that

1
U — M/ pekukdx > kHVukHLz(Q) (4.2.5)
Q 12(2)

Set
1

i (v0= 57 J )
U — — | pe updx up — — | pe updx | .
M 0 €k L2(@) M 0 1

Then [, pe,vrdz =0, [|vg]lf2(q) = 1 for all k € N, and from ([4.2.5), ||V <
%. Then vy, is bounded in H'(£2), hence, possibly passing to a subsequence,
v, — v weakly in H(Q) and vj, — v strongly in L?(2), for some v € H(9).
Moreover, since ||[Vug| z2(q) < £ it follows that Vo = 0 a.e. in Q. We have
that for all £ € N

O:/pskvkdz::/psk(vk—v)dm+/pgkvdm.
Q Q Q

It is standard to prove that

Vg 1=

lim Pe,vdxr =

— d
k—+o0 J ’89’ QQU %

see Lemma |3.1.22] Moreover, we have that

/ﬂpak (v —v)dx = / @(vk —v)dx + 5/ (vp —v)dz.  (4.2.6)

Wey, €k Q\UE,c

Since the sequence {v;} is bounded in H'(), the second term in the right-
hand side of goes to zero as k tends to +o00. Also, from the fact that
vy, — v strongly in L?(f2), and Vil z2() and [|[Vv|r2(q) are uniformly
bounded in k € N, it is possible to prove that the first term in the right-
hand side of goes to zero as k tends to +o0o (see Lemma [3.1.28)).
Then we have that [, vdo = 0 and [|v||;2(q) = 1. Hence, by the standard
Poincaré-Wirtinger inequality for functions in H'() having zero integral
mean on the boundary, we have

1

- <O —
’89’ 20 = CQ||VUHL2(Q) 0,

L2(Q)

vdo

0% ol =
where the constant Cq, depends only on the open set . Therefore v = 0 in
H'(Q), which is a contradiction since ||v||2(q) = 1. O

We also recall that from Corollary [3.1.42] we have

lim )\j({:‘) = My,

e—0
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for all j € Ny. Therefore, by Corollary it follows that the function
Aj(+) which takes € > 0 to Aj(e) can be extended with continuity at € = 0
by setting A;(0) := p; for all j € Ny. Suppose that pj_1 S pj < pjp <

- < fjam 2 Mrmar and Ajoi(e) S Aj(E) < Ajja(e) < < Ajym(e) S
Njtm+1(€) for all € > 0 in a suitable right neighborhood of zero. Let us
denote by Pj,(¢) the operator from L?(Q) to itself which maps a function
f € L?() to its projection on the space generated by all the eigenfunctions
associated with the eigenvalues \;(¢), ..., \j1m(€), and by Q; , the operator
from L?(f2) to itself which maps a function f € L?(Q) to its projection on
the space generated by all the eigenfunctions associated with the eigenvalues

[js ey fhj+m- Then, from Corollary it follows that
i [Py () = Qimll (2 ().L2(2)) = 0-

In particular, if u; is a simple eigenvalue, then there exist €; > 0 such that
Aj(e) is simple for all € €]0, ¢].

It is well-known that there exists g > 0 such that the map x — z—ev(x)
is a diffeomorphism from 92 to dw. NS for all € €]0, g¢[, where w, is defined
by (see Theorem [3.1.27).

We shall use curvilinear coordinates in the strip w.. Let v : [0, [0Q|[— 09

be the arc length parametrization of the boundary 9€2. Then we consider
the map v : [0,|092|[x]0,e]— w. defined by (s, t) := ~(s) — tv(v(s)) for
all (s,t) € [0,]09|[x]0, e[, where v(y(s)) denotes the outer unit normal to
0N at y(s). We denote by k(s) the signed curvature of 952, namely r(s) :=
Y ()(5) = () (s) for all s & [0, o[
In order to study problem it is also convenient to introduce a change
of variables by setting & = g Accordingly, we denote by . the function
from [0,]09Q|[x]0,1] to w. defined by 9.(s,&) = v(s) — e€v(y(s)) for all
(s,€) €10,]09|[x]0, 1[. The variable ¢ is usually called rapid variable. Note
that in this new system of coordinates (s, &), the strip w; is transformed into
a band of length |09Q| and width 1 (see Figures [4.4). Moreover, we note
that if € < (supsejo,jaq) |k(s)])7L, we have 1 — e€k(s) > 0 for all £ €0, 1], so
that | det Di.| = e(1 — e€k(s)). From now on we consider € €]0,eg[ where
go is sufficiently small and is such that g9 < (sup,eo,a0)| |k(s)]) 7L
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¥(s)

Figure 4.3

(s,0) oo s

Figure 4.4

We also need to write the gradient of a function u with respect to the
coordinates (s,£). We have

71 (s) 74 ()€Y (s)
(Vuou) (s,6) = [ Togrm et ove(e:0) = imserpy Oc(uowe(s,0)) )
T2 0u (0 Y (,)) + LD O (w0 ) s, )

and therefore

(Vu o - Vooe)(s,§)
_ 1 3s(u0%(8,6))33(”01/’5(3,5))
- 8_285(’& o 1/}&‘(5’ f))aﬁ(v © d)E(S? 5)) + (1 _ 65/‘6(5))2
= E%aﬁ(u © 7,05(8, 6))85('” © d}s(sa 5)) + 63(“ o ws(sa 6))88(11 o ws(sa f))
+o00

+e8h(s) Y (5 4 1)(e6k(5)) 7 0w 0 e (5,€))Ds (v 0 e (s,€)),  (4.2.7)

=1

for all (s,&) € [0, |0€2|[x]0, 1].
We observe that for all € < (sup,cp a0 |k(s)])~! the series in the last line

of (4.2.7) is convergent.

Finally, we can write p. = € + %ﬁgst, where Y, is the characteristic
function of w, and

pei=¢ (w) — &2 (4.2.8)
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for all € €]0,e9[. We note that % € O(e™1) as ¢ — 0. We note also
that there exist £g > 0 and 73 > r1 > 0 such that for all € €]0, o[ it holds

ro < Pe < T1. (4.2.9)

4.2.1 Asymptotic expansions and derivatives of the eigenval-
ues

Let pj be a simple eigenvalue of problem . It is not restrictive to con-
sider simple eigenvalues since the Steklov eigenvalues are generically simple
(see e.g., [B, 102]).

We recall that from Corollary it follows that there exists ¢; €0, |
such that for all € €]0, ¢;[ the eigenvalue \;(e) of problem is simple
and A\j(e) = pj as € — 0. We shall prove the following theorem concerning
an asymptotic expansion of A;(e).

Theorem 4.2.10. Let j € No. Assume that p; is a simple eigenvalue of

problem (4.0.1). Then
Aj(e) = pj + 6,u31~ + 0(e?) (4.2.11)

as € = 0, where

1 192y c’m!uj/ 2 2M pu; Mj/ 2 K,
_ B 27 ] o — 4.2.12
WS T S, e T R g 1Y)

and u; € HY(Q) is the unique eigenfunction of problem (£.0.1)) associated
with the eigenvalue u; such that fan ujzda =1 and K € R is given by

109
K = /0 k(s)ds. (4.2.13)

We also prove an asymptotic expansion for the eigenfunction u;. asso-
ciated with \j(¢). This is contained in the following theorem.

Theorem 4.2.14. Let j € Ng. Assume that p; is a simple eigenvalue of
problem (4.0.1)) and ¢; > 0 is such that \j(e) is a simple eigenvalue of
problem (4.0.2)) for all € €]0,e;[. Let u; be the unique eigenfunction of
problem (4.0.1) associated with p; such that f(‘m u?da = 1. Let u;. be the
unique eigenfunction of problem corresponding to Aj(€) such that
%fﬂ pauiadx =1 for all € €]0,¢5[. Then there exist u} € HY(Q) and
wj, wi € H([0,|09|[x]0, 1[) such that

Uje = uj + sujl- +evj + 521)]1- +0(e?) in L*(Q), (4.2.15)

as € — 0, where the functions vj,v} € HY(Q) are the extensions by 0 of

w;j o @Z}éfl) and wjl- o @Dé*l) respectively to €.
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We shall present explicit formulas for w; and wjl (see and )
and we shall identify uj1 as the solution of a certain boundary value problem
(see problem (4.2.31)).

The proof of Theorems [4.2.10] and [£.2.14] consists of two steps. In the
first step (Subsection [4.2.2)) we show that the quantity \;(e) — p; is of order
€ as € tends to zero. Moreover, in this step we introduce the function w;.
We also show that [[uj. — u; — evj| 12(q) is of order ¢ as ¢ tends to zero. In
the second step (Subsection we complete the proof of Theorems
and Moreover, we introduce the boundary value problem solved by

u; and the function wjl». In Subsection we recall some technical results

on the well-posedness of the auxiliary boundary value problem solved by u]1

4.2.2 First step of the proof of Theorems [4.2.10| and [4.2.14

The aim of this subsection is to prove formulas (4.2.28]) and (4.2.30)), that

is, justify a part of the expansions (4.2.11)) and (4.2.15)).
Let j € Ng. Assume that p; is a simple eigenvalue of problem (4.0.1]).

Let u; be the unique eigenfunction of (4.0.1)) associated with p; such that
Joquido = 1. Let €; €]0,&0[ be such that A;(¢) is a simple ecigenvalue of
(4.0.2)) for all € €]0,¢;[. Let the function w;(s,§) from [0,|0Q|[x]0,1[ to R
be defined by

My,
2(09)

wj(s, &) == (uj 0 1be(s,0)) (€ —1)2. (4.2.16)

The function w; solves the following problem

—02w;(5,8) = Tant (w5 0v(s,0)), (s,€) € [0,]00][x]0, 1],
Dew; (s,0) = Tt (uj 0 ¥e(5,0)), s € (0,100, (4.2.17)
wj(s,1) = Ocw;(s,1) =0, s € ]0,]09][.

Now let v; € HY(Q) be defined as in Theorem |4.2.14, We note that by
construction v; € H'(£2). We plan to apply Lemma to the compact and

self-adjoint operator A. acting on the Hilbert space H.(£2). We note that

Aj(e) is an eigenvalue of (4.0.2)) if and only if ﬁj(s) is an eigenvalue of A..

Moreover, we note that | —pj—1| > 0 and |p; —pj+1] > 0, and that Aj(e) #
Aj—1(e) and Xj(e) # Ajti(e) for all € €]0,¢;[. Then, by the continuity of
the eigenvalues, it follows that there exists a constant §; > 0 which does

1 1 1 1
R N O] "H‘Mj 1+ +1(e)

not depend on € > 0 and such that ‘

. 1 1
05, and |- — T

smaller). We plan to apply Lemma [4.2.3| with n =

< §;, for all € €]0,¢;[ (possibly choosing €; > 0

1 u — Uj+£vj
T+p;? 7 7 flugtevglle?
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r* = d; and a suitable r > 0. First we prove that

< Cellolle, Vo€ HY(Q),

(4.2.18)
where C' > 0 is a constant which does not depend on € and ¢. Indeed, by

[f2) and (E22) we have

KAg(uj ev;) — %(uj +evy), g0>

1y

€

‘<A€(uj +evy) —

m(u] + EU]'), (,0>

£

1

= ‘/ peujpdx +/ epevjpdr — </ Vu; - Vdr +/ peujpdr

Q e L+ p5 \Ja Q
+ / €ij-Vg0d:E+/ 5psvj<pda:)

We We
1 M
15 u-gpdaz—}—/ —Pelijpdr — —— ujpdo
/Q ! we € ! |aQ| oN !
+€/ pevjpdx — ;/ Vu; - Vedz|. (4.2.19)
We J We

We introduce the following quantities:

L g

Jie = €/ujg0dw,
Q
1.
Joe = —peujpdz,
wsg
M
J3e = o ujpdo,
: 09| Joq
Jie = 5/ pevjpde,
We
Jse = ¢ Vv, - Vdz.
We

We have that the expression inside the absolute value which appears in the

last term of (4.2.19) equals

Jl,a + JQ,E - J3,5 + J4,£ - ij5,€'
Hj
We study the quantities Ji ¢, Jo., J3., Js and J5 . separately. Through all
the rest of the section we will denote by C' a positive constant which does
not depend on € and ¢ (and which can eventually be re-defined line by line).
We consider J; . first. We have

i = 5/ wypdz < Cellulol|ol-. (4.2.20)
Q
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This follows from the Holder inequality [, ujedr < |lujl|p2(q)ll@llr2() and
from Lemma In fact, given ¢ € H'(2) we have

1 1
el L2y = Hs@ — — | pepdr + / peipd
() M Q £ M o ) L2(Q)

+H1/ J

— | pepdz

2 1M Jo"
)2

1 1
Yk 3
< CallVellrz @) + | |; (/ p5902df€> < max{Cm — } lelle, (4.2.21)
M= Q M=z

where in the second inequality we have used the fact that p. > 0 in the

1
< HSO i pepdx
2 L2(Q)

following way:

1 1
11 2 2
/pacpd:E:/pSpSsode (/ padx> </ pa@2d$> :
Q Q Q Q

Moreover, we observe that ||u;|l. < C. This follows from the fact that

: 2 _ M 2 _ M
lim._q fQ pgu'jdx = 190 faQ ujda = 150
We now consider Js ..

0

J2e = / éﬁsujQde
- 09 ,1
:/O /0 [)E(’LL]'O¢5(S,f))(@o¢g(5’f))(1 _555(3))(15618

10| r1
- / / Pl 0 ) (9 0 e )déds
0 0

|09 1~ B . f/ﬂ(s) B
[ [ s vl )00 w5, ) TSt — etn(o)deds

|09 p1 )
2 p=
S/O /0 pe(u; owa)(SOOq/JE)dgdercg/ ;!ujgo|dx

We

09| 1
S/O /Ops(ujOwe)(¢0¢5)d§d8+05”uj”6H(pus_

Then
1
Jl,a + JQ,S - JS,& + 7J5,a
Ky
1.
=¢ [ ujpdr + —peujpdx
Q we €

|69 1
a yéwm/o /0 (uj 0 1Pe(s,0))(p 0 Ye(s, §))dEds
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09| 1
S/O /0 P=(uj 0 Ye)(p 0 e )déds
M 0Q r1
—aQ,/O /0(Ujowa(s,o))(cpo%(s?f))déds+ce||uj||€ng”e.

Consider now

/Iaﬂl / (pg 0 u(,€)) - |aQ|( 0 (s, 0))> (0 e, €))déds

109
- / / e (g 0 e (5,€)) — (1 0 e(5,0))) (19 0 e (s, £))deds
0 0

+ /Oam /Ol(uj o Ye(s,0)) <ﬁg - |3A?2|> (pote(s,§))dids.

We note that |w.| = £]0Q| — |aQ| k(s)ds = |09 — %K, where K is
defined by (4.2.13 m From standard Taylor’s expansions of the right-hand
side of (4.2.8)) it follows that

. M KM —|9Q]|09|
== o] ESE

+ F(e), (4.2.22)

where F(g) € O(g?) as ¢ — 0. It follows that

10| 1 i M
/O /0 (1 0 e (5,0)) (pe—m,> (0 the(s,€))deds
09| 1
< Ce /O /O (5 04425, 0)) (0 © W (5, £))|déds

ol (= ctn(s) .\
< Cellusllraomy ( ! <¢ow5<s,s>>2eu_€wdws>

1
1 2
< Cellujle (/ ngdw> < Ce |yl llell. ,
We

where in the last line we have used the fact that [|u;||7290) < CalVu,|12(q)
and . Moreover, since u; is a solution of , by standard elliptic
regularity (see e.g., [2]), it follows that u; € C?(2)NCH*(Q) for all a €]0, 1]
(note that we only assume Q of class C?). Since 1. is a diffeomorphism of
class C2, for all (s, &) € [0, |092|[x]0, 1] we have

(uj 0 Pe(s,€)) — (uj 0 Ye(s,0)) = €0 (uj 0 ¥e)(s,87),
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for some & € (0,£). Then, by recalling the definition of 1) and setting
t* = ef*, it follows that

100 1
/ / P (1 0 1e(5,€)) — (] 0 0x(5,0))) pdéds
0 0
09| 1
s / / €0, (u; 0 2) (5, €°) (0 0 e, £))deds
|10Q]  re
=i [ ] ity o). o0t 0) s
0]
9001/1
< C’Hu]HCl / /0 % dtds

. Cltslo e ( [ (pou)” dt) ds < Cellglle, (4.2.23)
V3 0 0

€

where we have exploited Holder inequality to prove the second inequality.
We consider now Jy..

i —c / peviodz < elvs lelliolle.
We

From the definition of v; (see (4.2.16))) it is standard to prove that [|v;||. < C.
We consider Js. and pass to the coordinates (s,£). We use formula

and we obtain
J5e = 5/ Vu,;Vpdz
Iaﬂla 1
=< /0 /0 <e235wj(5, §)0e( 0 Ye)(s,€) + Oswj(s,§)0s(0 © e )(s, €)

“+o0o
+e€r(8)E ) (7 + 1)(e€r(5)) ™ Dsw;(s, )50 0 ) (s, E)) (1 —e&r(s))deds

J=1

1692
< [ [ csto, 06 0 2) s, s + Cel Tl
0 0

My
1092

Mo, 901 1
0 [ v, 0 0 i

+ Ce|| Vel r2(q)

ujpdo +
o0

Thus inequality (4.2.18]) is proved.

We prove now that ||u; + ev;||_ is uniformly bounded for e €]0, go[. This
follows by the following lemma.
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Lemma 4.2.24. Let u; be the unique eigenfunction of (4.0.1) associated
with the eigenvalue p; such that faﬂ u?da = 1. Then there exists a constant
C' which does not depend on € such that for all € €]0, 0] it holds

4+ 02 = B (14 1) + O(e), (4.2.25)
[09
as € — 0.
Proof. We use the explicit formula for || - || and we write
||uj + E,UJHE = Ll,s + LQ,E + L3,5,
where
L. := / pgu?dm,
Q
Lo, = / |Vu;|*dz,
Q
Ly. = 52/ v‘?dx—Ze/ ujvjdx—l—ez/ |ij|2dx—2€/ Vu; - Vojde.

We consider Lic — g 09I first. We have

M M
Ll £ 2d0’

_7:-[/15
B 410 “ 109 Jog

1 M
= - peuldr — — 2d0+€/ uldx
5/wsp ! 109 Jaq o’
M 1/ 9 M 2
= — usdr — da
09 e Jo,. 7 109 Jaq
TKM —|Q[|09|  F(e)
2 2 2
+/w ( 0P + - ujdx—l-s/ﬂujdx

M1 2 M 2 2

. 1 2
We consider < fwa ufdr — /. 00 U 2do. We have

1
/ ujzdx—/ ujzda
€ Juw. 0

_ /O'm' ! </Oa(uj 0 (s, £))2(1 — th(s)) — (uy ow(s,O))th> ds

e
|09 1 €
< / <CHU]HCI / tdt) ds < Ce.
0 € 0
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We consider now Lp.. Since u; is an eigenfunction of (4.0.1) and is
normalized by [, u?da =1, we have

_ Muy; My
dx J Jdo = 7.
/|Vu]| =09 u o 20

Finally, it is standard to prove that ‘L3’5’ < Ce. We prove the result for
the fourth summand in L3 .. The result for the other summands is obtained
in a similar way. It is convenient to use the coordinates (s,t) on w.. We
have

Vu; - Vvjdx

) |0€2] t
—g[) /O < Ow statw]( E)

Os(uj o 1b)(s,t)0swj(s, )
1-—1¢ dtd
+ (1 — tn(5))? (1= tr(s))dtds
091 e flusllZ, g
< Ce / / ) s < Ce
0 0 €
This concludes the proof of Lemma O

In order to apply Lemma [4.2.3] it is sufficient to multiply both sides of
(4.2.18) by |lu; + EUjHE_l. Thanks to Lemma |4.2.24 we have

‘<«45( uj + €vj >_ 1 ( uj + €v; >7¢>
lluj + evjlle L+ pj \ luj + evj .
09|
M

L Uj+EV; 1 Uj+EV; . .
Now we set p := A, <||u]-+svj||5> e (lluj+5vj||a in (4.2.26)) and we obtain

HAg( Uj + €V; )_ 1 ( Uj + €V >
lluj + evjlle L+ g \lug +evjlle /I,

<O\ (L ) Eellplle, Yo € HY(Q). (4.2.26)

o0
<oy /%% 1y

- M
Then we apply Lemma 4.2.3| with n = ﬁ, U ﬁ r* = 4; and

=,/ a7 (L i)™ 2¢. Tt follows that there exists an eigenvalue n* of A,
such that

: o9 o
— < —(1 ; . 4.2.2
L+Mj <O\ 1+ ) he (4.2.27)

When ¢ €]0,¢;[ (possibly choosing €; smaller), the only eigenvalue of A,
. . . 1
which satisfies (4.2.27) is e Thus we have that

Aj(e) = pj + O(e), (4.2.28)
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as € — 0. Let uj. be the unique eigenfunction of (4.0.2)) associated with the
eigenvalue \;(e) such that % Jo psuj%sdx = 1. We observe that

M
Huj,s!!?:/psug,adwr/ [Vujelde = —— (14 \;(e)).
Q Q 09|

From (4.2.25)) and (4.2.28) it follows that there exists a constant ¢ > 0 which
does not depend on € €]0, ¢;[ such that

N

|+ x()E = (14 )| < ee

and )

(14 )3 | <

‘ 2

[

||Uj+€vj||5— < ce.

From this fact it follows that

lluje —uj —evjllr2()

[N

M3
= |5’T|%(1 + 1)

||uj + evjle

Hu] elle

Uj.e

14 ;)2
\39\ Hj

Uj; + €v;

ME(] 4 py)

If’QI

Uj,e

[ + vyl

Uj; + €v;

||“j,8| e

L2()

2 Uu; + €vj

Uj e
J> —I—C/&

1

l[ej.elle l[jielle

Uj,e

luj + vyl

Uu; + €vj

||UJ +evjlle [l p2(q)

1
o (L)

1

092

1

+
Lk

CQM§
Smax {4 —————,
00

(1 py)?

Ok
o3

l[jielle

—(1+ MJ)%

luj + vyl

}<1+uj>%

{CQMé
+ max

/

l[.elle

ce

Uj,e

l|uj + vyl

L2(9)

el 20

lluj + vl 12

Uj; + €v;

[[.elle

i

ESE

(|

ek

} (14 pj)72de, (4.2.29)

for a suitable ¢/ > 0 which does not depend on ¢ €]0, ¢;.
In the last inequality we have used the fact that for all f € H*(Q), || f|| r2@) <
IQI2

max {CQ, e } Il flle (see also formula (4.2.20)). From Lemma

lows that there exists a function u* € H.(Q) with ||u*||c = 1 belonging to

it fol-

1.2.3]
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the space generated by all the eigenfunctions associated with the eigenvalues

lying in the segment [% 0; + 4, ] such that

Hj 27 1+H

09|

N Uj + €V;
=5 Vi (L4 p5)

oz
luj + €vjle

Since for all € €]0, ¢;], ﬁ(e) is the only eigenvalue of A. lying in the seg-

=

E.

£

1
ment [Hu 5J,1+#

+0; }, and \j(e) is simple, it follows that necessarily

u* = Thus, there exists ¢; > 0 (possibly depending on j) and which

”uj ||a
does not depend on &, such that

[[wj,e —uj— 5UJHL2 < max {

Uje Uj + €V
lujelle  [luj + cvjlle

< ¢je,

£

and therefore

CoMz |Q|2
09|z |00z
This concludes the first step of the proof of Theorems and .

} (1 —i—uj)% (2 +¢j)e. (4.2.30)

4.2.3 Second Step of the proof of Theorems|4.2.10|and 4.2.14

The aim of this subsection is to complete the justification of (4.2.11]) and
(4.2.15) and therefore to complete the proof of Theorems [4.2.10| and [4.2.14]
Let u; € R be defined as in (4.2.12)). Let u; be the unique solution of

problem (4.0.1)) such that [, u]zda = 1. Then by using Theorem 4.2.66| in
Subsection there exists a unique weak solution ujl of the boundary

value problem

fAujl- = LU in €,
1 Mp; 1 Mpy; 2M? 2 2 My}
8"“] |8Q]| uj = <2an2 (K —[09k) — 3‘8Q|2j - ‘mf + |8Q]‘ uj on 0L,
(4.2.31)

which satisfies the following conditions

and

In fact, from Theorem |4.2.66|it follows that the solution of problem (4.2.31])

is unique up to multiples of u;. Moreover, by standard elliptic regularity
(see e.g., [2]), uj € C*(Q) N CH*(Q), for all o €]0,1].
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Next, we introduce the function wj (s, €) from [0, [99[[x]0, 1 to R defined
by

wh(s.) 1= =2 g o v, 0)(E - 1)
+ %(w 0 ¢he(s,0))(&% + 26 +9)(€ — 1)°
v @%’g‘ (u; 0 1)< (s,0)) — Q‘ng(,uj(ujl‘ o 9= (s,0))
(s 002(5,00) — B3 a5 004(5,0) ) (€~ 1% (123

for all (s,£) € [0,|09|[x]0,1[. (See also (4.2.13)) for the definition of K.) We

note that the function wjl» solves the following differential equation

M
— 0fwj(s,€) = —k(s)Dew;(s, &) + 9] <#j(ujl' 0 e (8,0)) + pjw;(s, )

Mp
|6Q| (uJ 0 1/}5(‘97 0))

2
J

+ 5 (uj 0 (5, 0)) — €

|2 K,
- I 0 05,00 gt (00 0:(5,0) ) (4239

for all (s,&) € [0,09)x%]0, 1[. Moreover, on the boundary we have
w]l(s, 1) = 8@0}-(3, 1)=0 (4.2.34)

for all s € [0,|092|[. Now let vjl- € H'(Q) be defined as in Theorem [4.2.14
We note that by construction vjl- € H(Q)). We plan to apply again Lemma

To do so, we prove that there exists a constant C' > 0 which does not
depend on ¢ such that

‘<A5(uj + evj + euj + £%vj) — (uj + evj + euj + %)), <p>

L+ pj +epj

€

< C|glle,  (4.2.35)

for all ¢ € H'(Q) and all € €]0,0[. As usual, through this subsection we
denote by C a positive constant which does not depend on &€ and . The
constant C' may eventually be re-defined line by line.
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Consider the left-hand side of (4.2.35)). We have

1

Ac(uj + evj + euj + ev)) - ————
<5(] T )) Ly +epg

(uj +evj + Eu]l + 521)]1-), <p>
g

1

1 1 2.1
=— - e uj + ev; + eu; + ev; )pdx
1+Hj+5MJl ((MJ ,Uj)/st( j j g J)‘P

— / V(uj + evj + euj + ;) - Vgodx) (4.2.36)
Q

We introduce the following quantities:

e = (y +€u})€/g(uj +euj)pdz,
L = (y —l—e,u})gQ/ (v; +svjl~)<,od:1:,
Iie = (u+ 5,11})/ %(u] +ev; + su} + 52v]1-)g0dx,
We

I, = / Vu; - Vodz,

Q
Is, = 6/ Vu} -Vdz,

Q

Is. = / V(ev; + 621)}) -Vdz.

We

We observe that the expression in brackets in the right-hand side of (4.2.36)
equals
1175 + I275 -+ I3’5 — I4,€ - 1575 — 16,5. (4237)

In what follows we shall recall the definition (4.2.8) of p.. We consider each
term separately. We start from I; .. We have

Le=ILje+ 112,

where
L. = E,uj/ujgoda:, (4.2.38)
Q
ILip. = SQM}/ujgodac—i—eQ,uj/u}@da:—i—s?’u]l/u}godx.
Q Q Q

We note that I; 2. < Ce?||p|c. Indeed, for the first term of I 5 . we have

i} [ weds < Culzzo el < CE2lell

The other terms can be treated in a similar way (see also (4.2.21))).
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We consider now Iz .. Thanks to we have
1.2 1 1 e
Ioe = (uj +epj)e / (vj + evy)pdr = (pj +epg)—
We

/pe(vj—l-avjl»)godfv
e Jw. €
1
& Pe 2 5
<G+ S ([ Zoy+eudfie) ol < Ol (@239)
€ We

We consider I3 .. We have

I3c =131+ 132+ 133+ 1340+ I35,

where

1371’5 = ,uj/ &Uj(pdi',
We €

I3 = ,uj/ peujpda,
We

I3z = Mj/ pevjpda,
We

I340 = /ijl/ peujpdz,
We

I35 = ujgf ﬁgv}gpdm—i—,u]l-e/ ﬁgu;wdw—i-,u]la/ pevjpdx
We We We

—i—,u}sQ / ﬁevjl-godac.
We

We consider first I§717€ and use formula (4.2.22). We have

M KM
I31.e = 1y mujsf’dx + 1y 2’aQ|2uJ<pdl‘
@ Fle)
— / |8Q‘ujg0d T+ . ujpdr. (4.2.40)

The last term in (4.2.40) can be bounded from above by Ce?||¢||.. In fact

we have

1 pile) [ pe wiF(e)
WP [ Lupds = oo < B ol < C2l

Pe we e

For the first term in (4.2.40) we have

M
i / ———ujpdx
eloQ

|09 M
= Iu,j /O /0 m(uj e} 1/}6)(4)0 (e} wa)dfds

|0 M
e [ [ (s o el ) o el s, (1241
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while for the second term in (4.2.40) we have
KM
1 | Sanp e

10|
- :U’] / / 2’aQ|2 ¢s)(@0¢s)d§ds
109
w5 m|2£ ;0 (3. )( 0 Ve(s,€))deds
0]
< [ [ ot 0wl o vds + O7pl. (1242
The last inequality can be proved by observing that
|0Q]
it [ [ e n(s) s o (s, ) (s, )
,C -

e *Wﬁdfﬁ < C2|lujl- 1ol

=5 )
In a similar way, for the third term in (4.2.40)), we have

2]
—uj/ muﬂpdﬂf
ol o) :
“wie [ (v oo wdeds + Ol (4:2.43)
We collect (4.2.41)), (|4.2.42|) and (4.2.43) and we obtain that

|09 M
I3,1,a§,uj/0 /0 m(ug'owa)(wowa)dﬁds
[0 1 M
e / / mgﬁ@(s)(wowe<s,£>><¢owe<s,§>>d§ds
[0Q]
e [ e QWQ o e) (o 2)deds

2}9] 9
_ e / e am wj 0 6e)(p o ve)deds + Cl ..

We consider now I32.. Thanks to formula (4.2.22)), we have

M KM
13,2 e = My |89|u]<10d$ + ui€ 2|6Q|2 jSde

Q
—ujs/ ||8S2|‘ujlgodx+F(5)s / u}cpdx

109 M 9
< e / / S (ul 0 ) (p 0 ve)deds + Cef].
o Jo 109
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Similarly, for I3 3. and I5 4. we obtain

|09
Lse — 1 / Pevjode < ep; / / A i o we)deds + 2.
We 0 0 |aQ|

|02 1 M2 ) ;
/ / 2|8Q|2 uj o =(5,0))(€ —1)"(po1pe(s,§))dEds + Ce™|p| .

an

|09
Lse = 4} / peujpde < pbe /0 /0 T (150 e) o deds + Ce2lol.

We note that that by the definitions of u}, v; and vjl- (see (4.2.31)), (4.2.16)
and (4.2.32)) one can prove that the norms Hu;HE, |lvjlle and ijlHa are
bounded from above, uniformly in € €]0,e9[. Then we verify that I35, <
Ce?. We show this inequality only for the first summand in I35.. The
proof for the other summands is similar and is accordingly omitted. By the
definition of p; and by the Cauchy-Shwartz inequality we have

N P
wie [ pevtiods = et [ Polods < Clujlliell < Ol
We We
We have proved that

IS&

)

< | - | (s i o ey

- e [ . / 1 ,g‘@@s(s)(w 0 1 (,)) (g 0 (5, €))déds
e S (1 © V) o Ve
e [ 1,% j 01 (p 0 )dds

109
bage [ [ oo vededs

09| 1 M2 ;
/ /2|aQI2 uj © Pe(s,0)) (€ — 1)*(p 0 ¥e(s, €))déds

09
+ Mjlf/o /0 m(u] o Ye)(p o tpe)déds + Ce?||p|le.  (4.2.44)

We consider now I .. We have

My
I = s . =
4 /QVuJ Vipdx / ‘69‘

(4.2.45)
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Next we consider I5 .
5/ Vu}-Vgoda;:&/ pjujpde
Q Q

My, 2MPpd My — [Qlp;
K —|0Q) - od
+€/89 (289[2( |0Q|K(s)) 31002 + 50 ujpdo

M
+a/m \ag]y ubpdo.  (4.2.46)

Now we consider the quantity /g ..
Is e = Ipne+ 162,
where
Is 1 = s/ Vv, - Vodr,
We

T2 = €2 Vv]l'Vgpd:L'.

We

Thanks to formula (4.2.7) and integrating by parts with respect to the vari-
able ¢ in the interval |0, 1[, we have

Ig.1c :5/ Vv, - Vodx

_ /'89 / ( Dew; (5,£) e (19 0 12) (5, €)

dsw f) (@Olba)(s f) _ etnls .
* (1—g§,§( )2 >( er(s))ded
9]
/ / ]!\f;[gjl O¢g(8,0))(¢o¢5(3,£))d£ds_/ ]|\gQ|UjSDdO'
09|
_5/ /\am 1>(“jo%(sa0))(<powa(s,5))d§ds+052(|ﬂz7)

Moreover, by an analogous argument, we have

Is 2. = g2 ijl- -Vdz

We

Mu;(K —|0Qk)  2M%u2  Mu; —[Q|u;
<- - od
= 5/ag< 2|02 3002 T o9 ki

My .
—€ u;pdo
/69 09| 7
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oo M)y )
+€/0 o) (& Do ve(s,0))(p o ve(s, €)deds

2

2o M2
+ 6/0 /0 ‘aj\é‘ (Mj(u} o 1e(s,0)) — 2]8/;;] (& — 1)2(uj o 1. (s,0))

M 12
+ 1}y 4 (5,0)) — 5t € 0 (5, 0))
~ 0 a0 (5, 00) 05, 00) ) 0 (5, )l

+ C?(|p|le.  (4.2.48)

We now recall (4.2.37)). By (4.2.38)), (4.2.39)), (4.2.44), (4.2.45)), (4.2.46]),
(4.2.47) and (4.2.48) we compute the following inequality

IlE+IZE+I3E_I4€_I _Iﬁs

109
|aﬂ|/ / uj 0 e(s,€)) — (uj 0 Ye(s,0)
|am5(“]°1/’€(5 ,0)) (@ o the(s,))déds  (4.2.49)

09 1
i [ [ (et
(s, 00)) (p ols, én(s)deds  (4250)

|aﬂ| ] et

uj 0 Pe(s,0))) (0 0 e(s,§))déds (4.2.51)
MM |0Q]
m;/ [ (@ ovie0)
(uj 0 9c(s,0))) (¢ 0 Ye(s,€))dEds (4.2.52)
_ MJ|Q‘ o9 io
LS / be(5,6))
—(uy 0%(870))) (¢ 0 ve(s,§))dEds (4.2.53)
14 KM |09 1
wellm [ ] (evdse)
—(ujo wg(s, 0))) (¢ o =(s,&))dEds. (4.2.54)
+C%|| |l

Since both u; and u; are of class C*(Q), we can conclude that the terms

([4.2.50)-([4.2.54) can be bounded from above by Ce?|¢||- (see ([#.2.23)). It
remains to estimate (4.2.49). We recall that u; € C%(Q). It is more conve-

nient to consider coordinates (s, t) and the corresponding change of variable
x = 1(s,t). We note that dyu;(1(s,0)) = —0,u;(v(s)) = —Tg—g‘luj(w(s,())).
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Therefore, for each (s,t) € [0,00)x]0, 1], there exist t* € (0,¢) and t** €
(0,t*) such that
(uj o) (s,t) — (uj oY) (s,0) = t8i(uj 0 ¥)(s,1")
and
By 0 6)(5, %) — Bu(uty 0 ¥)(5,0) = 102 (uty 0 ¥)(5, 7).
Then for we have

My (109 M,
ot [ [ (w0005, = (a0 .00 + <h et 05,00 )
“(pote(s,§))dEds
o rloQ| €
— g [ [ oo 0~y 00)(5.0)) (90 (s, )t
Mp;C'1 [1o%
< / / 268y 0 ) (5, £°) (2 0 (s, 1) dtds
MMC 09 2 t))
< oyl / /t % dtds
Mu;C 22
< e el
This proves .

We note that |u;+ev; +€ujl»+€2vjl~ |-t is uniformly bounded for € €]0, &g].
We shall need a more precise estimate of ||u; + ev; + 5u]1- + 52031.”;1, which
is the aim of the following lemma.

Lemma 4.2.55. Let u; be the unique eigenfunction of (4.0.1) associated
with the eigenvalue p; such that faQu do = 1. Let ul be the solution of

(4.2.64) which satisfies

1
1 Hj Mp
u;u;do = + S a0
/8(2 7 (2,“] 3|8Q‘

Then there exists a constant C > 0 which does not depend on & such that
for all € €]0, o] it holds

Juj + evj + euj + %vj||2 = (14 pj +epj) + O, (4.2.56)

M
[E8))
as € — 0.

Proof. We have

luj + vj + euj + €°vj||2 = Nic + Nog + N3 + Ny + N5,



116 Neumann vs Steklov: an asymptotic analysis

where
Ni. = 5/ (u? + 25'&]"&; +&° (u;)z) dz,

Q
Ny = 5/ (621)]2- + ¢ (vjl-)2 + 2eujv; + 2e2u]1-vj + 263u}vjl- + 252ujv]1- + 2E3UjUJ1') dx,
N3 = / % (u? + qujujl- + & (ujl)2 + 6211]2- +¢&* (vjl-)2 + 2eu v; + 262u]1-vj

E +253u31-vjl- + 252ujvjl- + 253vjv]1-) dx,
Nye = /Q |V, |* + 26V - Vuj + 2| Vuj | da,
N5. = / |V |* + &*|Vuj|? 4 2eVu; - Vv + 26°Vu; - Voj

w

e

+252ijVujl- + 26V, - ijl- + 2€3Vu; . Vv;d:r.

We start from N7 .. We note that from standard elliptic regularity we have
that ||“j||c(§)» Hu]l-||c@) < C. Therefore it holds

Ny < 6/ u?da; + Ce2.
Q

Consider now N3 .. From the definition of v; and vjl» we have that [|v;]lc@.),
HU}HC(@) < C. Moreover, from the fact that |w.| < Ce¢, it immediately
follows that

Ngﬁ < 062.

Now we consider N3.. By the same arguments above, we have that the
third, fourth, fifth, seventh, eighth, ninth and tenth summands of N3, can
be bounded from above by Ce?. Therefore

N375 < NSI,E +N32,s +N§),a + 052’

where
N3ie = /psu?-dx,
5
We
~ 1
N3o. = 2/ paujujdx,
We
N37375 = 2/ ﬁgujvjdm.
We

Consider N3 1. first. We use the expansion (4.2.22) for p.. Moreover, since
u; € C*(Q) we have that (ujot(s,&))? = (ujorp(s,0))*+2tu;(¢(s,0))(ujo
¥)(s,0) + Ct2, which implies

ML
(uj 0 (s5,€))? = (uj o h(s,0))* + 2t ]853] (uj 0 (s,0))? + Ct?,
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since u; is a solution of (4.0.1)). Then we have

o9l e N LKM - [Q)109]  F(e)
N3i.= 2
/ / <s|aﬂ|+ pop e )

. ((u] 01(s,0))* + Qt?gé;? (uj 0 1(s,0))* + C’tQ) (1 —tr(s))dtds

From standard computations and recalling that |, 90 u?da = 1, it follows that

M LM — Q)10 M?
+5<2 2] ‘) a u?nda—i—CeQ.

ESE "SR T 209 /o

Very similar computations for N3 . and N33, yield

oM [ 15 Mupy;
Nige<eree | & L)+ Ce?
3’2’6_8189| (2uj+3!09!> + Ce

and
M=
N3z. < —¢ Hi L oe?,

Now we pass to the terms involving the gradients. First we recall that from

standard elliptic regularity ||u;||c1 (), ||u}-|]c1(9) < C. Moreover, from the

definition of v and vy, it follows that [[v;{|c1(q), ||UJ1||C1(Q) < g We consider

Nye. We have

My 1L

Ny, < =2 2do + 2 J wtdo + Ce?

1S90 Joo 17T IO Joo T
Mpj | (Mp;  2My; )
< Ce”.
wam”(maﬁsymp e

Next we consider N5 .. We note that all the summands but the first and the
third can be bounded from above by Ce?. Therefore we have

Ns. = Nsi.+ Nso. + Ce?,

where
R 2 2
N5,1,€ = £ / |V’Uj| dl’,
We

N525 = 2¢ Vuj-ijdx.

We

Consider N&E. Passing to coordinates (s, &) and using formula (4.2.7)), from
standard computations it follows that

2,2

N, <e——L 4 C:2
5’1’6_53\8Q\Q+ €
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In a very similar way one can prove that for N5 . it holds

2,2
N5’25 < —¢ S+ Ce2.

We collect all the expression appearing into Ny ., No¢, N3, Ny and N5,
according to the powers of ¢ appearing. We have

|luj +ev; + €ujl» + 521)]1»”?

< M4y,
= 709 Hj
|aﬂ|/ o |9 2Mp; K 1/ ) Mo
de — =1 — — ’ ked L .
“(M o T M T E00] T 2000] 2 Joo Iy Y

+ Ce2.

‘We note that

1

Ky |69|/ 2 Q] 2Mp; K 1/ 2
5 190 2 B 2EA 2 o
PP V) A s VT To T To TR Al

therefore

1, 2 12
||w; +evjteu;+e vj||5 < 9

(L+ pj +ep;) + Ce.
This concludes the proof. O

As we did in Section [4.2.2] in order to apply Lemma [4.2.3]it is sufficient
to multiply both sides of (4.2.35) by |u; +ev; —l—eu} +521}Jl- |=t. From Lemma
[4.2.55] it follows that

‘<Aa< uj + €vj + euj + e*v; )
luj + vj + euj + 20
- 1 ( uj + €vj + euj + e*vj > >
Lt g +ep \ Juj + vj + euj + 2 7 _

1

09| ~1 K 2
< = ; -7 2.

4w eyl g2yl
for all p € H*(Q). Now we set ¢ = WYL iy (4.2.57), which

T [lujtevjteuj+evi|le
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gives
. , 1 22,1
A Uj + EVj + Euj + €7;
"\ luj + evj + eul 4+ 20}
j T EV; T EU; T ETVle
. . 1y 22,1
Uj + Evj + euj + €7v;

1
_1+,uj+€uj1- (\uj+€vj+€u]1-+€2vjl-|]6> L
1
u.
1-—1 )&
( 2(1 + py) )

. . . 1 . u]-—i—avj-i—eujl.—&-s%]l.
4.2.3| applied with n = Trrad U = Ty ten,teal 12200 and
o0 1 1} 9 . .
r=C %(1 + )2 (1 — 2(1+Jyj)5) e”, it follows that there exists an

eigenvalue n* of A, such that

09 .
<C W(l + 1)

N

From Lemma

=

o0
<oy 14 )

1 *
- M

L+ +epl
When € €]0,¢;[ (possibly choosing €; smaller), the only eigenvalue of A,

which satisfies (4.2.58) is 1++(s) Thus we have that
J
)\j(g) = M5+ 51“]1‘ + 0(52)7

as € = 0. Let uj. be the unique eigenfunction of (4.0.2]) associated with the

eigenvalue \;(e) such that |8—N{2| Jo peuj%gdzv = 1. We recall that

1-— ”731'5 €2, (4.2.58)
2(1+ py)

(4.2.59)

M
w2 = 190 (1+A,(e))-

From (4.2.56|) and (4.2.59) it follows that there exists a constant ¢ > 0 which

does not depend on ¢ such that
(4.2.60)

(NI

1
(14 X(2))2 = (14 pj + epj) | < e

and
1

M= L
luj +ev; + 6ujl + €2U;‘|5 - W(l + 15 + 5;;}-)5 < ce?.
2

Moreover, from Lemma it follows that for all & > 0, there exists a
function u* € H.(Q) with ||u*||c = 1 belonging to the space generated by all

the eigenfunctions associated with the eigenvalues of A, lying in the segment

(4.2.61)
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1 1
[1+uj+aujl, -9, Em— + 5} such that
o uj + €vj + euj + e*v;
sy + vy + euj +2ujle |
2C /|09 1 Mjl' )
S5V ¢ D I v, . (4.2.62
=5\t ( ) ( )

By the continuity of the eigenvalues \j(¢) and the simplicity of \;(e) for
all € €]0,¢;], it follows that (possibly choosing €; > 0 smaller) there exists

1 B 1
1+,uj+€ujl- 1+X41(e)

0; > 0 such that ‘ L > 9y, > 9

_ 1
1+uj+€/4; 1+Xj-1(¢)

1 1
Trtenl — TH\E)

and < §j, for all € €]0,¢;[. Then we choose § = J; in

(4.2.62). Since for all € €]0,¢,], m is the only eigenvalue lying in the
J

g 1+Mj +5Mj

necessarily u* = ”5:7;”5 Thus there exists ¢; > 0 (possibly depending on j)

1
segment [1 T el

-0 L+ 5]] and Aj(e) is simple, it follows that

which does not depend on &, such that

‘ €

Finally, by computations similar to those in (4.2.29)), using (4.2.63)), (4.2.60)),
(4.2.61)), and following the same lines as in the proof of (4.2.30)), it is possible
to prove that

. . 1y 22,1
Uje Uj + EVj + Euj + €7v;

lwjelle  [luj +evj + euj + 20

< cjet. (4.2.63)

lluje —uj —ev; — 5ujl- — 621)}HL2(Q) <CA+pj+ E/L})EQ.

This concludes the proof of Theorems [4.2.10| and |4.2.141

4.2.4 'Well-posedness of problem (4.2.31))

Let u; be the unique eigenfunction associated with a simple eigenvalue p;
of problem ([4.0.1)) such that [, u?da = 1. Then we consider the following
problem

{ —hu=J in £ (4.2.64)

o,u — %u = g1+ Ago on 09,

where f € L*(Q) and g1,90 € L?*(0Q) are given data which satisfy the
condition [, aq 92ujdo # 0, while the unknowns are the constant A\ and the
function u. The weak formulation of problem reads: find (u, \) €
H'(9) x R such that

M .
/Vu-Vgodx— o] ugoda:/fcpdw—l-/ g1s0d0+)\/ g2¢pdo,
0 109 Jaq Q 09 29
(4.2.65)
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for all ¢ € H'(Q). We have the following theorem.

Theorem 4.2.66. Problem ([4.2.64)) admits a weak solution (u,\) € H'(2)x
R if and only if

-1
A=— </Q fujdx + /(99 glujda> </89 QQUde'> . (4.2.67)

Moreover, given a solution u of (4.2.64)), all the solutions of (4.2.64) are
given by u + Au; with A € R.

Proof. Consider the operator A; from H!(Q) to H'(Q)" which takes u €
H'() to the functional A; [u] defined by

A [u][4] ::/QVU-dem+/mugoda, o e HYQ).

As is well-known, the operator .4; is a homeomorphism from H'(Q) to
H(Q)'. Then we consider the trace operator Tr from H'(Q) to L?(9%)
which is compact and the operator J from L?(99) to H'(2)’ defined by

Julle] = /(mugoda, Vo € HY(Q).

We define the operator Ay from H(Q) to H(Q) as

L My
./42.— <1+‘8Q‘>joTr.

We define the operator A from H'(2) to H'(Q) as A := A; + As. This is
the sum of an invertible operator and a compact operator, therefore A is a

Fredholm operator. Finally we denote by B()) the element B()\) € H(Q)'
defined by

B(M)[¢] ::/Qfgodx—l—/émglcpda—i—)\/émggcpda, (pEHl(Q).

Problem (4.2.65)) is recasted as follows: find (\,u) € R x H!(Q) such that

The kernel of A is finite dimensional and is the space of those u* such that

M .
/ Vu* - Vdr — o u pdo =0, VYoe HY(Q).
Q 09 Joo

Since we have assumed that p; is a simple eigenvalue associated with the
eigenfunction u;, it follows that the kernel of A coincides with the one
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dimensional subspace of H'({2) generated by u;. Therefore, problem ([4.2.64)
has solution if and only if B(\) satisfies the equality

/ fujdx +/ grujdo + )\/ gaujdo = 0.
Q o0 oN

Accordingly, problem (4.2.65) has solution if and only if A is given by
(4.2.67). Finally we note that the solution u of problem (4.2.65) is defined
up to multiples of u;. O

4.2.5 The case of the unit ball in R?

In this subsection we consider the case {2 = B, where B is the open unit
ball centered at zero in R?. We have already established a formula for the
derivatives of all the eigenvalues \;(e) at ¢ = 0 in Section (see formula
[#.1.3)). We show now that formula (4.2.12)) in the case of the unit ball in
R? formally is the same as formula (]@ We recall that the eigenvalues

of problem (4.0.1) on B are given by

2wy .
Hoj—1 = p2j = 75 J €N,

while pg = 0. We note that all the positive eigenvalues have multiplicity
two. It is convenient to use polar coordinates (r,0) € Ry x B in R? and
the corresponding change of variables x = ¢5(r,0) = (rcos(f),rsin(0)).
The eigenfunctions associated with the eigenvalue pzj_1 = po; are the two-
dimensional harmonic polynomials u; 1, u; 2 of degree j, which can be written
in polar coordinates as

uji(r,0) = rjcos(jH),
uja(r,0) = Tjsin(jH).

Then we consider problem when Q) = B. It is standard to show
(see e.g., Lemma[d.1.4] see also [71] [72]) that all the eigenvalues of problem
on B have multiplicity which is an integer multiple of two, except the
first one which is zero and has multiplicity one. Moreover, for a fixed j € N,
there exists €; > 0 such that A;(e) has multiplicity two for all e €]0, ;[ (cfr.
Corollary and [71]). Therefore, from Corollary (see also [71])
it follows that the positive eigenvalues of on B can be labelled with
two indexes k and [ and denoted by Aog—1(€) = Aok ,(¢), for k,l € N. The
corresponding eigenfunctions, which we denote by ug ., ur 11 and ug .2
can be written in the following form

uote = Roy(r),
Ukle1 = Ry(r)cos(kf),
Ukle2 = Rp(r)sin(k0),
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where Ry (r) are suitable linear combinations of Bessel Functions of the
first and second species and order k (see Lemma . Moreover, it is
possible to prove that Aop_1,1(€) = pok—1, Aak,1(€) = pok, Aog—1,4(g) = +o0,
Aoki(e) = 4oo for I > 2, up1e1 — upq and ue g 12 — Uk in the L2(Q)
norm, as € — 0 (see Theorem [4.1.37).

We note that, in principle, Theorem [4.2.10| could not be applied in this
case since all the eigenvalues are multiple. From Theorem we have
that

2j 251 M%j—1
Aoi = pgi_
2j-1,1(€) = iz 1+< 3 +2(],+1) e+o(e)
2mj  25%m (2 T
= — = 4.2.
i i <3+M(1+j))€+0(8)’ (4.2.68)

as € = 0. The same formula holds if we substitute Ag;j_1,1(€) and po;—1 with
A2j1(€) and pg; respectively.

Now, let us consider formally formula with u; = 73 (77 cos(jO))o
¢g_1) and observe that the mean curvature on 0B is constant end equals 1.
Standard computations yield formula . This suggests that in some
sense in the case of the ball, Theorem still holds, despite the mul-
tiplicity of the eigenvalues is greater than one. This is not surprising. In
fact we could have replaced through all this section the space H'({) with
the space HJI(Q) of those functions u in H'(2) which are orthogonal to

(17 cos(j0)) o qﬁg*l) with respect to the H'(Q) scalar product. In this way
the eigenvalue p2;_1 becomes a simple eigenvalue and Theorem can
be applied. However, this is not straightforward.

The method used in this section is more general than the method used in

Section [4.1] and allows to find a formula for the derivative of the eigenvalues
A(g) of problem ([4.0.2) for a quite wide class of domains in R2.

4.2.6 Heuristic determination of the expansions

In this subsection we show how to guess asymptotic expansions for the eigen-

values and eigenfunctions of problem (4.0.2)) of the type (4.2.11)) and (4.2.15)).
Let p1; be a simple eigenvalue of problem (4.0.1)) and for € > 0 small enough,

let A\j(e) be a simple eigenvalue of problem (4.0.2) such that A;(e) — u; as
e goes to zero (see[3.1.42). Then

Aj(e) = pj +o(1),

as ¢ — 0. The first step in order to postulate an asymptotic expansion is
to guess the powers of € of the lower order terms. In analogy with formula
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(A1.21)) for the unit ball in RY we postulate an asymptotic expansion for
Aj(e) of the following form

Aj(e) = pj + sujl- + o(e), (4.2.69)

as ¢ — 0, i.e., we guess that the second term in the asymptotic expansion of
Aj(e) is of order € as ¢ — 0. Since we want to find a formula for the deriva-
tive of the eigenvalues at ¢ = 0, we shall consider the expansion and
neglect further terms.

Now we consider an asymptotic expansion for the eigenfunction u;. associ-
ated with the eigenvalue A;(e) of the form

uje = u; + o(1), (4.2.70)

as € — 0. The equality in is understood in the sense of the L?(Q2)
norm. In formula (4.2.70]) we have considered the eigenfunction u; . normal-
ized by [, pguisdx = M/|09Q|. We denoted by u; the unique eigenfunction
of associated with the eigenvalue p; normalized by faﬂ ujz-da = 1.
By looking at we can argue that the second term in the expansion
of ug; is of order € as ¢ — 0, therefore we consider an expansion of the
following type

Uje = Uj + 5U61’j + o(e), (4.2.71)
as € — 0, for some function U€17 ; which possibly depends explicitly on e > 0.
Since the coefficient p. is piecewise constant and is of order e~ 1in w,, we need
to introduce in the expansion of the eigenfunctions some correcting terms
which are supported on w. and which are usually called ‘boundary layers’
(see [52, [53]). Therefore we consider the function Ugl’j of the following form

1 _ 1 ) 1
U&j = uj + vj + evy,

where u} € H'(Q) is supported on the whole of  and v;, v} € HY(Q) are

extension by zero of w; oq/;é_l) and wjl- od)é_l), where w; and wjl- are functions
in H'([0,|092[x]0,1[). In particular, we will look for functions v; and vjl-
which are uniformly bounded in € > 0, while their gradients are of order
e~ 1. Therefore the postulated expansion can be rewritten as

Uje = uj + eu + ev; + v} + o(e), (4.2.72)

as € — 0. We note that in formula a term of order 2 appears.
This is not surprising. In order to characterize ujl-, v; and ’Ujl», we shall plug
the asymptotic expansion (4.2.72)) into (4.0.2]), and therefore we shall take
derivatives of v; and vjl-, which are of order e~!. Rouhgly speaking, v; is of

order O(1) and 521)]1- is of order O(g) as € — 0, in the sense of the H'(w.)

norm.
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We compute now |w.|. We pass to the variables (s,£) and obtain

|09 |09
lwe| = /we dx = /0 /01 e(1 — e€r(s))déds = |00 — 622/0 k(s)ds.

We denoted by K the quantity f(lam k(s)ds (see (4.2.13))). Now we expand
M-e|o\@.|

o] around € = 0. We have
€

in Taylor series the quantity

M—celQ\w.| M N sKM — |Q]|09]
|we ~ £[oQ |09

+ O(e), (4.2.73)
as € = 0. Note that p. can be written in the following equivalent form

1.
Pe =€+ gpexwey

where X, is the characteristic function of the set w. and p. is given by
formula . Thanks to formula (4.2.73)), p- can be written in the form
[222).

We also need to write the Laplace operator in the variables (s,&). From
standard calculus it follows that

1 1
A= 6—2352 — gm(s)ag — K(8)% 0 + 02 + -+,

where the remaining terms are of order O(g) as ¢ — 0. We denoted by
dots further asymptotic terms which are not of use in order to postulate the

asymptotic expansions ([4.2.69)) and (4.2.72)).

Suppose for the moment that the functions u; and ujl are regular enough.

For example, suppose that they are of class C2. We have

(ujote)(s,6) = (u;00:)(5,0) +EDe(uj 0v)(s,0) + O(?),  (4.2.74)
(uhow)(5,€) = (ulot)(s,0)+O0(), (4.2.75)
as ¢ — 0. Note that O¢(uj o ¥)(s,0) = —edyu;(v(s)). We also recall (see
Theorem that
wj(s,§) = (vjove)(s,§),
wj(s,8) = (vj 0¥)(5,)-

Now we plug (4.2.22)), (4.2.69)), (4.2.70), (4.2.73)), (4.2.74) and (4.2.75) in
(4.0.2). We have for the left-hand side of the differential equation in (4.0.2)

— A(uj + euj + vy + £%vj)

= — (Au;j + eAu}) - <i8§w]~ — K(8)O0gw; + 852111)1- + O(a)) , (4.2.76)



126 Neumann vs Steklov: an asymptotic analysis

as € — 0, where the first summand of (4.2.76) is defined in the whole of
), while the second summand is supported in the strip w. and is written in
the coordinates (s, ). For the right-hand side of the differential equation in

(4.0.2) we have
pej(e)(u; + EU +evj + 821)1)

1.
- (5 + 5p5>(w5> (1 + e + O(e?)) (uj + euj + ev; + €°vj)

For the reader’s convenience, we split formula (4.2.77) into two parts. The
first is supported on the whole of €, the second is supported on w, and is
expressed in the variables (s,£). We denote these two parts by P; and P

respectively. We have
P = EM UG + 0(52) (4.2.78)

as € — 0, and

1My, KM - (000 Mpp\
P2_ c ’aQ|(uJOwE)(S’O)+ ( |89|2 M]+ |8Q‘ (uyoi/%)(&o)

_Mujf%gy‘-(v(S))Jr]“ggJ’(u o 1:)(s,0) + ]‘\ggfwj(s,g)JrO(s), (4.2.79)

as ¢ — 0. Note that in (4.2.79) and in the second term of (4.2.76) it appears
a reminder which is of order O(g) as ¢ — 0. Moreover, we note that these

terms are supported in the strip w. which has measure of order O(e) as
e — 0. Therefore, roughly speaking, we can think of the terms of order O(e¢)
supported on w. as terms of order O(g?) as e — 0.

As for boundary conditions we have

Oyuj(y(s)) — Ocw;(s,0) +¢ (&,ujl-(’y(s)) - 8511)]1-(3, 0)) +O(e?) = 0. (4.2.80)

The next step is to match the quantities in (4.2.76]), (4.2.78]), (4.2.79)
and (4.2.80]) according to the powers of ¢ which appear. We obtain

Au]' = 0, on Q,
—Aujl- = [ Uj, on (2,
—8§2wj(s,€) = ?ggf( uj o 1pe)(s,0), on [0,[09|[x]0, 1],
and
- fu}(5,8) = ~K()0uy(5.6) + Son (s} 0262)(5.0) + iy (s.€)
+ ,UJ;(U © 7!}5)(57 ) - :ujgall(uj(’)/(s)))

(uj 0 ¥e)(s,0) + 2%;;‘ -owe)(s,0)> on [0, |0Q[x]0,1[, (4.2.81)

‘Q’MJ
M
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while for boundary conditions we have

Oyuj(v(s)) = Ogwy(s,0), s € [0,]09][;

3Vu}(’y(s)) = 8§w]1(8, 0), se][0,|09|.

(4.2.82)

Now we write the compatibility conditions which must be satisfied by u;,
u;, vj, fujl». First, note that

Otwj(s,1) = ﬁgwjl-(s,O) =0.

In fact, we integrate —852111]-(3,5) with respect to & €]0, 1]

1 My,
_ 2. — J .
/O 8§w](87£)d£ ‘89‘ (u] 0%)(370),
therefore M
(5,0 = Dewi(s, 1) = 5t (u 0 )(5,0),

which in view of (4.2.82)) reads

Dyu; (1(5)) — Dy (s, 1) = St

09|

(uj 0 ¢e)(s,0).
This last fact yields

{Gyuj('y(s)) = ]‘\ggf (uj 0 9e)(s,0),

(4.2.83)
8§wj'(8, 1) =0.

Note that for each s € [0,[09|[, the function £ — w;(s,§) is defined up to
constants. We choose w; such that w;(s,1) = 0 for all s € [0,|0Q|[. With
this choice w; is uniquely determined and solves problem . Moreover,
from the compatibility condition it follows that u; solves problem
(4.0.1).

Now we repeat the same procedure for wjl». We integrate with
respect to £ €]0,1[ and from the compatibility conditions, as we did for

wj, it follows that wjl. and u; solve problems (4.2.33))-(4.2.34)) and (4.2.64))

respectively.

Remark 4.2.84. We have chosen w; and w;L to satisfy wj(s,1) = wjl-(s, 1) =
0, so that uj + euj + cvj +evy € H'(Q).

Remark 4.2.85. We have chosen the particular powers of € in (4.2.69) and
(4.2.72)) since a posteriori the matching of all the terms and the compatibility
conditions produce auziliary problems which are well-posed. If we try to
postulate an asymptotic expansion with different powers of € (e.g., pj +

6%,u} + O(E%) and the analogue for ;. ), this would lead to define problems
the solutions of which are trivial, i.e., identically zero).
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Chapter 5

Mass concentration
phenomena for fourth order
operators. A new biharmonic
Steklov problem

In this chapter we discuss the eigenvalue problem for the biharmonic op-
erator AZ subject to Steklov-type and Neumann-type boundary conditions.
This operator is related do the study of the bending of a plate via the
Kirchoff-Love model (see e.g., [31]).

Let © be a bounded domain in RY of class C', N > 2. We introduce
the following Steklov-type problem for the biharmonic operator

A%y —17Au =0, in €,

% —0, on 0f2, (5.0.1)
. OAu

T — divgg (D?u-v) — 282 = Apu,  on 09,

in the unknowns u (the eigenfunction), A (the eigenvalue), where 7 > 0 is a
fixed positive constant, p € RS, where R® is defined by . Here divgn
denotes the tangential divergence operator and D?u the Hessian matrix of
u. We recall that the tangential divergence divgnF' of a vector field F' is
defined as divooF' = divF|,, — (DF.v) v, where DF is the Jacobiam matrix
of F. For N = 2, this problem is related to the study of the vibrations of
a thin elastic plate with a free frame and mass displaced on the boundary
with density p. The spectrum consists of a diverging sequence of eigenvalues
of finite multiplicity

0=A <A< <A <oon, (5.0.2)

where we agree to repeat the eigenvalues according to their multiplicity. We
note that problem (/5.0.1) is the analogue for the biharmonic operator of
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the classical Steklov problem (3.1.2)) for the Laplace operator considered in
Chapter 3 and 4. Then we consider the following Neumann-type problem
for the biharmonic operator

A%y — TAu = Mpu, in €,
% =0, on 012, (5.0.3)

T, — divag (D2u . V) — %Ay“ =0, on 0,

where p € R and R is defined by (we refer to [28] for the derivation
of the boundary conditions). It is well known that this problem arises in
the study of a free vibrating plate whose mass is displaced on the whole
of  with density p. Also in this case the spectrum consist of a diverging
sequence of eigenvalues of finite multiplicity as in .

In this chapter we consider the dependence of the eigenvalues \; of prob-
lem both on the density p and the domain 2. Moreover we shall un-
derstand problem as the limit of Neumann problems when the
mass p is concentrating at the boundary of €2. This behavior is analogous to
that of the Laplace operator with Neumann boundary conditions and mass
concentrated in a neighborhood of the boundary considered in Section 3.1.

We remark that problem should not be confused with other
Steklov-type problems already discussed in the literature. For example,
in [20] the authors consider the following problem

A%y =0, inQ,
u =0, on 0f2,
Ay = )\%, on 0f2,

which has a rather different nature.
We shall think of the Steklov problem (5.0.1) as the natural fourth order

version of problem (3.1.2]). For this purpose we briefly derive problem (5.0.1))
starting from a physical model (see also [99, [105]).

5.1 Formulating the problem

In this section we provide a physical interpretation of problem for
N = 2 as the equation of a thin vibrating plate. As usual, we assume that the
mass of the plate is displaced in the middle plane of the plate parallel to its
faces. When the body is at its equilibrium it covers a planar domain €2 with
boundary 02 in R2. We describe the vertical deviation from the equilibrium
of each point (z,y) of Q at time ¢ by means of a function v = v(z,y,t). We
suppose that the whole mass of the plate is concentrated at the boundary
with a density which we denote by p(x,y). Moreover, we assume that p(z,y)
is bounded and positive on J€2. Under these assumptions, the total kinetic
energy of the plate is given by



131

1
T=- / pvdo,
2 Jon

where we denote by © the derivative of v with respect to the time ¢, and by do
the surface measure on 0{2. Now we obtain an expression for the potential
energy of the plate. By following [105, §10.8], under the assumption that the
strain potential energy at each point depends only on the strain configuration
at that point and that the Poisson ratio of the material is zero, we have that
the strain potential energy is given by

1
Vi=3 /Q (vie + vgy + 203, dady.

Besides V, we have another term of the potential energy due to the lateral
tension

-
V, = 2/Q (vi + vz)dzxdy,

where 7 > 0 is the ratio of lateral tension due to flexural rigidity. The
Hamilton’s integral in the time interval [t1, t2] of the system is given by

to

H= T—-V,—V.dt

t1
1 (" 1 ("
== / / pvdodt — = / / (viw + UZy + 2U§y) + T(vi + vf,)dxdydt.
2 Ju Joa 2Ju Ja

According to Hamilton’s Variational Principle, the actual motion of the
system minimizes such integral. Let v(x,y,t) be a minimizer for . Consider
the one-parameter family

v(z,y,t) +en(z,y,t),

where we 7 is a twice continuously differentiable and such that n(x,y,t) =
n(x,y,ta) = 0. We consider the Hamiltion’n integral H(e) given by

1 ("
H(e) = = / / p(0 + en)*dodt
2 Ji, Joo
T [ 2 2
— 2/t /Q(vx—ksnz) + (vy + eny)“dxdydt
1

1 [t
-5 / / (Vez + ENwz)® + (vyy + enyy)? + 2(Vay + €Ny ) ddydt.
t1 Q

We have that #(¢) has a minimum at ¢ = 0, therefore %% , = 0. We

de |.—
dH

compute = |
=
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d ts
an :/ / pundodt
de =0 Ji, Joo

to
— / / (vmnm + Vyy Ny + 2VayNay + 7(Vane + Uyny)>d:rdydt =0.
t1 Q
(5.1.1)

We integrate by parts with respect to the variable ¢ the first summand of

(5.1.1)). We have

to to
/ / pindodt = / / pindodt, (5.1.2)
t1 oN t1 0N

since n = 0 at t = t1,t2. Now we integrate by parts separately all the terms
in the second summand of (5.1.1). We have

/U:cznccardxdy
Q

/ VyyNyydrdy = / UyyyyNdrdy + / [vyyny —vyyyn} V(y)do,

Q Q 0N
2 / UgyNzydady = 2 / Vgayyndady + / [nyny —uzyyn] V(z)do

Q Q oQ

+ / |:ny7750 - szy"?} l/(y)d(T,
o0
T/ Ugplle = —’I'/ vmndacdy—i—T/ VaNV(5)do,
Q Q o

T/vyny = —T/vyyndxdy+7/ Uynu(y)dcr,
Q 9 a0

where we have denoted by v(,) and v(,) the components of the unit outer
normal v to 9§2. The terms involving the integrals over the whole of {2 sum
up to

/ va:xzxndxdy + / |:wa77:1: - U:vzxn} V(x) do,
Q oN

/ <A21) - TAU) ndzdy, (5.1.3)
Q
while the boundary terms equal
ov  0Av 9
/89 (T% ~ 5 8y>77 + (D*v - v) - Vndo. (5.1.4)

We use the Divergence Theorem to find a more suitable expression for the
boundary integral [, (D*v - v)-Vndo. We have (see [28, 3] for the details)

D? Vndo = 8—2”@—& D?v - d 5.1.5
m( v-v)-Vndo = o O Oy ivan (D*v 1/)8977 o, (5.1.5)
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where D v - V =D%.-v— 8—12’1/ is the tangential part of D?v - v. From
(5.1.2), 15 1.3)), 5 1.4) and it follows that v satisfies

to 1)
— / / pindodt — / / n (AQU — TAU) dxdydt
t1 o) t1 Q

’ Oy &% v : 2 O0Av
_ /t1 - EO n (Tay — divyg (D v.u)m ~ > dodt = 0,

for all n € C?(2 x [t1,ts]) such that n(z,y,t1) = n(z,y,t2) = 0 and (z,y) €
Q. Since 7 is arbitrary we obtain

AU—TAv:(), in €,

W =0, on 09, (5.1.6)
pu + T% — divgq (D2v.1/) — 88Al,v =0, on 99,

for all t € [t1,t2]. We remark that we have Written divgg (Dzv 1/) instead of
divg (DQU.V)BQ since (D2U.V)6Q = D*v.v — WV and 8 5 =0 on 0.

We separate the variables and, as is customary, We look for solutions
to problem of the form v(x,y,t) = u(z,y)w(t). We find that the
temporal component w(t) solves the ordinary differential equation —w(t) =
Aw(t) for all t € [t1, to], while the spatial component u solves problem .

Note that in the sequel we shall not put any restriction on the space
dimension. Thus © will always denote a bounded domain in RY of class C?,
with N > 2.

5.2 The Steklov spectrum

We consider the weak formulation of problem ([5.0.1),

/ D?u: D*¢ 4+ 7Vu - Vpdr = )\/ pupdo, Yo e H*(Q), (5.2.1)
Q o0

in the unknowns u € H%(Q2), A € R, where

8¢
2 .
fu:D v= Z &m@:nj 033181‘]

denotes the Frobenius product. Actually, we will consider a problem in the
space H?(2)/R since we need to get rid of the constants, which generate
the eigenspace corresponding to the eigenvalue A = 0. We denote by J; S the
continuous embedding of L?(99) into H?(f2)’ defined by

jf[u][cp] = /89 pupdo, Yu € L*(0), p € H*(Q).
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We set
2,8 . 2 . —
Hy= () = {uEH (Q)./émpuda—O},

and we consider in H?(f2) the bilinear form
<u,v >i= / D?u : D*v + 7Vu - Vudz. (5.2.2)
Q

By the Poincaré-Wirtinger Inequality, it turns out that this bilinear form
is indeed a scalar product on H, 3’5(9) whose induced norm is equivalent
to the standard one. In the sequel we will think of the space HZ’S(Q) as
endowed with the scalar product (5.2.2)). Let F(Q) be defined by F(£2) :=
{G € H*(Q)' : G[1] = 0}. Then, we consider the operator P;f as an operator

from H>°(Q) to F(S2), defined by

"Plf[u} (o] = /QD2u : D*o+7Vu-Vodz, Yu € Hg’S(Q), p € H*(Q). (5.2.3)

It turns out that 73;,8 is a homeomorphism of H, Z’S(Q) onto F(2). We define
the operator 77;)9 from H2(Q) to Hg’S(Q) by

Jog pudo
Jo pdo

We consider the space H2(€2)/R endowed with the bilinear form induced by
(5.2.2). Such bilinear form renders H?(Q2)/R a Hilbert space. We denote

by 7r7$ the map from H?(Q)/R onto H Z’S(Q) defined by the equality wf =

5 o p, where p is the canonical projection of H?(Q) onto H?(2)/R. The
p

map ﬂﬂ’s turns out to be a homeomorphism. Finally, we define the operator

S : 2
Ty acting on H*(Q2)/R as follows

Wf[u] =u—

(5.2.4)

S . (- 4,5\—1 Sy—1 S S
TS = (n55) " o (P5) ' 0 J5 o Tromh®, (5.2.5)

where Tr denotes the trace operator acting from H?(f) to L2(99).

Lemma 5.2.6. The pair (A, u) of the set (R\ {0}) x (H,%S(Q) \ {0}) sat-

isfies if and only if X > 0 and the pair (\~1,p[u]) of the set R x
((H?(2)/R) \ {0}) satisfies the equation

A 'plu] = Ty plul.
We have the following theorem.

Theorem 5.2.7. The operator T;,S is a non-negative compact self-adjoint
operator in H?(Q) /R, whose eigenvalues coincide with the reciprocals of the
positive eigenvalues of problem . In particular, the set of eigenvalues
of problem is contained in [0,+oo[ and consists of the image of a
sequence increasing to +0o. Fach eigenvalue has finite multiplicity.
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Proof. For the self-adjointness, it suffices to observe that

< T/;Su, UV >H2(Q)/R=< (Wg’s)il o (’P;?)il o jf;g oTro W[ﬂ,’su, U >[2(Q)/R
= Pp‘s[(Pf)_l o jf oTro WE)’SU] [ﬂf;‘sv]

= j,;s[Tr o Wﬁ’su] [FE)’S’U], Vu,v € H*(Q)/R,

and that J f [Troﬂ',ﬁ,’su] [ﬂ'fﬁ;sv] is symmetric. As for compactness, just observe
that the trace operator Tr acting from H!(Q) to L?(99) is compact. The
remaining statements follow by standard spectral theory. O

As a consequence we have that the spectrum of (5.2.1]) consists of an
increasing sequence of non-negative eigenvalues of finite multiplicity. Note
that the first positive eigenvalue is Ay as proved by the following theorem.

Theorem 5.2.8. The first eigenvalue A1 of is zero and the corre-
sponding eigenfunctions are the constants. Moreover, Ao > 0.

Proof. 1t is straightforward to see that constant functions are eigenfunctions
of (5.2.1)) with eigenvalue A = 0. Suppose now that u is an eigenfunction
corresponding to the eigenvalue A = 0. Then we have

/ |D?ul® 4 7|Vu|*dz = 0,
Q

ij=1
Then the eigenvalue A = 0 has multiplicity one. O

where |D2u)? = SN (82281357- )2. Since Vu = 0, it follows that u is constant.

Thus Ag is the first positive eigenvalue of ([5.2.1)) which is usually called
the fundamental tone. Note that we can charactrize Ao by means of the
Rayleigh principle

No—  min fQ |D2u|2 + T|Vu|2dx

0F£ue H2(Q) Joq puldo
Jaq pudo=0

(5.2.9)

5.3 Neumann problem and behavior of Neumann
eigenvalues under mass concentration at the
boundary

We consider now problem (5.0.3). Let w. be the set defined by (3.1.19).
We fix a positive number M > 0 and choose in (5.0.3) p = ps, where p;

is defined by (3.1.20). If in addition we assume that € is of class C?, g
can be chosen in such a way that the map x — = — ve is a diffeomorphism
between 02 and dw. N for all € €]0,ep[ (see Theorem [3.1.27). We note
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that [, p.dx = M for all € €]0,9[. We refer to the quantity M as the total
mass of the body.

We prove, under the hypothesis that € is of class C?, convergence of
the eigenvalues and eigenfunctions of problem with density p. to
the eigenvalues and eigenfunctions of problem with constant surface
density % when the parameter € goes to zero (see Corollary . This
provides a further interpretation of problem as the equation of a free
vibrating plate whose mass is concentrated at the boundary in the case of
domains of class C?.

We consider the weak formulation of problem with density pe,

/ D*u: D?*p+1Vu - Vodr = )\/ peupdz, Yo e HX(Q), (5.3.1)
Q Q

in the unknowns u € H?(2), A € R. In the sequel we shall recast this
problem in H?(£2)/R since we need to get rid of the constants, which generate
the eigenspace corresponding to the eigenvalue A = 0. We denote by ¢ the
canonical embedding of H?(12) into L%(Q2). We denote by J, p/l[ the continuous
embedding of L?(Q) into H?(Q)’, defined by

j/f:/[u] (o] = /ngucpdac, Yu € L2(Q), ¢ € H*(Q).

We set
H2N(Q) = {u e H*(Q) : /

upedr = 0} .
Q

In the sequel we will think of the space H, 2E’N(Q) as endowed with the scalar
product (5.2.2). This scalar product induces on H, 3;/\/((2) a norm which is

equivalenf to the standard one. We denote by wé\gf the map from H?2(Q) to
H>N(Q) defined by

B fQ upedx
Jo pedz’

for all u € H?(Q2). We denote by Wﬁ’EN the map from H?(£2)/R onto HE;N(Q)
defined by the equality Wﬁsf = Wf)’eN o p, where p is the canonical projection
of H?(Q) onto H?(Q)/R. As in , we consider the operator 73;\6[ as a
map from H>(Q) to F(Q) defined by

W;J\E[[u] =u

Pﬁ[u] (] = /QDQu : D%p + 7V - Vpdz, Yu € Hg;N(Q), o € H*(Q).

It turns out that Pl/)\! is a linear homeomorphism of H, 2g’N(Q) onto F().
Finally, let the operator T['j\sf from H?(Q)/R to itself be defined by

Té\! = (Wf)’gN)_l o (”PIJJ\E/)_1 o jp/:/ oio wf)’EN. (5.3.2)
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Lemma 5.3.3. The pair (\,u) of the set (R\ {0}) x (Hg;N(Q) \ {0})

satisfies if and only if X > 0 and the pair (A\~!,plu]) of the set
R x ((H?(2)/R) \ {0}) satisfies the equation

A 'plu] = T plul.
As in Theorem it is easy to prove the following theorem.

Theorem 5.3.4. Let Q be a bounded domain in RN of class C' and ¢ €
10,e0[. The operator T[{g is a compact self-adjoint operator in H*(Q)/R
and its eigenvalues coincide with the reciprocals of the positive eigenvalues
Aj(pe) of problem for all 5 € N. Moreover, the set of eigenvalues
of problem is contained in [0,4+oo[ and consists of the image of a
sequence increasing to +00. Fach eigenvalue has finite multiplicity.

We have the following theorem on the spectrum of problem ([5.3.1)) (see
also Theorem [5.2.8)).

Theorem 5.3.5. The first eigenvalue A1 of is zero and the corre-
sponding eigenfunctions are the constants. Moreover, Ay > 0.

Now we highlight the relations between problems (5.2.1)) and (/5.3.1]) when
Q is of class C2. In particular we plan to prove the following theorem.

Theorem 5.3.6. Let Q be a bounded domain in RN of class C%. Let the
operators TS,, and Té\sf from H?(Q)/R to itself be defined as in (5.2.5) and

09

5.8.9) respectively. Then T[fg converges in norm to T‘%L as e — 0.
EXS]]

In order to prove Theorem[5.3.6|we need the following lemma. We remark
that by (5.2.4)), s = 71'?’8 for all ¢ € R, with ¢ # 0.

Lemma 5.3.7. Let Q be a bounded domain in RY of class C%. Let p. € R
be as in . Then the following statements hold.

i) Forall p € H*(Q)/R, Wﬁ’EN[go] — W?’S[QD] in L?(Q) (hence also in H?(12))
as € — 0;

N

€

i) Ifu. — uin H?(Q)/R, then possibly passing to a subsequence 7rf)
ﬂtlt’s [u] in L3(Q) as e — 0;

[ue] —

iii) Assume that ue,u,w.,w € H*(Q) are such that us — u, w. — w in
L2(Q) and Tr[us] — Tr[u], Trlw.] — Tr[w] in L?(0) as e — 0. More-
over assume that there exists a constant C' > 0 such that [|Vue| 12(q) <
C, Vel p2(qy < C for all € €]0,0[. Then

/ pe (ue — u) wedx — 0,
Q
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and
/ pe (we — w) udxr — 0,
Q

ase— 0

Proof. The proof is analogous to that of Lemma [3.1.28] and accordingly is
omitted (see also [72] and references therein for details). O

Proof of Theorem [5.5.6. The proof is similar to that of Theorem [3.1.21] We
repeat it here for completeness. It is sufficient to prove that the family
{T[{g }56]0 ol of compact operators, compactly converges to the compact op-

erator TS, (see Definition |3.1.36)). This implies, in fact, that

2
(r 75, )
i

[0€2]
Then, since the operators {TF{\E/ }

—0. (5.3.8)
L(H(Q)/R,HZ(Q)/R)

lim
e—0

c€]0,0] and T“Z% are self-adjoint, property

(5.3.8) is equivalent to convergence in norm (see [8, 03] for a more de-
tailed discussion on compact convergence of compact operators on Hilbert

spaces). We recall that, by definition, T[fg compactly converges to 7, if
To9[
the following requirements are fulfilled:

i) if [Juell g2y m < C for all € €]0,0], then the family {Tgug}se]oyeo[ is
relatively compact in H?(Q2)/R;

i) if ue — uin H*(Q)/R, then T u. — TS, u in H*(Q)/R.

[092]

We prove i) first. Let u, ¢ € H(Q2)/R we have

lim ; pgﬁg’gN [u]mtN [p)de = lim A Pe (wﬁ’N [u] — 71'?’5 [u]) N ] da

e—0 Pe e—0 Pe Pe

. 78 Pt 78
+ lim pertS[u] (Wf)EN ] — [90]) dx

Q
. S S M S S
+ (;I_%/Qpaﬂﬁ [U]Trgt [@]dﬂ?—m m”? [U]ﬁ [‘P]dg)
+7M W%’S[u]ﬂ'g’s[@]dd. (5.3.9)
109 Joa

By Lemma i1) we have that the first and second summands in the
right-hand side of go to zero as € — 0. As for the third summand,
from Lemma i) applied to the function f = 1 we have that |w.| =
e|0Q| + o(e) as € — 0. Therefore p. = % +o(1) as € — 0. Thus, from
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Lemma and formula (3 it follows that also the third summand of
goes to zero as € — 0 Moreover the equahty (m tiN) (73{)\! )7l =
( ? ) o (P£)~! holds. Therefore, from it follows that le,\gf u is
bounded for each v € H?(Q)/R. Thus, by Banach—Steinhaus Theorem,
there exists C’ such that HTf';\E/’HE(HQ(Q)/R,HQ(Q)/R) < (' for all e €]0,¢eq].
Moreover, since ||ug||g2qyr < C for all £ €]0,&[, possibly passing to a
subsequence, we have that u. — u in H?(Q)/R, for some u € H%(Q)/R.
Then, possibly passing to a subsequence, Tg\gfug —win H?(Q)/R as e — 0,

for some w € H?(Q)/R. We show that w = T, u. To shorten our notation
109]

we set w, 1= Tfj)\!ug. By Lemma i) we have

lim D2( 3N we) : DAV e]) + TV (N fwe)) - V(N (] da

e—0 Pe

/ D2 lu) : D(xbS[il) + 7V (b)) - V(xt e, (5.3.10)

for all o € H?(Q)/R. On the other hand, since by ([5.3.2) <77N o Wﬁ?f) we =
(jN 0i0 ﬂﬁp’ ) ug, we have that

/ DtV [w]) - DXV ) + 7V (w5 fwe]) - V(N (o]

/ pertN [u)miN [gldz (5.3.11)

Then, by Lemma [5.3.7], iii), (5.3.10) and (5.3.11)) we have

< W, ¢ >p2(0)/R= ] hm < We, @ >pF2(Q)/R= hm/ PeT N[ug] tiN[gp]alnlc

— lim p5< SN[, — ﬂﬁ’s[u]) N ol da

e—0
. S S
+lim | pentlu] (Tl - Tl ) o

. S S M S S
+lim | pert*fulntlelde = 5 | S ulm " lldo

=< T“Z%U, © >[2(Q)/Rs

hence w = TS, u. In a similar way one can prove that ||w|| H2(Q)R
1991
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lwll g2y /- In fact
. 2 . N N
g e sy = Ty | e (b Toe] =t L) Voo
+ lim ,0 W?S[u] (ﬂﬁ’eN [we] — Wﬁ’s [w5]> dx
e—0

o jj» ﬂﬁs _ ﬂvS
+1im [ pert fu] (bS] - 75 u]) da

Q
+ lim paﬂgs[u]ﬂg’s [w]dx
e—0
8,8 8,8 2
= — 7" [u]m do = ||w| .
,ﬁuaﬂ i lwldo = ol

This proves i). As for point 4i), let u. — u in H?(Q)/R. Then there
exists C” such that [[ucl|2(q)r < C” for all € €]0,&0[. Then, by the same
argument used for point 7), for each sequence €; — 0, possibly passing to a

subsequence, we have TN ugj — TS, w. Since this is true for each {ej}jen,
1691

we have the convergence for the whole family, i.e., TN us — TS, u. This
o907
concludes the proof. ]

Thanks to Theorem [3.1.41] as an immediate corollary of Theorem [5.3.6
we have

Corollary 5.3.12. Let Q be a bounded domain in RN of class C?. Let
Ajlpe] denote the eigenvalues of problem on Q for all j € N. Let
Aj, j € N denote the eigenvalues of problem corresponding to the
constant surface density %. Then lim._,o Aj[pe] = Aj for all j € N.

5.4 Symmetric functions of the eigenvalues. Iso-
volumetric perturbations

In this section we address the problem of the dependece of the eigenvalues
of problems ((5.0.1)) and (5.0.3) upon perturbations of the domain €.

We shall compute Hadamard-type formulas for both the Steklov and the
Neumann problems, which will be used to investigate the behavior of the
eigenvalues subject to isovolumetric perturbations. To do so, we use the
so called transplantation method, see [60] for a general introduction to this
approach. We will study problems ([5.0.1]) and (5.0.3)) on ¢(£2), for a suitable
homeomorphism ¢, where 2 has to be thought as a fixed bounded domain
of class C'. Therefore, we introduce the following class of functions

o(Q) = {qﬁ e (c? (ﬁ))N : ¢ injective and iIglzf | det Do| > 0} .
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We observe that if ) is of class C! and ¢ € ®(£2), then also ¢() is of class
C! and ¢(-1) € ®(¢()). Therefore, it makes sense to study both problems
(5.0.1) and problem (5.0.3) on ¢(£2). Moreover, we endow the space C2(€)

with the standard norm

fllee@ = swp D f(@)l.

la|<2, 2€Q

Note that ®() is open in (CQ(Q))N (see e.g., [75, Lemma 3.11]).

It is known that balls play a relevant role in the study of isovolumetric
perturbations of the domain 2 for all the eigenvalues of the Dirichlet and
Neumann Laplacian. We refer to [75, [77], where the authors prove that the
elementary symmetric functions of the eigenvalues depend real analytically
on the domain, providing also Hadamard-type formulas for the correspond-
ing derivatives. Then, in [76] they show that balls are critical points for such
functions under volume constraint.

From now on we will consider problems (/5.0.1)) and (5.0.3)) with constant
mass density p = 1.

5.4.1 The Steklov problem

We plan to study the Steklov problem on the domain ¢(2) for ¢ € ®(Q),
ie.,

A%y — TAu =0, in (),
Pu —, on 9¢(Q), (5.4.1)

(
T% — divgy(q)(D?u-v) — %AV“ = Au, on 0¢().

To do so, we pull back the resolvent operator of (5.4.1]) to 2. Therefore, we
are interested in the operator 73:2 from H;’S(Q) to F(£2), defined by

PSlulle] == [ (D(wod™)00): (D00 ™) o )| det Dol
7 [(Vwod)o0) (Vipos )0 )l det Dolds, (542
for all u € H;’S(Q), ¢ € H%*(Q), where
Hjs(sz) = {u € H*(Q) : /muyu(w)—lu det Do|do = o} .

Moreover, for every ¢ € ®(2), we consider the map J. (;9 from L2(09) to
H?(Q)" defined by

j(f[u] [p] = /{m wp|v(Vp) || det Doldo, Vu e L*(09Q),p € H*(Q).
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It is easily seen that the form QD is a scalar product on H;S(Q) We
will think of the space HiS(Q) as endowed with the scalar product l)
We denote by 7['(‘2 the map from H2(Q) to HiS(Q) defined by

 Joqulv(Ve) || det Dg|dz
Joo W(Vé)~t|| det Do|dz ’

ﬂg(u) =

and by 71'5;8 the map from H?(Q2)/R onto HiS(Q) defined by the equality

7r = ﬁg)’s op. Clearly, ﬂg;s is a homeomorphism, and we can recast problem

BAT) as
Ay = Wgu,

where
S\ — — S
Wg::(ﬂg) ) 1O(P£) 1oj¢‘)soTro7r2) .

The operator Wf can be shown to be compact and self-adjoint, as we have

done for the operator T/;g defined by in Theorem (see also [T,
Theorem 2.1]).

In order to avoid bifurcation phenomena, which usually occur when deal-
ing with multiple eigenvalues, we focus our attention on the elementary
symmetric functions of the eigenvalues. This is the aim of the following
theorem.

Theorem 5.4.3. Let Q be a bounded domain of RN of class C'. Let F be
a finite non-empty subset of N. Let

Ao[F] :={¢ € ®(Q) : Mi[¢] € {Aj[¢] : j € F} VI e N\ F}.
Then the following statements hold.

i) The set Aq[F] is open in ®(Q). The map Pr of Aq[F] to the space
L (HQ(Q), HQ(Q)) which takes ¢ € Aq[F| to the orthogonal projection
of Hi’S(Q) onto its (finite dimensional) subspace generated by

{u € H;S(Q) : PRluo ™ = N[BT o Trfuo ¢~ for some j € F}

is real analytic.

ii) Let s € {1,...,|F|}. The function Aps from AqlF| to R defined by

Apsldl = > Aol (9]

is real analytic.
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iii) Let
Oq[F] = {¢ € Aq[F] : \j[¢] have a common value A\p[¢p] Vj € F'}.

Then the real analytic functions

() ) () )

of Aq[F] to R coincide on Oq[F] with the function which takes ¢ to
Ar[¢].

Proof. The proof can be done adapting that of [77, Theorem 2.2 and Corol-
lary 2.3] (see also [75]). O

In order to compute explicit formulas for the differentials of the functions
AFrs, we need the following technical lemma.

Lemma 5.4.4. Let Q be a bounded domain in RN of class C*, and let
¢ € ®(2) be such that ¢(S2) is of class C2%. Let uy,us € H*(Q) be such that
v; = u; 0 9D € HYp(Q)) fori=1,2 and

821)1 82?}2 ~

Then we have
d|¢:q;73£[1,b] [u1][ug] = /~ (D?vy : D*vg + 7V - Vo) - vdo
96(Q)
—1—/ div, = oy (D*v1.0)Vog + div, - o) (D?v9.0)Vor ) - pdo
8(;)(9)( 030 (D70L.V) Vv oa(e) (Dv2.7) 1) K

A A
+/~ <6 i Vo + 0Avy Vm) -,ualcr—T/~ <81}1va + MVm) -pudo
6¢(Q) 61/ 81/ (9(;5(9) 81/ 81/

- [ ((A2U1 — 7Av) Vg + (A%, — TAv) V) - pdo, (5.4.5)
»(2)

for all € (C2(Q)N, where p =1 oo~
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Proof. We have

P [0)fr)[u)

= [l gD 067 0 )l : (D(uzo671) 0 )] det Dlda

[ @y g w067 0 U] - (V0 5 0 6) det Do

+ (D037 06) (Al Do 67') 0 9w det Dilda

7 (V067 0 6) - (dl,_5V (2 0671) 0 6)[0]| det Do

+ /Q (D*(ur097") 0 9) : (D*(uz09™") 0 §)d|,_g| det Do|[¢)]d

+7 /Q(V(ul 0o¢ ) od)- (V(ugo ") o d)d|,_s|det Do|[y)]dx, (5.4.6)

and we note that the last two summands in (5.4.6) equals
/é o (D?vy : D*vg + 7V - Vo) divudy.

(See also Proprosition |5.4.18)). By standard calculus we have (see [23| for-
mula (2.15)])

DQ(UO gbfl) O¢ — (v(ﬁ) tD2 i ou BO'k‘Z ]
Py 81: 81:1 L ' .,
2]

where o = (V¢)~!. This yields the following formula
- N ov
d|,_5(D*(wop™ od)[$log™" = —D*Vu—Vu' D=y @DQW, (5.4.7)
r=1 r

where p = o q~5_1 and v =uo q~5_1. We rewrite formula l) component-

wise getting

(dlyg(D*wod )0 d)W]od")

__i( 0?v 8ur 0% 8,ur+ 02, 311)
y:0yr Dy; | Oy;0u, Oy | Dydy; Iy, )

(2

Moreover (see [75, Lemma 3.26])

(dlys(V (o™ 0 o)y 0 7). = Z o0 o
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Now we use Einstein notation, dropping all the summation symbols. The
first summand of the right hand side of (5.4.6) equals

_/ < 9%vy 8MT+ 0%v1 Ou, 0%, (%1> 0%v9
(V)

+ dy. (5.4.8
0y 0y, Oy; ~ 0y;0y, Oy; ~ Oy;0y; Oyr ) OyiOy; ( )

In order to compute (5 , integrating by parts, we have

o

/ 9%vy % 9%vy dy — / ovy %u 020, d
5(02) 0Yi0yr Oyj Oyi0y; od@) Oui Oy; " Oyidy;

_/ Ovy Odivu 0%vy J _/ %% Py i
3@ 0yi Oy; 0y;0y; Y 30 0yi 0y; 9y;0y;0y, Y

/ Ovy Oy O%ug / ovy Oy OPug
- Yy 22 _gr _9v g
26(0) 9yi Oy;  Oyi0y; (@) Ovi Oy; Oy;0y;0yy

0 0?
— / U1 divp v2 vido + D*vy : D*vadivudy
06() Oy Oyidy; $(©)

—I—/ divuVuy - VAuwvaedy,
»(2)

and

/ ovy 0,  0%vg / Ovy Opyr 09
} dy= [  ——4—vj do
&) Oyr Oyi0y; 0y;0y; od() Oyr Oyi ~ Oyidy;

_/ 9%vy % 9%vy J _/ Ov1 Oy 8Avgd
Q) Q)

) Oyr0y; Oy; Oy;0y; = I o) Oyr 0y; Oy;

/ Ovy Oy 009 / Ovy Oy OAVy
= G, T2 Gy d
) Oyr Oyi ~ 0yiOy; ) Oyr Oyi Oy

/ ovy Opyr 0% / Ovy 0div 0%vo
— — Uy do + — Y

@ Oy; Oyi  OyiOy; @ Oy; Oyi OyiOy,

Ovy Oy O3ug
+/ — —dy
@) 9y; yi Oy;Oy;Oyy

B / ovy a'“’“,j, %9 > / Ovy Oy OAVo
@) Oyr Oyi 7 Oy Oy; @) 9yr Oyi Oy

/ ovy Oy 009 / Ovy Oy O3ug
- — —vp,———do + — = dy
5) Oyj Oy O0yi0y; 30 9yj Oy; 0y;0y;0y;

2
—|—/~ gvld 88 v2 VZdU—/ D*vy : D*vydivudy
04(2) 9Yj vi0y;

— /~ Vo1 - VAwvedivudy.
»(2)
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We also have

/': 8'[}1 8#7' 81}2 dy _ / ivvl Mdo’ - | AUvil : ,LLdy
) Our Oyi Oy ag(0) OV )

OUQ 32’01 / 6 /
— rdy = "2y do — AvoVu d
/¢3(Q) e 8yi8yru Y 83 o 1 H 2 VU1 - pay
Bvl 8202

—/~ Vvl-va,u,‘Vda—i-/ = —Mrdy+ | V- Vuodivudy.
95(%) 30 9Yi 0y;0yy 3(Q)

It follows that

|, PS [t )us)

. vy 0%vy vy 0%y Oy
— D?vy : D*vodiv dy—/ < + vrdo
/ Q ' 2o ad() \OYi 0y;0y;  Oy; 0y;0y; ) Oy;

vy OPue vy Oy Oy
+ [ —_— = dy
@ \9yi 0y;0y;0y,  Oyi 0y:0y;0y, ) Oy;
87)1 821)2 81)2 32’01 ) .
+ + v;divudo
/a<£(sz) <ayz’ dyidy; — Oy; Oy dy; ) 7 :

- [ (Vuy - VAvy + Vg - VA ) divudy
()
/ (81}1 %9 Ovy 0%y ) Opr
= 22 TN do
@ \ Oy, yidy; ~ Oyr Oyidy; ) 7~ Dy

Ovy OAvey  Ovs 8Av1) Oy
+ oo d
/ ( )<ayr oy, Oy oy ) oy

Ovy Ova >
-7 —Vug + 7V’U - ndo
/a @) ( Y ()] o 1 1%

+ 7'/~ (Av1Vvy + AvaVuy) - pdy + 7'/~ Vuy - Vuou - vdo.  (5.4.9)
() OP()

Now we recall that
o _
divjs = div g g + a—’: v on 9H(Q),

(see also [38] §8.5]) and that, since v = Vd, where d is the distance from the
boundary defined in an appropriate tubular neighborhood of the boundary,
then Vv = (Vv)! and 9% = 0, from which it follows that

VsV = (V&;(Q)V)t on 9¢(Q).

We will use these identities throughout all the following computations.
Using the fact that
827)1 8 (%)

W: 8 a9 =0 OHa(Z;(Q),
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we get that the sixth summand in (5.4.9)) equals

ov

81}1 9
— /Bé(ﬂ) (&UT (D2’U2.V)3¢;(Q) + 8yr(D2vl'V)8¢;(Q)> . va&(Q):U’TdO'

(92)1 82112 (9112 82111 8/L7~
" Loz \ Oy, 02 oy, 02 ) v
0p(£2) Yr OV Yr OV v
8@1) 2
= AV D?v9.v) 47
/aas(ﬂ)< o0 (f?yr (D72 )odie)
ov
+Va¢;(m (({);) (D2v1.y)3¢~)(9)> rdo

i /aJm) (a0 (D*01:0) 5009 02 + vy (D02.0) g0 V) - e

/ < 621}1 82’02 82’02 32111 )

= | . + vjrdo

06(Q) \OYi0y, 0y;0y; — 0y;0y, Oy;0y;

+ /(%(Q) (diVa(Q,(Q)(D2U1-V)aq;(Q)VU2 + divysq) (DQ’UQ.V)H(Z)(Q)V”U]_) - pdo.
(5.4.10)

The seventh summand in (5.4.9) equals

/~ (aAvl Vg + aAUQ Vvl) 'MCZO'—/~ (A21)1Vv2 + AQUQV'Ul) .Mdo-
by \ v v 3(9)
/ < 621)1 8AU2 622}2 8Avl >
- + prdy
5@ \9%i0y, Oy;  Oyidy, Oy
_ / <aml o, 4 0002 w) do— / (A201 Vg + Ao Vor)pudo
ab@) \ v v 5

$(Q)
- /~ (Vuy - VAvg + Vuy - VA ) pu - vdo
96(%)

+/ (avl 82AU2 + 81}2 82AU1> d
s \ 0yi 0yidy, ~ Oyi IyiOy; pr @Y

+ /~ (Vv - VAvg + Vg - VAwvy) divudy.  (5.4.11)
()

The second summand in ([5.4.9)) equals
/~ V(Vvy - Vo)V (uy ) vpdo
9¢(Q)
=— Voo (Vi - Vo)V o5 o (i ) vrdo
/%(Q) 96(9) 06(Q)

0 Opr
— Vv - Vug)—vr,do. (5.4.12
/857(9) 8V( ! 2) ov ( )
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The third summand in (5.4.9)) equals
/ (f%l vz | Ovz_ Oun )W do
0d(@) \ Oyi Oyidy;0y, — Oy; Oyidy;0y, ) 7"
/ <8’U1 82Av2 81}2 aQA’U1>
- | + prdy
3@ \9yi 0y;0y, ~ Oy; Oy; Oy,
62111 03112 621}2 63111
- [ + prdy
3 \9yi0y; 0y;0y;0y, ~ 0y;0y; 0y;0y;0yy,
[ (B tn o ey,
06(©) \Oyi Oyidy;0y, — Oy Oyidy;0y, ) 77"
/ <81}1 82AU2 81}2 82A’l)1)
— + prdy
3(@) \9yi 0y;0y, ~ Oy; Oy; Oy,

— /~ D?vy : D2vgu -vdo +[ D?vy : Dzvgdivudy. (5.4.13)
26(Q) ()

From —, it follows that
- PSllmllal = = [ ooy (Fer- Ven) Vi (o
_ /3¢(Q) gV(Vvl va)é;9 vrdo + /6¢(Q) gV(Vvl Vug)divudo
+ /&;(Q) (divaq;(m (DQUl.Z/)ag)(Q)va + diV&}s(Q)(D UQ.I/)BQB(Q)VIM) - pdo
- /aq”s(n) <3§jgzl/r 3?;;; - 333; aij;;) Vittndo
3 3

— /~ D?*vy : D*vop - vdo — /~ (Vuy - VAvg + Vg - VA ) pu - vdo
99(Q) 26()

A A
+/ ~ <68 U1 Vg + 83 02 V1}1> -pdo —/~ (A2U1VU2 + A2U2VU1) - udo
96(2) v ()

—7'/~ <avlv 2—|—802V1}1>-,ud0
3p(Q) 81/ 8

+ T/ (Av1 Vg + AveVuy) - pdy + 7'/~ Vuy - Voo - vdo
() ()

= — V4~ Vi - Vug)V oz I/TdO'
/%(Q) 2d()( )WVaaa (hr)

0
+ / Vv - Vug)div udo
a6(©) OV oy (V1 V) o3(E)
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" /aé(ﬂ) (divaém) (D*01.0) 550y Vv2 + divy g (D 2”2-”)%(@%1) pdo

—i—/~ <8AU1V1)2 0av 2Vv1>‘ dO’—T/ (C%IV g—i—aVvl)‘uda
96(Q) ov v 96(Q) ov 0

I
0 0
+ — Vv - Vo ) rdo
/aé(ﬂ) ov (5%( 1-Vee) Ju
— /~ D?vy : D2v2,u -vdo — /~ (Vuy - VAvg + Vg - VA ) p - vdo
06(Q) 99(92)

— /¢3(Q) (A2v1Vv2 + A%ngl) - udo

+ 7'/~ (Av1Vvy + AvaVuy) - pdy + 7'/~ Vouy - Vugu - vde. (5.4.14)
() 0P()

The first summand on the right hand side of ([5.4.14]) equals

/ - Bogey(Vor-Vup)p-vdo + / Vg (VoL Voa) - (Vv )urdo,
24(9) 96(2)

while the sixth one equals

0? 0
Vo - Vo) - uda+/ Vo < Vuy - Vo >'uda
/a¢(ﬂ) A oae) 7 gy V0V

— Vaion(Vor - Vo) - (Va7 00 Ur ) firdo.
/%(Q) 03 (VU1 Vv2) - (Vg vt

Using the fact that

0 0
div,; — (Vv - Vo -,u) do = / Vi - Vo) - vdo,
/aém) o9 <3’/( Levee) oy oY)

where K denotes the mean curvature of dp(2) (see [38, §8.5]), we obtain

0 0?
+/ Vuy - Vo) - ud0+/ (Vv - Vo) - vdo
06(92) 8’/( 1 Vn) o) OV2

— /~ D?vy : D*vap - vdo — /~ (Vuy - VAvg + Vg - VA ) p - vdo
26(Q) 96(Q)

i /a&m) (a0 (D*01:0) 55009 02+ i) (D02.0) g0 Vi) - o

A A 0 0
+/~ <3 UL gy 4+ 2202 )-uda—T/~ ( R A U2Vv1>-uda
3¢(Q) 81/ 8V 6¢(Q) 6V 8V
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— /( : (A2U1V’Ug + A2112Vv1) - udo
Q

+ T/ (Av1Vuy + AvaVuy) - pdy + 7'/~ Vuy - Voo - vdo
?(2) 06(Q)

= /~ A(Vvy - Vo) - vdo — /~ D%y : D*vop - vdo
() b(2)

_/~ (vvl'VA?}Q—i—VQ}Q.VAUl)M.VdU
09(2)
i /Bé(m <diva‘5’(9) (D 01.0)g50) Vo2 + divyg ) (D 2”2-’/)a£>(sz>Wl> - pdo

8Av1 8AU2 81)1 v V2
+ V V -udo—1 + —V -ud
/{9&)()( > V9 + Y v1>ua /()( VV2 oy vl)ua

— [( | ((A2v1 — 7Av;)Vug + (A vg — TAUQ)V’Ul) - udo
0

—i—T/~ Vi - Vuou - vdo.
09(9)
Using the equality
A(Vvy - V) = VAwv; - Vg + Vo - VAvy + 2D%v; : D0,
we finally get formula . O

Now we can compute Hadamard-type formulas for the eigenvalues of

problem ([5.4.1)).

Theorem 5.4.15. Let Q be a bounded domain in RN of class Ql. Let F
be a finite non-empty subset of N. Let ¢ € Oq[F| be such that 06(2) € C*,
Let vy, ..., vp| be an orthonormal basis of the eigenspace associated with the

eigenvalue Ap[@] of problem in L2(84(2)). Then

1y
dl,_(Ara)[9] = N[5 ( . )Z /a o, (e
O(v?
+Ar éyl) — 7|Vy)? — |D2ful\2),u -vdo,

for all ¢ € (C2(Q)N, where =1 o ¢V, and K denotes the mean curva-
ture of 0¢(2).

Proof. First of all we note that vy, ...,v|p € HY($(2)) (see e.g., AT, §2.5]).
We set u; = vjo¢ for i =1,...,|F|. For |F| > 1 (case |F| = 1 is similar),
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s < |F|, we have

|7
dly-stratel = =720 (11 7)Y P8 [al, g wSTuliptun]] b
=1

s—1
(5.4.16)
We refer to [75, Theorem 3.38] for a proof of formula (5.4.16]).
By standard calculus in normed spaces we have:

P [dlys (5% 0 (P9) ™" 0 78 o Tr o2 i) fp(w)

Yol (75 0 Tro w3 Wl w] Ipw)]
+ 735 [d‘d,:g; ((Wi’s)*l o (Pg)—1> [Y)] o j(f oTro wgs[p(ul)]] [p(up)] .

Now note that:

Ps [mﬁfg)—l o (PE) " odl,_; (75 o Tromi) [y [p(um] Ip(u)]

¢
2
:/~ (Kv?—i—a(vl))u-uda—/~ V(v}) - pdo,
26() ov 24()

(see also [74, Lemma 3.3]) and

P [dloms () o (P9) ™) W10 5 o Tro m&Tptan)]] )
= =Apdly_g (P o m3) W]l [ (w))-
(We refer to [77, Lemma 2.4] for more explicit computations). Using formula
(5.4.5)) we obtain
P [al, g (7557 0 (P9) ") w0 7 0 Tr o w5 5(p(un)] fp(un)

= -\ /~ (ID*u|* + 7|Vu|?) p - vdo + /~ V(v}) - pdo.
96(Q) 99(2)

This concludes the proof. O

5.4.2 TIsovolumetric perturbatons

Now we turn our attention to extremum problems of the type

i Aps Arps|o],
pamin Arslefor | max - Ars(d]

where V(¢) denotes the Lebesgue measure of ¢(2), i.e.,

V(g) = /¢ e /Q | det D|dz. (5.4.17)



152 Mass concentration for fourth order operators

Note that all ¢’s realizing one of the extrema are critical points under mea-
sure constraint, i.e., KerdV(¢) C Ker dAp s[¢]. We have the following result
(see [76l, Proposition 2.10]).

Proposition 5.4.18. Let Q be a bounded domain in RN of class C*. Then
the following statements hold.

i) The map V from ®(Q) to R defined in is real analytic. More-
over, the differential of V at ¢ € ®(Q) is given by the formula

V@l = [

div(yp o p~V)dy = / (o) - vdo.
3(Q)

9%()
ii) For Vy €]0,+o0], let
V(W) :={¢ € 2(Q2) : V(¢) = Wo}-

If V(Vy) # 0, then V (Vo) is a real analytic manifold of (C*(Q))N of
codimension 1.

Using Lagrange Multipliers Theorem, it is easy to prove the following
theorem.

Theorem 5.4.19. Let Q be a bounded domain in RN of class Cl. Let F
be a non-empty finite subset of N. Let Vy €]0,+oc[. Let ¢ € V/(Vy) be such
that 9p(Q) € C* and \j[¢] have a common value Ap[@] for all j € F and

N[d] # Ap[@] for alll € N\ F. Fors = 1,...,|F|, the function ¢ is a
critical point for Aps on V(M) if and only if there exists an orthonormal

basis v1,...,vp| of the eigenspace corresponding to the eigenvalue \p|¢] of
problem in L2(0¢(Y)), and a constant ¢ € R such that

| £ ~ 9 (Uz) ~
> (AF[¢] (va + ayl ) — 7|V |2 - |D2vl\2> = ¢, a.e. on 9¢(1).

=1
(5.4.20)

Now that we have a characterization for the criticality of gg, we may
wonder whether balls are critical domains. It turns out that indeed balls
are criticals for the symmetric functions of the eigenvalues, as proved in the
following theorem.

Theorem 5.4.21. Let §) be a bounded domain of RN of class C'. Let
¢ € ®(Q) be such that $(Q) is a ball. Let X be an eigenvalue of problem

in (), and let F be the set of j € N such that Ai[¢] = A, Then
Aps has a critical point at ¢ on V(V(9)), for all s =1,...,|F|.

Proof. Using Lemma [5.4.22 below and the fact that the mean curvature is
constant for a ball, condition (5.4.20)) is immediately seen to be satisfied. [J
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Lemma 5.4.22. Let B be the unit ball in RN centered at zero, and let \
be an eigenvalue of problem in B. Let F' be the subset of N of all
indexes j such that the j-th eigenvalue of problem i B coincides
with A. Let vy, ..., v p| be an orthonormal basis of the eigenspace associated

with the eigenvalue X\, where the orthonormality is taken with respect to the
scalar product in L?>(0B). Then

|F| |F| |F|

2 v 2 IVuls D 1Dl
j=1 j=1 j=1

are radial functions.

Proof. Let On(R) denote the group of orthogonal linear transformations in
RY. Since the Laplace operator is invariant under rotations, then vy o A,
where A € On(R), is an eigenfunction with eigenvalue A; moreover, {vjoA :
j=1,...,|F|} is a orthonormal basis for the eigenspace associated with A.
Since both {v; : j =1,...,|F|} and {vjoA:j=1,...,|F|} are orthonormal
bases, then there exists R[A] € Oy (R) with matrix (R;;[A]); j—1,. |r| such

that
|F]

v = Z le [A}vl o A.
=1

This implies that
|F| |F|

Zv _Z oA)27

J=1
from which we get that Z' 1 v is radial. Moreover, using standard calculus,

we get

|7 | £ |£]
DIV = " Ry [AlRu, [A] (Voy, 0 A)-(Vuy, 0 A) = ZMoAP

I1,la=1

and
|F|
D?v; - D*vj = Z R, [A|R;1,[A]JA! - (D%v;, 0 A) - A- A" (D%u, 0 A) - A
l1,la=1
||

Z R, [A]Rji,| AJA"- (D2vll oA)- (DQUZ2 oA)-A,

l1,lo=1
hence

IF|
|D?0;” = te(Dv; - D*vj) = > Ry, [A|Rj,[A](D?vy, 0 A) : (Duy, o A),
l1,la=1
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from which we get

|F| ||

> D =) |D%j0 AP
j=1 j=1

5.4.3 The Neumann problem

As we have done for the Steklov problem, we study the Neumann problem
for the biharmonic operator on ¢(€2), i.e.,

A%y — TAu = M\, in ¢(9Q),
£ =0, on 9¢(Q), (5.4.23)
T% - diV8¢(Q)(D2U v) = %AV“ =0, on J¢(Q).

We consider the operator 73(/;/ from H;N(Q) to F(£2), defined by

PYllg] = /Q (Do ¢ 0 ) : (D2(pod~t) o ¢)| det Do|de
1 [(Vlwos™)00) - (Vo 6™) 0 o)l det Doldz, (5420

for all w € H3™ (), ¢ € H*(Q), where

HN(Q) = {u € H2(Q) : /Qu det Do|da = o} ,

Moreover, for every ¢ € ®(2), we consider the map J. (g\/ from L%(Q) to
H?(Q)' defined by

TN (][] = / wp|det Dp|do, Vu € L*(Q),p € H*(Q).
Q

We will think of the space H;N(Q) as endowed with the scalar product
induced by (5.4.24). We denote by )’ the map from H*(%) to H,™ ()
defined by
det D¢|dx
N = u— Jo ul
o (W) i=u Joy [det De|da

and by WE;N the map from H?(2)/R onto H;’N (Q) defined by the equality
N _ N
T =7

(5.4.23)) as

op. Clearly, 71'2;/\/ is a homeomorphism, and we can recast problem

Ay = Wé\/u,
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where Wé\[ = (7r§;N)*1 o (Pﬁ)*l o jd/)\[ 0jo0 wg)’N and 7 is the canonical
embedding of H?(f2) into L?(2). An analogue of Theorem can be
stated also in this case. Therefore, we can compute Hadamard-type formulas
for the Neumann eigenvalues. This is contained in the following theorem.

Theorem 5.4.25. Let Q be a bounded domain in RN of class g’l. Let F
be a finite non-empty subset of N. Let ¢ € Oq[F] be such that 06(2) € C*.
Let vy, ..., vp| be an orthonormal basis of the eigenspace associated with the

eigenvalue A\p[@] of problem in L*(¢(Q)). Then

d|¢ ¢>(AF s)[q/’]
|F|

F
Y [ <|s|—1 )Z/ (Arv} — 7|V > — |D*v|?) p - vdo,

for all i € (C2(Q)N, where =1 o0 ¢~ .

Proof. The proof is similar to that of Theorem
First of all we note that, by elliptic regularity theory, v1,...,vp €

H($(Q)) (see AT, §2.5]). We set u; = vy 0 ¢ for | =1,...,|F|. For |F| > 1
(case |F| =1 is similar), s < |F|, we have

||

dl,_(Aps)w] = —A%“[&](‘f’ )ZPN [l W3 ()] | Ip()].
By standard calculus in normed spaces we have:

PY s (@57 0 (PY) ™ 0 7 00wl ) Wlln(u)]] fo(um)]
=Py [(wff’ )o (PY )_1 od|,_s (7 0iomsY) 1] [p(ul)]] [p(w)]

+ P [l (8o (P) ) Wl T 00wt ¥ lpeu]| ().

Now note that
Ny— ! BN
P () e (PA) ol (o0 Wlltun]] o)
:[ v?div,udy,
¢(Q)
(see also Proposition [5.4.18)) and

Py alocs (57 o (P )“) wlo g2 ooV )] o)
= —ptdly—g (P o mll) [l [} ()]
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Using formula (5.4.5) we obtain
Ny— -1 . N
P alyes (@570 (PY) ) W0 T2 0 i 0 B p(un)]| Ip(un)]
= )‘Fl/~ (|D2vz|2+T|Vvl|2)M'VdO'Jr/~ V(v?) - udy.
99() ()

To conclude, just observe that

/~ V(vP) - pdy = /~ v - vdo — /~ (vf)divudy.
?(Q) 9¢(Q) o(Q)
O

Now we can state the analogue of Theorem [5.4.19| for problem ([5.4.23)).

Theorem 5.4.26. Let Q be a bounded domain in RN of class C'. Let F
be a non-empty finite subset of N. Let Vy €]0,+oc[. Let ¢ € V/(Vy) be such
that 0p(Q) € C* and \j[¢] have a common value Ap[@] for all j € F and

N[B] # Ap[@] for alll € N\ F. For s = 1,...,|F|, the function ¢ is a
critical point for Aps on V (Vo) if and only if there exists an orthonormal

basis v1,...,vp| of the eigenspace corresponding to the eigenvalue \p|¢] of
problem in L2(4(Q)), and a constant ¢ € R such that

17
3" (Ao} = 7IVul? — [D*u?) = ¢, ae. on 94(Q).
=1

We observe that Lemma|[5.4.22(holds for problem (|5.4.23]) as well, since in
the proof we have only used the rotation invariance of the Laplace operator.

Then, we are led to the following theorem.

Theorem 5.4.27. Let §) be a bounded domain in RN of class C'. Let
¢ € P(Q) be such that #(2) is a ball. Let A be an eigenvalue of problem

on ¢(2), and let F' be the set of j € N such that \j[¢] = . Then

Aps has a critical point at ¢ on V(V(9)), for all s =1,...,|F|.

5.5 The fundamental tone of the ball. An isoperi-
metric inequality

In the previous section we have shown that the ball is a critical point for

all the elementary symmetric functions of the eigenvalues of problem (5.0.1])

when p = 1. In this section we prove that the ball is actually a maximizer
for the fundamental tone, that is

A2 () < Aa(VF), (5.5.1)

where ©* is a ball such that [Q] = [©2*|. Through all this section we consider

problem ([5.0.1)) whith p = 1.
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5.5.1 Eigenvalues and eigenfunctions on the ball

We compute the eigenvalues and the eigenfunctions of when Q) = B
is the unit ball in RY centered at the origin. It is convenient to use spherical
coordinates (r,0) = (r,01,...,0n_1) € Ry x OB in RV,

The boundary conditions of in this case are written as

9%u
_ 5.2
Or? lr=1 0 (5 ° )
ou 1 ou u O0Au
ot n) T T e (559)

where Ag is the angular part of the Laplacian.

It is well known that the eigenfunctions can be written as a product of a
radial part and an angular part (see [2§] for details). The radial part is given
in terms of ultraspherical modified Bessel functions and powertype functions
and the angular part is given in terms of spherical harmonics. We have the
following theorem.

Theorem 5.5.4. Let Q be the unit ball in RN centered at the origin. Any
eigenfunction u; of problem is of the form w(r,0) = R;(r)H;(6) where
H;(0) is a spherical harmonic of some order | € N and

Ry(r) = Apr' + Biy(V7r),
where A; and B are suitable constants such that

I(1-1)
rif (V)

Moreover, the eigenvalue Ay associated with the eigenfunction w; is delivered
by the formula

By =

Aoy = l<(1 ~ Dl (V7) + n';'(ﬁ))_l [3(5 DI+ N — 2)ii(v7)
— (= D)VT(N =1+ 2Nl +2(l - 2)l + 7)i;(v/7)
+7((l=1)(1+2N = 3) +7)i] (V/T)

+ (- 1)Tﬁi;"(ﬁ)], (5.5.5)
for any 1 € Ng.

Proof. Solutions to problem in the unit ball are smooth (see e.g., [47,
Theorem 2.20]). We consider two cases: Au = 0 and Au # 0.

Let u be such that Au = 0. The Laplacian can be written in spherical
coordinates as

N-1, 1
A =08y + 0 + 5 As.
r T
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Separating variables so that u = R(r)Y (#) we obtain the equations

pr V=l W+N-2)
r 72

R=0 (5.5.6)

and
AgY =—Il(l+ N —2)Y. (5.5.7)

The solutions to equation are given by R(r) = ar! + br2=N=1 if
[ >0,N >2 and by R(r) =a+blog(r) if | = 0, N = 2. Since the solutions
cannot blow up at » = 0, we must impose b = 0. The solutions of the second
equation are the spherical harmonics of order . Then u can be written as

u(r,0) = alrlYl(Q)

for some [ € Ny.
Let us consider now the case Au # 0. We set v = Awu and solve the
equation
Av = Tv.

By writing v = R(r)Y (6) we obtain that R solves the equation

N—-1_, I(l+N-2)

R" + TR’ - 5 R=1R, (5.5.8)

r
while Y solves equation . Equation is the modified ultras-
pherical Bessel equation that is solved by the modified ultraspherical Bessel
functions of first and second kind 4;(y/7r) and k;(y/7r). Since the solu-
tions cannot blow up at r = 0, we must choose only ;(z) since k;(z) has a
singularity at z = 0. Then

v(r, 0) = b, (V7)Y (6)

for some [; € Ng. Now v = % = Au, that is A(v/7 —u) = 0. This means
that )
u(r,0) = i, (VTr)Yy, (6) — ci,r'2Y, (6) (5.5.9)

for some [ € Ng.

Now we prove that the indexes [; and I in (5.5.9) must coincide. This
can be shown by imposing the boundary condition (5.5.2]), which can be
written as

blligll (\/F)}/El (0) - 01212(12 - 1)Y22 (0) =0.

If the two indexes do not agree, the coefficients of Y;,,7 = 1,2 must vanish
since spherical harmonics with different indexes are linearly independent on
982 Since ij (/7) > 0, this implies b;, = 0 and therefore Iy = 0 or I = 1.
Thus we have

w(r,8) = (Alrl + Bm(ﬁr)) H,(0), (5.5.10)
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with suitable constants A;, B;. In the case [ # 0, 1, again from the boundary

condition ([5.5.2)) we have
I(1-1)A; + 7i) (v/7)B, = 0, (5.5.11)

hence B; = %Al. Note that the formula holds also in the case [ = 0,1
!

since these indexes correspond to B; = 0.
Finally, let us consider the boundary condition (5.5.3]). Using in (5.5.3])
the representation of u; provided by formula (5.5.10)), we get

[( A+ -1+ N -2)+ T))Al + (— (81 + N = 2) + A)i(v/7)
— VT((N =1 = 2Nl —2( - 2)l = 7)i(\/7) + (N — DT (\/7)

+ n';”(\ﬁ))>Bl Hy(0) = X (A, + Bis(\/7)) Hy(6).

Using equality (5.5.11) we get that the function u; given by (5.5.10) is an
eigenfunction of ([5.0.1)) on the unit ball. Moreover, as a consequence, we

also get formula ([5.5.5)) for the associated eigenvalue. This concludes the
proof. O

We are ready to state and prove the following theorem concerning the
first positive eigenvalue.

Theorem 5.5.12. Let Q be the unit ball in RN centered at the origin. The

first positive eigenvalue of is A2 = Ay = 7. The corresponding
eigenspace is generated by {x1,x2,...,xN}.

Proof. By Theorem 0 =A@ <7 =An). We consider formula (5.5.5)
with [ = 2. We have

Ay = 2(78(/7) ~ 2i2(v))  [6Nia(V7) = VF(N — 1+ m)ib(v7)
HTN = L (V) + VR (V)] (5:5.13)

In order to prove that Ap) > 7, we use some well-known recurrence relations
between ultraspherical Bessel functions (see [1, p. 376]),

1V = ) (V7

1 = Cam + 2 () i),
wvn = S Dm + i om
21+ 2)

+ iy2(VT) + i3 (V7).

\/;
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Using these relations in (5.5.13)), we obtain an equivalent formula for A,

Ao = 2(5ﬁi3(ﬁ) + m(ﬁ))*l [(10]\7 — 24 27)ia(\/7)
+ (2= 10N + (7 + 10N)/7 — 27 + 57/7)i3(/7)
+7(8 4+ 2N + 71)is(v/7) + Tﬁ%(ﬁ)] )

By well-known properties of the functions I, (see [1 §9]), it follows that
iy > 1141 for all [ € Ng. This implies

(10N — 2+ 27)ig(v/T) + (2 = 10N + (7 + 10N)\/T — 27 + 57/7)is(\/T)
78+ 2N + 7)is(VF) + 7V/Tis (VF) 2 (57VTia(v/7) + 7lia(VT)),

then
)\(2) >2T >7 = )\(1)
Now it remains to prove that A(; is an increasing function of [ for [ > 2.

We adapt the method used in [28, Theorem 3]. We claim that for any smooth
radial function R(r) the Rayleigh quotient

_ os Jo (ID2(ROVH(0))? + |V (R(r)Hi(6))?) rN " drdo(6)
T ROZH;(0)%d0 (0)

Q(R(r)Hi(0))

is an increasing function of [ for [ > 2. Here and in the sequel we shall
denote by o(6) the (N — 1)-dimensional measure element of the unit sphere,
which is given by

dO’(Q) = Sin(@l)N_2 Sin(eg)N_B cee sin(GN_g)del s deN—l

We consider the spherical harmonics to be normalized with respect to the
L?*(0B) scalar product. In particular, we have that the denominator of
Q(R(r)H(9)), D[R(r)H,(0)] is R?*(1). Now we need to write the numerator
of the Rayleigh quotient in a suitable way. We recall that the numerator of
the Rayleigh quotient of a function u € H?(B) is given by

Nlu] = /B |D?ul? + 7|Vuldz,
We use the following pointwise identity to re-write the Hessian term:
D2l = %A (IVul?) - Vu- V(Aw). (5.5.14)
We also need to write the gradient in spherical coordinates

Vu=—7+ ;Vsu, (5.5.15)
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where %Vgu is the tangential gradient of u on B and 7 = £ is the unit

normal. We note that the two vectors in the right-hand side of (5.5.15) are
orthogonal. We recall that, since we considered the spherical harmonics to
be normalized with respect to the L?(9B) scalar product, we have

/ Vs H;(0)2do(8) = (1 + N — 2). (5.5.16)
OB

To simplify the notation, we set k := [(l + N — 2). Moreover, from the
Tangential Divergence Theorem, it follows that

1
/ L Agudo(0) = / divos (SVsu ) do(6) = 0 (5.5.17)
op OB r
We use (5.5.14) to re-write the integral of the Hessian as follows:
1
/ |D?u|?dx = / 34 (|Vul?) = Vu- V(Au)dz. (5.5.18)
B B

Now we choose in (5.5.18|) u = R(r)H;(0). We have

/ |D?u|?dx
B

N-1909 1
/193/ <87°2 ar - 2AS>

<(R'(r))2|Hl(9)|2 + R(r ) |VSH1(¢9)|2> rN=ldrdo ()
o, (romor o)
OB
-V ((R”( )+ — R’( ) — sz(r))Hl(e)) rN=Ydrdo(9)

= / / ((R”(r))Q + R/ (r)R"(r) + N_IR’(T)R”(T)> |Hl(9)|2TN_1drda(9)
OB J0

/83/ ( ():2?”(7")

+NT;5R( JR'(r) + 4N R(r) >|VSH1 (0)2rN~Ldrdo ()
' / 1" E "R (r
—/83/0 (R(T)R (1) + ——R/(nR"(r)
N—l 2k

(R'(r)* +

7431‘%(7“)1'%’(7”)> |Hy(0)*rN " Ydrdo(6)
/ / < RH N_ 1R(r)R'(r) — IZR(T)2) \VsHy(0)*rN " Ydrdo(6)
oB

r3

/83 / (R” e >>2——R<> <>) \H,(60)*rN " drdo(6)
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1 R'(r 2 4 ) 4_N k .
+AB /0 (( :2)) — ER(T)R (r) + T4+R(T)2> |VH1(9)‘27’ dT‘d(G’(Q), )
5.5.19

where in the first equality we have used the fact that —AgH; = kH; and in
the second equality we have used the fact that

! 102 2 R(r)? 2\ N1
Las (@e2me)rR + 20 v sm @) ) ¥ -ardo(6) - 0
oBJo T r
which is a consequence of (5.5.17). Now, expanding the integrands in
(5.5.19) and using (5.5.16) and the orthonormality of H;(6) with respect

to the L?(0B) scalar product, we obtain that

[itapar= [ (w2 + 2wy

2
+72T{f (TR’(T) - 2R(r)> L RN 1/2)R(r)2) rN e, (5.5.20)

ré

As for the gradient term we have

/ |Vu|*dx
B

1 , 9
- [ [ (wormor s "L v i

r2
! k
:/ ((R/(r))2 + 7n2R(7‘)2> rN=ldr (5.5.21)
0
Combining ([5.5.20) and (5.5.21)) we have that the numerator of the

Rayleigh quotient N[R(r)H;(#)] can be written in the following form

N[R(r)H(0)]
_ /01 (725(7“]%' B gR>2 N k(k — ]7\;* 1/2)R2 _i_ka;Q)TNldr

+ /01 ((R”Q) + %(R')2 + T(R/)2>TN_1CZ7“.

The above expression is increasing in k for k > N + 1/2 and since k is
an increasing function of [, we easily get that each term involving [ is an
increasing function of [ for [ > 2. Thus the claim above is proved.

For each [ € Ny,

[ |D?ul? + 7|Vul*dx

MA@y = inf Q(u) = inf T ido ,

(5.5.22)
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where the infimum is taken among all functions u that are L?(9B)-orthogonal
to the first m — 1 eigenfunctions u; and m € N is such that Ay = Ay, is the
m—th eigenvalue of problem . The eigenfunctions u; are of the form
w = Ry(r)H(0), and v, realizes the infimum in (5.5.22). Then

Ay = QRi(r)Hi(0)) < Q(Riy1(r)Hi(0)) < Q(Ri1(r)Yi41(0)) = A1),

where the first inequality follows from the fact that Rjii(r)H;(#) is also
orthogonal with respect to the L?(0B) scalar product to the first m — 1
eigenfunctions R;(r)Y;(6) for i = 1,...m — 1, and then it is a suitable trial
function in . The second inequality follows from the fact that the
quotient Q(R(r)H;(#)) is an increasing function of [, for [ > 2. This con-
cludes the proof. O

5.5.2 The isoperimetric inequality

In this subsection we prove the isoperimetric inequality . Actually, we
prove a stronger result, that is a quantitative version of . We adapt
to our case a result of [16], where the authors prove a quantitative version
of the Brock-Weinstock inequality for the Steklov Laplacian. We also refer
to [58, 84] where these kind of questions have been considered for the first
time (see also [17, [45]).

Throughout this section € is a bounded domain of class C'. We recall
the following lemma from [16].

Lemma 5.5.23. Let Q be an open set with Lipschitz boundary and p > 1.

Then
QAQ*\?
/ |x|pd02/ |z[Pdo | 14 cnyp <| ) ,
20 o0 Q|

where Q* is the ball centered at zero with the same measure as €, QAQ* is
the symmetric difference of 0 and Q*, and cy ) is a constant depending only
on N and p given by

J— — N p—
(N+p 1)(]? 1) \/5 1 min Z€p—2 )
4 N tell, N/2)

CN,p =

We also recall the following characterization of the inverses of the eigen-

values of (5.0.1) from [62] (see also [14]).

Lemma 5.5.24. Let Q be a bounded domain of class C' in RN . Then the
eigenvalues of problem on §) satisfy,

k+N 1 k+N
2

= max vido 3, 5.5.25

Z M) {zz;ﬂ/m l } | )

I=k+1
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where the mazimum is taken over the families {vl}f;ﬁl in H*(Q) satis-
fying fQ D?v; - DQU]' + 7Vv; - Vujdz = d;, and faﬂ viujdo = 0 for all
t=k+1,...k+ N and j = 1,2,....k, where ui,us,...,ur are the first k
etgenfunctions of problem .

For every open set 2 € RY with finite measure, we recall the definition
of Fraenkel asymmetry

A(Q):—inf{’XQ__ﬁwauRN):<Blmﬂkwﬁh\B!_'Kﬂ}. (5.5.26)

The quantity A(f2) is the distance in the L'(R") norm of a set 2 from the
set of all balls of the same measure as 2. This quantity turns out to be
a suitable distance between sets for the purposes of stability estimates of
eigenvalues. Note that A(Q) is scaling invariant and 0 < A(Q2) < 2.

We are ready to prove the following theorem.

Theorem 5.5.27. For every domain Q in RN of class C' the following
estimate holds

A2(2) < A7) (1 - onA(Q)%) (5.5.28)

where d s given by

__CN,2_N—|-1(N )
ON=" = 3N Va-1).

and Q* is a ball with the same measure as ().

Proof. Let  be a bounded domain of class C' in RY with the same mea-
sure as the unit ball B. We consider in [l =2,.,N+1 and
v = (7|Q|)~"/22; as trial functions. The trial functions must have zero
integral mean over 0f). This can be obtained by a change of coordinates
T =y — ﬁ /. aq Ydo. Moreover, the functions v; satisfy the normalization

condition of Lemma|5.5.24] Then v; can be used as test functions in ([5.5.25]).
We get

N+1

2

d
E:Al -—TMk/ [o*do

We use Lemma [5.5.23| with p = 2. This yields

N+1

QAB|\?
z?do | 1+ cy (| )
2 5 oRE A 2\
<NB\]A_ OQAB»Q N CQABUQ
= CN,2 = — CN,2
7|B]| €| T €|

RS IQAB\?
=3 M@”<Lhw3<|m )). (5.5.29)
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Suppose now that A2(€2) > 7, otherwise estimate (5.5.28) is trivially
true, since 0 < A(Q2) < 2. Since A2(2) < N\(Q2) for all I > 3, inequality
(5.5.29) and the definition of A(2) yield

A2(Q) (1 + enpA(Q2)?) < Xa(B). (5.5.30)

Therefore, since A\2(2) > § and \o(B) = 7, from (5.5.30)) we have

enpA(Q)? ’>

A2(Q) <7 — Aa(Q)en 2 A(Q)? < 7 <1 — 5

which implies (5.5.28) with oy = % min{1, &2 (¥/2 — 1)}. We note that
min{1, %( V2-1)} = %( V2 —1). This concludes the proof in the case
Q has the same measure as the unit ball.

The proof for general finite values of || relies on the well-known scaling
properties of the eigenvalues. Namely, for all s > 0, if we write an eigenvalue

of problem ([5.0.1)) as A(7,2), we have
A7, Q) = s2A(s7 27, Q).

This is easy to prove by looking at the variational characterization of \(r, §2)
and A(s~27, sQ) and performing a change of variable =  z /s in the Rayleigh
quotient ([5.2.9). This last observation concludes the proof of the theorem.

[

The isoperimetric inequality ([5.5.1)) is an immediate consequence of The-
orem 0.0.21{l

Corollary 5.5.31. Among all bounded domains of class C* with fived mea-
sure, the ball maximizes the first non-negative eigenvalue of problem ,
that is Aa(2) < A2(Q2*), where A2(2) has been defined in and Q* is
a ball with the same measure as ).

5.5.3 Some remarks on the case 7 =0

Throughout this chapter we have only considered problems (5.0.1) and
(5.0.3) with 7 > 0. If we set 7 = 0, problem (5.0.1]) reads

A%y =0, in €,
Pu — 0, on 09, (5.5.32)

—divyo (D2u : 1/) —98u _ Ny on 99,

ov
while problem (5.0.3)) reads

A%y = \u, in Q,
Pu — o, on 01, (5.5.33)

divgn (D2u . l/) + %AV“ =0, on JN.
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Problems ((5.5.32)) and (5.5.33)) model free vibrating plates which are not

subject to lateral tension. These problems have a sequence of non-negative
eigenvalues of finite multiplicity and the corresponding eigenfunctions form
a orthonormal basis of H?(2). The coordinate functions z1, ..., zx and the
constant functions are eigenfunctions of both problems and
corresponding to the eigenvalue A = 0, which has multiplicity N + 1. There-
fore, the first non-zero eigenvalue is the (N + 2)-th eigenvalue.

As we did in Theorem [5.3.6] we can define the family of problems

A%y = \p.u, in €,
Pu —, on 9, (5.5.34)

divgo (Dzu . 1/) + % =0, on 01,

where p. is defined as in (3.1.20)). We have the following theorem, whose
proof can be easily done adapting that of Theorem [5.3.6

Theorem 5.5.35. Let Q be a bounded domain in RN of class C?. Let p.

be defined by . Let \jlpe| be the eigenvalues of problem (5.5.34

on Q for all j € N. Let \;j, j € N denote the eigenvalues of problem
5.5.839) corresponding to the constant surface density % Then we have

lim._ Ajlpe] = Aj for all j € N.

Tt is clear that a discussion similar to that of Section [£.4] can be carried

out for problems (5.5.32) and (5.5.33)) as well, by means of a change of the

projections ¢ s T according to the kernel. In particular, all the formulas
in Section d remain true, by setting 7 = 0. Then we have the following
theorem.

Theorem 5.5.36. Let Q be a bounded domain in RN. Let ¢ € () be
such that &(Q) is a ball. Let X be an eigenvalue of problem (problem
respectively) in qB(Q), and let F' be the set of j € N such that \; [(;;] =
X. Then Ap has a critical point at ¢ on V(V(d)), for all s =1,...,|F|.

Moreover, for problem (5.5.32]), it is possible to identify the fundamental
modes and the fundamental tone on the ball. We have the following

Theorem 5.5.37. Let Q = B be the unit ball in RY. The eigenfunctions
of problem are of the form

w(r,0) = (A + Br*™) Hi(0),

for 1 € Ny, where A; and B; are suitable constants such that

11-1)

Bl:_(z+2)(z+1) t
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The eigenvalues Ay of problem corresponding to the eigenfunctions

w(r,0) are delivered by the formula

I(1—1)(N+2Nl+ (I—-1)(2+3l))
1+2]

Aoy = . (5.5.38)

The first positive eigenvalue is

8
AN42 = )\(2) =2 <N + 5) , (5.5.39)

and the corresponding eigenfunctions are
ua(r,0) = (67‘2 - r4)H2(9). (5.5.40)

Proof. The proof is similar to that of Theorem from which it differs
only for the use of biharmonic functions on the ball as solutions of the
differential equation A?u = 0. Any smooth and bounded function u on
B which satisfies A%y = 0 can be written in spherical coordinates (r,8)
as a linear combination of functions of the form (ar!+ br?*!) H;(6) with
[ € Ny (see also [6l [7, 90] for a complete characterization of biharmonic and
poly-harmonic functions on the unit ball). The rest of the proof follows the
same lines as that of Theorem Then, once formula has been
established, it is straightforward to identify the fundamental tone ([5.5.39)
and the corresponding modes ([5.5.40)). 0

Now we have an explicit form for the fundamental tone and for the
corresponding eigenfunctions in the case of the unit ball which suggests how
to construct trial functions for the Rayleigh quotient of Ay 1o. If we want to
use a function of the form R(r)Hz(6) as a test function as we did in Theorem
we must impose that R(r)H2(0) is othogonal to the constants and to
the coordinate functions with respect to the L?(92) scalar product and we
can no more obtain this just by translating the domain 2.

We note that functions of the form R(r)Hz(6) are suitable trial functions
for the annuli centered at zero. We recall from formula that the
radial part of an eigenfunction associated with the first positive eigenvalue
AN42 of th unit ball is of the form 6r2 — r*. We want to construct a test
function for the annulus centered at zero of the form R(r)Hz(f) in such a
way that the radial part R(r) equals 6r? — r* whenever » < 1. Moreover
we want that the radial part is an increasing function of r, for r € [0, +-o00].
We note that 6r2 — r# is increasing for r € [0,1]. Note that test functions
must belong to H2(§2). Therefore we choose R(r) = 8 — 3 for r > 1 which
is increasing and moreover, R(r) and R/(r) are continuous at r = 1. With
this choice of the test function it possible to compare the Rayleigh quotients
of the annulus and of the ball and prove that the first positive eigenvalue
of the ball centered at zero is bigger than the first positive eigenvalue of
an annulus centered at zero with the same measure. We need the following
preliminary lemma.
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Lemma 5.5.41. Let Q be an open set in RN and Q* be the ball centered at
zero with the same measure as 2. Let F' be a measurable and radial function
such that

F(z) > F(y) VzeQ'y¢ (5.5.42)

/Fda;ﬁ/ Fdx,
Q *

with equality if and only if Q = Q.

Then

Proof. Since || = |Q*| we have that |2\ Q¥ = |Q*\ Q|. Let F be a
measurable function satisfying condition (5.5.42f). We have

/Fdx:/ Fdx—f—/ Fdx
Q QnQ* Q\Q*

g/ Fdr+ sup |F(2)||Q\ Q)
QN+ zeQNO*

g/ Fdx + inf |F(z)|[|Q"\ Q|
QNO* z€Q*\Q

S/ Fdx—f—/ Fda:z/ Fdz.
QnQ* Q1\Q .

The second inequality follows from (5.5.42)). Note that if |2\ Q*| > 0,
either the second inequality or the third is strict by the strict inequality in

(15.5.42)). O
We have the following theorem (see also Figure .

Theorem 5.5.43. Let B be the unit ball in RN centered at zero. Let p > 0
and A, be the subset of RN be defined by

1
Ap::{xeRN:p<]a:\<(l—i-pN)N}.

Then
AN+2(B) > Any2(4,)

for all p €]0,4o00].
Proof. Let the function R(r) from [0, +oo[ to R be defined by

R(r) =

6r2 —rt, if r €[0,1],
8&r—3, if r €]l,+o0].

We note that by construction, R € C?([0, +oc[). We set v(r,6) := R(r)Hz(0),
where Hj(6) is a spherical harmonic of degree 2 normalized by |, 5B H2do =
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1. With this choice we also have that [, |VsHs|*do = 2N. Moreover, from
well-known properties of spherical harmonics, we have that it holds

Hodo =0
9A,
and
€y
/ —Hsdo =0, VIi=1,..N.
A, |21

We recall the following characterization of Any42(A))
[ |D*u|*dx
ANy2(A,) = min Ap

0£ue H2 (1) Jou, w?do
faAp uda:faAp ziudo=0, Vi=1,....N

(5.5.44)

Therefore, since v is a suitable test function for the Rayleigh quotient
(19.5.44)) we have

[4 |D*v]dx
A

faAp v2do

By following the same lines of the proof of formula ([5.5.20) we compute the
integral of |D?v|?> on A,. We have

Ania(A,) < (5.5.45)

(1+p™) N _
:/ (R”(T‘)Q—i— 5N2 1R,(’l")2
P

g
12N 2N (3N + 4 _
3 R’(r)R(r)%—i( " )R(r)Q) rN=tar
1
= — F(|z])dz, (5.5.46
Way J, iz, G540

where in the last equality we have multiplied and divided the integral by
/. o5 o which equals Nwy, and we have re-written the integral in cartesian
coordinates. The function F(r) is given by

5N —1
r2

12N
r3

2N (3N +4)

F(r):= R"(r)* + R'(r)? R'(r)R(r) + i R(r)%

As for the denominator of the Rayleigh quotient ([5.5.45)), from the normal-
ization of Hy(f) we have

/ vido = R(p)* + R ((1 + pN)%)2 : (5.5.47)
dA,
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From (5.5.46|) and (5.5.47) we have

pr F(|z|)dz

Nuwx <R(p)2 +R((1+ pN)}V)2>

AN+2(4p) <

)

1 2
From standard computations it follows that R(p)? + R ((1 + o) W) is an

increasing function of p, for p € [0, +oo[. Therefore it attains its minimum
at p = 0 and such a minimum is 25. As for the numerator, it is possible to
prove that the function F(r) is a decreasing function of r, for r € [0,1]. In
fact, when r € [0,1] we have

F(r) = 72N(3N +2) — 24(8 + 3N(N + 2))r? 4+ 2(64 + N (3N + 20)),
and
F'(r) = 8(64 + N(3N +20))r® — 48(8 + 3N (N + 2))r.
Since 7 € [0,1], 73 < r. Then

F'(r) < 8(64+ N(3N +20))r — 48(8 + 3N (N +2)) = —8r(16(N — 1) + 15N?) < 0.

Now, let 7 €]1, +o0[. We set F'(r) := r*(F(1) — F(r)) for r > 1. We have

F(r)
= 2(5N+4)(15N —8)7* —64(6N?+N —1)r?+96 N (3N +1)r— 18N (3N +4).

We show that F'(r) > 0 for all r €]1, +oc[. Clearly F(1) = 0. We compute
F'(1) = 8(16(N — 1) + 15N2) > 0. Moreover we have F'(r) = 24(5N +
4)(15N —8)r2 — 128(6N2 + N — 1) > 8(N (129N +44) — 80) > 0 since r > 1.
We have shown that F'(|z1]) > F(|xz2|) for all x;,z2 such that x; € B,
x9 ¢ B. Therefore, from Lemma it follows that

/ F(\x|)dm§/BF(|x)dx:10(8+5N)NwN.

P

From this it follows that

108+ 5N)Nwy )
25Nwy -

Ant2(4p) <

8

O

The results contained in this subsection suggest that the ball should be

a maximizer also for problems ([5.5.32)) and (5.5.33). For what concerns
problem ([5.5.33)), unfortunately a characterization of the fundamental tone

is still unavaiable.
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5.6 Neumann isoperimetric inequality in quantita-

tive form. Sharpness of Neumann and Steklov
inequalities

In this section, we consider problem ((5.0.3)) with p = 1, namely problem

A%y — TAu = Au, in Q,
% =0, on 01, (5.6.1)
T% — divyq (D2u . l/) — 88AV“ =0, on 0f.

We recall the following isoperimetric inequality for the fundamental tone of

problem (5.6.1)) proved in [2§]

A2(Q) < Aa (1), (5.6.2)

where € is a bounded domain in RY of class C', \2(Q) is the first positive
eigenvalue of problem on 2, and Q* is a ball such that |Q] = |Q*|.
The aim of this section is to improve inequality in the following
quantitative form

A2() < Ma(Q%) (1 — CA(Q)?), (5.6.3)

where A(Q) is the Fraenkel asymmetry, defined in (5.5.26]).

In this section, we also prove the sharpness of both inequality and in-

equality corresponding to the biharmonic Steklov problem ([5.5.28)).
We introduce now some preliminaries which are used throughout the

section, and we recall some results proved in [28]. Let B be the unit ball

in RN centered at zero. For a fixed 7 > 0, we take positive constants a, b

satisfying a?b? = \o(B) and b? — a? = 7. We then define the function

R(r) = jilar) + iy (br),
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where o
a Jl( )

TR
and ji(z) and i1(z) are the ultraspherical and modified ultraspherical Bessel
functions of the first species and order 1 respectively. We then define the
function p : [0, +oo[— [0, 400 by

(r) i R(r), if r € [0, 1],
PUZ RO + = DRI(L), i 7 € [1, +ool.

Let uy, : RN — R be the functions defined by
T

k. 5.6.4
2l (5.6.4)

uk(z) := p(|z|)
fork =1,..., N. The functions ug, are in fact the eigenfunctions associated
with the eigenvalue \y(B) of the Neumann problem (5.6.1)) on the unit ball
B, which has multiplicity N (see [29] Theorem 3]). Moreover, we have (see
[28, p. 437])

k=
N
D 1D = (" (|2)))* + ﬁ(p(lx!) — [ao'(jz]))*.

We denote by N{p] the quantity

N
Nip] :== Y |D*uxl” + 7| Dug|*.
=1

Finally, we recall some properties enjoyed by the functions p and N|p]
which were proved in [2§)].

Lemma 5.6.5. The function p satisfies the following properties.
i) p"(r) <0 for all r > 0, therefore p' is non-increasing.
ii) p(r) —rp'(r) >0 for all v > 0, equality holding only for r = 0.
iii) The function p(r)? is strictly increasing.

iv) The function p(r)?/r? is decreasing.
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v) The function 3(p(r) —rp'(r))?/r* + 7p(r)/r? is decreasing.
vi) Np(r1)] > Nip(re)] for all ri € [0,1], 7o € [1,+00].
vii) For all v > 0 we have

— r)—ro(r 2 - i r
3(V 1><p§4> AG N B 1o B

Nipl = (0")* +
viit) For all v > 1, N|p| is decreasing.
5.6.1 Quantitative isoperimetric inequality for the Neumann

problem

In this subsection we state and prove the Neumann quantitative inequality:

Theorem 5.6.6. For every bounded domain Q in RN of class C' the fol-
lowing estimate holds

)‘Q(Q) < )\Q(Q*) (1 - 77N,T,|Q|A(Q)2) ) (567)
where
NN >0
is a positive constant, and Q* is a ball such that |Q2*| = |Q].

Proof. Let Q be a bounded domain in RY of class C'! with the same measure
as the unit ball B. We recall the variational characterization of the second

eigenvalue Aa(Q2) of (5.6.1)) on

Ao(Q) = inf Jo |D*ul® + 7| Duf*dz

0uec H2(9) Jo u?dx
Jq udz=0

(5.6.8)

Let ug(zx), for k = 1,..., N be the eigenfunctions corresponding to Ao(B)
defined in (5.6.4). Clearly uy, € H*(2) by construction. It is possible to
choose the origin of the coordinate axes in R™V in such a way that fQ ugpdr =0
for all £ = 1,..., N. With this choice, the functions u; are suitable trial
functions for the Rayleigh quotient . Once we have fixed the origin,
let

_|QAB|
1]
By definition of Fraenkel asymmetry we have

AQ) < a. (5.6.9)

From the variational characterization (5.6.8)), it follows that for each k& =
1,...,N,

M(Q) < fQ |D2u;€|2 + T|Duk]2dx

5.6.10
fQ “%dx ( )
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We multiply both sides of ([5.6.10]) by fQ uzd:): and sum over k =1,..., N,
obtaining

Jo N
A2 (Q) < 5} p2dg; . (5.6.11)
Q
The same procedure for \y(B) clearly yields
Jp Nlpldx
B

From (5.6.11)) and (5.6.12) it follows that

No(B) /B P2z — Aa(Q) /Q PRy > /B Nipldz — /Q Nipldz >0, (5.6.13)

where the last inequality follows from Lemma[5.6.5] vi) and [28, Lemma 14].

Now we consider the two balls By and Bs centered at the origin with
radii 71,72 taken such that |QN B| = |B1| = wyrd and |Q\ B| = |B2\ B| =
wn(rY —1). Then |By| = wyrd, and by construction

1_T{\7:§_T2 —1

This follows since || + |B| = |QAB| + 2|2 N B| and then 1 — r) = «/2.
Similarly, |2\ B|+|QNB| = |Q], hence 7Y = 2 — 7Y and then r)¥ —1 = a/2.
Now we observe, again by Lemma vi) and viii) that

/ Npldx < Npldx + Npldzx.
Q B Bo\B

From this and (5.6.13]), we obtain

)\Q(B)/Bp2d:v)\Q(Q)/Qdeasz/BN[p]d:p/QN[p]dx (5.6.14)

> Npldx — N{pldzx.
B\B1 B2\B

Since the function p(r)? is strictly increasing by Lemma iii), we have

1
[ oz [ pdo=Noy [ o ir=cl).
Q B 0 ’

Therefore
A2(B) / pPdx — Ao () / prdx
B Q

_ _ 20z i — 20
= (a(B) = 2a(®) [ pPdo+ 2ol ( d d)
Aa2(B) — >\2(Q)). (5.6.15)
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Now we consider the right-hand side of (5.6.14). We write N[p] more ex-
plicitly in terms of p, obtaining:

! — r) —rp'(r))?
Nl = N [ (i + 200 =100 =)

B\B1 r1 rd
e+ T ) N1
> Nuw / 1 (3<N SCOE rp'(r)?

(P + T 02 )

> wy (3(N = 1)(R(1) = R'(1))* + 7R'(1)* + 7(N — DR(1)*) (1 — "),
(5.6.16)

where in the last inequality, we use the fact that the integrand is non-
increasing in r by Lemma [5.6.5} i) and v). Moreover,

Np|dx (5.6.17)
Bo\B
- NwN/l 2 <3(]\;4_1)(R(1) — R(1))? + T R(1)?
+ T ZD (1) - RO+ 20R () (RO) - (1))

+T(]\;2_ D (T2Rl(1)2)> rN=ldr

2 ’ 2 N — ! 2
gNwN/l <NTR(1) ((3+T)( (1) = R'(1))
+27R'(1)(R( ) rMldr
= NwntR (1)2(r) — 1) +NwN( +7)(R(1) — R'(1))?
+2rR'(1)(R(1) — R'(1))) (r) " — 1),

where we have estimated the quantities 1/r? and 1/r* by 1/r. We note that
ro = (14 a/2)1/N and 0 < a < 2. Using the Taylor expansion up to order
1 and remainder in Lagrange form, we obtain

o
Nota N-1(1+5) ;

N-1 _
I e a (5.6.18)
N-la (N-1)27% 72 N-1la
<1 1+ % cna?
R ) Nz O =l g eva?

for some £ €]0, af, where cy is a positive constant which depends only on N.
Using (5.6.16)), (5.6.17), (5.6.18) and the fact that 1 — r =7 — 1 = /2
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in the right-hand side of ([5.6.14]), we obtain:

Npldx — Nlpldx (5.6.19)
B\B; B2\B

> —Nuy ((3+7)(R(1) - R(1)?

+2rR(1)(R() - R (1)) <N_1a _ cNa2>
+wy (8N = D(R() - R(1)) +7R(1)* + 7(N - DR1)) 5
~ NunTR(1)°5

oot

where the constant C](\?)T > 0 is given by

Civy = Now (B+7)(R(1) - R(1) +27R (1)(R1) - R(1)) ew.

From (5.6.9), (5.6.15)) and (5.6.19)) it follows

@
Xa(B) = Xa(Q) = A9,
CNT

and therefore,
A (Q) < A(B) [ 1- —T _AQ)? ] . (5.6.20)

The isoperimetric inequality is thus proved in the case of 2 with the same
measure as the unit ball. The inequality for a generic domain 2 follows
from the well-known scaling properties of the eigenvalues of problem ([5.6.1]).
Writing our eigenvalues as A\o(7,2) to make explicit the dependence on the
parameter 7, we have

Ao (7, Q) = s Ao (5727, 590), (5.6.21)
for all s > 0. From (5.6.20) and taking s = (wx/|Q)"Y in (5.6.21)), it

follows that for every Q in RY of class C! we have

Ao (T, Q) = s Ao (5727, 5Q)

0(2)72
<stho(s2m,B) [ 1 - Ny T(l) A(sQ)
Ao (572, B)CN,S,QT
c®
= Xo(7, Q%) [ 1- e A(Q)
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(2)
CN,572T

A2 (5*2773)05\2727_

. This concludes the proof of the theorem.

O

We set 1y 7| :=

5.6.2 Sharpness of the Neumann inequality

In this subsection we prove that inequality is sharp, that is, the
exponent 2 for the Fraenkel asymmetry is optimal in the decay rate of
A2 (€2°) — X2(2). To do so, we exhibit a family of sets {€2.},., approaching
the unit ball centered at zero such that A(Q:) € O(g) and A2(2*) — \a(Q2) €
O(?), as € — 0. We have the following.

Theorem 5.6.22. Let B be the unit ball in RN centered at zero. There exist
a family {Q:} oo of smooth domains and positive constants cy, ¢, c3,c4 and
r1,72,73, 74 which do not depend on € > 0 such that

re? < ‘]Qa\ — ]B|’ < 1oe?, (5.6.23)
Q.AB
c1e < A(Q:) < "69" < 3 A(Q:) < cye, (5.6.24)
€
and
rae? < [Ma(0) = Aa(B)| < r4e?, (5.6.25)

for all € €]0,&¢[, where g9 > 0 is sufficiently small.

In order to prove Theorem we follow the same lines of [16], where
the authors consider the same issue in the case of the Steklov eigenvalue
problem for the Laplace operator.

First, we consider a class of domains satisfying suitable geometrical assump-

tions (see (5.6.26|) and (5.6.27))). Under such assumptions, it is standard to
prove that (5.6.23) and (5.6.24) hold. In order to prove (|5.6.25)), we con-

struct suitable test functions for the Rayleigh quotient of Ao(€2.) starting
from the eigenfunctions associated with Ao(B). We obtain an estimate for
A2(B) — X2(9) in terms of some error functions Ry(g), Ra(e) (see (5.6.38)).
Then we prove that a better estimates of R;(¢) and Ra(e) produces a better
estimates on Ag(B) — A\2(£2), see Lemma Then we prove Lemmas
15.6.40| and 5.6.52 which give us suitable estimates on R;(¢) and Ra(e), fi-
nally providing .

Let us define the family of domains {€.}_., as follows:

Q. = {xERN:xzoor x| <14ey (:C)}, (5.6.26)

|z
where v is a function belonging to the following class

P = {w € C*™(0B) : . Ydo = /83(a - x)pdo = /BB(a - x)*pdo = 0} :
(5.6.27)
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Q. Qe

Figure 5.2: Domains 2. defined by ([5.6.26]) with ¢ € P.

for all a € RY. (Note that the class P is non-empty, in fact all spherical
harmonics H; of degree [ > 3 belong to this class, see Figure .

Under this choice of €., the existence of constants r1,792,c1,...,cq satis-
fying inequalities and follow immediately from [16, Lemma

6.2]. Thus, we need only to prove ([5.6.25)).
Let A2(£2:) be the first positive eigenvalue of the Neumann problem

(5.6.1) on ., and let u. be an associated eigenfunction normalized by
HUEHLQ(QE) =1, so that

/ D2u|? + 7 Duc|? dz = Mo(02). (5.6.28)
Qe

By standard elliptic regularity (see e.g., [47, §2.4.3]), since € is of class C*

by construction, we may take a sufficiently small 9 > 0 so that u. € C*°(£2,)
for all € €]0, g9[. Moreover, for all k£ € N, the sets €2, are of class C* uniformly
in € €0, ep[, which means that there exist constants Hj > 0 which do not
depend on ¢ such that

HUchk(ﬁs) < Hg. (5.6.29)

Now let @, be a C® extension of u. to some open neighborhood A of BUS),.
Then, there exists K4 > 0 which does not depend on € > 0 such that

Hﬁs,‘cﬁ’»@) < KAHUEHCG(QE) < KaHs. (5.6.30)

From the fact that [, ucdr =0 and |B\ Q¢[,|Q: \ B| € O(¢) as ¢ — 0, it
follows that the quantity ¢ := ﬁ | Ue dz satisfies

1 1
(5:/12 dr = — / ﬂda:—/ usdr | < ce, 5.6.31
1Bl Jp * |B| < B SRV > ( )

where ¢ > 0 does not depend on € €]0, g9[. Now we set

Ve 1= Ug|, — 0. (5.6.32)
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The function v, is of class C°(B), [ v- dz = 0 and satisfies

for some constant K; > 0 independent of ¢ €]0,¢[. Therefore, v. is a suit-
able trial function for the Rayleigh quotient of A\2(B) (see formula (6.1.13])).
Thus,

Ao(B) < fB |D%v.|? + 7| Dv.|? dx

5.6.34
Jgve2da ( )
We now consider the quantity ‘ J B v — a2 da:|. We have
/ v? — @2 dx| = / 62 — 261, dx| = / §(—ve — 1) dx (5.6.35)
B B B

1 2
= @ (/ 115 dm) S K2€2,
B

where K > 0 is a positive constant independent of £ €]0, gg[. Moreover, we

have that by ([5.6.30) and ([5.6.33]),

/ v? — 4dx
B\Q.

g/ yvg—agung(g/ lve — dic|dr  (5.6.36)
B\Q. B\Qe
B\ Q
LAy e
B

| B|
where K3,k > 0 are positive constants independent of € €]0, g9[. Therefore,
from (5.6.28]), (5.6.34)), (5.6.35)), and (5.6.36]), it follows that

= Kj

< meQs |D2u5|2 + T|Du5|2d$ + fB\QE |D2UE‘2 + T‘Dva|2 dx

Ao(B
2(B) u2dx — Koe?

’ (5.6.37)

_ A2(Qe) + fB\Qa |D%v. |2 + 7| Dv.|?dx — fQE\B |D?u.|? + 7| Du.|? dz
< 1+ fB\QE v2dr — fQE\B uddr — (k + K)e2 )

We introduce now the two error terms R;(e) and Ra(e) defined by
Ry(e) = / |D2v52+T\Dv€|2d:c—/ |D?uc|? + 7| Duc|? da
\ Qe Q\B

and
Ry (e) ::/ vgdx—/ uldz.
B\Q« Q:\B
Then inequality (5.6.37)) can be rewritten as

ro(B) < 2206) + Ra(e)

5.6.38
- 1+R2(€)—K4€27 ( )
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where K4 = k+ K5. From the uniform estimates (5.6.29)) and (5.6.33)) on u,
and v, it easily follows that Ry, Ry € O(¢g) as € — 0, which together with

immediately yields Aa(B) < \2(£2:) + Ce for some constant C' > 0
which does not depend on € €]0,¢¢[ (taking £9 > 0 smaller if necessary).

We observe that, due to the close relation of Rj(e) and Ra(e) with the
difference Aa2(B) — A2(€2:), a better estimate for Ri(e) and Ry(e) provides a
better estimate for \y(B) — \2(£2:). More precisely, we have the following
lemma.

Lemma 5.6.39. Let K4 be as in (5.6.38)). Let w : [0,1] — [0,4o00] be a

continuous function such that ;{—2 < w(t) < Kyt. If there exists a constant

C > 0 such that |Ry1(e)| < Cw(e) and |Ra(e)| < Cw(e), then there exists a
constant C' > 0 such that

/\Q(B) S /\Q(Qg) + C'w(a)
for every sufficient small € > 0.

Proof. We refer to [17, Lemma 6.2] for the proof (see also [16, Lemma 6.7]).
O

We also need the following;:

Lemma 5.6.40. Let w be a function as in Lemmal[5.6.39, and let v. be as in
. Suppose that there exists C > 0 such that for all € > 0 sufficiently
small we have |R;i(¢)| < Cw(e) and |Ra(e)| < Cw(e). Then there exists an
eigenfunction & associated with Ao(B) such that

[lve — 56”()3@) < CVw(e),
for some C' > 0 which does not depend on ¢ > 0.

Proof. Let {&,}n>1 be an orthonormal basis of L?(B) consisting of eigen-
functions of the Neumann biharmonic problem (5.6.1) for Q@ = B, with &
constant. Note then that from the normalization of &, we have

/ D¢, + 7| D& do = Ap(B), Vn € N.
B

We may now write v, = :{i’i an(€)&,. Note that ai(e) = 0 since v. has

zero integral mean over B and &; is a constant. We have

+0oo
Z:a,n(es)2 -1= vaH%Q(B) —-1= /ngd:c —/ ulda
n=2 e

— [@-@e [ 2= o+ Rafe),
B B\Qe
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and then by using (5.6.35)), (5.6.36]) we obtain

+0o0
D an(e)?—1
n=2

We may now write

< Kye? + Cuw(e) < Crw(e). (5.6.41)

AQ(Qa)_/ |D?u.|? + 7| Duc|*dz
Qe
:/ |D2U5|2+T|DU€|2daj‘+/ |D?u.|? + 7| Du.|*dx
B Q:\B

_/ |D?v.|? + 7|Dv.|* dx

From Lemma it follows that
[A2(B) = A2(Q:)] < C'w(e),

therefore

= [X2(Q:) + Ri(e) — X2(B)| < Cow(e). (5.6.42)

+o00
> " an(e)*An(B) — X2(B)
n=2

By the symmetry of the ball, the first nonzero eigenvalue \o(B) has multi-

plicity N, and so A\y(B) = A3(B) = -+ = Ay+1(B) < An12(B). Therefore
N+1 “+o0
Cow(e) = | D an(e)®X2(B)+ Y an(e)*Mn(B) — Xa(B)
n=2 n=N-+2
+o0 +oo
= |A(B) (Z an(e)? — 1) + Y an(e)? (An(B) — X2(B))
n=2 n=N+2
“+oo
> (Avt2(B) = Xa(B) D an(e)” = Aa(B)Ciw(e),
n=N+2

which yields

+o00
D an(e)’ < Caw(e), (5.6.43)
n=N+2
hence by (5.6.41])
N+1

Z an(e)? —1

n=2

< Cyw(e). (5.6.44)
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Revisiting (5.6.42)), we see

N+1 +o00
Cow(e) = | D an(e)®X2(B) + D an(e)*An(B) — Aa(B)
n=2 n=N-+2
N+1 “+o00
= [A(B) (Z an(e)? — 1> + ) an(e)*M(B)
n=2 n=N-+2

N+1 —+o00
> X2(B) <Z an(5)2 - 1) + Z an(g)ZAn(B)a

n=N+2

n=2

which, together with (5.6.43|) and (5.6.44)) yields

+o00 N+1
Z an(€)?An(B) < Cow(e) — Xo(B) (Z an(e)? — 1) < Csw(e).

n=N+2 n=2

(5.6.45)
Now set ¢ := 25221 an(€)én = Ve =D n_ N9 An(€)En and define the norm
|- [lz2(m) by

. ::/B|D2h|2+7-|Dh|2+h2dx, h € H2(B).

This norm is equivalent to the standard H?(B) norm by coercivity of the
bilinear form.
We now estimate the quantity |ve. — SOHHE(B). We have

lve = @l 25 = /B |D*(ve = )* + 7|D(ve — @)* + (ve — ) da

400
:/ > an(e)X(ID% + 7| D&|? + &) da
Bn:N+2
+o00
= Y an(©)*(1+ Ma(B)) < Cowle), (5.6.46)
n=N-+2

where the last inequality follows from and . Thus the func-
tion v is y/w(e)-close to ¢ in the H2(B) norm.

Now we pass from the bound on the H?(B) norm to the bound on the
C3(B) norm. To do so, we use standard elliptic regularity estimates for the
biharmonic operator. We have that, in B N {2,

A%, — 7Av. = A%u. — TAu. = A2(Qe)ue = A2(Qe)(ve + 6).
Recall that 6 € O(e) as € — 0 by (5.6.31]). We set

fo = A%, — TAv,. (5.6.47)
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Note that in particular, f: = A2(€Q:)(ve + ) on BN Q.. Then defining the

functions gél) and gg ) on 8B by g(l) : a %, and g§ )= 7' —divgp(D?v, -

v)— ag;s , we see that the function v, unlquely solves the followmg problem:

A%y — TAu = f., in B,
gi%; =gV, on 9B,
Tau divop(D?u - v) — 88AV“ = g§2), on 0B,
S udx = 0.

Now let f := Ao(B)p. Then by definition the function ¢ is the unique
solution of

Au—TAu:f, in B,
W =0, on 0B,
Tgy divop(D?*u - v) — %AV“ =0, on JB,
Jgudz=0.

Finally, define the function w := v, — ¢ = ZZO:N+2 an(g)&n, which is the
unique solution of

A —T17Aw = f. — f, in B,
31,2 = gél) on 0B,
Tay divog(D*w - v) — aAw = gé ), on 8B,
[pwdz=0.

For every p > N we have (see e.g., [47, Theorem 2.20))

sy < © (1 = s + 1991 oy + 19201 b )

(5.6.48)
We consider separately the three summands in the right-hand side of ([5.6.48]).
We start from the first summand. Recall that for any x € B N Q. we have

(see (5.6.47)) fo(x) = A2(2:)(ve(x) + 6). Moreover, for any x € B there

exists £ € BN Q. such that |z — | < Ce. Therefore, from the regularity of

ve (see (5.6.33))), for z € B we have, as ¢ — 0,
fo(x) = A% (2) — TAv () = A%0.(F) — TAV(E) 4+ O(e)
= M (Qe)(ve(Z) + 9) + O(g) = A2(Qe)ve(x) + O(e).
Thus, as € — 0, for all p > N, we have by Lemma [5.6.39 and by (5.6.46))
1fe = Fllzes) = [[A2(Q2e)ve — A2(B)l| Lo () + O(e) (5.6.49)
< [A2(€2) — )‘Q(B)|||U€||LP(B + [A2(B)|lJve = ¢llr By + O(€)

< Crw(e) 4+ Cg/w(e) + O(e) < Cor/w(e).
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Now we consider the second summand in the right-hand side of ([5.6.48|).

From the fact that gél) = %, the fact that v, is an extension of u., the

regularity of both u. and v, (5.6.29), (5.6.33) and from the fact that %2,/“; =0
on 0f2., we may conclude

(M <
191123 5y < € (5.6.50)

For the same reason, for the third summand in the right-hand side of ([5.6.48|)
we have

2) <
130 5 < € (5.6.51)

From (5.6.48)) and the bounds (5.6.49), (5.6.50), and (5.6.51)) on each

summand, it follows that for all p > NV,

[ve = @llwarsy < Crov/w(e),

and thus, from the Sobolev embedding theorem,

[lve — ‘PHc*S(E) < Cvw(e).

This concludes the proof of the lemma. O

gt

The next lemma gives us refined bounds on |R;(g)| and |Ra(g)|.

Lemma 5.6.52. Let w(t),v: be as in Lemma |5.6.39. Suppose that for all
e > 0 small enough there exists an eigenfunction & associated with \o(B)

such that
llve — 55“03(?) < Cywle), (5.6.53)

for some C' > 0 which does not depend on € > 0. Then there exists C>0
which does not depend on € such that |R1(e)|, |Ra(e)| < Ce/w(e).

Proof. Tt is convenient to use spherical coordinates (r,6) € R x 0B in RV
and the corresponding change of variables x = ¢(r, ). We denote by D and
D the sets D := d(Q. \ B)NdB and D = d(B \ Q) N dB. Observe ¢ > 0
on D and ¢ < 0 on D.

Thanks to the regularity of u. and 4. (see ), on Q. \ B we have

D2Uao¢(1+5¢70) = D2U£O¢(179)+O(5)7
Du.od(l+2,0) = Du.od(1,0)+0(),

as € — 0. Therefore, integrating with respect to the radius r and applying
the definition of v. (5.6.32)), we see

/ |D?uc|? + 7| Duc|*dx = e/ (}D2ug|2 +7 \Du€|2> Ydo + O(e?)
Q\B D

- 6/D (1020 + 7 |Dwl?) o + O(),
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as € — 0. Similarly,
/ |D?v.|* + 7| Dv.|*dx = —5/ (‘D%a‘z +7 |Dvel2) Ydo + O(e),
B\Qe D
as € — 0. From these and from hypothesis (5.6.53), we see
/ (0 <‘D2v6‘2 +7 ]DUE\Q) do
0B

| e(pel +ripef) o

[Ri(e) < e +0(e?)

<e

+ Cev/w(e) + O(?)
< Cey/w(e), (5.6.54)

as ¢ — 0, where in the last inequality we have used the following fact of
eigenfunctions of \y(B):

(\DQfs\QJrT\Dée!Z)‘ = (a-x)?, (5.6.55)

oB
for some a € RY (cf. (5.6.4)).
By following the very same scheme we can prove the analogue of (5.6.54)

for Ry(e). This concludes the proof of the lemma. O

We can now proceed to complete the proof of Theorem [5.6.2
Let wo(e) := |Ri(e)| + |R2(¢)|. This function is continuous in & and,
moreover, has the property

2
17 <wp(e) < Ke.

The first inequality follows from Theorem [5.6.6] while the second follows
from the fact that R;, Ry € O(¢). By Lemma it follows that there
exists an eigenfunction & of the Neumann problem on B associated
with eigenvalue A2(B) such that

Jox — & llos ) < O/,
Now we apply Lemma obtaining

wo(e) < 2Ce/wole),

ooE) = [Ri(g)| + [Ra(e)|
wo(e)

From this it follows that w(e) < 4C?e2, and hence both |Ry ()], |Ra(e)| <
4C?e?. Finally, we apply Lemma [5.6.39| and obtain that

Ao(B) < Ao(Q) +Ce?,

and therefore
< 2Ce.

for a constant C > 0 which does not depend on e €]0,e9[. This concludes
the proof of Theorem [5.6.22
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Qe

Figure 5.3: The domain (2. introduced in [17].

Remark 5.6.56. In [17], the authors provided an explicit construction of
a family {Q:}. in R? suitable to show the sharpness of their inequality (see
Figure . This family turns out to be suitable to show also the sharpness
of inequalities (5.5.28)) and . On the other hand, in [16] the authors
gave only sufficient conditions to generate a suitable family {Q}-, which are
exactly those we apply in (5.6.27)). We observe that the first two conditions,
namely

Wdo = / a-zpdo =0, (5.6.57)
OB oB

have a purely geometrical meaning, and are used to prove inequalities ((5.6.23))
and (cf. [16, Lemma 6.2]). In particular, the first one says that the
measure of Q. is the same as the measure of B up to an error of order 2.
The second says that the baricenter of ). is the origin up to an error of
order €2. This implies in particular that A(Q.) is of order €. The third con-
dition has instead a stricter relation with the problem, since any function &
belonging to the eigenspace associated with A2(B) satisfies equality ,
which is crucial in the proof of . This is due to the fact that it can be
factorized as a radial part times a spherical harmonic polynomial of degree
1. This also tells us that the correct conditions to impose are still
when considering the Steklov problem. In particular, as pointed out in [10,
Remark 6.9], ellipsoids satisfy conditions (5.6.57), and hence inequalities
and hold, but miss the final condition, and therefore are

not a suitable family for this problem.

Remark 5.6.58. We note that \o(B) has multiplicity N. Thus A2(Q) is
not ‘shape differentiable’ at Q = B. This implies that along some direc-
tions A2(Q2) could have a non-trivial super-differential. This is exactly what

happens when we consider the eigenvalues of nearly spherical ellipsoids (see
Figure . In order to show that this does not happen for every direction,
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005 010 015 020 025 030

(c) First two eigenvalues
(a) First two eigenvglues (b) First (double) eigen- of the domains Q. C R?
of the ellipsoids ¥ + value of the domains introduced in [I7] (see
(1+¢&2)y?> =1in R2 Q. C R? in Figure also Figure .

we build o family Q. apporaching the ball such that the multiplicity of the
etgenvalue is preserved in a neighborhood of the ball. This is sufficient to
ensure that along such direction the eigenvalue is differentiable and there-
fore it converges with the sharp exponent 2 (see Figure . As already
discussed, the conditions given in are sufficient to achieve the expo-
nent 2 for the Fraenkel asymmetry. The family of domains €. introduced in
[17] (see Figure does not satisfy the second condition in for all
a € RN, but the eigenvalues converge with the sharp exponent 2. We also
note that along this direction the eigenvalue Ao(S2) is not differentiable (see

Figure .

5.6.3 Sharpness of the Steklov inequality

In this subsection we prove the following result, that tells us that inequality
(5.5.28)) is sharp. Due to the strong similarities between the two problems,
we shall maintain the same notation as in the previous subsection.

Theorem 5.6.59. Let B be the unit ball in RN centered at zero. There
exist a family {Q5}8>0 of smooth domains and positive constants c1,ca, C3,Cq
and r1,79,73,74, Which do not depend on € > 0 such that (5.6.23)), (5.6.24)
and hold for all € €]0,e0[, where A2(€2) denotes the first positive

eigenvalue of problem (5.0.1) with p = 1.

To prove this theorem, we begin by defining the family {Q.}_., as in
(5.6.26)). Thus it remains only to prove (5.6.25)).

We recall the variational characterization of the first positive eigenvalue
of the Steklov problem with p =1 on a domain :

@) = g  JalPlErIDuldr

0£ue H2(Q) Joq u? do
S0 udo=0

(5.6.60)

Let A\2(€2:) be the first positive eigenvalue of the Steklov problem ([5.0.1])
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on €2, and let u. be an associated eigenfunction, normalized by

/ ulde = 1.
Qe
Then by (5.6.60)),

/ |D?uc|? + 7| Ve |Pdr = Ao ().

€

By standard elliptic regularity (see e.g., [47, §2.4.3]), since € is of class C*

by construction, we have that u. € C*°(€;) for all € €]0,e0[. Moreover, for
all k € N, the sets Q. are of class C* uniformly in e €]0,&q[, which means
that there exists a constant Hj > 0 independent of € such that

Let now @, be a C° extension of u. to an open neighborhood A of B U Q..
Then, there exists K4 > 0 which does not depend on £ > 0 such that

HasHos(Z) < KA”“E”Q%(STE) < KAH5-

As in the Neumann case, take § := ﬁ faB e do to be the mean of . over

0B. From the fact that f895 usdzr = 0 and |B\ Q|, |Q:\B| € O(¢) ase — 0,
it follows that as as ¢ — 0,

1
0= ——
0B JaB

Ue do € O(e).
(See also [16), formula (6.15)]). Now let us set

Ve 1= tiz), — 0 (5.6.61)
This function is of class C°(B) and satisfies [, v. do =0 and

[vellcs(py < K

for a constant K7 > 0 independent of € €]0,eg[. Therefore, v is a suitable
trial function for the Rayleigh quotient of A\2(B), and so

- [5 |1 D*v|? + 7| Ve |2da

A2(B
2B Jop ve*do

On the other hand,

/ o? — i do
OB

6% — 260, do
OB

< K2€27
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where Ky > 0 is a positive constant independent of € €]0,eg[. Therefore, we
may write

A2(2:) + Ry (e)
Aa(B) < 1+ Ro(e) — K3e?’

where we have once again defined the error terms

Ru(e) = /B\Q \D2v€|2+T|V05]2dx—/\ D2, + 7|V [2de,

5

and

Ry (e) ::/ vgda—/ u? do.
oB Qe

At this point, we note that the observations made in Subsection [5.6.2]
remain valid here. Therefore, in order to conclude the proof of , we
need only the following lemmas, which are the analogues of Lemmas [5.6.39
and [5.6.52] and which we recall here for the reader’s convenience.

Lemma 5.6.62. Let K3 be as in (5.6.3). Let w : [0,1] — [0, 4o00[ be a
continuous function such that I% < w(t) < Kst. If there exists a constant
C > 0 such that |Ri(e)| < Cw(e) and |R2(e)| < Cw(e), then there ezists a
constant C' > 0 such that

)\Q(B) < )\Q(Qg) + C”w(a)
for every sufficient small € > 0.
Proof. See [16, Lemma 6.7]. O

Lemma 5.6.63. Let w be a function as in Lemmal[5.6.63, and let v, be as in
. Suppose that there exists C > 0 such that for all € > 0 sufficiently
small we have |Ry(e)| < Cw(e) and |Ra(e)| < Cw(e). Then there exists an
eigenfunction & associated with A2(B) such that

[[ve — fs”cS(E) < é\/ w(e),
for some C > 0 which does not depend on & > 0.

Proof. The proof is essentially identical to that of Lemma and hence
the details are omitted. O

Lemma 5.6.64. Let w(t),v: be as in Lemma [5.6.62. Suppose that for all
e > 0 small enough there exists an eigenfunction & associated with \o(B)

such that

lve — fa”cS(E) < Cyw(e),

for some C' > 0 which does not depend on e > 0. Then there exists C >0
which does not depend on £ such that |Ry(¢)|, |R2(e)| < CeyJw(e).
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Proof. Regarding the bound on R;j, we refer to the proof of Lemma [5.6.52
For Ry, we refer to [16, Lemma 6.8], observing that if & is an eigenfunction
associated with A2(B), then

OAE.
ov

divgp (D%, - v) + =0

on 0B, and therefore the second boundary condition in (5.0.1)) reads 7'83% =

A2(B)&e. O




Chapter 6

A few properties of the
eigenvalues of Neumann-type
problems

In this chapter we collect a number of results concerning the eigenvalues of
Neumann-type problems for the Laplace and biharmonic operators. This
chapter is divided in two sections where we consider two different prob-
lems. In Section we discuss the eigenvalue problem for the biharmonic
operator subject to Neumann-type boundary conditions, with particular at-
tention to the dependence of the eigenvalues upon variations of the Poisson’s
ratio. In Section we consider the eigenvalue problem for the Laplace and
biharmonic operators subject to Neumann boundary conditions on annuli,
and describe the behavior of the eigenvalues as the difference of the two
radii goes to zero. In particular, we obtain a counterexample to the domain
monotonicity of all the Neumann eigenvalues.

6.1 Neumann eigenvalues of the biharmonic oper-
ator

In this section we study the dependence of the eigenvalues of the biharmonic
operator subject to Neumann and Dirichlet boundary conditions upon per-
turbations of the Poisson’s ratio o. In particular, we prove that the Neumann
eigenvalues are Lipschitz continuous with respect to o € [0, 1] and that all
the Neumann eigenvalues go to zero as ¢ — 1~. Moreover, we show that the
Neumann problem defined by setting ¢ = 1 admits a sequence of positive
eigenvalues of finite multiplicity which are not limiting points of Neumann
eigenvalues with o € [0, 1] as 0 — 17, and which coincide with the Dirichlet
eigenvalues of the Biharmonic operator.

Let © be a bounded domain in RY of class C** for some a €]0,1[. Let
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o € [0,1]. We consider the following Neumann problem for the biharmonic
operator with Poisson’s ratio o € [0, 1]

A%y = \u, in Q,
(1—0)%+0Au:0, on 01}, (6.1.1)

% + (1 = o)divaq (D*u - l/)aﬂ =0, on 09,

in the unknowns u (the eigenfunction) and A (the eigenvalue). For N = 2
this problem is related to the study of the transverse vibrations of a thin
plate with a free edge and which occupies at rest a planar region of shape
Q0 C R2. The coefficient o represents the Poisson’s ratio of the material
the plate is made of. We refer e.g., to [31] for more details on the physical
interpretation of problem and on the Poisson’s ratio 0. We also
mention the paper [39], where the author studies the dependence of the
vibrational modes of a plate subject to homogeneous boundary conditions
upon the Poisson’s ratio o € ]0, % [, providing also a perturbation formula
for the frequencies as functions of the Poisson’s coefficient.

We recall that problem admits an infinite sequence of non-negative
eigenvalues of finite multiplicity which depend on o € [0, 1] and which we
denote here by

We note that A = 0 is an eigenvalue of (6.1.1]) of multiplicity N + 1, and a

set of linearly independent eigenfunctions associated with A = 0 is given by
{1,21,...,zN}.
If we set 0 = 1, problem reads
A%y = \u, in ,
Au =0, on 01}, (6.1.2)
aaAV“ =0, on 0f.

We note that the differential operator associated with problem is
not a Fredholm operator. Indeed all the harmonic functions in €2 are eigen-
functions corresponding to the eigenvalue A = 0, hence the kernel of the
associated operator is infinite dimensional. We also note that the boundary
conditions in do not satisfy the so-called ‘complementing conditions’
(see [2, §10] and [47] for details), which are necessary conditions for the well-
posedness of a differential problem. Nevertheless, problem admits a
countable number of positive eigenvalues of finite multiplicity diverging to
400, which we denote here by

O< A< Al SN <,

see Theorem [6.1.11] below.
We show that A\j(c) — 0 as 0 — 17 for all j € N. Thus, the positive
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eigenvalues of problem are not limiting points for the eigenvalues of
problem as 0 — 17. Moreover, we show that the positive eigenvalues
Aj of problem coincide with the eigenvalues of the Dirichlet problem
for the biharmonic operator, namely problem

A?w = pw, in Q,
w =0, on 01, (6.1.3)
‘g—’;’ =0, on 0f2.

We recall that the eigenvalues of form an increasing sequence of
positive eigenvalues of finite multiplicity diverging to +oo, which we denote
here by

0<pg Spg <o <py <-oe (6.1.4)

6.1.1 Eigenvalues of Neumann and Dirichlet problems

We consider problems ((6.1.1)), (6.1.2)) and (6.1.3]) in their weak formulation.
The weak formulation of problem (6.1.1) when o € [0, 1] is

/(1 —0)D*u: D*¢0 + o Aulpdr = /\/ updx (6.1.5)
Q Q

for all p € HZ(Q) in the unknowns u € H?(Q), A € R, where we recall that
D?u: D% =YV A ag‘?;x] ai ai: denotes the Frobenius product.

Actually we will recast problem (6.1.5) in H%(Q)/N, where N C H?(Q) is
the subspace of H%(Q) generated by the functions {1, x1,...,zx}. To do so,
we set

H%(Q) == {uEH2 /udaz—/ s izl,...,N}.

In the sequel we will think of the space H%(f2) as endowed with the bilinear
form given by the left-hand side of (6.1.5). From the fact that |[D?ul* >
+(Au)? for all u € H?(2) and from the Poincaré-Wirtinger inequality, it
follows that such bilinear form defines on HZ () a scalar product whose
induced norm is equivalent to the standard one. We denote by 7 the map
from H?(Q) to H%() defined by

vl i=u =y [ o |9|2Z< i) (o)

i:v:( 83% >””

for all u € H?(£2). We denote by W?V the map from H?(Q2)/N onto H% ()
defined by the equality 7y = 7r§v o p, where p is the canonical projection of
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H?(Q) onto H?(2)/N. The map 7T§V turns out to be a homeomorphism. Let
F(Q) be defined by F(Q) := {G € H*(Q)' : G[1] = G[z;] =0, Vi=1,..,N}.
Then we consider the operator P, as an operator from HZ () to F(Q) de-
fined by

Polullp] == /(1 —0)D*u: D*0 + o Aulpdr, Yu € H%(Q), ¢ € H* ().
Q

It turns out that P, is a homeomorphism of H%({2) onto F(2). We denote
by J the continuous embedding of L?(€2) into H?(£2)" defined by

Jul[e] = /ngoda:, Yu € L*(Q),p € H*(Q).

Finally, we define the operator T}, acting on H?(2)/N as follows:
T, = (7)) D o P o Toionh,
where i denotes the embedding of H2(Q) into L?(Q2).

Lemma 6.1.6. The pair (A, u) of the set (R\ {0}) x (H%(Q)\{0}) satisfies
(6.1.5) if and only if A > 0 and the pair (\~1, p[u]) of the set Rx (H*(Q)/N\
{0}) satisfies the equation

A" plu] = Toplul.
We have the following theorem.

Theorem 6.1.7. The operator T, is a non-negative compact self-adjoint
operator in H*(Q)/N, whose eigenvalues coincide with the reciprocals of the
positive eigenvalues of problem . In particular, the set of eigenval-
ues of problem is contained in [0,+oo[ and consists of the image
of a sequence increasing to +0o and each eigenvalue has finite multiplicity.
Moreover, the first eigenvalue is A = 0 and has multiplicity N + 1, and a
set of linearly independent eigenfunctions corresponding to A = 0 is given

by {1,1’1, ...,:L’N}.

Proof. Tt is easy to prove that the operator T, is self-adjoint. The compact-
ness of the operator T, follows from the compactness of the embedding 1.
The last statement is straightforward. O

In an analogous way it is possible to show that the eigenvalues of
are positive and of finite multiplicity. In fact, the weak formulation of prob-
lem reads: find (u,\) € HZ(Q) x R such that u solves equation
Jo Aulpdz = X [, updz for all p € H(Q). We note that this is equivalent
to find (u, \) € H3(Q) xR such that equation holds for all ¢ € HZ(L).
From the Poincaré inequality it follows that the bilinear form given by the
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right-hand side of defines on HZ(f2) a scalar product whose induced
norm is equivalent to the standard one. Therefore the analogue of Theorem
holds. Thus, the eigenvalues of problem are positive and can be
represented by means of an infinite sequence diverging to 400 of the form
, and the corresponding eigenfunctions form a orthonormal basis of
HZ(9).

Finally, we show that problem admits an infinite sequence of
positive eigenvalues. We have already observed that all harmonic functions
in H2(Q) are eigenfunctions corresponding to the eigenvalue A = 0. We
start by recalling the following direct decomposition of the space H?(Q) via
the biharmonic operator (see [I5, Theorem 4.7] for details):

H2(Q) = H2(Q) @ AHY(Q) N H2(Q)), (6.1.8)

where HZ(Q) := {u € H*(Q) : Au =0} is the space of harmonic functions
in H%(2). The fact that the sum is direct follows since if f € HZ(f2) and
u € HH(Q) N HZ(Q) with Au = f, then

/(Au)Zd:U:/Aufd:L‘
Q Q
:/Afudm—i— fauda—/ ﬁuda
Q oq " Ov o Ov
:/Afud:x:O,
Q

thus Au = 0 and then f = 0.

In order to characterize the positive eigenvalues of problem and
to get rid of the harmonic functions which are the eigenfunctions associated
with the eigenvalue A = 0, we will obtain a problem in A(H*(Q) N HZ(Q)).
Thus, we consider the following weak formulation of problem for
A # 0. (In the case A = 0, the solutions of are exactly the harmonic
functions in H?(2).)

/ A*uN?pdr = )\/ Aulyp, Yu,p e HY(Q)N HZ(Q), (6.1.9)
Q Q

in the unknowns u € H*(Q) N H3(), A € R. In fact, assume we have a
solution u € H*(Q) to (6.1.2)). For any ¢ € H?(f2) we have

)\/uapdazz/A2uapd$
Q Q

:/AuAcpdx—l—/ @goda— Aua—gpda
Q oo OV 90 v

= / AulApdzx.
Q
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Thus
/AuAg@dm— /\/ updz. (6.1.10)
Q Q

By (6.1.8]) we have that
¢ = pn+ A,

where ¢;, € H?(Q) is harmonic and ¢ € H4(Q) N H3(Q2). Thus
/ Au (Apy + A%Y) do = )\/ u(p + A) .
Q Q
Now if A # 0, then by (6.1.10) we have

0= / AulAppdr :)\/ UPp,
Q Q

then fQ uppdr = 0. Hence

/ Aul*pdz = A\ / uApdz.
Q Q

Similarly, « = uy, + Av, where uj, € H?() is harmonic and v € H*(2) N
HZ(Q). Thus

/ A (up, + Av) A%pda = /\/ (up + Av) Apdx
Q Q

:)\/ AUAwd:U—i—)\/ Auhwdx—l—/ R
Q Q oo OV on Ov
= )\/ AvAydax.
Q

We note that there exists a constant C' > 0 such that [, A2ul2pdr <
Clulrsin el oy and lull ) < ClA%] sy for all o € H(@)
HZ(Q) (the second inequality follows from standard elliptic regularity for
the Dirichlet problem for the biharmonic operator and from the regularity
assumptions of €, see [47, Theorem 2.20] for details). Therefore, the bilinear
form given by the left-hand side of defines on H*(Q)N HZ(Q) a scalar
product whose induced norm is equivalent to the standard norm of H*(€).
Thus, the analogue of Theorem holds.

Theorem 6.1.11. The set of eigenvalues of problem 18 contained in
[0,4+00[. The eigenspace corresponding to the eigenvalue A = 0 has infinite
dimension and all harmonic functions in H*(Q) are eigenfunctions associ-
ated with A = 0. Moreover, the set of positive eigenvalues consists of the
1mage of a sequence increasing to +o0o. FEach positive eigenvalue has finite

multiplicity and the corresponding eigenfunctions form a orthonormal basis
of A(HY(Q) N H3(Q)).
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6.1.2 Dependence of the Neumann eigenvalues upon the Pois-
son’s ratio

In the first part of this subsection we consider the behavior of the eigen-
values of problem as ¢ — 17. In the second part, we show that
the positive eigenvalues of problem and the eigenvalues of problem
coincide. We start by proving the following lemma.

Lemma 6.1.12. The function which maps o € [0,1] to Aj(o) is Lipschitz
continuous.

Proof. We recall that for each o € [0, 1] we have the following formula for
Aj(o)
Jo(1 = 0)|D?ul* + o(Au)?dx

MNi(o) = iInf su 6.1.13
() E<H2(Q) o;ng Jo u?dx ( )
dimE=j

Therefore, for each o1,09 € [0,1] and v € H?(Q2) we have

Jo(1 =01)|D?ul? + o1(Au)?dz [o(1 — 02)|D?u|? + oa(Au)?da
Jo utdx a Jo utda
Jo |D?u)? + (Au)*dx
7| Jq utdzx

<l|op —

Jq | D?ul?dx
Joutdx
then taking the infimum and the supremum in (6.1.14)) yields

< (1+N)|O’1—02| (6.1.14)

[Aj(01) = Aj(02)] < (1+ N)A;(0)[or — o]
Then the function A;(o) is Lipschitz in [0, 1[. O
Remark 6.1.15. From Lemma it follows that, since A\j(o) is Lips-

chitz on [0, 1], then it is uniformly continuous in the whole of [0,1]. Hence,
for all j € N, there exist \j € R such that lim,_,1- A\j(0) = A;.

In the next theorem we show that lim, ,;- A;j(o) =0 for all j € N.
Theorem 6.1.16. For all j € N it holds lim,_,;- A\;j(o) = 0.

Proof. We recall that the space HZ((2) is closed in H?(2) and therefore
it is a Hilbert space, endowed with the standard scalar product of H?().
Let {u;};2; be a set of linearly independent functions in H?(f2) such that
Jo uiug = 0ip for all i, k € N. Then, from we have that for all j € N

it holds
2

dx

)

(1-0) [ ‘Zle ¢;D*u;
Aj(o) < max : )
10 ER fQ (Zﬁzl CW@) dx
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where we have chosen as j-dimensional space E in (|6.1.13)) the space gener-
ated by {u1,...,u;}. Then we have

2
dx

(1-0) fQ ’25:1 ¢;D?u;
max

. : 2
el €8 Ja (Zgﬂ Ci“i) dx

1,62 Jo | D da

i=1Ci

< max j(l-o)
C1,.. ,CJGR ‘ZZI C’L2

<j(1—0) max /!DQuZ\ dx,

7'—» 7.]

and therefore lim, ,;- A\j(c) =0 for all j € N. O

Thus, the positive eigenvalues of problem are not limiting points
for the eigenvalues of problem aso — 17,

Now we consider problems and . We note that, under the
assumptions that Q is of class C*®, we have that the eigenfunctions w of
problem are of class C**(Q) (see [47, Theorem 2.20]). We have the
following theorem.

Theorem 6.1.17. All the positive eigenvalues of problem (6.1.2) coincide
with the eigenvalues of problem (6.1.3)).

Proof. Let p1 be an eigenvalue of problem (6.1.3)) and let w € HZ(f2) be an
eigenfunction associated with u . Let vy € H?(2) N H}(Q) be the unique
solution of

Avg = w, in €,
vg = 0, on 0f).

We set vy, = vg +h for some harmonic function h € H?(£2). Now we consider
the following problem: find a harmonic function h such that

2 _ .
A%vp = pvy, in Q,

Avp, =0, on 012,
8§5h =0, on 0Q.
Clearly Avy,, = agg”‘m = 0 for all harmonic functions h. As for the

differential equation, we have A%(vg+ h) = p(vo + h) if and only if A(Avy+
Ah) = p(vg + h), that is Aw = p(vg + h) and therefore h = % — vy,
which is clearly harmonic and belongs to H?(). Therefore each eigenvalue

w of problem (/6.1.3)) is an eigenvalue of problem (6 and a corresponding
eigenfunction is given by v = %. On the other hand, suppose that A > 0

is an eigenvalue of problem (6.1.2) and let u € A(H*(Q) N HZ(2)) be a
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corresponding eigenfunction. Then, the function w = Au is in H3(Q2) and

solves

A?w = w, in Q,

w =0, on 052,

%—’l‘j =0, on 0f2,
therefore, \ is an eigenvalue of problem (6.1.3) with corresponding eigen-
function Aw. ]

6.1.3 Neumann and Dirichlet eigenvalues in the case of the
unit ball

In this subsection we consider problems (6.1.1]), (6.1.2)) and (6.1.3) when

) = B is the unit ball in RY centered at zero. In this case it is possible to
perform explicit computations which allow to recast the eigenvalue problems
(6.1.1), (6.1.2]) and (6.1.3)) into suitable equations of the form F(\) = 0 and
then gather informations on the behavior of the eigenvalues.

It is convenient to use the standard spherical coordinates (r,60) € Ry X
0B. Recall that by H;(f) we denote a spherical harmonic of order [ € Np.
We also recall that for each | € Ny, H; is a solution of the equation —AgH; =
1+ N —2)H,.

As customary, for [ € Ny, we denote by j; and 4; the ultraspherical and
modified ultraspherical Bessel functions of the first species and order [ re-

spectively.
We consider first problem (6.1.3)) on B. We have the following lemma.

Lemma 6.1.18. Given an eigenvalue p of problem (6.1.3) on B, a cor-
responding eigenfunction w is of the form w(r,0) = W;(r)H;(0), for some
[ € Ng, where

Wi(r) = agi(Ypr) + Bi(Yur), (6.1.19)
for suitable o, B € R.

We refer e.g., to [29] for the proof of Lemma |6.1.18] We establish now
an implicit characterization of the eigenvalues of problem (6.1.3)) on B.

Lemma 6.1.20. The eigenvalues pu of problem (6.1.3) on B are given im-
plicitly as zeroes of the equation

HYRYE) — (YY) = 0. (6.1.21)

Proof. By Lemma [6.1.18] an eigenfunction w associated with an eigenvalue
p is of the form w(r, ) = W;(r)H;(0), where W(r) is given by (6.1.19). We
recall that in spherical coordinates the Dirichlet boundary conditions are
written as

wy,_, = 0w, _, =0.
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By imposing such boundary conditions to w(r,) we obtain the following
homogeneous system of two equations in two unknowns « and [

{ajz(é/ﬁ) + Bi(ym) =0,
aji(¥/m) + Biy(m) = 0,

which has solutions if and only if its determinant vanishes. This yields

formula ((6.1.21]). [

Now we consider problem (6.1.1)) on B. We have the following lemma
(see e.g., [28] for the proof).

Lemma 6.1.22. Given an eigenvalue A of problem (6.1.1) with o € [0, 1]
on B, a corresponding eigenfunction wu is of the form u(r,0) = Uj(r)H;(0),
for some | € Ng, where

Uy(r) = aji(VAr) + Bi(VAr), (6.1.23)

for suitable o, B € R.

We have the following lemma on the eigenvalues of problem (6.1.1)) on
B.

Lemma 6.1.24. The eigenvalues \ of problem (6.1.1)) with o € [0,1] on B
are given implicitly as zeroes of the equation

detM(\, o) =0, (6.1.25)

where M (X, o) is the 2 X 2 matriz defined by

VAGI(VA) Vi (VA)
+(N — 1) Vx5 (VX) +(N — 1)V (V)
—I(I4+ N = 2)oj (VA) —I(I4+ N = 2)oi (V)
V3G (V/X) + (N = 1)VAG) (VX) VABU(VA) + (N — 1)V (VX)
+VAQ =N +1(o —2)(N +1—2)) j](¥YX) FVAQ =N +1(o —2)(N+1-2)i(VX)
—I(l+ N =2)(c — 3)j,(¥X) —I(I4+ N = 2)(c — 3)i,(VX)

(6.1.26)

Proof. By Lemma an eigenfunction u associated with an eigenvalue
A is of the form u(r,0) = U(r)H;(#), where Uj(r) is given by (6.1.23). We
recall that in spherical coordinates the Neumann boundary conditions are
written as

(1—0)02u+ UAU| =0,

Or(Au) + (1 — a) Ag (Oru — )‘ =0,

see [28] for details. By imposing boundary conditions to the function u
we obtain a system of two equations in two unknowns « and (, and the
associated matrix is given by (6.1.26)). Thus the eigenvalues must solve

equation (|6.1.25)). [
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We give now an alternative proof of Theorem when 2 = B is the
unit ball in RY centered at zero based on the explicit representations of the
eigenvalues discussed in this subsection. We have the following theorem.

Theorem 6.1.27. Equations detM (X, 1) = 0 and (6.1.21)) admit the same
non-zero solutions.

Proof. We consider (6.1.26) with ¢ = 1. Let A > 0 be a solution of
detM (A, 1) = 0. We compute F(A\) = detM (A, 1). We have

F() = =YL= (N +1 = 2)(N +1 = 1) (VN (V) = (VX5 (VN)
+ VAN + 1)+ N = 2) (G (YN (VX) = (Y05 (VX))
— NN = 1)+ UN + 1= 2)) (G (VX) = i (VR (VD)
+ X+ N = 2) Gu(VNE (VR) = (VNG (V)
— AN = 1) (GO = (N5 (D)
X (G YN VN = i (YNG(VN) - (6.1.28)

We recall the well-known recurrence formulas for Bessel functions and their
derivatives (see [I, 9.1.27 and 9.6.26])

{}/—1((2))*" JJV+1((Z)): 2;}]1/((2))7 (( )) II/H(( )) (( ))7

v—1(2) = Jug1(2z) = 2J)(2), Z+u+1Z=2 z

T = doa(2) — 202, D) = Da(e) — 2L(z), (G2
T = dea () 4 20(2), =) = Loa(2) + PL(2).

+
Wte set 7 (z) = IN_H( )J%_Hl(z):l:I%_Hl(z)J%H(z). We use (6.1.29)) to
ge

a)i(z) —u(2)ii(z) = Z7VC(2), (6.1.30)
@i () =il () = 2V (280 (2 Ty (2)
—(N -1)C/ (2)), (6.1.31)
J@)i () —a(2)i'(z) = 27V (220;(2) +22ly 4y (2) Ty _44(2)
—l(l+ N -2)C (2)), (6.1.32)
W@ () = a(2i"(2) = 2N (PO + 20 = N+ 2Ly () y ()
+(N(N = 1) +1(l+ N —=2))C/ (2)) , (6.1.33)
Ji@)i"(2) —i(2)ji"(z) = 277N (*2231%1(2”%;@) + (1= N+2)2°C (2)
+20(1 - N + l)zj%flJrl(z)J%—lJfl(Z)
+l(I+ N —2)(N +1)C/ (2)) , (6.1.34)
3'(2)3(2) =i/ (2)7" (2) = L T2N (—24Cl+(z) + 2(N — 1)z31%+l(z)J%+l(z)

~(N+1)(2L+1)2°Cy (2)
—2(N =3)(l - 1)121%71“(2)‘]%71“(3)
+H(—1)(1+N-2)(1+N—1)C(2)). (6.1.35)
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Thanks to (6.1.30))-(6.1.35)), expression (6.1.28)) simplifies to
FO) = N (G(VNiH(V) = (VRGN (6.1.36)

Therefore by comparing (6.1.36)) with (6.1.21]) we see that the non-zero eigen-

values of problem (6.1.2)) and the eigenvalues of problem (/6.1.3)) on the unit
ball coincide. O

Remark 6.1.37. From Theorem [6.1.16] it follows that all the eigenvalues
Aj(o) = 0 as 0 — 17. This means that there are infinitely many branches
of solutions o — (o) of equation such that AN(c) — 0 as 0 — 17.
Theorem shows that there are also infinitely many branches o — (o)
such that \(o) — p as 0 — 17, for some solution u > 0 to equation

(see Figure[6.1)).

500 -

400 [

300 -

200

100 - ul

0{0 0?2 074 0?6 0?8 1{0

Figure 6.1: Solution branches of equation (6.1.25) with N = 2 for (o, ) €
10, 1[x]0, 500[ . The color refers to the choice of I in (6.1.25): blue (I = 0),
red (I =1), green (I = 2), orange (I = 3), purple (I = 4), pink (I = 5), cyan
(I =6), yellow (I = 7), magenta (I = 8), brown (Il =9).

6.2 Neumann eigenvalues on annuli

In this section we consider the behavior of the Neumann eigenvalues both
for the Laplace and the biharmonic operator on the annulus centered at zero
of radii 1 — € and 1, for € €] — g9, 0[U]0, g¢], for a suitable g > 0 small.
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We mention the paper [89], where the authors consider the Neumann
Laplacian on the annulus of radii 1 — ¢ and 1 and prove that for N = 2 the
first positive eigenvalue converges to 1 as € — 0 and it is an increasing func-
tion of € for € €] — eq, ¢, for a suitable 9 > 0. As a bypass product, they
obtain a counterexaple of the domain monotonicity for the first Neumann
eigenvalue of the Laplace operator. The proof of the results in [89] relies on
the use of the variational characterization of the first Neumann eigenvalue
and on estimates for the derivatives of the eigenvalues of suitable Sturm-
Liouville problems. In this section we consider the explicit characterization
of all the eigenvalues in terms of zeros of suitable combinations of Bessel’s
functions, as well as suitable Taylor’s expansions of such functions and es-
timates for the correspondig remainders. This technique allows to consider
all eigenvalues with arbitrary indexes and multiplicity, and can be used also
for the corresponding problem for the biharmonic operator.

Let € €] — 00,0[U]0, 1] and let A. C RN be the set defined by

N . :
. {:c € RN l—e <zl <1, ?f € €]0,1], (6.2.1)
zeRY: 1< |z|<1l—g, ife€]—o00,0]

We consider the Neumann eigenvalue problem for the Laplace operator in
A, namely

(6.2.2)

9u _ ), on 0A..

{ —Au = Au, in Ag,
ov

It is convenient to use standard spherical coordinates (r,6) € Ry x 9B in
RY. We recall that the eigenvalues of problem have finite multiplicity
and can be represented by means of an increasing sequence diverging to +oo
of the form

0=X(e) <Me) < - < N(e) < -

We are interested in the behavior of the map € — Aj(¢) as ¢ — 0.

6.2.1 Eigenvalues of the Laplace operator on the annulus of
RQ

In this subsection we consider the case N = 2. We have the following
theorem on the asymptotic behavior of the eigenvalues of (6.2.2]) as e — 0.

Theorem 6.2.3. For N = 2, the eigenvalues of problem (6.2.2) have the

following asymptotic behavior
M(e) =12 +el® + O(e%), (6.2.4)

forl € Ng, as € = 0. In particular, X\j(0) > 0 for all 1 > 1.
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Proof. In polar coordinates, the first equation in (6.2.2)) reads
1 1
— 0% u — ;&u - ﬁageu = \u, (6.2.5)

for @ € [0,27[ and r €]1 —,1[ (if € > 0), or 7 €]1,1 — ¢] (if € < 0). The
boundary conditions read

oru(1,0) = 0u(l —e,0) =0, VO e[0,2n]. (6.2.6)

Moreover u(r,0) = u(r,27) for all r €]1 —¢,1[ (if e > 0) or r €]1,1 — ¢[ (if
e < 0). As customary, by separating variables so that u(r,8) = w(r)v(0)
and using /2 as separation constant, with [ € Ny, we have that v() is a
solution of
—0"(0) = 120(h), (6.2.7)
that is v(0) = Acos(l0) + Bsin(l0) for | € Ny and A, B € R. Then u(r,6) =
w(r )(A cos(lG) + Bsin(10)), for some A, B € R. By using formula
into , we obtain that w solves

w”(r) + %w'(r) + <A - ) w(r) = 0. (6.2.8)

This implies that u is of the form wu(r,0) = w;(r) (Acos(l8) + Bsin(l)),
where

wi(r) = ai(VAr) + BYI(VAr), (6.2.9)

where J; and Y] are the Bessel functions of the first and second species
and order [ respectively, and «a, 8 € R are suitable constants. By imposing
boundary conditions we obtain that A must satisfy the condition
det B = 0, where

L BRIy

B= /a0 - o) (VAL o))"

Then A is such that

JVAOY (VAL =) = JI(VA(L = €)Y/ (VX) = 0. (6.2.10)

Now we expand the left-hand side of ((6.2.10]) in Taylor series around € = 0
up to the second order, obtaining

= Ve [NV (VN) = T (VOY (V)]

" )\% [Jl(\r)\)}ﬁ”/(\/x) J’”(\/X)Yl,(\/xﬂ + R()\7€) =0, (6.2.11)

where R(\,¢€) is given by

=3 CUEVY (R (R — R IR),

k=3
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and is O(g%) as € — 0. The fact that the remainder R(),¢) in (6.2.11) is of

order € follows from the fact that for all m € Ny, the eigenvalues of

6.2.2])

which we denote here by A, (¢), are bounded away from zero and infinity
uniformly in €, as ¢ — 0. Indeed, by the Rayleigh Min-Max Principle, we

have that

fA | ko ek VeorPda
[ ,CmGRm+1\{0} fA Zk OCk(Pk) d$

Am(e) <

where @y (r,0) = r¥ cos(kf). We consider the case ¢ > 0 (the case ¢ < 0 is

analogous). From standard computations it follows that

Am(€)
< - o fll_s (Spg cpkrk! cos(kﬁ))2 rdrdf
T coremERMTIN{0} S (1—(;(—11)2()1%))
I ) fllfs F (ks enkr® Sin(krﬂ))2 drdf
T Zk e %
< (m+1) max fl—g (o7 2k2r2 k=1 cos(k0)?) rdrdd

- (1_o)2(+8)
T e o%%

fl (Lo ke 2(k=1) sin (k6 %) rdrdf

1—(1—¢)20+k)
T heoC %

C0rrsCm ERHI\ {0}

> heo Cik (1 —(1— 5)2k)

- (m * 1) COy-- 7C7VLER)WE+1\{O} (1 (1 6)2<1+k>) .
koo o
We note that, for all choices of (cg, ..., c;n) € R\ {0},
2o ik (1 _(1_5)%) Zk ok 2
ll_>0 (1 (1 8)2(1+k)) Z 2(m + 1) .
Yo s k=16

Thus, for € > 0 sufficiently small, \,,,(¢) is uniformly bounded from above,
as ¢ — 0. We now prove that all the positive eigenvalues are bounded
away from zero. In fact, given a positive eigenvalue A of problem ,
a corresponding eigenfunction is given by w;(r)(A cos(lf) + Bsin(l6)), for
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some [ € Ny, and wy(r) is as in (6.2.9)). Then we have

27 L rwj(r)*(Acos(10) + Bsin(16))2drdo

027r fll_g wy(r)2(Acos(10) + Bsin(10))%rdrdd

027r fll . L (wy(r)*12(— Asin(10) + B cos(16))?) drdf
27 L _wy(r)2(Acos(18) + Bsin(16))2rdrdd

o fl _ L (wi(r)*1?(—Asin(10) + B cos(1))?) drdf
2T L _wi(r)2(Acos(10) + Bsin(16))2rdrdd

= Qf“—r >1, (6.2.12)
fl L wy(r)?rdr

_l’_

if £ €]0, 1, while

2T rw) ()2 (A cos(10) + Bsin(16))?drdd

027r 1178 wy(r)2(Acos(10) + Bsin(10))2rdrdd
o 11_Ei (w( )212(— Asin(16) + B cos(16))2) drdf
027r 1 wi(r)?(Acos(10) + Bsin(l0))?rdrdd
2 [172 1 (wy(r)212(— Asin(16) + B cos(16))?) drd6
)

0 1 r

a 027r 11 “wy(r)2(Acos(10) + Bsin(10))2rdrdo

_p 11—8 wi(r)? o,

1
S e S T

(6.2.13)

if e €] —1,0][.

We note now that A = 0 is an eigenvalue of problem and the asso-
ciated eigenfunctions are the constant functions on A.. In particular, A =0
is the first eigenvalue of with [ = 0 and with Neumann boundary
conditions . Moreover, all the non-zero eigenvalues of problem
are bounded away from zero. Then in equation , we can assume
A # 0. Dividing by € and multiplying by 7\ in , and recalling that
(see Lemmas |4.1.40| and |4.1.46))

2
KA = WD =~ (1) o219
HOAYON - VRO = -2 (1-5), 621

equation (6.2.11) can be rewritten as

2(2 =) — (A=3%) e+ R(\e), (6.2.16)
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where R(\, &) = TAR(N, ) /e € O(e?) as e — 0.

We consider equation and apply the Implicit Function Theo-
rem. Equation (6.2.16)) can be written in the form F(\ &) = 0, with F
of class C! in ]0,400[x[0,1[, and F(X,0) = 2 (12 = X), F(A,0) = -2,
and 0.F(\,0) = 312 — \. Since F(12,0) = 0 and 9\F(I?,0) = —2 # 0 for
all [ € Ny, the zeros of equation in a neighborhood of ()\,0) are
given by the graph of a C!-function ¢ + A(¢) with A(0) = [?. Moreover
N(0) = —0-F(I2,0)/0\F (I?,0) = 1% for | € Ny. Then A(¢) = 2 +¢l? + O(e?)
as € — 0, for all [ € N. Moreover \g(¢) = 0 for all € €] — 00, 0[U]0, 1[, thus
formula holds also for I = 0. Moreover Aj(0) > 0 for all > 1. This
concludes the proof of the theorem. O

Remark 6.2.17. The limiting eigenvalues are the eigenvalues p of —v"(s) =
pv(s) on 10,2 with periodic conditions v(0) = v(27).

Remark 6.2.18. We note that, by standard Sturm-Liouville theory, for all
l € Ny, equation with Neumann boundary conditions admits a
diverging sequence of non-negative and simple eigenvalues, which we denote
by A\ i(€), k € No, with A\ i, (€) < N g, (€) if k1 < k. In particular, Aop(e) =
0 for all e €] — 00,0[U]0,1[, and N\ () > % for all ¢ €] — 1,0[U]0, 1] (this
follows from and (6.2.13)) and for all I,k € Ny, (I,k) # (0,0).
Moreover, as a consequence of Theoremlm we have that A\j g — 12 for all
l € Ng and N\ j, — +o0 for alll € Ny and for all k > 1, as e — 0.

Such behavior of the eigenvalues can be also explained as follows. Let us
recall that the k-th zero of the cross product

()Y} (az) - ¥{(2)Jf(c2) (6.2.19)

has a well-known asymptotic expansion. We set n = 412, f = = 1+3

2 3 3 2 a-1’ p - 8o’
+467—63)(a3—1 +18572—20531+1899
q = (n 6(42)3(a)£a1) ), r= (@ 1 U ). Then the k—th zero of

5(4n)°(a—1)
(6.2.19) is given by

2 3
p qg—p°  T—4pg+2p
B+ =+ + + -
g B3 Ik
We exploit all the computations by setting « = 1 —¢e and z = VX in (6.2.19)
and collect the terms according to the powers of €, obtaining

21.2

mk
/\l,k(f): 22

+ 12+ el +0(%). (6.2.20)

Note that Ao = I? + €l® + O(g?) which converges to N(0) = [* as e — 0,
while for k > 1, A\j(e) = +00 as e = 0. See also Figure .

Remark 6.2.21. Problem (6.2.2]) presents some analogies with the eigen-
value problem for the Laplace operator —Au = Au on |0,27[x]0,e] with
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Neumann conditions at xo = 0 and xo = € and periodic condition at 1 =0
and x1 = 2m. In this case, for each fixed € the eigenvalues are given by
21.2 . . . .
”675 + 12, with I,k € Ng, which are exactly the first two terms appearing in

formula (6.2.20]).
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| | | I
-1.0 -0.5 0.0 0.5 1.0

Figure 6.2: Solution branches of equation (6.2.10)) for (e, \) €] —1,1[x]0, 40].
The color refers to the choice of [ in (6.2.10). In particular [ = 0 (blue),
I =1 (red), l =2 (purple), [ = 3 (green), | = 4 (orange).

6.2.2 Eigenvalues of the Laplace operator on the annulus of
RN
In this subsection we consider the case N > 3. We have the following

theorem on the behavior of the eigenvalues of (6.2.2)) as e — 0.

Theorem 6.2.22. The eigenvalues of problem (6.2.2)) have the following
asymptotic behavior

M) =11+ N —2)+el(l+ N —2)+ 0(e?),
forl € Ng, as ¢ = 0. In particular, X\j(0) >0 for all 1 > 1.

Proof. The proof follows the same lines as that of Theorem[6.2.3] We repeat
briefly it here for the reader’s convenience. As is customary, we separate
variables and look for solutions to problem of the form u(r,0) =
w(r)H(#). We use (I + N — 2) with [ € Ny as separation constant. It turns
out that H solves the equation

~AgH =1(l+ N —2)H, ondB,



210 Eigenvalues of Neumann-type problems

for some [ € Ny. Therefore H(0) = H;(#), where H;(0) is a spherical har-
monic of some order [ € Ny. The radial part w(r) solves the equation

W+N=-2) ]\27 — 2)> w(r) = 0.

w” (r) +

r r

w'(r) + </\ -

This implies that, given an eigenvalue A of problem (6.2.2)) on A., a corre-
sponding eigenfunction is of the form

u(r,0) = (aji(VAr) + By (Var)) Hy(6),

where «, 5 € R are suitable constants and j; and y; are ultraspherical Bessel
functions of the first and second species and order [ respectively. Now we
impose Neumann boundary conditions. We obtain

aji(A) + By (A) =0,
aji(A(1—¢)) + By (A(1 —¢)) = 0.
Thus, the eigenvalues are implicitly given by the equation detB = 0, where
5 { e ey } |
GAML=¢€)) y(A1-€))o

From standard computations it follows that the eigenvalues of problem
(6.2.2) are solutions to the following implicit equation

(V=2 (T (VY y (VAL =) = Yy (VA y (VAL =)
+2(N =29V (Yo 1y (VA 1 (VAL =) = Ty (VAY 1 (VAL = 2)))

+2(N*2)(1*5)\& (Y%71+l(ﬂ)‘]/%_1+z(ﬁ(1 —€))— J%71+z(\&)ylg_1+l(ﬁ(1 - 5)))
+4(1—e)A (J/%—lJrl(\/X)Y/%—lJﬁl(\/X(l —€))— Y/%—LH(\/X)J%—MA(\/X(l - 5))) =0.
(6.2.23)

We expand the left-hand side of in € near ¢ = 0 up to the second
order. Then we divide both sides of the expansion of by € and use
formulas @D and . From standard computations we obtain that
equation @D can be re-written in the following equivalent form

8(I(1+ N —2) = X) +4(I(l+ N —2) + Ne + R(\,e) =0,

where R(\,¢) € O(g?), uniformly in A > 0, as ¢ — 0. Thus, by letting ¢ — 0
we obtain that the following asymptotic expansion of the eigenvalues \;(¢)

of (6.2.2)) holds
ANe) =11+ N —=2)+1(+N —2)e + O0(e?), (6.2.24)

as € — 0. This concludes the proof of the theorem. O
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Remark 6.2.25. We note that in a neighborhood of € = 0, the eigenvalues
of problem behave like . In particular, we deduce that all the
etgenvalues of are not monotonic with respect to the inclusion of sets
(this is shown in the case N = 2 for the first eigenvalue of problem
in [89]). In fact, if 0 < 1 < 9 are sufficiently small (possibly depending
onl), then Az, O Az, and N\(g2) > Ni(e1). Conversely, if ea < g1 <0, then
Asg 2 A€1 and /\l(52) < >\l(51)'

6.2.3 Eigenvalues of the biharmonic operator on the annulus
of RV

Let e €] —1,0[U]0, 1] and let A. € RY be the set defined by (6.2.1]). We con-
sider the following eigenvalue problem for the biharmonic operator subject
to Neumann boundary conditions on A,

A?u = \u, in A,
Pu —, on 9A., (6.2.26)

divgn (DQU.V) + % =0, on JA..

We recall that in spherical coordinates we have Au = 92.u + & - Lo +

T%Agu. The boundary conditions in (6.2.26f) are written in spherical coor-
dinates as

Orruy,_, =0,

aﬁ"“lr:lfs = 0’

A (0= 2) 0, (Au),_, =0 (0220
HAs (Oru—%) + 0, (Aw),_, =0

By following [2§], in order to find a solution to the differential equation
A%y = \u , we factor the eigenvalue equation equation as

(A +a*)(A—a*)u=0,

where a > 0 is such that A\ = a*. The eigenfunctions turn out to be linear
combinations of v; and vy where —Av; = a?v; and Avs = a?vy. It follows
that

v1 = (filar) +yi(ar)) Hi(0),  wve = (ir(ar) + ki(ar)) H(0),

where j;,%; are the ultraspherical Bessel functions of the first and second
kind respectively, and 4, k; are the ultraspherical modified Bessel functions
of the first and second kind respectively, and H; is a spherical harmonic of
some order [ € Ny. Then, it is standard to prove that, given an eigenvalue A
of problem , a corresponding eigenfunction u has the following form
(see [28] for more details)

u(r,0) = (Aji(ar) + By;(ar) + Ciy(ar) + Dki(ar)) Hi(0),

for | € N, where a > 0 is such that a* = X and A, B,C, D € R are suitable
constants. Now we impose the boundary conditions ((6.2.27). We obtain
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a* (4j/'(a) + By} (a) + Ci/(a) + Dkj/(a)) = 0,

i)
a? (Aj/'(a — ae) + By] (a — ag) + Cij (a — ag) + Dkj'(a — ae)) =0,

iii)

A (3l(1+ N —2)ji(a) + a(1 — N)ji(a)
“2al(l+ N - 2)ji(a) + a*(N — 1)j/(a) +a "’( )
+B(3l(l+ N — y(a)+a( U
—2al(l + N — 2)yj(a) + a*(N — 1
+C (3l(l+ N —2)i(a) + a
—2al(l 4+ N — 2)ij(a) + a*(N —
+D (3l(l+ N —2)ki(a) + a 1_m U
—2al(l + N = 2)kj(a) + a*(N — 1)k/(a) + a*k]"(a)) = 0,

’\\/

iv)

A (=g e e+ G e
2l(l+ N —2) ,
o (1-e?

31(1+ N —2)

B (M

2a“i{*{;)yx as)+-agé[)yl(a-a€)+-a3ym(a-a5)>
C (?)Z(H_Hil(a — ae) + Mi;(a — ag)

(1—¢)3 (1-¢)?
a a*(N —

+D<3l(l+N_2)kl( )4‘7@(1 )kl( ag)

(1—¢)3 (1—¢)?
a a’
21({1—’__]::[))]{:1( ) + Lk ( ag) + askaﬂ(a — CLE—:))
=0.

2(N -1
jita=a2)+ 0 a0) + aifa - ae))

a(l—-N) ,

yl(a - 618) + (1 )2 yl( 5)

2( —ag) +

1—¢

This is a system of four equations in four unknowns, A, B, C, D € R, which
has solution if and only if the determinant of the associated matrix is zero.
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For a fixed | € Ny, let B;(\,¢) be the matrix associated with the lin-
ear system. The eigenvalues are implicitly characterized by the equation
detB;(A,e) = 0. In principle, the equation can be handled in the same
way as for the second order case, by using a suitable Taylor’s expansion of
detB;(\,€) in e = 0 and then simplifying by using suitable recurrence for-
mulas for cross products of Bessel functions and their derivatives. Actually,
the computations become very long and involved, and it seems quite diffi-
cult to obtain a simple closed formulas for the limiting eigenvalues and their
derivatives. We have used the software Mathematica to perform symbolic
computations in the case N = 2. The software was not able to handle the
case N > 3, which has a larger number of terms and an additional symbolic
quantity N.

6.2.4 Symbolic computations for the eigenvalues of the bi-
harmonic operator on the annulus of R?

We have used the software Mathematica for symbolic computations in order
to expand and simplify the expression detB;(\,€) of Subsection .

As in the case of the Laplace operator, we have expanded in Taylor
series the function detB;(A,e) up to the third order around ¢ = 0. We
considered only the case NV = 2. After a long computation time we obtained
the following expression

% (=8 (A+2(A = PP +41* = 20%) &2 + 8 (A +2(1 + N)I* — 41* + 21%) £%)
+0(h =0.

Using the same arguments as in the case of the eigenvalues of the Laplace op-
erator on the annulus, we find that near € = 0 the behavior of the eigenvalue
A(e) s 2(72 2 2(72 2
N(E) = 21 1(l 21) 41(1 21)
+ 2] 1421

as € — 0, for all [ € Ny. See Figure [6.3

This shows that also in the case of the biharmonic operator and N = 2
there is no monotonicity of all the eigenvalues under inclusion of domains.

e+ 0(e%),
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T
500

400 -

300
200

100 -

L L L L
-1.0 -0.5 0.0 0.5 1.0

Figure 6.3: Solution branches of equation detB(\,e) with NV = 2 and (e, \) €
] — 1,1[x]0,500[. The colors refers to the choice of [ in the equation. In
particular, [ = 0 (blue), [ = 1 (red), | = 2 (purple), | = 3 (green), | = 4
212(12—1)2 | 412(1?—1)?
11202 14212

(orange). We also plotted the line e with [ = 2 (purple),

[ =3 (green) and | = 4 (orange).
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