On the fundamental tones of free vibrating plates

Luigi Provenzano joint work with Davide Buoso IMSE 2014 Karlsrhue, July 21, 2014

Università degli Studi di Padova

Let Ω be a bounded domain in \mathbb{R}^N , $\tau > 0$ a fixed constant.

$$\begin{cases} \Delta^2 u - \tau \Delta u = 0, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial \nu^2} = 0, & \text{on } \partial \Omega, \\ \tau \frac{\partial u}{\partial \nu} - \operatorname{div}_{\partial \Omega} \left(D^2 u . \nu \right) - \frac{\partial \Delta u}{\partial \nu} = \lambda u, & \text{on } \partial \Omega, \end{cases}$$

$$\int_{\Omega} D^2 u : D^2 \phi + \tau \nabla u \cdot \nabla \phi dx = \lambda \int_{\partial \Omega} u \phi d\sigma, \quad \forall \phi \in H^2(\Omega),$$

where
$$D^2 u : D^2 \phi = \sum_{i,j=1}^{N} \frac{\partial^2 u}{\partial x_i \partial x_j} \frac{\partial^2 \phi}{\partial x_i \partial x_j}$$

$$\int_{\Omega} D^2 u : D^2 \phi + \tau \nabla u \cdot \nabla \phi dx = \lambda \int_{\partial \Omega} u \phi d\sigma, \quad \forall \phi \in H^2(\Omega),$$

where
$$D^2 u : D^2 \phi = \sum_{i,j=1}^{N} \frac{\partial^2 u}{\partial x_i \partial x_j} \frac{\partial^2 \phi}{\partial x_i \partial x_j}$$

$$0 = \lambda_1[\Omega] < \lambda_2[\Omega] \leq \cdots \leq \lambda_j[\Omega] \leq \cdots$$

The Biharmonic Steklov problem

$\Omega \mapsto \lambda_j[\Omega] \,, \quad \Omega \mapsto \lambda_2[\Omega]$

$\Omega \mapsto \lambda_j[\Omega], \quad \Omega \mapsto \lambda_2[\Omega]$

$\max_{\Omega} \lambda_j[\Omega]$? $\min_{\Omega} \lambda_j[\Omega]$? Critical points?

among sets Ω with a fixed volume $|\Omega|$

Let Ω be a bounded domain of class C^1 in \mathbb{R}^N

Let Ω be a bounded domain of class C^1 in \mathbb{R}^N

$$\begin{aligned} \Delta^2 u &= 0, & \text{in } \Omega, \\ u &= 0, & \text{on } \partial\Omega, \\ \Delta u &= \lambda \frac{\partial u}{\partial y}, & \text{on } \partial\Omega, \end{aligned}$$

Bucur, Ferrero, Gazzola, "On the first eigenvalue of a fourth order Steklov problem", Calc. Var. Partial Differential Equations, 35.

Steklov problem for the Laplacian

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ \frac{\partial u}{\partial v} = \lambda u, & \text{on } \partial \Omega, \end{cases}$$

Steklov problem for the Laplacian

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ \frac{\partial u}{\partial v} = \lambda u, & \text{on } \partial \Omega, \end{cases}$$

$$\mathbf{0} = \lambda_1[\Omega] < \lambda_2[\Omega] \leq \cdots \leq \lambda_j[\Omega] \leq \cdots$$

Steklov problem for the Laplacian

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ \frac{\partial u}{\partial y} = \lambda u, & \text{on } \partial \Omega, \end{cases}$$

$$\mathbf{0} = \lambda_1[\Omega] < \lambda_2[\Omega] \leq \cdots \leq \lambda_j[\Omega] \leq \cdots$$

The ball is a maximizer for $\lambda_2[\Omega]$ among Ω with a fixed volume (Weinstock, Brock).

$$\begin{cases} -\Delta u = \lambda(\varepsilon)\rho_{\varepsilon}u, & \text{in }\Omega, \\ \frac{\partial u}{\partial v} = 0, & \text{on }\partial\Omega, \end{cases}$$

$$\begin{cases} -\Delta u = \lambda(\varepsilon)\rho_{\varepsilon}u, & \text{ in }\Omega, \\ \frac{\partial u}{\partial \nu} = 0, & \text{ on }\partial\Omega, \end{cases}$$

where

$$\rho_{\varepsilon=} \left\{ \begin{array}{ll} \varepsilon, & \text{ in } \Omega \setminus \bar{\Omega}_{\varepsilon} \,, \\ C_{\varepsilon}, & \text{ in } \Omega_{\varepsilon} \,, \end{array} \right.$$

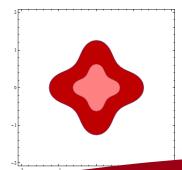
 $\Omega_{\varepsilon} = \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \varepsilon\} \text{ and } \int_{\Omega} \rho_{\varepsilon} = M \text{ for all } \varepsilon \in]0, \varepsilon_0[.$

$$\begin{cases} -\Delta u = \lambda(\varepsilon)\rho_{\varepsilon}u, & \text{in }\Omega, \\ \frac{\partial u}{\partial v} = 0, & \text{on }\partial\Omega, \end{cases}$$

where

$$\rho_{\varepsilon=} \begin{cases} \varepsilon, & \text{in } \Omega \setminus \bar{\Omega}_{\varepsilon}, \\ C_{\varepsilon}, & \text{in } \Omega_{\varepsilon}, \end{cases}$$

 $\Omega_{\varepsilon} = \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \varepsilon\} \text{ and } \int_{\Omega} \rho_{\varepsilon} = M \text{ for all } \varepsilon \in]0, \varepsilon_0[.$



For all $j \in \mathbb{N}$, $\lambda_j(\varepsilon) \to \lambda_j$ as $\varepsilon \to 0$

For all $j \in \mathbb{N}$, $\lambda_j(\varepsilon) \to \lambda_j$ as $\varepsilon \to 0$

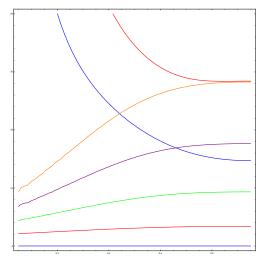


Figure: N=2, M= π

The Biharmonic Steklov problem

Strategy:

Biharmonic Neumann problem with mass density ρ_{ε}

$$\begin{cases} \Delta^2 u - \tau \Delta u = \lambda(\varepsilon) \rho_{\varepsilon} u, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial \nu^2} = 0, & \text{on } \partial \Omega, \\ \tau \frac{\partial u}{\partial \nu} - \operatorname{div}_{\partial \Omega} \left(D^2 u . \nu \right) - \frac{\partial \Delta u}{\partial \nu} = 0, & \text{on } \partial \Omega, \end{cases}$$

Strategy:

Biharmonic Neumann problem with mass density ρ_{ε}

$$\begin{cases} \Delta^2 u - \tau \Delta u = \lambda(\varepsilon) \rho_{\varepsilon} u, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial v^2} = 0, & \text{on } \partial \Omega, \\ \tau \frac{\partial u}{\partial v} - \operatorname{div}_{\partial \Omega} \left(D^2 u . v \right) - \frac{\partial \Delta u}{\partial v} = 0, & \text{on } \partial \Omega, \end{cases}$$

The ball is a maximizer for $\lambda_2[\Omega]$ among Ω with a fixed volume, when $\rho_{\varepsilon} \equiv \text{const}$ (Chasman 2011).

Strategy:

Biharmonic Neumann problem with mass density ρ_{ε}

$$\begin{cases} \Delta^2 u - \tau \Delta u = \lambda(\varepsilon) \rho_{\varepsilon} u, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial v^2} = 0, & \text{on } \partial \Omega, \\ \tau \frac{\partial u}{\partial v} - \operatorname{div}_{\partial \Omega} \left(D^2 u . v \right) - \frac{\partial \Delta u}{\partial v} = 0, & \text{on } \partial \Omega, \end{cases}$$

The ball is a maximizer for $\lambda_2[\Omega]$ among Ω with a fixed volume, when $\rho_{\varepsilon} \equiv \text{const}$ (Chasman 2011).

■ Write the Hamiltonian *H* of a plate with its mass concentrated at the boundary and recover equations of motion

Strategy:

Biharmonic Neumann problem with mass density ρ_{ε}

$$\begin{cases} \Delta^2 u - \tau \Delta u = \lambda(\varepsilon) \rho_{\varepsilon} u, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial v^2} = 0, & \text{on } \partial \Omega, \\ \tau \frac{\partial u}{\partial v} - \operatorname{div}_{\partial \Omega} \left(D^2 u . v \right) - \frac{\partial \Delta u}{\partial v} = 0, & \text{on } \partial \Omega, \end{cases}$$

The ball is a maximizer for $\lambda_2[\Omega]$ among Ω with a fixed volume, when $\rho_{\varepsilon} \equiv \text{const}$ (Chasman 2011).

■ Write the Hamiltonian *H* of a plate with its mass concentrated at the boundary and recover equations of motion

1

$$\begin{cases} \Delta^2 u - \tau \Delta u = 0, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial \nu^2} = 0, & \text{on } \partial \Omega, \\ \tau \frac{\partial u}{\partial \nu} - \operatorname{div}_{\partial \Omega} \left(D^2 u . \nu \right) - \frac{\partial \Delta u}{\partial \nu} = \lambda u, & \text{on } \partial \Omega, \end{cases}$$

Symmetric functions of the eigenvalues

Let Ω a bounded domain in \mathbb{R}^N . Set

$$\Phi(\Omega) = \left\{ \phi \in \left(C^2(\Omega) \right)^N, \text{ injective } : \inf_{\Omega} |\det D\phi| > 0 \right\}$$

Symmetric functions of the eigenvalues

Let Ω a bounded domain in \mathbb{R}^N . Set

$$\Phi(\Omega) = \left\{ \phi \in \left(C^2(\Omega) \right)^N, \text{ injective } : \inf_{\Omega} |\det D\phi| > 0 \right\}$$

Theorem (Buoso-P. 2014)

Let Ω be a bounded domain of \mathbb{R}^N of class C^1 . Let F be a finite non-empty subset of $\mathbb{N} \setminus \{0\}$. Let

$$\mathcal{A}_{\Omega}[F] = \left\{ \phi \in \Phi(\Omega) \ : \ \lambda_{I}[\phi] \notin \left\{ \lambda_{j}[\phi] : j \in F \right\} \ \forall I \in \mathbb{N} \setminus (F \cup \{0\}) \right\}$$

Then the set \mathcal{A}_{Ω} is open in $\Phi(\Omega)$ and the map $\Lambda_{F,s}$ from \mathcal{A}_{Ω} to \mathbb{R} defined by

$$\Lambda_{F,s}[\phi] = \sum_{j_1 < \cdots < j_s \in F} \lambda_{j_1}[\phi] \cdots \lambda_{j_s}[\phi]$$

for $s \in \{1, ..., |F|\}$ is real analytic.

Theorem (Buoso-P. 2014)

Let Ω be a bounded domain in \mathbb{R}^N . Let F a finite non-empty subset of $\mathbb{N} \setminus \{0\}$. Let $\tilde{\phi} \in \mathcal{A}_{\Omega}[F]$ be such that all the eigenvalues with indexes in F have a commond value λ_F and moreover that $\partial \tilde{\phi}(\Omega) \in C^4$. Let $v_1, ..., v_{|F|}$ be a hortonormal basis of the eigenspace associated with the eigenvalue $\lambda_F[\tilde{\phi}]$. Then

$$d|_{\phi=\tilde{\phi}}(\Lambda_{F,s})[\psi] = -\lambda_{F}^{s}[\tilde{\phi}] \binom{|F|-1}{s-1} \sum_{l=1}^{|F|} \int_{\partial \tilde{\phi}(\Omega)} \left(\lambda_{F} K v_{l}^{2} + \lambda_{F} \frac{\partial(v_{l}^{2})}{\partial v} - \tau |\nabla v_{l}|^{2} - |D^{2} v_{l}|^{2}\right) \mu \cdot v d\sigma, \quad (1.3)$$

for all $\psi \in (C^2(\Omega))^N$, where $\mu = \psi \circ \phi^{(-1)}$, and K denotes the mean curvature on $\partial \tilde{\phi}(\Omega)$.

Isovolumetric perturbations

$$\mathcal{V}(\phi) = \int_{\phi(\Omega)} dy = \int_{\Omega} |\det \mathbf{D}\phi| dx$$

 $\mathsf{Fix}\; \mathcal{V}_0 \in]0, +\infty[$

$$V(\mathcal{V}_0) = \{\phi \in \Phi[\Omega] : \mathcal{V}(\phi) = \mathcal{V}_0\}$$

Isovolumetric perturbations

$$\mathcal{V}(\phi) = \int_{\phi(\Omega)} dy = \int_{\Omega} |\mathrm{det} \mathrm{D}\phi| dx$$

Fix $\mathcal{V}_0 \in]0, +\infty[$

$$V(\mathcal{V}_0) = \{\phi \in \Phi[\Omega] : \mathcal{V}(\phi) = \mathcal{V}_0\}$$

The function $\tilde{\phi}$ is a critical point for $\Lambda_{F,s}$ if and only if

$$\sum_{l=1}^{|F|} \left(\lambda_F[\tilde{\phi}] \left(K v_l^2 + \frac{\partial v_l^2}{\partial v} \right) - \tau |\nabla v_l|^2 - |D^2 v_l|^2 \right) = c, \text{ a.e. on } \partial \tilde{\phi}(\Omega).$$

$$\mathcal{V}(\phi) = \int_{\phi(\Omega)} dy = \int_{\Omega} |\mathrm{det} \mathrm{D}\phi| dx$$

Fix $\mathcal{V}_0 \in]0, +\infty[$

$$V(\mathcal{V}_0) = \{\phi \in \Phi[\Omega] : \mathcal{V}(\phi) = \mathcal{V}_0\}$$

The function $\tilde{\phi}$ is a critical point for $\Lambda_{F,s}$ if and only if

$$\sum_{l=1}^{|F|} \left(\lambda_F[\tilde{\phi}] \left(K v_l^2 + \frac{\partial v_l^2}{\partial v} \right) - \tau |\nabla v_l|^2 - |D^2 v_l|^2 \right) = c, \text{ a.e. on } \partial \tilde{\phi}(\Omega).$$

Theorem (Buoso-P. 2014)

Let Ω be a domain of \mathbb{R}^N . Let $\tilde{\phi} \in \Phi(\Omega)$ be such that $\tilde{\phi}(\Omega)$ is a ball. Let $\tilde{\lambda}$ be an eigenvalue of the problem in $\tilde{\phi}(\Omega)$, and let F be the set of $j \in \mathbb{N} \setminus \{0\}$ such that $\lambda_j[\tilde{\phi}] = \tilde{\lambda}$. Then $\Lambda_{F,s}$ has a critical point at $\tilde{\phi}$ on $V(\mathcal{V}(\tilde{\phi}))$, for all s = 1, ..., |F|.

Balls are critical for the symmetric functions of the eigenvalues under isovolumetric perturbations

Balls are critical for the symmetric functions of the eigenvalues under isovolumetric perturbations

Could we say more on the fundamental tone λ_2 ?

Balls are critical for the symmetric functions of the eigenvalues under isovolumetric perturbations

Could we say more on the fundamental tone λ_2 ?

Theorem (Buoso-P. 2014)

Among all bounded domains of class C^1 with fixed volume, the ball maximizes the first non-negative eigenvalue, that is $\lambda_2[\Omega] \le \lambda_2[\Omega^*]$, where Ω^* is the ball with the same volume as Ω .

The fundamental tone

Consider $B = B(0, 1) \subset \mathbb{R}^N$.

Consider $B = B(0, 1) \subset \mathbb{R}^N$. All the eigenfunctions of the Steklov problem are of the form

$$u(r,\theta_1,...,\theta_{N-1}) = \mathbf{R}_l(r)\mathbf{Y}_l(\theta_1,...,\theta_{N-1})$$

where

$$R_l(r) = \alpha_l r^l + \beta_l i_l(\sqrt{\tau}r).$$

Consider $B = B(0, 1) \subset \mathbb{R}^N$. All the eigenfunctions of the Steklov problem are of the form

$$u(r,\theta_1,...,\theta_{N-1}) = \mathbf{R}_l(r)\mathbf{Y}_l(\theta_1,...,\theta_{N-1})$$

where

$$R_l(r) = \alpha_l r^l + \beta_l i_l(\sqrt{\tau}r).$$

The corresponding eigenvalues are given by an explicit formula (rather long)

 $\lambda = g(l, N, \tau),$

for $l \in \mathbb{N}$.

Consider $B = B(0, 1) \subset \mathbb{R}^N$. All the eigenfunctions of the Steklov problem are of the form

$$u(r,\theta_1,...,\theta_{N-1}) = \mathbf{R}_I(r)\mathbf{Y}_I(\theta_1,...,\theta_{N-1})$$

where

$$R_l(r) = \alpha_l r^l + \beta_l i_l(\sqrt{\tau}r).$$

The corresponding eigenvalues are given by an explicit formula (rather long)

 $\lambda = g(I, N, \tau),$

for $l \in \mathbb{N}$.

Example: $g(0, N, \tau) = 0$, $g(1, N, \tau) = \tau$. Which $l \in \mathbb{N}$ gives the fundamental tone?

$$\lambda_{\mathbf{2}}[\mathbf{B}] = g(1, \mathbf{N}, \tau) = \tau$$

$$\lambda_{\mathbf{2}}[\mathbf{B}] = g(1, \mathbf{N}, \tau) = \tau$$

$\lambda_2[B]$ has multiplicity N and the eigenfunctions are $\{x_1, ..., x_N\}$

$$\lambda_{\mathbf{2}}[\mathbf{B}] = g(1, N, \tau) = \tau$$

$\lambda_2[B]$ has multiplicity N and the eigenfunctions are $\{x_1, ..., x_N\}$

Strategy: use the eigenfunctions of the unit ball as test functions in a variational characterization of $\lambda_2[\Omega]$

Lemma (Hile-Xu 1993)

Let Ω be a bounded domain of class C^1 in \mathbb{R}^N . Then

$$\sum_{l=2}^{N+1} \frac{1}{\lambda_l(\Omega)} = \max\bigg\{\sum_{l=2}^{N+1} \int_{\partial\Omega} v_l^2 d\sigma\bigg\},\,$$

where $\{v_l\}_{l=2}^{N+1}$ is a family in $H^2(\Omega)$ satisfying $\int_{\Omega} D^2 v_i : D^2 v_j + \tau \nabla v_i \cdot \nabla v_j dx = \delta_{ij}$ and $\int_{\partial \Omega} v_l d\sigma = 0$ for all l = 2, ..., N + 1.

Lemma (Betta-Brock-Mercaldo-Posteraro 1999)

Let Ω be an open set in \mathbb{R}^N and f be a continuous, non-negative, non-decreasing function defined on $[0, +\infty)$. Let us assume that the function

$$t\mapsto \left(f(t^{1/N})-f(0)\right)t^{1-(1/N)}$$

is convex. Then

$$\int_{\partial\Omega} f(|x|) d\sigma \geq \int_{\partial\Omega^*} f(|x|) d\sigma,$$

where Ω^* is the ball centered at zero with the same volume as Ω .

The fundamental tone

Take Ω of class C^1 with $|\Omega| = |B|$.

The fundamental tone

Take Ω of class C^1 with $|\Omega| = |B|$. Perform the translation $x_i = y_i - t_i$ $t_i = \frac{1}{|\partial \Omega|} \int_{\partial \Omega} y_i d\sigma$

The fundamental tone

Take Ω of class C^1 with $|\Omega| = |B|$. Perform the translation $x_i = y_i - t_i$ $t_i = \frac{1}{|\partial \Omega|} \int_{\partial \Omega} y_i d\sigma$

Use test functions $v_l = (\tau |\Omega|)^{-\frac{1}{2}} x_l$ in the variational formula and use the isoperimetric inequality

Take Ω of class C^1 with $|\Omega| = |B|$. Perform the translation $x_i = y_i - t_i$ $t_i = \frac{1}{|\partial \Omega|} \int_{\partial \Omega} y_i d\sigma$

Use test functions $v_l = (\tau |\Omega|)^{-\frac{1}{2}} x_l$ in the variational formula and use the isoperimetric inequality

$$\sum_{l=2}^{N+1} \frac{1}{\lambda_l[\Omega]} \geq \frac{1}{\tau |\Omega|} \int_{\partial \Omega} |x|^2 d\sigma \geq \frac{1}{\tau |\Omega|} \int_{\partial B} |x|^2 d\sigma = \frac{N}{\tau} = \sum_{l=2}^{N+1} \frac{1}{\lambda_l[B]}.$$

Take Ω of class C^1 with $|\Omega| = |B|$. Perform the translation $x_i = y_i - t_i$ $t_i = \frac{1}{|\partial \Omega|} \int_{\partial \Omega} y_i d\sigma$

Use test functions $v_l = (\tau |\Omega|)^{-\frac{1}{2}} x_l$ in the variational formula and use the isoperimetric inequality

$$\sum_{l=2}^{N+1} \frac{1}{\lambda_l[\Omega]} \geq \frac{1}{\tau |\Omega|} \int_{\partial \Omega} |x|^2 d\sigma \geq \frac{1}{\tau |\Omega|} \int_{\partial B} |x|^2 d\sigma = \frac{N}{\tau} = \sum_{l=2}^{N+1} \frac{1}{\lambda_l[B]}.$$

Remark: for general values of $|\Omega|$ just observe

$$\lambda[\tau,\Omega] = s^4 \lambda[s^{-2}\tau,s\Omega]$$

Let $\tau = 0$ and Ω be a bounded domain of class C^1

$$\begin{cases} \Delta^2 u = 0, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial v^2} = 0, & \text{on } \partial\Omega, \\ -\text{div}_{\partial\Omega} (D^2 u.v) - \frac{\partial \Delta u}{\partial v} = \lambda u, & \text{on } \partial\Omega, \end{cases}$$

Let $\tau = 0$ and Ω be a bounded domain of class C^1

$$\begin{cases} \Delta^2 u = 0, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial \nu^2} = 0, & \text{on } \partial\Omega, \\ -\text{div}_{\partial\Omega} (D^2 u. \nu) - \frac{\partial \Delta u}{\partial \nu} = \lambda u, & \text{on } \partial\Omega, \end{cases}$$

 $0 = \lambda_1[\Omega] = \lambda_2[\Omega] = \cdots = \lambda_{N+1}[\Omega] < \lambda_{N+2}[\Omega] \le \cdots \le \lambda_j[\Omega] \le \cdots$

Let $\tau = 0$ and Ω be a bounded domain of class C^1

$$\begin{cases} \Delta^2 u = 0, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial v^2} = 0, & \text{on } \partial\Omega, \\ -\text{div}_{\partial\Omega} \left(D^2 u. v \right) - \frac{\partial \Delta u}{\partial v} = \lambda u, & \text{on } \partial\Omega, \end{cases}$$

$$0 = \lambda_1[\Omega] = \lambda_2[\Omega] = \cdots = \lambda_{N+1}[\Omega] < \lambda_{N+2}[\Omega] \le \cdots \le \lambda_j[\Omega] \le \cdots$$

The kernel of the problem is $\{1, x_1, ..., x_N\}$

What we can do:

What we can do:

■ identify the fundamental tone of the unit ball

$$\lambda_{N+2}[B] = 2\left(N + \frac{8}{5}\right)$$

Università decli Studi di Padova

What we can do:

■ identify the fundamental tone of the unit ball

$$\lambda_{N+2}[B] = 2\left(N + \frac{8}{5}\right)$$

■ identify the corresponding eigenfunctions

$$u(r, \theta_1, ..., \theta_{N-1}) = (6r^2 - r^4)Y_2(\theta_1, ..., \theta_{N-1})$$

Università decli Studi di Padova

What we can do:

■ identify the fundamental tone of the unit ball

$$\lambda_{N+2}[B] = 2\left(N + \frac{8}{5}\right)$$

identify the corresponding eigenfunctions

$$u(r, \theta_1, ..., \theta_{N-1}) = (6r^2 - r^4)Y_2(\theta_1, ..., \theta_{N-1})$$

• construct trial functions of the form $R(r)Y_2(\theta_1,...\theta_{N+1})$

test these trial functions on any Ω of class C¹

- test these trial functions on any Ω of class C¹
- find good estimates for the sum of the reciprocals in the case the test is possible

- test these trial functions on any Ω of class C¹
- find good estimates for the sum of the reciprocals in the case the test is possible

Trial functions work with radial domains. For small dimensions we have isoperimetric inequality

- test these trial functions on any Ω of class C¹
- find good estimates for the sum of the reciprocals in the case the test is possible

Trial functions work with radial domains. For small dimensions we have isoperimetric inequality

Theorem (Buoso-P. 2014)

Among all bounded radial domains Ω with a fixed volume in \mathbb{R}^N , $N \leq 4$, the ball maximizes the first non-zero eigenvalue, that is

 $\lambda_{N+2}[\Omega] \leq \lambda_{N+2}[\Omega^*],$

where Ω^* is the ball with the same volume of Ω .

Further directions: the case $\tau = 0$

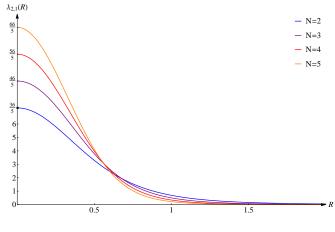


Figure: N=2,3,4,5

Further directions: Neumann problem, Poly-harmonic operators,...

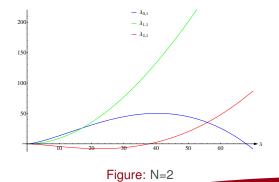
Università degli Studi di Padova

Neumann problem for the Biharmonic operator

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial v^2} = 0, & \text{on } \partial\Omega, \\ -\text{div}_{\partial\Omega} \left(D^2 u. v \right) - \frac{\partial (\Delta u)}{\partial v} = 0, & \text{on } \partial\Omega. \end{cases}$$

Further directions: Neumann problem, Poly-harmonic operators,...

$$\begin{cases} \Delta^2 u = \lambda u, & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial v^2} = 0, & \text{on } \partial \Omega, \\ -\text{div}_{\partial \Omega} \left(D^2 u. v \right) - \frac{\partial (\Delta u)}{\partial v} = 0, & \text{on } \partial \Omega. \end{cases}$$



Further directions: Neumann problem, Poly-harmonic operators,...

Università degli Studi di Padova

• Neumann problem for $(-\Delta)^m$

$$\begin{cases} (-\Delta)^m u = \lambda u, & \text{in } \Omega, \\ N_1 u = N_2 u = \dots = N_m u = 0, & \text{on } \partial \Omega, \end{cases}$$

 $N_i u$ are the *m* natural boundary conditions, ordered according their order: N_1 is an operator of order *m*, N_2 is of order $m + 1, ..., N_m$ is of order 2m - 1.

Further directions: Neumann problem, Poly-harmonic operators,...

Università degli Studi di Padova

• Neumann problem for $(-\Delta)^m$

$$\begin{cases} (-\Delta)^m u = \lambda u, & \text{in } \Omega, \\ N_1 u = N_2 u = \dots = N_m u = 0, & \text{on } \partial \Omega, \end{cases}$$

 $N_i u$ are the *m* natural boundary conditions, ordered according their order: N_1 is an operator of order *m*, N_2 is of order $m + 1, ..., N_m$ is of order 2m - 1.

Steklov problem for $(-\Delta)^m$

$$\begin{cases} \Delta^m u = 0, & \text{in } \Omega, \\ N_1 u = N_2 u = \dots = N_{m-1} u = 0, & \text{on } \partial \Omega, \\ N_m u = \lambda u, & \text{on } \partial \Omega, \end{cases}$$

with the same N_i

Further directions: mass concentration

Behavior of $\lambda_j(\varepsilon)$ for mass concentration problem for the Biharmonic operator

Behavior of λ_j(ε) for mass concentration problem for the Biharmonic operator

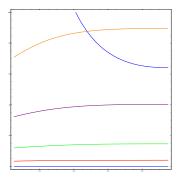


Figure: N=2, M= π , τ = 5

 Behavior of λ_j(ε) for mass concentration problem for the Biharmonic operator

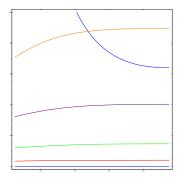


Figure: N=2, M= π , τ = 5

• On the ball? On arbitrary Ω (also in the second order case)?

References

C. BANDLE,

Isoperimetric inequalities and applications, Pitman advanced publishing program, monographs and studies in mathematics, vol. 7, 1980.

D. BUCUR, A. FERRERO, F. GAZZOLA,

On the first eigenvalue of a fourth order Steklov problem, Calculus of Variations and Partial Differential Equations, 35, 103-131, 2009.

D. BUOSO, L. PROVENZANO,

An isoperimetric inequality for the first non-zero eigenvalue of a Biharmonic Steklov problem. preprint, 2014.

D. Gomez, M. Lobo, E. Perez,

On the vibrations of a plate with a concentrated mass and very small thickness, *Math. Method. Appl. Sci. 26, no.2, 27-65, 2003.*

D. Gomez, M. Lobo, S.A. Nazarov, E. Perez,

Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues, J. Math. Pures Appl. 85, no.4, 598-632, 2006.

L.M. CHASMAN,

An isoperimetric inequality for fundamental tones of free plates, *Comm. Math. Phys. 303, no. 2, 421-449, 2011.*

P.D. LAMBERTI, L. PROVENZANO,

Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues, to appear on the 9th Isaac Congress proceedings.

THANK YOU

