Neumann vs Steklov: an asymptotic analysis for the eigenvalues

Luigi Provenzano joint work with Matteo Dalla Riva July 03, 2015

Università degli Studi di Padova

Let Ω be a bounded domain in \mathbb{R}^2 of class C^2 and $\mathit{M}>0$ be a fixed constant

$$\begin{cases} -\Delta u_{\varepsilon} = \lambda(\varepsilon)\rho_{\varepsilon}u_{\varepsilon} & \text{in }\Omega, \\ \frac{\partial u_{\varepsilon}}{\partial v} = 0 & \text{on }\partial\Omega, \end{cases}$$

Let Ω be a bounded domain in \mathbb{R}^2 of class C^2 and $\mathit{M}>0$ be a fixed constant

$$\begin{cases} -\Delta u_{\varepsilon} = \lambda(\varepsilon)\rho_{\varepsilon}u_{\varepsilon} & \text{in }\Omega, \\ \frac{\partial u_{\varepsilon}}{\partial v} = 0 & \text{on }\partial\Omega, \end{cases}$$

where

$$\rho_{\varepsilon} = \begin{cases} \varepsilon & \text{in } \Omega \setminus \overline{\omega}_{\varepsilon}, \\ \frac{M - \varepsilon |\Omega \setminus \overline{\omega}_{\varepsilon}|}{|\omega_{\varepsilon}|} & \text{in } \omega_{\varepsilon} \end{cases} \text{ and } \omega_{\varepsilon} = \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \varepsilon \}.$$

Let Ω be a bounded domain in \mathbb{R}^2 of class \textit{C}^2 and M > 0 be a fixed constant

$$\begin{cases} -\Delta u_{\varepsilon} = \lambda(\varepsilon)\rho_{\varepsilon}u_{\varepsilon} & \text{in }\Omega, \\ \frac{\partial u_{\varepsilon}}{\partial v} = 0 & \text{on }\partial\Omega, \end{cases}$$

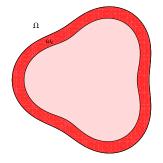
where

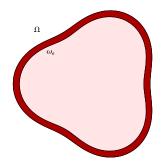
 $\rho_{\varepsilon} = \begin{cases} \varepsilon & \text{in } \Omega \setminus \overline{\omega}_{\varepsilon}, \\ \frac{M - \varepsilon |\Omega \setminus \overline{\omega}_{\varepsilon}|}{|\omega_{\varepsilon}|} & \text{in } \omega_{\varepsilon} \end{cases} \text{ and } \omega_{\varepsilon} = \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) < \varepsilon \}.$

For all $\varepsilon > 0$

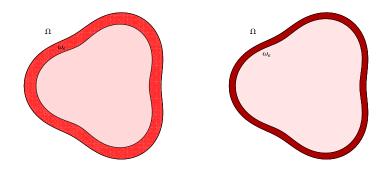
 $0 = \lambda_0(\varepsilon) < \lambda_1(\varepsilon) \le \lambda_2(\varepsilon) \le \cdots \le \lambda_j(\varepsilon) \le \cdots.$

The Neumann problem





The Neumann problem



$$\int_{\Omega} \rho_{\varepsilon} = \mathbf{M} \ \forall \varepsilon > \mathbf{0}.$$

Consider the Steklov eigenvalue problem on Ω

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \frac{M}{|\partial \Omega|} \mu u & \text{on } \partial \Omega. \end{cases}$$

Consider the Steklov eigenvalue problem on $\boldsymbol{\Omega}$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = \frac{M}{|\partial \Omega|} \mu u & \text{on } \partial \Omega. \end{cases}$$

Spectrum

$$0=\mu_0<\mu_1\le\mu_2\le\cdots\le\mu_j\le\cdots.$$

Consider the Steklov eigenvalue problem on $\boldsymbol{\Omega}$

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial v} = \frac{M}{|\partial \Omega|} \mu u & \text{on } \partial \Omega. \end{cases}$$

Spectrum

$$0=\mu_0<\mu_1\le\mu_2\le\cdots\le\mu_j\le\cdots.$$

Theorem

For all $j \in \mathbb{N}$,

$$\lim_{\varepsilon\to 0} \lambda_j(\varepsilon) = \mu_j.$$

a rate of convergence of $\lambda_i(\varepsilon)$ near $\varepsilon = 0$

- **•** rate of convergence of $\lambda_i(\varepsilon)$ near $\varepsilon = 0$
- derivative (in some sense) of $\lambda_j(\varepsilon)$ at $\varepsilon = 0$

- **•** rate of convergence of $\lambda_i(\varepsilon)$ near $\varepsilon = 0$
- derivative (in some sense) of $\lambda_j(\varepsilon)$ at $\varepsilon = 0$
- monotonicity of $\lambda_j(\varepsilon)$ near $\varepsilon = 0$

- rate of convergence of $\lambda_j(\varepsilon)$ near $\varepsilon = 0$
- derivative (in some sense) of $\lambda_j(\varepsilon)$ at $\varepsilon = 0$
- monotonicity of $\lambda_j(\varepsilon)$ near $\varepsilon = 0$

Answers via asymptotic analysis

- rate of convergence of $\lambda_j(\varepsilon)$ near $\varepsilon = 0$
- derivative (in some sense) of $\lambda_j(\varepsilon)$ at $\varepsilon = 0$
- monotonicity of $\lambda_j(\varepsilon)$ near $\varepsilon = 0$

Answers via asymptotic analysis for simple eigenvalues

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

We want to prove the following expansions

$$\lambda(\varepsilon) = \mu + \varepsilon \mu^{1} + O(\varepsilon^{2})$$

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

We want to prove the following expansions

$$\lambda(\varepsilon) = \mu + \varepsilon \mu^{1} + O(\varepsilon^{2})$$

and

$$u_{\varepsilon} = u + \varepsilon u^{1}$$

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

We want to prove the following expansions

$$\lambda(\varepsilon) = \mu + \varepsilon \mu^1 + O(\varepsilon^2)$$

and

$$\boldsymbol{u}_{\varepsilon} = \boldsymbol{u} + \varepsilon \boldsymbol{u}^{1} + \varepsilon \boldsymbol{v}_{\varepsilon} + \varepsilon^{2} \boldsymbol{v}_{\varepsilon}^{1} + O(\varepsilon^{2}),$$

as $\varepsilon \to 0$.

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

We want to prove the following expansions

$$\lambda(\varepsilon) = \mu + \varepsilon \mu^1 + O(\varepsilon^2)$$

and

$$\mathbf{u}_{\varepsilon} = \mathbf{u} + \varepsilon \mathbf{u}^{1} + \varepsilon \mathbf{v}_{\varepsilon} + \varepsilon^{2} \mathbf{v}_{\varepsilon}^{1} + O(\varepsilon^{2}),$$

as $\varepsilon \to 0$.

The second equality is in the sense of $L^2(\Omega)$ norm.

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

We want to prove the following expansions

$$\lambda(\varepsilon) = \mu + \varepsilon \mu^1 + O(\varepsilon^2)$$

and

$$\mathbf{u}_{\varepsilon} = \mathbf{u} + \varepsilon \mathbf{u}^{1} + \varepsilon \mathbf{v}_{\varepsilon} + \varepsilon^{2} \mathbf{v}_{\varepsilon}^{1} + O(\varepsilon^{2}),$$

as $\varepsilon \to 0$.

- The second equality is in the sense of $L^2(\Omega)$ norm.
- $v_{\varepsilon}, v_{\varepsilon}^{1}$ depend on ε explicitly and are supported on ω_{ε} .

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

We want to prove the following expansions

$$\lambda(\varepsilon) = \mu + \varepsilon \mu^1 + O(\varepsilon^2)$$

and

$$\mathbf{u}_{\varepsilon} = \mathbf{u} + \varepsilon \mathbf{u}^{1} + \varepsilon \mathbf{v}_{\varepsilon} + \varepsilon^{2} \mathbf{v}_{\varepsilon}^{1} + O(\varepsilon^{2}),$$

as $\varepsilon \to 0$.

- The second equality is in the sense of $L^2(\Omega)$ norm.
- **v**_{ε}, **v**¹_{ε} depend on ε explicitly and are supported on ω_{ε} .
- u^1, μ^1 solve an auxiliary boundary value problem which does not depend on ε .

Let μ be a simple Steklov eigenvalue, $\lambda(\varepsilon)$ for all $\varepsilon > 0$ small enough, be a simple Neumann eigenvalue such that $\lambda(\varepsilon) \to \mu$ as $\varepsilon \to 0$.

We want to prove the following expansions

$$\lambda(\varepsilon) = \mu + \varepsilon \mu^1 + O(\varepsilon^2)$$

and

$$\mathbf{u}_{\varepsilon} = \mathbf{u} + \varepsilon \mathbf{u}^{1} + \varepsilon \mathbf{v}_{\varepsilon} + \varepsilon^{2} \mathbf{v}_{\varepsilon}^{1} + O(\varepsilon^{2}),$$

as $\varepsilon \to 0$.

- The second equality is in the sense of $L^2(\Omega)$ norm.
- **v**_{ε}, **v**¹_{ε} depend on ε explicitly and are supported on ω_{ε} .
- u^1, μ^1 solve an auxiliary boundary value problem which does not depend on ε .

• μ^1 is the topological derivative of $\lambda(\varepsilon)$ at $\varepsilon = 0$.

Strategy:

Postulating the (correct) asymptotic expansions

Strategy:

- Postulating the (correct) asymptotic expansions
- Justifying the expansions up to the desired order

Main tools:

• The map
$$\psi_{\varepsilon} : [0, |\partial \Omega|) \times (0, 1) \to \omega_{\varepsilon}$$

$$\psi_{\varepsilon}(s,\xi) = \gamma(s) - \varepsilon \xi v(\gamma(s)),$$

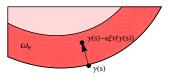
where $\gamma(s)$ is the arc-length parametrization of $\partial\Omega$ and ν the outer unit normal to $\partial\Omega$

Main tools:

• The map
$$\psi_{\varepsilon} : [0, |\partial \Omega|) \times (0, 1) \to \omega_{\varepsilon}$$

$$\psi_{arepsilon}(oldsymbol{s},\xi)=\gamma(oldsymbol{s})-arepsilon\xi
u(\gamma(oldsymbol{s})),$$

where $\gamma(s)$ is the arc-length parametrization of $\partial\Omega$ and ν the outer unit normal to $\partial\Omega$

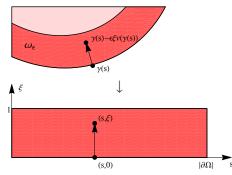


Main tools:

• The map
$$\psi_{\varepsilon} : [0, |\partial \Omega|) \times (0, 1) \to \omega_{\varepsilon}$$

$$\psi_{arepsilon}(oldsymbol{s},\xi)=\gamma(oldsymbol{s})-arepsilon\xi
u(\gamma(oldsymbol{s})),$$

where $\gamma(s)$ is the arc-length parametrization of $\partial\Omega$ and ν the outer unit normal to $\partial\Omega$



Expansion of $|\omega_{\varepsilon}|$

$$|\omega_{\varepsilon}| = \varepsilon |\partial \Omega| - rac{\varepsilon^2}{2} \int_0^{|\partial \Omega|} \kappa(s) ds = \varepsilon |\partial \Omega| - rac{\varepsilon^2}{2} K,$$

where $\kappa(s)$ is the signed curvature of $\partial\Omega$ at $\gamma(s)$.

Expansion of $|\omega_{\varepsilon}|$

$$|\omega_{\varepsilon}| = \varepsilon |\partial \Omega| - rac{\varepsilon^2}{2} \int_0^{|\partial \Omega|} \kappa(s) ds = \varepsilon |\partial \Omega| - rac{\varepsilon^2}{2} K,$$

where $\kappa(s)$ is the signed curvature of $\partial\Omega$ at $\gamma(s)$. Expansion of ρ_{ε}

$$\rho_{\varepsilon} = \varepsilon + \frac{1}{\varepsilon} \tilde{\rho}_{\varepsilon} \chi_{\omega_{\varepsilon}},$$

where

$$\tilde{\rho}_{\varepsilon} = \frac{M}{|\partial \Omega|} + \frac{\frac{1}{2}KM - |\Omega||\partial \Omega|}{|\partial \Omega|^2}\varepsilon + O(\varepsilon^2) \quad \text{as} \quad \varepsilon \to 0.$$

Expansion of $|\omega_{\varepsilon}|$

$$|\omega_{\varepsilon}| = \varepsilon |\partial \Omega| - rac{\varepsilon^2}{2} \int_0^{|\partial \Omega|} \kappa(s) ds = \varepsilon |\partial \Omega| - rac{\varepsilon^2}{2} K,$$

where $\kappa(s)$ is the signed curvature of $\partial\Omega$ at $\gamma(s)$. Expansion of ρ_{ε}

$$\rho_{\varepsilon} = \varepsilon + \frac{1}{\varepsilon} \tilde{\rho}_{\varepsilon} \chi_{\omega_{\varepsilon}},$$

where

$$\tilde{\rho}_{\varepsilon} = \frac{M}{|\partial \Omega|} + \frac{\frac{1}{2}KM - |\Omega||\partial \Omega|}{|\partial \Omega|^2}\varepsilon + O(\varepsilon^2) \quad \text{as} \quad \varepsilon \to 0.$$

Laplacian in coordinates (s,ξ)

$$\Delta = \frac{1}{\varepsilon^2} \partial_{\xi}^2 - \frac{1}{\varepsilon} \kappa(s) \partial_{\xi} - \kappa(s)^2 \xi \partial_{\xi} + \partial_s^2 + \cdots$$

In the strip ω_{ε} :

Expansion of *u*:

 $(u\circ\psi_{\varepsilon})(s,\xi)=(u\circ\psi_{\varepsilon})(s,0)-\varepsilon\xi((\partial_{v}u)\circ\psi_{\varepsilon})(s,0)+O(\varepsilon^{2}).$

In the strip ω_{ε} :

Expansion of *u*:

$$(u\circ\psi_{\varepsilon})(s,\xi)=(u\circ\psi_{\varepsilon})(s,0)-\varepsilon\xi((\partial_{v}u)\circ\psi_{\varepsilon})(s,0)+O(\varepsilon^{2}).$$

Expansion of u^1

$$(u^1\circ\psi_{\varepsilon})(s,\xi)=(u^1\circ\psi_{\varepsilon})(s,0)+O(\varepsilon)$$

In the strip ω_{ε} :

Expansion of *u*:

$$(u\circ\psi_{\varepsilon})(s,\xi)=(u\circ\psi_{\varepsilon})(s,0)-\varepsilon\xi((\partial_{v}u)\circ\psi_{\varepsilon})(s,0)+O(\varepsilon^{2}).$$

Expansion of u^1

$$(u^1\circ\psi_{\varepsilon})(s,\xi)=(u^1\circ\psi_{\varepsilon})(s,0)+O(\varepsilon)$$

• We look for v_{ε} , v_{ε}^{1} supported on ω_{ε} of the form

$$\mathbf{w} = \mathbf{v}_{\varepsilon} \circ \psi_{\varepsilon}, \quad \mathbf{w}^{1} = \mathbf{v}_{\varepsilon}^{1} \circ \psi_{\varepsilon},$$

where $w(s,\xi), w^1(s,\xi)$ are functions on $[0, |\partial \Omega|) \times (0, 1)$.

Plug the asymptotic expansions for u_{ε} and $\lambda(\varepsilon)$ in the equation

$$-\Delta(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1})=\left(\varepsilon+\frac{1}{\varepsilon}\tilde{\rho}_{\varepsilon}\chi_{\omega_{\varepsilon}}\right)(\boldsymbol{\mu}+\varepsilon\boldsymbol{\mu}^{1})(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1}).$$

Plug the asymptotic expansions for u_{ε} and $\lambda(\varepsilon)$ in the equation

$$-\Delta(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1})=\left(\varepsilon+\frac{1}{\varepsilon}\tilde{\rho}_{\varepsilon}\chi_{\omega_{\varepsilon}}\right)(\boldsymbol{\mu}+\varepsilon\boldsymbol{\mu}^{1})(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1}).$$

We can split the equation in two parts: one supported on the whole of Ω and the other on the strip ω_{ε} .

Plug the asymptotic expansions for u_{ε} and $\lambda(\varepsilon)$ in the equation

$$-\Delta(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1})=\left(\varepsilon+\frac{1}{\varepsilon}\tilde{\rho}_{\varepsilon}\chi_{\omega_{\varepsilon}}\right)(\boldsymbol{\mu}+\varepsilon\boldsymbol{\mu}^{1})(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1}).$$

We can split the equation in two parts: one supported on the whole of Ω and the other on the strip ω_{ε} .

We match the terms where the coefficient ε appears with the same exponent. We do the same for boundary conditions.

Plug the asymptotic expansions for u_{ε} and $\lambda(\varepsilon)$ in the equation

$$-\Delta(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1})=\left(\varepsilon+\frac{1}{\varepsilon}\tilde{\rho}_{\varepsilon}\chi_{\omega_{\varepsilon}}\right)(\boldsymbol{\mu}+\varepsilon\boldsymbol{\mu}^{1})(\boldsymbol{u}+\varepsilon\boldsymbol{u}^{1}+\varepsilon\boldsymbol{v}_{\varepsilon}+\varepsilon^{2}\boldsymbol{v}_{\varepsilon}^{1}).$$

We can split the equation in two parts: one supported on the whole of Ω and the other on the strip ω_{ε} .

We match the terms where the coefficient ε appears with the same exponent. We do the same for boundary conditions.

We obtain four problems, for $u, \mu, u^1, \mu^1, w, w^1$.

Problems in Ω :

$$\begin{cases} \Delta \boldsymbol{u} = \boldsymbol{0} & \text{in } \Omega, \\ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{v}} = \frac{M}{|\partial \Omega|} \boldsymbol{\mu} \boldsymbol{u} & \text{on } \partial \Omega; \end{cases}$$

Problems in Ω :

$$\begin{cases} \Delta \boldsymbol{u} = \boldsymbol{0} & \text{in } \Omega, \\ \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{v}} = \frac{M}{|\partial \Omega|} \boldsymbol{\mu} \boldsymbol{u} & \text{on } \partial \Omega; \end{cases}$$

$$\begin{cases} -\Delta u^{1} = \mu u & \text{in } \Omega, \\ \frac{\partial u^{1}}{\partial \nu} = \left(\frac{M\mu}{2|\partial\Omega|^{2}} \left(K - |\partial\Omega|\kappa\right) - \frac{2M^{2}\mu^{2}}{3|\partial\Omega|^{2}} + \frac{M\mu^{1}}{|\partial\Omega| - \frac{\mu|\Omega|}{|\partial\Omega|}}\right) u + \frac{M\mu}{|\partial\Omega|} u^{1} & \text{on } \partial\Omega. \end{cases}$$

Postulating the expansions

Problems in $[0, |\partial \Omega|) \times (0, 1)$:

$$\begin{cases} -\partial_{\xi}^{2}w(s,\xi) = \frac{M\mu}{|\partial\Omega|}(u \circ \psi_{\varepsilon})(s,0) & \text{on } [0,|\partial\Omega|) \times (0,1), \\ \partial_{\xi}w(s,0) = \frac{M\mu}{|\partial\Omega|}(u \circ \psi_{\varepsilon})(s,0) & s \in [0,|\partial\Omega|), \\ \partial_{\xi}w(s,1) = w(s,1) = 0 & s \in [0,|\partial\Omega|); \end{cases}$$

Postulating the expansions

Problems in $[0, |\partial \Omega|) \times (0, 1)$:

$$\begin{cases} -\partial_{\xi}^{2}w(s,\xi) = \frac{M\mu}{|\partial\Omega|}(u \circ \psi_{\varepsilon})(s,0) & \text{on } [0,|\partial\Omega|) \times (0,1), \\ \partial_{\xi}w(s,0) = \frac{M\mu}{|\partial\Omega|}(u \circ \psi_{\varepsilon})(s,0) & s \in [0,|\partial\Omega|), \\ \partial_{\xi}w(s,1) = w(s,1) = 0 & s \in [0,|\partial\Omega|); \end{cases}$$

$$\begin{aligned} & -\partial_{\xi}^{2} w^{1}(s,\xi) = -\kappa(s)\partial_{\xi} w(s,\xi) \\ & + \frac{M}{|\partial\Omega|} \left(\mu(u^{1} \circ \psi_{\varepsilon})(s,0) + \mu w(s,\xi) \\ & + \mu^{1}(u\psi_{\varepsilon})(s,0) - \mu\xi\partial_{\nu}u(\gamma(s)) \\ & - \frac{|\Omega|\mu}{M}(u\psi_{\varepsilon})(s,0) + \frac{K\mu}{2|\partial\Omega|}(u\psi_{\varepsilon})(s,0) \right) \quad \text{on } [0,|\partial\Omega|) \times (0,1), \\ & \partial_{\xi} w^{1}(s,0) = \frac{\partial u^{1}}{\partial \nu}(\gamma(s)) \qquad \qquad s \in [0,|\partial\Omega|), \\ & \partial_{\xi} w^{1}(s,1) = w^{1}(s,1) = 0 \qquad \qquad s \in [0,|\partial\Omega|). \end{aligned}$$

Postulating the expansions

Problems in $[0, |\partial \Omega|) \times (0, 1)$:

$$\begin{cases} -\partial_{\xi}^{2}w(s,\xi) = \frac{M\mu}{|\partial\Omega|}(u \circ \psi_{\varepsilon})(s,0) & \text{on } [0,|\partial\Omega|) \times (0,1), \\ \partial_{\xi}w(s,0) = \frac{M\mu}{|\partial\Omega|}(u \circ \psi_{\varepsilon})(s,0) & s \in [0,|\partial\Omega|), \\ \partial_{\xi}w(s,1) = w(s,1) = 0 & s \in [0,|\partial\Omega|); \end{cases}$$

$$\begin{array}{ll} & -\partial_{\xi}^{2}w^{1}(s,\xi) = -\kappa(s)\partial_{\xi}w(s,\xi) \\ & + \frac{M}{|\partial\Omega|} \left(\mu(u^{1} \circ \psi_{\varepsilon})(s,0) + \mu w(s,\xi) \\ & + \mu^{1}(u\psi_{\varepsilon})(s,0) - \mu\xi\partial_{\nu}u(\gamma(s)) \\ & - \frac{|\Omega|\mu}{M}(u\psi_{\varepsilon})(s,0) + \frac{\kappa_{\mu}}{2|\partial\Omega|}(u\psi_{\varepsilon})(s,0) \right) \quad \text{on } [0,|\partial\Omega|) \times (0,1), \\ & \partial_{\xi}w^{1}(s,0) = \frac{\partial u^{1}}{\partial \nu}(\gamma(s)) \qquad \qquad s \in [0,|\partial\Omega|), \\ & \partial_{\xi}w^{1}(s,1) = w^{1}(s,1) = 0 \qquad \qquad s \in [0,|\partial\Omega|). \end{array}$$

Once we know u, u^1 , the solutions w, w^1 and therefore $v_{\varepsilon}, v_{\varepsilon}^1$ are explicitly determined.

Main tool:

Lemma (Oleinik's Lemma)

Let $A : H \to H$ be a linear, self-adjoint, positive and compact operator from a separable Hilbert space H to itself. Let $V \in H$ with $||V||_H = 1$. Let $\eta, r > 0$ be such that $||AV - \eta V||_H \le r$. Then there exists an eigenvalue η_i of the operator A which satisfy the inequality $|\eta - \eta_i| \le r$. Moreover, for any $r^* > r$ there exist $V^* \in H$ with $||V^*||_H = 1$, V^* belonging to the space generated by all the eigenspaces associated with an eigenvalue of the operator A lying on the segment $[\eta - r^*, \eta + r^*]$ and such that

$$|V-V^*||_H \leq \frac{2r}{r^*}.$$

■ Hilbert space $\mathcal{H}_{\varepsilon}(\Omega)$ of $H^1(\Omega)$ functions and scalar product

$$\langle u, v \rangle_{\varepsilon} := \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Omega} \rho_{\varepsilon} u v dx, \ \forall u, v \in \mathcal{H}_{\varepsilon}(\Omega);$$

■ Hilbert space $\mathcal{H}_{\varepsilon}(\Omega)$ of $H^1(\Omega)$ functions and scalar product

$$\langle u, v \rangle_{\varepsilon} := \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Omega} \rho_{\varepsilon} u v dx, \ \forall u, v \in \mathcal{H}_{\varepsilon}(\Omega);$$

The operator $\mathcal{R}_{\varepsilon}$ from $\mathcal{H}_{\varepsilon}(\Omega)$ to itself defined by

$$\mathcal{A}_{\varepsilon}f = u \iff \int_{\Omega} \nabla u \cdot \nabla \varphi dx + \int_{\Omega} \rho_{\varepsilon} u \varphi dx = \int_{\Omega} \rho_{\varepsilon} f \varphi dx, \ \forall \varphi \in \mathcal{H}_{\varepsilon}(\Omega).$$

■ Hilbert space $\mathcal{H}_{\varepsilon}(\Omega)$ of $H^1(\Omega)$ functions and scalar product

$$\langle u, v \rangle_{\varepsilon} := \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Omega} \rho_{\varepsilon} u v dx, \ \forall u, v \in \mathcal{H}_{\varepsilon}(\Omega);$$

• The operator $\mathcal{R}_{\varepsilon}$ from $\mathcal{H}_{\varepsilon}(\Omega)$ to itself defined by

$$\mathcal{A}_{\varepsilon}f = u \iff \int_{\Omega} \nabla u \cdot \nabla \varphi dx + \int_{\Omega} \rho_{\varepsilon} u \varphi dx = \int_{\Omega} \rho_{\varepsilon} f \varphi dx, \ \forall \varphi \in \mathcal{H}_{\varepsilon}(\Omega).$$

 $\lambda(\varepsilon)$ Neumann eigenvalue $\iff \frac{1}{1+\lambda(\varepsilon)}$ eigenvalue of $\mathcal{A}_{\varepsilon}.$

almost-eigenvalue

$$\eta = \frac{1}{1 + \mu + \varepsilon \mu^1};$$

almost-eigenvalue

$$\eta = \frac{1}{1 + \mu + \varepsilon \mu^1};$$

- u, u^1 normalized such that $\int_{\partial\Omega} u^2 d\sigma = 1$, $\int_{\partial\Omega} (u^1)^2 d\sigma = 1$, $\int_{\partial\Omega} u u^1 d\sigma = 0$;
- u_{ε} normalized such that $\int_{\Omega} \rho_{\varepsilon} u_{\varepsilon}^2 = \frac{M}{|\partial \Omega|}$;

almost-eigenvalue

$$\eta = \frac{1}{1 + \mu + \varepsilon \mu^1};$$

- u, u^1 normalized such that $\int_{\partial\Omega} u^2 d\sigma = 1$, $\int_{\partial\Omega} (u^1)^2 d\sigma = 1$, $\int_{\partial\Omega} u u^1 d\sigma = 0$;
- u_{ε} normalized such that $\int_{\Omega} \rho_{\varepsilon} u_{\varepsilon}^2 = \frac{M}{|\partial \Omega|}$;
- almost-eigenfunction

$$V = \frac{u + \varepsilon u^1 + \varepsilon v_{\varepsilon} + \varepsilon^2 v_{\varepsilon}^1}{\|u + \varepsilon u^1 + \varepsilon v_{\varepsilon} + \varepsilon^2 v_{\varepsilon}^1\|_{\varepsilon}}.$$

$$\left|\mu + \varepsilon \mu^1 - \lambda(\varepsilon)\right| \leq C \varepsilon^2$$

$$\left|\mu + \varepsilon \mu^1 - \lambda(\varepsilon)\right| \leq C \varepsilon^2$$

and

$$\left\|\frac{u+\varepsilon u^1+\varepsilon v_{\varepsilon}+\varepsilon^2 v_{\varepsilon}^1}{\|u+\varepsilon u^1+\varepsilon v_{\varepsilon}+\varepsilon^2 v_{\varepsilon}^1\|_{\varepsilon}}-\frac{u_{\varepsilon}}{\|u_{\varepsilon}\|_{\varepsilon}}\right\|_{\varepsilon}\leq C\varepsilon^2.$$

$$\left|\mu + \varepsilon \mu^1 - \lambda(\varepsilon)\right| \leq C \varepsilon^2$$

and

$$\left\|\frac{u+\varepsilon u^1+\varepsilon v_{\varepsilon}+\varepsilon^2 v_{\varepsilon}^1}{\|u+\varepsilon u^1+\varepsilon v_{\varepsilon}+\varepsilon^2 v_{\varepsilon}^1\|_{\varepsilon}}-\frac{u_{\varepsilon}}{\|u_{\varepsilon}\|_{\varepsilon}}\right\|_{\varepsilon}\leq C\varepsilon^2.$$

From this it is possible to prove that

$$\left\| \boldsymbol{u} + \varepsilon \boldsymbol{u}^{1} + \varepsilon \boldsymbol{v}_{\varepsilon} + \varepsilon^{2} \boldsymbol{v}_{\varepsilon}^{1} - \boldsymbol{u}_{\varepsilon} \right\|_{L^{2}(\Omega)} \leq C' \varepsilon^{2}.$$

$$\left|\mu + \varepsilon \mu^1 - \lambda(\varepsilon)\right| \leq C \varepsilon^2$$

and

$$\left\|\frac{u+\varepsilon u^1+\varepsilon v_{\varepsilon}+\varepsilon^2 v_{\varepsilon}^1}{\|u+\varepsilon u^1+\varepsilon v_{\varepsilon}+\varepsilon^2 v_{\varepsilon}^1\|_{\varepsilon}}-\frac{u_{\varepsilon}}{\|u_{\varepsilon}\|_{\varepsilon}}\right\|_{\varepsilon}\leq C\varepsilon^2.$$

From this it is possible to prove that

$$\left\| \boldsymbol{u} + \varepsilon \boldsymbol{u}^{1} + \varepsilon \boldsymbol{v}_{\varepsilon} + \varepsilon^{2} \boldsymbol{v}_{\varepsilon}^{1} - \boldsymbol{u}_{\varepsilon} \right\|_{L^{2}(\Omega)} \leq C' \varepsilon^{2}.$$

The expansions are correct up to the first order terms.

Consider the problem for u^1, μ^1

$$\begin{cases} -\Delta u^{1} = \mu u & \text{in } \Omega, \\ \frac{\partial u^{1}}{\partial \nu} = \left(\frac{M\mu}{2|\partial\Omega|^{2}} (K - |\partial\Omega|\kappa) - \frac{2M^{2}\mu^{2}}{3|\partial\Omega|^{2}} + \frac{M\mu^{1}}{|\partial\Omega| - \frac{\mu|\Omega|}{|\partial\Omega|}}\right) u + \frac{M\mu}{|\partial\Omega|} u^{1} & \text{on } \partial\Omega. \end{cases}$$

Consider the problem for u^1, μ^1

$$\begin{cases} -\Delta u^{1} = \mu u & \text{in } \Omega, \\ \frac{\partial u^{1}}{\partial \nu} = \left(\frac{M\mu}{2|\partial\Omega|^{2}} (K - |\partial\Omega|\kappa) - \frac{2M^{2}\mu^{2}}{3|\partial\Omega|^{2}} + \frac{M\mu^{1}}{|\partial\Omega| - \frac{\mu|\Omega|}{|\partial\Omega|}}\right) u + \frac{M\mu}{|\partial\Omega|} u^{1} & \text{on } \partial\Omega. \end{cases}$$

Multiply the equation by u + integrate by parts + boundary conditions for u^1 + the function u is Steklov eigenfunction with eigenvalue μ + normalization $\int_{\partial \Omega} u^2 d\sigma = 1$

Consider the problem for u^1, μ^1

$$\begin{cases} -\Delta u^{1} = \mu u & \text{in } \Omega, \\ \frac{\partial u^{1}}{\partial \nu} = \left(\frac{M\mu}{2|\partial\Omega|^{2}} (K - |\partial\Omega|\kappa) - \frac{2M^{2}\mu^{2}}{3|\partial\Omega|^{2}} + \frac{M\mu^{1}}{|\partial\Omega| - \frac{\mu|\Omega|}{|\partial\Omega|}}\right) u + \frac{M\mu}{|\partial\Omega|} u^{1} & \text{on } \partial\Omega. \end{cases}$$

Multiply the equation by u + integrate by parts + boundary conditions for u^1 + the function u is Steklov eigenfunction with eigenvalue μ + normalization $\int_{\partial \Omega} u^2 d\sigma = 1$

$$\mu^{1} = \frac{\mu}{M} \left(|\Omega| - |\partial \Omega| \int_{\Omega} u^{2} dx \right) + \frac{2M\mu^{2}}{3|\partial \Omega|} + \frac{\mu}{2|\partial \Omega|} \int_{\partial \Omega} \left(|\partial \Omega| u^{2} - 1 \right) \kappa d\sigma.$$

Which is the sign of this derivative? Case of the unit ball in \mathbb{R}^2

Which is the sign of this derivative? Case of the unit ball in \mathbb{R}^2 Steklov eigenvalues:

$$\mu_{2j-1} = \mu_{2_j} = \frac{2\pi j}{M}$$

for all $j \in \mathbb{N} \setminus \{0\}, \mu_0 = 0$.

Which is the sign of this derivative? Case of the unit ball in \mathbb{R}^2 Steklov eigenvalues:

$$\mu_{2j-1} = \mu_{2j} = \frac{2\pi j}{M}$$

for all $j \in \mathbb{N} \setminus \{0\}$, $\mu_0 = 0$. Steklov eigenfunctions (in polar coordinates):

$$u_{j,1}(r, heta) = \pi^{-rac{1}{2}} r^j \cos(j heta), \ \ u_{j,2}(r, heta) = \pi^{-rac{1}{2}} r^j \sin(j heta).$$

Which is the sign of this derivative? Case of the unit ball in \mathbb{R}^2 Steklov eigenvalues:

$$\mu_{2j-1} = \mu_{2_j} = \frac{2\pi j}{M}$$

for all $j \in \mathbb{N} \setminus \{0\}$, $\mu_0 = 0$. Steklov eigenfunctions (in polar coordinates):

$$u_{j,1}(r,\theta) = \pi^{-\frac{1}{2}} r^j \cos(j\theta), \ \ u_{j,2}(r,\theta) = \pi^{-\frac{1}{2}} r^j \sin(j\theta).$$

Asymptotic expansion of Neumann eigenvalues:

$$\begin{split} \lambda_{2j-1}(\varepsilon) &= \mu_{2j-1} + \left(\frac{2j\mu_{2j-1}}{3} + \frac{\mu_{2j-1}^2}{2(j+1)}\right)\varepsilon + O(\varepsilon^2) \\ &= \frac{2\pi j}{M} + \frac{2\pi j^2}{M} \left(\frac{2}{3} + \frac{\pi}{M(1+j)}\right)\varepsilon + O(\varepsilon^2), \text{ as } \varepsilon \to 0. \end{split}$$

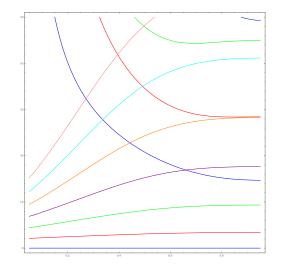


Figure: $\lambda_{2j-1} = \lambda_{2j}$ with $M = \pi$ in the range $(\varepsilon, \lambda) \in (0, 1) \times (0, 50)$.

20 of 24

Remark: for the ball in \mathbb{R}^N , $N \ge 2$, it is possible to obtain the derivative μ^1 explicitly by means of another technique:

Remark: for the ball in \mathbb{R}^N , $N \ge 2$, it is possible to obtain the derivative μ^1 explicitly by means of another technique:

write the solutions of −Δu = λρ_εu on ω_ε and Ω \ ω_ε in terms of ultraspherical Bessel functions;

Remark: for the ball in \mathbb{R}^N , $N \ge 2$, it is possible to obtain the derivative μ^1 explicitly by means of another technique:

- write the solutions of −Δu = λρ_εu on ω_ε and Ω \ ω_ε in terms of ultraspherical Bessel functions;
- impose continuity conditions at r = 1 ɛ and boundary condition: this gives an equation of the type

 $\mathcal{F}(\lambda,\varepsilon) = 0;$

Remark: for the ball in \mathbb{R}^N , $N \ge 2$, it is possible to obtain the derivative μ^1 explicitly by means of another technique:

- write the solutions of −Δu = λρ_εu on ω_ε and Ω \ ω_ε in terms of ultraspherical Bessel functions;
- impose continuity conditions at r = 1 ɛ and boundary condition: this gives an equation of the type

 $\mathcal{F}(\lambda,\varepsilon) = 0;$

prove that Implicit Function Theorem can be applied;

Remark: for the ball in \mathbb{R}^N , $N \ge 2$, it is possible to obtain the derivative μ^1 explicitly by means of another technique:

- write the solutions of −Δu = λρ_εu on ω_ε and Ω \ ω_ε in terms of ultraspherical Bessel functions;
- impose continuity conditions at r = 1 ɛ and boundary condition: this gives an equation of the type

 $\mathcal{F}(\lambda,\varepsilon) = 0;$

prove that Implicit Function Theorem can be applied;
 use suitable Taylor's expansions, estimates for the remainders, recursive formulas for cross-products of Bessel functions,...

Remark: for the ball in \mathbb{R}^N , $N \ge 2$, it is possible to obtain the derivative μ^1 explicitly by means of another technique:

- write the solutions of −Δu = λρ_εu on ω_ε and Ω \ ω_ε in terms of ultraspherical Bessel functions;
- impose continuity conditions at r = 1 ɛ and boundary condition: this gives an equation of the type

 $\mathcal{F}(\lambda,\varepsilon) = 0;$

 prove that Implicit Function Theorem can be applied;
 use suitable Taylor's expansions, estimates for the remainders, recursive formulas for cross-products of Bessel functions,...

Formula for the derivative:

$$\lambda'_{2j-1}(0) = \frac{2j\mu_{2j-1}}{3} + \frac{2\mu_{2j-1}^2}{N(2j+N)}.$$

$$\frac{1}{|\partial \Omega|} \int_{\partial \Omega} u^2 d\sigma \geq \frac{1}{|\Omega|} \int_{\Omega} u^2 dx;$$

$$\frac{1}{|\partial \Omega|} \int_{\partial \Omega} u^2 d\sigma \geq \frac{1}{|\Omega|} \int_{\Omega} u^2 dx;$$

$$\int_{\partial\Omega} \mathbf{u}^2 \kappa \mathbf{d}\sigma \geq \frac{K}{|\partial\Omega|} \int_{\partial\Omega} \mathbf{u}^2 \mathbf{d}\sigma.$$

$$\frac{1}{|\partial \Omega|} \int_{\partial \Omega} \boldsymbol{u}^2 d\sigma \geq \frac{1}{|\Omega|} \int_{\Omega} \boldsymbol{u}^2 dx;$$

$$\int_{\partial\Omega} \mathbf{u}^2 \kappa d\sigma \geq \frac{K}{|\partial\Omega|} \int_{\partial\Omega} \mathbf{u}^2 d\sigma.$$

What for a generic Ω in \mathbb{R}^N ?

$$\frac{1}{|\partial \Omega|} \int_{\partial \Omega} \boldsymbol{u}^2 d\sigma \geq \frac{1}{|\Omega|} \int_{\Omega} \boldsymbol{u}^2 dx;$$

$$\int_{\partial\Omega} \mathbf{u}^2 \kappa \mathbf{d}\sigma \geq \frac{K}{|\partial\Omega|} \int_{\partial\Omega} \mathbf{u}^2 \mathbf{d}\sigma.$$

What for a generic Ω in \mathbb{R}^N ?

Plan:

• C^2 domains that are starshaped with respect to a ball;

$$\frac{1}{|\partial \Omega|} \int_{\partial \Omega} \boldsymbol{u}^2 d\sigma \geq \frac{1}{|\Omega|} \int_{\Omega} \boldsymbol{u}^2 dx;$$

$$\int_{\partial\Omega} \mathbf{u}^2 \kappa d\sigma \geq \frac{K}{|\partial\Omega|} \int_{\partial\Omega} \mathbf{u}^2 d\sigma.$$

What for a generic Ω in \mathbb{R}^N ?

Plan:

C² domains that are starshaped with respect to a ball;
generic C² domains.

References

D. BUOSO, L. PROVENZANO,

A few shape optimization results for a biharmonic Steklov problem, Journal of Differential Equations 259, no.5, 1778-1818, 2015.

M. DALLA RIVA, L. PROVENZANO,

On vibrating thin membranes with mass concentrated near the boundary, preprint, 2015

Y. D. GOLOVATY, D. GOMEZ, M. LOBO, E. PEREZ,

On vibrating membranes with very heavy thin inclusions, Math. Models Methods Appl. Sci. 14, no.7, 987-1034, 2004.

D. Gomez, M. Lobo, S.A. Nazarov, E. Perez,

Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues, J. Math. Pures Appl. 85, no.4, 598-632, 2006.

D. Gomez, M. Lobo, S.A. Nazarov, E. Perez,

Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems, J. Math. Pures Appl. 86, no.5, 369-402, 2006.

P.D. LAMBERTI, L. PROVENZANO,

Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues, Current Trends in Analysis and Its Applications, Proceedings of the 9th ISAAC Congress, Kraków 2013 171-178, Birkhäuser, Basel, 2015

P.D. LAMBERTI, L. PROVENZANO,

Neumann to Steklov eigenvalues: asymptotic and monotonicity results, submitted, 2015.

THANK YOU