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The Neumann problem

Let Ω be a bounded domain in R2 of class C2 and M > 0 be a fixed
constant −∆uε = λ(ε)ρεuε in Ω,

∂uε
∂ν = 0 on ∂Ω,

where

ρε =

ε in Ω \ ωε,
M−ε|Ω\ωε |
|ωε |

in ωε
and ωε =

{
x ∈ Ω : dist(x, ∂Ω) < ε

}
.

For all ε > 0

0 = λ0(ε) < λ1(ε) ≤ λ2(ε) ≤ · · · ≤ λj(ε) ≤ · · · .
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The Neumann problem

Ω

ωϵ

Ω

ωϵ

∫
Ω
ρε = M ∀ε > 0.
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The Steklov problem

Consider the Steklov eigenvalue problem on Ω∆u = 0 in Ω,
∂u
∂ν = M

|∂Ω|µu on ∂Ω.

Spectrum
0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µj ≤ · · · .

Theorem

For all j ∈ N,
lim
ε→0

λj(ε) = µj .
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Which is the behavior at ε = 0?

Questions:

rate of convergence of λj(ε) near ε = 0

derivative (in some sense) of λj(ε) at ε = 0

monotonicity of λj(ε) near ε = 0

Answers via asymptotic analysis for simple eigenvalues
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Asymptotic expansions
Let µ be a simple Steklov eigenvalue, λ(ε) for all ε > 0 small
enough, be a simple Neumann eigenvalue such that λ(ε)→ µ as
ε→ 0.

We want to prove the following expansions

λ(ε) = µ + εµ1 + O(ε2)

and
uε = u + εu1 + εvε + ε2v1

ε + O(ε2),

as ε→ 0.

The second equality is in the sense of L2(Ω) norm.

vε, v1
ε depend on ε explicitly and are supported on ωε.

u1, µ1 solve an auxiliary boundary value problem which does
not depend on ε.

µ1 is the topological derivative of λ(ε) at ε = 0.
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Asymptotic expansions

Strategy:

Postulating the (correct) asymptotic expansions

Justifying the expansions up to the desired order
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Postulating the expansions
Main tools:

The map ψε : [0, |∂Ω|) × (0, 1)→ ωε

ψε(s, ξ) = γ(s) − εξν(γ(s)),

where γ(s) is the arc-length parametrization of ∂Ω and ν the
outer unit normal to ∂Ω

γ(s)-ϵξν(γ(s))
ωϵ

γ(s)

↓

s

ξ

|∂Ω|

1

(s,0)

(s,ξ)
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Postulating the expansions

Expansion of |ωε|

|ωε| = ε|∂Ω| −
ε2

2

∫ |∂Ω|

0
κ(s)ds = ε|∂Ω| −

ε2

2
K ,

where κ(s) is the signed curvature of ∂Ω at γ(s).

Expansion of ρε

ρε = ε +
1
ε
ρ̃εχωε ,

where

ρ̃ε =
M
|∂Ω|

+
1
2KM − |Ω||∂Ω|

|∂Ω|2
ε + O(ε2) as ε→ 0.

Laplacian in coordinates (s, ξ)

∆ =
1
ε2 ∂

2
ξ −

1
ε
κ(s)∂ξ − κ(s)2ξ∂ξ + ∂2

s + · · ·
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Postulating the expansions

In the strip ωε:

Expansion of u:

(u ◦ ψε)(s, ξ) = (u ◦ ψε)(s, 0) − εξ((∂νu) ◦ ψε)(s, 0) + O(ε2).

Expansion of u1

(u1 ◦ ψε)(s, ξ) = (u1 ◦ ψε)(s, 0) + O(ε)

We look for vε, v1
ε supported on ωε of the form

w = vε ◦ ψε , w1 = v1
ε ◦ ψε,

where w(s, ξ),w1(s, ξ) are functions on [0, |∂Ω|) × (0, 1).
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Postulating the expansions

Plug the asymptotic expansions for uε and λ(ε) in the equation

−∆(u+εu1+εvε+ε2v1
ε ) =

(
ε +

1
ε
ρ̃εχωε

)
(µ+εµ1)(u+εu1+εvε+ε2v1

ε ).

We can split the equation in two parts: one supported on the whole
of Ω and the other on the strip ωε.

We match the terms where the coefficient ε appears with the same
exponent. We do the same for boundary conditions.

We obtain four problems, for u, µ, u1, µ1,w,w1.
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Postulating the expansions

Problems in Ω: ∆u = 0 in Ω,
∂u
∂ν = M

|∂Ω|µu on ∂Ω;


−∆u1 = µu in Ω,

∂u1

∂ν =

(
Mµ

2|∂Ω|2
(K − |∂Ω|κ) − 2M2µ2

3|∂Ω|2
+ Mµ1

|∂Ω|− µ|Ω|
|∂Ω|

)
u + Mµ

|∂Ω|u
1 on ∂Ω.
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Postulating the expansions
Problems in [0, |∂Ω|) × (0, 1):


−∂2

ξw(s, ξ) = Mµ
|∂Ω|(u ◦ ψε)(s, 0) on [0, |∂Ω|) × (0, 1),

∂ξw(s, 0) = Mµ
|∂Ω|(u ◦ ψε)(s, 0) s ∈ [0, |∂Ω|),

∂ξw(s, 1) = w(s, 1) = 0 s ∈ [0, |∂Ω|);



−∂2
ξw

1(s, ξ) = −κ(s)∂ξw(s, ξ)

+ M
|∂Ω|

(
µ(u1 ◦ ψε)(s, 0) + µw(s, ξ)

+µ1(uψε)(s, 0) − µξ∂νu(γ(s))

−
|Ω|µ
M (uψε)(s, 0) + Kµ

2|∂Ω| (uψε)(s, 0)
)

on [0, |∂Ω|) × (0, 1),

∂ξw1(s, 0) = ∂u1

∂ν
(γ(s)) s ∈ [0, |∂Ω|),

∂ξw1(s, 1) = w1(s, 1) = 0 s ∈ [0, |∂Ω|).

Once we know u, u1, the solutions w,w1 and therefore vε, v1
ε are

explicitly determined.

13 of 24



Postulating the expansions
Problems in [0, |∂Ω|) × (0, 1):


−∂2

ξw(s, ξ) = Mµ
|∂Ω|(u ◦ ψε)(s, 0) on [0, |∂Ω|) × (0, 1),

∂ξw(s, 0) = Mµ
|∂Ω|(u ◦ ψε)(s, 0) s ∈ [0, |∂Ω|),

∂ξw(s, 1) = w(s, 1) = 0 s ∈ [0, |∂Ω|);



−∂2
ξw

1(s, ξ) = −κ(s)∂ξw(s, ξ)

+ M
|∂Ω|

(
µ(u1 ◦ ψε)(s, 0) + µw(s, ξ)

+µ1(uψε)(s, 0) − µξ∂νu(γ(s))

−
|Ω|µ
M (uψε)(s, 0) + Kµ

2|∂Ω| (uψε)(s, 0)
)

on [0, |∂Ω|) × (0, 1),

∂ξw1(s, 0) = ∂u1

∂ν
(γ(s)) s ∈ [0, |∂Ω|),

∂ξw1(s, 1) = w1(s, 1) = 0 s ∈ [0, |∂Ω|).

Once we know u, u1, the solutions w,w1 and therefore vε, v1
ε are

explicitly determined.

13 of 24



Postulating the expansions
Problems in [0, |∂Ω|) × (0, 1):


−∂2

ξw(s, ξ) = Mµ
|∂Ω|(u ◦ ψε)(s, 0) on [0, |∂Ω|) × (0, 1),

∂ξw(s, 0) = Mµ
|∂Ω|(u ◦ ψε)(s, 0) s ∈ [0, |∂Ω|),

∂ξw(s, 1) = w(s, 1) = 0 s ∈ [0, |∂Ω|);



−∂2
ξw

1(s, ξ) = −κ(s)∂ξw(s, ξ)

+ M
|∂Ω|

(
µ(u1 ◦ ψε)(s, 0) + µw(s, ξ)

+µ1(uψε)(s, 0) − µξ∂νu(γ(s))

−
|Ω|µ
M (uψε)(s, 0) + Kµ

2|∂Ω| (uψε)(s, 0)
)

on [0, |∂Ω|) × (0, 1),

∂ξw1(s, 0) = ∂u1

∂ν
(γ(s)) s ∈ [0, |∂Ω|),

∂ξw1(s, 1) = w1(s, 1) = 0 s ∈ [0, |∂Ω|).

Once we know u, u1, the solutions w,w1 and therefore vε, v1
ε are

explicitly determined. 13 of 24



Justifying the expansions

Main tool:

Lemma (Oleinik’s Lemma)

Let A : H → H be a linear, self-adjoint, positive and compact
operator from a separable Hilbert space H to itself. Let V ∈ H with
‖V‖H = 1. Let η, r > 0 be such that ‖AV − ηV‖H ≤ r. Then there
exists an eigenvalue ηi of the operator A which satisfy the
inequality |η − ηi | ≤ r. Moreover, for any r∗ > r there exist V∗ ∈ H
with ‖V∗‖H = 1, V∗ belonging to the space generated by all the
eigenspaces associated with an eigenvalue of the operator A lying
on the segment [η − r∗, η + r∗] and such that

‖V − V∗‖H ≤
2r
r∗
.
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Justifying the expansions

Setting:

Hilbert space Hε(Ω) of H1(Ω) functions and scalar product

〈u, v〉ε :=

∫
Ω
∇u · ∇vdx +

∫
Ω
ρεuvdx , ∀u, v ∈ Hε(Ω);

The operator Aε from Hε(Ω) to itself defined by

Aεf = u ⇐⇒
∫

Ω
∇u·∇ϕdx+

∫
Ω
ρεuϕdx =

∫
Ω
ρεfϕdx , ∀ϕ ∈ Hε(Ω).

λ(ε) Neumann eigenvalue ⇐⇒ 1
1+λ(ε)

eigenvalue of Aε.
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Justifying the expansions

Setting:

almost-eigenvalue

η =
1

1 + µ + εµ1 ;

u, u1 normalized such that
∫
∂Ω

u2dσ = 1,
∫
∂Ω

(
u1

)2
dσ = 1,∫

∂Ω
uu1dσ = 0;

uε normalized such that
∫

Ω
ρεu2

ε = M
|∂Ω| ;

almost-eigenfunction

V =
u + εu1 + εvε + ε2v1

ε

‖u + εu1 + εvε + ε2v1
ε ‖ε

.
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Justifying the expansions

Apply Oleinik’s Lemma. There exist C > 0 such that∣∣∣µ + εµ1 − λ(ε)
∣∣∣ ≤ Cε2

and ∥∥∥∥∥∥ u + εu1 + εvε + ε2v1
ε

‖u + εu1 + εvε + ε2v1
ε ‖ε
−

uε
‖uε‖ε

∥∥∥∥∥∥
ε

≤ Cε2.

From this it is possible to prove that∥∥∥u + εu1 + εvε + ε2v1
ε − uε

∥∥∥
L2(Ω)

≤ C ′ε2.

The expansions are correct up to the first order terms.
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Topological derivative

Consider the problem for u1, µ1
−∆u1 = µu in Ω,

∂u1

∂ν =

(
Mµ

2|∂Ω|2
(K − |∂Ω|κ) − 2M2µ2

3|∂Ω|2
+ Mµ1

|∂Ω|− µ|Ω|
|∂Ω|

)
u + Mµ

|∂Ω|u
1 on ∂Ω.

Multiply the equation by u + integrate by parts + boundary
conditions for u1 + the function u is Steklov eigenfunction with
eigenvalue µ + normalization

∫
∂Ω

u2dσ = 1

↓

µ1 =
µ

M

(
|Ω| − |∂Ω|

∫
Ω

u2dx
)

+
2Mµ2

3|∂Ω|
+

µ

2|∂Ω|

∫
∂Ω

(
|∂Ω|u2 − 1

)
κdσ.
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The ball
Which is the sign of this derivative? Case of the unit ball in R2

Steklov eigenvalues:

µ2j−1 = µ2j =
2πj
M

for all j ∈ N \ {0}, µ0 = 0. Steklov eigenfunctions (in polar
coordinates):

uj,1(r , θ) = π−
1
2 r j cos(jθ), uj,2(r , θ) = π−

1
2 r j sin(jθ).

Asymptotic expansion of Neumann eigenvalues:

λ2j−1(ε) = µ2j−1 +

(
2jµ2j−1

3
+

µ2j−1
2

2(j + 1)

)
ε + O(ε2)

=
2πj
M

+
2πj2

M

(
2
3

+
π

M(1 + j)

)
ε + O(ε2), as ε→ 0.
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The ball

0.2 0.4 0.6 0.8
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Figure: λ2j−1 = λ2j with M = π in the range (ε, λ) ∈ (0, 1) × (0, 50).
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The ball
Remark: for the ball in RN, N ≥ 2, it is possible to obtain the
derivative µ1 explicitly by means of another technique:

write the solutions of −∆u = λρεu on ωε and Ω \ ωε in terms
of ultraspherical Bessel functions;
impose continuity conditions at r = 1 − ε and boundary
condition: this gives an equation of the type

F (λ, ε) = 0;

prove that Implicit Function Theorem can be applied;
use suitable Taylor’s expansions, estimates for the
remainders, recursive formulas for cross-products of Bessel
functions,...

Formula for the derivative:

λ′2j−1(0) =
2jµ2j−1

3
+

2µ2
2j−1

N(2j + N)
.
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To do

Is µ1 always positive? This is true provided

1
|∂Ω|

∫
∂Ω

u2dσ ≥
1
|Ω|

∫
Ω

u2dx;

∫
∂Ω

u2κdσ ≥
K
|∂Ω|

∫
∂Ω

u2dσ.

What for a generic Ω in RN?

Plan:

C2 domains that are starshaped with respect to a ball;

generic C2 domains.
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