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Abstract. We consider the Steklov eigenvalues of the Laplace operator as lim-

iting Neumann eigenvalues in a problem of mass concentration at the boundary
of a ball. We discuss the asymptotic behavior of the Neumann eigenvalues and

find explicit formulas for their derivatives at the limiting problem. We deduce

that the Neumann eigenvalues have a monotone behavior in the limit and that
Steklov eigenvalues locally minimize the Neumann eigenvalues.

1. Introduction

Let B be the unit ball in RN , N ≥ 2, centered at zero. We consider the Steklov
eigenvalue problem for the Laplace operator

(1.1)

{
∆u = 0, in B,
∂u
∂ν = λρu, on ∂B,

in the unknowns λ (the eigenvalue) and u (the eigenfunction), where ρ = M/σN ,
M > 0 is a fixed constant, and σN denotes the surface measure of ∂B.

As is well-known the eigenvalues of problem (1.1) are given explicitly by the
sequence

(1.2) λl =
l

ρ
, l ∈ N,

and the eigenfunctions corresponding to λl are the harmonic polynomials of degree
l. In particular, the multiplicity of λl is (2l +N − 2)(l +N − 3)!/(l!(N − 2)!), and
only λ0 is simple, the corresponding eigenfunctions being the constant functions.
See [7] for an introduction to the theory of harmonic polynomials.

A classical reference for problem (1.1) is [15]. For a recent survey paper, we refer
to [8]; see also [9], [12] for related problems.

It is well-known that for N = 2, problem (1.1) provides the vibration modes of
a free elastic membrane the total mass of which is M and is concentrated at the
boundary with density ρ; see e.g., [4]. As is pointed out in [12], such a boundary
concentration phenomenon can be explained in any dimension N ≥ 2 as follows.

For any 0 < ε < 1, we define a ‘mass density’ ρε in the whole of B by setting

(1.3) ρε(x) =

{
ε, if |x| ≤ 1− ε,
M−εωN (1−ε)N
ωN (1−(1−ε)N )

, if 1− ε < |x| < 1,
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where ωN = σN/N is the measure of the unit ball. Note that for any x ∈ B we
have ρε(x) → 0 as ε → 0, and

∫
B
ρεdx = M for all ε > 0, which means that the

‘total mass’ M is fixed and concentrates at the boundary of B as ε → 0. Then we
consider the following eigenvalue problem for the Laplace operator with Neumann
boundary conditions

(1.4)

{
−∆u = λρεu, in B,
∂u
∂ν = 0, on ∂B.

We recall that for N = 2 problem (1.4) provides the vibration modes of a free elastic
membrane with mass density ρε and total mass M (see e.g., [6]). The eigenvalues
of (1.4) have finite multiplicity and form a sequence

λ0(ε) < λ1(ε) ≤ λ2(ε) ≤ · · · ,
depending on ε, with λ0(ε) = 0.

It is not difficult to prove that for any l ∈ N
(1.5) λl(ε)→ λl, as ε→ 0,

see [2], [12]. (See also [5] for a detailed analysis of the analogue problem for the
biharmonic operator.) Thus the Steklov problem can be considered as a limiting
Neumann problem where the mass is concentrated at the boundary of the domain.

In this paper we study the asymptotic behavior of λl(ε) as ε → 0. Namely, we
prove that such eigenvalues are differentiable with continuity with respect to ε for
ε ≥ 0 small enough, and that the following formula holds

(1.6) λ′l(0) =
2lλl

3
+

2λ2l
N(2l +N)

.

In particular, for l 6= 0, λ′l(0) > 0 hence λl(ε) is strictly increasing and the Steklov
eigenvalues λl minimize the Neumann eigenvalues λl(ε) for ε small enough.

It is interesting to compare our results with those in [14], where authors consider
the Neumann Laplacian in the annulus 1 − ε < |x| < 1 and prove that for N = 2
the first positive eigenvalue is a decreasing function of ε. We note that our analysis
concerns all eigenvalues λl with arbitrary indexes and multiplicity, and that we do
not prove global monotonocity of λl(ε), which in fact does not hold for any l; see
Figures 1, 2.

The proof of our results relies on the use of Bessel functions which allows to recast
problem (1.4) in the form of an equation F (λ, ε) = 0 in the unknowns λ, ε. Then,
after some preparatory work, it is possible to apply the Implicit Function Theorem
and conclude. We note that, despite the idea of the proof is rather simple and
used also in other contexts (see e.g., [11]), the rigorous application of this method
requires lenghty computations, suitable Taylor’s expansions and estimates for the
corresponding remainders, as well as recursive formulas for the cross-products of
Bessel functions and their derivatives.

Importantly, the multiplicity of the eigenvalues which is often an obstruction in
the application of standard asymptotic analysys, does not affect our method.

This paper is organized as follows. The proof of formula (1.6) is discussed in
Section 2. In particular, Subsection 2.1 is devoted to certain technical estimates
which are necessary for the rigorous justification of our arguments. In Subsection
2.2 we consider also the case N = 1 and prove formula (1.6) for λ1 which, by the
way, is the only non zero eigenvalue of the one dimensional Steklov problem. In
Appendix we establish the required recursive formulas for the cross-products of
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Bessel functions and their derivatives which are deduced by the standard formulas
available in the literature.

2. Asymptotic behavior of Neumann eigenvalues

It is convenient to use the standard spherical coordinates (r, θ) in RN , where
θ = (θ1, ...θN−1). The corresponding trasformation of coordinates is

x1 = r cos(θ1),

x2 = r sin(θ1) cos(θ2),

...

xN−1 = r sin(θ1) sin(θ2) · · · sin(θN−2) cos(θN−1),

xN = r sin(θ1) sin(θ2) · · · sin(θN−2) sin(θN−1),

with θ1, ..., θN−2 ∈ [0, π], θN−1 ∈ [0, 2π[ (here it is understood that θ1 ∈ [0, 2π[ if
N = 2). We denote by δ the Laplace-Beltrami operator on the unit sphere SN−1
of RN , defined by

δ =

N−1∑
j=1

1

qj(sin θj)N−j−1
∂

∂θj

(
(sin θj)

N−j−1 ∂

∂θj

)
,

where

q1 = 1, qj = (sin θ1 sin θ2 · · · sinθj−1)2, j = 2, ..., N − 1.

To shorten notation, in what follows we will denote by a and b the quantities defined
by

a =
√
λε(1− ε), and b =

√
λρ̃ε(1− ε),

where

ρ̃ε =
M − εωN (1− ε)N

ωN

(
1− (1− ε)N

) .
As customary, we denote by Jν and Yν the Bessel functions of the first and second
species and order ν respectively (recall that Jν and Yν are solutions of the Bessel
equation z2y′′(z) + zy′(z) + (z2 − ν2)y(z) = 0).

We begin with the following lemma.

Lemma 2.1. Given an eigenvalue λ of problem (1.4), a corresponding eigenfunc-
tion u is of the form u(r, θ) = Sl(r)Hl(θ) where Hl(θ) is a spherical harmonic of
some order l ∈ N and

(2.2) Sl(r) =


r1−

N
2 Jνl(

√
λεr), if r < 1− ε

r1−
N
2
(
αJνl(

√
λρ̃εr) + βYνl(

√
λρ̃εr)

)
, if 1− ε < r < 1,

where νl = (N+2l−2)
2 and α, β are given by

α =
πb

2

(
Jνl(a)Y ′νl(b)−

a

b
J ′νl(a)Yνl(b)

)
β =

πb

2

(a
b
Jνl(b)J

′
νl

(a)− J ′νl(b)Jνl(a)
)
.
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Proof. Recall that the Laplace operator can be written in spherical coordinates as

∆ = ∂rr +
N − 1

r
∂r +

1

r2
δ.

In order to solve the equation −∆u = λρεu, we separate variables so that u(r, θ) =
S(r)H(θ). Then using l(l + N − 2), l ∈ N, as separation constant, we obtain the
equations

(2.3) r2S′′ + r(N − 1)S′ + r2λρεS − l(l +N − 2)S = 0

and

(2.4) −δH = l(l +N − 2)H.

By setting S(r) = r1−
N
2 S̃(r) into (2.3), it follows that S̃(r) satisfies the Bessel

equation

S̃′′ +
1

r
S̃′ +

(
λρε −

ν2l
r2

)
S̃ = 0.

Since solutions u of (1.4) are bounded on Ω and Yνl(z) blows up at z = 0, it

follows that for r < 1 − ε, S(r) is a multiple of the function r1−
N
2 Jνl(

√
λεr). For

1 − ε < r < 1, S(r) is a linear combination of the functions r1−
N
2 Jνl(

√
λρ̃εr)

and r1−
N
2 Yνl(

√
λρ̃εr). On the other hand, the solutions of (2.4) are the spherical

harmonics of order l. Then u can be written as in (2.2) for suitable values of
α, β ∈ R.

Now we compute coefficient α and β in (2.2). Solutions u of (1.4) belong to the
standard Sobolev space H2(Ω), hence α and β must be chosen in such a way that
u and ∂ru are continuous at r = 1− ε, that is{

αJνl(
√
λρ̃ε(1− ε)) + βYνl(

√
λρ̃ε(1− ε)) = Jνl(

√
λε(1− ε)) ,

αJ ′νl(
√
λρ̃ε(1− ε)) + βY ′νl(

√
λρ̃ε(1− ε)) =

√
ε
ρ̃ε
J ′νl(
√
λε(1− ε)) .

Solving the system we obtain

α =
Jνl(a)Y ′νl(b)−

a
bJ
′
νl

(a)Yνl(b)

Jνl(b)Y
′
νl

(b)− J ′νl(b)Yνl(b)
, β =

a
bJνl(b)J

′
νl

(a)− J ′νl(b)Jνl(a)

Jνl(b)Y
′
νl

(b)− J ′νl(b)Yνl(b)
.

Note that Jνl(b)Y
′
νl

(b) − J ′νl(b)Yνl(b) is the Wronskian in b, which is known to be
2
πb (see [1, §9]). This concludes the proof. �

We are ready to establish an implicit characterization of the eigenvalues of (1.4).

Proposition 2.5. The nonzero eigenvalues λ of problem (1.4) are given implicitly
as zeros of the equation

(2.6)

(
1− N

2

)
P1(a, b) +

b

(1− ε)
P2(a, b) = 0

where
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P1(a, b) = Jνl(a)

(
Y ′νl(b)Jνl(

b

1−ε
)−J ′νl(b)Yνl(

b

1−ε
)

)
+

a

b
J ′νl(a)

(
Jνl(b)Yνl(

b

1−ε
)−Yνl(b)Jνl(

b

1−ε
)

)
,

P2(a, b) = Jνl(a)

(
Y ′νl(b)J

′
νl

(
b

1−ε
)−J ′νl(b)Y

′
νl

(
b

1−ε
)

)
+

a

b
J ′νl(a)

(
Jνl(b)Y

′
νl

(
b

1−ε
)−Yνl(b)J ′νl(

b

1−ε
)

)
.

Proof. By Lemma 2.1, an eigenfunction u associated with an eigenvalue λ is of the
form u(r, θ) = Sl(r)Hl(θ) where for r > 1− ε

Sl(r) =
πb

2
r1−

N
2

[(
Jνl(a)Y ′νl(b)−

a

b
J ′νl(a)Yνl(b)

)
Jνl(

br

1− ε
)

+
(a
b
Jνl(b)J

′
νl

(a)−J ′νl(b)Jνl(a)
)
Yνl(

br

1− ε
)

]
.

We require that ∂u
∂ν = ∂u

∂r |r=1
= 0, which is true if and only if

πb

2

(
1−N

2

)[(
Jνl(a)Y ′νl(b)−

a

b
J ′νl(a)Yνl(b)

)
Jνl(

b

1− ε
)

+
(a
b
Jνl(b)J

′
νl

(a)−J ′νl(b)Jνl(a)
)
Yνl(

b

1− ε
)

]
+

πb2

2(1− ε)

[(
Jνl(a)Y ′νl(b)−

a

b
J ′νl(a)Yνl(b)

)
J ′νl(

b

1− ε
)

+
(a
b
Jνl(b)J

′
νl

(a)−J ′νl(b)Jνl(a)
)
Y ′νl(

b

1− ε
)

]
= 0.

The previous equation can be clearly rewritten in the form (2.6). �

We now prove the following.

Lemma 2.7. Equation (2.6) can be written in the form

λ2ε

(
M

3NωN
− 1

νl(1 + νl)

)
+ λε

(
N

2
− νl +

(2−N)NωN
2νl(1 + νl)M

)
− 2λ+

2NωN l

M

−2NωN l

M

(
N − 1

2
− ωN
M
− νl

)
ε+R(λ, ε) = 0(2.8)

where R(λ, ε) = O(ε
√
ε) as ε→ 0.

Proof. We plan to divide the left hand-side of (2.6) by J ′νl(a) and to analyze the
resulting terms using the known Taylor’s series for Bessel functions. Note that
J ′νl(a) > 0 for all ε small enough. We split our analysis into three steps.

Step 1. We consider the term P2(a,b)
J′νl

(a) , that is

(2.9)
Jνl(a)

J ′νl(a)

[
Y ′νl(b)J

′
νl(

b

1− ε )− Y
′
νl(

b

1− ε )J
′
νl(b)

]
+
a

b

[
Y ′νl(

b

1− ε )Jνl(b)− Yνl(b)J
′
νl(

b

1− ε )
]
.
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Using Taylor’s formula, we write the derivatives of the Bessel functions in (2.9),
call them C′νl as follows
(2.10)

C′νl

(
b

1− ε

)
= C′νl(b) + C′′νl(b)

εb

1− ε
+ · · ·+ C(n)νl (b)

(n− 1)!

(
εb

1− ε

)n−1
+ o

(
εb

1− ε

)n−1
.

Then, using (2.10) with n = 4 for J ′νl and Y ′νl we get

(2.11)

Jνl(a)

J ′νl(a)

[
εb

1− ε
(
Y ′νl(b)J

′′
νl(b)− J

′
νl(b)Y

′′
νl(b)

)
+

ε2b2

2(1− ε)2
(
Y ′νl(b)J

′′′
νl (b)− J

′
νl(b)Y

′′′
νl (b)

)
+

ε3b3

6(1− ε)3
(
Y ′νl(b)J

′′′′
νl (b)− J

′
νl(b)Y

′′′′
νl (b)

)
+R1(b)

]
+
a

b

[(
Jνl(b)Y

′
νl(b)− Yνl(b)J

′
νl(b)

)
+

εb

1− ε
(
Jνl(b)Y

′′
νl(b)− Yνl(b)J

′′
νl(b)

)
+

ε2b2

2(1− ε)2
(
Jνl(b)Y

′′′
νl (b)− Yνl(b)J

′′′
νl (b)

)
+R2(b)

]
,

where R1(b), R2(b) are the appropriate remainders in the Taylor’s formulas.
Let R3 be the remainder defined in Lemma 2.24. We set

(2.12) R(λ, ε) = R3(a)

[
εb

1− ε
(
Y ′νl(b)J

′′
νl(b)−J

′
νl(b)Y

′′
νl(b)

)
+

ε2b2

2(1− ε)2
(
Y ′νl(b)J

′′′
νl (b)−J

′
νl(b)Y

′′′
νl (b)

)
+

ε3b3

6(1− ε)3
(
Y ′νl(b)J

′′′′
νl (b)−J

′
νl(b)Y

′′′′
νl (b)

)]
+R1(b)

[
a

νl
+

a3

2νl2(1 + νl)

]
+R2(b)

a

b
+R3(a)R1(b).

By Lemma 2.29, it turns out that R(λ, ε) = O(ε3) as ε→ 0.
We also set

f(ε) = b21(ε)a31(ε)f1(ε);

g(ε) = b21(ε)a1(ε)g1(ε) + a31(ε)g2(ε);

h(ε) = a1(ε)h1(ε) + ε2
a31(ε)

b21(ε)
h2(ε);

k(ε) =
a1(ε)

b21(ε)
k1(ε),
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where

a1(ε) =
a√
λε

= (1− ε);

b1(ε) = b

√
ε

λ
;

f1(ε) =
1

6νl2(1 + νl)(1− ε)3
;

g1(ε) =
1

3νl(1− ε)3
;

g2(ε) = −
1

νl2(1 + νl)(1− ε)
+

ε

2νl2(1 + νl)(1− ε)2
− ε2(3 + 2νl

2)

6νl2(1 + νl)(1− ε)3
;

h1(ε) = −
2

νl(1− ε)
+

ε

νl(1− ε)2
− ε2(3 + 2νl

2)

3νl(1− ε)3
− ε

(1− ε)2 ;

h2(ε) =
1

(1 + νl)(1− ε)
− 3ε

2(1 + νl)(1− ε)2
+

ε2(νl
4 + 11νl

2)

6νl2(1 + νl)(1− ε)3
;

k1(ε) = 2 +
2ενl

(1− ε) −
3ε2νl

(1− ε)2 +
ε3(νl

4 + 11νl
2)

3νl(1− ε)3
− 2ε

(1− ε) +
ε2(2 + νl

2)

(1− ε)2 .

Note that functions f, g, h, k are continuous at ε = 0 and f(0), g(0), h(0), k(0) 6= 0.
Using the explicit formulas for the cross products of Bessel functions given by

Lemma 3.2 and Corollary 3.7 in (2.11), (2.9) can be written as

(2.13)
1√
λπ

ε
√
εk(ε) +

√
λ

π
ε
√
εh(ε) +

λ
√
λ

π
ε2
√
εg(ε) +

λ2
√
λ

π
ε3
√
εf(ε) +R(λ, ε).

Step 2. We consider the quantity P1(a,b)
J′νl

(a) , that is

(2.14)
Jνl(a)

J ′νl(a)

[
Y ′νl(b)Jνl(

b

1− ε )− J
′
νl(b)Yνl(

b

1− ε )
]

+
a

b

[
Jνl(b)Yνl(

b

1− ε )− Yνl(b)Jνl(
b

1− ε )
]
.

Proceeding as in Step 1 and setting

f̃(ε) = − a31(ε)b1(ε)

2πνl2(1 + νl)(1− ε)2
;

g̃(ε) =
a31(ε)

b1(ε)

(
1

πνl2(1 + νl)
+

ε2

2π(1 + νl)(1− ε)2

)
− a1(ε)b1(ε)

νlπ(1− ε)2
;

h̃(ε) =
a1(ε)

b1(ε)

(
2

νlπ
+

2ε

π(1− ε) +
(νl − 1)

π(1− ε)2 ε
2

)
,

one can prove that (2.14) can be written as

(2.15) εh̃(ε) + λε2g̃(ε) + λ2ε3f̃(ε) + R̂(λ, ε),

where R̂(λ, ε) = O(ε2
√
ε) as ε→ 0; see Lemma 2.29.
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Step 3. We combine (2.13) and (2.15) and rewrite equation (2.6) in the form

(2.16) ε(1− N

2
)h̃(ε) + ε

b1(ε)k(ε)

π(1− ε) + λε2(1− N

2
)g̃(ε) + λε

b1(ε)h(ε)

π(1− ε)

+ λ2ε3(1− N

2
)f̃(ε) + λ2ε2

b1(ε)g(ε)

π(1− ε) + λ3ε3
b1(ε)f(ε)

π(1− ε) +R0(λ, ε) = 0,

where

R0(λ, ε) =

√
λb1(ε)

(1− ε)
√
ε
R(λ, ε) +

(
1− N

2

)
R̂(λ, ε).

Note that R0(λ, ε) = O(ε2
√
ε) as ε → 0. Dividing by ε in (2.16) and setting

R1(λ, ε) = R0(λ,ε)
ε , we obtain

(1− N

2
)h̃(ε) +

b1(ε)k(ε)

π(1− ε)
+ λε(1− N

2
)g̃(ε) + λ

b1(ε)h(ε)

π(1− ε)
(2.17)

+λ2ε2(1− N

2
)f̃(ε) + λ2ε

b1(ε)g(ε)

π(1− ε)
+ λ3ε2

b1(ε)f(ε)

π(1− ε)
+R1(λ, ε) = 0.

We now multiply in (2.17) by πνl(1−ε)
b1(ε)

which is a positive quantity for all 0 <

ε < 1. Taking into account the definitions of functions g, h, k, g̃, h̃, we can finally
rewrite (2.17) in the form

λ2ε

(
ρ̂(ε)

3
− 1

νl(1 + νl)

)
+ λε

(
N

2
− νl +

2−N
2νl(1 + νl)ρ̂(ε)

)
− 2λ

+
2l (1 + ενl)

ρ̂(ε)
+R(λ, ε) = 0,(2.18)

where

ρ̂(ε) = ερ̃(ε) =
M − ωNε(1− ε)N

ωN

(
N − N(N−1)

2 ε−
∑N
k=3

(
N
k

)
(−1)kεk−1

) ,
and R(λ, ε) = O(ε

√
ε) as ε → 0. The formulation in (2.8) can be easily deduced

by observing that

ρ̂ε =
M

NωN
+ 2

M

NωN

(
N − 1

4
− ωN

2M

)
ε+O(ε2), as ε→ 0.

�

We are now ready to prove our main result

Theorem 2.19. All eigenvalues of problem (1.4) have the following asymptotic
behavior

(2.20) λl(ε) = λl +

(
2lλl

3
+

2λ2l
N(2l +N)

)
ε+ o(ε), as ε→ 0,

where λl are the eigenvalues of problem (1.1).
Moreover, for all l ∈ N the functions defined by λl(ε) for ε > 0 and λl(0) = λl,

are continuous in the whole of [0, 1[ and of class C1 in a neighborhood of ε = 0.

Proof. By using the Min-Max Principle and related standard arguments, one can
easily prove that λl(ε) depends with continuity on ε > 0 (cfr. [13], see also [10]).
Moreover, by using (1.5) the maps ε 7→ λl(ε) can be extended by continuity at the
point ε = 0 by setting λl(0) = λl.
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In order to prove differentiability of λl(ε) around zero and the validity of (2.20),
we consider equation (2.8) and apply the Implicit Function Theorem. Note that
equation (2.8) can be written in the form F (λ, ε) = 0 where F is a function of class
C1 in the variables (λ, ε) ∈]0,∞[×[0, 1[, with

F (λ, 0) = −2λ+
2NωN l

M
,

F ′λ(λ, 0) = −2,

F ′ε(λ, 0) = λ2
(

M

3NωN
− 1

νl(1 + νl)

)
+ λ

(
N

2
− νl +

(2−N)NωN
2νl(1 + νl)M

)
−2NωN l

M

(
N − 1

2
− ωN
M
− νl

)
(2.21)

By (1.2), λl = NωN l/M hence F (λl, 0) = 0. Since F ′λ(λl, 0) 6= 0, the Implicit
Function Theorem combined with the continuity of the functions λl(·) allows to
conclude that functions λl(·) are of class C1 around zero.

We now compute the derivative of λl(·) at zero. Using the equality NωN/M =
λl/l and recalling that νl = l +N/2− 1 we get

F ′ε(λl, 0) = λ2l

(
l

3λl
− 1

νl(1 + νl)

)
+ λl

(
1− l +

λl(2−N)

2lνl(1 + νl)

)
− 2λl

(
1

2
− l − λl

Nl

)
= λ2l

(
1

νl(1 + νl)

(
2−N

2l
− 1

)
+

2

Nl

)
+

4

3
λll =

4λ2l
N2 + 2Nl

+
4

3
λll.(2.22)

Finally, formula λ′l(0) = −F ′ε(λl, 0)/F ′λ(λl, 0) yields (1.6) and the validity of (2.20).
�

Corollary 2.23. For any l ∈ N \ {0} there exists δl such that the function λl(·) is
strictly increasing in the interval [0, δl[. In particular, λl < λl(ε) for all ε ∈]0, δl[.
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Figure 1. Solution branches of equation (2.6) with N = 2, M =
π in the region (ε, λ) ∈]0, 1[×]0, 150[ . The colors refer to the choice
of l in (2.6), in particular blue (l = 0), red (l = 1), green (l = 2),
purple (l = 3), orange (l = 4).
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Figure 2. Solution branches of equation (2.6) with N = 2, M = π
in the region (ε, λ) ∈]0, 1[×]0, 50[ . The colors refer to the choice
of l in (2.6), in particular blue (l = 0), red (l = 1), green (l = 2),
purple (l = 3), orange (l = 4), cyan (l = 5), pink (l = 6) .
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2.1. Estimates for the remainders. This subsection is devoted to the proof of
a few technical estimates used in the proof of Lemma 2.7.

Lemma 2.24. The function R3 defined by

(2.25)
Jν(z)

J ′ν(z)
=
z

ν
+

z3

2ν2(1 + ν)
+R3(z),

is O(z5) as z → 0.

Proof. Recall the well-known following representation of the Bessel functions of the
first species

(2.26) Jν(z) =
(z

2

)ν +∞∑
j=0

(−1)j

j!Γ(j + ν + 1)

(z
2

)2j
.

For clarity, we simply write

(2.27) Jν(z) = zν(a0 + a2z
2 + a4z

4 +O(z5)),

hence

(2.28) J ′ν(z) = zν−1(νa0 + (ν + 2)a2z
2 + (ν + 4)a4z

4 +O(z5))

where the coefficients a0, a2, a4 are defined by (2.26). By (2.27), (2.28) and standard
computations it follows that

Jν(z)

J ′ν(z)
=
z

ν
− 2a2
ν2a0

z3 +O(z5),

which gives exactly (2.25). �

Lemma 2.29. For any λ > 0 the remainders R(λ, ε) and R̂(λ, ε) defined in the
proof of Lemma 2.7 are O(ε3), O(ε2

√
ε), respectively, as ε → 0. Moreover, the

same holds true for the corresponding partial derivatives ∂λR(λ, ε), ∂λR̂(λ, ε).

Proof. First, we considerR3(a) = R3(
√
λε(1−ε)) whereR3 is defined in Lemma 2.24

and we differentiate it with respect to λ. We obtain

∂R3(a)

∂λ
=
aR′3(a)

2λ
,

hence by Lemma 2.24 we can conclude that R3(a) and ∂R3(a)
∂λ are O(ε2

√
ε) as ε→ 0.

Now consider R1(b) and R2(b) defined in the proof of Lemma 2.7. Since λ > 0,
we have that b > 0 hence the Bessel functions are analytic in b and we can write

R1(b) =

+∞∑
k=4

εkbk

k!(1− ε)k
(
Y ′ν(b)J

k+1
ν (b)− J ′ν(b)Y k+1

ν (b)
)

2
√
λ
∂R1(b)

∂λ
=

εb1(ε)√
ε(1− ε)

+∞∑
k=4

bk−1εk−1

(k − 1)!(1− ε)k−1

(
Y ′ν(b)J

k+1
ν (b)− J ′ν(b)Y k+1

ν (b)
)

+
b1(ε)√
ε

+∞∑
k=4

εkbk

k!(1− ε)k
(
Y ′ν(b)J

k+1
ν (b)− J ′ν(b)Y k+1

ν (b)
)′
.

Using the fact that b =
√
λ/εb1(ε) and Lemma 3.2 we conclude that all the cross

products of the form Y ′ν(b)Jk+1
ν (b)−J ′ν(b)Y k+1

ν (b) and their derivatives (Y ′ν(b)Jk+1
ν (b)−

J ′ν(b)Y k+1
ν (b))′ are O(

√
ε) and O(ε) respectively, as ε→ 0. It follows that R1(λ, ε)

and ∂λR1(λ, ε) are O(ε2
√
ε) as ε→ 0.
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Similarly,

R2(λ, ε) =

+∞∑
k=3

εkbk

k!(1− ε)k
(
Jν(b)Y

k+1
ν (b)− Yν(b)Jk+1

ν (b)
)

2
√
λ
∂R2(b)

∂λ
=

εb1(ε)√
ε(1− ε)

+∞∑
k=3

bk−1εk−1

(k − 1)!(1− ε)k−1

(
Jν(b)Y

k+1
ν (b)− Yν(b)Jk+1

ν (b)
)

+
b1(ε)√
ε

+∞∑
k=3

εkbk

k!(1− ε)k
(
Jν(b)Y

k+1
ν (b)− Yν(b)Jk+1

ν (b)
)′
,

hence R2(λ, ε) and ∂λR2(λ, ε) are O(ε2) as ε→ 0.
Summing up all the terms, using Lemma 3.1 and Corollary 3.7, we obtain

R(λ, ε) = R3(a)

[
2ε

π(1− ε)

(
ν2

b2
− 1

)
+

ε2

π(1− ε)2

(
1− 3ν2

b2

)
+

ε3b2

3π(1− ε)3

(
ν4 + 11ν2

b4
− 3 + 2ν2

b2
+ 1

)]
+R1(b)

[
a

ν
+

a3

2ν2(1 + ν)

]
+R2(b)

a

b
+R3(a)R1(b).

We conclude that R(λ, ε) is O(ε3) as ε→ 0. Moreover, it easily follows that ∂R(λ,ε)
∂λ

is also O(ε3) as ε→ 0.

The proof of the estimates for R̂ and its derivatives is similar and we omit it. �

Remark 2.30. According to standard Landau’s notation, saying that a function
f(z) is O(g(z)) as z → 0 means that there exists C > 0 such that |f(z)| ≤ C|g(z)|
for any z sufficiently close to zero. Thus, using Landau’s notation in the statements
of Lemmas 2.7, 2.29 understands the existence of such constants C, which in prin-
ciple may depend on λ > 0. However, a careful analysis of the proofs reveals that
given a bounded interval of the type [A,B] with 0 < A < B then the appropriate
constants C in the estimates can be taken independent of λ ∈ [A,B].

2.2. The case N = 1. We include here a description of the case N = 1 for the
sake of completeness. Let Ω be the open interval ]− 1, 1[. Problem (1.1) reads

(2.31)

{
u′′(x) = 0, for x ∈]− 1, 1[,
u′(±1) = ±λM2 u(±1),

in the unknowns λ and u. It is easy to see that the only eigenvalues are λ0 = 0 and
λ1 = 2

M and they are associated with the constant functions and the function x,
respectively. As in (1.3), we define a mass density ρε on the whole of ]− 1, 1[ by

ρε(x) =

{
M
2ε − 1 + ε if x ∈]− 1,−1 + ε[∪]1− ε, 1[,
ε if x ∈]− 1 + ε, 1− ε[.

Note that for any x ∈] − 1, 1[ we have ρε(x) → 0 as ε → 0, and
∫ 1

−1 ρεdx = M for

all ε > 0. Problem (1.4) for N = 1 reads

(2.32)

{
−u′′(x) = λρε(x)u(x), for x ∈]− 1, 1[,
u′(−1) = u′(1) = 0.

It is well-known from Sturm-Liouville theory that problem (2.32) has an increasing
sequence of non-negative eigenvalues of multiplicity one. We denote the eigenvalues
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of (2.32) by λl(ε) with l ∈ N. For any ε ∈]0, 1[, the only zero eigenvalue is λ0(ε)
and the corresponding eigenfunctions are the constant functions.

We establish an implicit characterization of the eigenvalues of (2.32).

Proposition 2.33. The nonzero eigenvalues λ of problem (2.32) are given implic-
itly as zeros of the equation

(2.34) 2

√
ε

(
M

2ε
− 1 + ε

)
cos (2

√
λε(1− ε)) sin

(
2ε

√
λ

(
M

2ε
− 1 + ε

))

+

[
−M

2ε
+ 1 +

(
M

2ε
− 1 + 2ε

)
cos

(
2ε

√
λ

(
M

2ε
− 1 + ε

))]
sin
(

2
√
λε(1− ε)

)
= 0.

Proof. Given an eigenvalue λ > 0, a solution of (2.32) is of the form

u(x) =


A cos (

√
λρ2x) +B sin (

√
λρ2x), for x ∈]− 1,−1 + ε[,

C cos (
√
λρ1x) +D sin (

√
λρ1x), for x ∈]− 1 + ε, 1− ε[,

E cos (
√
λρ2x) + F sin (

√
λρ2x), for x ∈]1− ε, 1[,

where ρ1 = ε, ρ2 = M
2ε − 1 + ε and A,B,C,D,E, F are suitable real numbers. We

impose the continuity of u and u′ at the points x = −1 + ε and x = 1 − ε and
the boundary conditions, obtaining a homogeneous system of six linear equations
in six unknowns of the form Mv = 0, where v = (A,B,C,D,E, F ) and M is the
matrix associated with the system. We impose the condition detM = 0. This
yields formula (2.34). �

Note that λ = 0 is a solution for all ε > 0, then we consider only the case of
nonzero eigenvalues. Using standard Taylor’s formulas, we easily prove the following

Lemma 2.35. Equation (2.34) can be rewritten in the form

(2.36) M − λM2

2
+
λM2

6

(
1 + λ

(
2 +

M

2

))
ε+R(λ, ε) = 0,

where R(λ, ε) = O(ε2) as ε→ 0.

Finally, we can prove the following theorem. Note that formula (2.38) is the
same as (2.20) with N = 1, l = 1.

Theorem 2.37. The first eigenvalue of problem (2.32) has the following asymptotic
behavior

(2.38) λ1(ε) = λ1 +
2

3
(λ1 + λ21)ε+ o(ε) as ε→ 0,

where λ1 = 2/M is the only nonzero eigenvalue of problem (2.31). Moreover, for
l > 1 we have that λl(ε)→ +∞ as ε→ 0.

Proof. The proof is similar to that of Theorem 2.19. It is possible to prove that the
eigenvalues λl(ε) of (2.32) depend with continuity on ε > 0. We consider equation
(2.36) and apply the Implicit Function Theorem. Equation (2.36) can be written in

the form F (λ, ε) = 0, with F of class C1 in ]0,+∞[×[0, 1[ with F (λ, 0) = M− λM2

2 ,

F ′λ(λ, 0) = −M
2

2 and F ′ε(λ, 0) = λM2

6 (1 + λ(2 + M
2 )).
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Since λ1 = 2
M , F (λ1, 0) = 0 and F ′λ(λ1, 0) 6= 0, the zeros of equation (2.38) in

a neighborhood of (λ, 0) are given by the graph of a C1-function ε 7→ λ(ε) with
λ(0) = λ1. By continuity arguments, it can be proved that λ(ε) = λ1(ε), hence
λ1(·) is of class C1 in a neighborhood of zero and λ′1(0) = −F ′ε(λ1, 0)/F ′λ(λ1, 0)
which yields formula (2.38).

The divergence as ε → 0 of the higher eigenvalues λl(ε) with l > 1, is clearly
deduced by the fact that the existence of a converging subsequence of the form
λl(εn), n ∈ N would provide the existence of an eigenvalue for the limiting problem
(2.31) different from λ0 and λ1, which is not admissible.

�

3. Appendix

We provide here explicit formulas for the cross products of Bessel functions used
in this paper.

Lemma 3.1. The following identities hold

Yν(z)J
′
ν(z)− Jν(z)Y ′ν(z) = − 2

πz
,

Yν(z)J
′′
ν (z)− Jν(z)Y ′′ν (z) =

2

πz2
,

Y ′ν(z)J
′′
ν (z)− J ′ν(z)Y ′′ν (z) =

2

πz

(
ν2

z2
− 1

)
,

Proof. It is well-known (see [1, §9]) that

Jν(z)Y
′
ν(z)− Yν(z)J ′ν(z) = Jν+1(z)Yν(z)− Jν(z)Yν+1(z) =

2

πz
,

which gives the first identity in the statement. The second identity holds since

Jν(z)Y
′′
ν (z)− Yν(z)J ′′ν (z) =

(
Jν(z)Y

′
ν(z)− Yν(z)J ′ν(z)

)′
=

(
2

πz

)′
= − 2

πz2
.
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The third identity holds since

Y ′ν(z)J
′′
ν (z)− J ′ν(z)Y ′′ν (z) = Y ′ν(z)

(
Jν−1(z)−

ν

z
Jν(z)

)′
− J ′ν(z)

(
Yν−1(z)−

ν

z
Yν(z)

)′
= Y ′ν(z)J

′
ν−1(z)− J ′ν(z)Y ′ν−1(z) +

ν

z2
(
Y ′ν(z)Jν(z)− J ′ν(z)Yν(z)

)
=

(
Y ′ν(z)

1

2
(Jν−2(z)− Jν(z))− J ′ν(z)

1

2
(Yν−2(z)− Yν(z))

)
+

2ν

πz3

=
1

2

(
Y ′ν(z)Jν−2(z)− J ′ν(z)Yν−2(z)

)
− 1

2

(
Y ′ν(z)Jν(z)− J ′ν(z)Yν(z)

)
+

2ν

πz3

=
1

2

(
J ′ν(z)Yν(z)− Y ′ν(z)Jν(z)

)
+
ν − 1

z

(
Y ′ν(z)Jν−1(z)− J ′ν(z)Yν−1(z)

)
− 1

πz
+

2ν

πz3

=
ν − 1

z

(
Jν−1(z)

(
Yν−1(z)−

ν

z
Yν(z)

)
− Yν−1(z)

(
Jν−1(z)−

ν

z
Jν(z)

))
− 2

πz
+

2ν

πz3

= −ν(ν − 1)

z2
(Yν(z)Jν−1(z)− Jν(z)Yν−1(z))−

2

πz
+

2ν

πz3

=
2

πz

(
−1 + ν2

z2

)
,

where the first, second and fourth equalities follow respectively from the well-known
formulas C′ν(z) = Cν−1(z) − ν

z Cν(z), 2C′ν(z) = Cν−1(z) − Cν+1(z) and Cν−2(z) +

Cν(z) = 2(ν−1)
z Cν−1(z), where Cν(z) stands both for Jν(z) and Yν(z) (see [1, §9]).

This proves the lemma. �

Lemma 3.2. The following identities hold

Yν(z)J (k)
ν (z)− Jν(z)Y (k)

ν (z) =
2

πz
(rk +Rν,k(z)) ,(3.3)

Y ′ν(z)J (k)
ν (z)− J ′ν(z)Y (k)

ν (z) =
2

πz
(qk +Qν,k(z)) ,(3.4)

for all k > 2 and ν ≥ 0, where rk, qk ∈ {0, 1,−1}, and Qν,k(z), Rν,k(z) are fi-
nite sums of quotients of the form

cν,k
zm , with m ≥ 1 and cν,k a suitable constant,

depending on ν, k.

Proof. We will prove (3.3) and (3.4) by induction. Identities (3.3) and (3.4) hold
for k = 1 and k = 2 by Lemma 3.1. Suppose now that

Yν(z)J
(k)
ν (z)− Jν(z)Y (k)

ν (z) =
2

πz
(rk +Rν,k(z)) ,

Y ′ν(z)J
(k)
ν (z)− J ′ν(z)Y (k)(z) =

2

πz
(qk +Qν,k(z)) ,

hold for all ν ≥ 0. First consider

Y ′ν(z)J
(k+1)
ν (z)− J ′ν(z)Y (k+1)

ν (z).



16 PIER DOMENICO LAMBERTI AND LUIGI PROVENZANO

We use the recurrence relations Cν+1(z)+Cν−1(z) = 2ν
z Cν(z) and 2C′(z) = Cν−1(z)−

Cν+1(z), where Cν(z) stands both for Jν(z) and Yν(z) (see [1, §9]). We have

(3.5) Y ′ν(z)J
(k+1)
ν (z) − J ′ν(z)Y

(k+1)
ν (z) = Y ′ν(z)(J ′ν)(k)(z) − J ′ν(z)(Y ′ν)(k)(z)

=
1

4

[
(Yν−1(z) − Yν+1(z)) (Jν−1(z) − Jν+1(z))(k)

− (Jν−1(z) − Jν+1(z)) (Yν−1(z) − Yν+1(z))(k)
]

=
1

4

[(
Yν−1(z)J

(k)
ν−1(z) − Jν−1(z)Y

(k)
ν−1(z)

)
+
(
Yν+1(z)J

(k)
ν+1(z) − Jν+1(z)Y

(k)
ν+1(z)

)
+
(
Jν+1(z)Y

(k)
ν−1(z) − Yν−1(z)J

(k)
ν+1(z)

)
+
(
Jν−1(z)Y

(k)
ν+1(z) − Yν+1(z)J

(k)
ν−1(z)

)]
=

1

4

[
2

πz

(
rk +Rν−1,k(z) + rk +Rν+1,k(z)

)
+

2ν

z

(
Jν(z)Y

(k)
ν−1 − Yν(z)J

(k)
ν−1(z) + Jν(z)Y

(k)
ν+1(z) − Yν(z)J

(k)
ν+1(z)

)
−
(
Jν−1(z)Y

(k)
ν−1(z) − Yν−1(z)J

(k)
ν−1(z) + Jν+1(z)Y

(k)
ν+1(z) − Yν+1J

(k)
ν+1(z)

)]
=

1

4

[
4

πz

(
2rk +Rν−1,k(z) +Rν+1,k(z)

)
+

2ν

z

(
Jν(z) (Yν−1(z) + Yν+1(z))(k) − Yν(z) (Jν−1(z) + Jν+1(z))(k)

)]
=

1

πz

(
2rk +Rν−1,k(z) +Rν+1,k(z)

)
+
ν2

z

(
Jν(z)

(
1

z
Yν(z)

)(k)

− Yν(z)

(
1

z
Jν(z)

)(k)
)

=
2

πz

[
rk +

1

2

(
Rν−1,k(z) +Rν+1,k(z)

)
−
ν2

z

k∑
j=0

k!(−1)k−j

j!zk−j+1
(rj +Rν,j(z))

 .
We prove now (3.4)

(3.6) Yν(z)J
(k+1)
ν (z) − Jν(z)Y

(k+1)
ν (z) =

(
Yν(z)J

(k)
ν (z) − Jν(z)Y

(k)
ν (z)

)′
−
(
Y ′ν(z)J

(k)
ν (z) − J ′ν(z)Y

(k)
ν (z)

)
=

2

πz

(
−qk −Qν,k(z) −

rk

z
−
Rν,k(z)

z
+R′ν,k(z)

)
.

This concludes the proof. �

Corollary 3.7. The following formulas hold

Jν(z)Y
′′′
ν (z)− Yν(z)J ′′′ν (z) =

2

πz

(
2 + ν2

z2
− 1

)
;

Y ′ν(z)J
′′′
ν (z)− J ′ν(z)Y ′′′ν (z) =

2

πz2

(
1− 3ν2

z2

)
;

Y ′ν(z)J
′′′′
ν (z)− J ′ν(z)Y ′′′′ν (z) =

2

πz

(
1− 3 + 2ν2

z2
+
ν4 + 11ν2

z4

)
.
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Proof. From Lemma 3.2 (see in particular (3.6)) it follows

Jν(z)Y
′′′
ν (z)− Yν(z)J ′′′ν (z) = − 2

πz

[
−q2 −Qν,2(z)−

r2
z
− Rν,2(z)

z
+R′ν,2(z)

]
=

2

πz

(
2 + ν2

z2
− 1

)
.

Next we compute

Y ′ν(z)J
′′′
ν (z)− J ′ν(z)Y ′′′ν (z) =

2

πz

[
r2 +Rν,2(z)−

ν2

z

2∑
j=0

2(−1)2−j

j!z2−j+1
(rj +Rν,j(z))

]

=
2

πz2

(
1− 3ν2

z2

)
.

Finally, by (3.5) with k = 3, we have

Y ′ν(z)J
′′′′
ν (z)− J ′ν(z)Y ′′′′ν (z) =

2

πz

[
r3 +

1

2
(Rν−1,3(z) +Rν+1,3(z))

− ν2

z

3∑
j=0

6(−1)3−j

j!z3−j+1
(rj +Rν,j(z))

]

=
2

πz

(
1− 3 + 2ν2

z2
+
ν4 + 11ν2

z4

)
.

�
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Ann. Sci. École Norm. Sup. (3), 19 (1902), 455-490.
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