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Introduction and motivations

Let Ω be a domain in RN. We start by recalling the classical
Steklov eigenvalue problem∆u = 0, in Ω,

∂u
∂ν = λu, on ∂Ω.

W. Stekloff. Sur les problèmes fondamentaux de la physique mathématique (suite et fin).

Ann. Sci. École Norm. Sup. (3), 19:455–490, 1902.

If Ω is a bounded domain with Lipschitz boundary, then the
spectrum is discrete and the eigenvalues form a sequence

0 = λ1 < λ2 ≤ · · · ≤ λj ≤ · · · ↗ +∞.
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Introduction and motivations

Steklov eigenvalues can be interpreted as the eigenvalues of
the Dirichlet to Neumann operator
D : H1/2(∂Ω)→ H−1/2(∂Ω), which is relevant in applications
(e.g., in medical and geophysical imaging).

Steklov eigenvalues represent the squares of the natural
frequencies of vibration of a thin membrane with free frame
and mass uniformly distributed at the boundary.

Shape optimization: Brock-Weinstock’s inequality states that
the “ball is the unique maximizer of λ2 among all Lipschitz
domains in RN with fixed Lebesgue measure”.

Shape optimization 2: Weinstock’s inequality states that
“among all simply connected planar domains with fixed
perimeter, λ2 is maximized by a disk”. The general case is an
open problem.
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Introduction and motivations

Remark

The Steklov problem can be formulated in a more general setting:

Ω is a compact Riemannian manifold of dimension N ≥ 2 with
boundary ∂Ω;

∆ is the Laplace-Beltrami operator on functions on Ω;
∂u
∂ν is the outward normal derivative along the boundary ∂Ω.

A. Girouard and I. Polterovich. Spectral geometry of the Steklov problem. arXiv:1411.6567,

2014.

I. Chavel. Eigenvalues in Riemannian geometry. Academic Press, INC., 1984.
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Introduction and motivations
What about higher order operators?

A prototypical problem is the
eigenvalue problem for the biharmonic operator with Dirichlet
boundary conditions (clamped plate if N = 2)∆2u = λu, in Ω,

u = ∂u
∂ν = 0, on ∂Ω.

We could have Neumann boundary conditions (free plate if N = 2)∆2u = λu, in Ω,
∂2u
∂ν2 = div∂Ω

(
D2u · ν

)
+ ∂∆u

∂ν = 0, on ∂Ω.

and also intermediate boundary conditions (hinged plate if N = 2)∆2u = λu, in Ω,

u = ∂2u
∂ν2 = 0, on ∂Ω.
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Introduction and motivations

What about Steklov boundary conditions for the biharmonic
operator?

6 of 40



Introduction and motivations

In the recent literature, the following Steklov problem for the
biharmonic operator has been discussed

∆2u = 0, in Ω,

u = 0, on ∂Ω,

∆u = λ∂u
∂ν , on ∂Ω.

D. Bucur, A. Ferrero, and F. Gazzola. On the first eigenvalue of a fourth order Steklov

problem. Calc. Var. Partial Differential Equations, 35:103–131, 2009.

The first eigenvalue is the sharp constant of a priori estimates
for solutions of the Laplace equation.

If Ω is the unit ball in RN and λ = N − 1, we have the hinged
plate problem for the associated Poisson problem ∆2u = f .

Shape optimization: the behavior is completely different from
the second order case and not well understood.
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Outline

The program of the talk is:

Introduce a “genuine” Steklov problem for the biharmonic
operator which is the natural generalization to the bilpalacian
of the classical Steklov problem.

Study how the eigenvalues depend upon perturbations of the
domain which preserve the Lebesgue measure.

Consider shape optimization problems, in particular, the
problem of characterizing the optimal sets (maximizers or
minimizers) for the first positive eigenvalue (usually called the
fundamental tone).

Consider the issue of the stability of the optimal shapes and
quantify it.
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Starting point: Neumann b. conditions

Recall (also from the original Steklov paper) that “The eigenvalues
of the Laplace operator with Steklov boundary conditions
represent the squares of the natural frequencies of vibration of a
membrane with a free frame and the mass of which is displaced
uniformly on the boundary”.

‘Free frame’ ∼ ‘Neumann boundary conditions’.

‘mass displaced on the boundary’ ∼ ‘mass which
concentrates in a small neighborhood of the boundary which
shrinks to the bounday’

Then we start from the model of a free vibrating plate with mass
density ρ > 0 on Ω, i.e., a Neumann problem for the biharmonic
operator with mass density ρ.
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Starting point: Neumann b. conditions

Let Ω be a bounded domain of class C1. Let τ ≥ 0 be a fixed
constant and ρ : Ω→ R+ a positive function. We consider the
Neumann problem∆2u − τ∆u = λρu, in Ω,

∂2u
∂ν2 = τ∂u

∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = 0, on ∂Ω,

where

ν is the outer unit normal to ∂Ω.
∂f
∂ν = Df · ν is the normal derivative of a function f .

D2f is the Hessian matrix of a function f .

div∂ΩF = divF|∂Ω − (DF · ν) · ν is the tangential divergence of a
vector field F .

For N = 2, this problem models a plate with a free frame subject to
lateral tension τ ≥ 0, with mass density ρ and mass

∫
Ω
ρdx.
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Neumann vs Steklov

Let M > 0 be fixed.

Let ε > 0 small and let

ωε =
{
x ∈ Ω : dist(x, ∂Ω) < ε

}
Let ρε : Ω→ R+ be defined by

ρε =

ε, in Ω \ ωε,
M−ε|Ω\ωε |
|ωε |

, in ωε

Note that
∫

Ω
ρεdx = M for all

ε > 0.

Ω

ωϵ
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Neumann vs Steklov
We consider the Neumann problem with density ρε∆2u − τ∆u = λρεu, in Ω,

∂2u
∂ν2 = τ∂u

∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = 0, on ∂Ω,

For each fixed ε we have an increasing sequence

0 = λ1(ε) ≤ · · · ≤ λj(ε) ≤ · · · ↗ +∞

Theorem

For all j ∈ N, limε→0 λj(ε) = λj , where λj are the eigenvalues of
∆2u − τ∆u = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ∂u
∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = M
|∂Ω|λu, on ∂Ω.
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Neumann vs Steklov

Remark

If we consider the problems−∆u = λρεu, in Ω,
∂u
∂ν = 0, on ∂Ω,

and

∆u = 0, in Ω,
∂u
∂ν = M

|∂Ω|λu, on ∂Ω,

and denote by λj(ε), λj the corresponding sequences of
eigenvalues, then for all j ∈ N,

lim
ε→0

λj(ε) = λj

The proof of the convergence of the eigenvalues consists in
showing that the resolvent operators of the Neumann problems
with ρε compactly converge to the resolvent operator of the limiting
problem.
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A biharmonic Steklov problem

From now on we consider τ > 0. The biharmonic Steklov problem
reads 

∆2u − τ∆u = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ∂u
∂ν − div∂Ω

(
D2u · ν

)
− ∂∆u

∂ν = λu, on ∂Ω.

(1)

We are interested in the problem

Ω 7→ λj[Ω]

Is this map Continuous? Differentiable? Analytic? What about

max|Ω|=const. λj[Ω] and min|Ω|=const. λj[Ω]?

Critical points?
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Analyticity and derivatives

The set of domains has not a linear structure, so what does it
means differentiability?

Let Ω be a fixed domain of class C1 and let

Φ(Ω) =
{
φ ∈

(
C2(Ω̄)

)N
: φ injective and inf

Ω
|detDφ| > 0

}
.

If Ω is of class C1 and φ ∈ Φ(Ω), then φ(Ω) is of class C1 and
φ(−1) ∈ Φ(φ(Ω)).

Then we study the Steklov problem on φ(Ω). We denote
λj[φ] := λj[φ(Ω)] and study the map

φ 7→ λj[φ].

The space Φ(Ω) is a linear space, so we can make Differential
Calculus on it.
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Analyticity and derivatives

Let F ⊂ N be fixed. We introduce the following quantity

AΩ[F ] =
{
φ ∈ Φ(Ω) : λl[φ] , λj[φ] ∀j ∈ F , ∀l ∈ N \ F

}

For example, if F = {1}, then AΩ[F ] =
{
φ ∈ Φ(Ω) : λ1[φ] is simple

}
.

Then we consider the symmetric functions of the eigenvalues, for
s ∈ {1, ..., |F |}

ΛF ,s[φ] =
∑

j1<···<js∈F

λj1 [φ] · · · λjs [φ]

Such functions turn out to be important objects of study in shape
optimization problems.
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Analyticity and derivatives

Why the symmetric functions of the eigenvalues?

Example:

A(α1, α2) =

[
1 + α1 α2

α2 1 − α1

]

λ1[α1, α1] = 1 −
√
α2

1 + α2
2 , λ2[α1, α1] = 1 +

√
α2

1 + α2
2

λ1[α1, α1] + λ1[α1, α1] = 2

λ1[α1, α1]λ2[α1, α1] = 1 − α2
1 − α

2
2

Symmetric functions of λ1[α1, α2], λ2[α1, α2] are even analytic.
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Analyticity and derivatives

Theorem (Analyticity)

Let Ω be a bounded domain in RN of class C1. Let F be a finite
non-empty subset of N. Then

i) The set AΩ[F ] is open in Φ(Ω).

ii) The function ΛF ,s[φ] from AΩ[F ] to R is real analytic.
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Analyticity and derivatives

Theorem (Derivatives)

Let φ̃ ∈ AΩ[F ] be such that λj[φ̃] = λF [φ̃] for all j ∈ F and such that
φ̃(Ω) is of class C4. Let v1, ..., v|F | be a orthonormal basis of the
eigenspace associated with λF [φ̃]. Then

d|φ=φ̃ (ΛF ,s) [ψ] = −λs−1
F [φ̃]

(
|F | − 1
s − 1

) |F |∑
j=1

∫
∂φ̃(Ω)

(
λF [φ̃]Kv2

j

+λF [φ̃]
∂(v2

j )

∂ν
− τ|∇vj |

2 − |D2vj |
2

ψ ◦ φ̃(−1) · νdσ,

for all ψ ∈
(
C2(Ω̄)

)N
, where K denotes the mean curvature of

∂φ̃(Ω).
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Critical domains

Now we turn our attention to extremum problems of the type

min
V(φ)=const.

ΛF ,s[φ] or max
V(φ)=const.

ΛF ,s[φ],

whereV(φ) denotes the Lebesgue measure of φ(Ω), i.e.,

V(φ) =

∫
φ(Ω)

dx

(
=

∫
Ω
|detDφ|dx

)
.

In particular, all φ’s realizing the extremum are critical points under
measure constraint, i.e.,

Ker dV(φ) ⊆ Ker dΛF ,s[φ].
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Critical domains

LetV0 > 0 and let V(V0) =
{
φ ∈ Φ(Ω) : V(φ) = V0

}
.

We have
the following

Theorem

Let Ω be a bounded domain of RN of class C1. Let φ̃ be such that
φ̃(Ω) is a ball. Let λ̃ be an eigenvalue of problem (1) in φ̃(Ω), and
let F be the set of j ∈ N such that λj[φ̃] = λ̃. Then ΛF ,s has a critical
point at φ̃ on V(V(φ̃)), for all s = 1, ..., |F |.

Hence, balls are critical domains for all simple eigenvalues and for
all the symmetric functions of all multiple eigenvalues under
measure constraint.
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An isoperimetric inequality
Can we say more on the critical nature of balls for the Steklov
eigenvalues?

Yes, we have the following

Theorem

Among all bounded domains of class C1 with fixed measure, the
ball is the unique maximizer of the first non-negative eigenvalue of
problem (1), that is

λ2(Ω) ≤ λ2(Ω∗),

where Ω∗ is a ball with the same measure as Ω

The proof relies on the following ingredients:

Explicit form of the Steklov eigenfunctions of the ball.

Variational characterization of the eigenvalues.

Use of suitable test functions built from the eigenfunctions of the ball
in the variational characterization of the eigenvalues.

(Classical) isoperimetric inequality for weighted perimeters.
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An isoperimetric inequality

It is natural now to consider the issue of the stability of the
inequality

. This means, to answer the following questions:

“If Ω is such that λ2(Ω) ∼ λ2(Ω∗), then Ω has to resemble a
ball?”

“In which way this is quantified?”
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An isoperimetric inequality

To answer these questions, first we need to introduce a “distance
among shapes”.

Let

A(Ω) = inf
{
|Ω4B |
|Ω|

: B ball with |B | = |Ω|
}

be the so-called Fraenkel Asymmetry.

Fraenkel Asymmetry measures the “distance”
in the L1 sense of a generic set from the “fam-
ily” of balls.
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An isoperimetric inequality

We have the following

Theorem

For every domain Ω in RN of class C1 the following estimate holds:

λ2(Ω) ≤ λ2(Ω∗)
(
1 − cNA(Ω)2

)
, (2)

where cN is a suitable constant and Ω∗ is a ball with the same
measure as Ω.

This is the isoperimetric inequality in quantitative form.
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Sharpness of the exponent

Finally we consider the issue: is the isoperimetric inequality (2)
sharp?

This means, is the exponent 2 for the Fraenkel asymmetry optimal?

To do so we shall exhibit a family {Ωε} of sets approaching the unit
ball B such that

A(Ωε) '
|Ωε4B |
|Ωε|

' ε and λ2(B) − λ2(Ωε) ' ε
2 , ε � 1.
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Sharpness of the exponent

This behavior is not trivial at all, as the following examples show:

Classical isoperimetric inequality: if E is a Borel set in RN with
finite Lebesgue measure, then the ball with the same
measure has lower perimeter, that is

P(E) ≥ P(Ω∗),

where Ω∗ is a ball with |E | = |Ω∗|. Also in this case a
quantitative version of the isoperimetric inequality holds:

P(E) ≥ P(Ω∗)
(
1 + cNA(E)2

)
N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative isoperimetric inequality. Ann. of

Math. (2) 168 (2008), no. 3, 941–980.
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Sharpness of the exponent

Faber-Krahn inequality: Let Ω be an open set in RN of finite
measure. Let µ1(Ω) be the first eigenvalue of the Dirichlet
problem −∆u = µu, in Ω,

u = 0, on ∂Ω.

Then
µ1(Ω) ≥ µ1(Ω∗),

where Ω∗ is a ball with the same measure as Ω. Also in this
case we have a quantitative version of the isoperimetric
inequality

µ1(Ω) ≥ µ1(Ω∗)
(
1 + cNA(Ω)2

)
.

L. Brasco, G. De Philippis, and B. Velichkov. Faber-Krahn inequalities in sharp quantitative

form. Duke Math. J. 164 (2015), no. 9, 1777–1831.
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Sharpness of the exponent

In both the case of the classical isoperimetric inequality and of the
Faber-Krahn inequality, nearly spherical ellipsoids converge with
the sharp convergence rate 2

B

Ωϵ

B

Ωϵ

B

Ωϵ

This means that A(Ωε) '
|Ωε4B |
|Ωε |

' ε and moreover

P(Ωε) − P(B) ' ε2 and µ1(Ωε) − µ1(B) ' ε2 ε � 1.
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Sharpness of the exponent

In the case of the first positive eigenvalue of our biharmonic
Steklov problem, we have that

λ2(B) − λ2(Ωε) ' ε , ε � 1,

when Ωε are nearly spherical ellipsoids.

Why? Is 1 the right exponent for the Fraenkel asymmetry in the
isoperimetric inequality or there exist suitable families {Ωε} such
that the rate of convergence is ε2, proving the sharpness of the
exponent 2?

The answer relies not only on the geometry of the critical set (the
ball), but also on the features of the problem itself (that is, on the
properties of the eigenfunctions).
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Sharpness of the exponent

Some observations:

An eigenvalue does not have a straightforward geometrical
meaning like in the case of the perimeter, for example. Thus, it
is not straightforward to understand how deformations of an
optimal shape affect the eigenvalues.

If an eigenvalue is “shape differentiable” (e.g., if it is always
simple as in the case of µ1(Ω)), then its “shape derivative” at
the “extremal point” would be zero (this is rather heuristic).

In the case of µ1(Ω) (first Dirichlet eigenvalue), any
perturbation Ωε = (Id + εV)B, for some smooth vector field
V , should provide an expansion of the form

µ1(Ωε) ' µ1(B) + O(ε2) , ε � 1.
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Sharpness of the exponent

A possible explanation: at the maximum point (the ball) λ2(B) is
multiple, which means that it is not differentiable

, this means that
along some “directions”, the function λ2(Ω) could have a non-trivial
“super-differential”.

To prove that the exponent is sharp, we have to exclude that this
happens for every “direction”.
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Sharpness of the exponent
We define a family {Ωε} in this way

Ωε =
{
x ∈ RN : |x | < 1 + εψ(x/|x |)

}
,

where ψ ∈ C∞(∂B)

and satisfies
1

∫
∂B ψdσ = 0;

2
∫
∂B(a · x)ψdσ = 0 for all a ∈ RN;

3
∫
∂B(a · x)2ψdσ = 0 for all a ∈ RN.

This family of sets is such thatA(Ωε) ' ε and λ2(B)− λ2(Ωε) ' ε
2,

proving that the exponent 2 is sharp.
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Sharpness of the exponent

Which is the meaning of the assumptions on Ωε?

1
∫
∂B ψdσ = 0 has a pure geometrical meaning: this implies

that Ωε has the same measure as B up to an error of ε2;

2
∫
∂B(a · x)ψdσ = 0 for all a ∈ RN has again a pure geometrical

meaning: this implies that the barycenter of Ωε is the origin up
to an error of ε2. In particular this also implies that A(Ωε) ' ε,

3
∫
∂B(a · x)2ψdσ = 0 for all a ∈ RN has a strict relation with the

problem: any eigenfunction ξ corresponding to λ2(B) is of the
form (a · x) for some a ∈ RN, so that

|ξ|2
|∂B

= (a · x)2 and |D2ξ|2 + τ|Dξ|2
|∂B

= (b · x)2,

for some a, b ∈ RN and such relations are crucial in proving
λ2(B) − λ2(Ωε) ' ε

2 for ε � 1.
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Sharpness of the exponent

Remark

Conditions 1 and 2 (which are the purely geometrical assumptions
for the approximation of the domains) are satisfied also by the
nearly spherical ellipsoids.

They are enough to ensure that ellipsoids approximating the ball
realize the sharp exponent 2 for the Fraenkel asymmetry for the
isoperimetric inequality (which has a straightforward geometrical
meaning), and for the Faber-Krahn inequality (for which we have
differentiability of the first eigenvalue).

Ellipsoids do not satisfy condition 3 which is realted to the structure
of the Steklov problem, thus they do not realize the sharp exponent
2.

Along the “ellipsoid” direction, λ2(Ω) has a non-trivial
super-differential
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Sharpness of the exponent

First two eigenvalues of nearly spherical ellipsoids Ωε and τ = 1.
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First two (multiple) eigenvalues of the “flower domains” Ωε and
τ = 1.
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Sharpness of the exponent

Note: condition 2 is sufficient to ensure that A(Ωε) ' ε.

The
following Ωε does not satisfy 2 for all a ∈ RN, but A(Ωε) ' ε.
Moreover it satisfies 1 and 3

B

Ωϵ

First two eigenvalues of Ωε

0.05 0.10 0.15 0.20 0.25 0.30
ϵ

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

λ2(Ωϵ)

Note that also in this case the eigenvalue is not differentiable at the
“maximum point” but converges with the sharp exponent 2.
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