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The biharmonic Steklov problem

Let Ω be a bounded domain in RN of class C1, τ > 0 a fixed
constant.


∆2u − τ∆u = 0, in Ω ,
∂2u
∂ν2 = 0, on ∂Ω ,

τ∂u
∂ν − div∂Ω

(
D2u.ν

)
− ∂∆u

∂ν = λu, on ∂Ω ,
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The biharmonic Steklov problem

∫
Ω

D2u : D2φ + τ∇u · ∇φdx = λ

∫
∂Ω

uφdσ , ∀φ ∈ H2(Ω),

where D2u : D2φ =
∑N

i,j=1
∂2u
∂xi∂xj

∂2φ
∂xi∂xj

0 = λ1[Ω] < λ2[Ω] ≤ · · · ≤ λj[Ω] ≤ · · ·
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The biharmonic Steklov problem

Ω 7→ λj[Ω] , Ω 7→ λ2[Ω]

maxΩ λj[Ω] ? minΩ λj[Ω] ? Critical points ?

among sets Ω with a fixed volume |Ω|
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Other Steklov-type problems

Let Ω be a bounded domain of class C1 in RN


∆2u = 0, in Ω ,

u = 0, on ∂Ω ,

∆u = λ∂u
∂ν , on ∂Ω ,

Bucur, Ferrero, Gazzola, “On the first eigenvalue of a fourth order
Steklov problem”, Calc. Var. Partial Differential Equations, 35.

5 of 26



Other Steklov-type problems

Let Ω be a bounded domain of class C1 in RN


∆2u = 0, in Ω ,

u = 0, on ∂Ω ,

∆u = λ∂u
∂ν , on ∂Ω ,

Bucur, Ferrero, Gazzola, “On the first eigenvalue of a fourth order
Steklov problem”, Calc. Var. Partial Differential Equations, 35.

5 of 26



Steklov problem for the Laplacian

Steklov problem for the Laplacian{
∆u = 0, in Ω ,
∂u
∂ν = λu, on ∂Ω ,

0 = λ1[Ω] < λ2[Ω] ≤ · · · ≤ λj[Ω] ≤ · · ·

The ball is a maximizer for λ2[Ω] among Ω with a fixed volume
(Weinstock, Brock).
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Neumann vs Steklov, second order

{
−∆u = λ(ε)ρεu, in Ω ,
∂u
∂ν = 0, on ∂Ω ,

where

ρε=

{
ε, in Ω \ ω̄ε ,
Cε, in ωε ,

ωε =
{
x ∈ Ω : dist(x, ∂Ω) < ε

}
and

∫
Ω
ρε = M for all ε ∈]0, ε0[.
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Neumann vs Steklov, second order
For all j ∈ N, λj(ε)→ λj as ε→ 0
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Figure: N=2, M=π
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The biharmonic Steklov problem
Strategy:

Biharmonic Neumann problem with mass density ρε
∆2u − τ∆u = λ(ε)ρεu, in Ω ,
∂2u
∂ν2 = 0, on ∂Ω ,

τ∂u
∂ν − div∂Ω

(
D2u.ν

)
− ∂∆u

∂ν = 0, on ∂Ω ,

The ball is a maximizer for λ2[Ω] among Ω with a fixed
volume, when ρε ≡ const (Chasman 2011).
Write the Hamiltonian H of a plate with its mass concentrated
at the boundary and recover equations of motion

⇓
∆2u − τ∆u = 0, in Ω ,
∂2u
∂ν2 = 0, on ∂Ω ,

τ∂u
∂ν − div∂Ω

(
D2u.ν

)
− ∂∆u

∂ν = λu, on ∂Ω ,
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Symmetric functions of the eigenvalues
Let Ω a bounded domain in RN. Set

Φ(Ω) =
{
φ ∈

(
C2(Ω)

)N
, injective : inf

Ω
|detDφ| > 0

}

Theorem (Buoso-P. 2014)

Let Ω be a bounded domain of RN of class C1. Let F be a finite
non-empty subset of N \ {0}. Let

AΩ[F ] =
{
φ ∈ Φ(Ω) : λl[φ] <

{
λj[φ] : j ∈ F

}
∀l ∈ N \ (F ∪ {0})

}
Then the set AΩ is open in Φ(Ω) and the map ΛF ,s from AΩ to R
defined by

ΛF ,s[φ] =
∑

j1<···<js∈F

λj1 [φ] · · · λjs [φ]

for s ∈ {1, ..., |F |} is real analytic.
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Isovolumetric perturbations

Theorem (Buoso-P. 2014)

Let Ω be a bounded domain in RN. Let F a finite non-empty subset
of N \ {0}. Let φ̃ ∈ AΩ[F ] be such that all the eigenvalues with
indexes in F have a commond value λF and moreover that
∂φ̃(Ω) ∈ C4. Let v1, ..., v|F | be a hortonormal basis of the
eigenspace associated with the eigenvalue λF [φ̃]. Then

d|φ=φ̃(ΛF ,s)[ψ] = −λs
F [φ̃]

(
|F | − 1
s − 1

) |F |∑
l=1

∫
∂φ̃(Ω)

(
λFKv2

l

+ λF
∂(v2

l )

∂ν
− τ|∇vl |

2 − |D2vl |
2
)
µ · νdσ, (1.3)

for all ψ ∈ (C2(Ω))N, where µ = ψ ◦ φ(−1), and K denotes the mean
curvature on ∂φ̃(Ω).
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Isovolumetric perturbations

V(φ) =

∫
φ(Ω)

dy =

∫
Ω
|detDφ|dx

FixV0 ∈]0,+∞[

V(V0) =
{
φ ∈ Φ(Ω) : V(φ) = V0

}

The function φ̃ is a critical point for ΛF ,s if and only if

|F |∑
l=1

λF [φ̃]

Kv2
l +

∂v2
l

∂ν

 − τ|∇vl |
2 − |D2vl |

2
 = c, a.e. on ∂φ̃(Ω).

Theorem (Buoso-P. 2014)

Let Ω be a domain of RN. Let φ̃ ∈ Φ(Ω) be such that φ̃(Ω) is a ball.
Let λ̃ be an eigenvalue of the problem in φ̃(Ω), and let F be the set
of j ∈ N \ {0} such that λj[φ̃] = λ̃. Then ΛF ,s has a critical point at φ̃
on V(V(φ̃)), for all s = 1, . . . , |F |.
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The fundamental tone

Balls are critical for the symmetric functions of the eigenvalues
under isovolumetric perturbations

Could we say more on the fundamental tone λ2 ?

Theorem (Buoso-P. 2014)

Among all bounded domains of class C1 with fixed volume, the ball
maximizes the first non-negative eigenvalue, that is λ2[Ω] ≤ λ2[Ω∗],
where Ω∗ is the ball with the same volume as Ω.
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The fundamental tone

Consider B = B(0, 1) ⊂ RN.

All the eigenfunctions of the Steklov
problem are of the form

u(r , θ1, ..., θN−1) = Rl(r)Yl(θ1, ..., θN−1)

where
Rl(r) = αlr l + βl il(

√
τr).

The corresponding eigenvalues are given by an explicit formula
(rather long)

λ = g(l,N, τ),

for l ∈ N.

Example: g(0,N, τ) = 0, g(1,N, τ) = τ. Which l ∈ N gives the
fundamental tone?
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The fundamental tone

λ2[B] = g(1,N, τ) = τ

λ2[B] has multiplicity N and the eigenfunctions are {x1, ..., xN}

Strategy: use the eigenfunctions of the unit ball as test functions in
a variational characterization of λ2[Ω]
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The fundamental tone

Lemma (Hile-Xu 1993)

Let Ω be a bounded domain of class C1 in RN. Then

N+1∑
l=2

1
λl(Ω)

= max

 N+1∑
l=2

∫
∂Ω

v2
l dσ

,
where {vl}

N+1
l=2 is a family in H2(Ω) satisfying∫

Ω
D2vi : D2vj + τ∇vi · ∇vjdx = δij and

∫
∂Ω

vldσ = 0 for all
l = 2, ...,N + 1.
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The fundamental tone

Lemma (Betta-Brock-Mercaldo-Posteraro 1999)

Let Ω be an open set in RN and f be a continuous, non-negative,
non-decreasing function defined on [0,+∞). Let us assume that
the function

t 7→
(
f(t1/N) − f(0)

)
t1−(1/N)

is convex. Then ∫
∂Ω

f(|x |)dσ ≥
∫
∂Ω∗

f(|x |)dσ,

where Ω∗ is the ball centered at zero with the same volume as Ω.
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The fundamental tone

Take Ω of class C1 with |Ω| = |B |.

Perform the translation
xi = yi − ti

ti =
1
|∂Ω|

∫
∂Ω

yidσ

Use test functions vl = (τ|Ω|)−
1
2 xl in the variational formula and

use the isoperimetric inequality

N+1∑
l=2

1
λl[Ω]

≥
1
τ|Ω|

∫
∂Ω
|x |2dσ ≥

1
τ|Ω|

∫
∂B
|x |2dσ =

N
τ

=
N+1∑
l=2

1
λl[B]

.

Remark: for general values of |Ω| just observe

λ[τ,Ω] = s4λ[s−2τ, sΩ]

18 of 26
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Further directions: the case τ = 0

Let τ = 0 and Ω be a bounded domain of class C1
∆2u = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

−div∂Ω
(
D2u.ν

)
− ∂∆u

∂ν = λu, on ∂Ω,

0 = λ1[Ω] = λ2[Ω] = · · · = λN+1[Ω] < λN+2[Ω] ≤ · · · ≤ λj[Ω] ≤ · · ·

The kernel is {1, x1, ..., xN}
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Further directions: the case τ = 0

What we can do:

identify the fundamental tone of the unit ball

λN+2[B] = 2
(
N +

8
5

)

identify the corresponding eigenfunctions

u(r , θ1, ..., θN−1) = (6r2 − r4)Y2(θ1, ..., θN−1)

construct trial functions of the form R(r)Y2(θ1, ...θN+1)

20 of 26



Further directions: the case τ = 0

What we can do:

identify the fundamental tone of the unit ball

λN+2[B] = 2
(
N +

8
5

)

identify the corresponding eigenfunctions

u(r , θ1, ..., θN−1) = (6r2 − r4)Y2(θ1, ..., θN−1)

construct trial functions of the form R(r)Y2(θ1, ...θN+1)

20 of 26



Further directions: the case τ = 0

What we can do:

identify the fundamental tone of the unit ball

λN+2[B] = 2
(
N +

8
5

)

identify the corresponding eigenfunctions

u(r , θ1, ..., θN−1) = (6r2 − r4)Y2(θ1, ..., θN−1)

construct trial functions of the form R(r)Y2(θ1, ...θN+1)

20 of 26



Further directions: the case τ = 0

What we can do:

identify the fundamental tone of the unit ball

λN+2[B] = 2
(
N +

8
5

)

identify the corresponding eigenfunctions

u(r , θ1, ..., θN−1) = (6r2 − r4)Y2(θ1, ..., θN−1)

construct trial functions of the form R(r)Y2(θ1, ...θN+1)

20 of 26



Further directions: the case τ = 0

What we (still) cannot do:

test these trial functions on any Ω of class C1

find good estimates for the sum of the reciprocals in the case
the test is possible

Trial functions work with radial domains. For small dimensions we
have isoperimetric inequality

Theorem (Buoso-P. 2014)

Among all bounded radial domains Ω with a fixed volume in RN,
N ≤ 4, the ball maximizes the first non-zero eigenvalue, that is

λN+2[Ω] ≤ λN+2[Ω∗],

where Ω∗ is the ball with the same volume of Ω.
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Further directions: the case τ = 0
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Figure: N=2,3,4,5
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Further directions: Neumann problem,
Poly-harmonic operators,...

Neumann problem for the biharmonic operator
∆2u = λu, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

−div∂Ω

(
D2u.ν

)
−

∂(∆u)
∂ν = 0, on ∂Ω.

Λ0,1

Λ1,1

Λ2,1

10 20 30 40 50 60
Λ

50

100

150

200

Figure: N=2
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Further directions: Neumann problem,
Poly-harmonic operators,...

Neumann problem for (−∆)m{
(−∆)mu = λu, in Ω,
N1u = N2u = · · · = Nmu = 0, on ∂Ω,

Niu are the m natural boundary conditions, ordered according
their order: N1 is an operator of order m, N2 is of order
m + 1,..., Nm is of order 2m − 1.

Steklov problem for (−∆)m


∆mu = 0, in Ω,
N1u = N2u = · · · = Nm−1u = 0, on ∂Ω,
Nmu = λu, on ∂Ω,

with the same Ni
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Further directions: mass concentration

Behavior of λj(ε) for mass concentration problem for the
biharmonic operator
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Figure: N=2, M=π, τ = 5

On the ball? On arbitrary Ω (also in the second order case)?
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