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The biharmonic Steklov problem
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constant.

A2%u—1Au =0, inQ,
%:0, on 0N,

ou _ 3; 2 _ 0Au __
7%, — divgn (D u.v) & = Au, on 0L,



UNIVERSITA
S

The biharmonic Steklov problem ({1 maism

szu : D2¢ + tVu - Vdx = /lf updo, Vo € H*(Q),
Q o0

2,.Pn24 _ vN Pu 0P
Where D u- D ¢ o Zi,].:1 (3X,'(9X/ (')X,‘(?X}'



NIVERSITA

The biharmonic Steklov problem Sl s

szu : D2¢ + tVu - Vdx = /lf updo, Vo € H*(Q),
Q o0

2,.p24 — wN _Pu P
where D°u: D ¢ o Zi,j:1 (')X,'(()X/' (')X,‘(?X}'

0:/11[Q]</12[Q]S"'§/lj[9]S---



The biharmonic Steklov problem

Q- 4Q], Q- 22Q]



UNIVERSITA
S

The biharmonic Steklov problem

Q- 4Q], Q- 22Q]

maxq 4;[2] ? ming 4;[Q2] ? Critical points ?

among sets €2 with a fixed volume ||



Other Steklov-type problems

Let Q be a bounded domain of class C' in RN

A%y =0, inQ,
u=0, on 02,
Au= 1% on 012,
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Other Steklov-type problems

Let Q be a bounded domain of class C' in RN

A?u =0, in Q,
u=0, on 02,
Au = /lg—‘v’, on 052,
Bucur, Ferrero, Gazzola, “On the first eigenvalue of a fourth order
Steklov problem”, Calc. Var. Partial Differential Equations, 35.
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Steklov problem for the Laplacian

{AUZO, inQ,

‘2,—“ = Au, on 0f2,
4

0= 4[] < A2[Q) <+ < 4 < -

The ball is a maximizer for 22[2] among 2 with a fixed volume
(Weinstock, Brock).
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—-Au = A(g)p:u, inQ,
du _ , on 09,

3 =

where

Ce, in wg,

{ g, in Q\ @,,
Pe—

we = {x € Q : dist(x,09) < &} and [, p. = M for all £ €]0, £
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Neumann vs Steklov, second order

ForalljeN, dj(¢) » djase = 0

Figure: N=2, M=r



Strategy:

m Biharmonic Neumann problem with mass density p.
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volume, when p, = const (Chasman 2011).
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The biharmonic Steklov problem

Strategy:
m Biharmonic Neumann problem with mass density p.
A2u—tAu = A(€)pel, in 2,
Py, on 092,

61/2
Ta— — divgn (Dzu v) aaAV“ =0, ondf,

The ball is a maximizer for A2[Q2] among 2 with a fixed
volume, when p, = const (Chasman 2011).

m Write the Hamiltonian H of a plate with its mass concentrated
at the boundary and recover equations of motion

U

Azu TAu =0, in Q,
24 =0, on 02,

Dv

Tm —divsn (Dzu.v) — 98U — qy on o9,

ov
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Symmetric functions of the eigenvalues

Let Q a bounded domain in RN. Set

O(Q) = {¢> e (c2(@)", injective : inf [detDg) > 0}

Theorem (Buoso-P. 2014)

Let Q be a bounded domain of RN of class C'. Let F be a finite
non-empty subset of N \ {0}. Let

AalF] = {¢ € ©(Q) : 4] ¢ {4lg] : j € F| VI €N\ (F U {0)]

Then the set Aq is open in () and the map Ar s from Aq toR
defined by

Aeslol = D ulgl-- 419l

j1<--<js€F

fors € {1,...,|F|} is real analytic.



Isovolumetric perturbations

Theorem (Buoso-P. 2014)

Let Q be a bounded domain in RN. Let F a finite non-empty subset
of N'\ {0}. Let ¢ € Aq[F] be such that all the eigenvalues with
indexes in F have a commond value A and moreover that

d¢(Q) € C*. Let w1, ..., Vi be a hortonormal basis of the
eigenspace associated with the eigenvalue Ar[§]. Then

|F]

ap-sinee =2 )3 [ (aere

6(vf)
ov

+ AF —ﬂVWF-ﬂD2wF>rvd0,(13)

for all y € (C?(Q))N, where u = y o ¢1), and K denotes the mean
curvature on d¢(<Q).
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Isovolumetric perturbations

Fix Vo €]0, +o0|
V(Vo) = {¢ € ®(Q) = V(¢) = Vo}
The function ¢ is a critical point for Ag s if and only if
IFl 2

. 3 )
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Isovolumetric perturbations

Fix Vo €]0, +o0|
V(Vo) = {¢ € ®(Q) = V(¢) = Vo}
The function ¢ is a critical point for Ag s if and only if
IFl 2

y 0 ;
Z (AF[¢] (va + i) —1|Vy? - |D2v,|2) = ¢, a.e. on 9p(Q).

=1 ov

Theorem (Buoso-P. 2014)

Let Q be a domain of RN. Let ¢ € ®(Q) be such that $(R) is a ball.
Let A be an eigenvalue of the problem in $(S2), and let F be the set
of j e N'\ {0} such that/l,-[é] = 1. Then Af.s has a critical point at ¢
on V(V()), foralls =1,...,|F|.
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The fundamental tone

Balls are critical for the symmetric functions of the eigenvalues
under isovolumetric perturbations

Could we say more on the fundamental tone Ao ?

Theorem (Buoso-P. 2014)

Among all bounded domains of class C' with fixed volume, the ball
maximizes the first non-negative eigenvalue, that is 12[Q2] < A2[Q*],
where Q* is the ball with the same volume as €.



UNIVERSITA

The fundamental tone

Consider B = B(0,1) c RN.



The fundamental tone

Consider B = B(0, 1) c RN. All the eigenfunctions of the Steklov
problem are of the form

u(r,61,....0n-1) = Ri(r)Yi(61, ..., On-1)

where

Ri(r) = ayr' + Biif(V7r).



The fundamental tone

Consider B = B(0, 1) c RN. All the eigenfunctions of the Steklov
problem are of the form

u(r,61,....0n-1) = Ri(r)Yi(61, ..., On-1)
where
Ri(r) = air' + Biir( V).

The corresponding eigenvalues are given by an explicit formula
(rather long)
A=9g(l,N,7),

for | e N.



The fundamental tone

Consider B = B(0, 1) c RN. All the eigenfunctions of the Steklov
problem are of the form

u(r,61,....0n-1) = Ri(r)Yi(61, ..., On-1)

where
Ri(r) = ayr' + Biif(V7r).

The corresponding eigenvalues are given by an explicit formula
(rather long)
A=9g(l,N,7),

for | e N.

Example: g(0,N,7) = 0, g(1, N, 7) = 7. Which | € N gives the
fundamental tone?
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The fundamental tone

22[B] =9g(1,N,7) =1

A2[B] has multiplicity N and the eigenfunctions are {x1, ..., Xn}

Strategy: use the eigenfunctions of the unit ball as test functions in
a variational characterization of 15[(]



The fundamental tone

Lemma (Hile-Xu 1993)

Let Q be a bounded domain of class C' in RN. Then
N+ N+-1
2
——— = max vido;,
,Z; () {; LQ I }
where {v,}f’:’;1 is a family in H?(Q) satisfying

fQ D2v; : D2vj + 7Vv; - Vvjdx = §; and f(m vido = 0 for all
I=2,...,N+1.




The fundamental tone

Lemma (Betta-Brock-Mercaldo-Posteraro 1999)

Let Q be an open set in RN and f be a continuous, non-negative,
non-decreasing function defined on [0, +). Let us assume that
the function

t e (F(tN) = £(0))t' (/M)

fa (x)der > fa  f(x)el,

where Q* is the ball centered at zero with the same volume as 2.

is convex. Then
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The fundamental tone

Take Q of class C' with || = |B|. Perform the translation

Xi = Yi—1i
1

= ——
"0l Jaa

y,'dO'

Use test functions v, = (TlQl)*%x, in the variational formula and
use the isoperimetric inequality

N-+1
o

1 1 N 1
—_— > — IXPdo > — | |xPdo=— = — .
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The fundamental tone

Take Q of class C' with || = |B|. Perform the translation

Xi = Yi—1i
1

= ——
"0l Jaa

yido

Use test functions v, = (TlQl)*%x, in the variational formula and
use the isoperimetric inequality

N+-1
1 1 1 N 1
——>— | xPdo>2— | XPdo=—= ) —:.
,Z; Q] 7 Jaq 72 Jos T ZZZ A[B]

Remark: for general values of |€2| just observe

Ar, Q] = s*A[s 7?1, 5Q)]



Further directions: the case =0

Let r = 0 and Q2 be a bounded domain of class C'

AZU — 0, in Q’

gz—‘; =0, on 012,
V'

—diVaQ(DZU.V) - ‘95% = Au, on 0%,
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DEGLI STUDI

Let r = 0 and Q2 be a bounded domain of class C'

AZU — 0, in Q’

22—‘2’ =0, on 012,
V'

—diVaQ(DZU.V) - ‘95% = Au, on 0%,

0:/11[9]:/lg[Q]:”':/lN+1[Q]</1N+2[Q]S“'S/lj[ﬂ]ﬁ"'



Further directions: the case 7 = 0

DEGLI STUDI

Let r = 0 and Q2 be a bounded domain of class C'

AZU — 0, in Q’
2275 =0, on 042,
—diVaQ(DZU.V) - ‘95% = Au, on 0%,

0=1[Q] =2[Q] = = AN+1[Q] < AN32[Q] < --- S/lj[Q] <

The kernel is {1, X1, ..., XN}
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What we can do:
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Further directions: the case =0

What we can do:
m identify the fundamental tone of the unit ball

Ans2[B] = 2(/\/ + g)

m identify the corresponding eigenfunctions

U(I’, 61, ...,QN_1) = (6r2 - I‘4)Y2(01, ...,QN_1)

m construct trial functions of the form R(r) Y2(61, ...On+1)
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Further directions: the case =0

What we (still) cannot do:
m test these trial functions on any Q of class C'

m find good estimates for the sum of the reciprocals in the case
the test is possible

Trial functions work with radial domains. For small dimensions we
have isoperimetric inequality

Theorem (Buoso-P. 2014)

Among all bounded radial domains Q with a fixed volume in RN,
N < 4, the ball maximizes the first non-zero eigenvalue, that is

An42[] < Ang2[7],

where Q* is the ball with the same volume of 2.



Further directions: the case =0

A21(R)
“ — N=2
s — N=3
56 — N=4
5
— N=5
6
5
36
5
6
5
4
3
2
1]
0 05 R

1 15

Figure: N=2,3,4,5
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Further directions: Neumann problem,

Poly-harmonic operators,...

Neumann problem for the biharmonic operator
A%u = Au,

in €,
% =0, on 02,
—divsg (Dzu.v) - @ =0 on 0f2.
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Further directions: Neumann problem,

Poly-harmonic operators,...

Neumann problem for the biharmonic operator

A2%u = Au, in Q,
2
ng =0, on 092,

~divaq (D2uv) - 222 =0, on 99

= Aoy
200 ~ ha
— 21
100 / g
50 :
40 50 60 1
Figure: N=2



UNIVERSITA
S

Further directions: Neumann problem,

Poly-harmonic operators,...

m Neumann problem for (—A)™

(=A)"u = Au, in Q,
Niu=Nou=---=Nnpu=0, onof,

N;u are the m natural boundary conditions, ordered according
their order: Ny is an operator of order m, N is of order
m+1,..., Ny is of order 2m — 1.



Further directions: Neumann problem,

Poly-harmonic operators,...

m Neumann problem for (—A)™

(=A)"u = Au, in Q,
Niu=Nou=---=Njyu=0, on 052,

N;u are the m natural boundary conditions, ordered according
their order: Ny is an operator of order m, N is of order
m+1,..., Ny is of order 2m — 1.

m Steklov problem for (—-A)™

AMu =0, in Q,
N1U:N2U:"':Nm_1U:0, onOQ,
Npu = Au, on 012,

with the same N;
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m Behavior of (&) for mass concentration problem for the
biharmonic operator

Figure: N=2, M=n, 7 =5

m On the ball? On arbitrary €2 (also in the second order case)?
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