On the eigenvalues of Steklov-type problems

Davide Buoso¹, Luigi Provenzano² davide.buoso@polito.it, proz@math.unipd.it Politecnico di Torino, ²Università degli Studi di Padova

(1)

(2)

UNIVERSITÀ DEGLI STUDI DI PADOVA

INTRODUCTION

Let Ω be a bounded domain in \mathbb{R}^N of class C^1 . Consider the classical **Steklov eigenvalue** problem

$$\begin{cases} \Delta u = 0, & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = \lambda u, & \text{on } \partial \Omega, \end{cases}$$

in the unknowns λ, u . For N = 2 this problem models the transverse vibrations of a free thin elastic membrane the mass of which is concentrated at the boundary.

THE BH STEKLOV PROBLEM

The classical formulation of this **new fourth**order Steklov problem is: find λ, u such that

$$\begin{cases} \Delta^2 u - \tau \Delta u = 0, & \text{in } \Omega \\ \frac{\partial^2 u}{\partial \nu^2} = 0, & \text{on } \partial \Omega \\ \tau \frac{\partial u}{\partial \nu} - \operatorname{div}_{\partial \Omega} \left(D^2 u . \nu \right) - \frac{\partial \Delta u}{\partial \nu} = \lambda u, & \text{on } \partial \Omega. \end{cases}$$
(4)

We aim at:

• studying the dependence $\Omega \mapsto \lambda[\Omega]$;

CRITICAL POINTS

We consider now volume preserving perturbations, i.e., $|\phi(\Omega)| = |\Omega|$. Using (5) and the Lagrange Multipliers Theorem, we can prove the following (see [3, 4])

Theorem. Under the assumptions of the previous theorems, ϕ is a critical point for $\Lambda_{F,s}$ if and only if

$$\sum_{l=1}^{|F|} \left(\lambda_F[\tilde{\phi}] \left(\kappa v_l^2 + \frac{\partial(v_l^2)}{\partial \nu} \right) - \tau |\nabla v_l|^2 + |D^2 v_l|^2 \right)$$

This concentration phenomenon can be described as follows (see [6]). Let $\varepsilon \in [0, \varepsilon_0[$ and consider the following **Neumann eigenvalue** problem

$$\begin{cases} -\Delta u = \lambda \rho_{\varepsilon} u, & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0, & \text{on } \partial \Omega. \end{cases}$$

For N = 2 this problems models the transverse vibrations of a free membrane the mass of which is displaced on the whole of Ω with density

$$\rho_{\varepsilon} = \begin{cases} \varepsilon, & \text{in } \Omega_{\varepsilon} \\ \frac{\mathcal{H}^{N-1}(\partial\Omega) - \varepsilon |\Omega_{\varepsilon}|}{|\Omega \setminus \overline{\Omega}_{\varepsilon}|}, & \text{in } \Omega \setminus \overline{\Omega}_{\varepsilon}, \end{cases}$$

where $\Omega_{\varepsilon} := \{x \in \Omega : \operatorname{dist}(x, \partial \Omega) > \varepsilon\}$. Note that the mass is concentrated in a **neighbor**hood of $\partial \Omega$.

Problems (1) and (2) admit an increasing sequence of non-negative eigenvalues of finite multiplicity diverging to $+\infty$, respectively

- characterizing the **critical domains** for this map under the constraint $|\Omega|$ fixed;
- finding **global maxima** for this map under the constraint $|\Omega|$ fixed.

SHAPE DERIVATIVES

Fix Ω of class C^1 and consider the family of perturbations

 $\Phi(\Omega) := \left\{ \phi \in \left(C^2(\overline{\Omega}) \right)^N, \phi \operatorname{inj.}, \inf_{\Omega} |\det D\phi| > 0 \right\}.$

We want to study the map $\phi \mapsto \lambda_j[\phi] :=$ $\lambda_i[\phi(\Omega)]$. To avoid the occurrence of bifurcation phenomena, we consider the symmetric functions of the eigenvalues (see e.g., [2]). We have the following (see [3, 4])

Theorem. Let $F \subset \mathbb{N}$ finite and non-empty. Let

 $\mathcal{A}_{\Omega}[F] := \{ \phi \in \Phi(\Omega) :$

is constant on $\partial \phi(\Omega)$.

It is known that **balls** play an important role in the frame of shape optimization for the eigenvalues of the Laplacian and biharmonic operator. We have the following result for problem (4) (see [3, 4]).

<u>Theorem.</u> Let ϕ such that $\phi(\Omega)$ is a ball. Then ϕ is a critical point for $\Lambda_{F,s}$ for any s = 1, ..., |F|. **Remark.** The analogue of the previous result holds for problem (1). Moreover it is known that for problem (1) the ball is the **unique maxi**mizer for the first positive eigenvalue.

ISOPERIMETRIC INEQUALITY

The first positive eigenvalue of the Laplacian or the biharmonic operator is called the **funda**mental tone. In the case of problem (4) the fundamental tone is $\lambda_2(\Omega)$.

 $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_i \leq \cdots$ $0 = \lambda_1(\varepsilon) < \lambda_2(\varepsilon) \leq \cdots \leq \lambda_j(\varepsilon) \leq \cdots$

Let T_0, T_{ε} be the resolvent operators associated with problems (1) and (2) respectively.

<u>Theorem.</u> $T_{\varepsilon} \to T_0$ as $\varepsilon \to 0$, the convergence being in norm. In particular, for all $j \in \mathbb{N}$, $\lambda_i(\varepsilon) \to \lambda_i \text{ as } \varepsilon \to 0.$

'I'HE BIHARMONIC OPERATOR

Consider the classical **biharmonic** Neumann **problem** (see [5]) with tension parameter $\tau > 0$ and mass density ρ_{ε} , namely

 $\Delta^2 u - \tau \Delta u = \lambda \rho_{\varepsilon} u,$ in Ω $\frac{\partial^2 u}{\partial \nu^2} = 0,$ on $\partial \Omega$ $\left(\tau \frac{\partial u}{\partial \nu} - \operatorname{div}_{\partial \Omega} \left(D^2 u \cdot \nu\right) - \frac{\partial \Delta u}{\partial \nu} = 0, \text{ on } \partial \Omega.$ $\lambda_l[\phi] \notin \{\lambda_j[\phi] : j \in F\}, \forall l \in \mathbb{N} \setminus F\}.$

The set $\mathcal{A}_{\Omega}[F]$ is open in $\Phi(\Omega)$ and the maps from $\mathcal{A}_{\Omega}[F]$ to \mathbb{R} defined by

$$\Lambda_{F,s}[\phi] := \sum_{j_1 < \cdots < j_s \in F} \lambda_{j_1}[\phi] \cdots \lambda_{j_s}[\phi],$$

for $s \in \{1, ... |F|\}$ are **real analytic**. Moreover, let $\phi \in \mathcal{A}_{\Omega}[\phi]$ be such that all the eigenvalues with indexes in F have a common value $\lambda_F[\phi]$ and $\partial \tilde{\phi}(\Omega) \in C^4$. Then, for all $\psi \in (C^2(\overline{\Omega}))^N$,

 $d_{|_{\phi=\tilde{\phi}}}\Lambda_{F,s}[\psi] = -\lambda_F^s[\tilde{\phi}]\binom{|F|-1}{s-1}$ $\cdot \sum_{l=1}^{|T|} \int_{\partial \tilde{\phi}(\Omega)} \left(\lambda_F[\tilde{\phi}] \kappa v_l^2 + \lambda_F[\tilde{\phi}] \frac{\partial (v_l^2)}{\partial \nu} \right)$ $-\tau |\nabla v_l|^2 - |D^2 v_l|^2 \left(\psi \circ \tilde{\phi}^{(-1)} \right) \cdot \nu d\sigma, \quad (5)$

where κ is the mean curvature on $\partial \phi(\Omega)$ and $\{v_1, ..., v_l\}$ is a orthonormal basis of the

We introduce the notion of **Fraenkel asymme**try $\mathcal{F}(\Omega)$

$$\mathcal{F}(\Omega) := \inf_{\substack{B \text{ ball,} \\ |B| = |\Omega|}} \frac{\|\chi_{\Omega} - \chi_{B}\|_{L^{1}(\mathbb{R}^{N})}}{|\Omega|}$$

Note that $\mathcal{F}(\Omega)$ is the distance in the $L^1(\mathbb{R}^N)$ of Ω from the set of all balls of measure $|\Omega|$.

It turns out that the ball is the **unique maxi**mizer for $\lambda_2(\Omega)$ (see [3, 4]; cfr [1]).

Theorem. For every bounded domain Ω in \mathbb{R}^N of class C^1 it holds

 $\lambda_2(\Omega) \le \lambda_2(\Omega^*) \left(1 - \delta_N \mathcal{F}(\Omega)^2 \right),$

where δ_N is a dimensional constant and Ω^* is the ball with the same measure as Ω . In particular,

 $\lambda_2(\Omega) \le \lambda_2(\Omega^*),$

with equality if and only if Ω is a ball.

This problem models the transverse vibrations of a free thin **plate** with density ρ_{ε} . The spectrum is made up of eigenvalues of finite multiplicity increasing to $+\infty$

 $0 = \lambda_1(\varepsilon) < \lambda_2(\varepsilon) \leq \cdots \leq \lambda_j(\varepsilon) \cdots$

We perform the same analysis of the second order case. The eigenvalues of (3) converge to those of an appropriate **limiting problem**.

We refer to the limiting problem obtained in this way as to the **biharmonic Steklov problem**.

eigenspace associated with $\lambda_F[\tilde{\phi}]$.

REFERENCES

(3)

- [1] L. Brasco, G. De Philippis, B. Ruffini, Spectral optimization for the Stekloff-Laplacian: the stability issue, J. Funct. Anal. 262 (11) (2012), 4675–4710.
- D. Buoso, P.D. Lamberti, Eigenvalues of polyharmonic operators on variable domains, ESAIM Control Optim. Calc. Var. 19 (2013), 1225–1235.
- D. Buoso, L. Provenzano, On the eigenvalues of a biharmonic Steklov problem, Integral Methods in Science and 3 Engineering: Theoretical and Computational Advances, ch.7, Springer (2015).
- [4] D. Buoso, L. Provenzano, A few shape optimization results for a biharmonic Steklov problem, Journal of Differential Equations, 259 (5) (2015), 1778–1818.
- [5] L.M. Chasman, An isoperimetric inequality for fundamental tones of free plates, Comm. Math. Phys. 303 (2) (2011), 421-449.
- P.D. Lamberti, L. Provenzano, Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann [6] eigenvalues, Current Trends in Analysis and Its Applications, 171–178, Birkhäuser, Basel (2015).