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INTRODUCTION

In this dissertation we consider different classes of eigenvalue problems for poly-
harmonic operators subject to homogeneous boundary conditions on open sets
in RY. First of all we consider the eigenvalue problem for the poly-harmonic
operator with Dirichlet boundary conditions

(—A)"u = A\pu, in Q,
n— 0.1
{U:%:...:gynqu:O’ On897 (OO )

where € is a domain (i.e., a connected open set) of finite measure in RY, p €
L>(Q). Along with the Dirichlet case, we consider a class of eigenvalue problems
for poly-harmonic operators subject to intermediate boundary conditions

(—A)"u = Apu, in Q,
u=% = =8 =0, on 92,  (0.0.2)
B (x;D)u = Byppi(x; D)u=...= B,_1(x; D)u =0, on 09,

with § <m < nifniseven, ”T“ <m < nifnisodd, where B;(z; D), j = m,m+
1,...,n — 1, are suitable linear differential operators of order m; (the conditions
Bj(z;D)u = 0, for j = m,...,n — 1, are called complementing conditions). The
limiting case m = n corresponds to the case of Dirichlet boundary conditions
(0.0.1). From a physical point of view, one may think of the open set Q as a
vibrating N-dimensional membrane with mass density p and total mass M =
fQ pdx. The cases n = 1 and n = 2 model concrete problems of physical interest.
For n = 1 problem (0.0.1) is reduced to the problem of the Laplace operator with
Dirichlet boundary conditions

(0.0.3)

—Au = Apu, in §Q,
u =0, on 0f,

which arises in the study of a vibrating membrane of mass density p with a fixed
frame. For n = 2 we have two problems for the biharmonic operator:

A%y = Apu, in Q,
{ U= % =0, on 09, (0.0-4)
and
A%y = Mpu, inQ,
{ u=2% =0 on . (0.0.5)

Problem (0.0.4) models a vibrating thin clamped plate with mass density p,
while problem (0.0.5) models a vibrating simply supported thin plate with mass
density p. For a detailed discussion of the physical interpretation of problems
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(0.0.3),(0.0.4) and (0.0.5) we refer to [7].

As is well-known the eigenvalues A of problem (0.0.2) have finite multiplicity
and form a strictly positive and increasing sequence {\;};en, with A\; — 400 as
7 — o0.

We are interested in the problem of the dependence of A; on p. More pre-
cisely, we investigate the analyticity of the dependence of the eigenvalues, or their
functions, upon variations of the density p in a suitable subspace of L>(2). We
consider densities p in the open subset of L>(Q) of those functions p such that
essinfg p > 0. Then we show that the symmetric functions of multiple eigenvalues
depend real analytically on p and we compute formulas for the derivatives of such
functions. Note that, in general, multiple eigenvalues are even not differentiable
with respect to p.

Then we consider the problem of maximizing or minimizing the eigenvalues
with respect to the variable p under the constraint fQ pdxr = const. There are
some results in this direction, see e.g., [16, 8, 9]. The case n = 1,N = 1 has
been completely solved in [18, Krein], under the assumption that the admissible
densities satisfy the condition

a<p<B, (0.0.6)

where «, 8 are fixed positive constants. Namely, for each index j € N the den-
sities p; and p; which minimize and maximize the eigenvalue \; are explicitly
constructed. It turns out that they are extreme points of the convex set of den-
sities defined by (0.0.6), i.e., p;, p; are ‘bang-bang’ controls (see [18] for details).
Moreover, in the case of the first eigenvalue A, the result of Krein has been gener-
alized in [8, 9, Cox-McLaughlin] to arbitrary dimensions under certain regularity
assumptions of the boundary of €2. Here we will generalize the results obtained
in [19, Lamberti] for the Laplace operator with Dirichlet boundary conditions to
the class of problems (0.0.2).

We shall also consider mixed boundary conditions in which case Dirichlet or
intermediate conditions are considered on a part I'y of 02 and Neumann bound-
ary conditions are considered on the remaining part 0 \ T'; of 0.

Keeping this in mind, after proving that elementary symmetric functions of
the eigenvalues depend real analytically on p, we compute formulas for their
derivatives and thanks to the Lagrange multiplier theorem, we show that there
are no critical mass densities under the sole fixed mass constraint. We show then
that eigenvalues are continuous with respect to the weak™ topology of L>(Q); it
immediately follows that the restriction of the symmetric functions of the eigen-
values to weakly™ compact sets of L>(2) (the set defined by (0.0.6) is of this
kind) admit points of maximum and minimum and such points belong to the
boundary of such sets.

The second part of this dissertation is devoted to the eigenvalue problem for
the Laplace operator with Neumann boundary conditions

{ —Au = Apu, in ),

%207 on 0f,

(0.0.7)

which models a free vibrating membrane of mass density p. Here we assume
that € is of class C!, which guarantees the existence of a sequence of positive
eigenvalues {\,};en increasing to +oo. Following the scheme of [19], we are
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able to prove that the symmetric functions of multiple eigenvalues depend real
analytically on p and compute formulas for their derivatives. The fact that there
are no critical mass densities under fixed mass constraint is not immediate. In
fact we prove it in a few special cases. Then we prove the continuity of the
eigenvalues with respect to the weak™® topology of L*°(€2).

Finally, we consider the following eigenvalue problem for the Laplace operator
with Steklov boundary conditions

{ —Au =0, in €2, (0.0.8)

% = A\pu, on 0N,

which is related to the study of a vibrating membrane whose mass is concentrated
at the boundary. Problem (0.0.8) can be considered as a limiting case for problem
(0.0.7). In fact, we are able to construct a sequence of densities p,, € L*>()) with
fixed total mass [, p,dez = M such that the spectrum of problems (0.0.7) with
density p,, converges pointwise to the spectrum of problem (0.0.8) with a suitable
constant surface density. This suggests us to look for critical mass densities for
Neumann problem among the wider class of problems including the Steklov prob-
lem. Finally, we exploit the same procedure used for problems (0.0.2) and (0.0.7)
in order to prove the real analyticity of symmetric functions of eigenvalues and
compute their derivatives. Then we show that for the ball B, the constant surface
density is a critical point for certain symmetric functions of the first eigenvalue
of problem (0.0.8).

This thesis is organized as follows. In Chapter 1, we introduce some pre-
liminaries. We recall basic results of Sobolev Spaces theory and general results
of perturbation theory for compact selfadjoint operators in Hilbert Spaces. In
Chapter 2, we study the case of the biharmonic operator with Dirichlet and
intermediate boundary conditions, we characterize the spectra, and prove real
analyticity of the symmetric functions of eigenvalues. Then we compute explicit
formulas for their differentials and we prove that there are no critical mass den-
sities under fixed mass constraint. Moreover, we generalize the results of [8, 9.
Then we extend these results to poly-harmonic operators. Finally, we prove that
these results hold also for poly-harmonic operators subject to mixed boundary
conditions where Dirichlet or intermediate conditions are imposed on a part of
the boundary, and Neumann boundary conditions are imposed on the remaining
part. In Chapter 3, we study the eigenvalue problem for the Laplace opera-
tor with Neumann boundary conditions, we prove real analiticity of symmetric
functions of the eigenvalues, then compute explicit formulas for their derivatives.
Then we give partial results on the non-existence of critical mass densities. In
Chapter 4, we construct a sequence of densities for which we are able to prove the
pointwise convergence of the spectrum of the appropriate problem (0.0.7) to the
spectrum of problem (0.0.8) with a suitable constant density. Then we study the
eigenvalue problem for the Laplace operator with Steklov boundary conditions
and show that the constant density is a critical point for certain functions of the
first eigenvalue for the ball.
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Introduzione

In questa dissertazione ci proponiamo di studiare problemi agli autovalori per
operatori armonici e poliarmonici con condizioni al contorno omogenee su aperti
connessi 2 di RY di misura finita (eventualmente limitati, di classe C'), sui
quali consideriamo densita di massa p € L*>()) che soddisfano la condizione
essinfg p > 0. Inizialmente consideriamo la classe di problemi (0.0.2) per gli
operatori poliarmonici (—A)™ (il caso m = n ¢ il caso di condizioni al bordo
di Dirichlet) e ci interessiamo alla dipendenza analitica delle funzioni elementari
simmetriche degli autovalori \; (che sappiamo formare una successione crescente
e strettamente positiva), dalla densita di massa p (in generale invece i singoli
autovalori non sono funzioni neppure derivabili di p). Lo scopo in questo caso &
generalizzare a questa classe di problemi i risultati ottenuti in [8, 9, Cox] e [19,
Lamberti| per I'operatore di Laplace con condizioni al bordo di Dirichlet. Mostri-
amo infatti che le funzioni simmetriche elementari degli autovalori non ammettono
densita di massa critiche sotto la sola condizione che la massa totale dell’aperto,
data da fQ pdz, sia fissata. Inoltre proviamo la continuita rispetto alla topologia
debole* degli autovalori, e quindi mostriamo che su insiemi debolmente® compatti
di L>(2) le funzioni elementari simmetriche degli autovalori ammettono massimi
e minimi, e pertanto tali punti devono trovarsi al bordo, generalizzando cosi i
risultati di [18, Krein| e [8, 9, Cox-Mc.Laughlin]|. In seguito si generalizzeranno
tali risultati al caso in cui le condizioni al contorno precedentemente considerate
sono imposte su una parte del bordo, imponendo sulla restante parte condizioni
di Neumann.

In seguito si tentera di estendere i risultati trovati in [19] al caso del lapla-
ciano con condizioni al bordo di Neumann. Anche in questo caso si provera la
reale analiticita delle funzioni simmetriche degli autovalori, e si daranno parziali
risultati sulla non esistenza di densita di massa critiche sotto la sola condizione
che la massa sia fissata. In seguito ci si interessera al problema di Steklov per il
laplaciano. Le motivazioni che ci spingono a studiare tale problema sono dovute
al fatto che in un certo senso il problema (0.0.8) puo essere visto come caso limite
di problemi del tipo (0.0.7); infatti possiamo costruire una successione di densita
pn per le quali lo spettro dei problemi di Neumann con densita p,, converge pun-
tualmente allo spettro del problema di Steklov con densita costante C' sul bordo
(dove p, e C forniscono la stessa massa su §2). Dunque questo ci suggerisce che
possiamo cercare densita di massa critiche per il problema di Neumann, nella
classe pit ampia costituita dall’aggiunta del problema di Steklov. Infine provi-
amo che le funzioni simmetriche elementari degli autovalori del problema (0.0.8)
dipendono analiticamente dalla densita superficiale p, e mostriamo che nel caso
della palla la densita superficiale costante e critica per il primo autovalore.
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1. PRELIMINARIES

We present here a number of results widely used in the following chapters.

1.1 Sobolev Spaces

Let’s introduce some definitions and basic results on Sobolev Spaces. For all
proofs we refer to [6].

For any set © in RY and p > 0 we denote by Q, the set {x € Q: d(x,99Q) > p}.
Moreover, by a cuboid we mean any roto-translation of a rectangular paral-
lelepiped in RY.

Definition 1.1.1. Let p > 0, 5,5 € N, s’ < s and {V}}3_, be a family of bounded
open cuboids and {r;}5_, be a family of isometries in RY .

We say that A = (p,s,s' ,{V;}5_,{r;}i_1) is an atlas in RN with the param-
eters p, s, 8", {V;}ioy, {rj}i=1, briefly an atlas in RY.

We denote by C(A) the family of all open sets Q in RN satisfying the following
properties:

(1) 2 C Ul(vj)p and (V;), N2 # 0;

]_
(i) V;NOQ#D forj=1,...8, V;NOQA =0 fors' <j<s;
(111) for j =1, ..., s
ri(V))={x e R : a; <z <by,i=1,..,N}

and

r(QNV) ={z e RY : an; < 2y < g;(Z), T € W;},
where T = (1, ...,xn-1), W; ={Z € ]RN: Do < <bj,i=1,..,N—1} and
g; is a continuous function defined on W; (it is meant that if ' < j < s then
9j(Z) = bn; for all z € W;); moreover for j =1,...,s

anj +p < gi(Z) < bnj — p,
for all x € Wj.

We say that an open set Q in RN is an open set with a continuous boundary
if Q is of class C'(A) for some atlas A.
Let m € N, M > 0. We say that an open set Q is of class CT;(A) if Q is of

class C(A) and all the functions g; in (iii) are of class C™(W ;) with
1<|al<m

We say that an open set Q in RN is an open set of class C™ if Q is of class
Cyi(A) for some atlas A, m € N and M > 0.
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Let C°(£2) be the space of C*°(£2) functions compactly supported in  (test
functions). Then we have the following

Definition 1.1.2. Let Q be an open set in RN, u,v € L (Q) and o € N} a
multiindex. We say that v is the o!-weak partial derivative of u and we write
D%y = v if

/QuDa¢da; = (—1)l /qubdx,
for all ¢ € C(Q).

Definition 1.1.3. Let Q be an open set in RY. The Sobolev Space WHP(Q)
consists of all functions u in LP(Q)) such that for all a € NY with |a| < k, the
weak derivative D*u exists and belongs to LP(S).

Definition 1.1.4. If u € W*P(Q), we set

fllysor = | 32 1Dl | i p # o0,
la|<k

“uHkaOC(Q) = Z ”DauHLOO(Q)'
la|<k

Definition 1.1.5. We denote with WiP(Q) the closure of C°(Q) in WhP(Q).
For p = 2, we write H*(Q) = W*2(Q), H¥(Q) = W *(Q).

Theorem 1.1.6. For each 1 < k < oo, W*P(Q) is a Banach space.
We will need some approximation results.

Theorem 1.1.7. (Global approximation by smooth functions). Let € be an open
set in RN, Let u € W*P(Q) for some 1 < p < co. Then there erists a sequence
{tm fmen C C(Q) NWHEP(Q) converging to u in W*P(Q).

Theorem 1.1.8. (Global approximation by smooth functions up to the bound-
ary). Assume that Q is a bounded open set of class Ct. Let u € W*P(Q) for

some 1 < p < 0o. Then there exists a sequence {Up }men C C®(S2) converging to
u in WEP(Q).

As a consequence of Theorem 1.1.7 we have the following

Theorem 1.1.9. Let Q be an open set in RN, 1 < p < oo, u € LP(Q). Then
u € WHP(Q) if and only if u coincides almos everywhere with a function u such
that for almos all lines [ parallel to the coordinate axis, w, s locally absolutely

continuous, and the classic derivatives (,;97“1, e a‘?c—qjv, which exist almost everywhere,
belong to LP().

Under suitable regularity conditions of 0f) it makes sense to define the trace
of a function u € Wk»((Q).

Theorem 1.1.10. (Trace Theorem). Let Q be a bounded open set in RN of class
C'. Then there exists a bounded linear operator Tr from W'P(Q) to LP(0Q) such
that:
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i) Trlu] = u,, if ue WH(Q) N C(Q);

i) | Te[ul|| o ony < Cllullyisgy, Yu € WH(Q), the constant C depending only
on p and ).

Tr[u] is called the trace of u on OS).

Theorem 1.1.11. Let Q be a bounded open set in RN of class C'. Then u €
Wy (Q) if and only in Tr[u] = 0.

Next results concern embeddings of Sobolev Spaces.

Theorem 1.1.12. (Gagliardo-Nirenberg-Sobolev inequality). For 1 < p < N
let the Sobolev conjugate p* be defined by p* = N—_pp. Then there exists C' > 0,

N
depending only on p and N, such that

||u||LP*(]RN) <C ||VU’||LP(RN) )
for all u € CL(RY).

Lemma 1.1.13. (Poincaré inequality). Let Q be an open set in RN of finite
measure, 1 < p < oo. Then there exists C' > 0, depending only on p, N and €}
such that

||uHLP(Q) <C ||vu||LP(Q) )

for all u € Wy (Q).

Theorem 1.1.14. (Rellich-Kondravhov compactness Theorem). Let Q@ be a
bounded open set in RN of class C', 1 < p < N. Then W'P(Q) is compactly
embedded into L1(Y) for all 1 < q < p*.

Corollary 1.1.15. If€) is an open set of finite measure, then for all 1 < p < oo,
Wol’p(Q) is compactly embedded into LP(QQ). If Q is a bounded open set of class
C*, then for all 1 < p < oo, WHP(Q) is compactly embedded into LP(S2).

Theorem 1.1.16. (Poincaré-Wirtinger inequality). Let 2 be a bounded open set
in RN of class C*, 1 < p < co. Then there exists C > 0, depending only on p, N
and Q such that

lu = (Well o) < ClIVull o),
Jou

where (u)g = <7
Thanks to Rellich-Kondrachov Theorem (1.1.14), we are able to prove the
following

Theorem 1.1.17. (Compact trace Theorem). Let Q be an open bounded set in
RN of class C', 1 < p < co. Then the trace operator Tr : WIP(Q) — LP(0Q) is
compact.

Proof. We consider only the case p > 1. For the case p = 1 we refer to [22]. By
Theorem 1.1.8, it suffices to prove that if {v, },en is a sequence in C°(Q2), there
exists a subsequence {vy,, fmen such that {vy,, sqtmen is convergent in LP(02).
Moreover, Q € C(A), for a certain A(p,s,s’, {V;}5_1,{r;};=1). By [23, 1.2.4, p.

27] there exist functions ¢; € C(V;), j = 1,..., s, such that 37, ¢;(z) = 1 for
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x € €1, and that Zj/:l ¢j(x) =1 for x € 0. Then we can directly assume that
vy, has support within V; N Q for some j =1,...,s". We denote the set V; N Q by
U; and the set V; N 92 by A;. Then for € W; we have

[on (7, 9(2)) = vm (%, ()" < |va(Z, an) = vm(Z; an)[”

9(®) O |on (T, xn) — v (T, 2N) [P
n l m ) d
+ /a On TN

N

Then it follows, integrating on W;, that
v — Um”ip(Aj) < Cllo, = Um”ip(Uj)

+ Op/U‘ v () _Um($)|p71 O(vn (1) — v (2))

d
a[EN o

-1
< C (lon = vl + o = vl o = Vi) -

Now by Theorem 1.1.14 we can extract a subsequence, again denoted by {v, }nen,
that converges strongly in L”(U;). Then v, is a Cauchy sequence in LP(A;). This
concludes the proof. O

Remark 1.1.18. We observe that the Rellich-Kondrachov Theorem and compact
trace theorem hold true even under lower reqularity assumptions of the boundary.
In fact in [23, Thm. 6.1, p. 106] is proved that Rellich Theorem holds true for €
of class C*.
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1.2 Symmetric functions of the eigenvalues

In this section we present some techniques and results developed by P.D. Lamberti
and M. Lanza de Cristoforis in [20] on the analytic dependence of symmetric func-
tions of eigenvalues of a compact selfadjoint operator on a Hilbert space equipped
with a variable scalar product depending on the operator. For all proofs and de-
tails we refer to [20].

Let X, ), Z be real Banach spaces. Let L(X,)) the Banach space of bounded
linear maps from X to Y, endowed with the usual norm [|Al|z(y y) 1= SUP |y, —1
|Az[y,. Let B(X x Y, Z) the space of bilinear continuous maps from X x )
to Z, endowed with the usual norm of the uniform convergence on the product
of the unit ball of X and the one of Y. Let (H,< -,- >) be a real Hilbert
space, ||-|| the norm associated with the scalar product < -,- > of H. We denote
by Hg the vector space H endowed with the scalar product @@ = Q(-,-), and
]l the associated norm. We denote by K(H, H) the subspace of L(H, H) of
compact operators, which is closed in £L(H, H). We denote by Ks(Hg, Hg) the
closed subspace of IC(Hg, Hg) of those T" such that Q(Tu,u) = Q(u, Tu) for all
u,v € Hg. Let T be a compact selfadjoint operator on H, o(7") the spectrum
of T', that is well-known to be a finite or countable subset of R. The elements
of o(T) \ {0} are the eigenvalues of T', and 0 is the only possible accumulation
point for o(7) (for the proof of the characterization of the spectrum of a compact
selfadjoint operator we refer to [5]). We denote by j(T') the number of positive
eigenvalues of T', each counted according to its multiplicity, and by j~(7) the
number of negative eigenvalues of T', each counted according to its multiplicity.
We set

JHT) = {j €Z:1 < j < jH(T)},
J(T) = {jeZ: —j~(T) < j < -1},

Then there exists a unique function j — u;(T") of J(T') := JH(T) U J (T) to R,
which is decreasing on J~(T") and on J*(T), with

o(T)N {0} = {p(T) = 5 € J(T)},
such that each eigenvalue is repeated according to its multiplicity. We set
Bs(H? R) := {B € B(H* R) : B(uy,uy) = B(ug,uy) for all uy,uy € H},
a closed subspace of B(H? R), and
Q(H? R) :={B € Bs(H*R) : n[B] > 0},

where
i B(u,u) .
n[B] = f{—HuHQ cu € H\ {O}} .

The set Q(H) is the set of those scalar products on H coercive with respect to
the fixed one < -,- >. We observe that () is a coercive scalar product if and only
if the embedding of Hg in H is a homeomorphism. Now we set

M :={(Q,T) € Bs(H*R) x K(H,H) : Q(Tu,v) = Q(u,Tv) for all u,v € H}.
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The set M is closed in Bs(H?,R) x K(H, H). Moreover we set

O:=MnN(QH*R) x K(H H))
= {(Q, 7)€ QH*R) x K(H,H) : T € Ks(Hg, Hg)}.

The set O is open in M. Now we have the following

Theorem 1.2.1. Let H be a real Hilbert space, j € Z \ {0}. Then the set

A ={@QT)e0:jeJT)}

is open in M, and the function u;[-] which takes (Q,T) € A; to u;[T] is contin-
uous.

We now consider a fixed finite subset F' of Z \ {0}, and set

AR ={@QT) €O je JMVje F, w[T] & {iy[T] : j € F}Vi € J(T)\F}.

(1.2.2)
By Theorem 1.2.1 it follows that A[F] is open in M and p;[-| are continuous on
A[F]. Finally we denote the ortogonal projection Pr[Q,T] of Hg on the subsapce
E[T, F] generated by

{u€e Hg : Tu=pu, 3 pe{T):jeF}}
We can state the following

Theorem 1.2.3. Let H be a real Hilbert space and F a finite subset of Z\ {0}.
Then E[T, F] has dimension equal to the cardinality of F, and it is an invariant
subspace of H for T.

Then we have [17, Kato| the following

Theorem 1.2.4. Let H a real Hilbert space, F' a finite subset of Z \ {0}. Then
the map Pp which takes (Q,T) € A[F] to Pr|Q,T)| € L(H, H) is continuous.

It is shown in [20] that Pr[Q,T] depends analytically on (@, T), in the sense
of the following Theorem

Theorem 1.2.5. Let H be a real Hilbert space, F' a finite nonempty subset of
Z\{0} and (Q,T) € A[F]. Then there exists an open netghbourhood W of (Q,T)

in Q(H*,R) x L(H,H), and a real analytic operator Pti ofW to L(H, H) such
that PL[Q,T) = PplQ,T) for all (Q,T) € W A[F].

We can choose an orthonormal basis of E[T, F'| which depends analitically on
(@Q.T).
Proposition 1.2.6. Let H be a real Hilbert space, F' a finite subset of Z\{0} and
(Q,T) € A[F]. Let{u; : j € F} be an othonormal basis for BT, F) in Hg. Then
there exists an open neighbourhood Wy of (Q,T) in Q(H?* R) x L(H, H) which

is contained in the neighbourhood YW of Theorem 1.2.5 , and |F| real analytic
operators u;l-,-|, j € F', of Wy to H such that:

i) {u;[Q,T] : j € F} is an orthonormal set in Hy, for all (Q,T) € W,
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i) {u;[Q,T] : j € F} is an orthonormal basis for the range of PLQ,T), which
coincide with E[T, F), in Hg, for all (Q,T) € Wy N A[F],

iii) u;[Q,T) = 1; for all j € F.
The problem is now reduced to a finite-dimensional one.

Proposition 1.2.7. Let H be a real Hilbert space, F' a finite subset of 7 \ {0}
and (Q,T) € A[F]. Let {11, ...,ujr|} be an orthonormal basis of E[T, F] in Hp,
and {u;[Q,T] : j =1,...,|F|} as in the previous proposition and S the map of
Wy to the set Mip|(R) of |F| x |F| matrices with real coefficients, defined by

SIQ.T] = (S|, Thpe=r1,.. ;7| = (Q(Tur[Q, T), un|Q, T))hk=1,...|F|

for all (Q,T) € Wy. Then S[-,-] is real analytic and S[Q,T] is symmetric for
all (Q,T) € Wo N A[F]. Moreover, if (QQ,T) € Wo N A[F], then {1;[T},er are
the eigenvalues of S[Q, T repeated according to their multiplicity. Finally, if we

assume that p;[T] assume a common value fi; for all j € F, then the differential
of S|+, in (Q,T) is given by the formula

asiQ. 7(Q.T) = (Q(aw i), . for all (Q.T) € Bs(H?, R)x L(H, H).

Finally, we have

Theorem 1.2.8. Let H be a real Hilbert space and F' a finite nonempty subset
of Z\ {0}. Let

MF,s[T]: Z :Uﬁ[T]"'st[T]’ VSE{L...,|F‘},

for all (Q,T) € A[F], be the elementary symmetric functions of the eigenval-
ues ;[T with indices j € F. Let (Q,T) € A[F]. Then there exists an open

neighbourhood W of (Q,T) mg(HQ,R) x L(H,H), and real analytic functions
Mg‘,s['v |, for s=1,...,|F|, of W in R such that

Mfﬁ*",s [Q7 T] = MF,S[T]7

for all (Q,T) € W A[F], and for all s = 1,...,|F|. If we further assume that
there exists i € R such that i = p;[T] for all j € F, and if {1, ..., g} is
an orthonormal basis for E[T, Fl in Hg, then the partial derwative of Mg,s with
respect to the variable T at (Q,T) is given by the formula

|F|

dr M}, [Q, T)(T) = ('f‘__;) QT ), (1.2.9)
=1

for allT e Ks(Hg, Hg), and for all s =1,...,|F].
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2. DIRICHLET, INTERMEDIATE AND MIXED BOUNDARY
CONDITIONS FOR POLY-HARMONIC OPERATORS

In this chapter we study the eigenvalue problems for the poly-harmonic operators
subject to Dirichlet or intermediate boundary conditions. We start considering
the biharmonic operator, which models a vibrating clamped plate in the case
of Dirichlet boundary conditions, and a vibrating simply supported plate in the
case of intermediate boundary conditions. Then we generalize the results to poly-
harmonic operators. Finally, we study the case of mixed Neumann-Dirichlet and
Neumann-Intermediate boundary conditions.

2.1 The bilaplacian

Throughout this chapter ) is a domain, i.e., a connected open set in R, of finite
measure |{2|.

Let R be the set of those p € L>(2) such that ess infg p > 0. Note that R is open
in L>°(£2). We start considering the classical formulation of Dirichlet problem for
the bilaplacian, which models the bending of a clamped plate:

A%y = \pu, in Q,
u =0, on 012, (2.1.1)
% =0, on 0f),

where v denotes the outer unit normal to 99, u € C*(Q)NCY(Q) and A € R. We
consider the weak formulation of the problem (2.1.1), that is

/Aqude = )\/pugbdx , Ve H Q) (2.1.2)
Q Q
in the unknows u € H3(Q2), A € R.

We reduce the study of problem (2.1.2) to the study of the spectrum of a
compact selfadjoint operator in a suitable Hilbert space. We start considering
the operator A? as a map from HZ(Q) to its dual (HZ(€2))" defined by

A?[u][p] = /QAuA¢d:E , Vu,¢€ H(Q).

The hypothesis of the Lax-Milgram Theorem (cfr. [27]) are fulfilled by A? in
fact:

1. A? is bounded:

afol] = | [ Sudode] < [ 18ul80] do < 1 ul 180

< Cllullay 19l gz - Vs € HS).



10 2. Dirichlet, intermediate and mixed boundary conditions for poly-harmonic operators

2. A? is coercive. In fact by the Poincaré inequality (Lemma 1.1.13),

lullfz) < CQN) [ Aullfaq) = C(Q,N)A[u][u] , Y u e HF(Q),
with C(Q, N) > 0.

Then by the Lax-Milgram Theorem we have that A? is a linear homeomorphism
between HZ () and its dual.

We denote by 7 the canonical (compact) embedding of HZ(Q) into L*(€) and
by J the canonical (continuous) embedding of L?(2) into (HZ(€2)) defined by

J[u][¢] = /ngbdx . Yu e L*(Q),¢ € HE(Q).

For all p € R we denote by M, the map which takes u € L*(Q2) to pu € L*(Q2), and
by J, the map J o M,, which is a continuous embedding of L*(2) into (H3(Q2))":

) = [ uopds | vue 1(@).0 € H(Q).

It is now easy to see that problem (2.1.2) is equivalent to the following one:
(AH o J,0iu = A", (2.1.3)

in the unknows v € HZ(Q2), A € R. By the Poincaré inequality (1.1.13) it is easy
to see that the bilinear form

<u,v >= / AuAvdz, Yu,v € HF(),
Q

defines on HZ() a scalar product whose induced norm is equivalent to the stan-
dard one. We will denote H3(2) the space HZ(2) endowed with this scalar
product. We can now state the following

Lemma 2.1.4. Let Q be a domain in RY of finite measure, p € R. The operator
T, := (A*)"toJ,oi is a compact selfadjoint operator in H3 (), whose eigenvalues
coincide with the reciprocals of the eigenvalues of problem (2.1.2) for all j € N.

Proof. The compactness of T}, follows immediately from the compactness of ¢ and
the continuity of (A%)~! and J,. We observe now that

<Tpu,v >0 = < (Ao J,0du,v >92(0)= A?[(A*) o J, 0 du][v]
= Jplaf[v] = Jpliv][ul,

for all u,v € H3(2). This proves the selfadjointness. The proof of the other
statements is straightforward. O

Then we have the following

Theorem 2.1.5. Let Q be a domain in RN of finite measure and p € R. Then
the set X of the eigenvalues of (2.1.2) is contained in |0, +oo[ and consists of the
image of a sequence increasing to +00. Fach eigenvalue has finite multiplicity.
The operator A* has a Hilbert basis in H3(Q2) which consists of eigenfunctions.
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Proof. Let A € ¥, u € H2(Q) \ {0} be such that A%u = A\pu in the weak sense.

Thus
/(Au)2 dr = )\/puz dx
Q Q

hence A > 0. By the Poincaré inequality it follows that if u # 0, then [, (Au)*dz >
0, hence 0 is not an eigenvalue and 3 €0, +o00[. Moreover, T}, is injective: indeed
(A?)t o J,u = 0 implies J,u = 0 and hence u = 0. Then KerT = {0} and it is
well-known that the eigenvalues of T}, consist of the image of a decreasing sequence
{1;}, such that p; > 0 for all j € N and lim;_,,, = 0. Since ¥ = {Hi 1j € N}
the remaining statements follow immediately. ]

We represent the set ¥ of the eigenvalues of (2.1.2) by means of an increasing
sequence

Mol Aalpl, Aslpl, -y Anlpl, -

where each eigenvalue is repeated according to its multiplicity. The first eigen-
value in general is not simple, cfr. [14] (for the laplacian —A the first eigenvalue
is always simple, cfr. [19]).

We have the following variational representation of the eigenvalues.

Theorem 2.1.6. Let Q be a domain in RN of finite measure and p € R. Then
we have

1)

, Jo(Au)? dx
Mlp| = f - 2.1.7
1lf] ue}f{lg(ﬂ) fQ u?pdx ( )
u#0

The eigenfunctions corresponding to A1 [p| are exactly the minimizers in (2.1.7).
ii) For all j € N
J(Au)? dx
Jou?p dx

where uy, ..., u; are the linearly independent eigenfunctions corresponding to
Ailpl, s Aglp)-

el zsup{ Lu € <u1,...,uj>},

iii) Let
J(Av)? dz )
AE) = = E < Hi(Q
()= {02 ve B < i(0)
for all E < H3(Q). Then

Ailpl = inf A(E). (2.1.8)
E<H{(Q)
dimE=j

By (2.1.8) it immediately follows that the map p — A;[p] is locally Lipschitz-
continuous in p € R. In fact it is easy to see that

JodAu) dz [ (Au)? dz - lfQ(AuV dx
Jou?prdz Joutpedr | ~ a [qu?p dx

||P2 - pl”oo
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for all py, p2 € R, where

a = min{essinfq p, essinfqg po} > 0.

Then
(Au)? dx 1 (Au)? dx
Jo 2 L—=p2—pillo ] < —fQ 2 (2.1.9)
Jou?py du o Jou?p2 dx
(Au)? dx 1
ffugm L+ —llp2 =il |-
Q

If p1, po satisfy
lp2 = pillo <,
then taking the infimum and the supremum in (2.1.9) yields

1
Ajlpe] = Ajlpn]l < Ajlpn] — llpz = pulls

hence the local Lipschitz-continuity of A;[-] is proved.

We now study the eigenvalue problem for the operator A2 subject to inter-
mediate boundary conditions. The classical formulation of the problem is

A%y = \pu, in 2,
u=0, on 0f2, (2.1.10)
% =0, on 0f,

in the unknown u € C*(Q) N C?%(Q), A € R. We introduce now some basic
elements of tangential calculus in order to state the weak formulation of problem
(2.1.10). Let bo(z) = d(z,Q) —d(z,Q°), Sp(0Q) = {z € RN : |bo(x)| < h}, where
d(z, A) denotes the euclidean distance of x to a set A in RY. If Q is of class C?
then bQ S OZ(Sh@Q)), Cfl".[ll, Ch4]

Definition 2.1.11. Let Q2 be an open set in RY of class C3. Let F € C1(S,(09)),
Ve CYHSn(002)N. We set f = Faq, v:=Vq, v, =V v, vgqg :=v—1v,. Then
the tangential gradient and divergence on OS2 are defined as follows:

or

Van =VF — -V,
ov

divgqu :=divV — DV - v,

where D denotes the Jacobian. Moreover, if F € C%(S,(09)), it is defined the
operator Ayq (Laplace-Beltrami operator) as

Npaf = divoa (Vaaf).

Under the assumptions of Definition 2.1.11 we can state the tangential Green
formula:
fdivgqu + Vaaf - vdo = Hfv-vdo, (2.1.12)
o0 o0
where H = (N — 1)H, and H is the mean curvature of 9. For all proofs and
details concerning tangential calculus, we refer to [11].
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Consider the equation A?u = Mpu. We multiply both members for a test
function ¢ € C'2°(Q2) and integrate by parts twice. Then we obtain

/Q Augds = Z / 0 ;updr = < / 03 judvdo — / 03 ud; ¢dx)
6,j=

i,7=1
= (/ “Juqbuj 8 u8]¢l/zd0—{—/82u62 ¢d$) (2.1.13)
1

1=

1

Since boundary integrals are all equal to 0, we obtain
/ A’updr = / Z Fudiedr Vo € C(Q). (2.1.14)
i,7=1

We relax our conditions and assume that v and ¢ are in a suitable subspace of
H?(Q). Let’s consider the first two terms of (2.1.13). We have

/ Z “juqﬁyjda—/ 04u
o0 o9

1]1

/8Q Z 02 ud;pvido = /dﬂ (D*u.v) - Vdo, (2.1.15)

4,7=1

where D?u denotes the Hessian of u. The term (2.1.15) can be written as

| (0P Vodo = [ (D) Vansdo+ [ (Dur)- uds

v
0%u 0

_ 2 . - 77

= /{m (D u.y) Voaodo + 02 O o

82 0%u 0
= /39( leag(D uy)—l—Ha 2)¢d0+/89w5d0,

where we have used the fact that g Y = (D?*u.v) - v. The natural choice of the
subspace of H%() in order to state the weak formulation of the problem (2.1.10)

is then H%(Q2) N H} (). The weak formulation is

/ Z 02 udZ gpdr = / pupdz, Vo € H(Q) N HL(Q), (2.1.16)

i,7=1

in the unknowns u € H?*(Q) N H}(Q), A € R. Problem (2.1.16) makes sense
under less restrictive boundary regularity assumptions. As in the case of Dirichlet
boundary conditions, we study problem (2.1.16) in an open subset 2 of RY of
finite measure.

Remark 2.1.17. Having in mind the canonical decomposition of A on the bound-
ary 0Q of a bounded open set of class C?, i.e., Aujpg = A@Qu + H% + %, since
u =0 on 0N, hence Apq = 0, the boundary condmon =0 on 0 in (2.1.10)
is equivalent to the condition Au — Hau =0 on 0.
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We now reduce problem (2.1.16) to an eigenvalue problem for a compact
selfadjoint operator on a Hilbert space. We denote by V(£2) the space H?(Q) N
H}(Q). We consider the operator A? as the map from V() to its dual (V(Q))
defined by

/ Z Zudiedr, Vo€ V(Q). (2.1.18)

i,7=1

The operator A? is a linear homeomorphism between V() and (V(2)). This
follows immediately by observing that there exists C' > 0 such that

[ull oy < € HDZUHLQ(Q), Vu € V(Q). (2.1.19)
In fact we observe that for any u € V()

/ Oiuudr = 8»uu1/ida - / (Ou)” dx = —/ (Byu)” d
Q Q

hence,

(Oyu)* dz = ‘/ Oiuudx
Q 0

< [l z2@y 105] 12

We sum over index ¢, obtaining

N
IVl < Ml 2 [0l e

IN

HUHL2(Q)Z 19; “”Lz < C(N )||“||L2(Q)HD2“HL2(Q)

7,7=1
Since u € H}(Q), there exists C’ > 0 such that [ull o) < C'I[Vull ey It
immediately follows then

lull 2y < C(N)C' | D%t 2

hence the coercivity of A2. The proof of the continuity of A? is straightforward.
Next we denote by 7 the canonical (compact) embedding of V() into L?(f2), and
by J, the (continuous) embedding of L?(2) into (V(£2)), defined by

J[ul[4] = /Q pugde Ve I2(Q), 6 € V(Q).

Let T, be the operator from V(Q) to itself defined by T, := (A?)"t o J, 0.
Problem (2.1.16) is then equivalent to

Tou=\""u, (2.1.20)

in the unknows u € V(Q2), A € R. We now consider the space V(€2) endowed
with the bilinear form

<u,v >= / Z L udivde, Vu,v e V(Q). (2.1.21)
7,7=1
This is a scalar product on V' (£2) whose induced norm is equivalent to the standard

one. We denote by V() the space V(€2) endowed with the scalar product defined
by (2.1.21). Then we can state the following
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Lemma 2.1.22. Let Q be a domain in RN of finite measure and p € R. The
operator T, := (A?)"t o J, 014 is a compact selfadjoint operator in V(§2), whose
eigenvalues coincide with the reciprocals of the eigenvalues of problem (2.1.16)
for all 7 € N.

The proof of Lemma 2.1.22 is very similar to the proof of Lemma 2.1.4, hence
we omit it.

Theorem 2.1.23. Let Q be a domain in RN of finite measure, p € R. Then the
set X of the eigenvalues of (2.1.16) is contained in ]0,+oo| and consists of the
image of a sequence increasing to +00. Fach eigenvalue has finite multiplicity.
The operator A% has a Hilbert basis in V(Q) which consists of eigenfunctions.

The proof of Theorem 2.1.23 is very similar to the proof of Theorem 2.1.5.
We represent the set X of the eigenvalues of (2.1.16) by means of an increasing
sequence

Mlpl, Aelpl, Aslo] s - Aalp) s -

where each eigenvalue is repeated accordingly its multiplicity.
We have the following variational representation of the eigenvalues.

Theorem 2.1.24. Let Q be a domain in RN of finite measure and p € R. Then
we have

i

D)) d
Ml = inf %. (2.1.25)
u u X
i;é(o) QP

The eigenfunctions corresponding to i [p| are exactly the minimizers in (2.1.25).

ii) For all j € N

| Jo ID2? de
\ilpl= inf sup L —1 2.1.26
= i, o (2.1.26)
imFE=j

Exactly as in the Dirichlet boundary conditions case, by this representation
we deduce the local Lipschitz-continuity of A;[p].

In the sequel we will denote by AP[p] and by Af[p] the eigenvalues of the
problems (2.1.2) and (2.1.16) respectively, by T’ pD and TpI the respective resol-
vent operators and by Hp(Q2) and H;(Q) the Hilbert spaces H2(Q) and V(Q)
respectively.

Theorem 2.1.27. Let Q be a domain in RN of finite measure and F a finite
nonempty subset of N\ {0}. Let

ROF]:={peR : A\[o] £ o], ¥j € F,IeN\F}
OVF] = {p e RIF] : AV[o] = (o], Vi, o € F},

where (-) stands for D or I. Then RU[F)] is an open subset of L>(Q2) and the
symmetric functions of eigenvalues
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ALl = 3T A A, =1, F) (2.1.28)
JiyeJn€F
J1<-Jn
are real analytic in RO[F). Moreover if p € OV[F] and the eigenvalues )\(f)[ ]

assume the common value >\ [ | for all j € F, then the differential ofA Fn At p
s given by

an i) = (-0) " (1 1) > / ) pde,  (@2129)

for all p € L>(Q2), where {ug)} is an orthonormal basis for )\E;l) [p] in Hy(Q).

Proof. We write the proof in the case of Dirichlet boundary conditions. The
proof of the other case is essentially the same. First, we observe that the map
which takes p € R to T)) € K(HG(), H5(€2)) is a bounded linear map, hence real
analytic. Then the map which takes p € R to ({-; )22 TP) € Q(H3(Q)* R) x
K(H3(2), H3(Q)) is real analytic. The operator T is a compact selfadjoint
operator with respect to the scalar product (-, '>H(2)(Q), and its eigenvalues, denoted
by p[p], coincide with the reciprocals of AP[p]. Then the set RP[F] coincides
with the set {p € R : ul[p] # ullpl, Vj € F,l € N\ F}. The function
p = (( )z, T)) is an analytic map from R to

O = {(Q.T) € QHF(Q)", R) x K(H5(2), H5(2) :
Q(Tu,v) = Q(u, Tv) for all u,v € H(Q)},

and the set RP[F] coincides with the set

{peR : (( w1, Py e AP[F]},

where AP[F] is defined in (1.2.2), with H = H2(2). Since AP[F] is open in OF
(Theorem 1.2.1) and p = ({-,")3z2(0), T, is a continuous map of R into OF, it
follows that RP[F] is open in L>(Q2). By Theorem 1.2.8 it follows that the maps

which take p € RP[F] to

Crall = > wdlpl - ulol, (2.1.30)
J1yJn€F
J1<<Jn
are real analytic for all h = 1,...,|F|. Now one can easily see that
ro p
AR, [p) = 5= o] (2.1.31)
L5 m [P)
for all h = 1,...,|F|, where we have set I'2 Fo := 1. Then the symmetric functions

of eigenvalues AP, [p] are real analytic.

We now show formula (2.1.29). The function I'P,[] is given by the composition
of Mp[T] defined in Theorem 1.2.8 with the map which takes p € R”[F] to T .
By standard calculus and Theorem 1.2.8 it follows

||

il = (1)) 02 A ey 1)
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for all p € RP[F],p € L>=(Q).
We have

AT Pl u) Yaziy = AT [plluy [uy’] = A*[(A*) 7 d T [l [ ]][ur”)

— AP = [ ()’ pa. (2.33)

for all p € L>(2),l € F. Now by (2.1.31), (2.1.32) and (2.1.33), and by standard
calculus, it follows

dF%FPh[p] [/?]F%m[ﬂ] - F?,\F\fh[p]drlj%ﬂ 2ird

aAR,[olli] = S
{ (|F‘|F_| i 1) (VRLel) T ('i') (ARLp)) " }
- (ARl) Q'F'l'flj AT (][l ), uf Ve
- - ()" ('F'_l)g [ @)’ paa.
This concludes the proof. 0

Remark 2.1.34. We observe that if j € F , then the restriction of A§')[p] to
OU[F] is a real analytic function, in fact )\§)[] coincides on OV [F| with the real

INSAD
RS

analytic function

2.2 C(ritical mass densities

In this section we show that there are no critical mass densities for the symmetric
functions of eigenvalues under fixed mass constraint.

We recall that the total mass of the set €2 with density p € R is given by

Mlp| = /derﬂ-

Definition 2.2.1. Let Q be a domain in RN of finite measure and F a differen-
tiable real valued function defined on an open subset U of L>®(Q2). We say that
p € U is a critical mass density for F under the constraint

Ml[p] = C (2.2.2)

provided that
Ker dM[p] C KerdF[p]. (2.2.3)
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We observe that
oMl = | o

Moreover, for M €]0, +o0| fixed the set R[M] := {p € R: M[p] = M} is a Ba-
nach manifold of codimension 1, since dM [p] is surjective.

As in the previous section, the symbol (-) stands for both D and I. By using
the Lagrange multipliers Theorem we can state the following

Theorem 2.2.4. Let © be a domain in RN of finite measure and F a finite
nonempty subset of N\ {0}. Then for all h =1, ...,|F| there are no critical mass

densities for the map which takes p € RU[F] to A%}h[p] under the constraint
(2.2.2).

Proof. Let p € RY[F] be fixed. There exist an integer n € N and a partition
{Fl, ..., F,} of F such that 5 € N?_,OV[F}]. The restrictions of the functions

)\ [] to OU)[Fy] are real analytic. Thus there exists an open neighbourhood W
of p in RO[F] such that W C Ni_,RU[F,]. Let h € {1,...,|F|}. We write the

function A%)h in a more convenient way:

Afhlo] = > | B AR (2.2.5)

0<h1 <|Fy],e.,0<h <| P | k=1

for all p € W. Let’s compute the differential of (2.2.5) at p. Thanks to formula
(2.1.29) we can write the differential for each A%})mhk. We obtain

3

dAS, 17117 = 3 ZdAFk w210 [T A, 17

0<hi <[ F1 ., 0<hn < By | Jj=1
hi+-+hn=h Jj#k

oS (B () () 2 o) )

0<h1<|Fl,....0<hn <|F|

h1++hn:h
where by, = H?:1 A%) 1,10, and {ul(')}lepk is an orthonormal basis in . of the
eigenspace correspondlng to the eigenvalue )\ [ p| and )\ . [7] is the common value

of all eigenvalues in )\§ [p] with j € Fy. It follows that

STCAR zck/z ul) = - /(chz( ))pdm,

Qicr, k=1 IEF,
(2.2.6)
for all p € L*(Q2) and suitable positive constants ¢, € R, k = 1,...,n. Suppose

now that p is a critical mass density for A;;)h under the constraint (2.2.2). This
1rnphes the existence of a Lagrange multiplier, i.e., there exists ¢ € R such that
dAFh[ o] = —cdM]|p], that is

/(Z%Z( ) )ﬁdeC/de:c,

k=1 lEF},
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for all p € L>(2). Since p is arbitrary, it follows

(Zn: ) (U§')>2> =c, ae.inQ.

k=1 leFy,

This equality implies ¢ > 0. Now if ul(') € H y(€), it is shown by a standard

approximation argument (cfr. [27]) that u®) := (37 1ZleFk(\/_ul ) )1/2 is in
H(y(Q) and is equal a.e. on € to \/c. Then Vu( = 0 a.e. on {2, and by Poincaré
inequality we get ¢ = 0, hence ul(') =0 for all [ € F. This is a contradiction. [
Corollary 2.2.7. Let Q be a domain in RN of finite measure and F a finite
nonempty subset of N\ {0}. Let M >0 and Ly := {p € L™(Q) : [, pdx = M},
Then for all h = 1, ..., |F| the real valued function which takes p € RU[F] N Ly,
to A;;?h[p] has no local maxima or minima.

We now show a continuity result for the eigenvalues with respect to the weak*
topology of L>(2). The proof is based on the argument of [8].

Proposition 2.2.8. Let Q be a domain in RY of finite measure and C' C L>(Q)
a weakly* compact subset of L>(2) such that inf,ccessinf,ecq p(x) > 0. Then

the functions which take p € C to )\g')[p] are continuous in the weak* topology of
L>(Q).

Proof. 1t is enough to prove that if {p,} is a sequence in C' converging to p in
the weak™ topology of L>({2), then the sequence {)\g')[pn]} converges to )\g')[p].
By Banach-Steinhaus Theorem it follows that C' is bounded in L>(2). Let o :=
inf cc essinf,eq p(z) > 0 and B 1= sup,cc esssup,eq p(r) < +oco. Thus, for all
p € C'we have a < p(z) < B a.e. in 2. We denote )\§~')[pn] = )\5)’" and by ug)" the

respective eigenfunctions, normalized by fQ pnug') ’nug)’"dm = ¢;;. By the min-max

principles (2.1. 8) and (2.1.26) it follows that A§')[6] < )\gf)’” < /\g')[a] for all n € N.
2

Since HA2 D = AP and || D2ul"
JI(0) B 7ol
{ §) } is bounded in hy(Q2) for all j € N. By possibly passing to subsequences,

= )é’", we get that the sequence

we can directly assume that there exist 5\' € R and ﬂg') € H() such that for
all 7 € N the sequence {)\() }nen converges to >\ , and the sequence {ug')’"}neN
weakly converges to ug-). Since Hy(2) C H&(Q) the sequence {ugh)’"}neN is
strongly convergent in L?(Q). By the fact that 0 < Ag')’” < /\g)’" < - we get
0< Xﬁ') < Xg) < ... It is now easy to see that

lim [ Aul"Ag — A" ppul " pda = / AP A¢ — NP puP ¢dz, (2.2.9)
Q

n—oo 0

for all ¢ € Hp(£2), and

n—o0

N
lim / Z Op s " O — A" pruy " b = / > o, uiop,¢ — Mpuda,
Ql Q

I,m=1

(2.2.10)
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for all ¢ € H(€2). Moreover it can be easily seen that

lim [ poul"ul)"dz = /Q pil i dz = 5. (22.11)

n—oo Q

By (2.2.9), (2.2.10) and (2.2.11) it follows that {A"} C {A"[p]}. Next we observe
that

= lim P = O = 80|

. D
lim ’Au o
J L2(Q) n—oo

n—oo

and
1

= lim (\]")7 = (A[")? = [ D% |

. I
lim ‘ D"
J LQ(Q) n—o00

n—o0

We need to show that {)\' ]} C {5\' }. Suppose that there exists A\() €
RIAREY )} and @) a non trivial element of the eigenspace associated with
. Then for all j € N we have [, put ()d:r = 0. Let ) be normalized by

())2dx) 2 3 (AL)~1 For p € R we define Ag-')(p, u) by

AW
J
)

4
A
(Jo

AP(p.1) = 3 180l — ([ (0= P o) dw)é ,

Ape0) = 10y~ ([ (@~ Pl ae)

for all j € N, u € H(Q2) where

Plplu = i ( /Q puuidx> "

1

We need to invoke the following variational representation for the eigenvalues of
problems (2.1.2) and (2.1.16):

—1
— inf AV 2.2.12
O] ué}gl)(mfl (p,u), ( )

see [3, pp.55-T1]. By (2.2.12) it follows that
-1
2\

J

< AV (p,, ). (2.2.13)

Furthermore, we observe that

7—1
O — )
lim P a[p,Jut = JE&; ( /Q Pl dw)

in L?(Q2). Then an easy computation shows that

~1
() — -
RIEEOA (pn, ) =50
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Now let n — oo in (2.2.13). We find

for all j € N. But this is a contradiction since {5\5-')} is not bounded from above.
Then {5\§')} = {)\E)[p]} This concludes the proof. O

Finally we can prove the following

Theorem 2.2.14. Let Q be a domain in RN of finite measure and F a finite
nonempty subset of N\ {0}. Let C C RU[F] a weakly* compact subset of L>(2)
such that inf cc essinfyeq p(x) > 0. Let M > 0 and Ly defined as in Corollary
2.2.7. Then for all h = 1,...,|F| the function which takes p € C' N Ly to A%)h[p]
admits points of maximum and minimum i C' N Ly, and such points beloﬁg to

0C N Lyy.

Proof. Since the functions which take p € CN Ly, to )\;') [p] are weakly* continuous
in L>°(Q) and C' N Ly, is weakly* compact, then the functions Agh [p], which are

composed by sums and products of the )\g')[p], admit points of maximum and
minimum in C' N Ly, but by (2.2.7) they cannot be in the interior of C, hence
they belong to 0C' N Lyy. O

Our aim is now to extend the results proved in [8, 9, Cox-McLaughlin| to our
case. We fix a class of weakly* compact and convex subsets of L>°(2) and we
show that in certain cases, the minimizers and maximizers of the eigenfunctions
(that exist by Theorem 2.2.14) are extreme points of such sets (the so-called ‘bang
bang’ controls). Let then Q be a domain in RY of finite measure |Q|. Let «, 3, M
be such that 0 < a < % < B (if one of the last two inequality were an equality,
M-|0|8

a—3 -

Definition 2.2.15. We define the subset ad, of L>(Q2) as

the problem would not be of interest). Let v :=

ad, :={p € L®(Q) : p=ax + B(1 — x), x C Q measurable, |x| =~}

Proposition 2.2.16. The weak™ closure of ad., is the convex weak® compact set

ad’, = {peLm(Q):agp(x)gﬁa.e. in Q, /dea::M}.

Recall that v € K is an extreme point of a convex set K if K \ {v} is convex.
Proposition 2.2.17. The set of extreme points of ad} is exactly ad.,.

For proofs of the previous statements we refer to [8].

In general, for both Dirichlet and intermediate boundary conditions the first
eigenfunction may change sign. However for the ball we have the following

Theorem 2.2.18. If Q = B C RY, the open unit ball, then the first eigenvalue
of (2.1.2) is simple and the correspondig eigenfunction does not change sign in

Q.
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We refer to [14, Thm. 3.7] for the proof. There are other cases in which the
structure of the domain yelds positivity of first eigenfuncion, eg., in R? ellipses
with small eccentricity and annuli with a sufficiently big inner radius (cfr. [14]).
In the remaining part of this subsection we treat the case of Dirichlet boundary
conditions.

First of all, by Theorem 2.2.4 in the case of the ball, we get the following

Corollary 2.2.19. Let Q = B C RY. Then there are no critical mass densities

in R for the function which takes p — A\[p] under the fixed mass constraint

Proof. Weset F' = {1} in the Theorem 2.2.4. It is evident that R[F] = O[F] = R.
Then the proof of the corollary follows immediately by Theorem 2.2.4. O

Thanks to Proposition 2.2.8 we get for j € N the existence of p;, p;, in ad;
such that

A= Nlpi) = inf A[p),

pEady

A= Npg] = sup Ayfol.
pEady,

Moreover, we have the following
Proposition 2.2.20. Let Q = B C RY, p € R. Then we have
i) the minimizer py may be chosen from ad.;
i) the maximizer py belongs to ad, and it is unique.

The proof of the previous proposition can be carried out by using exactly the
same argument of [9, Corol. 6.2 (7), Prop.7.10]

2.3 Extension to poly-harmonic operators. Critical mass densities

As in the previous section, we consider a domain € in RY of finite measure and
a density p € R.

We first consider the case of Dirichlet boudary condition, namely:

(—A)”u:)\p% in Q,
- 2.3.1
{uz%z...zgrqu:(), on 01, 23

for n > 2. We recall that the case n = 1 has been studied in [19], while the case
n = 2 has been treated in the previous section. The weak formulation of problem
(2.3.1) is:

/Dnanqﬁdm = /\/ pupdz, Yo € HJ(Q), (2.3.2)
Q Q

in the unknowns u € H(2), A € R, where

Do — {VAmu, ifn=2m+1

A", if n =2m.



2.3. Extension to poly-harmonic operators. Critical mass densities 23

First we consider the poly-harmonic operator (—A)™ as a map from H{(£2) to

(H{(€2)) defined by

(—A)"[u][¢] = /Q DouDyédr, Yo € HI(Q). (2.3.3)

As in the case of the biharmonic operator with Dirichlet boundary conditions,
it is easy to see that (—A)™ is a linear homeomorphism between H['(€)) and
(HJ(R2))'. We denote by 4, the canonical (continuous) embedding of H{(£2) into
L*(Q), which is compact by (1.1.14), and by J,, the continuous embedding of
L3(2) into (HJ(Q))', defined by

Tnglulld) = [ pudde V€ H@),0 € H(®),

In this way, problem (2.3.2) is equivalent to the following one:
(=A)") ' o Jp,0igu = A"1u, (2.3.4)

in the unknowns u € HJ(Q2), A € R. Finally, we observe that on H[(2) the
bilinear form

< u,v >= / D,uDpvdx, Yu,v € Hy(Q), (2.3.5)
Q

defines a scalar product whose induced norm is equivalent to the standard one.
We denote by H{(£2) the space Hj(2) endowed with this norm. Then we can
state the following

Theorem 2.3.6. Let n > 2, Q be a domain in RN of finite measure and p € R.
Then the following facts hold:

i) The operator T,, , .= ((—A)*)"t o J,, 01, is a compact selfadjoint operator
in H (), whose eigenvalues coincide with the reciprocals of the eigenvalues

of (2.3.2).

ii) The set ¥, of the eigenvalues of (2.3.2) is contained in |0, +oo[ and it con-
sists of the image of a sequence increasing to +o0o. FEach eigenvalue has
finite multiplicity. Moreover, (—A)™ has a Hilbert basis in H{(S2) of eigen-
functions.

Next we treat the case of intermediate boundary conditions. Let n > 2 and
5 <k <nifnis even, "T“ < k <nif nis odd. The classical formulation of the
problem is:

(_A)nu = )‘pua in Q,
u=Gt=.. =5t =0, on 09,  (23.7)
Bi(z; D)u = By (2;D)u = ... = By—1(x; D)u =0,  on 09,

where B;(z; D), j = k,k+1,...,n— 1, are suitable linear differential operators of
order m;, corresponding to weak problem

N

~_, 8;57;1 . azzn axil c.

5 dx = )\/ pupdr, Vo€ H™(Q) N HEQ),
x; Q

n

(2.3.8)
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in the unknowns v € H"(Q) N HE(Q), A € R.

From now on, we will denote the space H"(2) N HF(Q) by V,(2). We first
consider the polyharmonic operator (—A)™ as a map from V (Q) to (VL.(2))
defined by

N

on o
(_AWwa3£ > o “&:a% ¢&Ed% Vo € Vo (Q). (2.3.9)

i1peyin=1 in

This is a linear homeomorphism between V,,(£2) and its dual. This is a conse-
quence of the fact that there exists C' > 0 such that

HUHLZ(Q) <C HDnUHLz(Q) ) (2.3.10)

al J"u 2\ 2
Dry = (il Z <—0$21,- ‘8%”) ) .

where

Q

Kﬂ@l)(ﬂ<HWwa lull oy, fn=2m,  (2311)

77777777

/(5’7 w) de < |07 _ull o 10l gy s i 0= 2m — 1. (2.3.12)
Q

Summing over ¢ and by applying the Poincaré inequality to the left hand side of
(2.3.11) and (2.3.12) respectively, since H"(Q2) N HY(Q) € H™(Q) N HZ () for
+
2 <k<nifniseven, H*(Q) N HF(Q) € H(Q) N Hy? (Q) for 2 <k < nif
n odd, we obtain that there exist C' > 0 such that
2 n :

[ullz2i) < Cllull 2oy P ull 2y, if 2= 2m,

HVU||L2 <C ||V”HL2 Q) ||Dnu||L2 , ifn=2m—1,
respectively. In the second inequality we divide by [|[Vul|,q, and use again
Poincaré inequality. Now the proof of (2.3.10) is straightforward. Then we have
the coercivity of (—A)". The continuity is clear.

Next, we denote by 7,, the canonical (compact) embedding of V;,(€2) into L?(£2),
and by J, , the continuous embedding of L*(Q) into (V,,(2))’ defined by

Juolullé] = /Q pusds, o € Vy(9)

Finally, we observe that the bilinear form
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defines on V,(€2) a scalar product whose induced norm is equivalent to the stan-
dard one. We will denote by V,(€2) the space V,,(£2) endowed with this norm.
Then we can state the following

Theorem 2.3.14. Let n > 2, Q be a domain in RN of finite measure, p € R.
Then the following facts hold:

i) The operator T,, , == ((—A)*)"t o J,, 01, is a compact selfadjoint operator
in V,(Q), whose eigenvalues coincide with the reciprocals of the eigenvalues

of (2.3.8).

ii) The set ¥, of the eigenvalues of (2.5.8) is contained in |0, +oo[ and consists
of the image of a sequence increasing to +oo. FEach eigenvalue has finite
multiplicity. Moreover, (—A)"™ has a Hilbert basis in V, () of eigenfunctions.

We represent the set 32 of the eigenvalues of problems (2.3.2) by means of a
sequence
0< /\5,1[:0] < AS,Q[p]a AL Lol

ceey TL,j

and the set X! of the eigenvalues of problems (2.3.8) by means of a sequence

0 < Aolp]l < ALulpls oy AL, -

ceey n,j

where each eigenvalue is repeated accordingly to its multiplicity. We denote
HE(Q) == HP(Q), HL(Q) :== V,(Q), by (—A)% the operator defined in (2.3.3)
and by (—A)7 the operator defined in (2.3.9). We have the following variational
representation of the eigenvalues

Theorem 2.3.15. Let Q be a domain in RN of finite measure and p € R. Then
we have

i)

— A ul|u
Aol = inf M (2.3.16)
’ wenl) JouPpdr
u#0

The eigenfunctions corresponding to )\g')[p] are exactly the minimizers in
(2.3.16).

ii) For all j € N

—A) ul|u
ADpl= inf  sup w (2.3.17)
B (@) 0tueE  Jouipda

dimE=j

where (-) stands for D or I.

Exactly as in the case n = 2 this representation yields the local Lipschitz

continuity of the functions p — /\(')j [p] inpeR.

n,

Now, in the same way as for the case n = 2 we can compute the derivatives
of symmetric functions of eigenvalues. In fact by the same arguments used in the
proof of Theorem 2.1.27 one can prove the following
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Theorem 2.3.18. Let Q be a domain in RN of finite measure, F' a nonempty
finite subset of N\ {0} and let

ROF] == {peR : \[o] #\)[p], Vi€ FIeN\F},
OLF] == {p e RO[F] : A [o] = A [l Vg € F}.

n,J1 n]z

Then Rg)[F] is open in L>(Q) and the symmetric functions of the eigenvalues

AV = > ALl A ], h=1, . |F (2.3.19)

J1yesJn€F
11<""Jh

are real analytic in R%)[F] Moreover, if p € @%)[F] and the eigenvalues Ag?j (]

assume the common value )\é)F[p] for all j € F, then the differential of Ag’)F’h at
p 1s given by the formula

dAS e nloll) = (—Aﬁg?p[p])hﬂ <|F| ) 1) Z / )2pdr (2.3.20)

for all p € L>(Q), where {ui)l} is an orthonormal basis for )\g’)F[p] in 1Y (Q).

We can say now that there aren’t critical mass densities for the symmetric
functions of the eigenvalues under mass constraint. In fact, since ”H%)(Q) C
H}(Q), the same argument used in the proof of Theorem 2.2.4 holds. We can
state then the following

Theorem 2.3.21. Let Q be a domain in RN of finite measure and F a nonempty
finite subset of N\ {0}. Then for all h = 1,...,|F| the function which takes p €

RY[F] to AT(Z)Fh[ | has no critical mass densities in RS [F] under the constraint
(2.2.2).

It follows immediately

Corollary 2.3.22. Let Q be a domain in RN of finite measure and F a nonempty
finite subset of N\ {0}. Let M >0 and Ly == {p € L™(Q) : [, pdx = M}. Then
for allh = 1,...,|F| the function which takes p € R%)[F] N Ly to Ag?ﬂh[p] has no
local maxima or minima.

Now we can state the following

Theorem 2.3.23. Let Q be a domain in RN of finite measure and F a nonempty
finite subset of N\ {0}. Let C,, C RY[F] a weakly* compact set in L®(S) such
that inf ., essinf cqp(x) > 0. Let M > 0 and Ly, defined as in Corollary 2.3.22.
Then for all h = 1,...,|F| the function which takes p € C,, N Ly to Ag?Rh admits
points of mazximum and minimum, and such points belong to OC,, N L.

Proof. One can prove by the same arguments of Proposition 2.2.8 the continuity
of the eigenvalues with respect to the weak™ topology of L>(£2). The remaining
part of the proof is equal to that of Theorem 2.2.14. O

Finally, see [14, 8, 9], we have
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Theorem 2.3.24. If Q C RY is the unit open ball, then the first eigenvalue of
(2.3.2)is simple and the correspondig eigenfunction is of one sign. Moreover, the
following statements hold:

i) there are no critical mass densities in R for the function p — )\ﬁl[p] under
the fized mass constraint (2.2.2);

ii) there exist minimizers and maximizers for the functions p — )\3 1p] in the set
ad’; defined in (2.2.16), and such minimizers and mazimizers can be chosen
in the set ad.,.

2.4 The mixed Neumann-Dirichlet problem for the laplacian

In this section we extend the results of the previous sections to a mixed Neumann-
Dirichlet problem. From now on it is understood that €2 is a bounded domain in
RY of class C'. We consider two nonempty open parts of the boundary, namely
I'y and I'y, which consist of a finite number of connected components and which
satisfy

(9(2 — fo Ufl, FU N Fl = @, (241)

where Iy and T'; denote the closure in 99 of Ty and I'y respectively. We consider
then the following problem, for p € R

—Au = M\pu, in Q,

u=0, on Iy, (2.4.2)
g—g =0, onlI'y,

in the unknowns u € C*(Q) N C1(Q), A € R. This problem models a vibrating
membrane which has a fixed part of his frame, while the remaining part is free.
As for the case studied in [19], we have the following weak formulation of the
problem

/QVU -Vodr = /\/qugzﬁdx, Vo € Hyp, (), (2.4.3)
in the unknowns u € Hjp (Q), A € R, where
Hip, () ={ue H'(Q):u=0onTy in the sense of traces } .
Remark 2.4.4. One can show that the space
Co%, () = {u € C*(Q) : u = 0 in a neighbourhood of I'y}
is dense in Hyp (), see [4].
Now by a standard argument it is easy to prove the following

Proposition 2.4.5. Let Q be a bounded domain in RN of class C'. Let Ty and
'y be defined as in (2.4.1). Then there exists C > 0 such that for allu € Hjp, ()

HUHL2(Q) <C ||vu||L2(Q) . (2.4.6)
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Proof. We note that in order to prove (2.4.6) it is sufficient to prove [|ul| ;1 q) <
C|[Vull2(qy. Assume by contradiction that there exists a sequence {u,,} such

Um,

that for all m € N we have = [tmll g1y > IVtimll 120 Let vm = Then

||UmHH1(Q) ’
we get [|[vn | 1) =1 and L > VUl 2(q for all m € N. The sequence {v,} is
bounded in H'(Q), and by the compactness of the embedding H'(Q) c L*(Q),
there exists subsequence, denoted again v,,, converging to a certain v strongly in
L*(Q), weakly in H'(Q). Since ||[Von||2q) — 0, and Vv, — Vv in the sense of
distributions, then by the uniqueness of the limit, Vv = 0. Then v is constant.
Since v vanishes on a part of the boundary, then it is identically zero on ). Since
[0]| 1) = 1, we have a contradiction. O

We consider the operator —A from Hj, () to (Hjp ()" defined by

—NWM=Ava¢ Vo € Hir, ().

The operator —A turns out to be a linear homeomorphism by Proposition 2.4.5.
Moreover, we consider the canonical compact embedding 7 of Hjp, (€) into L*(£2)
and the continuous embedding J, of L*(Q) into (Hjr,(€2))" defined by

%szémm Yo € Hip, (Q).

Then the operator T, = (—A)~' o J, 0 is a compact selfadjoint operator in
Hi.r, (€2), which is the space Hjp, (Q2) endowed with the equivalent scalar product

<UU Sy (@)= / Vu - Vudz, Yu,v e Hyr ().
Lo Q ’
The eigenvalues fi;[p] of T}, coincide with the reciprocals of the eigenvalues A;[p]
of (2.4.3), which consist of the image of a positive sequence increasing to +o0.
As usual, we have the following variational representation of eigenvalues

Vul*d
Nll=  inf  sup M Vj e N. (2.4.7)
B<HY - (@) 0ucE  [o uPpd
dimE=j

Exactly as in the case of the Dirichlet Laplacian, the first eigenfunction is
simple and does not change sign. In fact, if v > 0 (v < 0) is a solution of (2.4.3),
then the strong maximum (minimum) principle yields v > 0 (v < 0) in Q. If we
set B(u,v) = [, Vu - Vodz for u,v € Hyp (), and we take a first eigenfunction
u of (2.4.3) normalized by [,u*pdz = 1, then we have A\;[p] = B(u,u). Let
ut = max{u,0}, v~ = —min{—u,0}, which are still in #p , and suppose that
ut,u” # 0. We get

B(u,u) =But —u ,ut —u") = Bu",u") + Bu,u").

By (2.4.7) it follows that
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This implies that B(u™,u®) + B(u™,u™) = Mip] ([, (u)? + (u™)?) pdz). But
now this implies |u| > 0 since |u| is a minimizer in the Rayleigh quotient, a con-
tradiction. The simplicity is an immediate consequence of the constancy of the
sign.

Again, the variational representation (2.4.7) yields local Lipschitz-continuity
of the eigenvalues with respect to the variable p. As in the previous sections, for
) # F C N finite we set

R[F]:=={p€R : Nj[p] # Nilp], Vi€ F,leN\F},
O[F] :={p € R[F] : Aji[p] = Ailp], Vi1, 52 € F}.

Let

Apalol = Y Aulel - Xlel, h=1,..|F].
J1yedn€F
J1<Jn

the symmetric functions of eigenvalues. Then we can state the following

Theorem 2.4.8. Let Q be a bounded domain in RY of class C', F' a nonempty
finite subset of N\ {0}. Then for all h = 1,...,|F| the function which takes
p € RIF| to Apyp] is real analytic in R[F], and has no critical mass densities
in RIF| under mass constraint (2.2.2).

Proof. Exactly as in the proof of Theorem 2.1.27 one can show that Apj are
real analytic in R[F] and compute formulas for their derivatives. Then, by using
these formulas as in the proof of Theorem 2.2.4, one gets that if p is a critical
mass density for Ay, then there exist n € N, a partition {F, ..., F,} of F' and

2

real numbers ¢, ¢ > 0 such that (ZZ:1 Ch ZjeFku ) = c a.e. in §, where

J
{u;}em, is a certain orthonormal set in Hg, of eigenfunctions of (2.4.3). Since

1
= (ZZ:1 szFk(\/c_kuj)Q) = cand i e Hgr, then ¢ = 0, hence u; = 0 in
Q) for all j, a contradiction. O]

Corollary 2.4.9. Let Q a bounded domain in RN of class C'. Then there are
no critical mass densities in R for the function which takes p € R to Ai[p] under
the mass constraint (2.2.2).

As a consequence of Theorem 2.4.8, we have

Theorem 2.4.10. Let Q be a bounded domain in RN of class C' and F a
nonempty finite subset of N\ {0}. Let C C R[F] be a weakly* compact sub-
set of L®()) such that inf ccessinfq p > 0. Let M > 0 and Ly = {p € L>=(Q) :
Jop = M}. Then for all h = 1,...,|F| the function which takes p € C' N Ly

to Apnlp] admits points of maximum and minimum, and such points belong to
oC N Ly.

By looking at the structure of this problem, we observed that the results of
[8, 9, Cox-Mec.Laughlin] can be immediately extended to our case. Let M > 0
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fixed, ad,, ad}; defined as in (2.2.15) and (2.2.16). Since ad’ is convex and weakly™
compact in L>(€2), we get the existence of p;, p; in ad’ such that

A= Ailps] = inf Al

pEady,

A= Ailps] = sup Aylpl.
pEady

We can give a characterization of such extremizers. We state the following results.
Proposition 2.4.11. Let Q a bounded domain in RN of class C', p € R. Then
i) p1 can be chosen from ad.;
i) if Q is of class C?, then py is uniquely determined and belongs to ad.;

i) forj > 1, ifQ is of class C* and there exists u in the eigenspace corresponging
to \j with ezactly j nodal domains, then p; can be chosen from ad.;

i) p1 € ad, and is unique.

We don’t repeat here the proofs of the previous statements. This case is
identical to the one of Dirichlet boundary conditions, and it is studied in detail
in [9].

Remark 2.4.12. [t is now straightforward that the considerations made for this
problem immediately extend to the case of the biharmonic operator with Dirichlet
(intermediate) boundary conditions on Ty, and Neumann boundary conditions
on I'1 and also to poly-harmonic operators (—A)™ with Dirichlet (intermediate)
boundary conditions on I'y and Neumann boundary conditions on I'y, when I'y
and 'y satisfy (2.4.1). The problem to consider is (2.3.2) ((2.3.8)) in the space

Hyp, () ={ue H"(Q) : D*u=0o0n Ty V |a] <n—1, in the sense of traces},

(H"(Q) N HJ', (), where 252 < m < n if n odd, 2 < m < n if n even), en-
dowed with the equivalent scalar product (2.3.5) ((2.3.13)). Then, the symmetric
functions of eigenvalues of this class of problems have no critical points under the
fized mass constraint (2.2.2), and their restrictions to weakly® compact set in R
admit points of mazrimum and minimum, and such points have to belong to the

boundary of such sets.



3. THE NEUMANN PROBLEM FOR THE LAPLACE
OPERATOR

Throughout this chapter Q is a bounded domain in RY of class C!, p € R.
The classic formulation of the eigenvalue problem for the Laplace operator with
Neumann boundary conditions is

{ —Au = Apu, in 2,

%:O, on 0N,

(3.0.1)

in the unknowns u € C?(Q)NC*(Q), A € R. This problem models a free vibrating
membrane of mass density p. We will consider the weak formulation of problem

(3.0.1)

/Vu-V¢da: = )\/ pupdr, Yo € H(Q), (3.0.2)
Q Q

in the unknowns v € H'(Q), A\ € R. Actually, we will obtain a problem
in (H'(Q)/R) since we need to get rid of the constants, which generate the
eigenspace corresponding to the eigenvalue A = 0. We denote by ¢ the canonical
(compact) embedding of H'(Q) into L*(2). We denote by J, the continuous
embedding of L?*(2) into (H*(€2))’, defined by

J,[u][¢] := /qugbdx Yu e L*(Q), ¢ € H'(Q). (3.0.3)

We set
10O . 1) - —
H,7 () := {UGH (Q)./Qupda:—O}.

We consider on H'(2) the bilinear form
<u,v >= / Vu - Vodz, Yu,v € H(Q). (3.0.4)
Q

We denote by H'(2), H,°(Q) the spaces H'(Q) and H°(Q2) endowed with this
form. We observe that by simply modifications of the the proof of Poincaré-
Wirtinger inequality in Evans, [12, Theorem 1, ch. 5, sec. 5.8|, one can prove
that that for fixed p, there exists C' > 0 such that

H Jo pudz
u —_—
Jo pdx

Then the bilinear form (3.0.4) defines on H,°(Q) a scalar product whose induced
norm is equivalent to the standard one. We consider on (H!(2)/R) the bilinear
form

< ClVullpaq) Yue HY(Q).
12(0)

< plul, p[v] >= / Vu-Vodz, Yu,ve H(Q),
Q
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which is a scalar product on (H'(Q)/R) that renders (H'(Q)/R) a Hilbert space.
The norm associated with this scalar product generates a quotient topology on
(H1(92)/R) which is equivalent to the quotient topology of (H'(2)/R). We denote
by 7, the map of H'(2) to H,°(2) defined by

Jo updz
Jo pda”

for all u € H'(2). We denote by m% the map of (H'(Q2)/R) onto H}°(2) defined
by the equality 7, = Wﬁ o p, where p is the canonical projection of H'(Q2) onto
(H'(Q)/R). We set

Tolu] = u

F(Q):={G e (H'(Q) :G[1] =0}.

We consider the operator —A, as a map from #}°() to F(Q) defined by
—%MMz/V%VWxW&Hﬂ@ﬁG#@) (3.0.5)
Q

The operator —A, considered as an operator acting on the whole H'(£) is surjec-
tive onto F'(€2). Moreover, it is clear that it is injective and continuous if restricted
to H,°(Q), and thanks to Poincaré-Wirtinger inequality it turns out that its in-
verse is also continuous. Then —A, turns out to be a linear homeomorphism of
H, () onto F(Q).

Moreover, the norm on F(£2) defined by

|G ()]

0#ucHy® HUHH};O

HGHF(Q) = VG € F(Q)

is equivalent to the restriction to F'(Q2) of the standard operator norm of (H*'(2))".

We define the operator T, := (m%)~' o (=A,)™" 0 J, 0 i o7k from (H'(Q)/R)

to itself. It is easy to prove the following

Proposition 3.0.6. Let Q be a bounded domain in RN of class C' and p € R.
The operator T, is a compact selfadjoint operator in (H*(2)/R) and its eigenval-
ues coincide with the reciprocals of the eigenvalues \j[p| of problem (3.0.2) for all
J € N. Moreover, the set of eigenvalues of problem (3.0.2) is contained in |0, +oo[
and consists of the image of a sequence increasing to +o0o. Fach eigenvalue has
finite multiplicity.

Proof. For the self-adjointness, it suffices to observe that

< p[WﬁTpu],p[Wﬁv] > = < p[wi o (Wf))_l o (—Ap)_1 oJ,0i0 ﬂﬁu],p[ﬂﬁv] >

= —A,[(=A,) o, 00 Wgu] [WE)U]
= J[iorwhul[rtv], Vu,ve (H'(Q)/R).

p

The selfadjointness now follows immediately. The remaining statements are
straightforward. |
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Remark 3.0.7. We observe that the pair (A, u) of the set R x (H,°(Q) \ {0})
satisfies (3.0.2) if and only if X > 0 and the pair (\7',plu]) of the set R X
(HY(Q)/R) \ {0}) satisfies the equation

A p[u] = T,p[u].

In order to exploit the procedure used in the previous chapters which allows
to prove real analyticity of symmetric functions of eigenvalues and compute their
derivatives, we observe that the operator T, can be written in a more suitable
way. We consider the operator —A from H'°(Q) onto F(Q2), where

HYO(Q) = {u e H () : /Qudx = 0} ,

defined by
—Alu][¢] = / Vu-Vodr Yu,¢p € HO(Q). (3.0.8)
Then it is easy to prove that this operator is a linear homeomorphism of H! O(Q)

onto F(Q). Let m, 7 be m,=1, Wﬁzl respectively. We define the operator T}, of
(H1(2)/R) to itself as
Ty = (=)o (=A) o J,0iontu, VYue (H'(Q)/R).

p

Then the following diagram commutes

i (—A,)7,

(H'(Q)/R) — H,(Q ) FQ) ——

Lemma 3.0.9. Let Q be a bounded domain in RN of class C*. Let F be a finite
nonempty subset of N\ {0}. Let

RIF) = {p € R : Aslp] £ Mlp], ¥j € F,l€ N\ F},
@[F] = {p € R[F] . )\jl[p] = )\jQ[p]’ vjl,jZ S F}

— M, () — (H'(Q)/R)

Hl O(Q)

Let p € O[F], Gy,us € H;’O(Q) be such that plty], plas] are two eigenfunctions
corresponding to the eigenvalue )\;1 of the operator Tp. Then we have

< dT5 () [plan]], pliia) >= /Q pinisdr, Vpe L¥(Q). (3.0.10)

Proof. By standard calculus in Banach spaces it follows

<dj, (7)™ o (=A)" o Jy 0 i 0 m) [p]lp[an]], pla ]
< () o (=A) o d)Jylp) o i o mlplanl], plaz) >
< ()" o (=A) o Jyoiod,m, (][], plia] >
Al(=A) o Jyoioi]is] + C(=A)[(=A)~ OJﬁOiOUH[ﬂQ]:

= / pfbl’ljzd%, Vp S LOO<Q),
Q

where C' = M The last equality follows by observing that fQ pusdr = 0. [
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We are now able to prove the following

Theorem 3.0.11. Let Q be a bounded domain in RN of class C' and F a
nonempty finite subset of N\ {0}. Let R[F|, O[F] be defined as in the previ-
ous lemma. Then RI[F| is open in L>®(Q) and the symmetric functions of the
eigenvalues

Apnlp] Z Nalpl - Manlpl, h=1,...|F| (3.0.12)

are real analytic in R[F|. Moreover, if p € ©[F] and the eigenvalues \;[p] assume
the common value \g[p| for all j € F, then the differential of Ary, at p is given
by the formula

dAralpllf] = —Ae" () (‘F - 1) > [utidr, (3.013)

IeF
for all p € L>(2), where {w}icr is an orthonormal basis for Ap[p] in H,°(Q).

Proof. The proof is analogous to the proof of Theorem 2.1.27. Here the proof of
formula (3.0.13) follows by (3.0.10). O

Remark 3.0.14. We observe that if j € F', then the restriction of the function
which takes p € R to \j[p] € R to O[F] is real analytic. In fact it coincides on

O[F| with the real analytic function fFI‘H.

We investigate now the existence of critical mass densities for symmetric func-
tions of the eigenvalues. We have the following theorem.

Theorem 3.0.15. Let Q2 be a bounded domain in RN of class C* and F = {m,n}
with m,n € N, m # n. Let p € R[F] be continuous and moreover, assume that
the solutions of problem (3.0.2) are classic solutions and the nodal domains are
stokians. Then for h = 1,2, p is not a critical mass density for the function which
takes p € R[F] to Ay under constraint (2.2.2).

Proof. Let p € R[F] be fixed. Then we have one of the following cases:
i) p € O[F]. Then by 3.0.13 it follows that

Ahpalllf) = =5 [ plud+ ).

AAralpl) = <N [ 3, + ),

Q

ii) p € i, O[Fk], where Fy = {m}, Fz = {n}. There exists an open neigh-
bourhood in R of j such that W C (2_, R[Fi]. Then

dApa[pl[p] = d(Ap + Ap 1) [0l[A] = — /Q (N, + ALy iy, )

dAr2[p)p] = d(Ap 1 AR, 1) [P0 = — / PR AUl + Ap AT s, )d,
Q
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where {u; }ier (respectively, {u;}icr, ) is an orthonormal basis in H};’O(Q) of the
eigenspace corresponding to A\g[p] (respectively, Ag, [p]) and Ap[p] is the common
value assumed by all the eigenvalues \;[p] with j € F' (respectively, Ap, [p] is the
value assumed by all the eigenvalue \;[p] with j € Fj). Suppose now that p is
a critical mass density for Agj, h = 1,2 under constraint (2.2.2). Then, in both
cases, there exist ¢,, ¢, > 0, ¢ > 0 such that

/ pleau? + cpu?))dr = c/ pdx
Q Q

for all p € L>(Q). Since p is arbitrary, it follows that
(ot + cpul) =c, a.e. in .
Let’s study the various cases:

i) p € OF], dAralpllp] = =A% Jo plus, + up)da (dAra[pl[p] = =A% [o plus, +
u?)dz is analogous). Then, by differentiating the equality

uZ, +ul =C (3.0.16)
we obtain
Uy, VUyy, + UV, =0 (3.0.17)
which implies in particular
V() = 228 190, @),
U ()

for all x € Q such that u,(x) # 0. Let’s differentiate again in (3.0.17) and
use the fact that —Aw,, = Appu,, and —Au,, = A\ppu,, we obtain

|Vt (2)|” + [V (@)* = App (up, () + up(2))

(3.0.18)
hence
(1) Va0 = e
(3.0.19)
hence
IV, () = Nppttn (2)?, (3.0.20)

for all z € Q such that u,,(z) # 0. It is easy to see that (3.0.20) holds also
if z € Q is such that w,,(z) = 0 because in this case u? has a maximum in
x, hence Vu,(x) = 0, since it is not possible u,(x) = 0, see (3.0.16). In this
case we have C' = 0 which led to a contradiction. In the same way one can
also show

|V ()" = Appur, ().
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ii) p e Nz, OF, dAralpllp] = — [, p(AEu2 + M2 u2))dr. By a few compu-
tations as in the previous step, by A7, uZ + A7, u2, = C, using the fact that
— AUy, = Ap, PUp, —Au, = Ap,pu,, we obtain the following relations:

)\2
|Vt (2))* = C’/Z\TS p (Nl () + A up (z) ua(z);  (3.0.21)
Fy
Ak
= b5 0 (0) + Ay 0) ).
Fy

V()|

i) 5 € (V2_, OIFL), dAralflls) = — [, oA Ay u2 + A ). By imposing
AR AL us + A AT ur, = C' we obtain

|V, ()] = Ef) (Nl (@) + A ul (2)) ul (2); (3.0.22)

C n n
2 )\%1 ~ 2,2 2 2 2
Vua(o)” = “225 (N0, (2) + Ay (@) (@),

We observe that in all cases, the nodal set of one of the two eigenfunctions coin-
cides with the set where the gradient of the other vanishes. In the first case this
follows immediately by (3.0.20) and the properties of p. But the same statement
still holds for the other two cases. In fact in (3.0.21) and (3.0.22) the quantity on
the right hand side vanishes only if u,, = 0 (respectively w,, = 0). This follows by
the properties of p and by the fact that if the quantities in brackets in the right
hand sides vanish in some x € (), since they are non-negative, it would follow
that u,(z) = 0 and u,,(x) = 0, but this would imply that wu,,,u, = 0 on Q. By
the same argument, one can state that there are no points in 2 where both u,,
and Vu,, vanish (respectively u,, and Vu,). This implies that nodal sets of u,,
are manifolds and coincide with the sets where Vu,, vanishes. We observe that
the nodal sets of the eigenfunctions u of problem (3.0.2) are not empty, since for
such functions fQ pu = 0, hence u changes its sign on ().

Let’s consider a nodal domain €, of u,,. The function u,, doesn’t change
sign on €2,,,. The boundary 02, of 2, can be written as 0¢2,, = I'y U 'y, where
'y € 9Q and T'y C Q. First we show that I'; # (). Assume by contradiction that
I'; = (. The function u,|q,, is an eigenfunction of problem (3.0.1) with 2 replaced
by €2, corresponding to the eigenvalue Ap,. Indeed the equation —Au,, = Ag,u,
is clearly satisfied on €2, and %L; = 0 on 0f2,,, since Vu, is zero on 0€),,. Since
Unlq,, 1s non identically zero, it must change sign. Thus, there exist at least two
nonempty nodal domains for u,|q,, in €2,,. We claim that al least one of them,
say {2, , is relatively compact in €2,,. If this were false, then there would exist
at least a point = of 9, such that u,(x) = 0, hence Vu,,(z) = 0. But we since
I'y = 0 we have u,(z) = 0. Thus u,(x) = un(xz) = 0, hence C' = 0, a contradic-
tion. Thus there exists a nodal domain €, of u,|q,, such that Q,, C Q,,. Now,
U |, solves problem (3.0.1) with Ag,, hence it must change sign €,,,. But Q,,,
is relatively compact in €2,,,, and on this set u,, has constant sign, a contradiction.

Thus we have proved that I'y # (). Recall that u,, has constant sign on ,,.

Moreover, %L; = 0 on I'y, while Vu,, = 0 on I'y, since here u,, = 0. Then

Up|q,, is solution of problem (3.0.1) with €2 replaced by 2, corresponding to the
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eigenvalue Ap, and it changes sign on 2,,. Let €2, be a nodal domain of w,|q,,.
By the arguments above we have that 02,,, =I'1 , Uy, where @ # I'y,, C 082,
and I'y,, C €2,,,. We claim that there exists at least one nodal domain €2,,,, such
that I'y ,, C 0. If this were false, the boundary 0f2,,, of each €, is of the type:
O, = ([ ,,NON)U(T N (02, \ (02N0S,,,)))UTl'e ,, and each of these partitions
of 0Q,,,, is nonempty. Since €2, is connected, (I'1,,N (I, \ (O2NIN,,))) Ny, #
(). On this set u,, and Vu,, vanish, a contradiction. Thus there exists €,
such that I';,, € 02. Then wup,|q,, is a nontrivial solution of problem (3.0.1)
corresponding to the eigenvalue \p, and changes its sign on €2, , a contradiction.
This concludes the proof. O

We prove now that the function which takes p € R to A;[p] is continuous with
respect to the weak™ topology of L>(2). For a fixed p € R we have the following
variational representation of the eigenvalues

V(rtu)|* d

- i
e s fo(rhuods

. VjEN.  (3.0.23)

Remark 3.0.24. Let a > 0 be such that p > « a.e. in (). It is immediate to see
that

Vul*d
Ailpl = inf  sup M, Vj €N, (3.0.25)
E<HL'(9) 0£ueE  Jo u?pdr
dimE=j
Vul*d
Ajla] = inf  sup fQ|—u|2x, Vj € N. (3.0.26)
B<HLO(@) 02ucE [ (Tau)?ardz
dimE=j

By observing that [, a(mau)?de = [, auldz—C ([, audm)Q, where C' = (a |Q)) 7",
it follows that [, pu*dz > [, a(mou)*dx for all u € H(Q), hence \j[p] < Ao
for all j € N. In the same way one can show that if 5 > 0 is such that p < 8
a.e. in Q, then \;[B] < \jlpl. It suffices to consider in (3.0.25) and (3.0.26) the
space H;’O(Q) in place of H°(Q).

We need some technical results

Lemma 3.0.27. Let Q be a bounded domain in RN of class C', {pp}nen C
L>®(Q), p € L=(Q) such that p,, — p. Moreover, let o := inf,cy ess infycqp, () >
0 and B := supyey || ol poo () < +00. Then we have

i) For all ¢ € (HY(Q)/R), wh ¢ — who in L*(Q);

i) if up — u in (H'(Q)/R) then, (possibly passing to a subsequence) T4 u, —
mhu in L*(Q).

Proof. For the proof of statement i), we observe that if ¢ € H'(Q) is such that
Jo @dx =0 and ¢ = p[¢], then it is sufficient to prove

Jopudde |, poda
Jo puda Jo pda

lim
n—oo

L2(Q)
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By Holder’s inequality we have

Jopadde [, poda
Jo puda Jo pda

Y

1
< |92
S Jo pudx Jq pdz

L2(Q)

)

then the proof of point 7) is straightforward.

Now we prove statement ii). Let @,, @ € H"*(Q) := {u € H'(Q) : [;,udz =0}
and such that w, = p[u,] for all n, u = p[a]. We have

|75, un — ﬂ-ﬁuHLQ(Q) < ||, un — Trfﬁ’nuHLQ(Q) + |, u - Wf)uHm(Q) . (3.0.28)

By statement ),the second summand on the right hand side of (3.0.28) goes to
zero as n goes to infinity. For the first term, we observe that

- Jo Prtindz s Jo pntdz
" fQ pndz fQ prdx

|75 = 7 ull o) =
L2(Q)

IN

‘ﬂn - aHL?(Q) + a Hﬁn - ﬂ’HLQ(Q)

O
= (14 2) M e

Since {ty, }nen is bounded in H'(Q), it is also bounded in H'(Q) thanks to
Poincaré-Wirtinger inequality. Then there exists a subsequence, still denoted
by {@y, fnen which weakly converges in H'(2), and strongly in L*(Q) to a cer-
tain function @. Clearly, @ has zero mean. Since 7 is a homeomorphism from
(H'(Q)/R) onto H'O(Q) and the limit is unique, it follows that @ = @. This
concludes the proof. O

We are now ready to prove the following

Proposition 3.0.29. Let Q be a bounded domain in RN of class C'. Let C' C
L>(Q) be a weakly* compact subset of L>(2) such that inf ,cc essinf,eq p(x) > 0.
Then the functions which take p € C to \j[p] are continuous in the weak™ topology

of L*(Q).

Proof. By Remark 3.0.24 and Lemma 3.0.27, the proof of this proposition follows
the line of the proof of Proposition 2.2.8. We show that if p,, converges to p in
the weak™ topology of L>(Q2), then A} := \;[p,] converges to \; := \;[p] for all
J € N. As in the first part of the proof of (2.2.8), we have \;[5] < A} < Aj[a] for

suitable 0 < o < 8 < +00 (see Remark 3.0.24). Then we find a sequence p, S
such that X — A; in R, u} — @; in (H'(€2)/R) (here u} is the eigenfunction of
T, corresponding to the eigenvalue (A})~"). Clearly we have

O<AM <A< <A<,

By Lemma 3.0.27 we have that
lim, . / V(b ut) -V §) — Nip, - (b ) - (x §)du
Q

- lﬁw&m-w&w—ﬂw«ﬁwrmmma
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for all j € N, ¢ € (H'(Q2)/R). Moreover we have

lim,, o0 / Pn (Wgnuzn) : (ﬂ'/ﬁ)nu?)d% = / p- (’/Tgﬂi) - ( ﬁpﬂj)dm = 0i;.
0 Q
Then {; }jeN C {\jlpl};cn- Now the proof of the other inclusion is exactly the
same as done in Proposition 2.2.8. O]

As a consequence of Theorem 3.0.15, we have

Theorem 3.0.30. Let Q2 be a bounded domain in RN of class C', F = {m,n}
with m,n € N, m # n. Let C C R[F] be a weakly* compact subset of L>(§2)
such that inf,ccessinfq p > 0. Let M > 0 and Ly = {p € L®(Q) : [,p = M}.
Then for h = 1,2, the function which takes p € C' N Ly to App(p] has mazima
and minima, and if for such points the solutions of problem (3.0.2) are classic
solutions, they must belong to OC N Lyy.

Proof. The proof is identical to that of Theorem 2.2.14. O
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4. THE STEKLOV PROBLEM FOR THE LAPLACE
OPERATOR

Throughout this chapter € is a bounded domain in R of class C', p € R’, where
R = {p € L>®(09) : essinf,cpop(x) > 0}. We consider the following problem

{ Au =0, in 2, (4.0.1)

% = \pu, on 01},

in the unknowns u € C?(Q2)NC*(Q), A € R. This problem models a free vibrating
membrane whose mass is concentrated at the boundary with surface density p.
We will consider the weak formulation of the problem

/ Vu - Veodr = A/ pupdo , Vo € H'(Q), (4.0.2)
Q o0

in the unknowns v € H'(Q), A\ € R. Actually, we will obtain a problem
in (H'(Q)/R) since we need to get rid of the constants, which generate the
eigenspace corresponding to the eigenvalue 0. Let Tr the trace operator act-
ing from H'(Q) to L*(0€), which is compact thanks to (1.1.17). We denote by
J, the continuous embedding of L*(99) into (H*(£2)) defined by

J,[u][¢] == /(9 ) pupdo, Yu € L*(09),¢ € H(Q). (4.0.3)

We set

HY(Q) = {u e H\(Q): /m pudo = o} ,

and we consider on H'(Q) the bilinear form < u,v >= [, Vu - Vodz. We denote
by H'(Q2) and H,°(Q2) the spaces H'(2) and H)°(©2) endowed with this form.
Moreover, by Poincaré-Wirtinger inequality, it turns out that this bilinear form
is indeed a scalar product on H},’O(Q) whose induced norm is equivalent to the

standard one. Next we consider the operator —A, as an operator of ’H;’O(Q) to
F(Q), defined by

—A[ul[¢] = / Vu-Vedr, YueH,'(Q),¢ecH(Q), (4.0.4)
Q
where

F(Q) = {G e (H(Q) :G] =0}

Now the operator —A, considered as an operator acting on the whole space
H'(Q), is surjective onto F(€2), hence it is injective (and continuous) if restricted
to H},’O(Q) and by Poincaré-Wirtinger its inverse is also continuous. Then —A,
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turns out to be a homeomorphism of #°(Q) onto F(Q). Finally, we define the
operator m, from H'(Q) to H*(Q) as

B f 50 pudo

Tplu] ==u [ pdo
o)

We consider the space (H!(2)/R) endowed with the bilinear form

< plu}, plv] >= / Vu - Vudz,
0

where p is the canonical projection of H!(Q) onto (H'(€2)/R). This bilinear form
renders (H'(€2)/R) a Hilbert space. We denote by 7% the map from (#'(2)/R)
onto H,%(Q) defined by the equality m, = 7% o p, which turns out to be a home-
omorphism.

We define the operator T, acting on (H*(Q2)/R) as follows

T, := (ﬂﬁ)_l o(=A,)toJ,0Tro ﬂf). (4.0.5)
Then we have the following proposition, whose proof is very similar to the proof
of Proposition 3.0.2.

Proposition 4.0.6. Let Q be a bounded domain in RN of class C*, p € R'. The
operator T, is a compact selfadjoint operator in (H*(Q2)/R), whose eigenvalues
coincide with the reciprocals of the eigenvalues A;[p] of problem (4.0.2) for all
j € N. Moreover, the set of eigenvalues of problem (4.0.2) is contained in |0, +o00|
and consists of the image of a sequence increasing to +0o0. Each eigenvalue has
finite multiplicity.

Remark 4.0.7. We observe that the pair (X, u) of the set R x (H,°(Q) \ {0})
satisfies (4.0.2) if and only if X > 0 and the pair (\7',plu]) of the set R x
(HY(Q)/R) \ {0}) satisfies the equation

A 'plu] = T,p[u].

As in the previous chapter, we observe that the operator 7, can be written in
a more suitable way in order to prove real analyticity of symmetric functions of
eigenvalues. We consider the operator —A from H%(Q2) to F(£2), where

HIO(Q) = {u € H(Q) - /m udo = 0} |

Then it is easy to prove that this operator is a linear homeomorphism from
H'O(Q) onto F(). Let w, m* be my=1, 7rti , respectively. We define the operator

T, from (H'(Q)/R) to itself by
T :=(—1)"to(-A) o], 0Tro Wf)u, Vu € (H'(Q)/R).

Then the following diagram commutes
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A J, o Tr (—=A,) ! ()~
(H'(Q)/R) — H, () — F(Q) —— H,%(Q) — (H'(Q)/R)
Hl 0

Lemma 4.0.8. Let Q be a bounded domain in RN of class C*. Let F be a finite
nonempty subset of N\ {0}. Let

RI[F]={peR : Njlp] # Nlp], Vi € F,IeN\F},
O[F] :={p e R[F] : Xj\lp) = Nilpl, Vi, g2 € F}

Let p € O'[F], G,y € H%’O(Q) be such that plty], plts] are two eigenfunctions

corresponding to the eigenvalue Az of the operator ’fp. Then we have

< dTsp[plinl], pliss] >= /a piniindo, Vpe L¥(00).  (109)

We are now able to state the following

Theorem 4.0.10. Let Q be a bounded domain in RN of class C' and F a
nonempty finite subset of N\ {0}. Let R'[F], ©'[F] be defined as in the pre-
vious lemma. Then R'[F] is open in L>=(02) and the symmetric functions of the
ergenvalues

AF,h[p] = ‘ Z >‘j1 [p] T )\jh[p]’ h=1, ""|F|7 (4'0'11)

are real analytic in R'[F|. Moreover, if p € ©'[F| and the eigenvalues \;[p]
assume the common value Ap|p| for all j € F, then the differential of Apy, at p
1s given by the formula

A palF] = A1) ('F‘ - 1) > [ atpir. @0z

IeF
for all p € L>(02), where {u}icp is an orthonormal basis for Ap[p] in H}°(Q).

Remark 4.0.13. We observe that if j € F |, then the restriction to ©'[F] of the

function which takes p € R' to \j[p] € R is real analytic. In fact it coincides on

Arpal]

O'[F| with the real analytic function T

We investigate now the existence of critical mass densities for symmetric func-
tions of the eigenvalues. We have the following Theorem.

Proposition 4.0.14. Let B = BY(0,1) be the unit ball in RN, Sy the (N — 1)-
dimensional measure of 0B, F = {1,...,N} and M > 0. Then the constant mass
density py defined by py = % is a critical mass density for Agy, forh=1,..., N
under the constraint fm pdo = M.
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Proof. It is easy to prove that the set {u; := cya;}L,, where cy = ([, puaido) -
for all i = 1,..., NV, is the set of the first N eigenfunction for problem (4.0.2) with
constant mass density on the unit ball. Such eigenfunctions correspond to the
eigenvalue 2, then py; € ©'[F]. We have then the following formula

. g 1+h N—1 .
el == (5) (32)) X [ o
el

for all p € L>(02). We have to show that for all h = 1,...N there exists ¢;, > 0

such that n
w) ()X e [
— u;pdo = ¢y, pdo.
(M h—1 e Jo9 o9

But this is immediate, since Y, . u? = &, hence ¢, = & (5%) " (5-,)- Then

the constant density pjs is a critical mass density for App[-]. O

We now prove that the function which takes p € R’ to A;[p] is continuous
with respect to the weak* topology of L>*(0f2). For a fixed p € R’ we have the
following variational representation of the eigenvalues

fQ |V(7Tf,u)‘2 dx

Ailp] = inf sup , VjeN. 4.0.15
ile) Egd(?{léﬁ)/R)o;AueE fm(ﬂﬁu)%da ( )
imE=j

By the same argument used in Remark 3.0.24, we have

Remark 4.0.16. Let p e R', 0 < a < 8 < +00 be such that o < p < 3 a.e. in
0. Then X\;[5] < \jlp] < Ajla].

Lemma 4.0.17. Let Q be a bounded domain in RY of class C* and {pp}nen C
L>®(09), p € L>(09) be such that p, — p. Moreover, let o := inf, ey ess infyegpn () >
0 and B := supen [|nll Lo (ag) < +00. Then we have

i) For all ¢ € (H'(Q)/R), Tr[x? ¢] — Tr[ri¢] in L?(09);

it) if uy = win (h'(Q)/R) then, (possibly passing to a subsequence) Tr[r? w,] —
Tr[rhu] in L*(92).

Proof. The proof of statement ¢) is immediate. The proof of statement i) is
exactly the same as the one for Lemma 3.0.27: here one uses the compactness
of trace operator (in Lemma 3.0.27 we used compactness of embedding of H'()
into L2(2)). O

We are now ready to state the following proposition. The proof is as in
Proposition 3.0.29.

Proposition 4.0.18. Let Q be a bounded domain in RN of class C. Let C C
L>(09Q) be a weakly* compact subset of L>°(02) such that inf e essinf,econ p(z) >
0. Then the functions which take p € C to \;[p] are continuous in the weak® topol-
ogy of L*>(01).
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We note that the case of Steklov boundary conditions is rather different from
the cases analyzed in the previous chapters. In fact, Proposition 4.0.14 shows that
there exist critical mass densities for the symmetric functions of the eigenvalues
under mass constraint. We are led to investigate the existence of relations between
the eigenvalues of the Laplace operator with Steklov boundary conditions and
the eigenvalues of the Laplace operator with Neumann boundary conditions. For
instance, let’s take the unit disc in R? and consider the variational representations
of the eigenvalues of the two problems (3.0.23) and (4.0.15). We note, given
u € (H'(B)/R) and a sequence {p, }nen of densities in R such that p, = L on

™ 1)2
B (O, 1-— %) and p, = % on the remaining part (so that fQ ppdr =
M ¥n € N), that the denominator in the Rayleigh quotient in (3.0.23) with
pn converges to the denominator of Rayleigh quotient in (4.0.15) with density
p= % on 0. Thus one could expect the spectral convergence of the Neumann
problems to the Steklov problem. This will be proved in the sequel. First we
need a technical Lemma.

Lemma 4.0.19. Let B = B(0,1) be the unit ball in RN, M > 0, wy the volume
of B, Sy the (N —1)-dimensional measure of 9B. Let B, be the ball B(0,1— ).
Let p, € R be defined by

2, if x € By,
— _wen (1N
pule) =4 DOy (40.20)
wy (1-(1-2)")
for all n € N.
Let 7 the map from (H*(B)/R) onto H}O(B) := {u € H'(B) : [, pyudz =0}
defined by the equality 7, = Wﬁn op, wher@
nud
T, (U] = U — M Yu e H'(B).

Jp pnda’
Let © the map from (H'(B)/R) onto Hin(B) == {ue H'(B): [,, udo =0}
defined by the equality my = ﬂg o p, where

d
molu] = u — M, Yu € H'(B).
SN

Then the following statements hold true:
i) For all € (H'(B)/R), 7% [¢] — wt[¢] in L2(B) (hence also in H'(B));
i) if un, — u in (H'(B)/R), then (possibly passing to a subsequence) % [u,] —
molu] in L*(B);

i) assume that u, — u, w, — w in L*(B), Trlu,] = Tr[u], Tr[w,] — Tr[w] in
L2(0B), and such that ||Vun | g2y [ Vull p2(5) < C, [IVwall 2y s IVl 2y <
C uniformly in n € N. Then

/ Pn (U — w) wpdz — 0
B
and

/pn (w, —w) udx — 0.
B
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Proof. As for statement i) of Lemma 3.0.27, it is sufficient to show that

Js Pl B Jop ¢do
M Sn

lim
n——+o0o

=0,
L3(B)

where ¢ € H'(B) is such that ¢ = p[¢]. Since the equality

. M .
lim pnpdr = — odo
B S

n—-+o0o N Joq

holds, we have the desired result. We now prove statement iz). Let @,,u €
HY(B) = {0 € H'(B): [,0dx =0} be such that u, = p[i,], v = p[a]. We

have

By statement i) it follows that the second summand in the right hand side goes
to zero as n — +o00. For the first summand, we have

it fun] = mbfu]

Pn L2(B)

Pn

ey < 17 ln] = 7 [l iy + |, el — i

nNnd . n~d
I faal =7 [0y = [0 — Sy pritndz [ puiide

' M M- i)
L HfB pr (tn, — @) dxHL?(B)
< ”un_u||L2(B) M
1
N _ Wi _ N

Now, if we prove that @, — @ in L?*(B) we are done, since the result follows
by statement ii7) with w, = 1. Since {t,}nen is bounded in HM(B), it is
bounded in H'(B) by Poincaré-Wirtinger inequality. Then, possibly passing to a
subsequence, {@, },en wWeakly converges in H'(B), hence strongly in L?(B) to a
certain function w. Clearly w has zero mean. Since the projection of (H!(B)/R)
onto H'?(B) is a homeomorphism and the limit is unique, it follows that @ = 4.
Thus ||@, — @]l 2z — 0. Then in order to complete the proof of statement i) it
suffices to prove statement 7i).

We make the proof for N = 2 for the sake of simplicity, but the argument is not
restrictive, and can be applied to the N-dimensional ball. Let ¢ = % Let then
ue(z,y), w.(z,y) € L*(B), such that u. — 0 in L*(B) as € — 0, and such that the
norms of u., w., Vu., Vw, in L?*(B) are uniformly bounded in ¢, and moreover
Tr[u.] — 0 in L?(0B) and Tr[u.], Tr[w,] are uniformly bounded in L*(0B). We
consider then

lim | p.u.w.dxdy. (4.0.21)
B

e—0

We have that

/ puw.drdy = 5/ usw.dxrdy + C(E)/ uswedxdy,
B e B\B.

where B, = B(0,1 —¢), C(e) = % . The first summand clearly goes

to zero as ¢ — 0. By multiplying and dividing the second summand by ¢ and
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observing that eC(e) < " < +oo for € < ¢y, we obtain that

/ paugwgdxdy‘ <Ce+4C- / |u-w.| dady. (4.0.22)
B\B.

Now consider the second summand in (4.0.22) and pass to polar coordinates (r, §).
We have

1 27 1 r
/ — |usw.| dxdy = / / = |ue(r, 0)| |we(r, 0)| drdb.
B\B. € 0 Ji1-e€

We operate a new change of variable, namely r = 1 — ¢ with 0 < ¢t < ¢, and
denote the functions u.(1 —¢,0), w.(1 —t,0) by u.(t,0) and w.(t, ) respectively.
We have

2
/ |u5w5| dxdy = / /
B\B. €

Now, for almost every 6, u., w. are absolutely continuous on [0, ] and since this
set is compact, also their product is absolutely continuous. Let 6 be fixed and

set u.(t) = u-(t,0), w.(t) = w.(t,0). We have

D \uc(t, 0)] [wo(t,0)] didh.  (4.0.23)

wlt)un(t) = wl0w0) + [ GEE) + ) (e (4024

t/
ou,

(‘%”( ),

0
!
v ow,

i W(t/l)dt/l'

We define C(t,0) by C(t,0) (fo Bue (¢, 6 dt’|2> ® Let ¢ be fixed, then for a.e.

0, C1(t,0) is increasing in 0 <t < e and C(t,0) < C(e,0). From now on we fix
0 and denote Cy(t,0) by C(t). The same considerations hold for Cy(t, ) defined
1

by Cs(t,0) (fo dt"2>§. Then we have

c')t’

e ()] < Jue(0)] + £2C1 () < |u(0)] + t2Cy(e), (4.0.25)
lwe ()] < [w(0)] + £'2Co(t') < |we(0)] + t2Cy(e). (4.0.26)



48 4. The Steklov problem for the Laplace operator

Now, let’s consider the right hand side in (4.0.23). By (4.0.25):

/ " / EC - D Vet 0)] (£, 0)] o (4.0.27)

27 € 1
</ /°4%mﬁﬂm4amwwe
27
+ / / / Oue t’,&)’\wg(t’,eﬂdt’dtdﬁ
0
27 t

ot

5 (7 )‘ dt'dtdo <

!uS(O 0)| |w(0,0)] do
)
N /02”/06 (1;t)

/Wwaomw%menw

2

o\\

ou, ",
ot’
ow,

ot

)‘ (lw-(0,0)] + t2Cy(t, 0))dt dtdo

(t', )‘ (luc(0,0)| + t2Cy(t, 0))dt dtdo <

(e,0)t2 (Jw.(0,0)| + t2Cal(e, 6))dtdd

27r

£,0)t% (Ju(0,0)| + 130, (<, 0))dtdd <

21
/ (0, 0)] |- (0, 0)| do
0

o € g2 2&‘% 25%
+ /O e 000G — 5) + Gl 0) (0.0 (2 — 2y
i e & 9:% 93
+ / Ci(g,0)Cye, 9)(2 - 3) + Cs(g,0) |uc(0,6)] (T _ T)d(g_
0

Now, since [;7 Cy(e,0)2d0 < || Ve|[72 (), Jy7 Ca(e,0)2d0 < | Vawe|[72 g, and such
quantities are uniformly bounded in €, and Tr[u.], Tr[w,.] are uniformly bounded
in L?(09), the second and third summand go to 0 as ¢ — 0. Since Tr[u.] — 0 in
L*(09) as € — 0, the first summand vanishes as ¢ — 0.

Observe now, that for the N-dimensional ball B the same results still hold.
Passing to polar coordinates, in (4.0.51) we have to estimate the following quan-

tity:
T m 27 € 1
/ / / / _|u6<¢17"'7¢N—17t)||w6(¢17-“7¢N—17t)|dV7
0 o Jo Jo €

dV = (1= t)N " sin" % (¢1) sin" " (¢) - - - sin(Pn_2)depy - - - dpy_1dt

where

and the calculations are the same as for N = 2. This concludes the proof. O]
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For details of the following results we refer to [2] and [28]. Let’s introduce
some definition

Definition 4.0.28. Let H be a real Hilbert space, K(H, H) the Banach subspace
of L(H, H) of those T € L(H, H) which are compact. A set K C K(H, H) is said
to be collectively compact if and only if the set {K|z|: K € K,z € B}, where B
1s the unit ball in H, has compact closure. We say that a sequence of compact
operators { K, }, oy compactly converges to the compact operator K if {Ky}, oy is
collectively compact and K,[z,| — K|x] whenever x,, — x in H.

We will need the following

Theorem 4.0.29. Let H be a real Hilbert space, {K,}, .y C K(H, H) compactly
convergent to K € K(H,H). Then

lim ||(K,— K

n—-+00

2 —

) ||L(H,H) =0

Corollary 4.0.30. In the hypothesis of the previous Theorem, if K, and K are
self-adjoint for all n € N, then compact convergence of operators implies norm
convergence.

Finally we state the following

Theorem 4.0.31. Let H be a real Hilbert space, and {A,}, .y a sequence of
bounded self-adjoint operators converging in norm to the bounded self-adjoint op-
erator A, i.e., iy o0 [|An — Al g4y = 0. Then isolated eigenvalues A of A of
finite multiplicity are exactly the limits of eigenvalues of A,,, including multiplic-
ity; moreover the corresponding eigenprojections converge in norm.

Definition 4.0.32. Let B = B(0,1) be the unit ball in RN and M > 0. Let
pn €R, Wﬁn, ﬂg be defined as in Lemma 4.0.19. We set
T, = (") o(=A)toJ, oio Wf)n,

T:= (") o(=A)"toJyoTrond,

where the map —A from HY°(B) onto F(B) is defined as in (3.0.8), the map =
from (H'(B)/R) onto H'O(B) is defined as in the previous chapter, with p =1,
the maps J,, of L*(B) into F(B) are defined as in (3.0.3) and the map Jy of
L*(OB) into F(B) is defined as in (4.0.3) with p = %

Now we are ready to prove the following

Theorem 4.0.33. Let B = B(0,1) be the unit ball in RY, T~(md T, be as in
Definition 4.0.32. Then the sequence of compact operators {1, }nen compactly
converges to the compact operator T in K ((H'(B)/R), (H'(B)/R)).

Proof. In order to prove the compact convergence of T, to T we need to verify
that

i) T, and T is compact for all n € N;

ii) if [Junll 3205y < C for all n € N, then the family {T iy Y en is relatively
compact;
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iii) if u, — w in (H'(B)/R), then T,u, — Tu in (H'(B)/R).

The first statement is clearly true by the compactness of ¢ and Tr. For the second
statement, first fix u € (H*(B)/R). We have

i i — : f _
it = [ (e
M

+ lim / nﬂﬁudx——/ Wﬂudcr)
(Jin_ [ prifulae - 5 [ s
M

+ — wh[u)do
Sy Jon

By Lemma 4.0.19 we have that the first summand goes to zero as n — +o0,
and since the second term converges to zero as n — oo, it follows that T, u is
bounded for each v € (H'(B)/R). Thus, by Banach-Steinhaus Theorem, there

exists C’ such that HT " < (' for all n € N. Moreover, since

LI @/R),(AB)/R)
H“n“(yl( )y < C for all n € N, possibly passing to a subsequence, we have that
u, — w in (H'(B)/R). This implies that, possibly passing to a subsequence,
T, — w in (HY(B)/R) for n — +00. We show that w = Tu. Let w, := Tpuy,.
We have

im_ [ (e, uwn]) - Ve, o) = [ V(aifu]) - Vetfode

n—-+o0o B

for all ¢ € (H'(B)/R). On the other hand, we have that

[BV(Wﬁn[wn])'V(ﬂﬁn[¢])dx = —A[(=A)" oy, oiom [u][r, [4]]
= /Bpnﬂf)n[un]wﬁn[qﬁ]da:. (4.0.34)

Then, by Lemma 4.0.19, iii) we have

. o : :
nl—l>r-i{loo < Wn, ¢ >(H1(B)/R) n1—1>I-POO B pnﬂ-pn [un]ﬂ-ljn [(b]dx

= lim P (Wﬁn [ty] — 8 [u]) Wﬁn [¢]dx

n—-+0o B

+ lim [ pambfu] (5, [6] - 75[6]) do

n—-+40o B

+ lim | pmhlulrh(¢)de

n—+oo [p
M

= & [ milulilgldo
N JoB

= Ao () o (<A o Jas o Trr o mhful] (]
- /B V(i) - V(o) dr =< Tu, ¢ > pags)m.

hence w = Tu. In a similar way one can prove that lwall a1 mymy = 10l 3028 )
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In fact
Jim el = tim | oo (o] = mélu]) 7, Lol
: # # —
+ Jim [ purl (8, wa] = whlwn]) de

v lim [ parh[u] (Wg[wn} —Wé[ﬂ]])d:c

n—-+00 B

+ lim ]l [w]da:

n—+0o0o B
M

_ # # _ 2

= — malulmhlwldo = ||lw .
Sx Jog olulmo[w] | ||(H1(B)/R)

This proves i7). As for point ii7), let u, — u in (H'(B)/R). Then there exists
C" such that [[un|| 31 (5)/r) < C” for all n. Then, by the same argument used for

point 4i), for each sequence n; — +o00, possibly passing to a subsequence, we have
To;un; — Tu. Since this is true for each {n;};en, we have the convergence for

the whole family, i.e., T,u, — Tu. This concludes the proof of the Theorem. [

Corollary 4.0.35. Let B be the unit ball in RYN. Let p, defined as in Lemma
4.0.19. Let Aj[pn] be the eigenvalues of problem (3.0.2) on B for all j € N. Let
)\], jeN denote the ezgem}alues of problem (4.0.2) on B corresponding to the

constant surface denszty . Then for all j € N, we have lim,_, Aj[p,] = )\
for all 7 € N.

Finally we show that this result also holds for bounded domains of RY of class
C?. Let M be a parametric hypersurface in R3 of class C?, ie., a ¢ : D — R3,
where D is a bounded open subset of R? and ¢ € C?(D). Moreover, we assume
that Dé(u,v) is injective at each (u,v) € D. We set

M(e) :={o(u,v) + tv(u,v) : (u,v) € D,0 <t <e},
where v(u,v) is the normal vector to ¢(u,v), given by
3¢> A 3¢>

v(u,v) = ‘%/\(%

We consider the map 1 from D x ]0,¢[ onto M (e) defined by

(u,v,t) = ¢(u,v) + tr(u,v)

for all (u,v) € D, t € ]0,¢].
In the sequel we will need the following Lemma. For the sake of completeness
we include also statement i1).

Lemma 4.0.36. Let M be a parametric hypersurface and (D, $) a parametriza-
tion of M. Assume that infp ‘a(p A a‘b‘ > 0. Let f.,f € HY(Q) for alle > 0 be
such that f. — f in HY(Q) as € — 0. Moreover, assume that 1 is a diffeomor-
phism for ¢ sufficiently small. Then we have

i)
tim * / fdv — /fdo (4.0.37)
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lim — (f-— f)dV =0, (4.0.38)

where dV = dxdydz.

Proof. We consider
1 1 [
—/ f(z,y, z)dxdydz = —/ /f(u,v,t) |det D1p| duduvdt,
€ Jume) €Jo Jp

and compute the limit as ¢ — 0. We observe that

detDy = det [52, 22, v(u,v)] +tdet [, 22 v(u,0)]  (4.0.39)

— tdet[ 9 v(u, )} + t2de t[ . %, V(u,v)].

ov’  ou? Ou,

Moreover

é/O/D F(u, v,t) |det DY| dudvdt =
1 €
5/0 /D(f(u,v,t)—f(u,v,O))|detDw|dudvdt
J% /0 /D f(u,v,0) |det Dy| dudvdt. (4.0.40)

For the first summand in the right-hand side of (4.0.40), we observe that for a.e.
(u,v) € D, we have
|f(u,v,t) — fu,v,0)| < fo 675/ (u,v,t')| dt’. Then, since f € H'(M(e)), we have

é\/oe /D |f(U, U,t) — f(u, v, O)| |detD¢| duduvdt

<[, o

< M) IV 1l 2o

(u,v,t) ' |det D1p| dtdudv

Thus the first summand in the right-hand side of (4.0.40) vanishes as ¢ — 0. For
the second summand, observe that for (u,v) € D

lim — /]detDw(uvt\dt |det [92, 22 v Ol

e—=0 ¢

since the terms in (4.0.39) containing ¢ vanish as ¢ — 0. The last quantity is
exactly the area element of the surface. Then we get

lim — / fdv = /fda
e—0 & M(e)
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Now we prove statement 7). We consider

l/M(a) (fe—=f)dV = é/og /D (fe(u,v,t) — f(u,v,t)) |det D] dudvdt

3

:1/5/ (f.(u,0,0) — f(u, 0,0)) |det D] dudvdt

afa ) of , ,
/// <8t’ U, v, at,(u,v,t)) dt" |[det Dy| dudvdt

—/ / |fe(u,v,0) — f(u,v,0)| |det Dy | dudvdt (4.0.41)
afE / af / /
at/ u, 7 815/ (u, v, t ) dt |detD'l/}| dudvdt

We set G1(u,v) ‘det [857 %, v(u,v)] — det [80’ %, V(u,v)H, Go(u,v) =

|det [ v y(u,v )]|. We have for the first summand of (4.0.41)

’LL

m | =

/5/ | fe(u,v,0) — f(u,v,0)||det Dyp| dudvdt
0 D
1 [¢ 9 5
< g/o /D|fa(u,v,0) — f(u,v,0)] ‘G_f/\a_f‘dmlvdt
+§/0 /D|fa(u,v,0)—f(U,v,0)|tG1(u7v)dudvdt
1 /¢ )
+g/0 /D!fs(u,v,o)—f(u,v,O)\t G, v)dudvdt

— [ 1t~ fldo

2 /D [£-(,0,0) = f(u,0,0)| G (u, v)dudv
#5120 0,0) = 70,0/ Gofae)ud
7/ (u, v, u, v, o(u, v)dudv

<@ [ 1t~ flio
where

8¢ 8¢
8u B

Oe) =1+ (mf

- 5HG1||L°°(D) n 82||G2||L<><>(D)
2 3 ’

and C(e) — 1 as € — 0. Thus the first summand in (4.0.41) vanishes as ¢ — 0
because f. — fin L*(M) hence in L'(M). Now we consider the second summand
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n (4.0.41). We have

aj; l aj‘ / /
875’ u,v,t %(u,v,t) dt' |det Dv| dudvdt
afe . 8](‘ ) 2 / 2
D
/ / < ot U,U,t) ot /( 7/U7t) dt) ’det ¢|dUdUdt
8f5 / af / 2
< — 2 -
/ " ( g (L0 t) T ga(w v t) d“d“> dt
< Ce? IV (fe - f>HL2(M(5)) )
where C' = ([, |detDy| dudv) This concludes the proof. O

Remark 4.0.42. Clearly the same result holds for hypersurfaces in RN . In fact,
given a parametrization ¢ from D C RWN=D to RN of the hypersurface M, we
define the set M(e) in the same way as in the previous case. In this case the
normal vector at ¢p(uq,...,un_1) is given by

g pn g2

1 UN—1

v(ug, .., un_1) = o0 ”
ouq AR oun_1

The diffeomorphism 1 of Dx]0,e[ onto M(e) is defined as in the previous case.
Then, in the computation of detDv we will obtain

Oun_1

o 0 0 0
(B Y

8u1 8U17 ’ 8UN_17 auN_l

. 1(8¢ ov 13l0) ov )

811,1, 8U1’ ’ 811,]\[_1, 8uN_1

detDy = det [ - G2 vlup,uno)|

where g; are suitable compositions of sums and products of the first partial deriva-
tives of ¢ and v. The first term in the sum is equal to
99 . o9

A ;
8u1 8UN,1

which is the area element of the hypersurface. Now, the extension of Lemma
4.0.36 to hypersurfaces in RN is straightforward.

Let Q be a subset of RY. We define the set (992)% by
(0% = {z e RN : d(z,00) < &p} .

Theorem 4.0.43. (Tubular neighborhood Theorem). Let Q2 be a bounded domain
in RY of class C%. Then there exists ¢g > 0 such that for each x € (9Q)% there
exists a unique couple (Z,s) € OQX] — eq, 9| such that x = T + sv(x); moreover,
T is the (unique) nearest to x point of the boundary and s = d(x,082). Finally,
possibly reducing the value of eq, the map © — (T, s) is a diffeomorphism of class

C! of (0Q)% onto ONX] — &0, €o].
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Lemma 4.0.44. Let Q be a bounded domain in RN of class C? and e > 0 as in
Theorem 4.0.43. Let 0 < e < 9. We denote by Q. the set {z € Q: d(x,00) > £}.
Let M > 0 and p. € R be defined by

_ £, if x € Q. 1045
pe) = Mg e 0\ Q. (4.0.45)

for all 0 < & < . Let % the map from the space (H'(2)/R) onto the space
HOQ) = {ue H(Q): [,pude =0} defined by the equality m,. = 7 o p,
where

Jq peudz
N Jopedz

Let 7 the map from (H'(Q)/R) onto Hyo(Q) := {ue HY(Q): [, udo =0}
defined by the equality Ty = ﬂg o p, where

Vu € H'(Q).

T [u] = u

_ Jog udo 1
molu] = u — o0 Yu e H ().

Then the following statements hold true:
i) For all ¢ € (H'(Q)/R), % _[¢] — mh[¢] in L2(Q) (hence also in HY(Q));

i) if ue = u in (HY(Q)/R), then (possibly passing to a subsequence) T
rblu] in L2(92);

. [us] —

i) assume that u. — u, w. — w in L*(Q), Trlu.] — Tru], Tr[w.] — Tr[w] in
L*(09), and that |[Vuell 20y |Vl o) < C, [IVwell 2y IVl 20y < C
uniformly in 0 < € < eg. Then

/ pe (ue — u) wedzr — 0
Q
and

/ps (we — w) udr — 0.
Q

Proof. The proof of the first two statements follows the same arguments used in
the proof of Lemma 4.0.19. Now we prove statement iii). It clearly suffices to
prove that

lim | pou.w.dz. (4.0.46)

e—0 Q

whenever u. — 0 in L?(Q) and Tr[u.] — 0 in L?(99). We have that

/pgugwsda: = e/ U wdx + C(a)/ usw.dx,
Q < O\Qe

where C(e) = A|49_\€S|253|5| . The first summand clearly goes to zero as ¢ — 0. By
multiplying and dividing the second summand by e and observing that eC(e) <

C" < 400 for € < gp, we obtain

/ PUWedx
Q

1
< C’€+C'~g/ lucw, | dz.
Q\0.



56 4. The Steklov problem for the Laplace operator

We now apply Theorem 4.0.43. Let then xy € 992 and Uy be a neighborhood
of zy in RY such that there exists V5 € RV~! and a parametrization ¢ € C?(V;)
such that the map v from Vyx]0,e[ onto M(e) = {z € Q:d(z,00NU)) < &}
defined by

Y(p,t) = é(p) + tv(p)

is a diffeomorphism from V;x]0, e[ onto M(e). Here v(p) denotes the unit inner
normal at ¢(p). Now we consider

1 ¢ ldetD
/ L. de = / / DU, 8)] (s 8) dtdp. (4.0.47)
M(e) € Vo J0 €

For almost every p € Vj, u-(p,t), w:(p,t) are absolutely continuous on [0, ¢] and
since this set is compact, also their product is absolutely continuous. Let p be
fixed. We have

ue (H)we(t) = u(0)w.(0) + %(t') () +u(t) é:?t’ (t)dt',(4.0.48)
aug 1 1

We observe that, for fixed € and for almost every p € V4, the quantity C(t,p) =

1

(fo Que (¢, p ‘ alt)E is increasing in 0 < ¢ < e and Cy(t,p) < Ci(g,p) for all

1
0 <t < e. The same result holds for Cy(¢, p) (fo 9uwe (t’,p)|2 dt’> *. Then

ot’
Jue(t)] < |uc(0)] + 2 Cy() < |us(0)] + t2Ch (), (4.0.49)
lwe ()] < [we(0)] + t'2Co(t') < |we(0)] + t2Cy(e). (4.0.50)
Now, let’s consider the right hand side in (4.0.47). By using (4.0.49):
¢ |detD
[ [P o 0l )y (4.051)
Vo J0 €

<1
S/ / — |us(p, 0)| |we(p, 0)| |det Dep| dtdp
Vo JO

8u5
+ ||detD¢||L°° (Vox[0,]) // /

ot (p,t'

det D[ o z J, 1 Ol ¥
+ ||de W‘L (vox[o,e])/‘/o/o 5/0 |ue(p )“at/ (p

Now using the same argument in the proof of point iii) of Lemma 4.0.19, one
can show that the second and third summand vanish as ¢ — 0. For the first
summand, we observe that by Remark 4.0.42 we have

detDvy = det [ c S0 y(py, ---,pN—1)}

Op1 OpN -1
oo Ov 1)) ov )
+ t —_— Ty e, T,
o (81?1 op Opn—1 Opn—1
Ny <8gb ov 3l0) ov )

) |we(p, )| dt'dtdp

)| @' dtdp.

aP1 apl v a]9N—17 OpN-1



57

where p = (p1,...,pn-1) and g; are suitable compositions of sums and products
of the first partial derivatives of ¢ and v. It is not restrictive to assume that

Opn
statement i) of Lemma 4.0.36, we obtain

infy;, ‘§_¢ Ao A 22| > 0. Now, using the same argument as in the proof of

/V / luc(p, 0)| |w.(p, 0)| |detDep| dtdp

G 06 ¢
< - us(p, 0)| |lwe(p, 0)| | =— A -+ A dpdt
_5/0 o0 a0 | 52 -1

+Z / 42(p, 0)] | (p, )1 £ |g:(p)] dpet

<CE) [ fudfuddo,
oQNUy

where

¢ ¢
A A
Opr OpNn-1

Cle)=1+ (1‘1/10f

-1 N-1
€
) X Il
=1

and C(e) — 1 as ¢ — 0. Since Tr[u.] — 0 in L?(9Q) as ¢ — 0, it follows that
also the first summand vanishes as ¢ — 0. Since Q\ {2, can be covered by a finite
number of open sets of the type M(e), say Q\ Q. C J~, M;(e), we have that

1 1
—/ luswe| dx < Z —/ |usw,| dz.
€ Jana. i—1 I Mi(e)

This concludes the proof. O

Corollary 4.0.52. Let Q be a bounded domain in RY of class C?%. Let p,, defined
as in Lemma 4.0.44. Let \j[p,] be the eigenvalues of problem (3.0.2) for all j € N.

Let )\], j € N denote the ezgenvalues of problem (4.0.2) corresponding to the
constant surface density L o Then for all j € N, we have lim,,_, 1o \j[ps] = )\

for all j € N.

Proof. 1t is sufficient to repeat the proof of Theorem 4.0.33 by using Lemma

4.0.44. The compact convergence of compact operators {Tn} to the compact
neN

operator T in KC ((H*(2)/R), (H'(Q)/R)) implies norm convergence, and hence
spectral convergence by Theorem 4.0.31. O]
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