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INTRODUCTION

In this dissertation we consider different classes of eigenvalue problems for poly-
harmonic operators subject to homogeneous boundary conditions on open sets
in RN . First of all we consider the eigenvalue problem for the poly-harmonic
operator with Dirichlet boundary conditions{

(−∆)nu = λρu, in Ω ,

u = ∂u
∂ν

= ... = ∂n−1u
∂νn−1 = 0, on ∂Ω ,

(0.0.1)

where Ω is a domain (i.e., a connected open set) of finite measure in RN , ρ ∈
L∞(Ω). Along with the Dirichlet case, we consider a class of eigenvalue problems
for poly-harmonic operators subject to intermediate boundary conditions

(−∆)nu = λρu, in Ω ,

u = ∂u
∂ν

= ... = ∂m−1u
∂νm−1 = 0, on ∂Ω ,

Bm(x;D)u = Bm+1(x;D)u = ... = Bn−1(x;D)u = 0, on ∂Ω ,

(0.0.2)

with n
2
≤ m ≤ n if n is even, n+1

2
≤ m ≤ n if n is odd, where Bj(x;D), j = m,m+

1, ..., n − 1, are suitable linear differential operators of order mj (the conditions
Bj(x;D)u = 0, for j = m, ..., n − 1, are called complementing conditions). The
limiting case m = n corresponds to the case of Dirichlet boundary conditions
(0.0.1). From a physical point of view, one may think of the open set Ω as a
vibrating N -dimensional membrane with mass density ρ and total mass M =∫

Ω
ρdx. The cases n = 1 and n = 2 model concrete problems of physical interest.

For n = 1 problem (0.0.1) is reduced to the problem of the Laplace operator with
Dirichlet boundary conditions{

−∆u = λρu, in Ω ,
u = 0, on ∂Ω ,

(0.0.3)

which arises in the study of a vibrating membrane of mass density ρ with a fixed
frame. For n = 2 we have two problems for the biharmonic operator:{

∆2u = λρu, in Ω ,
u = ∂u

∂ν
= 0, on ∂Ω ,

(0.0.4)

and {
∆2u = λρu, in Ω ,

u = ∂2u
∂ν2 = 0, on ∂Ω .

(0.0.5)

Problem (0.0.4) models a vibrating thin clamped plate with mass density ρ,
while problem (0.0.5) models a vibrating simply supported thin plate with mass
density ρ. For a detailed discussion of the physical interpretation of problems
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(0.0.3),(0.0.4) and (0.0.5) we refer to [7].

As is well-known the eigenvalues λ of problem (0.0.2) have finite multiplicity
and form a strictly positive and increasing sequence {λj}j∈N, with λj → +∞ as
j →∞.

We are interested in the problem of the dependence of λj on ρ. More pre-
cisely, we investigate the analyticity of the dependence of the eigenvalues, or their
functions, upon variations of the density ρ in a suitable subspace of L∞(Ω). We
consider densities ρ in the open subset of L∞(Ω) of those functions ρ such that
ess infΩ ρ > 0. Then we show that the symmetric functions of multiple eigenvalues
depend real analytically on ρ and we compute formulas for the derivatives of such
functions. Note that, in general, multiple eigenvalues are even not differentiable
with respect to ρ.

Then we consider the problem of maximizing or minimizing the eigenvalues
with respect to the variable ρ under the constraint

∫
Ω
ρdx = const. There are

some results in this direction, see e.g., [16, 8, 9]. The case n = 1, N = 1 has
been completely solved in [18, Krein], under the assumption that the admissible
densities satisfy the condition

α ≤ ρ ≤ β, (0.0.6)

where α, β are fixed positive constants. Namely, for each index j ∈ N the den-
sities ρ̌j and ρ̂j which minimize and maximize the eigenvalue λj are explicitly
constructed. It turns out that they are extreme points of the convex set of den-
sities defined by (0.0.6), i.e., ρ̌j, ρ̂j are ‘bang-bang’ controls (see [18] for details).
Moreover, in the case of the first eigenvalue λ1, the result of Krein has been gener-
alized in [8, 9, Cox-McLaughlin] to arbitrary dimensions under certain regularity
assumptions of the boundary of Ω. Here we will generalize the results obtained
in [19, Lamberti] for the Laplace operator with Dirichlet boundary conditions to
the class of problems (0.0.2).

We shall also consider mixed boundary conditions in which case Dirichlet or
intermediate conditions are considered on a part Γ1 of ∂Ω and Neumann bound-
ary conditions are considered on the remaining part ∂Ω \ Γ1 of ∂Ω.

Keeping this in mind, after proving that elementary symmetric functions of
the eigenvalues depend real analytically on ρ, we compute formulas for their
derivatives and thanks to the Lagrange multiplier theorem, we show that there
are no critical mass densities under the sole fixed mass constraint. We show then
that eigenvalues are continuous with respect to the weak* topology of L∞(Ω); it
immediately follows that the restriction of the symmetric functions of the eigen-
values to weakly* compact sets of L∞(Ω) (the set defined by (0.0.6) is of this
kind) admit points of maximum and minimum and such points belong to the
boundary of such sets.

The second part of this dissertation is devoted to the eigenvalue problem for
the Laplace operator with Neumann boundary conditions{

−∆u = λρu, in Ω ,
∂u
∂ν

= 0, on ∂Ω ,
(0.0.7)

which models a free vibrating membrane of mass density ρ. Here we assume
that Ω is of class C1, which guarantees the existence of a sequence of positive
eigenvalues {λj}j∈N increasing to +∞. Following the scheme of [19], we are
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able to prove that the symmetric functions of multiple eigenvalues depend real
analytically on ρ and compute formulas for their derivatives. The fact that there
are no critical mass densities under fixed mass constraint is not immediate. In
fact we prove it in a few special cases. Then we prove the continuity of the
eigenvalues with respect to the weak* topology of L∞(Ω).

Finally, we consider the following eigenvalue problem for the Laplace operator
with Steklov boundary conditions

{
−∆u = 0, in Ω ,
∂u
∂ν

= λρu, on ∂Ω ,
(0.0.8)

which is related to the study of a vibrating membrane whose mass is concentrated
at the boundary. Problem (0.0.8) can be considered as a limiting case for problem
(0.0.7). In fact, we are able to construct a sequence of densities ρn ∈ L∞(Ω) with
fixed total mass

∫
Ω
ρndx = M such that the spectrum of problems (0.0.7) with

density ρn converges pointwise to the spectrum of problem (0.0.8) with a suitable
constant surface density. This suggests us to look for critical mass densities for
Neumann problem among the wider class of problems including the Steklov prob-
lem. Finally, we exploit the same procedure used for problems (0.0.2) and (0.0.7)
in order to prove the real analyticity of symmetric functions of eigenvalues and
compute their derivatives. Then we show that for the ball B, the constant surface
density is a critical point for certain symmetric functions of the first eigenvalue
of problem (0.0.8).

This thesis is organized as follows. In Chapter 1, we introduce some pre-
liminaries. We recall basic results of Sobolev Spaces theory and general results
of perturbation theory for compact selfadjoint operators in Hilbert Spaces. In
Chapter 2, we study the case of the biharmonic operator with Dirichlet and
intermediate boundary conditions, we characterize the spectra, and prove real
analyticity of the symmetric functions of eigenvalues. Then we compute explicit
formulas for their differentials and we prove that there are no critical mass den-
sities under fixed mass constraint. Moreover, we generalize the results of [8, 9].
Then we extend these results to poly-harmonic operators. Finally, we prove that
these results hold also for poly-harmonic operators subject to mixed boundary
conditions where Dirichlet or intermediate conditions are imposed on a part of
the boundary, and Neumann boundary conditions are imposed on the remaining
part. In Chapter 3, we study the eigenvalue problem for the Laplace opera-
tor with Neumann boundary conditions, we prove real analiticity of symmetric
functions of the eigenvalues, then compute explicit formulas for their derivatives.
Then we give partial results on the non-existence of critical mass densities. In
Chapter 4, we construct a sequence of densities for which we are able to prove the
pointwise convergence of the spectrum of the appropriate problem (0.0.7) to the
spectrum of problem (0.0.8) with a suitable constant density. Then we study the
eigenvalue problem for the Laplace operator with Steklov boundary conditions
and show that the constant density is a critical point for certain functions of the
first eigenvalue for the ball.
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Introduzione

In questa dissertazione ci proponiamo di studiare problemi agli autovalori per
operatori armonici e poliarmonici con condizioni al contorno omogenee su aperti
connessi Ω di RN di misura finita (eventualmente limitati, di classe C1), sui
quali consideriamo densità di massa ρ ∈ L∞(Ω) che soddisfano la condizione
ess infΩ ρ > 0. Inizialmente consideriamo la classe di problemi (0.0.2) per gli
operatori poliarmonici (−∆)n (il caso m = n è il caso di condizioni al bordo
di Dirichlet) e ci interessiamo alla dipendenza analitica delle funzioni elementari
simmetriche degli autovalori λj (che sappiamo formare una successione crescente
e strettamente positiva), dalla densità di massa ρ (in generale invece i singoli
autovalori non sono funzioni neppure derivabili di ρ). Lo scopo in questo caso è
generalizzare a questa classe di problemi i risultati ottenuti in [8, 9, Cox] e [19,
Lamberti] per l’operatore di Laplace con condizioni al bordo di Dirichlet. Mostri-
amo infatti che le funzioni simmetriche elementari degli autovalori non ammettono
densità di massa critiche sotto la sola condizione che la massa totale dell’aperto,
data da

∫
Ω
ρdx, sia fissata. Inoltre proviamo la continuità rispetto alla topologia

debole* degli autovalori, e quindi mostriamo che su insiemi debolmente* compatti
di L∞(Ω) le funzioni elementari simmetriche degli autovalori ammettono massimi
e minimi, e pertanto tali punti devono trovarsi al bordo, generalizzando cos̀ı i
risultati di [18, Krein] e [8, 9, Cox-Mc.Laughlin]. In seguito si generalizzeranno
tali risultati al caso in cui le condizioni al contorno precedentemente considerate
sono imposte su una parte del bordo, imponendo sulla restante parte condizioni
di Neumann.

In seguito si tenterà di estendere i risultati trovati in [19] al caso del lapla-
ciano con condizioni al bordo di Neumann. Anche in questo caso si proverà la
reale analiticità delle funzioni simmetriche degli autovalori, e si daranno parziali
risultati sulla non esistenza di densità di massa critiche sotto la sola condizione
che la massa sia fissata. In seguito ci si interesserà al problema di Steklov per il
laplaciano. Le motivazioni che ci spingono a studiare tale problema sono dovute
al fatto che in un certo senso il problema (0.0.8) può essere visto come caso limite
di problemi del tipo (0.0.7); infatti possiamo costruire una successione di densità
ρn per le quali lo spettro dei problemi di Neumann con densità ρn converge pun-
tualmente allo spettro del problema di Steklov con densità costante C sul bordo
(dove ρn e C forniscono la stessa massa su Ω). Dunque questo ci suggerisce che
possiamo cercare densità di massa critiche per il problema di Neumann, nella
classe più ampia costituita dall’aggiunta del problema di Steklov. Infine provi-
amo che le funzioni simmetriche elementari degli autovalori del problema (0.0.8)
dipendono analiticamente dalla densità superficiale ρ, e mostriamo che nel caso
della palla la densità superficiale costante è critica per il primo autovalore.
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1. PRELIMINARIES

We present here a number of results widely used in the following chapters.

1.1 Sobolev Spaces

Let’s introduce some definitions and basic results on Sobolev Spaces. For all
proofs we refer to [6].

For any set Ω in RN and ρ > 0 we denote by Ωρ the set {x ∈ Ω : d(x, ∂Ω) > ρ}.
Moreover, by a cuboid we mean any roto-translation of a rectangular paral-
lelepiped in RN .

Definition 1.1.1. Let ρ > 0, s, s′ ∈ N, s′ ≤ s and {Vj}sj=1 be a family of bounded
open cuboids and {rj}sj=1 be a family of isometries in RN .

We say that A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) is an atlas in RN with the param-
eters ρ, s, s′, {Vj}sj=1, {rj}sj=1, briefly an atlas in RN .

We denote by C(A) the family of all open sets Ω in RN satisfying the following
properties:

(i) Ω ⊂
s⋃
j=1

(Vj)ρ and (Vj)ρ ∩ Ω 6= ∅;

(ii) Vj ∩ ∂Ω 6= ∅ for j = 1, . . . s′, Vj ∩ ∂Ω = ∅ for s′ < j ≤ s;
(iii) for j = 1, ..., s

rj(Vj) = {x ∈ RN : aij < xi < bij, i = 1, ...., N}

and

rj(Ω ∩ Vj) = {x ∈ RN : aNj < xN < gj(x̄), x̄ ∈ Wj},
where x̄ = (x1, ..., xN−1), Wj = {x̄ ∈ RN−1 : aij < xi < bij, i = 1, ..., N − 1} and
gj is a continuous function defined on W j (it is meant that if s′ < j ≤ s then
gj(x̄) = bNj for all x̄ ∈ W j); moreover for j = 1, . . . , s′

aNj + ρ ≤ gj(x̄) ≤ bNj − ρ,

for all x̄ ∈ W j.
We say that an open set Ω in RN is an open set with a continuous boundary

if Ω is of class C(A) for some atlas A.
Let m ∈ N,M > 0. We say that an open set Ω is of class Cm

M(A) if Ω is of
class C(A) and all the functions gj in (iii) are of class Cm(W j) with

|gj|cm(W j)
=

∑
1≤|α|≤m

‖Dαgj‖L∞(W j)
≤M.

We say that an open set Ω in RN is an open set of class Cm if Ω is of class
Cm
M(A) for some atlas A, m ∈ N and M > 0.
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Let C∞c (Ω) be the space of C∞(Ω) functions compactly supported in Ω (test
functions). Then we have the following

Definition 1.1.2. Let Ω be an open set in RN , u, v ∈ L1
loc(Ω) and α ∈ NN

0 a
multiindex. We say that v is the αth-weak partial derivative of u and we write
Dαu = v if ∫

Ω

uDαφdx = (−1)|α|
∫

Ω

vφdx,

for all φ ∈ C∞c (Ω).

Definition 1.1.3. Let Ω be an open set in RN . The Sobolev Space W k,p(Ω)
consists of all functions u in Lp(Ω) such that for all α ∈ NN

0 with |α| ≤ k, the
weak derivative Dαu exists and belongs to Lp(Ω).

Definition 1.1.4. If u ∈ W k,p(Ω), we set

‖u‖Wk,p
Ω

:=

∑
|α|≤k

‖Dαu‖Lp(Ω)

 1
p

, if p 6=∞,

‖u‖Wk,∞(Ω) :=
∑
|α|≤k

‖Dαu‖L∞(Ω) .

Definition 1.1.5. We denote with W k,p
0 (Ω) the closure of C∞c (Ω) in W k,p(Ω).

For p = 2, we write Hk(Ω) = W k,2(Ω), Hk
0 (Ω) = W k,2

0 (Ω).

Theorem 1.1.6. For each 1 ≤ k ≤ ∞, W k,p(Ω) is a Banach space.

We will need some approximation results.

Theorem 1.1.7. (Global approximation by smooth functions). Let Ω be an open
set in RN . Let u ∈ W k,p(Ω) for some 1 ≤ p < ∞. Then there exists a sequence
{um}m∈N ⊂ C∞(Ω) ∩W k,p(Ω) converging to u in W k,p(Ω).

Theorem 1.1.8. (Global approximation by smooth functions up to the bound-
ary). Assume that Ω is a bounded open set of class C1. Let u ∈ W k,p(Ω) for
some 1 ≤ p <∞. Then there exists a sequence {um}m∈N ⊂ C∞(Ω̄) converging to
u in W k,p(Ω).

As a consequence of Theorem 1.1.7 we have the following

Theorem 1.1.9. Let Ω be an open set in RN , 1 ≤ p < ∞, u ∈ Lp(Ω). Then
u ∈ W 1,p(Ω) if and only if u coincides almos everywhere with a function ũ such
that for almos all lines l parallel to the coordinate axis, u|l is locally absolutely
continuous, and the classic derivatives ∂ũ

∂x1
, ..., ∂ũ

∂xN
, which exist almost everywhere,

belong to Lp(Ω).

Under suitable regularity conditions of ∂Ω it makes sense to define the trace
of a function u ∈ W k,p(Ω).

Theorem 1.1.10. (Trace Theorem). Let Ω be a bounded open set in RN of class
C1. Then there exists a bounded linear operator Tr from W 1,p(Ω) to Lp(∂Ω) such
that:
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i) Tr[u] = u|∂Ω
if u ∈ W 1,p(Ω) ∩ C(Ω̄);

ii) ‖Tr[u]‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω), ∀u ∈ W 1,p(Ω), the constant C depending only
on p and Ω.

Tr[u] is called the trace of u on ∂Ω.

Theorem 1.1.11. Let Ω be a bounded open set in RN of class C1. Then u ∈
W 1,p

0 (Ω) if and only in Tr[u] = 0.

Next results concern embeddings of Sobolev Spaces.

Theorem 1.1.12. (Gagliardo-Nirenberg-Sobolev inequality). For 1 ≤ p < N
let the Sobolev conjugate p∗ be defined by p∗ := Np

N−p . Then there exists C > 0,
depending only on p and N, such that

‖u‖Lp∗ (RN ) ≤ C ‖∇u‖Lp(RN ) ,

for all u ∈ C1
c (RN).

Lemma 1.1.13. (Poincaré inequality). Let Ω be an open set in RN of finite
measure, 1 ≤ p < ∞. Then there exists C > 0, depending only on p, N and Ω
such that

‖u‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) ,

for all u ∈ W 1,p
0 (Ω).

Theorem 1.1.14. (Rellich-Kondravhov compactness Theorem). Let Ω be a
bounded open set in RN of class C1, 1 ≤ p < N . Then W 1,p(Ω) is compactly
embedded into Lq(Ω) for all 1 ≤ q < p∗.

Corollary 1.1.15. If Ω is an open set of finite measure, then for all 1 ≤ p <∞,
W 1,p

0 (Ω) is compactly embedded into Lp(Ω). If Ω is a bounded open set of class
C1, then for all 1 ≤ p <∞, W 1,p(Ω) is compactly embedded into Lp(Ω).

Theorem 1.1.16. (Poincaré-Wirtinger inequality). Let Ω be a bounded open set
in RN of class C1, 1 ≤ p <∞. Then there exists C > 0, depending only on p, N
and Ω such that

‖u− (u)Ω‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) ,

where (u)Ω =
∫
Ω u

|Ω| .

Thanks to Rellich-Kondrachov Theorem (1.1.14), we are able to prove the
following

Theorem 1.1.17. (Compact trace Theorem). Let Ω be an open bounded set in
RN of class C1, 1 ≤ p < ∞. Then the trace operator Tr : W 1,p(Ω) → Lp(∂Ω) is
compact.

Proof. We consider only the case p > 1. For the case p = 1 we refer to [22]. By
Theorem 1.1.8, it suffices to prove that if {vn}n∈N is a sequence in C∞(Ω̄), there
exists a subsequence {vnm}m∈N such that {vnm |∂Ω}m∈N is convergent in Lp(∂Ω).
Moreover, Ω ∈ C(A), for a certain A(ρ, s, s′, {Vj}sj=1, {rj}sj=1). By [23, 1.2.4, p.
27] there exist functions φj ∈ C∞c (Vj), j = 1, ..., s, such that

∑s
j=1 φj(x) = 1 for
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x ∈ Ω, and that
∑s′

j=1 φj(x) = 1 for x ∈ ∂Ω. Then we can directly assume that
vn has support within Vj ∩ Ω for some j = 1, ..., s′. We denote the set Vj ∩ Ω by
Uj and the set Vj ∩ ∂Ω by Λj. Then for x̄ ∈ Wj we have

|vn(x̄, g(x̄))− vm(x̄, g(x̄))|p ≤ |vn(x̄, aN)− vm(x̄, aN)|p

+

∫ g(x̄)

aN

∂ |vn(x̄, xN)− vm(x̄, xN)|p

∂xN
dxN .

Then it follows, integrating on Wj, that

‖vn − vm‖pLp(Λj)
≤ C ‖vn − vm‖pLp(Uj)

+ Cp

∫
Uj

|vn(x)− vm(x)|p−1

∣∣∣∣∂(vn(x)− vm(x))

∂xN

∣∣∣∣ dx
≤ C

(
‖vn − vm‖pLp(Uj)

+ p ‖vn − vm‖p−1
Lp(Uj)

‖vn − vm‖W 1,p(Uj)

)
.

Now by Theorem 1.1.14 we can extract a subsequence, again denoted by {vn}n∈N,
that converges strongly in Lp(Uj). Then vn is a Cauchy sequence in Lp(Λj). This
concludes the proof.

Remark 1.1.18. We observe that the Rellich-Kondrachov Theorem and compact
trace theorem hold true even under lower regularity assumptions of the boundary.
In fact in [23, Thm. 6.1, p. 106] is proved that Rellich Theorem holds true for Ω
of class C0,1.
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1.2 Symmetric functions of the eigenvalues

In this section we present some techniques and results developed by P.D. Lamberti
and M. Lanza de Cristoforis in [20] on the analytic dependence of symmetric func-
tions of eigenvalues of a compact selfadjoint operator on a Hilbert space equipped
with a variable scalar product depending on the operator. For all proofs and de-
tails we refer to [20].

Let X ,Y ,Z be real Banach spaces. Let L(X ,Y) the Banach space of bounded
linear maps from X to Y , endowed with the usual norm ‖A‖L(X ,Y) := sup‖x‖X=1

‖Ax‖Y . Let B(X × Y ,Z) the space of bilinear continuous maps from X × Y
to Z, endowed with the usual norm of the uniform convergence on the product
of the unit ball of X and the one of Y . Let (H,< ·, · >) be a real Hilbert
space, ‖·‖ the norm associated with the scalar product < ·, · > of H. We denote
by HQ the vector space H endowed with the scalar product Q = Q(·, ·), and
‖·‖Q the associated norm. We denote by K(H,H) the subspace of L(H,H) of
compact operators, which is closed in L(H,H). We denote by KS(HQ, HQ) the
closed subspace of K(HQ, HQ) of those T such that Q(Tu, u) = Q(u, Tu) for all
u, v ∈ HQ. Let T be a compact selfadjoint operator on H, σ(T ) the spectrum
of T , that is well-known to be a finite or countable subset of R. The elements
of σ(T ) \ {0} are the eigenvalues of T , and 0 is the only possible accumulation
point for σ(T ) (for the proof of the characterization of the spectrum of a compact
selfadjoint operator we refer to [5]). We denote by j+(T ) the number of positive
eigenvalues of T , each counted according to its multiplicity, and by j−(T ) the
number of negative eigenvalues of T , each counted according to its multiplicity.
We set

J+(T ) := {j ∈ Z : 1 ≤ j ≤ j+(T )},
J−(T ) := {j ∈ Z : −j−(T ) ≤ j ≤ −1}.

Then there exists a unique function j → µj(T ) of J(T ) := J+(T ) ∪ J−(T ) to R,
which is decreasing on J−(T ) and on J+(T ), with

σ(T ) \ {0} = {µj(T ) : j ∈ J(T )},

such that each eigenvalue is repeated according to its multiplicity. We set

BS(H2,R) := {B ∈ B(H2,R) : B(u1, u2) = B(u2, u1) for all u1, u2 ∈ H},

a closed subspace of B(H2,R), and

Q(H2,R) := {B ∈ BS(H2,R) : η[B] > 0},

where

η[B] := inf

{
B(u, u)

‖u‖2 : u ∈ H \ {0}
}
.

The set Q(H) is the set of those scalar products on H coercive with respect to
the fixed one < ·, · >. We observe that Q is a coercive scalar product if and only
if the embedding of HQ in H is a homeomorphism. Now we set

M := {(Q, T ) ∈ BS(H2,R)×K(H,H) : Q(Tu, v) = Q(u, Tv) for all u, v ∈ H}.
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The set M is closed in BS(H2,R)×K(H,H). Moreover we set

O :=M∩ (Q(H2,R) × K(H,H))

= {(Q, T ) ∈ Q(H2,R)×K(H,H) : T ∈ KS(HQ, HQ)}.

The set O is open in M. Now we have the following

Theorem 1.2.1. Let H be a real Hilbert space, j ∈ Z \ {0}. Then the set

Aj := {(Q, T ) ∈ O : j ∈ J(T )}

is open in M, and the function µj[·] which takes (Q, T ) ∈ Aj to µj[T ] is contin-
uous.

We now consider a fixed finite subset F of Z \ {0}, and set

A[F ] := {(Q, T ) ∈ O : j ∈ J(T )∀j ∈ F , µl[T ] 6∈ {µj[T ] : j ∈ F} ∀l ∈ J(T )\F}.
(1.2.2)

By Theorem 1.2.1 it follows that A[F ] is open in M and µj[·] are continuous on
A[F ]. Finally we denote the ortogonal projection PF [Q, T ] of HQ on the subsapce
E[T, F ] generated by

{u ∈ HQ : Tu = µu, ∃ µ ∈ {µj[T ] : j ∈ F}}.

We can state the following

Theorem 1.2.3. Let H be a real Hilbert space and F a finite subset of Z \ {0}.
Then E[T, F ] has dimension equal to the cardinality of F, and it is an invariant
subspace of H for T.

Then we have [17, Kato] the following

Theorem 1.2.4. Let H a real Hilbert space, F a finite subset of Z \ {0}. Then
the map PF which takes (Q, T ) ∈ A[F ] to PF [Q, T ] ∈ L(H,H) is continuous.

It is shown in [20] that PF [Q, T ] depends analytically on (Q, T ), in the sense
of the following Theorem

Theorem 1.2.5. Let H be a real Hilbert space, F a finite nonempty subset of
Z\{0} and (Q̃, T̃ ) ∈ A[F ]. Then there exists an open neighbourhood W̃ of (Q̃, T̃ )

in Q(H2,R) × L(H,H), and a real analytic operator P ]
F of W̃ to L(H,H) such

that P ]
F [Q, T ] = PF [Q, T ] for all (Q, T ) ∈ W̃ ∩ A[F ].

We can choose an orthonormal basis of E[T, F ] which depends analitically on
(Q, T ).

Proposition 1.2.6. Let H be a real Hilbert space, F a finite subset of Z\{0} and
(Q̃, T̃ ) ∈ A[F ]. Let {ũj : j ∈ F} be an othonormal basis for E[T̃ , F ] in HQ̃. Then

there exists an open neighbourhood W0 of (Q̃, T̃ ) in Q(H2,R) × L(H,H) which
is contained in the neighbourhood W̃ of Theorem 1.2.5 , and |F | real analytic
operators uj[·, ·], j ∈ F , of W0 to H such that:

i) {uj[Q, T ] : j ∈ F} is an orthonormal set in HQ, for all (Q, T ) ∈ W0 ,
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ii) {uj[Q, T ] : j ∈ F} is an orthonormal basis for the range of P ]
F [Q, T ], which

coincide with E[T, F ], in HQ, for all (Q, T ) ∈ W0 ∩ A[F ] ,

iii) uj[Q̃, T̃ ] = ũj for all j ∈ F .

The problem is now reduced to a finite-dimensional one.

Proposition 1.2.7. Let H be a real Hilbert space, F a finite subset of Z \ {0}
and (Q̃, T̃ ) ∈ A[F ]. Let {ũ1, ..., ˜u|F |} be an orthonormal basis of E[T̃ , F ] in HQ̃,
and {uj[Q, T ] : j = 1, ..., |F |} as in the previous proposition and S the map of
W0 to the set M|F |(R) of |F | × |F | matrices with real coefficients, defined by

S[Q, T ] = (Shk[Q, T ])h,k=1,...,|F | := (Q(Tuk[Q, T ], uh[Q, T ]))h,k=1,...,|F | ,

for all (Q, T ) ∈ W0. Then S[·, ·] is real analytic and S[Q, T ] is symmetric for
all (Q, T ) ∈ W0 ∩ A[F ]. Moreover, if (Q, T ) ∈ W0 ∩ A[F ], then {µj[T ]}j∈F are
the eigenvalues of S[Q, T ] repeated according to their multiplicity. Finally, if we
assume that µj[T̃ ] assume a common value µ̃j for all j ∈ F , then the differential
of S[·, ·] in (Q̃, T̃ ) is given by the formula

dS[Q̃, T̃ ](Q̇, Ṫ ) =
(
Q̃(Ṫ ũk, ũh)

)
h,k=1,...,|F |

, for all (Q̇, Ṫ ) ∈ BS(H2,R)×L(H,H) .

Finally, we have

Theorem 1.2.8. Let H be a real Hilbert space and F a finite nonempty subset
of Z \ {0}. Let

MF,s[T ] =
∑

j1,...,js∈F
j1<···<js

µj1 [T ] · · · µjs [T ], ∀ s ∈ {1, . . . , |F |},

for all (Q, T ) ∈ A[F ], be the elementary symmetric functions of the eigenval-
ues µj[T ] with indices j ∈ F . Let (Q̃, T̃ ) ∈ A[F ]. Then there exists an open

neighbourhood W̃ of (Q̃, T̃ ) in Q(H2,R) × L(H,H), and real analytic functions

M ]
F,s[·, ·], for s = 1, ..., |F |, of W̃ in R such that

M ]
F,s[Q, T ] = MF,s[T ],

for all (Q, T ) ∈ W̃ ∩ A[F ], and for all s = 1, ..., |F |. If we further assume that
there exists µ̃ ∈ R such that µ̃ = µj[T ] for all j ∈ F , and if {ũ1, ..., ũ|F |} is

an orthonormal basis for E[T̃ , F ] in HQ̃, then the partial derivative of M ]
F,s with

respect to the variable T at (Q̃, T̃ ) is given by the formula

dTM
]
F,s[Q̃, T̃ ](Ṫ ) =

(
|F | − 1

s− 1

)
µ̃s−1

|F |∑
l=1

Q̃(Ṫ ũl, ũl), (1.2.9)

for all Ṫ ∈ KS(HQ̃, HQ̃), and for all s = 1, ..., |F |.
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2. DIRICHLET, INTERMEDIATE AND MIXED BOUNDARY
CONDITIONS FOR POLY-HARMONIC OPERATORS

In this chapter we study the eigenvalue problems for the poly-harmonic operators
subject to Dirichlet or intermediate boundary conditions. We start considering
the biharmonic operator, which models a vibrating clamped plate in the case
of Dirichlet boundary conditions, and a vibrating simply supported plate in the
case of intermediate boundary conditions. Then we generalize the results to poly-
harmonic operators. Finally, we study the case of mixed Neumann-Dirichlet and
Neumann-Intermediate boundary conditions.

2.1 The bilaplacian

Throughout this chapter Ω is a domain, i.e., a connected open set in RN , of finite
measure |Ω|.
LetR be the set of those ρ ∈ L∞(Ω) such that ess infΩ ρ > 0. Note thatR is open
in L∞(Ω). We start considering the classical formulation of Dirichlet problem for
the bilaplacian, which models the bending of a clamped plate:

∆2u = λρu, in Ω ,
u = 0, on ∂Ω ,
∂u
∂ν

= 0, on ∂Ω ,
(2.1.1)

where ν denotes the outer unit normal to ∂Ω, u ∈ C4(Ω)∩C1(Ω̄) and λ ∈ R. We
consider the weak formulation of the problem (2.1.1), that is∫

Ω

∆u∆φ dx = λ

∫
Ω

ρuφ dx , ∀ φ ∈ H2
0 (Ω) (2.1.2)

in the unknows u ∈ H2
0 (Ω), λ ∈ R.

We reduce the study of problem (2.1.2) to the study of the spectrum of a
compact selfadjoint operator in a suitable Hilbert space. We start considering
the operator ∆2 as a map from H2

0 (Ω) to its dual (H2
0 (Ω))′ defined by

∆2[u][φ] =

∫
Ω

∆u∆φdx , ∀ u, φ ∈ H2
0 (Ω).

The hypothesis of the Lax-Milgram Theorem (cfr. [27]) are fulfilled by ∆2, in
fact:

1. ∆2 is bounded:∣∣∆2[u][φ]
∣∣ =

∣∣∣∫
Ω

∆u∆φ dx
∣∣∣ ≤ ∫

Ω

|∆u| |∆φ| dx ≤ ‖∆u‖L2(Ω) ‖∆φ‖L2(Ω)

≤ C ‖u‖H2
0 (Ω) ‖φ‖H2

0 (Ω) , ∀u, φ ∈ H2
0 (Ω).
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2. ∆2 is coercive. In fact by the Poincaré inequality (Lemma 1.1.13),

‖u‖2
H2

0 (Ω) ≤ C(Ω, N) ‖∆u‖2
L2(Ω) = C(Ω, N)∆2[u][u] , ∀ u ∈ H2

0 (Ω) ,

with C(Ω, N) > 0.

Then by the Lax-Milgram Theorem we have that ∆2 is a linear homeomorphism
between H2

0 (Ω) and its dual.

We denote by i the canonical (compact) embedding of H2
0 (Ω) into L2(Ω) and

by J the canonical (continuous) embedding of L2(Ω) into (H2
0 (Ω))′ defined by

J [u][φ] =

∫
Ω

uφdx , ∀u ∈ L2(Ω), φ ∈ H2
0 (Ω).

For all ρ ∈ R we denote by Mρ the map which takes u ∈ L2(Ω) to ρu ∈ L2(Ω), and
by Jρ the map J ◦Mρ, which is a continuous embedding of L2(Ω) into (H2

0 (Ω))′:

Jρ[u][φ] =

∫
Ω

uφρdx , ∀u ∈ L2(Ω), φ ∈ H2
0 (Ω).

It is now easy to see that problem (2.1.2) is equivalent to the following one:

(∆2)−1 ◦ Jρ ◦ iu = λ−1u, (2.1.3)

in the unknows u ∈ H2
0 (Ω), λ ∈ R. By the Poincaré inequality (1.1.13) it is easy

to see that the bilinear form

< u, v >=

∫
Ω

∆u∆vdx, ∀u, v ∈ H2
0 (Ω),

defines on H2
0 (Ω) a scalar product whose induced norm is equivalent to the stan-

dard one. We will denote H2
0(Ω) the space H2

0 (Ω) endowed with this scalar
product. We can now state the following

Lemma 2.1.4. Let Ω be a domain in RN of finite measure, ρ ∈ R. The operator
Tρ := (∆2)−1◦Jρ◦i is a compact selfadjoint operator in H2

0(Ω), whose eigenvalues
coincide with the reciprocals of the eigenvalues of problem (2.1.2) for all j ∈ N.

Proof. The compactness of Tρ follows immediately from the compactness of i and
the continuity of (∆2)−1 and Jρ. We observe now that

< Tρu, v >H2
0(Ω) = < (∆2)−1 ◦ Jρ ◦ iu, v >H2

0(Ω)= ∆2[(∆2)−1 ◦ Jρ ◦ iu][v]

= Jρ[iu][v] = Jρ[iv][u],

for all u, v ∈ H2
0(Ω). This proves the selfadjointness. The proof of the other

statements is straightforward.

Then we have the following

Theorem 2.1.5. Let Ω be a domain in RN of finite measure and ρ ∈ R. Then
the set Σ of the eigenvalues of (2.1.2) is contained in ]0,+∞[ and consists of the
image of a sequence increasing to +∞. Each eigenvalue has finite multiplicity.
The operator ∆2 has a Hilbert basis in H2

0(Ω) which consists of eigenfunctions.
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Proof. Let λ ∈ Σ, u ∈ H2
0(Ω) \ {0} be such that ∆2u = λρu in the weak sense.

Thus ∫
Ω

(∆u)2 dx = λ

∫
Ω

ρu2 dx ,

hence λ ≥ 0. By the Poincaré inequality it follows that if u 6= 0, then
∫

Ω
(∆u)2dx >

0, hence 0 is not an eigenvalue and Σ ∈]0,+∞[. Moreover, Tρ is injective: indeed
(∆2)−1 ◦ Jρu = 0 implies Jρu = 0 and hence u = 0. Then KerT = {0} and it is
well-known that the eigenvalues of Tρ consist of the image of a decreasing sequence

{µj}, such that µj > 0 for all j ∈ N and limj→∞ = 0. Since Σ =
{

1
µj

: j ∈ N
}

the remaining statements follow immediately.

We represent the set Σ of the eigenvalues of (2.1.2) by means of an increasing
sequence

λ1[ρ] , λ2[ρ] , λ3[ρ] , . . . , λn[ρ] , . . .

where each eigenvalue is repeated according to its multiplicity. The first eigen-
value in general is not simple, cfr. [14] (for the laplacian −∆ the first eigenvalue
is always simple, cfr. [19]).

We have the following variational representation of the eigenvalues.

Theorem 2.1.6. Let Ω be a domain in RN of finite measure and ρ ∈ R. Then
we have

i)

λ1[ρ] = inf
u∈H2

0(Ω)
u6=0

∫
Ω

(∆u)2 dx∫
Ω
u2ρ dx

. (2.1.7)

The eigenfunctions corresponding to λ1[ρ] are exactly the minimizers in (2.1.7).

ii) For all j ∈ N

λj[ρ] = sup

{∫
Ω
(∆u)2 dx∫
Ω
u2ρ dx

: u ∈ 〈u1, ..., uj〉
}
,

where u1, ..., uj are the linearly independent eigenfunctions corresponding to
λ1[ρ], ..., λj[ρ].

iii) Let

Λ(E) := sup

{∫
Ω
(∆v)2 dx∫
Ω
v2ρ dx

: 0 6= v ∈ E ≤ H2
0(Ω)

}
,

for all E ≤ H2
0(Ω). Then

λj[ρ] = inf
E≤H2

0(Ω)
dimE=j

Λ(E). (2.1.8)

By (2.1.8) it immediately follows that the map ρ→ λj[ρ] is locally Lipschitz-
continuous in ρ ∈ R. In fact it is easy to see that∣∣∣∣

∫
Ω
(∆u)2 dx∫
Ω
u2ρ1dx

−
∫

Ω
(∆u)2 dx∫
Ω
u2ρ2 dx

∣∣∣∣ ≤ 1

α

∫
Ω
(∆u)2 dx∫
Ω
u2ρ1 dx

‖ρ2 − ρ1‖∞
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for all ρ1, ρ2 ∈ R, where

α = min{ess infΩ ρ1, ess infΩ ρ2} > 0.

Then

∫
Ω

(∆u)2 dx∫
Ω
u2ρ1 dx

(
1− 1

α
‖ρ2 − ρ1‖∞

)
≤

∫
Ω
(∆u)2 dx∫
Ω
u2ρ2 dx

(2.1.9)

≤
∫

Ω
(∆u)2 dx∫
Ω
u2ρ1 dx

(
1 +

1

α
‖ρ2 − ρ1‖∞

)
.

If ρ1, ρ2 satisfy
‖ρ2 − ρ1‖∞ < α ,

then taking the infimum and the supremum in (2.1.9) yields

|λj[ρ2]− λj[ρ1]| ≤ λj[ρ1]
1

α
‖ρ2 − ρ1‖∞ ,

hence the local Lipschitz-continuity of λj[·] is proved.

We now study the eigenvalue problem for the operator ∆2 subject to inter-
mediate boundary conditions. The classical formulation of the problem is

∆2u = λρu, in Ω ,
u = 0, on ∂Ω ,
∂2u
∂ν2 = 0, on ∂Ω ,

(2.1.10)

in the unknown u ∈ C4(Ω) ∩ C2(Ω̄), λ ∈ R. We introduce now some basic
elements of tangential calculus in order to state the weak formulation of problem
(2.1.10). Let bΩ(x) = d(x,Ω)−d(x,Ωc), Sh(∂Ω) =

{
x ∈ RN : |bΩ(x)| < h

}
, where

d(x,A) denotes the euclidean distance of x to a set A in RN . If Ω is of class C2

then bΩ ∈ C2(Sh(∂Ω)), cfr.[11, Ch.4].

Definition 2.1.11. Let Ω be an open set in RN of class C3. Let F ∈ C1(Sh(∂Ω)),
V ∈ C1(Sh(∂Ω))N . We set f := F|∂Ω, v := V|∂Ω, vν := V · ν, v∂Ω := v− vν. Then
the tangential gradient and divergence on ∂Ω are defined as follows:

∇∂Ωf := ∇F − ∂F

∂ν
ν,

div∂Ωv := divV −DV ν · ν,

where D denotes the Jacobian. Moreover, if F ∈ C2(Sh(∂Ω)), it is defined the
operator ∆∂Ω (Laplace-Beltrami operator) as

∆∂Ωf := div∂Ω (∇∂Ωf) .

Under the assumptions of Definition 2.1.11 we can state the tangential Green
formula: ∫

∂Ω

fdiv∂Ωv +∇∂Ωf · vdσ =

∫
∂Ω

Hfv · νdσ, (2.1.12)

where H = (N − 1)H̄, and H̄ is the mean curvature of ∂Ω. For all proofs and
details concerning tangential calculus, we refer to [11].
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Consider the equation ∆2u = λρu. We multiply both members for a test
function φ ∈ C∞c (Ω) and integrate by parts twice. Then we obtain∫

Ω

∆2uφdx =
N∑

i,j=1

∫
Ω

∂4
iijjuφdx =

N∑
i,j=1

(∫
∂Ω

∂3
iijuφνjdσ −

∫
Ω

∂3
iiju∂jφdx

)

=
N∑

i,j=1

(∫
∂Ω

∂3
iijuφνj − ∂2

iju∂jφνidσ +

∫
Ω

∂2
iju∂

2
ijφdx

)
. (2.1.13)

Since boundary integrals are all equal to 0, we obtain∫
Ω

∆2uφdx =

∫
Ω

N∑
i,j=1

∂2
iju∂

2
ijφdx ∀φ ∈ C∞c (Ω). (2.1.14)

We relax our conditions and assume that u and φ are in a suitable subspace of
H2(Ω). Let’s consider the first two terms of (2.1.13). We have∫

∂Ω

N∑
i,j=1

∂3
iijuφνjdσ =

∫
∂Ω

∂∆u

∂ν
φdσ,

∫
∂Ω

N∑
i,j=1

∂2
iju∂jφνidσ =

∫
∂Ω

(
D2u.ν

)
· ∇φdσ, (2.1.15)

where D2u denotes the Hessian of u. The term (2.1.15) can be written as∫
∂Ω

(
D2u.ν

)
· ∇φdσ =

∫
∂Ω

(
D2u.ν

)
· ∇∂Ωφdσ +

∫
∂Ω

(
D2u.ν

)
· ∂φ
∂ν
νdσ

=

∫
∂Ω

(
D2u.ν

)
· ∇∂Ωφdσ +

∫
∂Ω

∂2u

∂ν2

∂φ

∂ν
dσ

=

∫
∂Ω

(
−div∂Ω

(
D2u.ν

)
+H

∂2u

∂ν2

)
φdσ +

∫
∂Ω

∂2u

∂ν2

∂φ

∂ν
dσ,

where we have used the fact that ∂2u
∂ν2 = (D2u.ν) · ν. The natural choice of the

subspace of H2(Ω) in order to state the weak formulation of the problem (2.1.10)
is then H2(Ω) ∩H1

0 (Ω). The weak formulation is∫
Ω

N∑
i,j=1

∂2
iju∂

2
ijφdx = λ

∫
Ω

ρuφdx, ∀φ ∈ H2(Ω) ∩H1
0 (Ω), (2.1.16)

in the unknowns u ∈ H2(Ω) ∩ H1
0 (Ω), λ ∈ R. Problem (2.1.16) makes sense

under less restrictive boundary regularity assumptions. As in the case of Dirichlet
boundary conditions, we study problem (2.1.16) in an open subset Ω of RN of
finite measure.

Remark 2.1.17. Having in mind the canonical decomposition of ∆ on the bound-
ary ∂Ω of a bounded open set of class C3, i.e., ∆u|∂Ω = ∆∂Ωu+H ∂u

∂ν
+ ∂2u

∂ν2 , since

u = 0 on ∂Ω, hence ∆∂Ω = 0, the boundary condition ∂2u
∂ν2 = 0 on ∂Ω in (2.1.10)

is equivalent to the condition ∆u−H ∂u
∂ν

= 0 on ∂Ω.
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We now reduce problem (2.1.16) to an eigenvalue problem for a compact
selfadjoint operator on a Hilbert space. We denote by V (Ω) the space H2(Ω) ∩
H1

0 (Ω). We consider the operator ∆2 as the map from V (Ω) to its dual (V (Ω))′

defined by

∆2[u][φ] =

∫
Ω

N∑
i,j=1

∂2
iju∂

2
ijφdx, ∀φ ∈ V (Ω). (2.1.18)

The operator ∆2 is a linear homeomorphism between V (Ω) and (V (Ω))′. This
follows immediately by observing that there exists C > 0 such that

‖u‖L2(Ω) ≤ C
∥∥D2u

∥∥
L2(Ω)

, ∀u ∈ V (Ω). (2.1.19)

In fact we observe that for any u ∈ V (Ω)∫
Ω

∂2
iiuudx =

∫
∂Ω

∂iuuνidσ −
∫

Ω

(∂iu)2 dx = −
∫

Ω

(∂iu)2 dx ,

hence, ∫
Ω

(∂iu)2 dx =

∣∣∣∣∫
Ω

∂2
iiuudx

∣∣∣∣ ≤ ‖u‖L2(Ω)

∥∥∂2
iiu
∥∥
L2(Ω)

.

We sum over index i, obtaining

‖∇u‖2
L2(Ω) ≤ ‖u‖L2(Ω)

N∑
i=1

∥∥∂2
iiu
∥∥
L2(Ω)

≤ ‖u‖L2(Ω)

N∑
i,j=1

∥∥∂2
iju
∥∥
L2(Ω)

≤ C(N) ‖u‖L2(Ω)

∥∥D2u
∥∥
L2(Ω)

Since u ∈ H1
0 (Ω), there exists C ′ > 0 such that ‖u‖L2(Ω) ≤ C ′ ‖∇u‖L2(Ω). It

immediately follows then

‖u‖L2(Ω) ≤ C(N)C ′
∥∥D2u

∥∥
L2(Ω)

,

hence the coercivity of ∆2. The proof of the continuity of ∆2 is straightforward.
Next we denote by i the canonical (compact) embedding of V (Ω) into L2(Ω), and
by Jρ the (continuous) embedding of L2(Ω) into (V (Ω))′, defined by

Jρ[u][φ] =

∫
Ω

ρuφdx ∀u ∈ L2(Ω), φ ∈ V (Ω).

Let Tρ be the operator from V (Ω) to itself defined by Tρ := (∆2)−1 ◦ Jρ ◦ i.
Problem (2.1.16) is then equivalent to

Tρu = λ−1u, (2.1.20)

in the unknows u ∈ V (Ω), λ ∈ R. We now consider the space V (Ω) endowed
with the bilinear form

< u, v >=

∫
Ω

N∑
i,j=1

∂2
iju∂

2
ijvdx, ∀u, v ∈ V (Ω). (2.1.21)

This is a scalar product on V (Ω) whose induced norm is equivalent to the standard
one. We denote by V(Ω) the space V (Ω) endowed with the scalar product defined
by (2.1.21). Then we can state the following
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Lemma 2.1.22. Let Ω be a domain in RN of finite measure and ρ ∈ R. The
operator Tρ := (∆2)−1 ◦ Jρ ◦ i is a compact selfadjoint operator in V(Ω), whose
eigenvalues coincide with the reciprocals of the eigenvalues of problem (2.1.16)
for all j ∈ N.

The proof of Lemma 2.1.22 is very similar to the proof of Lemma 2.1.4, hence
we omit it.

Theorem 2.1.23. Let Ω be a domain in RN of finite measure, ρ ∈ R. Then the
set Σ of the eigenvalues of (2.1.16) is contained in ]0,+∞[ and consists of the
image of a sequence increasing to +∞. Each eigenvalue has finite multiplicity.
The operator ∆2 has a Hilbert basis in V(Ω) which consists of eigenfunctions.

The proof of Theorem 2.1.23 is very similar to the proof of Theorem 2.1.5.
We represent the set Σ of the eigenvalues of (2.1.16) by means of an increasing

sequence

λ1[ρ] , λ2[ρ] , λ3[ρ] , . . . , λn[ρ] , . . .

where each eigenvalue is repeated accordingly its multiplicity.
We have the following variational representation of the eigenvalues.

Theorem 2.1.24. Let Ω be a domain in RN of finite measure and ρ ∈ R. Then
we have

i)

λ1[ρ] = inf
u∈V(Ω)
u6=0

∫
Ω
‖D2u‖2

dx∫
Ω
u2ρ dx

. (2.1.25)

The eigenfunctions corresponding to λ1[ρ] are exactly the minimizers in (2.1.25).

ii) For all j ∈ N

λj[ρ] = inf
E≤V(Ω)
dimE=j

sup
06=u∈E

∫
Ω
‖D2u‖2

dx∫
Ω
u2ρ dx

. (2.1.26)

Exactly as in the Dirichlet boundary conditions case, by this representation
we deduce the local Lipschitz-continuity of λj[ρ].

In the sequel we will denote by λDj [ρ] and by λIj [ρ] the eigenvalues of the
problems (2.1.2) and (2.1.16) respectively, by TDρ and T Iρ the respective resol-
vent operators and by HD(Ω) and HI(Ω) the Hilbert spaces H2

0(Ω) and V(Ω)
respectively.

Theorem 2.1.27. Let Ω be a domain in RN of finite measure and F a finite
nonempty subset of N \ {0}. Let

R(·)[F ] := {ρ ∈ R : λ
(·)
j [ρ] 6= λ

(·)
l [ρ] , ∀j ∈ F, l ∈ N \ F} ,

Θ(·)[F ] := {ρ ∈ R[F ] : λ
(·)
j1

[ρ] = λ
(·)
j2

[ρ] , ∀j1, j2 ∈ F},

where (·) stands for D or I. Then R(·)[F ] is an open subset of L∞(Ω) and the
symmetric functions of eigenvalues
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Λ
(·)
F,h[ρ] =

∑
j1,...,jh∈F
j1<···jh

λ
(·)
j1

[ρ] · · · λ(·)
jh

[ρ] , h = 1, . . . , |F | , (2.1.28)

are real analytic in R(·)[F ]. Moreover, if ρ ∈ Θ(·)[F ] and the eigenvalues λ
(·)
j [ρ]

assume the common value λ
(·)
F [ρ] for all j ∈ F , then the differential of Λ

(·)
F,h at ρ

is given by

dΛ
(·)
F,h[ρ][ρ̇] =

(
−λ(·)

F [ρ]
)h+1

(
|F | − 1

h− 1

)∑
l∈F

∫
Ω

(
u

(·)
l

)2

ρ̇ dx , (2.1.29)

for all ρ̇ ∈ L∞(Ω), where {u(·)
l } is an orthonormal basis for λ

(·)
F [ρ] in H(·)(Ω).

Proof. We write the proof in the case of Dirichlet boundary conditions. The
proof of the other case is essentially the same. First, we observe that the map
which takes ρ ∈ R to TDρ ∈ K(H2

0(Ω),H2
0(Ω)) is a bounded linear map, hence real

analytic. Then the map which takes ρ ∈ R to (〈·, ·〉H2
0(Ω), T

D
ρ ) ∈ Q(H2

0(Ω)2,R)×
K(H2

0(Ω),H2
0(Ω)) is real analytic. The operator TDρ is a compact selfadjoint

operator with respect to the scalar product 〈·, ·〉H2
0(Ω), and its eigenvalues, denoted

by µDj [ρ], coincide with the reciprocals of λDj [ρ]. Then the set RD[F ] coincides
with the set {ρ ∈ R : µDj [ρ] 6= µDl [ρ] , ∀j ∈ F, l ∈ N \ F}. The function
ρ 7→ (〈·, ·〉H2

0(Ω), T
D
ρ ) is an analytic map from R to

ODΩ :=
{

(Q, T ) ∈ Q(H2
0(Ω)2,R)×K(H2

0(Ω),H2
0(Ω)) :

Q(Tu, v) = Q(u, Tv) for all u, v ∈ H2
0(Ω)

}
,

and the set RD[F ] coincides with the set

{ρ ∈ R : (〈·, ·〉H2
0(Ω), T

D
ρ ) ∈ AD[F ]},

where AD[F ] is defined in (1.2.2), with H = H2
0(Ω). Since AD[F ] is open in ODΩ

(Theorem 1.2.1) and ρ 7→ (〈·, ·〉H2
0(Ω), T

D
ρ ) is a continuous map of R into ODΩ , it

follows that RD[F ] is open in L∞(Ω). By Theorem 1.2.8 it follows that the maps
which take ρ ∈ RD[F ] to

ΓDF,h[ρ] =
∑

j1,...,jh∈F
j1<···<jh

µDj1 [ρ] · · · µDjh [ρ] , (2.1.30)

are real analytic for all h = 1, ..., |F |. Now one can easily see that

ΛD
F,h[ρ] =

ΓDF,|F |−h[ρ]

ΓDF,|F |[ρ]
, (2.1.31)

for all h = 1, ..., |F |, where we have set ΓDF,0 := 1. Then the symmetric functions
of eigenvalues ΛD

F,h[ρ] are real analytic.
We now show formula (2.1.29). The function ΓDF,h[ρ] is given by the composition
of MF,h[T ] defined in Theorem 1.2.8 with the map which takes ρ ∈ RD[F ] to TDρ .
By standard calculus and Theorem 1.2.8 it follows

dΓDF,h[ρ][ρ̇] =

(
|F | − 1

h− 1

)(
λDF
[
ρ])1−h

|F |∑
l=1

〈dTDρ [ρ̇][uDl ], uDl 〉H2
0(Ω) , (2.1.32)
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for all ρ ∈ RD[F ], ρ̇ ∈ L∞(Ω).
We have

〈dTDρ [ρ̇][uDl ], uDl 〉H2
0(Ω) = ∆2[dTDρ [ρ̇][uDl ]][uDl ] = ∆2[(∆2)−1dJρ[ρ̇][uDl ]][uDl ]

= dJρ[ρ̇][uDl ][uDl ] =

∫
Ω

(
uDl
)2
ρ̇ dx , (2.1.33)

for all ρ̇ ∈ L∞(Ω), l ∈ F . Now by (2.1.31), (2.1.32) and (2.1.33), and by standard
calculus, it follows

dΛD
F,h[ρ][ρ̇] =

dΓDF,|F |−h[ρ][ρ̇]ΓDF,|F |[ρ]− ΓDF,|F |−h[ρ]dΓDF,|F |[ρ][ρ̇]

ΓD
F,|F |2 [ρ]

=

{(
|F | − 1

|F | − h− 1

)(
λDF [ρ]

)1−2|F |+h −
(
|F |
h

)(
λDF [ρ]

)h+1−2|F |
}

·
(
λDF [ρ]

)2|F |
|F |∑
l=1

〈dTDρ [ρ̇][uDl ], uDl 〉H2
0(Ω)

= −
(
λDF [ρ]

)h+1
(
|F | − 1

h− 1

) |F |∑
l=1

∫
Ω

(
uDl
)2
ρ̇ dx .

This concludes the proof.

Remark 2.1.34. We observe that if j ∈ F , then the restriction of λ
(·)
j [ρ] to

Θ(·)[F ] is a real analytic function, in fact λ
(·)
j [·] coincides on Θ(·)[F ] with the real

analytic function
Λ

(·)
F,1[·]
|F | .

2.2 Critical mass densities

In this section we show that there are no critical mass densities for the symmetric
functions of eigenvalues under fixed mass constraint.

We recall that the total mass of the set Ω with density ρ ∈ R is given by

M [ρ] =

∫
Ω

ρdx.

Definition 2.2.1. Let Ω be a domain in RN of finite measure and F a differen-
tiable real valued function defined on an open subset U of L∞(Ω). We say that
ρ ∈ U is a critical mass density for F under the constraint

M [ρ] = C (2.2.2)

provided that

Ker dM [ρ] ⊆ Ker dF [ρ]. (2.2.3)
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We observe that

d|ρ=ρ̃M [ρ][ρ̇] =

∫
Ω

ρ̇dx.

Moreover, for M ∈]0,+∞[ fixed the set R[M ] := {ρ ∈ R : M [ρ] = M} is a Ba-
nach manifold of codimension 1, since dM [ρ] is surjective.

As in the previous section, the symbol (·) stands for both D and I. By using
the Lagrange multipliers Theorem we can state the following

Theorem 2.2.4. Let Ω be a domain in RN of finite measure and F a finite
nonempty subset of N \ {0}. Then for all h = 1, ..., |F | there are no critical mass

densities for the map which takes ρ ∈ R(·)[F ] to Λ
(·)
F,h[ρ] under the constraint

(2.2.2).

Proof. Let ρ̃ ∈ R(·)[F ] be fixed. There exist an integer n ∈ N and a partition
{F1, ..., Fn} of F such that ρ̃ ∈ ∩nk=1Θ(·)[Fk]. The restrictions of the functions

λ
(·)
k [·] to Θ(·)[Fk] are real analytic. Thus there exists an open neighbourhood W

of ρ̃ in R(·)[F ] such that W ⊂ ∩nk=1R(·)[Fk]. Let h ∈ {1, ..., |F |}. We write the

function Λ
(·)
F,h in a more convenient way:

Λ
(·)
F,h[ρ] =

∑
0≤h1≤|F1|,...,0≤hn≤|Fn|

h1+···+hn=h

n∏
k=1

Λ
(·)
Fk,hk

[ρ] , (2.2.5)

for all ρ ∈ W . Let’s compute the differential of (2.2.5) at ρ̃. Thanks to formula

(2.1.29) we can write the differential for each Λ
(·)
Fk,hk

. We obtain

dΛ
(·)
F,h[ρ̃][ρ̇] =

∑
0≤h1≤|F1|,...,0≤hn≤|Fn|

h1+···+hn=h

 n∑
k=1

dΛ
(·)
Fk,hk

[ρ̃][ρ̇]
n∏
j=1
j 6=k

Λ
(·)
Fj ,hj

[ρ̃]


=

∑
0≤h1≤|F1|,...,0≤hn≤|Fn|

h1+···+hn=h

(
n∑
k=1

bhk

(
−
(
λ

(·)
Fk

[ρ̃]
)hk+1

)(
|Fk| − 1

hk − 1

)∑
l∈Fk

∫
Ω

(
u

(·)
l

)2

ρ̇ dx

)
,

where bhk =
∏n

j=1
j 6=k

Λ
(·)
Fj ,hj

[ρ̃], and {u(·)
l }l∈Fk is an orthonormal basis in H(·) of the

eigenspace corresponding to the eigenvalue λ
(·)
Fk

[ρ̃] and λ
(·)
Fk

[ρ̃] is the common value

of all eigenvalues in λ
(·)
j [ρ̃] with j ∈ Fk. It follows that

dΛ
(·)
F,h[ρ̃][ρ̇] = −

n∑
k=1

ck

∫
Ω

∑
l∈Fk

(
u

(·)
l

)2

ρ̇ dx = −
∫

Ω

(
n∑
k=1

ck
∑
l∈Fk

(
u

(·)
l

)2
)
ρ̇ dx ,

(2.2.6)
for all ρ̇ ∈ L∞(Ω) and suitable positive constants ck ∈ R, k = 1, ..., n. Suppose

now that ρ̃ is a critical mass density for Λ
(·)
F,h under the constraint (2.2.2). This

implies the existence of a Lagrange multiplier, i.e., there exists c ∈ R such that
dΛ

(·)
F,h[ρ̃] = −cdM [ρ̃], that is∫

Ω

(
n∑
k=1

ck
∑
l∈Fk

(
u

(·)
l

)2
)
ρ̇ dx = c

∫
Ω

ρ̇ dx ,
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for all ρ̇ ∈ L∞(Ω). Since ρ̇ is arbitrary, it follows(
n∑
k=1

ck
∑
l∈Fk

(
u

(·)
l

)2
)

= c , a.e. in Ω .

This equality implies c ≥ 0. Now if u
(·)
l ∈ H(·)(Ω), it is shown by a standard

approximation argument (cfr. [27]) that u(·) := (
∑n

k=1

∑
l∈Fk(
√
cku

(·)
l )

2
)1/2 is in

H(·)(Ω) and is equal a.e. on Ω to
√
c. Then ∇u(·) = 0 a.e. on Ω, and by Poincaré

inequality we get c = 0, hence u
(·)
l = 0 for all l ∈ F . This is a contradiction.

Corollary 2.2.7. Let Ω be a domain in RN of finite measure and F a finite
nonempty subset of N \ {0}. Let M > 0 and LM := {ρ ∈ L∞(Ω) :

∫
Ω
ρdx = M}.

Then for all h = 1, ..., |F | the real valued function which takes ρ ∈ R(·)[F ] ∩ LM
to Λ

(·)
F,h[ρ] has no local maxima or minima.

We now show a continuity result for the eigenvalues with respect to the weak∗

topology of L∞(Ω). The proof is based on the argument of [8].

Proposition 2.2.8. Let Ω be a domain in RN of finite measure and C ⊂ L∞(Ω)
a weakly∗ compact subset of L∞(Ω) such that infρ∈C ess infx∈Ω ρ(x) > 0. Then

the functions which take ρ ∈ C to λ
(·)
j [ρ] are continuous in the weak∗ topology of

L∞(Ω).

Proof. It is enough to prove that if {ρn} is a sequence in C converging to ρ in

the weak∗ topology of L∞(Ω), then the sequence {λ(·)
j [ρn]} converges to λ

(·)
j [ρ].

By Banach-Steinhaus Theorem it follows that C is bounded in L∞(Ω). Let α :=
infρ∈C ess infx∈Ω ρ(x) > 0 and β := supρ∈C ess supx∈Ω ρ(x) < +∞. Thus, for all

ρ ∈ C we have α ≤ ρ(x) ≤ β a.e. in Ω. We denote λ
(·)
j [ρn] = λ

(·),n
j and by u

(·),n
j the

respective eigenfunctions, normalized by
∫

Ω
ρnu

(·),n
i u

(·),n
j dx = δij. By the min-max

principles (2.1.8) and (2.1.26) it follows that λ
(·)
j [β] ≤ λ

(·),n
j ≤ λ

(·)
j [α] for all n ∈ N.

Since
∥∥∥∆2uD,nj

∥∥∥2

L2(Ω)
= λD,nj and

∥∥∥D2uI,nj

∥∥∥2

L2(Ω)
= λI,nj , we get that the sequence

{u(·),n
j } is bounded in h(·)(Ω) for all j ∈ N. By possibly passing to subsequences,

we can directly assume that there exist λ̄
(·)
j ∈ R and ū

(·)
j ∈ H(·) such that for

all j ∈ N the sequence {λ(·),n
j }n∈N converges to λ̄

(·)
j , and the sequence {u(·),n

j }n∈N
weakly converges to ū

(·)
j . Since H(·)(Ω) ⊂ H1

0 (Ω) the sequence {u(·),n
j }n∈N is

strongly convergent in L2(Ω). By the fact that 0 < λ
(·),n
1 ≤ λ

(·),n
2 ≤ · · ·, we get

0 < λ̄
(·)
1 ≤ λ̄

(·)
2 ≤ · · ·. It is now easy to see that

lim
n→∞

∫
Ω

∆uD,nj ∆φ− λD,nj ρnu
D,n
j φdx =

∫
Ω

∆ūDj ∆φ− λ̄Dj ρūDj φdx, (2.2.9)

for all φ ∈ HD(Ω), and

lim
n→∞

∫
Ω

N∑
l,m=1

∂2
lmu

I,n
j ∂2

lmφ− λ
I,n
j ρnu

I,n
j φdx =

∫
Ω

N∑
l,m=1

∂2
lmū

I
j∂

2
lmφ− λ̄IjρūIjφdx,

(2.2.10)
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for all φ ∈ HI(Ω). Moreover it can be easily seen that

lim
n→∞

∫
Ω

ρnu
(·),n
i u

(·),n
j dx =

∫
Ω

ρū
(·)
i ū

(·)
j dx = δij. (2.2.11)

By (2.2.9), (2.2.10) and (2.2.11) it follows that {λ̄(·)
j } ⊆ {λ

(·)
j [ρ]}. Next we observe

that
lim
n→∞

∥∥∥∆uD,nj

∥∥∥
L2(Ω)

= lim
n→∞

(λD,nj )
1
2 = (λ̄D,nj )

1
2 =

∥∥∆ūDj
∥∥
L2(Ω)

and
lim
n→∞

∥∥∥D2uI,nj

∥∥∥
L2(Ω)

= lim
n→∞

(λI,nj )
1
2 = (λ̄I,nj )

1
2 =

∥∥D2ūIj
∥∥
L2(Ω)

.

We need to show that {λ(·)
j [ρ]} ⊆ {λ̄(·)

j }. Suppose that there exists λ̄(·) ∈
{λ(·)

j [ρ]} \ {λ̄(·)
j }, and ū(·) a non trivial element of the eigenspace associated with

λ̄(·). Then for all j ∈ N we have
∫

Ω
ρū(·)ū

(·)
j dx = 0. Let ū(·) be normalized by(∫

Ω
ρ(ū(·))2dx

) 1
2 = (λ̄(·))−1. For ρ ∈ R we define A(·)

j (ρ, u) by

ADj (ρ, u) :=
1

2
‖∆u‖2

L2(Ω) −
(∫

Ω

ρ ((I− Pj−1[ρ])u)2 dx

) 1
2

,

AIj (ρ, u) :=
1

2

∥∥D2u
∥∥2

L2(Ω)
−
(∫

Ω

ρ ((I− Pj−1[ρ])u)2 dx

) 1
2

,

for all j ∈ N, u ∈ H(·)(Ω) where

Pj[ρ]u :=

j∑
i=1

(∫
Ω

ρuuidx

)
ui.

We need to invoke the following variational representation for the eigenvalues of
problems (2.1.2) and (2.1.16):

−1

2λ
(·)
j [ρ]

= inf
u∈h(·)(Ω)

A(·)
j (ρ, u), (2.2.12)

see [3, pp.55-71]. By (2.2.12) it follows that

−1

2λ
(·),n
j

≤ A(·)
j (ρn, ū

(·)). (2.2.13)

Furthermore, we observe that

lim
n→∞

Pj−1[ρn]ū(·) = lim
n→∞

j−1∑
k=1

(∫
Ω

ρnū
(·)u

(·),n
k dx

)
u

(·),n
k

=

j−1∑
k=1

(∫
Ω

ρū(·)ū
(·)
k dx

)
u

(·),n
k = 0

in L2(Ω). Then an easy computation shows that

lim
n→∞

A(·)
j (ρn, ū

(·)) =
−1

2λ̄(·) .
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Now let n→∞ in (2.2.13). We find

−1

2λ̄
(·)
j

≤ −1

2λ̄(·)

for all j ∈ N. But this is a contradiction since {λ̄(·)
j } is not bounded from above.

Then {λ̄(·)
j } = {λ(·)

j [ρ]}. This concludes the proof.

Finally we can prove the following

Theorem 2.2.14. Let Ω be a domain in RN of finite measure and F a finite
nonempty subset of N\{0}. Let C ⊆ R(·)[F ] a weakly∗ compact subset of L∞(Ω)
such that infρ∈C ess infx∈Ω ρ(x) > 0. Let M > 0 and LM defined as in Corollary

2.2.7 . Then for all h = 1, ..., |F | the function which takes ρ ∈ C ∩LM to Λ
(·)
F,h[ρ]

admits points of maximum and minimum in C ∩ LM , and such points belong to
∂C ∩ LM .

Proof. Since the functions which take ρ ∈ C∩LM to λ
(·)
j [ρ] are weakly∗ continuous

in L∞(Ω) and C ∩ LM is weakly∗ compact, then the functions Λ
(·)
F,h[ρ], which are

composed by sums and products of the λ
(·)
j [ρ], admit points of maximum and

minimum in C ∩ LM , but by (2.2.7) they cannot be in the interior of C, hence
they belong to ∂C ∩ LM .

Our aim is now to extend the results proved in [8, 9, Cox-McLaughlin] to our
case. We fix a class of weakly∗ compact and convex subsets of L∞(Ω) and we
show that in certain cases, the minimizers and maximizers of the eigenfunctions
(that exist by Theorem 2.2.14) are extreme points of such sets (the so-called ‘bang
bang’ controls). Let then Ω be a domain in RN of finite measure |Ω|. Let α, β,M
be such that 0 < α < M

|Ω| < β (if one of the last two inequality were an equality,

the problem would not be of interest). Let γ := M−|Ω|β
α−β .

Definition 2.2.15. We define the subset adγ of L∞(Ω) as

adγ := {ρ ∈ L∞(Ω) : ρ = αχ+ β(1− χ), χ ⊂ Ω measurable, |χ| = γ}

Proposition 2.2.16. The weak∗ closure of adγ is the convex weak∗ compact set

ad∗γ :=

{
ρ ∈ L∞(Ω) : α ≤ ρ(x) ≤ β a.e. in Ω,

∫
Ω

ρdx = M

}
.

Recall that v ∈ K is an extreme point of a convex set K if K \ {v} is convex.

Proposition 2.2.17. The set of extreme points of ad∗γ is exactly adγ.

For proofs of the previous statements we refer to [8].

In general, for both Dirichlet and intermediate boundary conditions the first
eigenfunction may change sign. However for the ball we have the following

Theorem 2.2.18. If Ω = B ⊂ RN , the open unit ball, then the first eigenvalue
of (2.1.2) is simple and the correspondig eigenfunction does not change sign in
Ω.
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We refer to [14, Thm. 3.7] for the proof. There are other cases in which the
structure of the domain yelds positivity of first eigenfuncion, eg., in R2 ellipses
with small eccentricity and annuli with a sufficiently big inner radius (cfr. [14]).
In the remaining part of this subsection we treat the case of Dirichlet boundary
conditions.

First of all, by Theorem 2.2.4 in the case of the ball, we get the following

Corollary 2.2.19. Let Ω = B ⊂ RN . Then there are no critical mass densities
in R for the function which takes ρ → λ1[ρ] under the fixed mass constraint
(2.2.2).

Proof. We set F = {1} in the Theorem 2.2.4. It is evident thatR[F ] = Θ[F ] = R.
Then the proof of the corollary follows immediately by Theorem 2.2.4.

Thanks to Proposition 2.2.8 we get for j ∈ N the existence of ρ̌j, ρ̂j, in ad∗γ
such that

λ̌j := λj[ρ̌j] = inf
ρ∈ad∗γ

λj[ρ],

λ̂j := λj[ρ̂j] = sup
ρ∈ad∗γ

λj[ρ].

Moreover, we have the following

Proposition 2.2.20. Let Ω = B ⊂ RN , ρ ∈ R. Then we have

i) the minimizer ρ̌1 may be chosen from adγ;

ii) the maximizer ρ̂1 belongs to adγ and it is unique.

The proof of the previous proposition can be carried out by using exactly the
same argument of [9, Corol. 6.2 (i), Prop.7.10]

2.3 Extension to poly-harmonic operators. Critical mass densities

As in the previous section, we consider a domain Ω in RN of finite measure and
a density ρ ∈ R.

We first consider the case of Dirichlet boudary condition, namely:{
(−∆)nu = λρu, in Ω ,

u = ∂u
∂ν

= ... = ∂n−1u
∂νn−1 = 0, on ∂Ω ,

(2.3.1)

for n > 2. We recall that the case n = 1 has been studied in [19], while the case
n = 2 has been treated in the previous section. The weak formulation of problem
(2.3.1) is: ∫

Ω

DnuDnφdx = λ

∫
Ω

ρuφdx, ∀φ ∈ Hn
0 (Ω), (2.3.2)

in the unknowns u ∈ Hn
0 (Ω), λ ∈ R, where

Dnu =

{
∇∆mu, if n = 2m+ 1

∆mu, if n = 2m.
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First we consider the poly-harmonic operator (−∆)n as a map from Hn
0 (Ω) to

(Hn
0 (Ω))′ defined by

(−∆)n[u][φ] =

∫
Ω

DnuDnφdx, ∀φ ∈ Hn
0 (Ω). (2.3.3)

As in the case of the biharmonic operator with Dirichlet boundary conditions,
it is easy to see that (−∆)n is a linear homeomorphism between Hn

0 (Ω) and
(Hn

0 (Ω))′. We denote by in the canonical (continuous) embedding of Hn
0 (Ω) into

L2(Ω), which is compact by (1.1.14), and by Jn,ρ the continuous embedding of
L2(Ω) into (Hn

0 (Ω))′, defined by

Jn,ρ[u][φ] =

∫
Ω

ρuφdx ∀u ∈ L2(Ω), φ ∈ Hn
0 (Ω).

In this way, problem (2.3.2) is equivalent to the following one:

((−∆)n)−1 ◦ Jn,ρ ◦ inu = λ−1u, (2.3.4)

in the unknowns u ∈ Hn
0 (Ω), λ ∈ R. Finally, we observe that on Hn

0 (Ω) the
bilinear form

< u, v >=

∫
Ω

DnuDmvdx, ∀u, v ∈ Hn
0 (Ω), (2.3.5)

defines a scalar product whose induced norm is equivalent to the standard one.
We denote by Hn

0 (Ω) the space Hn
0 (Ω) endowed with this norm. Then we can

state the following

Theorem 2.3.6. Let n > 2, Ω be a domain in RN of finite measure and ρ ∈ R.
Then the following facts hold:

i) The operator Tn,ρ := ((−∆)n)−1 ◦ Jn,ρ ◦ in is a compact selfadjoint operator
in Hn

0 (Ω), whose eigenvalues coincide with the reciprocals of the eigenvalues
of (2.3.2).

ii) The set Σn of the eigenvalues of (2.3.2) is contained in ]0,+∞[ and it con-
sists of the image of a sequence increasing to +∞. Each eigenvalue has
finite multiplicity. Moreover, (−∆)n has a Hilbert basis in Hn

0 (Ω) of eigen-
functions.

Next we treat the case of intermediate boundary conditions. Let n > 2 and
n
2
≤ k ≤ n if n is even, n+1

2
≤ k ≤ n if n is odd. The classical formulation of the

problem is:
(−∆)nu = λρu, in Ω ,

u = ∂u
∂ν

= ... = ∂k−1u
∂νk−1 = 0, on ∂Ω ,

Bk(x;D)u = Bk+1(x;D)u = ... = Bn−1(x;D)u = 0, on ∂Ω ,

(2.3.7)

where Bj(x;D), j = k, k+ 1, ..., n− 1, are suitable linear differential operators of
order mj, corresponding to weak problem∫

Ω

N∑
i1,...,in=1

∂nu

∂xi1 · · · ∂xin
∂nφ

∂xi1 · · · ∂xin
dx = λ

∫
Ω

ρuφdx, ∀φ ∈ Hn(Ω) ∩Hk
0 (Ω),

(2.3.8)
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in the unknowns u ∈ Hn(Ω) ∩Hk
0 (Ω), λ ∈ R.

From now on, we will denote the space Hn(Ω) ∩ Hk
0 (Ω) by Vn(Ω). We first

consider the polyharmonic operator (−∆)n as a map from Vn(Ω) to (Vn(Ω))′

defined by

(−∆)n[u][φ] =

∫
Ω

N∑
i1,...,in=1

∂nu

∂xi1 · · · ∂xin
∂nφ

∂xi1 · · · ∂xin
dx, ∀φ ∈ Vn(Ω). (2.3.9)

This is a linear homeomorphism between Vn(Ω) and its dual. This is a conse-
quence of the fact that there exists C > 0 such that

‖u‖L2(Ω) ≤ C ‖Dnu‖L2(Ω) , (2.3.10)

where

Dnu :=

(
N∑

i1,...,in=1

(
∂nu

∂xi1 , · · ·∂xin

)2
) 1

2

.

In fact an integration by parts yields∫
Ω

∂ni,...,iuudx = (−1)m
∫

Ω

(
∂mi,...,iu

)2
dx, if n = 2m,∫

Ω

∂ni,...,iu ∂iudx = (−1)m−1

∫
Ω

(
∂mi,...,iu

)2
dx, if n = 2m− 1,

for all u ∈ Vn(Ω). Then, taking the modulus of both terms, we gain∫
Ω

(
∂mi,...,iu

)2
dx ≤

∥∥∂ni,...,iu∥∥L2(Ω)
‖u‖L2(Ω) , if n = 2m, (2.3.11)∫

Ω

(
∂mi,...,iu

)2
dx ≤

∥∥∂ni,...,iu∥∥L2(Ω)
‖∂iu‖L2(Ω) , if n = 2m− 1. (2.3.12)

Summing over i and by applying the Poincaré inequality to the left hand side of

(2.3.11) and (2.3.12) respectively, since Hn(Ω) ∩ Hk
0 (Ω) ⊂ Hn(Ω) ∩ H

n
2

0 (Ω) for
n
2
≤ k ≤ n if n is even, Hn(Ω) ∩Hk

0 (Ω) ⊂ Hn(Ω) ∩H
n+1

2
0 (Ω) for n+1

2
≤ k ≤ n if

n odd, we obtain that there exist C > 0 such that

‖u‖2
L2(Ω) ≤ C ‖u‖L2(Ω) ‖D

nu‖L2(Ω) , if n = 2m,

‖∇u‖2
L2(Ω) ≤ C ‖∇u‖L2(Ω) ‖D

nu‖L2(Ω) , if n = 2m− 1,

respectively. In the second inequality we divide by ‖∇u‖L2(Ω) and use again
Poincaré inequality. Now the proof of (2.3.10) is straightforward. Then we have
the coercivity of (−∆)n. The continuity is clear.

Next, we denote by in the canonical (compact) embedding of Vn(Ω) into L2(Ω),
and by Jn,ρ the continuous embedding of L2(Ω) into (Vn(Ω))′ defined by

Jn,ρ[u][φ] =

∫
Ω

ρuφdx, ∀φ ∈ Vn(Ω).

Finally, we observe that the bilinear form

< u, v >=

∫
Ω

N∑
i1,...,in=1

∂nu

∂xi1 · · · ∂xin
∂nv

∂xi1 · · · ∂xin
dx (2.3.13)
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defines on Vn(Ω) a scalar product whose induced norm is equivalent to the stan-
dard one. We will denote by Vn(Ω) the space Vn(Ω) endowed with this norm.
Then we can state the following

Theorem 2.3.14. Let n > 2, Ω be a domain in RN of finite measure, ρ ∈ R.
Then the following facts hold:

i) The operator Tn,ρ := ((−∆)n)−1 ◦ Jn,ρ ◦ in is a compact selfadjoint operator
in Vn(Ω), whose eigenvalues coincide with the reciprocals of the eigenvalues
of (2.3.8).

ii) The set Σn of the eigenvalues of (2.3.8) is contained in ]0,+∞[ and consists
of the image of a sequence increasing to +∞. Each eigenvalue has finite
multiplicity. Moreover, (−∆)n has a Hilbert basis in Vn(Ω) of eigenfunctions.

We represent the set ΣD
n of the eigenvalues of problems (2.3.2) by means of a

sequence

0 < λDn,1[ρ] ≤ λDn,2[ρ], ..., λDn,j[ρ], ...

and the set ΣI
n of the eigenvalues of problems (2.3.8) by means of a sequence

0 < λIn,1[ρ] ≤ λIn,2[ρ], ..., λIn,j[ρ], ...

where each eigenvalue is repeated accordingly to its multiplicity. We denote
HD
n (Ω) := Hn

0 (Ω), HI
n(Ω) := Vn(Ω), by (−∆)nD the operator defined in (2.3.3)

and by (−∆)nI the operator defined in (2.3.9). We have the following variational
representation of the eigenvalues

Theorem 2.3.15. Let Ω be a domain in RN of finite measure and ρ ∈ R. Then
we have

i)

λ
(·)
n,1[ρ] = inf

u∈H(·)
n (Ω)

u6=0

(−∆)n(·)[u][u]∫
Ω
u2ρ dx

. (2.3.16)

The eigenfunctions corresponding to λ
(·)
1 [ρ] are exactly the minimizers in

(2.3.16).

ii) For all j ∈ N

λ
(·)
n,j[ρ] = inf

E≤H(·)
n (Ω)

dimE=j

sup
0 6=u∈E

(−∆)n(·)[u][u]∫
Ω
u2ρ dx

, (2.3.17)

where (·) stands for D or I.

Exactly as in the case n = 2 this representation yields the local Lipschitz
continuity of the functions ρ→ λ

(·)
n,j[ρ] in ρ ∈ R.

Now, in the same way as for the case n = 2 we can compute the derivatives
of symmetric functions of eigenvalues. In fact by the same arguments used in the
proof of Theorem 2.1.27 one can prove the following
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Theorem 2.3.18. Let Ω be a domain in RN of finite measure, F a nonempty
finite subset of N \ {0} and let

R(·)
n [F ] := {ρ ∈ R : λ

(·)
n,j[ρ] 6= λ

(·)
n,l[ρ] , ∀j ∈ F, l ∈ N \ F} ,

Θ(·)
n [F ] := {ρ ∈ R(·)

n [F ] : λ
(·)
n,j1

[ρ] = λ
(·)
n,j2

[ρ] , ∀j1, j2 ∈ F}.

Then R(·)
n [F ] is open in L∞(Ω) and the symmetric functions of the eigenvalues

Λ
(·)
n,F,h[ρ] =

∑
j1,...,jh∈F
j1<···jh

λ
(·)
n,j1

[ρ] · · · λ(·)
n,jh

[ρ] , h = 1, . . . , |F | (2.3.19)

are real analytic in R(·)
n [F ]. Moreover, if ρ ∈ Θ

(·)
n [F ] and the eigenvalues λ

(·)
n,j[ρ]

assume the common value λ
(·)
n,F [ρ] for all j ∈ F , then the differential of Λ

(·)
n,F,h at

ρ is given by the formula

dΛ
(·)
n,F,h[ρ][ρ̇] =

(
−λ(·)

n,F [ρ]
)h+1

(
|F | − 1

h− 1

)∑
l∈F

∫
Ω

(u
(·)
n,l)

2ρ̇ dx , (2.3.20)

for all ρ̇ ∈ L∞(Ω), where {u(·)
n,l} is an orthonormal basis for λ

(·)
n,F [ρ] in H(·)

n (Ω).

We can say now that there aren’t critical mass densities for the symmetric
functions of the eigenvalues under mass constraint. In fact, since H(·)

n (Ω) ⊂
H1

0 (Ω), the same argument used in the proof of Theorem 2.2.4 holds. We can
state then the following

Theorem 2.3.21. Let Ω be a domain in RN of finite measure and F a nonempty
finite subset of N \ {0}. Then for all h = 1, ..., |F | the function which takes ρ ∈
R(·)
n [F ] to Λ

(·)
n,F,h[ρ] has no critical mass densities in R(·)

n [F ] under the constraint
(2.2.2).

It follows immediately

Corollary 2.3.22. Let Ω be a domain in RN of finite measure and F a nonempty
finite subset of N\{0}. Let M > 0 and LM := {ρ ∈ L∞(Ω) :

∫
Ω
ρdx = M}. Then

for all h = 1, ..., |F | the function which takes ρ ∈ R(·)
n [F ]∩LM to Λ

(·)
n,F,h[ρ] has no

local maxima or minima.

Now we can state the following

Theorem 2.3.23. Let Ω be a domain in RN of finite measure and F a nonempty
finite subset of N \ {0}. Let Cn ⊆ R(·)

n [F ] a weakly* compact set in L∞(Ω) such
that infρ∈Cn ess infx∈Ωρ(x) > 0. Let M > 0 and LM defined as in Corollary 2.3.22.

Then for all h = 1, ..., |F | the function which takes ρ ∈ Cn ∩LM to Λ
(·)
n,F,h admits

points of maximum and minimum, and such points belong to ∂Cn ∩ LM .

Proof. One can prove by the same arguments of Proposition 2.2.8 the continuity
of the eigenvalues with respect to the weak* topology of L∞(Ω). The remaining
part of the proof is equal to that of Theorem 2.2.14.

Finally, see [14, 8, 9], we have
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Theorem 2.3.24. If Ω ⊂ RN is the unit open ball, then the first eigenvalue of
(2.3.2)is simple and the correspondig eigenfunction is of one sign. Moreover, the
following statements hold:

i) there are no critical mass densities in R for the function ρ → λDn,1[ρ] under
the fixed mass constraint (2.2.2);

ii) there exist minimizers and maximizers for the functions ρ→ λDn,1[ρ] in the set
ad∗γ defined in (2.2.16), and such minimizers and maximizers can be chosen
in the set adγ.

2.4 The mixed Neumann-Dirichlet problem for the laplacian

In this section we extend the results of the previous sections to a mixed Neumann-
Dirichlet problem. From now on it is understood that Ω is a bounded domain in
RN of class C1. We consider two nonempty open parts of the boundary, namely
Γ0 and Γ1, which consist of a finite number of connected components and which
satisfy

∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, (2.4.1)

where Γ0 and Γ1 denote the closure in ∂Ω of Γ0 and Γ1 respectively. We consider
then the following problem, for ρ ∈ R

−∆u = λρu, in Ω ,
u = 0, on Γ0 ,
∂u
∂ν

= 0, on Γ1 ,
(2.4.2)

in the unknowns u ∈ C2(Ω) ∩ C1(Ω̄), λ ∈ R. This problem models a vibrating
membrane which has a fixed part of his frame, while the remaining part is free.
As for the case studied in [19], we have the following weak formulation of the
problem ∫

Ω

∇u · ∇φdx = λ

∫
Ω

ρuφdx, ∀φ ∈ H1
0,Γ0

(Ω), (2.4.3)

in the unknowns u ∈ H1
0,Γ0

(Ω), λ ∈ R, where

H1
0,Γ0

(Ω) =
{
u ∈ H1(Ω) : u = 0 on Γ0 in the sense of traces

}
.

Remark 2.4.4. One can show that the space

C∞c,Γ0
(Ω̄) =

{
u ∈ C∞(Ω̄) : u = 0 in a neighbourhood of Γ0

}
is dense in H1

0,Γ0
(Ω), see [4].

Now by a standard argument it is easy to prove the following

Proposition 2.4.5. Let Ω be a bounded domain in RN of class C1. Let Γ0 and
Γ1 be defined as in (2.4.1). Then there exists C > 0 such that for all u ∈ H1

0,Γ0
(Ω)

‖u‖L2(Ω) ≤ C ‖∇u‖L2(Ω) . (2.4.6)
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Proof. We note that in order to prove (2.4.6) it is sufficient to prove ‖u‖H1(Ω) ≤
C ‖∇u‖L2(Ω). Assume by contradiction that there exists a sequence {um} such

that for all m ∈ N we have 1
m
‖um‖H1(Ω) > ‖∇um‖L2(Ω). Let vm = um

‖um‖H1(Ω)
. Then

we get ‖vm‖H1(Ω) = 1 and 1
m
> ‖∇vm‖L2(Ω) for all m ∈ N. The sequence {vm} is

bounded in H1(Ω), and by the compactness of the embedding H1(Ω) ⊂  L2(Ω),
there exists subsequence, denoted again vm, converging to a certain v strongly in
L2(Ω), weakly in H1(Ω). Since ‖∇vm‖L2(Ω) → 0, and ∇vm ⇀ ∇v in the sense of
distributions, then by the uniqueness of the limit, ∇v = 0. Then v is constant.
Since v vanishes on a part of the boundary, then it is identically zero on Ω. Since
‖v‖H1(Ω) = 1, we have a contradiction.

We consider the operator −∆ from H1
0,Γ0

(Ω) to (H1
0,Γ0

(Ω))′ defined by

−∆[u][φ] =

∫
Ω

∇u · ∇φ, ∀φ ∈ H1
0,Γ0

(Ω).

The operator −∆ turns out to be a linear homeomorphism by Proposition 2.4.5.
Moreover, we consider the canonical compact embedding i of H1

0,Γ0
(Ω) into L2(Ω)

and the continuous embedding Jρ of L2(Ω) into (H1
0,Γ0

(Ω))′ defined by

Jρ[u][φ] =

∫
Ω

ρuφ, ∀φ ∈ H1
0,Γ0

(Ω).

Then the operator Tρ = (−∆)−1 ◦ Jρ ◦ i is a compact selfadjoint operator in
H1

0,Γ0
(Ω), which is the space H1

0,Γ0
(Ω) endowed with the equivalent scalar product

< u, v >H1
0,Γ0

(Ω)=

∫
Ω

∇u · ∇vdx, ∀u, v ∈ H1
0,Γ0

(Ω).

The eigenvalues µj[ρ] of Tρ coincide with the reciprocals of the eigenvalues λj[ρ]
of (2.4.3), which consist of the image of a positive sequence increasing to +∞.
As usual, we have the following variational representation of eigenvalues

λj[ρ] = inf
E≤H1

0,Γ0
(Ω)

dimE=j

sup
06=u∈E

∫
Ω
|∇u|2 dx∫

Ω
u2ρ dx

, ∀j ∈ N. (2.4.7)

Exactly as in the case of the Dirichlet Laplacian, the first eigenfunction is
simple and does not change sign. In fact, if v ≥ 0 (v ≤ 0) is a solution of (2.4.3),
then the strong maximum (minimum) principle yields v > 0 (v < 0) in Ω. If we
set B(u, v) =

∫
Ω
∇u · ∇vdx for u, v ∈ H1

0,Γ0
(Ω), and we take a first eigenfunction

u of (2.4.3) normalized by
∫

Ω
u2ρdx = 1, then we have λ1[ρ] = B(u, u). Let

u+ = max{u, 0}, u− = −min{−u, 0}, which are still in H1
0,Γ0

, and suppose that
u+, u− 6= 0. We get

B(u, u) = B(u+ − u−, u+ − u−) = B(u+, u+) + B(u−, u−).

By (2.4.7) it follows that

λ1[ρ] ≤ B(u+, u+)∫
Ω

(u+)2ρdx
, λ1[ρ] ≤ B(u−, u−)∫

Ω
(u−)2ρdx

.
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This implies that B(u+, u+) + B(u−, u−) = λ1[ρ]
(∫

Ω
((u+)2 + (u−)2) ρdx

)
. But

now this implies |u| > 0 since |u| is a minimizer in the Rayleigh quotient, a con-
tradiction. The simplicity is an immediate consequence of the constancy of the
sign.

Again, the variational representation (2.4.7) yields local Lipschitz-continuity
of the eigenvalues with respect to the variable ρ. As in the previous sections, for
∅ 6= F ⊂ N finite we set

R[F ] := {ρ ∈ R : λj[ρ] 6= λl[ρ] , ∀j ∈ F, l ∈ N \ F} ,
Θ[F ] := {ρ ∈ R[F ] : λj1 [ρ] = λj2 [ρ] , ∀j1, j2 ∈ F}.

Let

ΛF,h[ρ] =
∑

j1,...,jh∈F
j1<···jh

λj1 [ρ] · · · λjh [ρ] , h = 1, . . . , |F | .

the symmetric functions of eigenvalues. Then we can state the following

Theorem 2.4.8. Let Ω be a bounded domain in RN of class C1, F a nonempty
finite subset of N \ {0}. Then for all h = 1, ..., |F | the function which takes
ρ ∈ R[F ] to ΛF,h[ρ] is real analytic in R[F ], and has no critical mass densities
in R[F ] under mass constraint (2.2.2).

Proof. Exactly as in the proof of Theorem 2.1.27 one can show that ΛF,h are
real analytic in R[F ] and compute formulas for their derivatives. Then, by using
these formulas as in the proof of Theorem 2.2.4, one gets that if ρ̃ is a critical
mass density for ΛF,h, then there exist n ∈ N, a partition {F1, ..., Fn} of F and

real numbers ck, c ≥ 0 such that
(∑n

k=1 ck
∑

j∈Fk u
2
j

)
= c a.e. in Ω, where

{uj}j∈Fk is a certain orthonormal set in H1
0,Γ0

of eigenfunctions of (2.4.3). Since

ũ :=
(∑n

k=1

∑
j∈Fk(

√
ckuj)

2
) 1

2
=
√
c and ũ ∈ H1

0,Γ0
then c = 0, hence uj = 0 in

Ω for all j, a contradiction.

Corollary 2.4.9. Let Ω a bounded domain in RN of class C1. Then there are
no critical mass densities in R for the function which takes ρ ∈ R to λ1[ρ] under
the mass constraint (2.2.2).

As a consequence of Theorem 2.4.8, we have

Theorem 2.4.10. Let Ω be a bounded domain in RN of class C1 and F a
nonempty finite subset of N \ {0}. Let C ⊆ R[F ] be a weakly* compact sub-
set of L∞(Ω) such that infρ∈C ess infΩ ρ > 0. Let M > 0 and LM = {ρ ∈ L∞(Ω) :∫

Ω
ρ = M}. Then for all h = 1, ..., |F | the function which takes ρ ∈ C ∩ LM

to ΛF,h[ρ] admits points of maximum and minimum, and such points belong to
∂C ∩ LM .

By looking at the structure of this problem, we observed that the results of
[8, 9, Cox-Mc.Laughlin] can be immediately extended to our case. Let M > 0
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fixed, adγ, ad
∗
γ defined as in (2.2.15) and (2.2.16). Since ad∗γ is convex and weakly*

compact in L∞(Ω), we get the existence of ρ̌j, ρ̂j in ad∗γ such that

λ̌j := λj[ρ̌j] = inf
ρ∈ad∗γ

λj[ρ],

λ̂j := λj[ρ̂j] = sup
ρ∈ad∗γ

λj[ρ].

We can give a characterization of such extremizers. We state the following results.

Proposition 2.4.11. Let Ω a bounded domain in RN of class C1, ρ ∈ R. Then

i) ρ̌1 can be chosen from adγ;

ii) if Ω is of class C2, then ρ̌1 is uniquely determined and belongs to adγ;

iii) for j > 1, if Ω is of class C2 and there exists u in the eigenspace corresponging
to λ̌j with exactly j nodal domains, then ρ̌j can be chosen from adγ;

iv) ρ̂1 ∈ adγ and is unique.

We don’t repeat here the proofs of the previous statements. This case is
identical to the one of Dirichlet boundary conditions, and it is studied in detail
in [9].

Remark 2.4.12. It is now straightforward that the considerations made for this
problem immediately extend to the case of the biharmonic operator with Dirichlet
(intermediate) boundary conditions on Γ0, and Neumann boundary conditions
on Γ1 and also to poly-harmonic operators (−∆)n with Dirichlet (intermediate)
boundary conditions on Γ0 and Neumann boundary conditions on Γ1, when Γ0

and Γ1 satisfy (2.4.1). The problem to consider is (2.3.2) ((2.3.8)) in the space

Hn
0,Γ0

(Ω) = {u ∈ Hn(Ω) : Dαu = 0 on Γ0 ∀ |α| ≤ n− 1 , in the sense of traces} ,

(Hn(Ω) ∩ Hm
0,Γ0

(Ω), where n+1
2
≤ m ≤ n if n odd, n

2
≤ m ≤ n if n even), en-

dowed with the equivalent scalar product (2.3.5) ((2.3.13)). Then, the symmetric
functions of eigenvalues of this class of problems have no critical points under the
fixed mass constraint (2.2.2), and their restrictions to weakly* compact set in R
admit points of maximum and minimum, and such points have to belong to the
boundary of such sets.



3. THE NEUMANN PROBLEM FOR THE LAPLACE
OPERATOR

Throughout this chapter Ω is a bounded domain in RN of class C1, ρ ∈ R.
The classic formulation of the eigenvalue problem for the Laplace operator with
Neumann boundary conditions is{

−∆u = λρu, in Ω ,
∂u
∂ν

= 0, on ∂Ω ,
(3.0.1)

in the unknowns u ∈ C2(Ω)∩C1(Ω̄), λ ∈ R. This problem models a free vibrating
membrane of mass density ρ. We will consider the weak formulation of problem
(3.0.1) ∫

Ω

∇u · ∇φdx = λ

∫
Ω

ρuφdx , ∀φ ∈ H1(Ω) , (3.0.2)

in the unknowns u ∈ H1(Ω), λ ∈ R. Actually, we will obtain a problem
in (H1(Ω)/R) since we need to get rid of the constants, which generate the
eigenspace corresponding to the eigenvalue λ = 0. We denote by i the canonical
(compact) embedding of H1(Ω) into L2(Ω). We denote by Jρ the continuous
embedding of L2(Ω) into (H1(Ω))′, defined by

Jρ[u][φ] :=

∫
Ω

ρuφdx ∀u ∈ L2(Ω), φ ∈ H1(Ω). (3.0.3)

We set

H1,0
ρ (Ω) :=

{
u ∈ H1(Ω) :

∫
Ω

uρdx = 0

}
.

We consider on H1(Ω) the bilinear form

< u, v >=

∫
Ω

∇u · ∇vdx, ∀u, v ∈ H1(Ω). (3.0.4)

We denote by H1(Ω), H1,0
ρ (Ω) the spaces H1(Ω) and H1,0

ρ (Ω) endowed with this
form. We observe that by simply modifications of the the proof of Poincaré-
Wirtinger inequality in Evans, [12, Theorem 1, ch. 5, sec. 5.8], one can prove
that that for fixed ρ, there exists C > 0 such that∥∥∥∥u−

∫
Ω
ρudx∫

Ω
ρdx

∥∥∥∥
L2(Ω)

≤ C ‖∇u‖L2(Ω) ∀u ∈ H1(Ω).

Then the bilinear form (3.0.4) defines on H1,0
ρ (Ω) a scalar product whose induced

norm is equivalent to the standard one. We consider on (H1(Ω)/R) the bilinear
form

< p[u], p[v] >=

∫
Ω

∇u · ∇vdx, ∀u, v ∈ H1(Ω),
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which is a scalar product on (H1(Ω)/R) that renders (H1(Ω)/R) a Hilbert space.
The norm associated with this scalar product generates a quotient topology on
(H1(Ω)/R) which is equivalent to the quotient topology of (H1(Ω)/R). We denote
by πρ the map of H1(Ω) to H1,0

ρ (Ω) defined by

πρ[u] = u−
∫

Ω
uρdx∫

Ω
ρdx

,

for all u ∈ H1(Ω). We denote by π]ρ the map of (H1(Ω)/R) onto H1,0
ρ (Ω) defined

by the equality πρ = π]ρ ◦ p, where p is the canonical projection of H1(Ω) onto
(H1(Ω)/R). We set

F (Ω) :=
{
G ∈ (H1(Ω))′ : G[1] = 0

}
.

We consider the operator −∆ρ as a map from H1,0
ρ (Ω) to F (Ω) defined by

−∆ρ[u][φ] =

∫
Ω

∇u · ∇φdx ∀u ∈ H1,0
ρ (Ω), φ ∈ H1(Ω). (3.0.5)

The operator −∆ρ considered as an operator acting on the whole H1(Ω) is surjec-
tive onto F (Ω). Moreover, it is clear that it is injective and continuous if restricted
to H1,0

ρ (Ω), and thanks to Poincaré-Wirtinger inequality it turns out that its in-
verse is also continuous. Then −∆ρ turns out to be a linear homeomorphism of
H1,0
ρ (Ω) onto F (Ω).

Moreover, the norm on F (Ω) defined by

‖G‖F (Ω) := sup
06=u∈H1,0

ρ

|G(u)|
‖u‖H1,0

ρ

∀G ∈ F (Ω)

is equivalent to the restriction to F (Ω) of the standard operator norm of (H1(Ω))′.

We define the operator Tρ := (π]ρ)
−1 ◦ (−∆ρ)

−1 ◦ Jρ ◦ i ◦ π]ρ from (H1(Ω)/R)
to itself. It is easy to prove the following

Proposition 3.0.6. Let Ω be a bounded domain in RN of class C1 and ρ ∈ R.
The operator Tρ is a compact selfadjoint operator in (H1(Ω)/R) and its eigenval-
ues coincide with the reciprocals of the eigenvalues λj[ρ] of problem (3.0.2) for all
j ∈ N. Moreover, the set of eigenvalues of problem (3.0.2) is contained in ]0,+∞[
and consists of the image of a sequence increasing to +∞. Each eigenvalue has
finite multiplicity.

Proof. For the self-adjointness, it suffices to observe that

< p[π]ρTρu], p[π]ρv] > = < p[π]ρ ◦ (π]ρ)
−1 ◦ (−∆ρ)

−1 ◦ Jρ ◦ i ◦ π]ρu], p[π]ρv] >

= −∆ρ[(−∆ρ)
−1 ◦ Jρ ◦ i ◦ π]ρu][π]ρv]

= Jρ[i ◦ π]ρu][π]ρv], ∀u, v ∈ (H1(Ω)/R).

The selfadjointness now follows immediately. The remaining statements are
straightforward.
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Remark 3.0.7. We observe that the pair (λ, u) of the set R × (H1,0
ρ (Ω) \ {0})

satisfies (3.0.2) if and only if λ > 0 and the pair (λ−1, p[u]) of the set R ×
((H1(Ω)/R) \ {0}) satisfies the equation

λ−1p[u] = Tρp[u].

In order to exploit the procedure used in the previous chapters which allows
to prove real analyticity of symmetric functions of eigenvalues and compute their
derivatives, we observe that the operator Tρ can be written in a more suitable
way. We consider the operator −∆ from H1,0(Ω) onto F (Ω), where

H1,0(Ω) :=

{
u ∈ H1(Ω) :

∫
Ω

udx = 0

}
,

defined by

−∆[u][φ] =

∫
Ω

∇u · ∇φdx ∀u, φ ∈ H1,0(Ω). (3.0.8)

Then it is easy to prove that this operator is a linear homeomorphism of H1,0(Ω)
onto F (Ω). Let π, π] be πρ≡1, π]ρ≡1 respectively. We define the operator T̃ρ of
(H1(Ω)/R) to itself as

T̃ρu := (−π])−1 ◦ (−∆)−1 ◦ Jρ ◦ i ◦ π]ρu, ∀u ∈ (H1(Ω)/R).

Then the following diagram commutes

(H1(Ω)/R)
π]ρ H1,0

ρ (Ω)
Jρ ◦ i

F (Ω)
(−∆ρ)

−1

H1,0
ρ (Ω) (H1(Ω)/R)

(π]ρ)
−1

H1,0(Ω)
(−∆)−1 (π])−1

Lemma 3.0.9. Let Ω be a bounded domain in RN of class C1. Let F be a finite
nonempty subset of N \ {0}. Let

R[F ] := {ρ ∈ R : λj[ρ] 6= λl[ρ] , ∀j ∈ F, l ∈ N \ F} ,
Θ[F ] := {ρ ∈ R[F ] : λj1 [ρ] = λj2 [ρ] , ∀j1, j2 ∈ F}.

Let ρ̃ ∈ Θ[F ], ũ1, ũ2 ∈ H1,0
ρ̃ (Ω) be such that p[ũ1], p[ũ2] are two eigenfunctions

corresponding to the eigenvalue λ−1
F of the operator T̃ρ. Then we have

< dT̃ρ̃[ρ̇][p[ũ1]], p[ũ2] >=

∫
Ω

ρ̇ũ1ũ2dx, ∀ρ̇ ∈ L∞(Ω). (3.0.10)

Proof. By standard calculus in Banach spaces it follows

< d|ρ̃
(
(π])−1 ◦ (−∆)−1 ◦ Jρ ◦ i ◦ π]ρ

)
[ρ̇][p[ũ1]], p[ũ2] >=

< (π])−1 ◦ (−∆)−1 ◦ d|ρ̃Jρ[ρ̇] ◦ i ◦ π]ρ̃[p[ũ1]], p[ũ2] > +

< (π])−1 ◦ (−∆)−1 ◦ Jρ̃ ◦ i ◦ d|ρ̃πρ[ρ̇][ũ1], p[ũ2] >=

−∆[(−∆)−1 ◦ Jρ̇ ◦ i ◦ ũ1][ũ2] + C(−∆)[(−∆)−1 ◦ Jρ̃ ◦ i ◦ [1]][ũ2] =

=

∫
Ω

ρ̇ũ1ũ2dx, ∀ρ̇ ∈ L∞(Ω),

where C =
∫
Ω ρ̇ũ1dx∫

Ω ρ̃dx
. The last equality follows by observing that

∫
Ω
ρ̃ũ2dx = 0.
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We are now able to prove the following

Theorem 3.0.11. Let Ω be a bounded domain in RN of class C1 and F a
nonempty finite subset of N \ {0}. Let R[F ], Θ[F ] be defined as in the previ-
ous lemma. Then R[F ] is open in L∞(Ω) and the symmetric functions of the
eigenvalues

ΛF,h[ρ] =
∑

j1,...,jh∈F
j1<···jh

λj1 [ρ] · · · λjh [ρ] , h = 1, . . . , |F | (3.0.12)

are real analytic in R[F ]. Moreover, if ρ ∈ Θ[F ] and the eigenvalues λj[ρ] assume
the common value λF [ρ] for all j ∈ F , then the differential of ΛF,h at ρ is given
by the formula

dΛF,h[ρ][ρ̇] = −λF h+1[ρ]

(
|F | − 1

h− 1

)∑
l∈F

∫
Ω

u2
l ρ̇ dx , (3.0.13)

for all ρ̇ ∈ L∞(Ω), where {ul}l∈F is an orthonormal basis for λF [ρ] in H1,0
ρ (Ω).

Proof. The proof is analogous to the proof of Theorem 2.1.27. Here the proof of
formula (3.0.13) follows by (3.0.10).

Remark 3.0.14. We observe that if j ∈ F , then the restriction of the function
which takes ρ ∈ R to λj[ρ] ∈ R to Θ[F ] is real analytic. In fact it coincides on

Θ[F ] with the real analytic function
ΛF,1[·]
|F | .

We investigate now the existence of critical mass densities for symmetric func-
tions of the eigenvalues. We have the following theorem.

Theorem 3.0.15. Let Ω be a bounded domain in RN of class C1 and F = {m,n}
with m,n ∈ N, m 6= n. Let ρ̃ ∈ R[F ] be continuous and moreover, assume that
the solutions of problem (3.0.2) are classic solutions and the nodal domains are
stokians. Then for h = 1, 2, ρ̃ is not a critical mass density for the function which
takes ρ ∈ R[F ] to ΛF,h under constraint (2.2.2).

Proof. Let ρ̃ ∈ R[F ] be fixed. Then we have one of the following cases:

i) ρ̃ ∈ Θ[F ]. Then by 3.0.13 it follows that

dΛF,1[ρ̃][ρ̇] = −λ2
F

∫
Ω

ρ̇(u2
m + u2

n)dx ,

dΛF,2[ρ̃][ρ̇] = −λ3
F

∫
Ω

ρ̇(u2
m + u2

n)dx.

ii) ρ̃ ∈
⋂2
k=1 Θ[Fk], where F1 = {m}, F2 = {n}. There exists an open neigh-

bourhood in R of ρ̃ such that W ⊆
⋂2
k=1R[Fk]. Then

dΛF,1[ρ̃][ρ̇] = d(ΛF2,1 + ΛF1,1)[ρ̃][ρ̇] = −
∫

Ω

ρ̇(λ2
F2
u2
n + λ2

F1
u2
m)dx ,

dΛF,2[ρ̃][ρ̇] = d(ΛF1,1ΛF2,1)[ρ̃][ρ̇] = −
∫

Ω

ρ̇(λF1λ
2
F2
u2
n + λF2λ

2
F1
u2
m)dx,
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where {ul}l∈F (respectively, {ul}l∈Fk) is an orthonormal basis in H1,0
ρ̃ (Ω) of the

eigenspace corresponding to λF [ρ̃] (respectively, λFk [ρ̃]) and λF [ρ̃] is the common
value assumed by all the eigenvalues λj[ρ̃] with j ∈ F (respectively, λFk [ρ̃] is the
value assumed by all the eigenvalue λj[ρ̃] with j ∈ Fk). Suppose now that ρ̃ is
a critical mass density for ΛF,h, h = 1, 2 under constraint (2.2.2). Then, in both
cases, there exist cn, cm > 0, c > 0 such that∫

Ω

ρ̇(cnu
2
n + cmu

2
m)dx = c

∫
Ω

ρ̇dx

for all ρ̇ ∈ L∞(Ω). Since ρ̇ is arbitrary, it follows that

(cnu
2
n + cmu

2
m) = c , a.e. in Ω.

Let’s study the various cases:

i) ρ̃ ∈ Θ[F ], dΛF,1[ρ̃][ρ̇] = −λ2
F

∫
Ω
ρ̇(u2

m + u2
n)dx (dΛF,2[ρ̃][ρ̇] = −λ3

F

∫
Ω
ρ̇(u2

m +
u2
n)dx is analogous). Then, by differentiating the equality

u2
m + u2

n = C (3.0.16)

we obtain

um∇um + un∇un = 0 (3.0.17)

which implies in particular

|∇um(x)|2 =
u2
n(x)

u2
m(x)

|∇un(x)|2 ,

for all x ∈ Ω such that un(x) 6= 0. Let’s differentiate again in (3.0.17) and
use the fact that −∆um = λF ρ̃um and −∆un = λF ρ̃un, we obtain

|∇um(x)|2 + |∇un(x)|2 = λF ρ̃
(
u2
m(x) + u2

n(x)
)
,

(3.0.18)

hence

(
u2
n(x)

u2
m(x)

+ 1) |∇un(x)|2 = λF ρ̃C,

(3.0.19)

hence

|∇un(x)|2 = λF ρ̃um(x)2, (3.0.20)

for all x ∈ Ω such that um(x) 6= 0. It is easy to see that (3.0.20) holds also
if x ∈ Ω is such that um(x) = 0 because in this case u2

n has a maximum in
x, hence ∇un(x) = 0, since it is not possible un(x) = 0, see (3.0.16). In this
case we have C = 0 which led to a contradiction. In the same way one can
also show

|∇um(x)|2 = λF ρ̃u
2
n(x).
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ii) ρ̃ ∈
⋂2
k=1 Θ[Fk], dΛF,1[ρ̃][ρ̇] = −

∫
Ω
ρ̇(λ2

F2
u2
n + λ2

F1
u2
m)dx. By a few compu-

tations as in the previous step, by λ2
F2
u2
n + λ2

F1
u2
m = C, using the fact that

−∆um = λF1 ρ̃um, −∆un = λF2 ρ̃un, we obtain the following relations:

|∇um(x)|2 =
λ2
F2

Cλ2
F1

ρ̃
(
λ3
F1
u2
m(x) + λ3

F2
u2
n(x)

)
u2
n(x); (3.0.21)

|∇un(x)|2 =
λ2
F1

Cλ2
F2

ρ̃
(
λ3
F1
u2
m(x) + λ3

F2
u2
n(x)

)
u2
m(x).

iii) ρ̃ ∈
⋂2
k=1 Θ[Fk], dΛF,2[ρ̃][ρ̇] = −

∫
Ω
ρ̇(λF1λ

2
F2
u2
n + λF2λ

2
F1
u2
m)dx. By imposing

λF1λ
2
F2
u2
n + λF2λ

2
F1
u2
m = C we obtain

|∇um(x)|2 =
λ2
F2

C
ρ̃
(
λ2
F1
u2
m(x) + λ2

F2
u2
n(x)

)
u2
n(x); (3.0.22)

|∇un(x)|2 =
λ2
F1

C
ρ̃
(
λ2
F1
u2
m(x) + λ2

F2
u2
n(x)

)
u2
m(x).

We observe that in all cases, the nodal set of one of the two eigenfunctions coin-
cides with the set where the gradient of the other vanishes. In the first case this
follows immediately by (3.0.20) and the properties of ρ̃. But the same statement
still holds for the other two cases. In fact in (3.0.21) and (3.0.22) the quantity on
the right hand side vanishes only if un = 0 (respectively um = 0). This follows by
the properties of ρ̃ and by the fact that if the quantities in brackets in the right
hand sides vanish in some x ∈ Ω, since they are non-negative, it would follow
that un(x) = 0 and um(x) = 0, but this would imply that um, un = 0 on Ω. By
the same argument, one can state that there are no points in Ω where both um
and ∇um vanish (respectively un and ∇un). This implies that nodal sets of um
are manifolds and coincide with the sets where ∇un vanishes. We observe that
the nodal sets of the eigenfunctions u of problem (3.0.2) are not empty, since for
such functions

∫
Ω
ρ̃u = 0, hence u changes its sign on Ω.

Let’s consider a nodal domain Ωm of um. The function um doesn’t change
sign on Ωm. The boundary ∂Ωm of Ωm can be written as ∂Ωm = Γ1 ∪ Γ2, where
Γ1 ⊂ ∂Ω and Γ2 ⊂ Ω. First we show that Γ1 6= ∅. Assume by contradiction that
Γ1 = ∅. The function un|Ωm is an eigenfunction of problem (3.0.1) with Ω replaced
by Ωm corresponding to the eigenvalue λF2 . Indeed the equation −∆un = λF2un
is clearly satisfied on Ωm and ∂un

∂ν
= 0 on ∂Ωm, since ∇un is zero on ∂Ωm. Since

un|Ωm is non identically zero, it must change sign. Thus, there exist at least two
nonempty nodal domains for un|Ωm in Ωm. We claim that al least one of them,
say Ωmn , is relatively compact in Ωm. If this were false, then there would exist
at least a point x of ∂Ωm such that un(x) = 0, hence ∇um(x) = 0. But we since
Γ1 = ∅ we have um(x) = 0. Thus un(x) = um(x) = 0, hence C = 0, a contradic-
tion. Thus there exists a nodal domain Ωmn of un|Ωm such that Ωmn ⊂ Ωm. Now,
um|Ωmn solves problem (3.0.1) with λF1 , hence it must change sign Ωmn . But Ωmn

is relatively compact in Ωm, and on this set um has constant sign, a contradiction.

Thus we have proved that Γ1 6= ∅. Recall that um has constant sign on Ωm.
Moreover, ∂un

∂ν
= 0 on Γ1, while ∇un = 0 on Γ2, since here um = 0. Then

un|Ωm is solution of problem (3.0.1) with Ω replaced by Ωm corresponding to the
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eigenvalue λF2 and it changes sign on Ωm. Let Ωmn be a nodal domain of un|Ωm .
By the arguments above we have that ∂Ωmn = Γ1,n∪Γ2,n, where ∅ 6= Γ1,n ⊂ ∂Ωm,
and Γ2,n ⊂ Ωm. We claim that there exists at least one nodal domain Ωmn such
that Γ1,n ⊂ ∂Ω. If this were false, the boundary ∂Ωmn of each Ωmn is of the type:
∂Ωmn = (Γ1,n∩∂Ω)∪(Γ1,n∩(∂Ωm\(∂Ω∩∂Ωm)))∪Γ2,n, and each of these partitions
of ∂Ωmn is nonempty. Since Ωmn is connected, (Γ1,n∩(∂Ωm\(∂Ω∩∂Ωm)))∩Γ2,n 6=
∅. On this set um and ∇um vanish, a contradiction. Thus there exists Ωmn

such that Γ1,n ⊂ ∂Ω. Then um|Ωmn is a nontrivial solution of problem (3.0.1)
corresponding to the eigenvalue λF2 and changes its sign on Ωmn , a contradiction.
This concludes the proof.

We prove now that the function which takes ρ ∈ R to λj[ρ] is continuous with
respect to the weak* topology of L∞(Ω). For a fixed ρ ∈ R we have the following
variational representation of the eigenvalues

λj[ρ] = inf
E≤(H1(Ω)/R)

dimE=j

sup
0 6=u∈E

∫
Ω

∣∣∇(π]ρu)
∣∣2 dx∫

Ω
(π]ρu)2ρ dx

, ∀j ∈ N. (3.0.23)

Remark 3.0.24. Let α > 0 be such that ρ ≥ α a.e. in Ω. It is immediate to see
that

λj[ρ] = inf
E≤H1,0

ρ (Ω)
dimE=j

sup
06=u∈E

∫
Ω
|∇u|2 dx∫

Ω
u2ρ dx

, ∀j ∈ N, (3.0.25)

λj[α] = inf
E≤H1,0

ρ (Ω)
dimE=j

sup
06=u∈E

∫
Ω
|∇u|2 dx∫

Ω
(παu)2α dx

, ∀j ∈ N. (3.0.26)

By observing that
∫

Ω
α(παu)2dx =

∫
Ω
αu2dx−C

(∫
Ω
αudx

)2
, where C = (α |Ω|)−1,

it follows that
∫

Ω
ρu2dx ≥

∫
Ω
α(παu)2dx for all u ∈ H1,0

ρ (Ω), hence λj[ρ] ≤ λj[α]
for all j ∈ N. In the same way one can show that if β > 0 is such that ρ ≤ β
a.e. in Ω, then λj[β] ≤ λj[ρ]. It suffices to consider in (3.0.25) and (3.0.26) the
space H1,0

β (Ω) in place of H1,0
ρ (Ω).

We need some technical results

Lemma 3.0.27. Let Ω be a bounded domain in RN of class C1, {ρn}n∈N ⊂
L∞(Ω), ρ ∈ L∞(Ω) such that ρn

∗
⇀ ρ. Moreover, let α := infn∈N ess infx∈Ωρn(x) >

0 and β := supn∈N ‖ρn‖L∞(Ω) < +∞. Then we have

i) For all φ ∈ (H1(Ω)/R), π]ρnφ→ π]ρφ in L2(Ω);

ii) if un ⇀ u in (H1(Ω)/R) then, (possibly passing to a subsequence) π]ρnun →
π]ρu in L2(Ω).

Proof. For the proof of statement i), we observe that if φ̃ ∈ H1(Ω) is such that∫
Ω
φ̃dx = 0 and φ = p[φ̃], then it is sufficient to prove

lim
n→∞

∥∥∥∥∥
∫

Ω
ρnφ̃dx∫

Ω
ρndx

−
∫

Ω
ρφ̃dx∫

Ω
ρdx

∥∥∥∥∥
L2(Ω)

= 0.
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By Ḧolder’s inequality we have∥∥∥∥∥
∫

Ω
ρnφ̃dx∫

Ω
ρndx

−
∫

Ω
ρφ̃dx∫

Ω
ρdx

∥∥∥∥∥
L2(Ω)

≤ |Ω|
1
2

∣∣∣∣∣
∫

Ω
ρnφ̃dx∫

Ω
ρndx

−
∫

Ω
ρφ̃dx∫

Ω
ρdx

∣∣∣∣∣ ,
then the proof of point i) is straightforward.

Now we prove statement ii). Let ũn, ũ ∈ H1,0(Ω) :=
{
u ∈ H1(Ω) :

∫
Ω
udx = 0

}
and such that un = p[ũn] for all n, u = p[ũ]. We have∥∥π]ρnun − π]ρu∥∥L2(Ω)

≤
∥∥π]ρnun − π]ρnu∥∥L2(Ω)

+
∥∥π]ρnu− π]ρu∥∥L2(Ω)

. (3.0.28)

By statement i),the second summand on the right hand side of (3.0.28) goes to
zero as n goes to infinity. For the first term, we observe that∥∥π]ρnun − π]ρnu∥∥L2(Ω)

=

∥∥∥∥ũn −
∫

Ω
ρnũndx∫

Ω
ρndx

− ũ+

∫
Ω
ρnũdx∫

Ω
ρndx

∥∥∥∥
L2(Ω)

≤ ‖ũn − ũ‖L2(Ω) +
β

α
‖ũn − ũ‖L2(Ω)

=

(
1 +

β

α

)
‖ũn − ũ‖L2(Ω) .

Since {ũn}n∈N is bounded in H1,0(Ω), it is also bounded in H1(Ω) thanks to
Poincaré-Wirtinger inequality. Then there exists a subsequence, still denoted
by {ũn}n∈N which weakly converges in H1(Ω), and strongly in L2(Ω) to a cer-
tain function w̃. Clearly, w̃ has zero mean. Since π] is a homeomorphism from
(H1(Ω)/R) onto H1,0(Ω) and the limit is unique, it follows that w̃ = ũ. This
concludes the proof.

We are now ready to prove the following

Proposition 3.0.29. Let Ω be a bounded domain in RN of class C1. Let C ⊂
L∞(Ω) be a weakly∗ compact subset of L∞(Ω) such that infρ∈C ess infx∈Ω ρ(x) > 0.
Then the functions which take ρ ∈ C to λj[ρ] are continuous in the weak∗ topology
of L∞(Ω).

Proof. By Remark 3.0.24 and Lemma 3.0.27, the proof of this proposition follows
the line of the proof of Proposition 2.2.8. We show that if ρn converges to ρ in
the weak* topology of L∞(Ω), then λnj := λj[ρn] converges to λj := λj[ρ] for all
j ∈ N. As in the first part of the proof of (2.2.8), we have λj[β] ≤ λnj ≤ λj[α] for

suitable 0 < α < β < +∞ (see Remark 3.0.24). Then we find a sequence ρn
∗
⇀ ρ

such that λnj → λ̄j in R, unj ⇀ ūj in (H1(Ω)/R) (here unj is the eigenfunction of
Tρ corresponding to the eigenvalue (λnj )−1). Clearly we have

0 < λ̄1 ≤ λ̄2 ≤ · · · ≤ λ̄j ≤ · · · .

By Lemma 3.0.27 we have that

limn→∞

∫
Ω

∇(π]ρnu
n
j ) · ∇(π]ρnφ)− λnj ρn · (π]ρnu

n
j ) · (π]ρnφ)dx

=

∫
Ω

∇(π]ρūj) · ∇(π]ρφ)− λ̄jρ · (π]ρūj) · (π]ρφ)dx,
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for all j ∈ N, φ ∈ (H1(Ω)/R). Moreover we have

limn→∞

∫
Ω

ρn · (π]ρnu
n
i ) · (π]ρnu

n
j )dx =

∫
Ω

ρ · (π]ρūi) · (π]ρūj)dx = δij.

Then
{
λ̄j
}
j∈N ⊆ {λj[ρ]}j∈N. Now the proof of the other inclusion is exactly the

same as done in Proposition 2.2.8.

As a consequence of Theorem 3.0.15, we have

Theorem 3.0.30. Let Ω be a bounded domain in RN of class C1, F = {m,n}
with m,n ∈ N, m 6= n. Let C ⊆ R[F ] be a weakly* compact subset of L∞(Ω)
such that infρ∈C ess infΩ ρ > 0. Let M > 0 and LM = {ρ ∈ L∞(Ω) :

∫
Ω
ρ = M}.

Then for h = 1, 2, the function which takes ρ ∈ C ∩ LM to ΛF,h[ρ] has maxima
and minima, and if for such points the solutions of problem (3.0.2) are classic
solutions, they must belong to ∂C ∩ LM .

Proof. The proof is identical to that of Theorem 2.2.14.
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4. THE STEKLOV PROBLEM FOR THE LAPLACE
OPERATOR

Throughout this chapter Ω is a bounded domain in RN of class C1, ρ ∈ R′, where
R′ := {ρ ∈ L∞(∂Ω) : ess infx∈∂Ωρ(x) > 0}. We consider the following problem{

∆u = 0, in Ω ,
∂u
∂ν

= λρu, on ∂Ω ,
(4.0.1)

in the unknowns u ∈ C2(Ω)∩C1(Ω̄), λ ∈ R. This problem models a free vibrating
membrane whose mass is concentrated at the boundary with surface density ρ.
We will consider the weak formulation of the problem∫

Ω

∇u · ∇φdx = λ

∫
∂Ω

ρuφdσ , ∀φ ∈ H1(Ω) , (4.0.2)

in the unknowns u ∈ H1(Ω), λ ∈ R. Actually, we will obtain a problem
in (H1(Ω)/R) since we need to get rid of the constants, which generate the
eigenspace corresponding to the eigenvalue 0. Let Tr the trace operator act-
ing from H1(Ω) to L2(∂Ω), which is compact thanks to (1.1.17). We denote by
Jρ the continuous embedding of L2(∂Ω) into (H1(Ω))′ defined by

Jρ[u][φ] :=

∫
∂Ω

ρuφdσ, ∀u ∈ L2(∂Ω), φ ∈ H1(Ω). (4.0.3)

We set

H1,0
ρ (Ω) :=

{
u ∈ H1(Ω) :

∫
∂Ω

ρudσ = 0

}
,

and we consider on H1(Ω) the bilinear form < u, v >=
∫

Ω
∇u · ∇vdx. We denote

by H1(Ω) and H1,0
ρ (Ω) the spaces H1(Ω) and H1,0

ρ (Ω) endowed with this form.
Moreover, by Poincaré-Wirtinger inequality, it turns out that this bilinear form
is indeed a scalar product on H1,0

ρ (Ω) whose induced norm is equivalent to the
standard one. Next we consider the operator −∆ρ as an operator of H1,0

ρ (Ω) to
F (Ω), defined by

−∆ρ[u][φ] =

∫
Ω

∇u · ∇φdx, ∀u ∈ H1,0
ρ (Ω), φ ∈ H1(Ω), (4.0.4)

where

F (Ω) :=
{
G ∈ (H1(Ω))′ : G[1] = 0

}
.

Now the operator −∆ρ considered as an operator acting on the whole space
H1(Ω), is surjective onto F (Ω), hence it is injective (and continuous) if restricted
to H1,0

ρ (Ω) and by Poincaré-Wirtinger its inverse is also continuous. Then −∆ρ
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turns out to be a homeomorphism of H1,0
ρ (Ω) onto F (Ω). Finally, we define the

operator πρ from H1(Ω) to H1,0
ρ (Ω) as

πρ[u] := u−
∫
∂Ω
ρudσ∫

∂Ω
ρdσ

.

We consider the space (H1(Ω)/R) endowed with the bilinear form

< p[u], p[v] >=

∫
Ω

∇u · ∇vdx,

where p is the canonical projection of H1(Ω) onto (H1(Ω)/R). This bilinear form
renders (H1(Ω)/R) a Hilbert space. We denote by π]ρ the map from (H1(Ω)/R)
onto H1,0

ρ (Ω) defined by the equality πρ = π]ρ ◦ p, which turns out to be a home-
omorphism.

We define the operator Tρ acting on (H1(Ω)/R) as follows

Tρ := (π]ρ)
−1 ◦ (−∆ρ)

−1 ◦ Jρ ◦ Tr ◦ π]ρ. (4.0.5)

Then we have the following proposition, whose proof is very similar to the proof
of Proposition 3.0.2.

Proposition 4.0.6. Let Ω be a bounded domain in RN of class C1, ρ ∈ R′. The
operator Tρ is a compact selfadjoint operator in (H1(Ω)/R), whose eigenvalues
coincide with the reciprocals of the eigenvalues λj[ρ] of problem (4.0.2) for all
j ∈ N. Moreover, the set of eigenvalues of problem (4.0.2) is contained in ]0,+∞[
and consists of the image of a sequence increasing to +∞. Each eigenvalue has
finite multiplicity.

Remark 4.0.7. We observe that the pair (λ, u) of the set R × (H1,0
ρ (Ω) \ {0})

satisfies (4.0.2) if and only if λ > 0 and the pair (λ−1, p[u]) of the set R ×
((H1(Ω)/R) \ {0}) satisfies the equation

λ−1p[u] = Tρp[u].

As in the previous chapter, we observe that the operator Tρ can be written in
a more suitable way in order to prove real analyticity of symmetric functions of
eigenvalues. We consider the operator −∆ from H1,0(Ω) to F (Ω), where

H1,0(Ω) :=

{
u ∈ H1(Ω) :

∫
∂Ω

udσ = 0

}
.

Then it is easy to prove that this operator is a linear homeomorphism from
H1,0(Ω) onto F (Ω). Let π, π] be πρ≡1, π]ρ≡1 respectively. We define the operator

T̃ρ from (H1(Ω)/R) to itself by

T̃ρu := (−π])−1 ◦ (−∆)−1 ◦ Jρ ◦ Tr ◦ π]ρu, ∀u ∈ (H1(Ω)/R).

Then the following diagram commutes
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(H1(Ω)/R)
π]ρ H1,0

ρ (Ω)
Jρ ◦ Tr

F (Ω)
(−∆ρ)

−1

H1,0
ρ (Ω) (H1(Ω)/R)

(π]ρ)
−1

H1,0(Ω)
(−∆)−1 (π])−1

Lemma 4.0.8. Let Ω be a bounded domain in RN of class C1. Let F be a finite
nonempty subset of N \ {0}. Let

R′[F ] := {ρ ∈ R′ : λj[ρ] 6= λl[ρ] , ∀j ∈ F, l ∈ N \ F} ,
Θ′[F ] := {ρ ∈ R′[F ] : λj1 [ρ] = λj2 [ρ] , ∀j1, j2 ∈ F}.

Let ρ̃ ∈ Θ′[F ], ũ1, ũ2 ∈ H1,0
ρ̃ (Ω) be such that p[ũ1], p[ũ2] are two eigenfunctions

corresponding to the eigenvalue λ−1
F of the operator T̃ρ. Then we have

< dT̃ρ̃[ρ̇][p[ũ1]], p[ũ2] >=

∫
∂Ω

ρ̇ũ1ũ2dσ, ∀ρ̇ ∈ L∞(∂Ω). (4.0.9)

We are now able to state the following

Theorem 4.0.10. Let Ω be a bounded domain in RN of class C1 and F a
nonempty finite subset of N \ {0}. Let R′[F ], Θ′[F ] be defined as in the pre-
vious lemma. Then R′[F ] is open in L∞(∂Ω) and the symmetric functions of the
eigenvalues

ΛF,h[ρ] =
∑

j1,...,jh∈F
j1<···jh

λj1 [ρ] · · · λjh [ρ] , h = 1, . . . , |F | , (4.0.11)

are real analytic in R′[F ]. Moreover, if ρ ∈ Θ′[F ] and the eigenvalues λj[ρ]
assume the common value λF [ρ] for all j ∈ F , then the differential of ΛF,h at ρ
is given by the formula

dΛF,h[ρ][ρ̇] = −λF h+1[ρ]

(
|F | − 1

h− 1

)∑
l∈F

∫
∂Ω

u2
l ρ̇ dσ , (4.0.12)

for all ρ̇ ∈ L∞(∂Ω), where {ul}l∈F is an orthonormal basis for λF [ρ] in H1,0
ρ (Ω).

Remark 4.0.13. We observe that if j ∈ F , then the restriction to Θ′[F ] of the
function which takes ρ ∈ R′ to λj[ρ] ∈ R is real analytic. In fact it coincides on

Θ′[F ] with the real analytic function
ΛF,1[·]
|F | .

We investigate now the existence of critical mass densities for symmetric func-
tions of the eigenvalues. We have the following Theorem.

Proposition 4.0.14. Let B = BN(0, 1) be the unit ball in RN , SN the (N − 1)-
dimensional measure of ∂B, F = {1, ..., N} and M > 0. Then the constant mass
density ρM defined by ρM = M

SN
is a critical mass density for ΛF,h for h = 1, ..., N

under the constraint
∫
∂Ω
ρdσ = M .
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Proof. It is easy to prove that the set {ui := cNxi}Ni=1, where cN =
(∫

∂Ω
ρMx

2
i dσ
)−1

for all i = 1, ..., N , is the set of the first N eigenfunction for problem (4.0.2) with
constant mass density on the unit ball. Such eigenfunctions correspond to the
eigenvalue SN

M
, then ρM ∈ Θ′[F ]. We have then the following formula

dΛF,h[ρM ][ρ̇] = −
(
SN
M

)1+h(
N − 1

h− 1

)∑
i∈F

∫
∂Ω

u2
i ρ̇dσ,

for all ρ̇ ∈ L∞(∂Ω). We have to show that for all h = 1, ...N there exists ch > 0
such that (

SN
M

)1+h(
N − 1

h− 1

)∑
i∈F

∫
∂Ω

u2
i ρ̇dσ = ch

∫
∂Ω

ρ̇dσ.

But this is immediate, since
∑

i∈F u
2
i = c2

N , hence ch = c2
N

(
SN
M

)1+h (N−1
h−1

)
. Then

the constant density ρM is a critical mass density for ΛF,h[·].

We now prove that the function which takes ρ ∈ R′ to λj[ρ] is continuous
with respect to the weak* topology of L∞(∂Ω). For a fixed ρ ∈ R′ we have the
following variational representation of the eigenvalues

λj[ρ] = inf
E≤(H1(Ω)/R)

dimE=j

sup
06=u∈E

∫
Ω

∣∣∇(π]ρu)
∣∣2 dx∫

∂Ω
(π]ρu)2ρ dσ

, ∀j ∈ N. (4.0.15)

By the same argument used in Remark 3.0.24, we have

Remark 4.0.16. Let ρ ∈ R′, 0 < α < β < +∞ be such that α ≤ ρ ≤ β a.e. in
∂Ω. Then λj[β] ≤ λj[ρ] ≤ λj[α].

Lemma 4.0.17. Let Ω be a bounded domain in RN of class C1 and {ρn}n∈N ⊂
L∞(∂Ω), ρ ∈ L∞(∂Ω) be such that ρn

∗
⇀ ρ. Moreover, let α := infn∈N ess infx∈∂Ωρn(x) >

0 and β := supn∈N ‖ρn‖L∞(∂Ω) < +∞. Then we have

i) For all φ ∈ (H1(Ω)/R), Tr[π]ρnφ]→ Tr[π]ρφ] in L2(∂Ω);

ii) if un ⇀ u in (h1(Ω)/R) then, (possibly passing to a subsequence) Tr[π]ρnun]→
Tr[π]ρu] in L2(∂Ω).

Proof. The proof of statement i) is immediate. The proof of statement ii) is
exactly the same as the one for Lemma 3.0.27: here one uses the compactness
of trace operator (in Lemma 3.0.27 we used compactness of embedding of H1(Ω)
into L2(Ω)).

We are now ready to state the following proposition. The proof is as in
Proposition 3.0.29.

Proposition 4.0.18. Let Ω be a bounded domain in RN of class C1. Let C ⊂
L∞(∂Ω) be a weakly∗ compact subset of L∞(∂Ω) such that infρ∈C ess infx∈∂Ω ρ(x) >
0. Then the functions which take ρ ∈ C to λj[ρ] are continuous in the weak∗ topol-
ogy of L∞(∂Ω).
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We note that the case of Steklov boundary conditions is rather different from
the cases analyzed in the previous chapters. In fact, Proposition 4.0.14 shows that
there exist critical mass densities for the symmetric functions of the eigenvalues
under mass constraint. We are led to investigate the existence of relations between
the eigenvalues of the Laplace operator with Steklov boundary conditions and
the eigenvalues of the Laplace operator with Neumann boundary conditions. For
instance, let’s take the unit disc in R2 and consider the variational representations
of the eigenvalues of the two problems (3.0.23) and (4.0.15). We note, given
u ∈ (H1(B)/R) and a sequence {ρn}n∈N of densities in R such that ρn ≡ 1

n
on

B
(
0, 1− 1

n

)
and ρn ≡

M−π
n(1− 1

n)
2

π
(

1−(1− 1
n)

2
) on the remaining part (so that

∫
Ω
ρndx =

M ∀n ∈ N), that the denominator in the Rayleigh quotient in (3.0.23) with
ρn converges to the denominator of Rayleigh quotient in (4.0.15) with density
ρ ≡ M

2π
on ∂Ω. Thus one could expect the spectral convergence of the Neumann

problems to the Steklov problem. This will be proved in the sequel. First we
need a technical Lemma.

Lemma 4.0.19. Let B = B(0, 1) be the unit ball in RN , M > 0, ωN the volume
of B, SN the (N − 1)-dimensional measure of ∂B. Let Bn be the ball B(0, 1− 1

n
).

Let ρn ∈ R be defined by

ρn(x) :=


1
n
, if x ∈ Bn,
M−ωN

n (1− 1
n)

N

ωN

(
1−(1− 1

n)
N
) , if x ∈ B \Bn,

(4.0.20)

for all n ∈ N.
Let π]ρn the map from (H1(B)/R) onto H1,0

ρn (B) :=
{
u ∈ H1(B) :

∫
B
ρnudx = 0

}
defined by the equality πρn = π]ρn ◦ p, where

πρn [u] = u−
∫
B
ρnudx∫

B
ρndx

, ∀u ∈ H1(B).

Let π]0 the map from (H1(B)/R) onto H1,0
∂B(B) :=

{
u ∈ H1(B) :

∫
∂B

udσ = 0
}

defined by the equality π0 = π]0 ◦ p, where

π0[u] = u−
∫
∂B
udσ

SN
, ∀u ∈ H1(B).

Then the following statements hold true:

i) For all φ ∈ (H1(B)/R), π]ρn [φ]→ π]0[φ] in L2(B) (hence also in H1(B));

ii) if un ⇀ u in (H1(B)/R), then (possibly passing to a subsequence) π]ρn [un]→
π]0[u] in L2(B);

iii) assume that un → u, wn → w in L2(B), Tr[un] → Tr[u], Tr[wn] → Tr[w] in
L2(∂B), and such that ‖∇un‖L2(B) , ‖∇u‖L2(B) ≤ C, ‖∇wn‖L2(B) , ‖∇w‖L2(B) ≤
C uniformly in n ∈ N. Then∫

B

ρn (un − u)wndx→ 0

and ∫
B

ρn (wn − w)udx→ 0.



46 4. The Steklov problem for the Laplace operator

Proof. As for statement i) of Lemma 3.0.27, it is sufficient to show that

lim
n→+∞

∥∥∥∥∥
∫
B
ρnφ̃dx

M
−
∫
∂B
φ̃dσ

SN

∥∥∥∥∥
L2(B)

= 0,

where φ̃ ∈ H1(B) is such that φ = p[φ̃]. Since the equality

lim
n→+∞

∫
B

ρnφ̃dx =
M

SN

∫
∂Ω

φ̃dσ

holds, we have the desired result. We now prove statement ii). Let ũn, ũ ∈
H1,0(B) :=

{
ṽ ∈ H1(B) :

∫
B
ṽdx = 0

}
be such that un = p[ũn], u = p[ũ]. We

have∥∥∥π]ρn [un]− π]0[u]
∥∥∥
L2(B)

≤
∥∥π]ρn [un]− π]ρn [u]

∥∥
L2(B)

+
∥∥∥π]ρn [u]− π]0[u]

∥∥∥
L2(B)

.

By statement i) it follows that the second summand in the right hand side goes
to zero as n→ +∞. For the first summand, we have

∥∥π]ρn [un]− π]ρn [u]
∥∥
L2(B)

=

∥∥∥∥ũn −
∫
B
ρnũndx

M
− ũ+

∫
B
ρnũdx

M

∥∥∥∥
L2(B)

≤ ‖ũn − ũ‖L2(B) +

∥∥∫
B
ρn (ũn − ũ) dx

∥∥
L2(B)

M

≤ ‖ũn − ũ‖L2(B) +

(
ω

1
2
N

M

)
·
∣∣∣∣∫
B

ρn (ũn − ũ) dx

∣∣∣∣ .
Now, if we prove that ũn → ũ in L2(B) we are done, since the result follows
by statement iii) with wn ≡ 1. Since {ũn}n∈N is bounded in H1,0(B), it is
bounded in H1(B) by Poincaré-Wirtinger inequality. Then, possibly passing to a
subsequence, {ũn}n∈N weakly converges in H1(B), hence strongly in L2(B) to a
certain function w̃. Clearly w has zero mean. Since the projection of (H1(B)/R)
onto H1,0(B) is a homeomorphism and the limit is unique, it follows that w̃ = ũ.
Thus ‖ũn − ũ‖L2(B) → 0. Then in order to complete the proof of statement ii) it
suffices to prove statement iii).
We make the proof for N = 2 for the sake of simplicity, but the argument is not
restrictive, and can be applied to the N -dimensional ball. Let ε = 1

n
. Let then

uε(x, y), wε(x, y) ∈ L2(B), such that uε → 0 in L2(B) as ε→ 0, and such that the
norms of uε, wε, ∇uε, ∇wε in L2(B) are uniformly bounded in ε, and moreover
Tr[uε] → 0 in L2(∂B) and Tr[uε], Tr[wε] are uniformly bounded in L2(∂B). We
consider then

lim
ε→0

∫
B

ρεuεwεdxdy. (4.0.21)

We have that∫
B

ρεuεwεdxdy = ε

∫
Bε

uεwεdxdy + C(ε)

∫
B\Bε

uεwεdxdy,

where Bε = B(0, 1 − ε), C(ε) = M−πε(1−ε)2

π(1−(1−ε)2)
. The first summand clearly goes

to zero as ε → 0. By multiplying and dividing the second summand by ε and
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observing that εC(ε) ≤ C ′ < +∞ for ε ≤ ε0, we obtain that

∣∣∣∣∫
B

ρεuεwεdxdy

∣∣∣∣ ≤ Cε+ C ′ · 1

ε

∫
B\Bε
|uεwε| dxdy. (4.0.22)

Now consider the second summand in (4.0.22) and pass to polar coordinates (r, θ).
We have

∫
B\Bε

1

ε
|uεwε| dxdy =

∫ 2π

0

∫ 1

1−ε

r

ε
|uε(r, θ)| |wε(r, θ)| drdθ.

We operate a new change of variable, namely r = 1 − t with 0 ≤ t ≤ ε, and
denote the functions uε(1− t, θ), wε(1− t, θ) by uε(t, θ) and wε(t, θ) respectively.
We have

∫
B\Bε

1

ε
|uεwε| dxdy =

∫ 2π

0

∫ ε

0

(1− t)
ε
|uε(t, θ)| |wε(t, θ)| dtdθ. (4.0.23)

Now, for almost every θ, uε, wε are absolutely continuous on [0, ε] and since this
set is compact, also their product is absolutely continuous. Let θ be fixed and
set uε(t) = uε(t, θ), wε(t) = wε(t, θ). We have

uε(t)wε(t) = uε(0)wε(0) +

∫ t

0

∂uε
∂t′

(t′)wε(t
′) + uε(t

′)
∂wε
∂t′

(t′)dt′,(4.0.24)

uε(t
′) = uε(0) +

∫ t′

0

∂uε
∂t′′

(t′′)dt′′,

wε(t
′) = wε(0) +

∫ t′

0

∂wε
∂t′′

(t′′)dt′′.

We define C1(t, θ) by C1(t, θ) =
(∫ t

0

∣∣∂uε
∂t′

(t′, θ)dt′
∣∣2) 1

2
. Let ε be fixed, then for a.e.

θ, C1(t, θ) is increasing in 0 ≤ t ≤ ε and C1(t, θ) ≤ C1(ε, θ). From now on we fix
θ and denote C1(t, θ) by C1(t). The same considerations hold for C2(t, θ) defined

by C2(t, θ) =
(∫ t

0

∣∣∂wε
∂t′

(t′, θ)dt′
∣∣2) 1

2
. Then we have

|uε(t′)| ≤ |uε(0)|+ t′
1
2C1(t′) ≤ |uε(0)|+ t

1
2C1(ε), (4.0.25)

|wε(t′)| ≤ |wε(0)|+ t′
1
2C2(t′) ≤ |wε(0)|+ t

1
2C2(ε). (4.0.26)
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Now, let’s consider the right hand side in (4.0.23). By (4.0.25):∫ 2π

0

∫ ε

0

(1− t)
ε
|uε(t, θ)| |wε(t, θ)| dtdθ (4.0.27)

≤
∫ 2π

0

∫ ε

0

1

ε
|uε(0, θ)| |wε(0, θ)| dtdθ

+

∫ 2π

0

∫ ε

0

(1− t)
ε

∫ t

0

∣∣∣∣∂uε∂t′
(t′, θ)

∣∣∣∣ |wε(t′, θ)| dt′dtdθ
+

∫ 2π

0

∫ ε

0

(1− t)
ε

∫ t

0

|uε(t′, θ)|
∣∣∣∣∂wε∂t′

(t′, θ)

∣∣∣∣ dt′dtdθ ≤∫ 2π

0

|uε(0, θ)| |wε(0, θ)| dθ

+

∫ 2π

0

∫ ε

0

(1− t)
ε

∫ t

0

∣∣∣∣∂uε∂t′
(t′, θ)

∣∣∣∣ (|wε(0, θ)|+ t
1
2C2(t, θ))dt′dtdθ

+

∫ 2π

0

∫ ε

0

(1− t)
ε

∫ t

0

∣∣∣∣∂wε∂t′
(t′, θ)

∣∣∣∣ (|uε(0, θ)|+ t
1
2C1(t, θ))dt′dtdθ ≤∫ 2π

0

|uε(0, θ)| |wε(0, θ)| dθ

+

∫ 2π

0

∫ ε

0

(1− t)
ε

C1(ε, θ)t
1
2 (|wε(0, θ)|+ t

1
2C2(ε, θ))dtdθ

+

∫ 2π

0

∫ ε

0

(1− t)
ε

C2(ε, θ)t
1
2 (|uε(0, θ)|+ t

1
2C1(ε, θ))dtdθ ≤∫ 2π

0

|uε(0, θ)| |wε(0, θ)| dθ

+

∫ 2π

0

C1(ε, θ)C2(ε, θ)(
ε

2
− ε2

3
) + C1(ε, θ) |wε(0, θ)| (

2ε
1
2

3
− 2ε

3
2

5
)dθ

+

∫ 2π

0

C1(ε, θ)C2(ε, θ)(
ε

2
− ε2

3
) + C2(ε, θ) |uε(0, θ)| (

2ε
1
2

3
− 2ε

3
2

5
)dθ.

Now, since
∫ 2π

0
C1(ε, θ)2dθ ≤ ‖∇uε‖2

L2(Ω),
∫ 2π

0
C2(ε, θ)2dθ ≤ ‖∇wε‖2

L2(Ω) and such
quantities are uniformly bounded in ε, and Tr[uε], Tr[wε] are uniformly bounded
in L2(∂Ω), the second and third summand go to 0 as ε→ 0. Since Tr[uε]→ 0 in
L2(∂Ω) as ε→ 0, the first summand vanishes as ε→ 0.

Observe now, that for the N -dimensional ball B the same results still hold.
Passing to polar coordinates, in (4.0.51) we have to estimate the following quan-
tity: ∫ π

0

· · ·
∫ π

0

∫ 2π

0

∫ ε

0

1

ε
|uε(φ1, ..., φN−1, t)| |wε(φ1, ..., φN−1, t)| dV,

where

dV = (1− t)N−1 sinN−2(φ1) sinN−3(φ2) · · · sin(φN−2)dφ1 · · · dφN−1dt

and the calculations are the same as for N = 2. This concludes the proof.
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For details of the following results we refer to [2] and [28]. Let’s introduce
some definition

Definition 4.0.28. Let H be a real Hilbert space, K(H,H) the Banach subspace
of L(H,H) of those T ∈ L(H,H) which are compact. A set K ⊂ K(H,H) is said
to be collectively compact if and only if the set {K[x] : K ∈ K, x ∈ B}, where B
is the unit ball in H, has compact closure. We say that a sequence of compact
operators {Kn}n∈N compactly converges to the compact operator K if {Kn}n∈N is
collectively compact and Kn[xn]→ K[x] whenever xn → x in H.

We will need the following

Theorem 4.0.29. Let H be a real Hilbert space, {Kn}n∈N ⊂ K(H,H) compactly
convergent to K ∈ K(H,H). Then

lim
n→+∞

∥∥(Kn −K)2
∥∥
L(H,H)

= 0

Corollary 4.0.30. In the hypothesis of the previous Theorem, if Kn and K are
self-adjoint for all n ∈ N, then compact convergence of operators implies norm
convergence.

Finally we state the following

Theorem 4.0.31. Let H be a real Hilbert space, and {An}n∈N a sequence of
bounded self-adjoint operators converging in norm to the bounded self-adjoint op-
erator A, i.e., limn→+∞ ‖An − A‖L(H,H) = 0. Then isolated eigenvalues λ of A of
finite multiplicity are exactly the limits of eigenvalues of An, including multiplic-
ity; moreover the corresponding eigenprojections converge in norm.

Definition 4.0.32. Let B = B(0, 1) be the unit ball in RN and M > 0. Let
ρn ∈ R, π]ρn, π]0 be defined as in Lemma 4.0.19. We set

T̃n := (π])−1 ◦ (−∆)−1 ◦ Jρn ◦ i ◦ π]ρn ,
T̃ := (π])−1 ◦ (−∆)−1 ◦ JM ◦ Tr ◦ π]0,

where the map −∆ from H1,0(B) onto F (B) is defined as in (3.0.8), the map π]

from (H1(B)/R) onto H1,0(B) is defined as in the previous chapter, with ρ ≡ 1,
the maps Jρn of L2(B) into F (B) are defined as in (3.0.3) and the map JM of
L2(∂B) into F (B) is defined as in (4.0.3) with ρ ≡ M

SN
.

Now we are ready to prove the following

Theorem 4.0.33. Let B = B(0, 1) be the unit ball in RN , T̃ and T̃n be as in
Definition 4.0.32. Then the sequence of compact operators {T̃n}n∈N compactly
converges to the compact operator T̃ in K ((H1(B)/R), (H1(B)/R)).

Proof. In order to prove the compact convergence of T̃n to T̃ we need to verify
that

i) T̃n and T̃ is compact for all n ∈ N;

ii) if ‖un‖(H1(B)/R) ≤ C for all n ∈ N, then the family {T̃nun}n∈N is relatively
compact;
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iii) if un → u in (H1(B)/R), then T̃nun → T̃ u in (H1(B)/R).

The first statement is clearly true by the compactness of i and Tr. For the second
statement, first fix u ∈ (H1(B)/R). We have

lim
n→+∞

∫
B

ρnπ
]
ρn [u]dx = lim

n→+∞

∫
B

ρn

(
π]ρn [u]− π]0[u]

)
dx

+

(
lim

n→+∞

∫
B

ρnπ
]
0[u]dx− M

SN

∫
∂B

π]0[u]dσ

)
+

M

SN

∫
∂B

π]0[u]dσ.

By Lemma 4.0.19 we have that the first summand goes to zero as n → +∞,
and since the second term converges to zero as n → +∞, it follows that T̃nu is
bounded for each u ∈ (H1(B)/R). Thus, by Banach-Steinhaus Theorem, there

exists C ′ such that
∥∥∥T̃n∥∥∥

L((H1(Ω)/R),(H1(B)/R))
≤ C ′ for all n ∈ N. Moreover, since

‖un‖(H1(B)/R) ≤ C for all n ∈ N, possibly passing to a subsequence, we have that

un ⇀ u in (H1(B)/R). This implies that, possibly passing to a subsequence,
T̃nun ⇀ w in (H1(B)/R) for n→ +∞. We show that w = T̃ u. Let wn := T̃nun.
We have

lim
n→+∞

∫
B

∇(π]ρn [wn]) · ∇(π]ρn [φ])dx =

∫
B

∇(π]0[w]) · ∇(π]0[φ])dx,

for all φ ∈ (H1(B)/R). On the other hand, we have that∫
B

∇(π]ρn [wn]) · ∇(π]ρn [φ])dx = −∆[(−∆)−1 ◦ Jρn ◦ i ◦ π]ρn [un]][π]ρn [φ]]

=

∫
B

ρnπ
]
ρn [un]π]ρn [φ]dx. (4.0.34)

Then, by Lemma 4.0.19, iii) we have

lim
n→+∞

< wn, φ >(H1(B)/R) = lim
n→+∞

∫
B

ρnπ
]
ρn [un]π]ρn [φ]dx

= lim
n→+∞

∫
B

ρn

(
π]ρn [un]− π]0[u]

)
π]ρn [φ]dx

+ lim
n→+∞

∫
B

ρnπ
]
0[u]

(
π]ρn [φ]− π]0[φ]

)
dx

+ lim
n→+∞

∫
B

ρnπ
]
0[u]π]0[φ]dx

=
M

SN

∫
∂B

π]0[u]π]0[φ]dσ

= −∆[π]0 ◦ (π]0)−1 ◦ (−∆)−1 ◦ JM ◦ Tr ◦ π]0[u]][π]0[φ]]

=

∫
B

∇(π]0[u]) · ∇(π]0[φ])dx =< T̃u, φ >(H1(B)/R),

hence w = T̃ u. In a similar way one can prove that ‖wn‖(H1(B)/R) → ‖w‖(H1(B)/R).
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In fact

lim
n→+∞

‖wn‖2
(H1(B)/R) = lim

n→+∞

∫
B

ρn

(
π]ρn [un]− π]0[u]

)
π]ρn [wn]dx

+ lim
n→+∞

∫
B

ρnπ
]
0[u]

(
π]ρn [wn]− π]0[wn]

)
dx

+ lim
n→+∞

∫
B

ρnπ
]
0[u]

(
π]0[wn]− π]0[w]

)
dx

+ lim
n→+∞

∫
B

ρnπ
]
0[u]π]0[w]dx

=
M

SN

∫
∂B

π]0[u]π]0[w]dσ = ‖w‖2
(H1(B)/R) .

This proves ii). As for point iii), let un → u in (H1(B)/R). Then there exists
C ′′ such that ‖un‖(H1(B)/R) ≤ C ′′ for all n. Then, by the same argument used for
point ii), for each sequence nj → +∞, possibly passing to a subsequence, we have
T̃njunj → T̃ u. Since this is true for each {nj}j∈N, we have the convergence for

the whole family, i.e., T̃nun → T̃ u. This concludes the proof of the Theorem.

Corollary 4.0.35. Let B be the unit ball in RN . Let ρn defined as in Lemma
4.0.19. Let λj[ρn] be the eigenvalues of problem (3.0.2) on B for all j ∈ N. Let
λj, j ∈ N denote the eigenvalues of problem (4.0.2) on B corresponding to the
constant surface density M

SN
. Then for all j ∈ N, we have limn→+∞ λj[ρn] = λj

for all j ∈ N.

Finally we show that this result also holds for bounded domains of RN of class
C2. Let M be a parametric hypersurface in R3 of class C2, i.e., a φ : D → R3,
where D is a bounded open subset of R2 and φ ∈ C2(D̄). Moreover, we assume
that Dφ(u, v) is injective at each (u, v) ∈ D. We set

M(ε) := {φ(u, v) + tν(u, v) : (u, v) ∈ D, 0 < t < ε} ,

where ν(u, v) is the normal vector to φ(u, v), given by

ν(u, v) =
∂φ
∂u
∧ ∂φ

∂v∣∣∂φ
∂u
∧ ∂φ

∂v

∣∣ .
We consider the map ψ from D × ]0, ε[ onto M(ε) defined by

ψ(u, v, t) = φ(u, v) + tν(u, v)

for all (u, v) ∈ D, t ∈ ]0, ε[.
In the sequel we will need the following Lemma. For the sake of completeness

we include also statement ii).

Lemma 4.0.36. Let M be a parametric hypersurface and (D,φ) a parametriza-
tion of M . Assume that infD

∣∣∂φ
∂u
∧ ∂φ

∂v

∣∣ > 0. Let fε, f ∈ H1(Ω) for all ε > 0 be
such that fε → f in H1(Ω) as ε → 0. Moreover, assume that ψ is a diffeomor-
phism for ε sufficiently small. Then we have

i)

lim
ε→0

1

ε

∫
M(ε)

fdV =

∫
M

fdσ; (4.0.37)
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ii)

lim
ε→0

1

ε

∫
M(ε)

(fε − f) dV = 0, (4.0.38)

where dV = dxdydz.

Proof. We consider

1

ε

∫
M(ε)

f(x, y, z)dxdydz =
1

ε

∫ ε

0

∫
D

f(u, v, t) |detDψ| dudvdt,

and compute the limit as ε→ 0. We observe that

detDψ = det
[
∂φ
∂u
, ∂φ

∂v
, ν(u, v)

]
+ tdet

[
∂ν
∂u
, ∂φ

∂v
, ν(u, v)

]
(4.0.39)

− tdet
[
∂ν
∂v
, ∂φ

∂u
, ν(u, v)

]
+ t2det

[
∂ν
∂u,

∂ν
∂v
, ν(u, v)

]
.

Moreover

1

ε

∫ ε

0

∫
D

f(u, v, t) |detDψ| dudvdt =

1

ε

∫ ε

0

∫
D

(f(u, v, t)− f(u, v, 0)) |detDψ| dudvdt

+
1

ε

∫ ε

0

∫
D

f(u, v, 0) |detDψ| dudvdt. (4.0.40)

For the first summand in the right-hand side of (4.0.40), we observe that for a.e.
(u, v) ∈ D, we have
|f(u, v, t)− f(u, v, 0)| ≤

∫ ε
0

∣∣ ∂f
∂t′

(u, v, t′)
∣∣ dt′. Then, since f ∈ H1(M(ε)), we have

1

ε

∫ ε

0

∫
D

|f(u, v, t)− f(u, v, 0)| |detDψ| dudvdt

≤
∫
D

∫ ε

0

∣∣∣∣∂f∂t (u, v, t)

∣∣∣∣ |detDψ| dtdudv

≤ |M(ε)|
1
2 ‖∇f‖L2(M(ε)) .

Thus the first summand in the right-hand side of (4.0.40) vanishes as ε→ 0. For
the second summand, observe that for (u, v) ∈ D

lim
ε→0

1

ε

∫ ε

0

|detDψ(u, v, t)| dt =
∣∣det

[
∂φ
∂u
, ∂φ

∂v
, ν(u, v)

]∣∣ =

∣∣∣∣∂φ∂u ∧ ∂φ∂v
∣∣∣∣ ,

since the terms in (4.0.39) containing t vanish as ε → 0. The last quantity is
exactly the area element of the surface. Then we get

lim
ε→0

1

ε

∫
M(ε)

fdV =

∫
M

fdσ.
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Now we prove statement ii). We consider

1

ε

∫
M(ε)

(fε − f) dV =
1

ε

∫ ε

0

∫
D

(fε(u, v, t)− f(u, v, t)) |detDψ| dudvdt

=
1

ε

∫ ε

0

∫
D

(fε(u, v, 0)− f(u, v, 0)) |detDψ| dudvdt

+
1

ε

∫ ε

0

∫
D

∫ t

0

(
∂fε
∂t′

(u, v, t′)− ∂f

∂t′
(u, v, t′)

)
dt′ |detDψ| dudvdt

≤ 1

ε

∫ ε

0

∫
D

|fε(u, v, 0)− f(u, v, 0)| |detDψ| dudvdt (4.0.41)

+
1

ε

∫ ε

0

∫
D

∫ t

0

∣∣∣∣∂fε∂t′
(u, v, t′)− ∂f

∂t′
(u, v, t′)

∣∣∣∣ dt′ |detDψ| dudvdt.

We set G1(u, v) =
∣∣det

[
∂ν
∂u
, ∂φ

∂v
, ν(u, v)

]
− det

[
∂ν
∂v
, ∂φ

∂u
, ν(u, v)

]∣∣, G2(u, v) =∣∣det
[
∂ν
∂u,

∂ν
∂v
, ν(u, v)

]∣∣. We have for the first summand of (4.0.41)

1

ε

∫ ε

0

∫
D

|fε(u, v, 0)− f(u, v, 0)| |detDψ| dudvdt

≤ 1

ε

∫ ε

0

∫
D

|fε(u, v, 0)− f(u, v, 0)|
∣∣∣∣∂φ∂u ∧ ∂φ∂v

∣∣∣∣ dudvdt
+

1

ε

∫ ε

0

∫
D

|fε(u, v, 0)− f(u, v, 0)| tG1(u, v)dudvdt

+
1

ε

∫ ε

0

∫
D

|fε(u, v, 0)− f(u, v, 0)| t2G2(u, v)dudvdt

=

∫
M

|fε − f | dσ

+
ε

2

∫
D

|fε(u, v, 0)− f(u, v, 0)|G1(u, v)dudv

+
ε2

3

∫
D

|fε(u, v, 0)− f(u, v, 0)|G2(u, v)dudv

≤ C(ε)

∫
M

|fε − f | dσ,

where

C(ε) = 1 +

(
inf
D

∣∣∣∣∂φ∂u ∧ ∂φ∂v
∣∣∣∣)−1

(
ε ‖G1‖L∞(D)

2
+
ε2 ‖G2‖L∞(D)

3

)
,

and C(ε) → 1 as ε → 0. Thus the first summand in (4.0.41) vanishes as ε → 0
because fε → f in L2(M) hence in L1(M). Now we consider the second summand
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in (4.0.41). We have

1

ε

∫ ε

0

∫
D

∫ t

0

∣∣∣∣∂fε∂t′
(u, v, t′)− ∂f

∂t′
(u, v, t′)

∣∣∣∣ dt′ |detDψ| dudvdt

≤ 1

ε

∫ ε

0

∫
D

t
1
2

(∫ t

0

∣∣∣∣∂fε∂t′
(u, v, t′)− ∂f

∂t′
(u, v, t′)

∣∣∣∣2 dt′
) 1

2

|detDψ| dudvdt

≤ C

ε

∫ ε

0

t
1
2

(∫
D

∫ t

0

∣∣∣∣∂fε∂t′
(u, v, t′)− ∂f

∂t′
(u, v, t′)

∣∣∣∣2 |detDψ| dt′dudv

) 1
2

dt

≤ Cε
1
2 ‖∇ (fε − f)‖L2(M(ε)) ,

where C =
(∫

D
|detDψ| dudv

) 1
2 . This concludes the proof.

Remark 4.0.42. Clearly the same result holds for hypersurfaces in RN . In fact,
given a parametrization φ from D ⊂ R(N−1) to RN of the hypersurface M , we
define the set M(ε) in the same way as in the previous case. In this case the
normal vector at φ(u1, ..., uN−1) is given by

ν(u1, ..., uN−1) =

∂φ
∂u1
∧ · · · ∧ ∂φ

∂uN−1∣∣∣ ∂φ∂u1
∧ · · · ∧ ∂φ

∂uN−1

∣∣∣ .
The diffeomorphism ψ of D×]0, ε[ onto M(ε) is defined as in the previous case.
Then, in the computation of detDψ we will obtain

detDψ = det
[
∂φ
∂u1

· · · ∂φ
∂uN−1

ν(u1, ..., uN−1)
]

+ tg1

(
∂φ

∂u1

,
∂ν

∂u1

, ...,
∂φ

∂uN−1

,
∂ν

∂uN−1

)
+ · · ·

+ tN−1gN−1

(
∂φ

∂u1

,
∂ν

∂u1

, ...,
∂φ

∂uN−1

,
∂ν

∂uN−1

)
,

where gi are suitable compositions of sums and products of the first partial deriva-
tives of φ and ν. The first term in the sum is equal to∣∣∣∣ ∂φ∂u1

∧ · · · ∧ ∂φ

∂uN−1

∣∣∣∣ ,
which is the area element of the hypersurface. Now, the extension of Lemma
4.0.36 to hypersurfaces in RN is straightforward.

Let Ω be a subset of RN . We define the set (∂Ω)ε0 by

(∂Ω)ε0 =
{
x ∈ RN : d(x, ∂Ω) < ε0

}
.

Theorem 4.0.43. (Tubular neighborhood Theorem). Let Ω be a bounded domain
in RN of class C2. Then there exists ε0 > 0 such that for each x ∈ (∂Ω)ε0 there
exists a unique couple (x̄, s) ∈ ∂Ω×]− ε0, ε0[ such that x = x̄+ sν(x̄); moreover,
x̄ is the (unique) nearest to x point of the boundary and s = d(x, ∂Ω). Finally,
possibly reducing the value of ε0, the map x→ (x̄, s) is a diffeomorphism of class
C1 of (∂Ω)ε0 onto ∂Ω×]− ε0, ε0[.
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Lemma 4.0.44. Let Ω be a bounded domain in RN of class C2 and ε0 > 0 as in
Theorem 4.0.43. Let 0 < ε < ε0. We denote by Ωε the set {x ∈ Ω : d(x, ∂Ω) > ε}.
Let M > 0 and ρε ∈ R be defined by

ρε(x) :=

{
ε, if x ∈ Ωε,
M−ε|Ωε|
|Ω\Ωε| , if x ∈ Ω \ Ωε,

(4.0.45)

for all 0 < ε < ε0. Let π]ρε the map from the space (H1(Ω)/R) onto the space

H1,0
ρε (Ω) :=

{
u ∈ H1(Ω) :

∫
Ω
ρεudx = 0

}
defined by the equality πρε = π]ρε ◦ p,

where

πρε [u] = u−
∫

Ω
ρεudx∫

Ω
ρεdx

, ∀u ∈ H1(Ω).

Let π]0 the map from (H1(Ω)/R) onto H1,0
∂Ω(Ω) :=

{
u ∈ H1(Ω) :

∫
∂Ω

udσ = 0
}

defined by the equality π0 = π]0 ◦ p, where

π0[u] = u−
∫
∂Ω
udσ

|∂Ω|
, ∀u ∈ H1(Ω).

Then the following statements hold true:

i) For all φ ∈ (H1(Ω)/R), π]ρε [φ]→ π]0[φ] in L2(Ω) (hence also in H1(Ω));

ii) if uε ⇀ u in (H1(Ω)/R), then (possibly passing to a subsequence) π]ρε [uε] →
π]0[u] in L2(Ω);

iii) assume that uε → u, wε → w in L2(Ω), Tr[uε] → Tr[u], Tr[wε] → Tr[w] in
L2(∂Ω), and that ‖∇uε‖L2(Ω) , ‖∇u‖L2(Ω) ≤ C, ‖∇wε‖L2(Ω) , ‖∇w‖L2(Ω) ≤ C
uniformly in 0 < ε < ε0. Then∫

Ω

ρε (uε − u)wεdx→ 0

and ∫
Ω

ρε (wε − w)udx→ 0.

Proof. The proof of the first two statements follows the same arguments used in
the proof of Lemma 4.0.19. Now we prove statement iii). It clearly suffices to
prove that

lim
ε→0

∫
Ω

ρεuεwεdx. (4.0.46)

whenever uε → 0 in L2(Ω) and Tr[uε]→ 0 in L2(∂Ω). We have that∫
Ω

ρεuεwεdx = ε

∫
Ωε

uεwεdx+ C(ε)

∫
Ω\Ωε

uεwεdx,

where C(ε) = M−ε|Ωε|
|Ω\Ωε| . The first summand clearly goes to zero as ε → 0. By

multiplying and dividing the second summand by ε and observing that εC(ε) ≤
C ′ < +∞ for ε ≤ ε0, we obtain∣∣∣∣∫

Ω

ρεuεwεdx

∣∣∣∣ ≤ Cε+ C ′ · 1

ε

∫
Ω\Ωε
|uεwε| dx.
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We now apply Theorem 4.0.43. Let then x0 ∈ ∂Ω and U0 be a neighborhood
of x0 in RN such that there exists V0 ⊂ RN−1 and a parametrization φ ∈ C2(V0)
such that the map ψ from V0×]0, ε[ onto M(ε) = {x ∈ Ω : d(x, ∂Ω ∩ U0) < ε}
defined by

ψ(p, t) = φ(p) + tν(p)

is a diffeomorphism from V0×]0, ε[ onto M(ε). Here ν(p) denotes the unit inner
normal at φ(p). Now we consider

∫
M(ε)

1

ε
|uεwε| dx =

∫
V0

∫ ε

0

|detDψ|
ε

|uε(p, t)| |wε(p, t)| dtdp. (4.0.47)

For almost every p ∈ V0, uε(p, t), wε(p, t) are absolutely continuous on [0, ε] and
since this set is compact, also their product is absolutely continuous. Let p be
fixed. We have

uε(t)wε(t) = uε(0)wε(0) +

∫ t

0

∂uε
∂t′

(t′)wε(t
′) + uε(t

′)
∂wε
∂t′

(t′)dt′,(4.0.48)

uε(t
′) = uε(0) +

∫ t′

0

∂uε
∂t′′

(t′′)dt′′,

wε(t
′) = wε(0) +

∫ t′

0

∂wε
∂t′′

(t′′)dt′′.

We observe that, for fixed ε and for almost every p ∈ V0, the quantity C1(t, p) =(∫ t
0

∣∣∂uε
∂t′

(t′, p)
∣∣2 dt′) 1

2
is increasing in 0 ≤ t ≤ ε and C1(t, p) ≤ C1(ε, p) for all

0 ≤ t ≤ ε. The same result holds for C2(t, p) =
(∫ t

0

∣∣∂wε
∂t′

(t′, p)
∣∣2 dt′) 1

2
. Then

|uε(t′)| ≤ |uε(0)|+ t′
1
2C1(t′) ≤ |uε(0)|+ t

1
2C1(ε), (4.0.49)

|wε(t′)| ≤ |wε(0)|+ t′
1
2C2(t′) ≤ |wε(0)|+ t

1
2C2(ε). (4.0.50)

Now, let’s consider the right hand side in (4.0.47). By using (4.0.49):∫
V0

∫ ε

0

|detDψ|
ε

|uε(p, t)| |wε(p, t)| dtdp (4.0.51)

≤
∫
V0

∫ ε

0

1

ε
|uε(p, 0)| |wε(p, 0)| |detDψ| dtdp

+ ‖detDψ‖L∞(V0×[0,ε])

∫
V0

∫ ε

0

1

ε

∫ t

0

∣∣∣∣∂uε∂t′
(p, t′)

∣∣∣∣ |wε(p, t′)| dt′dtdp
+ ‖detDψ‖L∞(V0×[0,ε])

∫
V0

∫ ε

0

1

ε

∫ t

0

|uε(p, t′)|
∣∣∣∣∂wε∂t′

(p, t′)

∣∣∣∣ dt′dtdp.
Now using the same argument in the proof of point iii) of Lemma 4.0.19, one
can show that the second and third summand vanish as ε → 0. For the first
summand, we observe that by Remark 4.0.42 we have

detDψ = det
[
∂φ
∂p1

· · · ∂φ
∂pN−1

ν(p1, ..., pN−1)
]

+ tg1

(
∂φ

∂p1

,
∂ν

∂p1

, ...,
∂φ

∂pN−1

,
∂ν

∂pN−1

)
+ · · ·

+ tN−1gN−1

(
∂φ

∂p1

,
∂ν

∂p1

, ...,
∂φ

∂pN−1

,
∂ν

∂pN−1

)
,
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where p = (p1, ..., pN−1) and gi are suitable compositions of sums and products
of the first partial derivatives of φ and ν. It is not restrictive to assume that

infV0

∣∣∣ ∂φ∂p1
∧ · · · ∧ ∂φ

∂pN−1

∣∣∣ > 0. Now, using the same argument as in the proof of

statement ii) of Lemma 4.0.36, we obtain

1

ε

∫
V0

∫ ε

0

|uε(p, 0)| |wε(p, 0)| |detDψ| dtdp

≤ 1

ε

∫ ε

0

∫
V0

|uε(p, 0)| |wε(p, 0)|
∣∣∣∣ ∂φ∂p1

∧ · · · ∧ ∂φ

∂pN−1

∣∣∣∣ dpdt
+

N−1∑
i=1

1

ε

∫ ε

0

∫
V0

|uε(p, 0)| |wε(p, 0)| ti |gi(p)| dpdt

≤ C(ε)

∫
∂Ω∩U0

|uε| |wε| dσ,

where

C(ε) = 1 +

(
inf
V0

∣∣∣∣ ∂φ∂p1

∧ · · · ∧ ∂φ

∂pN−1

∣∣∣∣)−1

·
N−1∑
i=1

εi

i+ 1
‖gi‖L∞(D) ,

and C(ε) → 1 as ε → 0. Since Tr[uε] → 0 in L2(∂Ω) as ε → 0, it follows that
also the first summand vanishes as ε→ 0. Since Ω \Ωε can be covered by a finite
number of open sets of the type M(ε), say Ω \ Ωε ⊂

⋃m
i=1Mi(ε), we have that

1

ε

∫
Ω\Ωε
|uεwε| dx ≤

m∑
i=1

1

ε

∫
Mi(ε)

|uεwε| dx.

This concludes the proof.

Corollary 4.0.52. Let Ω be a bounded domain in RN of class C2. Let ρn defined
as in Lemma 4.0.44. Let λj[ρn] be the eigenvalues of problem (3.0.2) for all j ∈ N.
Let λj, j ∈ N denote the eigenvalues of problem (4.0.2) corresponding to the
constant surface density M

|∂Ω| . Then for all j ∈ N, we have limn→+∞ λj[ρn] = λj
for all j ∈ N.

Proof. It is sufficient to repeat the proof of Theorem 4.0.33 by using Lemma

4.0.44. The compact convergence of compact operators
{
T̃n

}
n∈N

to the compact

operator T̃ in K ((H1(Ω)/R), (H1(Ω)/R)) implies norm convergence, and hence
spectral convergence by Theorem 4.0.31.
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