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1 Generalities on partial differential equations

1.1 Definition and classification

In this notes we will look at the numerical solution for partial differential equations. We will
be mainly concerned with differential models stemming from conservation laws, such as those
arising from force conservations i.e., second Newton’s law F = ma, such as de Saint-Venant
equations, governing the equilibrium of a solid, or the Navier-Stokes equations, governing
the dynamics of fluid flow. These equations are also called “equations in divergence form”,
to identify the fact that the divergence of a vector translates in mathematical terms the
conservation of the flux represented by that vector field. As an example, let us consider
the advection-diffusion equation (ADE), that governs the conservation of mass of a solute
moving within the flow of the containing solvent. A typical application is the transport of a
contaminant by a water body moving with laminar flow. The flow of the solvent is given by
the vector (velocity) field β, and the solute is undergoing chemical (Fickian) diffusion with a
diffusion field given by D(x). We remark that if the density of the solvent is constant, then
mass conservation is equivalent to volume concentration, and thus density does not appear in
the equations. The mathematical model is then given by:

∂u

∂t
= div (D∇u)− div(βu) + f in Ω ∈ Rd (1.1)

where the equation is defined on a subspace of the d-dimensional Euclidean space Rd (generally,
d = 1, 2, or 3), the function u(x, t) : Ω × [0 : T ] −→ R represents the concentration of the
solute (mass/volume of solute per unit mass/volume of solvent), t is time, div =

∑
i ∂/∂xi

is the divergence operator, D is the diffusion coefficient, possibly a second order tensor, and
∇ = {∂/∂xi, i = 1, d} is the gradient operator. The conservation property mentioned above
can be pointed out by a simple application of the divergence theorem. To this aim, we denote
with q = −D∇u − ~vu the vector representing the flux of a quantity (e.g., mass, energy,
momentum, etc), integrate equation (1.1) and use the divergence theorem to obtain:

∂

∂t

∫
Ω

u dx =

∫
∂Ω

q · ν ds+

∫
Ω

f dx

where ∂Ω is the boundary of Ω, assumed sufficiently regular, and ν is the unit outward normal
to ∂Ω. The boundary integral on the right hand side can be interpreted as the balance of the
total flux, i.e., the balance between ingoing and outgoing fluxes across the domain boundary.
In other words, the PDE tells us that the total flux balance of the quantity (in this case the
quantity is the mass of the solute) must be equilibrated by the temporal accumulation (the
time derivative) and the total source/sink terms. We note that the equation:

q = −D∇u+ ~vu
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can be derived from Newton’s first law ~F = m~a, and it represents the momentum balance of
the quantity of interest.
The definition of a well posed problem requires auxiliary conditions, in this case given by
initial and boundary conditions. So we let the domain boundary Γ = ∂Ω be the union of three
non overlapping sub-boundaries such that Ω = ΓD ∪ ΓN ∪ ΓC , so that we:

u(x, 0) = uo(x) x ∈ Ω, t = 0 initial conditions

u(x, t) = go(x) x ∈ ΓD, t > 0 Dirichlet BCs

D∇u(x, t) · ν = qN(x) x ∈ ΓN , t > 0 Neumann BCs

(~vu+D∇u(x, t)) · ν = qc(x) x ∈ ΓC , t > 0 Cauchy(ormixedorRobin)BCs

where ν is the outward unit normal defined on Γ. Formally, under some regularity assumption
and the assumption that D never vanishes, this is called a “parabolic” equation.
The term “parabolic” is used to classify partial differential equations (PDEs) on the basis of
certain qualitative properties of the solution. This can be done relatively easily with linear
PDEs, and becomes more complicated for nonlinear PDEs. We start this discussion by giving
a general definition of a PDE:

Problem 1.1 (PDE). Find a function u(x, y, z) : Rd −→ R such that:

F (x, y, z, u, ux, uy, uz, uxx, uxy, uyy, uxz, uzz, uyz) = 0. (1.2)

where ux e uxx are the first and second partial derivatives of u with respect to x.

If F is a linear function of u and its derivatives, then the equation is called linear, and,
assuming d = 2, it can be written as:

a(x, y) + b(x, y)u+ c(x, y)ux + d(x, y)uy + e(x, y)uxx + f(x, y)uyy+ = 0. (1.3)

The order of a PDE is the order of the derivative of maximum degree that appears in the
equation. Thus, in the previous case the order is 2. Typical examples are:

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0 2o grade (Laplace equation)

∂u

∂t
+
∂u

∂x
= 0 1o grade (transport or convection equation)

∂u

∂t
− ∂2u

∂x2
= 0 2o grade (diffusion equation).

To start in our task of classification, assume for simplicity a 2-dimensional domain d = 2, and
a constant coefficient second order PDE:

auxx + buxy + cuyy + e = 0. (1.4)
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σ

Figure 1.1: Curve γ and local reference system

We look for a curve γ : R2 −→ R that is sufficiently regular and such that when we write the
PDE along this curve it turns into and Ordinary Differential Equation (ODE). We write this
curve in parametric form as γ(σ) (Figure 1.1) as follows:

γ =

{
x = x(σ)
y = y(σ)

Writing the above equations on a local reference system, we obtain:

dux
dσ

=
∂ux
∂x

dx

dσ
+
∂ux
∂y

dy

dσ
= uxx

dx

dσ
+ uxy

dy

dσ
duy
dσ

=
∂uy
∂x

dx

dσ
+
∂uy
∂y

dy

dσ
= uxy

dx

dσ
+ uyy

dy

dσ
.

Writing uxx from the previous system and substituting it in (1.4), we have:

uxy

[
a

(
dy

dx

)2

− bdy
dx

+ c

]
−
(
a
dux
dx

dy

dx
+ c

duy
dx

+ e
dy

dx

)
= 0.

This equation is a re-definition of the PDE on the curve γ(σ), or, in other words, the equation
is satisfied on γ. Now we can choose γ so that the first term in square brackets is zero,
obtaining an equation for ux and uy where only ordinary derivatives appear:

a

(
dy

dx

)2

− bdy
dx

+ c = 0.

We note that dy/dx is the slope of γ, which can then be obtained by solving the ODE:

dy

dx
=
b±
√
b2 − 4ac

2a
. (1.5)

The solution of this ODE yields families of curves, that are called characteristic curves. Dif-
ferent families arise depending on the sign of the discriminant ∆ = b2− 4ac. We then call the
equations depending on this sign, obtaining the following classification:

• b2 − 4ac < 0: two complex solutions: the equation is “elliptic”;

• b2 − 4ac = 0: one real solution: the equation is “parabolic”;
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• b2 − 4ac > 0: two real solutions: the equation is “hyperbolic”.

Thus we have easily the following examples:

• Laplace equation:

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0

a = c = 1 b = 0 −→ b2 − 4ac < 0 is an elliptic equation;

• wave equation:

∂2u

∂t2
+
∂2u

∂x2
= 0 (1.6)

a = 1 b = 0 c = −1 −→ b2 − 4ac > 0 is a hyperbolic equation;

• diffusion equation:

∂u

∂t
− ∂2u

∂x2
= 0

a = 1 b = c = 0 −→ b2 − 4ac = 0 is a parabolic equation.

It is important now to understand what is the typical behavior of each of this class of equations.

1.2 Simple examples and solutions

We show in this paragraph some simple but clarifying examples of PDEs and their exact
analytical solution. From these solutions we will extrapolate some typical characteristics of
the solutions of PDEs.

Example 1.2. Find u : [0, 1] −→ R such that:

−u′′ = 0 x ∈ [0, 1]

u(0) = 1;

u(1) = 0.

This is a elliptic equation. In this simple case the solution is obtained directly by integration
between x = 0 and x = 1. We have:

u(x) = 1− x.
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Example 1.3. Find u : [0, 1] −→ R such that:

−(a(x)u′)′ = 0 x ∈ [0, 1] (1.7)

u(0) = 1;

u(1) = 0;

where the diffusion coefficient a(x) assumes the values:

a(x) =

{
a1 if 0 ≤ x < 0.5

a2 if 0.5 < x ≤ 1

Since a(x) > 0 for each x ∈ [0, 1] is is an elliptic equation. In this case the solution can be
obtained by first subdividing the domain interval in two halves and integrating the equation
in each subinterval:

u(x) =

{
u1(x) = c1

1x+ c1
2 x ∈ [0, 0.5)

u2(x) = c2
1x+ c2

2 x ∈ (0.5, 1].

We can see that the solutions are defined in terms of four constants. We need thus four
equations. Two are given by the boundary conditions, but the other two are still missing. One
natural condition is the request that u(x) be continuous (at least C0([0, 1])) in the domain [0, 1].
The second condition can be determined by looking at the left-hand-side of equation (1.7) and
looking for existence requirement of this term. Before we discuss this requirement we note
that we can define the “flux” of u(x) as q(x) = −a(x)u′(x). Hence, the requirement for the
existence of the left-hand-side (as long as we do not use the product rule for the derivative
of the flux) is that q(x) must be continuous for all x ∈ [0, 1] (again the requirement here
is q(x) ∈ C0([0, 1]). This observation suggests the sought condition, that yield the following
system of equations for the constants ci:

u1(0) = 0 u2(1) = 0;

u1(0.5) = u2(0.5) q1(0.5) = q2(0.5),

−a1(0.5)u′1(0.5) = −a2(0.5)u′2(0.5).

We note that the last condition physically means that the flux of the quantity u(x) that exits
from the subdomain on the left of x = 0.5 enters the subdomain on the right of x = 0.5. It is
a conservation statement. Solving the system, the solution becomes:

u(x) =

{
1− 2a2

a1+a2
x x ∈ [0, 0.5]

2a1
a1+a2

− 2a1
a1+a2

x x ∈ [0.5, 1],

shown in Figure 1.2 in the case a1 = 1 and a2 = 10.
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x

u(x)

Figure 1.2: Solution of problem 1.3 for a1 = 1 and a2 = 10.

Remark 1.4. The previous example shows that the differential equation with discontinuous
coefficients has a solution that is continuous but not differentiable: the gradient is discontinu-
ous. On the other hand the flux is continuous, and thus more regular. We will use this fact in
to properly define our numerical solution. This property, that can be also shown theoretically,
is very important in applications, and characterizes “conservation laws”. In other words, the
partial differential equation (1.7) represents the balance of the quantity u(x). This quantity can
be thought of as mass, then the equation is a mass-balance equation, a temperature, in which
case the equation is an energy conservation equation, a fluid velocity, and then the equation is
a force balance equation (first Newton law), etcetera. The determination of the conservation
properties of numerical discretization schemes is an active and important field of research in
the case of highly variable diffusion coefficients.

We would like to remark that in the case of jumps in the diffusion coefficient we cannot use
the product rule to expand the left-hand-side of equation (1.7). In fact we cannot write the
following:

−a(x)u′′(x)− a′(x)u′(x) = 0

because both u′′(x) and a′(x) do not exist for x = 0.5. However, the solution u(x) exists and is
intuitively sound, i.e., without any singularity, although it does not possess a second derivative.
Hence, the equation must be written exclusively as in (1.7). In general, using the chain rule for
derivative is numerically counterproductive even if the regularity of the mathematical objects
allows it.
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Example 1.5 (Poisson equation). Find u : [0, 1] −→ R such that:

−u′′ = f(x) x ∈ [0, 1] (1.8)

u(0) = u(1) = 0 (1.9)

with

f(x) =

{
1 if x = 0.5,

0 otherwise..

This is an elliptic equation. The solution if this problem can be found by means of Green’s
functions (see Section 2.1) and is given by:

u(x) =

{
1
4
(1− x) if 0 ≤ x ≤ 0.5,

1
4
(x− 1) if 0.5 ≤ x ≤ 1.

(1.10)

This solution is continuous but it has a piecewise constant first derivative with a jump in
x = 0.5. Hence the second derivative u′′(x) does not exists in the midpoint. This seems a
contradiction as in this case the left-hand-side of equation (1.8) does not exists for all x ∈ [0, 1].
However, the solution u(x) given in (1.10) in terms of the integral of the Green’s function is
mathematically sound. Thus we need to define a more “forgiving” formulation, whose solution
can have discontinuous first derivatives. This is the role of the so called “weak” formulation
to be seen in the next sections.

Example 1.6. Transport equation.
Given a vector field of constant velocity β > 0, find the function u = u(x, t) such that:

ut + βux = 0, (1.11a)

u(x, 0) = f(x). (1.11b)

The characteristic curve is a line in the plane (x, t) given by:

x− βt = const = ξ. (1.12)

Along this line the original equation (1.11a) becomes:

du

dt
=

∂

∂t
u(ξ + βt, t) = βux + ut = 0.

Hence, the solution u is constant along a characteristic curve and this constant is determined
by the initial conditions (1.11b):

u(x, t) = f(ξ) = f(x− βt). (1.13)

At a fixed time t1 the solution is given by the rigid translation of the initial condition (f(x))
by a quantity βt1, as shown in Figure 1.3 (right panel).
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Figure 1.3: Left panel: characteristic lines for equation (1.11a) in the (x, t) plane. Right
panel: graph of the solution u(x, t) at t = 0 and t = t1 > 0 in the (u, x) plane. The solution
is a wave with shape given by f(x) (a line in this case) that propagates towards the right with
speed β.

Example 1.7. Advection (or convection) and diffusion equation (ADE).
Find the function u(x, t) : [0, T ]× R 7→ R such that:

∂u

∂t
= D

∂u2

∂x2
− v∂u

∂c
, (1.14a)

u(x, t) = 1 for x = 0, (1.14b)

u(x, t) = 0 for x −→∞, (1.14c)

u(x, 0) = 0 for t = 0 and x > 0, (1.14d)

u(x, 0) = 1 for t = 0 and x = 0. (1.14e)

The solution is given by [6]:

u(x, t) =
1

2

[
erfc

(
x− vt
2
√
Dt

)
+ exp

( vx
Dt

)
erfc

(
x+ vt

2
√
Dt

)]
,

where the function erfc is the complementary error function.

1.3 Conservation laws

From the physical point of view, the problems that we are facing are related to the principle
of conservation. For example the equilibrium of an elastic string fixed at the end points
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and subject to a distributed load is governed by an equation that determines the vertical
displacement u(x) of the points ox of the string and its tension stresses σ(x), once the load
g(x) and the elastic characteristics of the string E (Young’s modulus) are specified. The
problem (D) is written as:

σ(x) = Eu′(x) Hook’s law;

−σ′(x) = g(x) Elastic equilibrium;

u(0) = u(1) = 0 Boundary conditions.

Another interpretation of the same problem can be thought of as u(x) being the temperature
of a rod subjected to a heat source g(x). In this case the symbol k is generally used in place
of E to identify the thermal conductivity of the rod material and q(x) is the heat flux. The
model thus is written as:

q(x) = −ku′(x) Fourier’s law; (1.15a)

q′(x) = g(x) Energy conservation; (1.15b)

u(0) = u(1) = 0 Boundary conditions. (1.15c)

The same equation can be thought as governing the diffusion of a substance dissolved in a
fluid. In this case we talk about Fick’s law, concentration u(x). diffusion coefficient k, solute
mass flux q(x). Yet another interpretation of the same equation is the flow of water in a
porous material. We talk then about Darcy’s law. More in general, we can say that all
these equations represent a conservation principle. In fact, equation (1.15a) represents the
conservation of momentum deriving from Newton second law (F = ma), while (1.15b) states
the conservation of the energy of the system.
All these problems are equations written in “divergence form” or in conservative form. For
example, consider the advection-diffusion equation (1.1). From the physical point of view, our
solution function u represents the density of the conserved quantity. Thus we can introduced
the density flux of this quantity as:

~q = −D∇u+ ~vu,

where the first term on the right-hand-side represents the diffusive flux and the second term
represents the advective flux (the quantity u is transported by the velocity ~v and at the same
time is diffused). Equation (1.1) can then be re-written as:

∂u

∂t
+ div ~q = f(x).

The first term represents the variation in time of the mass of this quantity. The second term
represents the variation in space. Integrating the above equation in a subset U ⊂ Ω of the
domain we have:∫

U

∂u

∂t
+ div ~q dx =

∫
U

f(x),

9



and assuming the boundary of U to be smooth, we can apply the divergence theorem:∫
U

∂u

∂t
dx+

∫
∂U

~q · ν ds =

∫
U

f(x).

We recognize the classical mass conservation principle:

rate of change = inflow-outflow

Note that from a purely mathematical point of view, writing the equation in divergence form
has no formal advantage with respect to any other alternative formulation. However, this is
not true for the numerical formulation, in which the divergence form is always to be preferred.

1.4 Well posedness and continuous dependence of solutions on the
data

The question of finding a solution to a PDE rests on the definition of solution. We can state
that a solution is a function that satisfies the equation and has certain regularity properties 1.
However, the answer to the question what is a solution can be tricky. For a clear account
and several interesting examples see [7]. We report here a few remarks that are useful for the
developments and analysis of numerical methods.
We talk about a “classical” solution of a k-th order PDE to indicate a function that satisfies
the PDE and the auxiliary conditions and that is k times differentiable. This is an intuitive
requirement so that the derivatives that appear in the expression of the PDE can be formally
calculated without worrying about singularities. However, this notion is often too restrictive,
and there may be functions that are less regular that indeed satisfy the PDE and the auxiliary
conditions. Moreover, by this strong regularity requirements, we may restrict the search of
solutions only to cases that have enough regularity of the auxiliary conditions and of the data
of the problem (e.g. the coefficients of the PDE). Thus we usually resort to a less restrictive
definition of a solution, which is called a “weak” solution. Thus we need to change the
formulation of the PDE to accommodate this lower regularity requirement, maintaining at the
same time the physical notion of the process that lead to the PDE.

Remark 1.8. Example 1.3 gives an instance of the application of this concept: the global
solution, i.e., the solution over the entire domain I = [0, 1], is continuous but its derivative
is not. Thus a classical solution to the problem does not exist, but a “weak” solution can be
defined by appropriately relaxing the continuity conditions of the search space (the space of
functions that are candidate solutions).

In any case, it is intuitive to look for solutions that are unique. There is certainly no hope to
be able to find numerically a solution that is not unique. In fact, any computational algorithm

1This last request has to be made to avoid trivial and non interesting solutions.
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in this case would never converge and would oscillate continuously among the several solutions
of the problem. But uniqueness is not sufficient. We also require the notion of “continuous
dependence of the solution form the data of the problem”. In essence, we require that, if for
example some coefficients are changed slightly, then the solution changes slightly. This notion
is useful for two important reasons. First, in a computer implementation of any algorithm there
is no hope to be able to specify a coefficient (which is a real number) with infinite accuracy.
Next, and probably more importantly, uncertainties in physical constants or functions are
intrinsically present in any model of a physical process. This uncertainty results in values of,
e.g., boundary conditions or forcing functions that are not known precisely. But it is highly
desirable that our mathematical model governing the physics be relatively insensitive to these
uncertainties. This is reflected within the concept of well-posedness that we can make a little
bit more formal by stating the following:

Definition 1.1 (Well posedness). Given a problem governed by a k-th order PDE:

F (x, u, ∂u, . . . , ∂ku,Σ) = 0

where Σ denotes the set of the data defining the problem, we say that this problem is well
posed if:

1. the solution u exists;

2. the solution u is unique;

3. the solution u depends continuously on the data, i.e., if one element σ ∈ Σ is perturbed
by a quantity δ, the corresponding solution ũ to the perturbed problem is such that
‖ũ− u‖ ≤ L ‖δ‖.

Note that this is not a very precise statement, as we need to specify what we mean with the
symbol ‖·‖. But this definition depends on the functions with which we are dealing, and thus
it must be analyzed and specified for each problem.

1.4.1 Ill-conditioning and instability

Two more concepts that are related to well-posedneess need to be clearly stated when we
move from the continuous setting to the discrete (numerical) setting. The first we would like
to discuss is “ill-conditioning”. The “condition” of a problem is a property of the mathematical
problem (not of the numerical scheme used to solve it) and can be stated intuitively as follows:

Definition 1.2. A mathematical problem is said to be ill-conditioned if small perturbations
on the data cause large variations of the solution.

11
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Figure 1.4: Geometric interpretation of a “well-conditioned” (left) and an “ill-conditioned”
linear system (right).

The definition is problem specific, but a simple example related to linear algebra can be
illuminating.

Example 1.9. Consider the following 2× 2 system of linear equations:

3x+ 2y = 2 (1.16)

2x+ 6y = −8. (1.17)

The mathematical problem can be stated as follows:

Problem 1.10. find the pair of real values (x, y) such that equations (1.16) and (1.17) are
satisfied simultaneiusly.

The solution to this problem is evidently P = (x, y) = (2,−2). We can rewrite the lineaer
system as:

y = −3

2
x+ 1 (1.18)

y = −1

3
x− 4

3
. (1.19)

This reformulation, allows to change the problem into an equivalent formulation:

Problem 1.11. find the point P = (x, y) ∈ R2 that irepresents the point of intersection
between the two lines identified by equations (1.18) and (1.19) (see Figure 1.4).
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Now we want to analyze the conditioning of this problem. To do this we specify a small
perturbation to the data of our problem and look at how its solution changes. In our case we
can, for example, change the right hand side of the second equation by a quantity δ, yielding
a downward translation of the line (Figure 1.4, left). The point of intersection between the
two lines has now moved by a quantity ε ≈ δ. This problem is well-condition and the ratio
ε/δ measures somehow the conditioning of our problem.
Now, if the two lines have almos equal slopes, the situation is different (Figure 1.4, right). A
small perturbation δ to one if the right hand side values yield a large movement of the solution
(the point of intersection), by a quantity ε � δ. The conditioning is measured again by the
quantity ε/δ which is now much larger than one. The problem is thus “ill-conditioned”.
We note that both problems are actually “well-posed” as they admit a unique solution which
is continuously depedent upon the data. But the numerical solution may loose accuracy.

The second concept is called stability. Unlike conditioning, stability is a property of the
numerical scheme used to solve a mathematical problem. We say that a scheme is stable if
errors in initial data remain bounded as the algorithm progresses. As an example, consider
the following numerical algorithm given by the linear recursion:

u(k) = Au(k−1), k = 1, 2, . . .

where u(k) ∈ Rn, A is a constant n × n matrix, and the recursion is initiated with a given
(possibly arbitrary) initial guess u(0). The representation u

(0)
h of the values of u(0) in the

computer is not exact, so the actual algorithm involves the numerical approximation u
(k)
h :

u
(k)
h = Au

(k−1)
h , k = 1, 2, . . . (1.20)

Stability of the algorithm requires that the errors with which we represent u
(0)
h are not mag-

nified by the algorithm process. More formally, we define the error as e(k) = u(k) − u
(k)
h ,

k = 1, 2, . . .. From this last equation we have that u(k) = u
(k)
h + e(k), and after substitution in

eq. (1.20) we obtain the error propagation equation:

e(k) = Ae(k−1).

Stability of the scheme is achieved if the norm of the error remains bounded as k increases,
i.e. (using compatible norms):∥∥e(k)

∥∥ ≤ ∥∥Ae(k−1)
∥∥ ≤ ‖A‖∥∥e(k−1)

∥∥ ≤ ‖A‖k ∥∥e(0)
∥∥

which implies ‖A‖ ≤ 1.
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2 Galerkin Finite elements for elliptic equations

2.1 One spatial dimension

We start with some examples of simple elliptic problems. The 1-dimensional Poisson equation
can be written as the following boundary value problem:

Problem 2.1 (Differential).
Find the function u : [0, 1] −→ R that satisfies:

−u′′(x) = f(x),
(D)

u(0) = u(1) = 0,

where u′ = du/dx and u′′ = d2u/dx2.

We assume the forcing function f(x) : [0, 1] −→ R to be sufficiently regular so that the
solution exists and is unique. In fact, we assume that the above problem is “well-posed” in
the sense that there exists a unique solution u(x) that is continuously dependent on the data
of the problem, i.e., on the boundary conditions and the forcing function f(x). By repeated
integration we obtain:

−
∫ x

0

u′′(t) dt =

∫ x

0

f(t) dt;

−u′(x) = −u′(0) +

∫ x

0

f(t) dt;∫ x

0

u′(t) dt = u′(0)x−
∫ x

0

(∫ s

0

f(t) dt

)
dx;

u(x) = u(0) + u′(0)x−
∫ x

0

F (s) ds,

where we have defined the linear functional (function of an integral function) as:

F (s) =

∫ s

0

f(t) dt. (2.1)

From the boundary conditions we obtain immediately:

u(1) = 0 ⇒ u′(0) =

∫ 1

0

F (s) ds

from which we can write the solution to (D) as:

u(x) = x

(∫ 1

0

F (s) ds

)
−
∫ x

0

F (s) ds,
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Figure 2.1: Green’s function for different values of x.

which is obviously unique.
Integrating by parts equation (2.1) we obtain:∫ x

0

F (s) dt = [sF (s)]x0 −
∫ x

0

sF ′(s) ds =

∫ x

0

(x− t)f(t) dt,

from which the solution to problem (D) can be written as:

u(x) = x

∫ 1

0

(1− t)f(t) dt−
∫ x

0

(x− t)f(t) dt.

Define the Green’s function G(x, t) as:

G(x, t) =

{
t(1− x) if 0 ≤ t ≤ x;

x(1− t) if x ≤ t ≤ 1,

then the solution can be written in the more compact form:

u(x) =

∫ 1

0

G(x, t)f(t) dt.

The Green’s function has the following properties:

• is linear for fixed t;
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• is symmetric, i.e., G(x, t) = G(t, x);

• is continuous;

• is non negative, assuming the value zero only at the boundary of the interval [0, 1];

•
∫ 1

0
G(x, t) dt = 1

2
x(1− x).

The Green’s function is shown in Figure 2.1 for different values of x.

Remark 2.2. Problem (D) is well posed, i.e., the solution exists and is unique and it depends
continuously on the data of the problem (boundary conditions and forcing function f(x)).
We will come back in later sections on the concept of “well-posedness” and how this concept
translates in numerical analysis. We observe that this is a fundamental notion that is needed
to have any hope to find a numerical solution to any problem.

As practical example, we cite the model of the equilibrium configuration of an elastic rope
fixed at the two end-points subjected to a distributed load. In this case, we can indicate with
u : [0, 1] −→ R the vertical displacement of the rope points, σ : [0, 1] −→ R the rope stress,
and E is the Young modulus, and g(x) : [0, 1] −→ R is the distributed load acting on the rope.
Then problem (D) can be written as:

σ(x) = Eu′(x) Hook’s law;

−σ′(x) = g(x) elastic equilibrium; (2.2)

u(0) = u(1) = 0 boundary conditions.

Another typical model is the energy balance of a bar subjected to a thermal load. In this case
u(x) represents the temperature of the bar, g(x) the thermal load, q(x) is used to replace σ(x)
and represents the heat flux through the bar, and k is used in place of E and it represents the
thermal conductivity of the bar material. Then we can write:

q(x) = −ku′(x) Fourier’s law;

q′(x) = g(x) energy conservation;

u(0) = u(1) = 0 boundary conditions.

Again, we can write in the same way what is known as Fick’s Law, which states that the mass
flux of a solute is proportional to the opposite of the concentration gradient. Another typical
model that gives rise to an elliptic equation is Darcy’s law governing the flow of a fluid in a
porous medium. In more general terms, all these equations represent the model of a flow of
some quantity given a “potential” field.

17



2.1.1 Variational formulation

In this paragraph, we will briefly discuss the variational formulation for the solution of (D),
which is at the basis of the Finite Element Method (FEM). To do this, we introduce the
notion of linear normed functional spaces, i.e., spaces whose elements are functions and with
operations that are defined mainly in terms of the (Lebesgue) integral operator. Note that,
intuitively, there is a strong analogy between the vector spaces of linear algebra and the func-
tion spaces of functional analysis in terms of possibility of having a set of basis functions to
express every element of the space. Obviously, since function spaces are infinite-dimensional
(and they are uncountably so) there are many additional complications that need to be con-
sidered in these developments. In these sections we will briefly and very superficially recall
some of the properties of these functional spaces only if needed, and we will describe some of
the terminology typically used in the literature. Also the fact that the classical Riemann in-
tegration, typically taught in engineering calculus, has to be replaced by Lebesgue integration
is a technical need that has no influence in the considerations that follow. Later chapters will
deal with the more theoretical material, and thus more formal statements and more formal
definitions will be adopted. For a better understanding of this material we recall the relevant
literature.
Let V be a function space defined as:

V([0, 1]) = { v(x) : where v(x) is a bounded and continuous function on the interval I = [0, 1],

v′(x) is a piecewise continuous and bounded function in I,

and v(0) = v(1) = 0 } .
This function space is often called the “trial” space or the space of trial functions, i.e., the
space of candidate solutions. In other words we are searching for our solution only among all
functions that belong to the space V([0, 1]).
We can define an operation between the elements of this function space called “inner product”
or “scalar product”:

(v, w) =

∫ 1

0

v(x)w(x) dx,

from which a “functional” (function or map of functions) can be defined: F : V −→ R:

F (v) =
1

2
(v′, v′)− (f, v) + c.

We can then define the following “minimization” (M) and “variational” (V) problems, that, un-
der hypothesis that will be verified later, are equivalent to the initial differential problem (D),
equivalent in the sense that they have the same solution.

Problem 2.3 (Minimization).
Find u ∈ V such that:

F (u) ≤ F (v) ∀v ∈ V . (M)
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Problem 2.4 (Variational).
Find u ∈ V such that:

(u′, v′) = (f, v) ∀v ∈ V . (V)

Remark 2.5. For the elastic problem written in (2.2), the functional F (v) is the total “poten-
tial energy” of the system given the admissible displacement v(x). The mathematical statement
equivalent to the “admissibility” requirement of the previous sentence is that the function v(x)
must be an element of the space V, i.e., v(x) ∈ V. Thus the term 1

2
(v′, v′) is the elastic

energy of the system and (f, v) the potential of the external forces. From this observation we
can deduce that problem (M) is the formulation known as “principle of minimization of the
potential energy”, while problem (V) is the formulation of the “principle of virtual works”.

Equivalence between formulations (D), (M), and (V).

(D)⇒(V)

Proof. We need to show that the solution of (D) is also solution of (V). To do so, we can
multiply the PDE by an arbitrary function v ∈ V and integrate over the domain:

−
∫ 1

0

u′′(x)v(x) dx =

∫ 1

0

f(x)v(x) dx,

or, using the scalar product in V :

− (u′′, v) = (f, v) .

The left hand side can be integrated by parts, yielding:

− (u′′, v) = −u′(1)v(1) + u′(0)v(0) + (u′, v′) = (u′, v′) .

Finally, noting that v(0) = v(1) = 0 we can write:

(u′, v′) = (f, v) ∀v ∈ V . (2.3)

(V)⇔(M)

Proof. We want to show that (V) and (M) have the same solution. Let u(x) be a solution
of (V). Take a function v(x) ∈ V and define the function w(x) = v(x)− u(x) ∈ V . Then:

F (v) = F (u+ w) =
1

2
(u′ + w′, u′ + w′)− (f, u+ w) + c

=
1

2
(u′, u′)− (f, u) + c+ (u′, w′)− (f, w) +

1

2
(w′, w′) = F (u) +

1

2
(w′, w′) ≥ F (u),
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since equation (2.3) tells us that (u′, w′)− (f, w) = 0 and (w′, w′) ≥ 0. Since w is an arbitrary
function, than u is a minimizer of F (u), and thus u is solution of (M).

The opposite direction can be shown as follows. Let u be solution of (M). Then for each v ∈ V
and ε ∈ R, we have:

F (u) ≤ F (u+ εv),

since u+ εv ∈ V . Define the differentiable function g(ε) as:

g(ε) := F (u+ εv) =
1

2
(u′, u′) + ε (u′, v′) +

ε2

2
(v′, v′)− (f, u)− ε (f, v) + c.

This function has a minimum for ε = 0, hence it is necessary that g′(0) = 0. This implies:

g′(0) = (u′, v′)− (f, v) ,

that shows that u is solution of (V).

By linearity it is easy to see that the solution to (V), and thus of (M), is unique. In fact, let
u1 ∈ V e u2 ∈ V be two solutions of (V). Then:

(u′1, v
′) = (f, v) ∀v ∈ V ;

(u′2, v
′) = (f, v) ∀v ∈ V .

Subtracting the two equations and choosing v = u1 − u2, we obtain:∫ 1

0

(u′1 − u′2)
2
dx = 0,

from which we have (u1− u2)(x) = const, and since u(0) = u(1) = 0, the constant is zero.

(V)⇒(D). To show the thesis we need the following fundamental lemma of the calculus of
variations. We indicate with C1

0([a, b]) the space of C1((a, b)) functions that are zero at the
boundary. Then we have:

Lemma 2.1. Let g ∈ C([a, b]) and∫ b

a

g(x) · φ(x) dx = 0 ∀φ(x) ∈ C1
0([a, b]),

then g(x) = 0 for all x ∈ [a, b].
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Proof. We can proceed by contradiction. Assume that there is x0 ∈ [a, b] where g(x0) > 0
(the negative case it is obviously analogous). Continuity of g guarantees that there exist a
neighborhood of x0 where g(x) > 0. More precisely, there exist δ > 0 such that (x0−δ, x0+δ) ⊂
(a, b) and for all x ∈ (x0 − δ, x0 + δ) we have that g(x) ≥ g(x0)/2. We can then build the
function φ ∈ φ ∈ C1

0([a, b]):

φ(x) =

{
δ2 − | x− x0 |2)2 if x ∈ (x0 − δ, x0 + δ)

0 otherwise.

Then:∫ b

a

g(x)φ(x) dx ≥ g(x0)

2

∫ x0+δ

xo−δ
φ(x) dx > 0,

which contradicts the hypothesis of the lemma.

Proof. We need to establish that (V)−→ (D). Let u ∈ V be solution of problem (V). Then:∫ 1

0

u′v′ dx−
∫ 1

0

fv dx = 0 ∀v ∈ V .

Assuming that u′′ exists and is continuous, we can integrate by parts to get:∫ 1

0

u′v′ dx−
∫ 1

0

fv dx = [u′v]
1
0 −

∫ 1

0

u′′v dx−
∫ 1

0

fv dx = 0,

from which, using the homogeneous boundary conditions, we obtain:

−
∫ 1

0

(u′′ + f) v dx = 0 ∀v ∈ V .

Assuming (u′′ + f) continuous, we can then apply (piecewise) Lemma 2.1 to conclude:

−u′′ + f = 0.

We have proved the equivalence between the variational and the differential problems. We
would like to remark once again that this is true only under the hypothesis that the second
derivative of u is continuous. But this assumption is not needed in the variational formulation.
Using integration by parts we have decreased the regularity requirements of our solution. In
summary, we can state that solutions of the differential problem are always also solutions of
the variational problem. On the other hand, solutions of the variational problem are also
solution of the differential problem only if we assume sufficient regularity.
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2.1.2 Euler-Lagrange Equations

We can extend these issues to a more general context to arrive at what are called the Euler-
Lagrange Equations of the calculus of variations. Remaining in a one-dimensional setting, we
want to find a function u : [0, 1] 7→ R that satisfies the homogeneous boundary conditions
u(0) = u(1) = 0 and that minimizes the functional:

F (u) =

∫ 1

0

L(x, u(x), u′(x)) dx.

Assuming L sufficiently continuous so that its partial derivatives with respect to x, u e u′ exist,
the minimum is achieved at a point u characterized by the fact for that every perturbation of
u, F (u) assumes a greater value, i.e.:

F (u) ≤ F (u+ εv) ∀ε ∈ R and ∀ v ∈ V .

Let w = u+ εv. Note that v needs to satisfy v(0) = v(1) = 0. Then:

F (w) = F (ε) =

∫ 1

0

L(ε, x, w, w′) dx,

which now can be considered a function of ε. The first variation of F (ε) is:

dF

dε
=

d

dε

∫ 1

0

L(ε, x, w(x), w′(x)) dx =

∫ 1

0

d

dε
L(ε, x, w(x), w′(x)) dx.

Using the chain rule of differentiation we obtain:

dL(ε)

dε
=
∂L

∂x

dx

dε
+
∂L

∂w

∂w

∂ε
+
∂L

∂w′
∂w′

∂ε

=
∂L

∂w
v +

∂L

∂w′
v′.

and hence:

dF

dε
=

∫ 1

0

(
∂L

∂w
v +

∂L

∂w′
v′
)
dx.

For ε = 0 we have w = u and thus F (w)|ε=0 must attain its minimum, and must be stationary:

dF

dε
|ε=0 =

∫ 1

0

(
∂L

∂w
v +

∂L

∂w′
v′
)
dx = 0.

Integrating by parts we obtain:∫ 1

0

∂L

∂w
v dx+ v

∂L

∂w′
|10 −

∫ 1

0

d

dx

∂L

∂w′
v dx = 0.
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Noting that v(0) = v(1) = 0,we can apply the fundamental Lemma 2.1 to obtain the Euler-
Lagrange equation:

∂L

∂w
− d

dx

[
∂L

∂w′

]
= 0.

This equation determines the necessary condition (not sufficient) for the existence of the

minimum of the functional F (u) =
∫ 1

0
L(x, u, u′) dx. If L(x, u, u′) a convex function of u e u′,

then the Euler-Lagrange equation is also a sufficient condition.

Example 2.6. Consider the so called Dirichlet integral:

D(u) = D(x, u, u′) =

∫ 1

0

1

2
(u′)2 dx.

We look for the minimum of D(u) within the class of continuous functions with continuous
first derivatives (u ∈ C1([0, 1])). The Euler-Lagrange equation can be written by evaluating
the derivatives of L(x, u, u′) = (u′)2/2:

∂L

∂u
= 0;

d

dx

[
∂L

∂u′

]
=

d

dx

1

2
(2u′) = u′′(x),

from which we obtain:

u′′(x) = 0,

i.e., La[lace equation in one dimension. Hence the solution of Laplace equation is also the
minimizer of the convex functional D(u).

Example 2.7. We modify the Dirichlet functional as follows:

D(u) = D(x, u, u′) =

∫ 1

0

[
1

2
(u′)

2 − fu
]
dx.

The Euler-Lagrange equations becomes:

∂L

∂u
= f(x);

d

dx

[
∂L

∂u′

]
=

d

dx
(2u′) = u′′(x),

i.e., the one-dimensional Poisson equation:

−u′′(x) = f(x).
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2.1.3 Finite Element Formulation

The main idea of the Finite Element Method (FEM) for the solution of (V) is to discretize
the functional space V , i.e., to find an appropriate subspace Vh ⊂ V of finite dimension. For
example, we can choose Vh as the space of piecewise linear functions that interpolate the
solution u. To this aim, we can define a computational mesh (or grid), i.e., a (nonuniform)
partition of the interval I = [0, 1] into n + 1 subintervals whose endpoints are given by xi,
i = 0, 1, . . . , n + 1. The i-th subinterval (or element) is then Ii = [xi, xi−1] and its length is
hi = xi−xi−1. We denote with h = maxi hi the characteristic dimension of the mesh (Fig. 2.2).
We build the subspace Vh as the space of piecewise linear functions v such that v(0) = v(1) = 0.
It is obvious that Vh ⊂ V . We can use the Lagrange interpolation formula [23] on each Ii to
construct a set of basis functions φj ∈ Vh such that Vh = Span (φ1, . . . , φn). Following the
Lagrangian approach, these functions are defined through the interpolating property:

φj(xi) =

{
1, if i = j,
0, if i 6= j.

, i, j = 1, . . . , n. (2.4)

Then, every function v ∈ Vh can be expressed as a linear combination of the basis functions:

v(x) =
n∑
j=1

vjφj(x), (2.5)

where, because of (2.4), vj = v(xj) is the value assumed by v in every node of the mesh.
Observe that using a mesh with n + 2 nodes (including the endpoints x = 0 and x = 1) we
have that Dim (Vh) = n and is a linear vector space.

We can now write our first FE formulation:

Problem 2.8 (Ritz method).
find uh ∈ Vh such that:

F (uh) ≤ F (v) ∀v ∈ Vh. (Mh)

Problem 2.9 (Galerkin method).
Find uh ∈ Vh such:

(u′h, v
′) = (f, v) ∀v ∈ Vh. (Vh)

Using (2.5), we can write immediately:

(u′h, φ
′
i) = (f, φi) i = 1, . . . , n, (2.6)
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and if we assume that also uh belong to Vh, we have that:

uh(x) =
n∑
j=1

ujφj(x) uj = uh(xj), u′h(x) =
n∑
j=1

ujφ
′
j(x) (2.7)

and hence:

n∑
j=1

(
φ′i, φ

′
j

)
uj = (f, φi) i = 1, . . . , n, (2.8)

which is a linear system of dimension n× n. In matrix form this linear system can be written
as:

Au = b (2.9)

where matrix A[n×n] = {aij} = {
(
φ′i, φ

′
j

)
} is called the stiffness matrix, the unknown vector is

u[n×1] = {ui} and the right-hand side is given by b[n×1] = {bi} = {(f, φi)}.
The values of aij and bi are easily found as follows. We first note that aij = 0 for | i− j | > 1,
since in this case the supports of φi and φj have empty intersection, so that both φi(x)φj(x) = 0
and φ′i(x)φ′j(x) = 0. Thus, for i = 1, . . . , n we have:

aii = (φ′i, φ
′
i) =

∫ xi

xi−1

1

h2
i

dx+

∫ xi+1

xi

1

h2
i+1

dx =
1

hi
+

1

hi+1

,

and for i = 2, . . . , n:

ai,i−1 = ai−1,i =
(
φ′i, φ

′
i−1

)
=
(
φ′i−1, φ

′
i

)
= −

∫ xi

xi−1

1

h2
i

dx = − 1

hi
.

Matrix A is symmetric and tridiagonal. It is also positive definite. In fact, for each v(x) =∑n
j=1 cjφj(x), we can write:

n∑
i,j=1

ci
(
φ′i, φ

′
j

)
cj =

(
n∑
i=1

ciφ
′
i,

n∑
j=1

cjφ
′
j

)
= (v′, v′) ≥ 0.

Equality is verified only for v′(x) ≡ 0, or v(x) = const. From the boundary conditions
v(0) = v(1) = 0 we have immediately that this constant must be zero. Thus we have:(

n∑
i=1

ciφ
′
i,

n∑
j=1

cjφ
′
j

)
= 〈c, Ac〉 > 0 ∀c ∈ Rn, c 6= 0,

that shows that A is symmetric and positive definite, and thus invertible, and system (2.9)
admits a unique solution.
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Another very important property of the stiffness matrix A is that it is sparse, i.e., it has a
large number of null elements. In this case, in fact, each row (or column by symmetry) has at
most three nonzero elements independently of the dimension n of A. This allows the use of
special solvers that are adapted to sparse linear systems and that enable the solution of very
large problems.
In the case of a uniform mesh, hi = h = 1/(n + 1), and constant source f(x) = const, the
linear system takes on the form:

1

h2


2 −1 0 . . . . . . . . . . . . 0
−1 2 −1 0 . . . . . . . . . 0

0 −1 2 −1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . 0 −1 2 −1
0 . . . . . . . . . . . . 0 −1 2




u1

u2

.

.

.
un

 =


b1

b2

.

.

.
bn

 ,

with bi = f .

2.1.4 Analysis of one-dimensional FEM

Consistency, stability, and convergence The convergence of FEM 2 starts from the
more general concepts of consistency and stability. We say that a scheme is “consistent” if
the error resulting from the substitution of the real solution into the scheme tends to zero as
the discretization step goes to zero. A scheme is “stable” is small variation of the data of the
scheme/problem result into small variations of the numerical results.
Let us make these concepts a little bit more precise. Let L(u, f) = 0 our mathematical problem
that needs to be solved. We can think of L as the differential operators, f the (possibly infinite)
set of data of the problem, and u its real solution. We denote by Lh(uh, fh) = 0 the numerical
solver for L(u, f) = 0 and uh and fh the numerical solution and the numerical data of the
problem. We say that the scheme “converges” to the real solution if:

‖u− uh‖ −→ 0 h −→ 0,

where ‖·‖ is an appropriate norm. A numerical discretization scheme is “consistent” if

Lh(u, f) −→ 0 h −→ 0,

it is “strongly consistent” if:

Lh(u, f) = 0 ∀h.
2The study of convergence of any numerical scheme is of fundamental importance not only from the the-

oretical point of view but also to understand the differences between different schemes and thus be able to
choose the best available method for the problem at hand. Another important point that heavily uses the
theory of convergence of FEM is that a comparison between theoretical or experimental convergence rates
allow a strong quality control on the correctness of the computational code and the of the input/output data.
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Often it is arduous if not impossible to find the desired theoretical result showing directly the
convergence of the scheme. The typical approach is then to use a fundamental theorem known
as “equivalence theorem” that states that a consistent scheme is convergent if and only if it
is stable [23]. On the other hand, the known the theoretical convergence speed of a scheme is
useful also to understand the delicate equilibrium between the acceptable error threshold with
which one solves a problem and the computational cost required to achieve that error level.
In the following we determine the convergence error of the FEM scheme using a simple one-
dimensional linear elliptic model problem. More complicated, and sometime intractable, situ-
ations arise in the multidimensional case that will be treated in subsequent sections.

Error estimates for the FEM in one dimension Let u ∈ V solution of problem (D) and
let uh ∈ Vh be solution of problem (Vh). Since (V) is valid for all v ∈ V and Vh ⊂ V , then (V)
is valid also for all functions v ∈ Vh. Thus, use v ∈ Vh in (V) and in (Vh) and subtract. We
obtain:

(u′, v′) = (f, v) ∀v ∈ Vh
(u′h, v

′) = (f, v) ∀v ∈ Vh
((u′ − u′h), v′) = 0 ∀v ∈ Vh, (2.10)

that shows directly the the FEM scheme is strongly consistent.
We define the L2 norm of a function the following:

‖w‖ = (w,w)
1
2 =

(∫ 1

0

w2 dx

) 1
2

.

We can easily see that (v, w) =
∫ 1

0
vw dx satisfies the defining properties of a scalar product

of two functions v and w. In particular we will often use the Cauchy inequality:

| (v, w) | ≤ ‖v‖ ‖w‖

It is easy to show then that uh is the best approximation of u among all candidate functions
v ∈ Vh.
Theorem 2.2. Let u ∈ V solve (V) and uh ∈ Vh (Vh ⊂ V) be a solution of (Vh). Then

‖(u− uh)′‖ ≤ ‖(u− v)′‖ ∀v ∈ Vh (2.11)

Proof. Assume ‖(u− uh)′‖ 6= 0, as in the case it is zero then the result is obvious.
Take v ∈ Vh form the arbitrary function w = uh− v that belongs to Vh. Using (2.10) we have
that ((u− uh)′, w′) = 0. Hence:

‖(u− uh)′‖2
= ((u− uh)′, (u− uh)′) + ((u− uh)′, w′)
= ((u− uh)′, (u− uh + w)′) = ((u− uh)′, (u− v)′)

≤ ‖(u− uh)′‖ ‖(u− v)′‖ .

The results follows dividing by ‖(u− uh)′‖, nonzero by hypothesis.
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∼

x

1

ixi−1 xi+1x

Figure 2.3: Interpolant ũh (left), basis function φi (right).

In our case, we can also prove that ‖v‖ ≤ ‖v′‖ for all v ∈ Vh (a sort of Poincarè inequality):∫ 1

0

v2 dx ≤
∫ 1

0

(v′)2 dx ∀v ∈ Vh.

Note that this is true because Vh contains functions that vanish at the endpoints of the interval
I. In fact:

v(x) = v(0) +

∫ x

0

v′(t) dt =

∫ x

0

v′(t) dt,

from which, using Cauchy inequality:

| v(x) | ≤
∫ 1

0

| v′ | dx ≤
(∫ 1

0

12 dx

) 1
2
(∫ 1

0

| v′ |2 dx
) 1

2

≤
(∫ 1

0

| v′ |2 dx
) 1

2

.

Integrating between 0 and 1 we have finally:∫ 1

0

| v(x) |2 dx ≤
∫ 1

0

(∫ 1

0

| v′(x) |2 dx
)
dy =

∫ 1

0

| v′(x) |2 dx.

Applying the previous result to the function v = u− uh we have immediately:

‖u− uh‖ ≤ ‖(u− uh)′‖ ≤ ‖(u− v)′‖ ∀v ∈ Vh (2.12)

which shows that u′h is the best approximation (approximation of minimum norm) of u′ in Vh,
i.e., it is the result of a projection.
We use this result to our advantage by trying to find an estimate of the difference between u
and a particular function v ∈ Vh, which we choose so that this estimate is easy to find. For
convenience we then choose v as the piecewise linear interpolant ũh ∈ Vh of the solution u on
the mesh nodes. We say that a function ũh is an interpolant of u, or in other words that ũh
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interpolates u on the mesh nodes xi, i = 0, . . . , n+ 1, if the following interpolation equations
hold (see Figure 2.3):

ũh(xi) = u(xi) i = 0, . . . , n+ 1.

For this purpose is convenient to use Lagrangian polynomials [23], but we will not use the
definition of these polynomials but only their properties. A piecewise linear polynomial can
be written as:

P1(x) =
n∑
i=1

aiφi(x).

where the basis function on the i-th node is given by (see Figure 2.3, right)):

φi(x) =

{
x−xi

xi−xi−1
, if xi−1 ≤ x ≤ xi,

xi+1−x
xi+1−xi , if xi ≤ x ≤ xi+1.

The following properties are easily verified:

φi(x) =

{
1, if x = xi,
0, if x = xj, i 6= j.

P1(xi) = ai = v(xi)

P ′1(xi) = v′(xi)

Let e(x) = v(x)− P1(x) be the interpolation error. Since P1(x) is piecewise linear, its second
derivative vanishes in I = [0, 1], P ′′1 (x) = 0. Moreover, from the interpolation property,
e(xi) = 0 in all grid points xi, i = 0, . . . , n + 1. Rolle’s theorem states that there exist n
points ηi, i = 1, . . . , n with ηi ∈ [xi, xi+1] where e′(ηi) = 0. Thus, for xi ≤ x ≤ xi+1, we can
write:

e′(x) =

∫ x

ηi

e′′(t) dt =

∫ x

ηi

v′′(t) dt,

from which:

| e′(x) | ≤
∫ xi+1

xi

| v′′(t) | dt =

∫ xi+1

xi

1 · | v′′(t) | dt ≤ (using Cauchy inequality)

≤
(∫ xi+1

xi

12 dt

) 1
2
(∫ xi+1

xi

| v′′(t) |2 dt
) 1

2

= h
1
2

(∫ xi+1

xi

| v′′(t) |2 dt
) 1

2

,

(2.13)

and:

| e′(x) |2 ≤ h

(∫ xi+1

xi

| v′′(t) |2 dt
)
.
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Integration between xi and xi+1 yields:∫ xi+1

xi

| e′(x) |2 dx ≤ h2

∫ xi+1

xi

| v′′(t) |2 dt.

To evaluate e(x), we first note that e(x) =
∫ x
xi
e′(t) dt. Then, using (2.13) and again after

integration, we obtain:

| e(x) | ≤ h
3
2

(∫ xi+1

xi

| v′′(t) |2 dt
) 1

2

,

from which we have:∫ xi+1

xi

| e(x) |2 dx ≤ h4

∫ xi+1

xi

| v′′(t) |2 dt.

Summing over all mesh elements (intervals) we have the following interpolation error:(∫ 1

0

| e(x) |2
) 1

2

≤ h2

(∫ 1

0

| v′′(x) |2 dx
) 1

2

(∫ 1

0

| e′(x) |2
) 1

2

≤ h

(∫ 1

0

| v′′(x) |2 dx
) 1

2

or in terms of norms:

‖v − P1(x)‖ ≤ h2 ‖v′′(x)‖
‖v′ − P ′1(x)‖ ≤ h ‖v′′(x)‖

Using (2.11) and (2.12) we have the following error estimates:

‖u− uh‖ ≤ h ‖u′′‖ (2.14)

‖(u− uh)′‖ ≤ h ‖u′′‖ (2.15)

that show that if the second derivative of the solution is bounded, then FEM converges with
an error that tends to zero proportionally to h as the mesh size parameters h −→ 0 (O (()h)).
We can actually prove that the error converges to zero quadratically:

‖u− uh‖ ≤ h2 ‖u′′‖ . (2.16)

if ‖u′′‖ is bounded, but this proof requires some extra work that will be done once and for all
in the general multidimensional case.
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Remark 2.10. From the error estimate we can derive an estimate on the condition number
of the stiffness matrix A. In fact:

κ(A) =
λ1

λN
= Ch−2

where λ1 and λN are the maximum and minimum (positive) eigenvalues of A and the constant
C does not depend on h. If we use the conjugate gradient (CG) scheme to solve the linear
system, this estimates tells us that the number of iterations needed to achieve e prescribed

tolerance in the residual of the linear system is O
(√

κ(A)
)

= O (h).

Some simple examples Consider the problem:

−u′′(x) = q x ∈ [0, 1],

u(0) = u(1) = 0.

let F (u) be the functional given by:

F (u) =

∫ 1

0

[
1

2
(u′)2 − qu

]
dx,

and let the numerical solution be expressed as:

un(x) =
n∑
j=1

ajφj(x).

Minimization of the functional F (u) (Ritz method) requires that u be a stationary point for
F . This yields a linear system of equations whose i-th row is given by:

∂F

∂ai
=

∫ 1

0

[(
n∑
j=1

ajφ
′
j(x)

)
φ′i(x)− qφi(x)

]
dx = 0.

We now need to choose the basis functions φi(x) ∈ Vh.

Example 2.11. We can choose the canonical basis of the vector space of polynomials of degree
n:

φi(x) = xi i = 0, 1, . . . , n− 1.

Then our solution can be written as:

un(x) = x(x− 1)
n∑
i=1

aix
i−1
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where the first two terms (x and (x − 1) were added so that un ∈ Vh (recall, it must satisfy
homogeneous boundary conditions). The space Vh is then formed by the following functions:

φ1(x) = x(x− 1)

φ′1(x) = 2x− 1

. . . . . .

φi(x) = x(x− 1)xi−1 = xi−1 − xi

φ′i(x) = (i+ 1)xi − ixi−1

. . . . . .

For n = 1 we have i = 1 and:

un(x) = x(x− 1)a1

u′n(x) = 1(x− 1)a1

∂F

∂a1

=

∫ 1

0

[
a1(2x− 1)2 − qx(x− 1)

]
dx

=

∫ 1

0

[
a1(4x2 + 1− 4x)− qx2 + qx

]
dx = 0,

from which immediately we have a1 = −q/2, and the numerical solution takes on the expres-
sion:

un(x) = −x(x− 1)
q

2
.

Differentiating twice the above equation, it is immediate to see that un satisfies the original
PDE, leading to the conclusion that a2 = a3 = . . . = an = 0.

Example 2.12. Let

un(x) =
n∑
i=1

ai sin(iπx).

The basis functions are identified by:

φi(x) = sin(iπx) φ′i(x) = iπ cos(iπx).

The linear system (by Ritz method) becomes:

∂F

∂ai
=

∫ 1

0

[(
n∑
j=1

ajφ
′
j(x)

)
φ′i(x)− qφi(x)

]
dx = 0,
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from which, solving for a1 in the case n = 1, we have:

∂F

∂a1

=

∫ 1

0

[
a1π

2 cos2(πx)−−q sin(πx)
]
dx = 0,

or:

a1 =

∫ 1

0
q sin(πx) dx∫ 1

0
π2 cos(πx) dx

=
4

π3
q.

The numerical solution is thus:

un(x) =
4

π3
q sin(πx)

The following table reports a comparison between the numerical and the explicit (closed form)
solution of the problem.

x u/q un/q
0.00 0.00 0.00
0.25 0.09375 0.09122
0.50 0.125 0.12901
0.75 0.09375 0.09122
1.00 0.00 0.00

Example 2.13. Let

un(x) =
n∑
i=1

ai sin(2πix)

In this case we have a1 = a2 = . . . = an = 0. What is happening is that in this case the
space Vh spanned by the basis functions φi(x) = sin(2πix) does not contain the solution of
our problem, and thus the FE scheme evaluates a solution that is identically zero.

2.2 Multidimensional extension

2.2.1 Differential operators.

Let Ω ⊂ Rd, and u a function u : Ω −→ R.

The gradient. The gradient of u is a d-dimensional vector formed by the first derivatives
if u:

∇u = (
∂u

∂x1

, . . . ,
∂u

∂xd
).
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Divergence. Given a vector field q(x) ∈ Rd, the divergence of the vector q is formally given
by the scalar product between the operator ∇ and the vector q:

div q = 〈∇, q〉 = ∇ · q =
∂q1

∂x1

+ . . .+
∂qn
∂xn

.

Laplacian. The Laplacian of u is the function:

∆u = div∇u = 〈∇,∇u〉 = ∇ · ∇u.

Curl. The curl of the vector field q is given by the vector (external) product between the
gradient vector and q. For d = 3 we have:

curl q = ∇× q = (
∂q3

∂x2

− ∂q3

∂x3

,
∂q2

∂x3

− ∂q3

∂x1

,
∂q2

∂x1

− ∂q1

∂x2

).

Higher order derivatives. We will often use the “multi-index” notation for derivatives.
Let α = (α1, α2, . . . , αd) ∈ Nd be a multi-index of order k | α | = k =

∑d
i=1 αi. Then:

∂αu =
∂| α |u

∂xα1
1 . . . ∂xαdd

.

Given an integer k ≥ 0, the symbol ∂k is the set of all derivatives of u of order k: ∂ku =
{∂α, | α | = k}.

Weak derivative. The weak derivative (or derivative in the sense of distributions or gen-
eralized derivative) can be defined by means of formula of integration by parts.

Definition 2.3. given two functions u, v : Ω −→ R and a multi-index α. Then v = ∂αu
is a weak derivative of u if for all smooth (infinitely continuous) functions φ ∈ C∞(Ω) with
compact support (they are zero in ∂Ω) we have:∫

Ω

vφ dx = (−1)|α|
∫

Ω

u∂αφ dx.

It is intuitive, and indeed it can be proved, that the weak derivative of a function u coincides
with its standard derivative if the latter exists.

Remark 2.14. To better appreciate the theoretical developments we should mention that all
these results are valid “almost everywhere” or “everywhere except subsets of zero measure”,
according to the theory of Lebesgue integration and the theory of function [9, 3]. Readers who
are not interested in these theoretical aspects can simply think of continuous functions that
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have enough smooth derivatives so that have finite squared integral, i.e., belong to L2(Ω) and,
moreover, the scalar products and norms used in the formulas are well-defined. More detailed
information can be found on any book of functional analysis [3]. Simple compendia of the
results needed in these notes are given in [22, 21], and are summarized in the chapters on the
mathematical theory of finite elements reported in the second part of these notes.

Gauss or divergence theorem. The principal tool that we will be using in this chapter is
integration by parts and the divergence (or Gauss’) theorems. Green’s formula, also known as
Green’s first identity or Green’s lemma, is the multidimensional equivalent of the well-known
integration by parts. Let us start by stating the divergence theorem: Let Ω ⊂ Rd be a compact
subset of Rd with boundary denoted by Γ = ∂Ω which is sufficiently smooth. Let ~F ∈ Ω be a
vector field defined in Ω. Then∫

Ω

div ~F dx =

∫
Γ

~F · ν ds, (2.17)

where ν is the outward unit normal to Γ, dx is the volume measure on Ω (in Rd) and ds is

surface measure on Γ (in Rd−1), and ~F · ν is the standard scalar product between two vectors

in Rd. Let ~F = v~q, i.e. the vector field F (x) is given by the product of a real-valued function
v(x) times a vector field ~q(x) Using the product rule of differentiation for each component of
the vector scalar product, we obtain:∫

Ω

∇v · ~q dx =

∫
Γ

v ~q · ν ds−
∫

Ω

v div ~q dx.

In the case that ~q = ∇w we have the first Green identity or Green’s Lemma:∫
Ω

∇v · ∇w dx =

∫
Γ

v∇w · ν ds−
∫

Ω

v∆w dx, (2.18)

that can be thought of a the multidimensional extension of the theorem of integration by parts
by interpreting v as the primitive of ∇v and ∆w − div∇w the derivative of ∇w.

Linear and bilinear forms. A linear form F (v) is a mapping from a set of functions
to the real space, F : V 7→ R. In other words, it is a function (in more abstract sense a
map) that takes functions as its only argument and returns a real value. It is linear when
F (αv + βw) = αF (v) + βF (w).
A bilinear form is a mapping from a set of pairs of functions (v, w) and the real space,
a : V × V 7→ R, that is linear separately in each of its two arguments, i.e., a (αu+ βv, w) =
αa (u,w) + βa (v, w) and a (w, αu+ βv) = αa (w, u) + βa (w, v). A bilinear form is symmetric
if a (v, w) = a (w, v).
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2.2.2 Weak formulation and FEM

Consider Poisson equation in d dimensions with d = 2 or d = 3:

Problem 2.15 (differential).
Find u : Ω 7→ R such that:

−∆u = f(x), x ∈ Ω ⊂ Rd

(2.19)
u(x) = 0 x ∈ Γ,

where Ω ⊂ Rd is a bounded domain of Rd = {x = [x1, x2, . . . , xd], xi ∈ R} having boundary
Γ = ∂Ω, which is assumed sufficiently regular, and ∆ is the Laplacian operator:

∆ = div∇ =
d∑
i=1

∂2

∂x2
i

.

The weak formulation for (2.19) is given by:

Problem 2.16 (variational).
find u ∈ V such that:

a (u, v) = (f, v)Ω ∀v ∈ V , (2.20)

where:

a (u, v) =

∫
Ω

∇u · ∇v dx

(f, v)Ω =

∫
Ω

f v dx

V = {v(x) : v is continuous in Ω,∇v is piecewise continuous in Ω and v(x) = 0 for x ∈ Γ} .

We note here that in the sequel we will drop the subscript Ω when referring to Ω in (·, ·)Ω and
no confusion should arise.
This formulation can be derived from (2.19) as follows. Multiply be a test functionv(x) ∈ V
and integrate over Ω. Using Greens’ Lemma we obtain:

(f, v) = −
∫

Ω

(∆u)v dx = −
∫

Γ

v∇u · ν ds+

∫
Ω

∇u · ∇v dx = a (u, v) ,

where the boundary integral is zero because v(x) = 0 for x ∈ Γ. Analogously to the one-
dimensional case we can see that:
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Figure 2.4: Example of an admissible triangulation of Ω. The boundary Γ = ∂Ω is drawn
with the thicker line.

• the solution of the variational problem is solution of the differential problem if u is
regular;

• the variational problem is equivalent to the following minimization problem:

Problem 2.17 (minimization).
Find u ∈ V such that:

F (u) ≤ F (v) ∀v ∈ V , (2.21)

where:

F (v) =
1

2
a (u, v)− (f, v) .

We need to give an appropriate definition of the basis functions. As done for d = 1, we need
to build a computational mesh or grid, i.e., a partition of the domain Ω. We do this for d = 2
for simplicity. We can define a triangulation Th(Ω) of Ω formed by the union of triangles Tk
such that:
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Figure 2.5: Linear (pyramidal) basis function φj(x) ∈ Vh.

• Th(Ω) is formed by n nodes (triangle vertices named Ni, i = 1, . . . , n, with given coordi-
nates), and m triangles (identified by Tk, k = 1, . . . ,m);

• Ω =
⋃
Tk∈Th Tk = T1 ∪ T2 . . . ∪ Tm;

• Ti ∩ Tj = eij, i 6= j, where eij denotes the edge shared by triangles Ti and Tj;

• no vertex Ni lies in the interior of a triangle edge;

• the boundary triangles have at least one vertex on the boundary.

An example of an admissible triangulation is given in Figure 2.4. Note that to derive conver-
gence estimates we need to require that the domain boundary does not change as the mesh
varies. For this reason our domain boundary is formed by piecewise linear segments.
We now introduce the mesh parameter h defined as:

h = max
Ti∈Th

diam (Ti), (2.22)

where the triangle diameter diam (Ti) is defined as the longest edge of Ti. We can define the
finite dimensional space Vh as:

Vh = {v(x) : v is continuous in Ω, v|Ti is linear in each Ti ∈ Th, v(x) = 0 for x ∈ Γ} .
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where v|Ti is the restriction of the test function v to triangle Ti. Obviously Vh ⊂ V . Now we
want to be able to define Lagrangian interpolation of functions. We use the internal nodes Ñi

of the triangulation and build the basis functions φi(x), i = 1, . . . , n as:

φi(xj) =

{
1, if i = j,
0, if i 6= j.

i, j = 1, . . . , n

These are piecewise linear functions of pyramidal shape, as shown in Figure 2.5, and with
support given by the unions of all triangles sharing node Nj. Thus we can express a generic
function v ∈ Vh as:

v(x) =
n∑
j=1

ηjφj(x), ηj = v(xj),

and the Galerkin FEM method becomes:

Problem 2.18 (Galerkin FEM).
Find uh ∈ Vh such that:

a (uh, v) = (f, v) ∀v ∈ Vh. (2.23)

This yields the following

n∑
j=1

a (φi, φj)uj = (f, φi) i = 1, . . . , n, (2.24)

which is the FEM linear systems that in matrix form can be written as:

Au = b

where the stiffness matrix A and the load vector b are given by:

A[n×n] = {aij} aij = a (φi, φj) =

∫
Ω

∇φi · ∇φj dx (2.25)

u[n×1] = {ui}, b[n×1] = {bi} bi = (f, φi) =

∫
Ω

fφi dx. (2.26)

Note that now the matrix coefficients are evaluated via a d-dimensional scalar product on Ω.
Analogously to what done for d = 1, we can prove that A is SPD.
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Figure 2.6: Regular triangulation on a square domain.

In the case of a square domain and regular discretization with equal triangles of edge length
h (Figure 2.6) the stiffness matrix is penta-diagonal and of the form:

4 −1 0 0 0 −1 . . . . . . . . . 0
−1 4 −1 0 0 0 −1 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . −1 . . . −1 4 −1 . . . −1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . −1 . . . 0 −1 4 −1
0 . . . . . . . . . −1 0 0 0 −1 4




u1

u2

.

.

.
un

 =


b1

b2

.

.

.
bn

 ,

where in the case f = cost we calculate:

bi = fh2

It coincides with the “5=point stencil” of the second order finite difference discretization of
the Laplacian operator [23].

Remark 2.19. The practical evaluation of the stiffness matrix proceeds via the so called “as-
sembly” process, an element-by-element procedure typical of FE methods. This procedure eval-
uates local elemental matrices and then sums their contributions to build the global system
matrix. This procedure introduces flexibility in handling complicated geometries and hetero-
geneities in the coefficients of the PDE, which can then be described element-wise.
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Another advantage deriving essentially from the organization of this procedure is the fact that
it is possible to assemble local elements into a “super element”. This is called “static conden-
sation” and is useful in particular in parallel applications.
Finally, again the element-by-element assembly procedure allows the efficient handling of local
mesh refinements. We can think of building a mesh with a characteristic size hj that can be
dynamically adapted to the size of the error. For these, we need what are called “a-posteriori”
error estimations that will be treated in subsequent chapters.

2.2.3 Convergence of FEM in the multidimensional case

The results derived for the one-dimensional case in section 2.1.4 can be extended to the
multivariate case with only technical difficulties. We assume that we have a homogeneous
Dirichlet problem, so that u ∈ V = H1

0. Moreover, we assume that the bilinear form a (·, ·) is
continuous and coercive, i.e.:

• continuity there exists a constant γ > 0 such that:

| a (u, v) | ≤ γ ‖u‖V ‖v‖V ∀u, v ∈ V ; (2.27)

• coerciveness there exists a constant α > 0 such that

a (v, v) ≥ α ‖v‖2
V ∀v ∈ V . (2.28)

Continuity implies that small changes in the arguments of the bilinear form do to not lead
to large changes in the values attained by the bilinear form. Coerciveness implies that the
bilinear form is always bounded away from zero, and can thus be inverted in some sense.
Under these assumptions, we can show that uh ∈ Vh is the best approximation in the sense
that there exist a constant C independent of h such that:

‖∇u−∇uh‖ ≤ C ‖∇u−∇v‖ ∀v ∈ Vh,

where now the norm is defined as:

‖∇v‖ = a (v, v)
1
2 =

(∫
Ω

|∇v|2 dx
) 1

2

,

showing the optimality of Galerkin solution with respect to the L2 norm. We note here that,
for a homogeneous Dirichlet problem where v vanishes at the boundary, the above norm is
equivalent to the norm of the function v in the sense that there exist two constants C1 and
C2 such that

C1 ‖∇v‖ ≤ ‖v‖ ≤ C2 ‖∇v‖
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where

‖v‖ =

(∫
Ω

v2 + |∇v|2 dx
) 1

2

,

We can then use Lagrangian interpolation to show immediately that:

‖∇u−∇ũh‖ ≤ Ch.

Finally, also in the multidimensional case it is possible to show that:

‖u− uh‖ =

(∫
Ω

(u− uh)2 dx

) 1
2

≤ Ch2,

which is the equivalent of (2.16) in Rd. To arrive at this result we need to assume some
regularity properties of the triangulation, namely that when the diameter given in (2.22)
h −→ 0 the triangles do not degenerate, i.e., the vertices of a triangle never align on a line.

Optimality of the solution of the variational problem. We look here at the simple
Dirichlet boundary value problem:

−∆u+ u = f x ∈ Ω

u = 0 x ∈ Γ = ∂Ω

The variational formulation becomes:

Problem 2.20 (Variational Formulation). Find u ∈ H1
0(Ω) such that:

a (u, v) = (f, v) ∀v ∈ H1
0(Ω) (2.29)

where:

a (u, v) =

∫
Ω

[∇u · ∇v + uv] dx

The related FEM problem becomes:

Problem 2.21 (FEM Problem). Find uh ∈ Vh(Ω) ⊂ H1
0(Ω) such that:

a (uh, v) = (f, v) ∀v ∈ Vh(Ω). (2.30)

Subtracting (2.30) from (2.29), we can appreciate the strong consistency of the FE scheme:

a (u− uh, v) = 0 ∀v ∈ Vh(Ω)
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which also says that the error function e = u−uh is orthogonal to the basis functions of Vh(Ω)
with respect to the scalar product a (·, ·)V . This statement is equivalent to saying that uh is
the orthogonal projection of u onto Vh(Ω) with respect to the scalar product a (·, ·). In other
words, noting that this scalar product the the H1(Ω) scalar product , uh is characterized by
an H1 norm of the error u− uh that is smaller than any other function v ∈ Vh(Ω):

‖u− uh‖H1(Ω) ≤ ‖u− v‖H1(Ω) ∀v ∈ Vh(Ω)

stating the optimality of uh in Vh(Ω). These theoretical results will be derived with more
details and rigor in section 2.6

2.3 Non-homogeneous boundary conditions

2.3.1 Neumann problem: natural and essential boundary conditions

Consider the following pure-Neumann problem:

−∆u+ u = f in Ω,

∇u · ν = g in Γ = ∂Ω.
(2.31)

Multiplying the first equation by the test function v ∈ V and integrating over Ω we obtain:

−
∫

Ω

(∆uv − uv) dx =

∫
Ω

fv dx. (2.32)

Applying Green’s lemma:∫
Ω

uv dx−
∫

Γ

∇u · νv ds+

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx,

where Γ = ∂Ω is the (sufficiently smooth) boundary of Ω. The second integral of the left-
hand-side of this equation contains exactly the flux boundary term ∇u · ν. In the cases
previously encountered of homogeneous Dirichlet conditions, we required that the test and
basis functions where zero on the boundary, leading to the nullification of the boundary integral
deriving from Green’s lemma. In this case, requiring that the test functions are nonzero at
the boundary automatically implies that the Neumann boundary conditions are satisfied once
we have substituted q in place of ∇u · ν. Thus, V = we can write the following:

Problem 2.22 (Variational formulation).
Find u ∈ V such that:

a (u, v) = (f, v) + (g, v)Γ ∀v ∈ V , (2.33)
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where:

a (u, v) =

∫
Ω

(∇u · ∇v + uv) dx

(f, v) =

∫
Ω

f v dx

(g, v)Γ =

∫
Γ

g v ds

V = {v(x) : v is continuous in Ω,∇v is piecewise continuous in Ω} ,

equivalent to the minimization problem:

Problem 2.23 (Minimization problem).
Find u ∈ V such that:

F (u) ≤ F (v) ∀v ∈ V (2.34)

where:

F (v) =
1

2
a (v, v)− (f, v)− (g, v)Γ .

As done before, assuming u sufficiently regular and applying Green’s lemma “backward”
to (2.33) we have:∫

Ω

(−∆u+ u− f) v dx+

∫
Γ

(∇u · ν − g) v ds = 0 ∀v ∈ V . (2.35)

Since all the functions v ∈ V are non zero at the boundary we derive the following two
conditions:∫

Ω

(−∆u+ u− f) v dx = 0 ∀v ∈ V ,

and ∫
Γ

(∇u · ν − g) v ds = 0 ∀v ∈ V .

Varying v ∈ V (again v is nonzero in Γ), we can apply Lemma 2.1 to obtain:

−∆u+ u− f = 0 in Ω,

and

∇u · ν − g = 0 in Γ;

which states that the boundary conditions are satisfied.
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Remark 2.24. Neumann boundary conditions are not applied explicitly in the variational for-
mulation but appear as a natural term that does not vanish because the test functions do not
vanish at the boundary. We can then say that while Dirichlet conditions must be imposed
directly on the functional space where the solution is sought, i.e., must be imposed explicitly
on the solution candidate function, Neumann boundary conditions are satisfied naturally by
the formulation. For these reasons Neumann boundary conditions are called “natural” while
Dirichlet boundary conditions are called “essential”. Note that, if g = 0 (no flow at the bound-
ary) the term (g, v)Γ would disappear from the formulation (from this the word “natural”).

The Galerkin FE formulation can be written as:

Problem 2.25 (Galerkin FEM).
Find uh ∈ Vh such that:

a (uh, v) = (f, v) + (g, v)Γ ∀v ∈ Vh, (2.36)

where:

a (uh, v) =

∫
Ω

(∇uh · ∇v + uhv) dx

Vh = {v(x) : v is continuous in Ω, v|Tk is linear ∀Tk ∈ Th} .

Remark 2.26. We observe that problem 2.31 admits a unique solution. In fact, if ũ 6= u
solves the problem, then the function w = ũ − u solves the same problem with f = 0 and
g = 0. Using, e.g., the maximum principle or energy methods, we see immediately that this
problem admits the only solution w = 0, contradicting the hypothesis. This is a consequence
of the presence of the term u in the right hand side of the equation. Had we tackled Poisson
equation, the same reasoning show that the solution of the pure Neumann problem is defined
up to an additive constant. We can think intuitively that the role of the presence of the term u
in the equation is to “fix” the constant. This is similar to the role played by Dirichlet boundary
conditions. Thus we conclude that to obtain a well-posed problem we need “at least” one point
where Dirichlet conditions are specified.

2.3.2 Cauchy (or Robin) problem

Consider the following problem:

−∆u = f in Ω, (2.37a)

∇u · ν + γu = g in Γ = ∂Ω, (2.37b)
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where γ > 0. Multiplying the first equation by the test function v ∈ V and integrating over Ω
we obtain:

−
∫

Ω

(∆uv) dx =

∫
Ω

fv dx.

Application of Green’s lemma yields:

−
∫

Γ

∇u · νv ds+

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx,

where Γ = ∂Ω is the (sufficiently smooth) boundary of Ω. Using (2.37b) we have:

−
∫

Γ

(g − γu)v ds+

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx,

or: ∫
Ω

∇u · ∇v dx+

∫
Γ

γuv ds =

∫
Ω

fv dx+

∫
Γ

gv ds

giving rise to the following variational formulation:

Problem 2.27 (Variational formulation).
Find u ∈ V such that:

aγ (u, v) = (f, v) + γ (g, v)Γ ∀v ∈ V , (2.38)

where:

aγ (u, v) = a (u, v) + γ (u, v)Γ

=

∫
Ω

∇u · ∇v + γ

∫
Γ

u v dx

The Galerkin FE formulation can be written as:

Problem 2.28 (Galerkin FEM).
Find uh ∈ Vh such that:

aγ (uh, v) = (f, v) + γ (g, v)Γ ∀v ∈ Vh. (2.39)

Note that as in the pure Neumann case v ∈ Vh is nonzero at the boundary Γ. We would like
to note that the bilinear form aγ (·, ·) may not be coercive for γ < 0.
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Figure 2.7: Projection onto Vh ⊂ H1 of ug (eq. (2.44)).

2.3.3 Non homogeneous Dirichlet problem

Consider the following problem:

−∆u = f in Ω, (2.40a)

u = g in Γ. (2.40b)

To incorporate non-homogeneous Dirichlet conditions we can make use of the remark 2.24 and
impose the boundary conditions on all the solution candidates. In other words we look for
functions u ∈ H1

Γ, where H1
Γ is the set of functions in H1 that coincide with g in Γ. We obtain

the following variational formulation: find u ∈ H1
Γ such that:

a (u, v) = (f, v) ∀v ∈ H1
0.

However, H1
Γ is not an affine space, as the sum of two such functions does not belong to this

space (it is equal to 2g on the boundary). Hence we cannot use linear combinations of this
space to approximate the solution and set up a FE formulation. The solution is to define a
smooth enough “lifting” function ug that satisfies (2.40b) on Γ and we let:

u = ug + u0 (2.41)

where ug ∈ H1
Γ and u0 ∈ H1

0. We can write the following variational formulation:

Problem 2.29 (Variational formulation for non-homogeneous Dirichlet BCs).
Find u0 ∈ H1

0 such that:

a (u0, v) = (f, v)− a (ug, v) ∀v ∈ H1
0. (2.42)

This problem has now the sought form. It is easy to see that everything is well defined and
we will show in later chapters that all the important well-posedness, stability theorems, and
convergence theorems hold. The corresponding Galerkin FE formulation reads:
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Problem 2.30 (Galerkin FEM for non-homogeneous Dirichlet BCs).
Find u0,h ∈ Vh ⊂ H1

0 such that:

a (u0,h, v) = (f, v)− a (ug,h, v) ∀v ∈ Vh. (2.43)

The problem is indeed well defined but the question remains on how should we choose the
“lifting” function ug. There are general regularity theorems that guarantees the existence
of such function in the appropriate spaces that are called “trace” theorems. We are not
discussing these theorems in these notes for the main reason that in practical applications one
is not interested in reproducing the exact function g but rather a numerical approximation of
g. The easiest procedure is then to define uh,g on the space Vh as the projection of g onto Vh.
Thus, noting that g is defined only on Γ, we can define ug as:

ug(x) =

{
g(x), if x ∈ Γ,
0, if otherwise.

. (2.44)

and we use the approximation ug,h defined by the projection of this function onto the subspace
Vh′ ofH1 (and not ofH1

0) generated by FEM basis functions that are nonzero on the boundary,
exactly as in the case of a pure Neumann problem. An example of ug,h if given in Figure 2.7.

Remark 2.31. The Dirichlet boundary conditions are imposed explicitly in “strong form”,
while the Neumann BCs are imposed in “weak” form. In practical applications this correspond
that local errors on Dirichlet nodes are proportional to the residual of the system solution,
while in Neumann or Cauchy nodes errors are governed by the FEM approximation, and thus
go to zero quadratically with the mesh parameter h (see (2.16)).

The penalty method. A different approach to impose non-homogeneous Dirichlet condi-
tions, sometimes called the “penalty” method, is via Cauchy boundary treatment. Using this
idea, the Dirichlet problem (2.40) is transformed into the following:

−∆u = f in Ω, (2.45a)

α∇u · n+ λ(u− g) = 0 in Γ. (2.45b)

Using (2.38), we obtain the variational formulation:

Problem 2.32 (Variational formulation with penalty).
Find u ∈ V such that:

a
λ

(u, v) = (f, v) + λ (g, v)Γ ∀v ∈ V , (2.46)

The corresponding Galerkin FE formulation can be written as:
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Problem 2.33 (Galerkin FEM).
Find uh ∈ Vh such that:

a
λ

(uh, v) = (f, v) + λ (g, v)Γ ∀v ∈ V , (2.47)

In practice, the i-th equation becomes:

i−1∑
k=1

aikuk + λ (φi, φi)Γ ui +
n∑

k=i+1

aikuk = λ (g, φi)Γ

If λ is large enough, all the extra-diagonal terms (the terms with the summations) of the
left-hand-side be negligible with respect to the diagonal term. Hence, the previous equation
practically corresponds to:

λ (φi, φi)Γ ui = λ (g, φi)Γ , or λui = λgi,

i.e., the direct enforcement of the Dirichlet boundary function, projected on the discretized
boundary. A typical value for λ is λ = 1030, but care must be taken that the extra-diagonal
coefficient matrix are far away from the value of the penalty, so that no ill-conditioning is
introduced in the system matrix.

2.3.4 Implementation notes

It is intuitive that a problem can have varying boundary conditions, i.e., the boundary may
be formed by the union of three non-overlapping subsets Γ = ΓD ∪ ΓN ∪ ΓC where Dirichlet,
Neumann, or Cauchy boundary conditions are specified. The problem now reads:

−∆u = f in Ω,

u = gD in ΓD,

∇u · ν = gN in ΓN ,

∇u · ν + γu = gC in ΓC

In light of Remark 2.26, we will require ΓD 6= ∅. To better understand the practical imple-
mentation for a general boundary condition, we work with a triangulation Th having n nodes.
The boundary is discretized with ND +NN +NC nodes, and we require ND 6= 0. In the case
NN = NC = 0 then ΓN and ΓC are empty and the corresponding integrals vanish. A general
FEM implementation works with basis functions that are nonzero at the boundary, so that
Neumann and Cauchy boundary conditions can be accommodated easily. We renumber the
mesh nodes so that the first ND the Dirichlet boundary nodes while the other nodes (internal
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plus Neumann and Cauchy) are labeled from ND + 1 to n = N +ND
3. The numerical solution

is then expressed as a linear combination of these basis functions:

uh(x) = ugD,h + u0,h =

ND∑
j=1

ugD,jφj(x) +
n∑

j=ND+1

ujφj(x).

Introducing this expression, the FEM system can be rewritten as:

n∑
j=ND+1

aγ (φi, φj)uj = (f, φi)−
ND∑
j=1

a (φi, φj)ugD,j+(gN , φi)ΓN
+γ (gC , φi)ΓC

i = ND+1, . . . , n.

As usual, the elements of the symmetric stiffness matrix (of dimension n−ND) can be expressed
as aij = aγ (φi, φj). This system can then be completed with the Dirichlet boundary conditions.
Thus, we can write the global FEM system using block matrices as follows:[

I 0
0 A

] [
u(1)

u(2)

]
=

[
b1

b2

]
where the vectors are given by:

u(1) =
{
ui

}
b1 =

{
ugD,i

}
i = 1, . . . , ND

u(2) =
{
ui

}
b2 =

{
(f, φi)−

ND∑
j=1

a (φi, φj)ugD,j + (gN , φi)ΓN

+ γ (gC , φi)ΓC

}
i = ND + 1, . . . , n

The upper left block of this system (here I denotes the ND-dimensional identity matrix)
imposes the Dirichlet conditions. In essence, the term−

∑ND
j=1 a (φi, φj)ugD,j is the consequence

of the fact that uh,j = ugD,j on the Dirichlet node j, and are moved on the right hand side of
all equations (i.e., for all i) of the linear system.

2.4 Types of Finite Elements

We have seen so far the use of linear basis functions to define the discrete space Vh. It is
intuitive that we can use for this purposes interpolating polynomials of any degree defined
on the elements. For example, quadratic functions can easily be introduced in both one-
dimensional intervals and two-dimensional triangles. In this case, we will need to specify 1D
elements with three nodes and 2D triangles with 6 nodes (see Figure 2.8, all of them at the
triangle boundary. This approach guarantees continuity of the representation of the solution, a

3This node renumbering is not done in practice, but it helps the exposition.

51



k−esimo elemento

x

jx

j+1xj−1

j
(x)φ

Figure 2.8: Basis functions for quadratic elements in 1D (left) and 2D (right).

21

1

−1

−1

y

x

Figure 2.9: Bilinear basis function on square elements.

requirement for functions in H1. To see this, we need to look at element boundaries and verify
that three nodes in each triangle side define uniquely the same quadratic function along the
side. In other words, the two quadratic polynomials defined on the two neighboring elements
have the same trace on the common side. The same can be done with three-dimensional
tetrahedra. If we want to introduce different shaped elements, e.g., quadrilaterals in 2D,
maintaining the continuity at inter-element edges becomes more complicated. This is done
using the so-called “isoparametric” elements via appropriate transformations that allow the
simple definition of basis functions to be used essentially in the evaluations of the integrals
in (2.25).
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2.4.1 Isoparametric elements

We do not want to go into details of approximation theory and work out the most general
case. We content ourself on the description of the technique for general quadrilateral elements
in two dimensions. We start from the simple example of square elements. In Figure 2.9
we have shown two adjacent square elements. Continuity of uh is ensured is we use bilinear
interpolation functions, i.e., polynomials that are separately linear in x and y:

φi(x, y) = (ai + bix)(ci + diy).

It is easy to see that at the element edge located at x = 1 the representation of the basis
function is linear (function of y) and is determined uniquely by the two nodes defining the
endpoints of the edge that are common to both squares. The expression for φi there is then
independent on the location of the other nodes of the two adjacent elements. In our case we
have four coefficients that are used to determine the basis function elementwise. Since these
are Lagrangian interpolating polynomials, we have exactly four independent conditions and
the elementwise evaluation of the coefficient is well-posed. Extension to higher order (always
x and y separate as before) is straight forward.

In the case of general quadrilateral elements, where the edges are not aligned with the coor-
dinate axes, we need to resort to a coordinate transformation for each element. In practice,
the idea is to transform the reference system for the element of interest so that its edges
are aligned with the local reference axis. In this transformed reference system we can define
the basis functions as done above to guarantee continuity of the representation. The inverse
transformation is then used to evaluate the needed integrals. Figure 2.10 shows an example
of such a transformation, typically a conformal mapping.

We exemplify this approach using an example involving bilinear basis functions. With reference
to Figure2.10, it is easy to see that the mapping (x, y) 7→ (η, ξ) is given by:

x = 1
4

[(1− ξ)(1− η)xi + (1 + ξ)(1− η)xj + (1 + ξ)(1 + η)xm + (1− ξ)(1 + η)xk]

y = 1
4

[(1− ξ)(1− η)yi + (1 + ξ)(1− η)yj + (1 + ξ)(1 + η)ym + (1− ξ)(1 + η)yk] .

We recall that we want to evaluate integrals of the type (2.25). Thus we need to evaluate the
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Jacobian of the transformation:

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
,

so that the integral of the generic function f can be evaluated as:∫
Ωe
f(x, y)detJ dxdy =

∫ 1

−1

∫ 1

−1

f(η, ξ) dηdξ.

The actual value is generally calculated using quadrature formulas, e.g. a Gaussian formula
with 4 points, recalling for vector quantities the (covariant) transformation formula:

∇(ξ,η)f = J∇f.

2.5 Convection diffusion equation

We address here the more complicated elliptic problem given by the following convection-
diffusion (or advection-diffusion) equation:

− div (D∇u) + div (βu) = f in Ω

u = 0 in ΓD

D∇u · ν = g in ΓN ,

(2.48)

where D is the diffusion coefficient (for now a positive scalar) and β(x) is a vector field. From
the physical point of view, this equation may represent the transport of a solute dissolved in
a fluid that moves with the velocity field β(x).
The typical variational formulation can be obtained as done before by multiplying by a test
function v and integrating on the domain Ω:

−
∫

Ω

divD∇u v dx+

∫
Ω

div(βu)v dx =

∫
Ω

f v dx.

Application of Green’s Lemma only to the first term yields:

−
∫

ΓN

g v ds+

∫
Ω

D∇u · ∇v dx+

∫
Ω

div(βu) v dx =

∫
Ω

f v dx,

from which we can deduce the following (Galerkin) finite element formulation:

Problem 2.34 (Galerkin).
Find uh ∈ Vh such that:

a (uh, v) = (f, v) + (g, v)Γ ∀v ∈ Vh, (2.49)
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where:

a (uh, v) =

∫
Ω

(D∇uh · ∇v + div(βuh)v) dx

(f, v) =

∫
Ω

f v dx

(g, v)Γ =

∫
Γ

g v ds

Vh = {v(x) : v is continuous in Ω, v(x) = 0 in ΓD, v|Tk is linear ∀Tk ∈ Th; } .

Remark 2.35. Note that now the bilinear form is not symmetric anymore, a (u, v) 6= a (v, u),
and hence there is no associated minimization (Ritz) problem. Moreover, the FE linear system
is not symmetric, although it remains obviously sparse.

The corresponding linear system becomes:

(A+B)u = c,

where A the classical symmetric stiffness matrix seen before and B represents the non-
symmetric transport (or convection) matrix:

A = {aij} aij =

∫
Ω

D∇φj · ∇φi dx

B = {bij} bij =

∫
Ω

div (βφj)φi dx

c = {ci} ci =

∫
Ω

f φi dx+

∫
Γn

g φi dsN .

2.5.1 One dimensional case

Consider the following one-dimensional problem:

−Du′′ + bu′ = 0, 0 < x < 1,

u(0) = 0; u(1) = 1.
(2.50)

It is an ordinary differential equation and the corresponding boundary-value problem can be
solved easily. The characteristic equation is given by:

−Dλ2 + bλ = 0,

whose roots are λ1 = 0 e λ2 = b/D. The general solution is then given by:

u(x) = c1e
λ1x + c2e

λ2x = c1 + c2e
bx/D.
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Figure 2.11: Solution of the one-dimensional convection-diffusion equation for different
values of the ratio b/D.

Imposing the two boundary conditions we find:

u(x) =
e
b
D
x − 1

e
b
D − 1

,

whose behavior at different values of b/D is shown in Figure 2.11. Looking at this plot, we see
that for small values of b/D the solution tends to be linear, while for large values the solution
shows a strong exponential behavior characterized by local areas of the domain where large
gradients are found.
The FE formulation that uses linear basis functions can be readily derived and shown to be
equivalent to the standard finite different method (see 2.1.3). The i-th equation is given by:

D

h2
(−ui−1 + 2ui − ui+1) +

b

2h
(ui+1 − ui−1) = 0. (2.51)

This equation corresponds to a second-order center discretization of the first and second deriva-
tives (see Appendix A).
We introduce now the mesh Péclet number as the non-dimensionalized ratio between the local
convective and diffusive fluxes:

Pe =
|b|h
D

.

Assuming b > 0, the following difference equation is derived:

(Pe− 2)ui+1 + 4ui − (Pe + 2)ui−1 = 0 i = 1, . . . , n− 1. (2.52)

In analogy to the procedure followed for the ODE above, we can find the solution of this
finite-difference equation by assuming the solution is a linear combination of the solutions of
the type ui = λi. Substituting we obtain:

(Pe− 2)λ2 + 4λ− (Pe + 2) = 0,
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Figure 2.12: Solution of the FEM difference equation for the solution of the one-dimensional
convection-diffusion equation compared with the real solution of the differential equation in the
case of Pe = 0.5 e Pe = 2.

from which:

λ1,2 =
−2±

√
4 + (Pe− 2)(Pe + 2)

Pe− 2
=

{
(2 + Pe)/(2− Pe),
1.

The general solution of (2.52) is then given by:

ui = c1λ
i
1 + c2λ

i
2

Using the boundary conditions we finally obtain:

ui =
1−

(
2+Pe
2−Pe

)i
1−

(
2+Pe
2−Pe

)n i = 0, 1, . . . , n,

that gives the solution of the FEM (or FDM) problem on each grid node.
It is easy to see now that we have a problem. In fact, in the case in which Pe > 2 the
solution of the FEM scheme oscillates from node to node. In fact, the denominator of the
term raised to the power i becomes in this case negative, exposing the solution to changes of
signs corresponding to odd or even exponents. This behavior is shown in Figure 2.12.
We can try to correct the situation by resorting to different finite difference approximations of
the first derivative, using a lower-accuracy non-centered discretization. For example, we could
use a forward difference approximation of the convective term yielding:

D

h2
(−ui−1 + 2ui − ui+1) +

b

h
(ui+1 − ui) = 0,
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The difference equation is now:

(Pe− 1)ui+1 − (Pe− 2)ui − ui−1 = 0 i = 1, . . . , n− 1.

and the roots of the characteristic equation are:

λ1,2 =
Pe− 2±

√
(Pe− 2)2 + 4(Pe− 1)

2(Pe− 1)
=

{
1/(1− Pe),
1,

.

Using the boundary conditions the solution becomes:

ui =
1−

(
1

1−Pe

)i
1−

(
1

1−Pe

)n i = 0, 1, . . . , n,

showing instabilities for Pe < 1, thus worsening the situation. Using instead a backward
discretization (upwind) we obtain:

D

h2
(−ui−1 + 2ui − ui+1) +

b

h
(ui − ui−1) = 0,

whose solution results stable for any value of Pe. Simple algebraic manipulations show that
the previous difference equation can be written as:

D

h2
(−ui−1 + 2ui − ui+1) +

b

2h
(ui+1 − ui−1) +

bh

2
(
−ui−1 + 2ui − ui+1

h2
) = 0,

which shows that the “upwind” stable formulation is equivalent to (or can be interpreted as)
a center formulation with an added diffusion term corresponding to an increased diffusion
coefficient equal to D + bh/2. The term bh/2 is called “numerical diffusion” or “numerical
viscosity”. The new Péclet number becomes then:

Pe =
bh

D + bh/2
,

always less or equal than 2 for every value of D and b(> 0), and thus always stable.
This exercise shows that stabilization is obtained by adding numerical diffusion to the scheme.
In other words, we are solving a problem that is different from the original problem, hence
we may ask the question if this is procedure procedure is legitimate. Actually, the strategy
of adding a term to stabilize the numerical scheme is often used in practice and is called a
“variational crime”. The idea is that the convergence of the scheme should not be hampered
by the additional term, or, equivalently, the added term should tend to zero as h −→ 0. In the
present case, the additional term is proportional to bh/2, and thus we can expect first order
convergence (O (()h)) of our numerical scheme, decreased by one with respect to the optimal
second order that we found for b = 0 (see eq. (2.16)).
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Figure 2.13: Convection-diffusion equation solved with linear (P1) Galerkin in the case
of constant coefficients and β = (1, 3)T and D = 0.1, Peh = 1 (left panel) and D = 0.01,
Peh = 10(right panel). Note the strong oscillations appearing in the case of larger Peh.
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Figure 2.14: Convection-diffusion equation solved with linear (P1) Galerkin with Streamline
Diffusion stabilization in the case D = 0.01 and β = (1, 3)T (Peh = 10). The left panel shows
the case τ = 0.01 and the panel on the right shows the corresponding solution for τ = 1. Note
that the oscillations in the latter case are much dumped, but, correspondingly, the effect of the
numerical diffusion is clearly noticeable.
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2.5.2 Multidimensional extension and FEM

A simple and naive approach is to replicate the above sketched procedure to the multidimen-
sional weak form of the convection-diffusion equation. To this aim, we add to our bilinear
form a bilinear term of the type:∫

Ω

(β · ∇u) (β · ∇v) dx,

which in practice correspond to a numerical diffusion somehow proportional to the velocity β.
Actually, a more clever idea is to add numerical diffusion only along the streamlines, leading
to the definition of the so called Streamline-Diffusion (SD) finite element:

Problem 2.36 (Streamline Diffusion).
Find uh ∈ Vh such that:

a
h

(uh, v) = (f, v) ∀v ∈ Vh, (2.53)

dove:

a
h

(uh, v) =

∫
Ω

[
D∇uh · ∇v + div(βuh)v + τ

Peh

| β |2
(β · ∇uh) (β · ∇v)

]
dx

where Peh is the mesh Péclet defined element by element by:

Peh =
|βk|hk
D(k)

withD(k) and βk the diffusion coefficient and the velocity vector considered constant on element
Tk but that can vary from element to element. We recognize immediately that the presence
of hk in the definition of the Péclet number force a

h
(·, ·) to converge to a (·, ·) when h −→ 0.

Hence we are adding a term that resembles a diffusion but that is projected along velocity
vector (from this the name Streamline Diffusion). The coefficient τ is is an empirical parameter
introduced to tune the amount of numerical diffusion introduced to control oscillations on a
case-by-case scenario. In fact, there is no multidimensional theory that determines the exact
value of Peh that guarantees convergence. Figures 2.13 and 2.14 show some exemplifying
example of solutions obtained in the stable and unstable regime.

Remark 2.37. We would like to stress that much improved methods exist for the solution
of the convection diffusion equations with respect to the SD approach. All these methods
are based essentially to the introduction of minimal numerical diffusion only when necessary.
They rely thus on algorithms that intercept potential oscillations and as such are much more
complicated. These topics will be dealt with, although not exhaustively, in the context of finite
volume methods that will be discussed in subsequent chapters.
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Remark 2.38. The practice of introducing an additional term into the variational formula-
tion maintaining consistency of the overall scheme is sometimes referred to a “variational
crime”. It is typical when addressing solutions to ill-posed or degenerate systems. The nu-
merical symptoms in these cases is the appearance of oscillations depending on the data of the
problem. This was the case in the convection-diffusion equation for large Péclet numbers. The
crucial idea in these cases is to maintain consistency of the overall scheme and to introduce
the smalles amount of the extra stabilizing terms. As seen above, this is generally obtained by
multiplication by an appropriate power of the mesh parameter h. Moreover, wheneveer pos-
sible, the added terms are what are called “residuals”, i.e., terms that are zero when the real
solution of the original problem is substituted in place of the approximate (numerical) solution.
These stratagems ensure the consistency (weak or strong) of the ensuing scheme and thus its
convergence.

2.6 Mathematical theory of Galerkin Finite Elements

2.6.1 Preliminaries

A measurable space (Ω,Σ, µ), with nonnegative measure µ, will be denoted simply with Ω. In
general, Ω is an open, bounded, and connected subset of Rd with d = 1, 2 or 3. Its closure
is assumed to be sufficiently smooth (e.g., Lipschitz) and will be denoted with Γ = ∂Ω. A
measurable space gives us the ability of measuring the global size of a function and thus
perform comparisons between different functions. Thus we need the notion of functional norm
of a function that can be thought of roughly as an appropriate infinite dimensional extension
of the norm of a vector space. Thus given two functions u and v in V(Ω), u, v : Ω −→ R, we
can define the scalar product of these to functions in V as follows:

Definition 2.4 (scalar product (in the real field)). A scalar product between two functions u
and v defined in a space V(Ω) is a bilinear form (·, ·) : V ×V −→ R that satisfies the following
properties:

1. symmetry: (u, v) = (v, u);

2. linearity (in the first argument): (αu, v) = α (u, v), (u+ v, w) = (u,w) + (v, w);

3. positiveness: (u, u) =≥ 0, (u, u) = 0⇔ u = 0.

Definition 2.5 (Norm of a function). Given a function u defined in a domain Ω ⊂ R the norm
of u is a linear form (functional) ‖·‖ : V −→ R that satisfies the following properties:

1. ‖u‖ > 0, ‖u‖ = 0 if and only if u = 0;

2. given α ∈ R, ‖αu‖ = | α | ‖u‖;
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3. triangular inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖;

We will be talking of “semi-norm”, denoted by | · |, when the first property is substituted with
the requirement that ‖u‖ ≥ 0.
We will be using often the Cauchy-Schwartz inequality:

| (u, v) | ≤ ‖u‖ ‖v‖

The proof of this property can be obtained as follows.

Proof. If v = 0 the result is obvious. Assume then v 6= 0. Let λ ∈ R, with λ = (v, u) / (v, v).
The function z = u − λv is the orthogonal projection of u along v, so that (v, u− λv) =
(u, v)− λ (u, u) = 0. The symmetry and positive definiteness of the scalar product imply:

0 ≤ (u− λv, u− λv) = (u, u− λv)− λ (v, u− λv) = (u, u− λv) = (u, u)− λ (u, v) ,

summing λ (u, v) on both sides we have:

λ (u, v) ≤ (u, u)

and multiplying by (u, u) we obtain:

(u, v)2 ≤ (u, u) 〈v, v〉 .

We will work with:

Continuous functions; The space of continuous functions C0(Ω) is given by:

C0(Ω) = {u : Ω −→ R : u is continuous and bounded } ,

with norm expressed by:

‖u‖∞ = sup
x∈Ω
| u(x) |; (2.54)

bounded function; the space of bounded functions is characterized by:

L∞(Ω) = {u : Ω −→ R : u is measurable and µ-a.e. bounded} ,

and the same norm as in (2.54) can be defined;
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integrable functions; given 0 < p < ∞, the space of integrable (measurable) functions is
given by:

Lp(Ω) =

{
u : Ω −→ R : u is measurable

∫
Ω

| u |p dµ < +∞
}

;

given 1 ≤ p <∞, the norm can be written as:

‖u‖Lp(Ω) = ‖u‖p =

(∫
Ω

| u(x) |p dµ
) 1

p

; (2.55)

in the case 0 < p < 1, we cannot define the norm as above, and we use the distance metric:

dp(u, v) =

∫
Ω

| u(x)− v(x) |p dµ;

differentiable functions; Ck(Ω) is the space of functions that are k times continuously
differentiable:

Ck(Ω) =
{
u : Ω −→ R : ∀α, | α | ≤ k : ∂αu is continuous in Ω

}
;

and admissible norm is given by:

‖u‖ =
∑

0≤|α|≤k

‖∂αu‖∞

Sobolev Spaces. We denote by W k,p(Ω) the Sobolev space of functions whose derivative
up to order k belong to Lp(Ω):

W k,p(Ω) = {u : Ω −→ R : u ∈ Lp(Ω); ∂αu ∈ Lp(Ω)∀α : | α | ≤ k}

with norm defined by:

‖u‖k,p =

 ∑
0≤|α|≤k

∫
Ω

| ∂αu |p
 1

p

,

if p <∞, and for p =∞:

‖u‖k,∞ = max
0≤|α|≤k

‖∂αu‖∞ .
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The L2(Ω) and H1(Ω) spaces. In this section we recall the results about Hilbert spaces
that are used in the FEM method. The space L2(Ω) is the space of square integrable functions
with respect to the Lebesgue measure, i.e., given f : Ω −→ R, we have:∫

Ω

| f(x) |2 dx <∞.

If we associate the following scalar product:

(u, v)L2(Ω) =

∫
Ω

u(x)v(x) dx,

and the induced norm:

‖u‖L2(Ω) =

(∫
Ω

u(x)v(x) dx

)1/2

,

then L2(Ω) is a Hilbert space.
Given a subspace V (e.g. of L2(Ω)), we will work with linear functionals and forms (roughly
functions of functions) F : V −→ R, and b : V × V −→ R. Given a linear subspace V(Ω) ⊂
L2(Ω), an operator a : V × V 7→ R defines a bilinear form in V × V if:

a : V × V 7→ R,
a (u, v) = a (v, u) ,

a (αu+ βv, w) = αa (u,w) + βa (v, w) ,

a (u, αv + βw) = αa (u, v) + βa (u,w) .

The bilinear form a (·, ·) defines a scalar product in V(Ω) if it is symmetric and:

a (v, v) > 0 ∀v ∈ V , v 6= 0.

The induced norm is given by:

‖v‖V = (a (v, v))
1
2 .

The scalar product satisfies the Cauchy-Schwartz inequality:

|a (u, v) | ≤ ‖u‖V ‖v‖V .

A linear subspace V endowed with a scalar product and the corresponding induced norm is
a Hilbert space if it is complete, i.e., every Cauchy sequence4 converges with respect to the
norm ‖·‖V .

4A sequence of functions vi ∈ V is a Cauchy sequence if there exist ε > 0 such that ‖vi = vj‖V < ε for
sufficiently large i and j. We say that vi converges to v if ‖v − vi‖V −→ 0 i −→∞.
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For example, the space of square integrable functions in the interval Ω = [a, b]:

L2(I) =

{
v(x) : I −→ R such that

∫ b

a

v2 dx <∞
}

is a Hilbert space with scalar product:

(u, v) =

∫ b

a

u(x)v(x) dx

and norm:

‖u‖L2(I) = ‖u‖2 =

(∫ b

a

[u(x)]2 dx

) 1
2

.

Remark 2.39. Note that the space L2 is exactly the space of functions that were mentioned
in Remark 2.14.

Example 2.40. The function v(x) = x−α, x ∈ I = [0, 1], belongs to L2(I) only for α < 1/2.

The natural space of admissible functions that are candidate solutions of our elliptic equations
is the Hilbert space H1(I) = {v : v and v′ belong to L2(I)} equipped with the scalar product:

(u, v)H1(I) =

∫ b

a

[u(x)v(x) + u′(x)v′(x)] dx

and the norm:

‖u‖H1(I) =

(∫ b

a

[
u(x)2 + u′(x)2

]
dx

) 1
2

Remark 2.41. We note here that the derivatives above are always to be intended in the sense
of distributions (weak derivatives). Thus we may write:

H1(I) = {v ∈ L2(I) : there exists g ∈ L2(I) such that

∫
I

vφ′ = −
∫
I

gφ ∀φ ∈ C1
c (I)}

and we will always denote v′ = g. The function φ is called the test function and can be chosen
to belong to C∞c (I) as well (see [3])

Remark 2.42. Note that the space V defined in paragraph 2.1.1 is also a Hilbert space and is
denoted by:

V(I) = H1
0(I) =

{
v(x) : R −→ R such that v(x) ∈ L2(I), v′(x) ∈ L2(I) and v(0) = v(1) = 0

}
The subscript 0 denotes the fact that the functions are zero on the boundary of Ω.
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All these notions can be easily extended to the multidimensional case. Given an open and
bounded domain Ω ∈ Rd with a smooth boundary Γ = ∂Ω:

L2(Ω) =

{
v(x) : Ω −→ R such that

∫
Ω

v(x)2 <∞
}

H1(Ω) =

{
v(x) : Ω −→ R such that v(x) ∈ L2(Ω) and

∂v(x)

∂xi
∈ L2(Ω) for i = 1, . . . , d

}
Hk(Ω) =

{
v(x) : Ω −→ R such that v(x) ∈ L2(Ω) and ∂αv ∈ L2(Ω) for all | α | ≤ k

}
with the following scalar products:

(u, v)L2(Ω) =

∫
Ω

uv dx ‖u‖L2(Ω) =

(∫
Ω

u2 dx

) 1
2

(u, v)H1(Ω) =

∫
Ω

[uv +∇u · ∇v] dx ‖u‖H1(Ω) =

(∫
Ω

[
u2 + |∇u|2

]
dx

) 1
2

The seminorm is given by:

| v |Hk(Ω) =

(∫
Ω

| ∇u |2 dx
) 1

2

=

(∫
Ω

| ∂u |2 dx
) 1

2

= ‖∂v‖L2(Ω) .

Note that the above is not a norm (thus the name “seminorm”) because it vanishes for all
nonzero constant functions.

More on the space H1
0(Ω) and Poincaré inequality. The subscript “0” is used to denote

the space of functions that vanish on the boundary of Ω, i.e., that satisfy homogeneous Dirichlet
conditions on the boundary:

H1
0(Ω) = {v(x) ∈ H1(Ω) such that v(x) = 0 for x ∈ Γ}.

and is equipped with the same scalar product of H1(Ω). In the case u ∈ H1
0(Ω), the homoge-

neous Dirichlet boundary conditions transform the seminorm into an equivalent norm:

Lemma 2.6 (Poincarè). Let Ω ⊂ Rd a bounded open subset. Then there exist a constant C
depending only on Ω such that

‖u‖L2(Ω) ≤ C ‖∇u‖L2(Ω)

for all u ∈ H1
0(Ω).
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Proof. We report the proof for Ω = I ⊂ R, pointing to more specialized functional analysis
books for a more general proof.
The hypothesis is then to have a bounded open interval I = (a, b) and functions u that vanish
in a and b (u ∈ H1

0(I)). Then we have:

| u(x) | = | u(x)− u(a) | = |
∫ x
a
u′(τ) dτ | ≤ ‖u′‖L1 .

Hence ‖u‖L∞ ≤ ‖u′‖L1 from which the result follows by Hölder inequality (see also the discus-
sion on page 29).

Corollary 2.7. The gradient norm:

‖∇u‖ =

(∫
Ω

∇u · ∇u dx
) 1

2

is equivalent (with regards to the induced topology and thus for the notion of convergence) to
the usual norm ‖u‖H1(Ω).

In fact:

‖∇u‖2
2 ≤ ‖u‖2

H1 = ‖u‖2
2 + ‖∇u‖2

2 ≤ (1 + C2)‖∇u‖2
2

and hence, given u e v in H1
0(Ω), we can define a scalar product:

(u, v)H1
0(Ω) =

∫
Ω

∇u · ∇v dx.

In general the trace of a function g in ∂Ω (essentially the value that g takes on the boundary)
is not always well defined, a simple example being sin(1/x) for x = 0. But we can define a
trace operator γ so that γg is appropriately extended on ∂Ω and we can properly use the trace
of any function of H1(Ω) to define H1

0(Ω).

2.6.2 Lax-Milgram Theorem

Definition 2.8. Let V a Hilbert space and a (·, ·) : V ×V −→ R a bilinear form. We say that
the bilinear form is:

• continuous if there is a constant γ > 0 such that:

| a (u, v) | ≤ γ ‖u‖V ‖v‖V ∀u, v ∈ V ; (2.56)

• V-elliptic or coercive if there exists a constant α > 0 such that

a (v, v) ≥ α ‖v‖2
V ∀v ∈ V . (2.57)
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Analogously, a linear form F (·) : V −→ R is said to be continuous if there exists a constant
Λ > 0 such that

| F (v) | ≤ Λ ‖v‖V ∀v ∈ V .

Remark 2.43. The coercivity of the continuous operator is generally inherited by the discrete
FEM operator. This property is fundamental to obtain convergence estimate. But it is not only
a theoretical property. In fact it is the property that guarantees that the system FEM matrix
can be inverted (is nonsingular). In other words, in the discrete case V ≡ Rn, the coercivity of
a (·, ·) implies that the stiffness matrix (i.e., the linear operator associated to a (·, ·)) A = {aij},
aij = a (φi, φj), is positive definite. However, sometimes it is too restrictive, and the coercivity
of the differential operator is not inherited by the discrete operator. In these cases experimental
convergence is observed but theoretical convergence cannot be proved. This is the case some
finite volume schemes that we will see in future chapters.

For linear forms in Hilbert spaces there is the following fundamental theorem:

Theorem 2.9 (Riesz representation). For all continuous linear forms φu(·) in a Hilbert space
V there exists a unique u ∈ V such that φu(v) = a (u, v) for all v ∈ V. Moreover, ‖u‖ = ‖φu‖.

We denote with V∗ (or V ′) the space (dual of V) formed by all linear forms from V to R. The
Riesz theorem ensures that every element of V∗ can be uniquely written as φu(v) = a (u, v). In
other words, the map Φ : V −→ V∗ defined by Φ(u) = φu(v) is an isomorphism. A consequence
of the Riesz representation theorem is the Lax-Milgram theorem for continuous and coercive
bilinear forms:

Theorem 2.10 (Lax-Milgram). Let a (·, ·) : V×V −→ R be a continuous and coercive bilinear
form. For all linear forms F (v) : V −→ R, there exist a unique function u ∈ V such that:

a (u, v) = F (v) ∀v ∈ V .

Proof. (Sketch) From the Riesz representation theorem we can define a linear and continuous
map A : V 7→ E as:

a (u, v) = (A(u), v) con ‖A(u)‖ ≤ C ‖u‖V .

We can associate to a linear form F (·) ∈ V∗ a function of V such that F (v) = (f, v). Thus
we need to show that the solution of the problem A(u) = f in V is unique. For this, we can
use the Banach-Cacciopoli fixed point theorem to show that the map T : E 7→ E:

Tε(u) = u− εA(u) + εf

is a contraction for sufficiently small ε.
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2.7 Abstract formulation of the FEM method for elliptic equations

2.7.1 Weak formulation

Let V be a Hilbert space with scalar product (·, ·)V and norm ‖·‖V . Let a (·, ·) : V ×V −→ R a
continuous and coercive bilinear form and F (·) : V −→ R a continuous linear form. We have
the following:

Problem 2.44 (M). Find u ∈ V such that

F (u) = min
v∈V

F (v),

where

F (v) =
1

2
a (v, v)− F (v) . (2.58)

Problem 2.45 (V). Find u ∈ V such that

a (u, v) = F (v) ∀v ∈ V . (2.59)

We have the following

Theorem 2.11. If the bilinear form is symmetric, i.e., a (u, v) = a (v, u), the two Prob-
lems 2.44 and 2.45 are equivalent in the sense that u ∈ V is solution of Problem 2.44 if and
only if it is solution of Problem 2.45. Moreover, there exist a unique solution that satisfies the
stability estimate:

‖u‖V ≤
Λ

α
(2.60)

Proof. Existence comes from Lax-Milgram theorem.
The equivalence is a trivial extension of what done in R1. Thus, we first show that if u ∈ V
is solution of 2.44 then it is solution of 2.45. Let then v ∈ V and ε ∈ R be arbitrary. The
condition that u ∈ V is a point of minimum for F can be written as:

F (u) ≤ F (u+ εv) ∀ε ∈ R.

Let g(ε) = F (u + εv). The function g has a minimum for ε = 0 which is characterized by
g′(0) = 0. Then, using the symmetry of a (·, ·) we have:

g(ε) =
1

2
a (u+ εv, u+ εv)− F (u+ εv)

=
1

2
a (u, u)− F (u) + εa (u, v)− εF (v) +

ε2

2
a (v, v) ;
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from which the results follows by noting that:

g′(0) = a (u, v)− F (v) .

Let now u ∈ V be solution of 2.45. We need to show that for such u we have F (u) ≤ F (u+ v)
for all v ∈ V . Observe that:

F (u+ v) =
1

2
a (u, u)− F (u) + a (u, v)− F (v) +

1

2
a (v, v) ,

from which the results follows because of the coercivity of a (·, ·).
The stability estimate can be deduced by setting v = u in (2.59) and invoking the coercivity
of a (·, ·) and the continuity of F (·). Then we have:

α ‖u‖2
V ≤ a (u, u) = F (u) ≤ Λ ‖u‖V .

Also uniqueness follows from this last inequality, since, if u1 and u2 are two functions satisfying
Problem 2.45, then:

a (u1 − u2, v) = 0 ∀v ∈ V .

The stability estimate with F (·) = 0 and Λ = 0 implies that ‖u1 − u2‖ = 0, from which
u1 = u2.

We observe that the most important result coming out of the Lax-Milgram theorem, for what
we are concerned, is that the continuity and coercivity of the bilinear form, together with
continuity of the linear form stemming from the source term are the key ingredient to guarantee
existence and uniqueness, and thus we will see in the discrete setting also convergence of the
FEM scheme if the FEM spaces are chosen appropriately.
However, there are problems where the bilinear form is not coercive, and we need some weaker
statements. This condition, which we will specialize for systems of equation where it finds its
typical application, is called the “inf-sup” or “LBB” (Ladyzhenskaya-Babuska-Brezzi) condi-
tion [4], and again guarantees well-posedness. We have the following:

Definition 2.12. A bilinear form a (·, ·) satisfies the inf-sup condition in V if there is α > 0
such that

sup
v∈V

a (u, v)

‖v‖V
≥ α ‖u‖V ∀u ∈ V ; (2.61)

and at the same time:

sup
u∈V

a (u, v)

‖u‖V
≥ α ‖v‖V ∀v ∈ V ; (2.62)
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It is obvious that if a (·, ·) is symmetric then the two conditions above are equivalent. Moreover,
eq. (2.61) (and at the same time eq. (2.62)) can be re-written as:

inf
u∈V

sup
v∈V

a (u, v)

‖u‖V ‖v‖V
≥ α > 0 (2.63)

from which the name “inf-sup”. We have the following:

Lemma 2.13. If a (·, ·) is coercive then it satisfies the “inf-sup” condition 2.63.

Proof. Coercivity of a (·, ·) implies

a (u, u) ≥ α ‖u‖2
V , ∀u ∈ V .

Then we can write:

sup
v∈V

a (u, v)

‖v‖V
≥ a (u, u)

‖u‖V
≥ α ‖u‖V .

Remark 2.46. In the discrete setting (FEM) we can write the “inf-sup” condition for the
linear operator A associated to a (·, ·) and its adjunct A∗. In fact we have:

A : V ′ −→ V A∗ : V −→ V ′,

with V ′ the dual space of V (with respect to the linear form F ) and where A and A∗ are defined
by:

(Au, v)V ′×V = a (u, v) (u,Av)V×V ′ = a (u, v) ,

then the condition (2.63) is equivalent to:

‖Au‖V ′ ≥ α ‖u‖V ∀u ∈ V ; (2.64)

‖A∗v‖V ′ ≥ α ‖v‖V ∀v ∈ V . (2.65)

In the case V = Rn, coercivity of the bilinear form, as seen before, implies that matrix A is
positive definite, while the “inf-sup” condition implies only that A is invertible.

We have the following:

Theorem 2.14. The continuous bilinear form a (·, ·) satisfies the “inf-sup” condition if and
only if the operator A is a bijection.

Note that if A is a bijection then problem (2.45) has a unique solution for each F (·), i.e., A
has continuous inverse and ‖u‖V ≤ C ‖F‖V ′ .
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Proof. If a (·, ·) satisfies the “inf-sup” condition, then eq. (2.64) and (2.65) show that the
operators A e A∗ are injections. Thus it is enough to show that the image R(A) of A is closed.
Let Aun −→ w, then

‖A(un − um)‖V ′ ≥ α ‖un − um‖V ,

that shows that {un} is a Cauchy sequence and thus it converges to u ∈ V . From the continuity
A we have w = Au ∈ R(A).
On the other hand, if A is a bijection, then also A∗ is and thus the operator has continuous
inverse.

2.7.2 FEM formulation

The FEM Formulation is obtained directly by approximating the appropriate functional space
with a finite-dimensional subset Vh ⊂ V generated by a finite number of basis functions
{φ1, . . . , φn}. Then, every function v ∈ Vh can be written as:

v =
n∑
j=1

ξiφi(x). (2.66)

We have then:

Problem 2.47 (FEM, Ritz method). Find uh ∈ Vh such that

F (uh) ≤ F (v) ∀v ∈ Vh. (2.67)

or equivalently:

Problem 2.48 (FEM, Galerkin method). find uh ∈ Vh such that

a (uh, v) = (f, v) ∀v ∈ Vh. (2.68)

Using the representation of uh as linear combination of φi:

uh =
n∑
j=1

ujφj, uj ∈ R,

we obtain:

n∑
j=1

uja (φj, φi) = F (φi) , i = 1, . . . , n,
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or in matrix form:

Au = b,

where:

u = {ui}, A = {aij}, aij = a (φj, φi) , b = bi, bi = F (φi) . (2.69)

Matrix A is called the stiffness matrix. We have the following:

Theorem 2.15. The stiffness matrix A is symmetric and positive definite.

Proof. The symmetry of A is inherited by the symmetry of the bilinear form.
Using (2.66) we have:

a (v, v) = a

(
n∑
i=1

ξiφi,

n∑
i=1

ξiφi

)
=

n∑
i,j=1

ξia (φi, φj) ξj = ξ · Aξ,

where ξ = {ξi} is a vector of Rn and the · denotes the vector scalar product. From the
coercivity (eq. (2.57)) of the bilinear form we obtain immediately:

ξ · Aξ = a (v, v) ≥ α ‖v‖2
V > 0

if v 6= 0, i.e., if ξ 6= 0.

Theorem 2.16. The two Problems (2.47) and (2.48) are equivalent and have a unique solution
uh ∈ Vh. Moreover, we have the following stability estimate:

‖uh‖V ≤
Λ

α
.

Proof. Existence and uniqueness comes from Theorem 2.15. Now, choose v = uh in (2.68) and
using the properties of a (·, ·) and F (·) we have:

α ‖uh‖2
V ≤ a (uh, uh) ≤ Λ ‖uh‖V .

Dividing by ‖uh‖V 6= 0 we obtain the desired result.

Next we show Céa Lemma, that states that the error for uh is optimal in Vh.

Theorem 2.17 (Céa). Let u ∈ V be a solution of Problem 2.45 and let uh ∈ Vh ⊂ V a solution
of Problem 2.48. Then:

‖u− uh‖v ≤
γ

α
‖u− v‖V ∀v ∈ Vh.
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Proof. Since Vh ⊂ V , subtracting eqs. (2.59) and (2.68), we have that the Galerkin FEM
scheme, and as a consequence also the Ritz scheme, are strongly consistent:

a (u− uh, v) = 0 ∀v ∈ Vh. (2.70)

Take w = uh − v (w ∈ Vh) so that v = uh − w and invoke consistency and coerciveness to
obtain:

α ‖u− uh‖2
V ≤ a (u− uh, u− uh) = a (u− uh, u− uh) + a (u− uh, v)

= a (u− uh, u− v) ≤ γ ‖u− uh‖V ‖u− v‖V .

The result follows after division by ‖u− uh‖V > 0.

Remark 2.49. Céa Lemma suggests that we can obtain a quantitative estimate of the error by
choosing any v ∈ Vh for which we can derive a quantitative estimate for ‖u− v‖. A typical way
of doing this for FEM is to use a Lagrangian interpolation function of degree r, for example
for r = 1, we can use a piecewise linear interpolator v = πh,1u.

The energy norm. If the bilinear form a (·, ·) is symmetric, we can define a new norm,
called the energy norm, in V :

‖v‖2
a = a (v, v) , v ∈ V .

This norm is equivalent to the classical norm in V :

√
α ‖v‖V ≤ ‖v‖a ≤

√
γ ‖v‖V ,

with scalar product given by:

(u, v)a = a (u, v) .

Using the energy norm, we can say that uh is the orthogonal projection of u on Vh with respect
to the scalar product (·, ·)a, and uh is the best approximation of u in the energy norm.

Non coercive operators. Not that in the proof of Céa’s lemma 2.17 we did not use the
symmetry of a (·, ·). In fact, this lemma can be extended to non symmetric and non coercive
operators. For the latter, we need to use the “inf-sup” condition, so that we need to have a
β > 0 such that:

sup
v∈Vh

a (u, v)

‖v‖V
≥ α ‖u‖V ∀u ∈ Vh.

The second “inf-sup”condition comes from the previous one since Vh has finite dimension. If
the constant α is independent on h, then we have:
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Theorem 2.18 (Céa Lemma). Let u ∈ V be solution of 2.45 and uh ∈ Vh ⊂ V be solution of
2.48. Then:

1. if a (·, ·) is not coercive:

‖u− uh‖v ≤
(

1 +
‖a (·, ·)‖

α

)
inf
v∈Vh
‖u− v‖V ,

where

‖a (·, ·)‖ = sup
v∈Vh,v 6=0

a (v, v)

‖v‖2
V

;

2. if a (·, ·) is continuous and coercive:

‖u− uh‖v ≤
γ

α
inf
v∈Vh
‖u− v‖V ;

3. if a (·, ·) is also symmetric:

‖u− uh‖v ≤
√
γ

α
inf
v∈Vh
‖u− v‖V .

Proof. We show only the first point, since the other two are immediate. Let v ∈ Vh. using the
“inf-sup” condition and the consistency of the scheme, we have, analogously to the coercive
case:

α ‖v − uh‖V ≤ sup
w∈Vh

a (v − uh, w)

‖w‖V
= sup

w∈Vh

a (v − u,w)

‖w‖V
≤M ‖v − u‖v ,

where

M = ‖a (·, ·)‖ = sup
v∈Vh,v 6=0

a (v, v)

‖v‖2
V

;

the proofs concludes using the triangular inequality.

Corollary 2.19. Let {Vh} a sequence of finite-dimensional subspaces of V indexed by the
parameter h. If for h −→ 0 we have that:

inf
vh∈Vh

‖v − vh‖V −→ 0,

then, for α = infh αh > 0, uh converges to u in V.
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Example 2.50. Let V = H1
0 (Ω), Ω ⊂ R2. Consider

a (v, w) =

∫
Ω

∇v · ∇w dx; F (v) =

∫
Ω

fv dx,

with f ∈ Ls(Ω). The bilinear form is symmetric and continuous. Coercivity derives from
application of Poincarè theorem 2.6. Thus we have:

‖u− uh‖H1(Ω) ≤ Ch,

if u is sufficiently smooth.

Example 2.51. Consider the convection-diffusion equation in R2:

−µ∆u+ div(βu) + u = f inΩ

u = 0 in∂Ω

where β = (β1, β2) is a vector field of R2. Multiplying by v ∈ V = H1
0 (Ω), integrating over Ω.

and applying Green’s lemma we have:

a (u, v) = F (v) ∀v ∈ V ,

where:

a (v, w) =

∫
Ω

(∇v · ∇w + div(βv)w) dx, F (v) =

∫
Ω

fv dx.

Assume µ = 1 and | β |/µ small. The problem is coercive. In fact, application of Green’s
lemma to the second term yields:∫

Ω

div(βu)v dx =∫
Γ

(β · n)u v ds−
∫

Ω

div(βv)u dx

= −
∫

Ω

div(βv)u dx.

This is valid for all v ∈ V , and thus also for v = u, which yields:∫
Ω

div(βu)u dx = 0.

and

a (v, v) =

∫
Ω

(
| ∇v |2 + v2

)
dx = ‖v‖2

H1(Ω) .
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Remark 2.52. We note that coerciveness of the bilinear form is regulated by the diffusive term
if div β = 0, i.e., the advective field that transports the quantity u must be divergence free, or
in other terms, must be “conservative”.

We can formulate a convergent FEM problem: find uh ∈ Vh such that:

a (uh, v) = F (v) ∀v ∈ Vh.

The stiffness matrix is not symmetric any longer but coercivity guarantees that it is invertible.
Moreover (α = 1):

‖u− uh‖H1(Ω) ≤ γ ‖u− v‖H1(Ω) ∀v ∈ Vh.

Example 2.53. Let u be the temperature of a solid whose shape is given by Ω ∈ R3. The
thermal flux is given by Fourier’s law:

qi(x) = −ki(x)
∂u

∂xi
x ∈ Ω; i = 1, 2, 3, ;

Conservation of energy states that:

div q =
3∑
i=1

∂

∂xi

(
ki(x)

∂u

∂xi

)
= f x ∈ Ω;

This is an example of a PDE with variable coefficient. The variational formulation requires
boundary conditions:

u = 0 inΓD

−q · n = g inΓN

with ∂Ω = Γ = ΓD ∪ ΓN .

Let V = {v ∈ H1(Ω) : v = 0 on ΓD}. With a standard approach we obtain:

∫
Ω

fv dx =

∫
ω

v div q dx =

∫
Γ

vq · n ds−
∫

Ω

q · ∇v dx =
3∑
i=1

∫
Ω

ki(x)
∂u

∂xi

∂v

∂xi
dx−

∫
ΓN

gv ds,

and thus the following: Find u ∈ V such that:

a (u, v) = F (v) ∀v ∈ V ,
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where:

a (v, w) =
3∑
i=1

∫
Ω

ki(x)
∂u

∂xi

F (v) =

∫
Ω

fv dx+

∫
ΓN

gv ds.

The bilinear form is symmetric, continuous and coercive and the linear form is continuous if
there exist constants c and C such that:

c ≤ ki(x) ≤ C, ∀x ∈ Ω; i = 1, 2, 3,

and moreover f ∈ L2(Ω) e g ∈ L2(ΓN) the measure of ΓD is positive (non-zero).

2.8 Finite element spaces

The final definition of the finite element method requires now a proper definition of Vh. The
choice made by FEM is to use piecewise continuous polynomials defined on appropriate sub-
divisions of the domain Ω ∈ Rd, called generically triangulations. A triangulation Th = {K} is
thus formed by the union of elements T (or subdivisions) that cover Ω without superposition.
The spaces we are looking for are finite dimensional subspaces of H1(Ω) (or of H2(Ω) for PDE
of fourth order, for example). To properly define the piecewise continuous polynomials we
need to require:

Vh ⊂ H1(Ω)⇔ Vh ⊂ C0(Ω̄)

Vh ⊂ H2(Ω)⇔ Vh ⊂ C1(Ω̄)

where Ω̄ = Ω ∪ Γ.

2.8.1 Two-dimensional case (d = 2)

Let the domain Ω ∈ R2 be characterized by a polygonal boundary Γ. Let Th = {T} be a
triangulation formed by triangular elements T, and let πr(T) the polynomial of degree r in T:

Pr(T) = {v : v polynomial of degree ≤ r in T} .

A linear polynomial π1(T) can be written as

v(x) = a00 + a10x1 + a01x2, x ∈ T, (2.71)

with aij ∈ R. We note immediately that φ1(x) = 1, φ2(x) = x1, φ3(x) = x2 are a basis for
P1(T).
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ξ
1

ξ
3

ξ

Figure 2.15: Left: triangle with degrees of freedom defining a linear function. Center and
right: examples of linear basis functions.

In the quadratic case we may write:

v(x) = a00 + a10x1 + a01x2 + a20x
2
1 + a11x1x2 + a02x

2
2, x ∈ T,

with aij ∈ R and basis {1, x1, x2, x
2
1, x1x2, x

2
2}. In general we can write:

Pr(T) =

{
v : v(x) =

∑
0≤i+j≤r

aijx
i
1x

j
2 for x ∈ T

}
dimPr(T) =

(r + 1)(r + 2)

2
.

Example 2.54. Affine polynomials on triangles (Fig.2.15:

Vh =
{
v ∈ C0(Ω̄) : v|T ∈ P1(T), ∀T ∈ Th

}
.

The space Vh is then formed by functions that are piecewise continuous and with derivatives
that are piecewise constant. To describe these functions we use the “degrees of freedom”, in
this case the nodes of Th. Every function v ∈ Vh(T) is uniquely determined by its values at
the nodes of T. Let ξ(i), i = 1, 2, 3 be the coordinates of these nodes. Then, for αi ∈ R we
have:

Theorem 2.20. Let T ∈ Th a triangle with vertices having coordinates ξ(i), i = 1, 2, 3. A
function v(x) ∈ P1(T) is uniquely determined by its values at the vertices. In other words,
given the values αi ∈ R, i = 1, 2, 3, v(x) ∈ P1(T) is uniquely determined by:

v(ξ(i)) = αi i = 1, 2, 3 (2.72)

Proof. The generic function v(x) can be written as in (2.71). This the linear system (2.72)
has a unique solution if matrix

A =

 ξ
(1)
1 ξ

(1)
2 1

ξ
(2)
1 ξ

(2)
2 1

ξ
(3)
1 ξ

(3)
2 1
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Figure 2.16: Left: degrees of freedom for a triangle defining a quadratic function. Center
and right: example of quadratic basis functions.

is nonsingular. This is true since Ker(A) = ∅. In fact, it was not empty, there would be a
nonzero vector a = (a1, a2, a3) such that Aa = 0. Then we would have a polynomial of degree
1 in R2 with three roots.

To determine the basis functions it is sufficient to choose αi appropriately. Then, following
the Lagrangian interpolation idea, we can chose αi equal to (1, 0, 0), (0, 1, 0), and (0, 0, 1). We
can then define functions φi(x) that are continuous on Ω̄ with piecewise constant gradient.
For each element T we have:

v(x)|T =
3∑
i=1

v(ξ(i))φi(x) ∇v(x)|T =
3∑
i=1

v(ξ(i))∇φi(x).

Example 2.55. Quadratic basis functions. The space Vh is given by:

Vh =
{
v ∈ C0(Ω̄) : v|T ∈ P2(T),∀T ∈ Th

}
.

To describe these functions we need six degrees of freedom T ∈ Th. We choose the vertices of
T and the midpoints of each edge (Fig. 2.16). We have then:

Theorem 2.21. Let T ∈ Th a triangle whose vertices have coordinates ξ(i), i = 1, 2, 3. Let ξ(ij)

be the coordinates of the midpoints of the edge between nodes i and j. A function v(x) ∈ P2(T)
is uniquely determined by:

v(ξ(i)) = αi i = 1, 2, 3 v(ξ(ij)) = αij i < j, i, j = 1, 2, 3.

Proof. Again it suffices to determine as before that the conditions v(ξ(i)) = 0 and v(ξ(ij)) = 0
i < j, i, j = 1, 2, 3 imply v = 0 on the whole T. Consider an edge, e.g, between nodes 2 and 3
(Fig. 2.16). The quadratic function restricted on this edge is uniquely determined by the three
points ξ(2), ξ(23), and ξ(3). if v is zero on these nodes, then v is identically zero on edge 2-3.
Thus we can factor a function φ1(x) (the polynomial of degree 1 of the previous example):

v(x) = φ1(x)w1(x).
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Repeating this argument on the edge between nodes 1 and 3, we have:

v(x) = φ1(x)φ2(x)w0,

where now w0 is constant. Now take v(ξ(12)) = 0. We find:

0 = v(ξ(12)) = φ1(ξ(12))φ2(ξ(12))w0 =
1

2

1

2
w0,

which yields w0 = 0.

Quadratic basis functions can be determined from the linear basis functions as:

v(x)|T =
3∑
i=1

v(ξ(i))φi(x)(2φi(x)− 1) +
3∑

i,j=1
i<j

v(ξ(ij))4φi(x)φj(x).

2.9 Error estimates for elliptic problems

For elliptic equation whose bilinear form is coercive with constant α and continuous with
constant γ, Céa’s lemma ensures that:

‖u− uh‖V ≤
γ

α
‖u− v‖V ∀v ∈ Vh.

The idea is to take for v the interpolating polynomial πh,ru of u, so that we are left with the
problem of estimating the interpolation error ‖u− πh,ru‖V . It is evident that it is sufficient
to estimate this error on each element T ∈ Th and then sum over all elements, as done in the
one-dimensional case.

Interpolation error. We consider here a polygonal domain Ω ∈ R2 (the extension to R3 is
immediate) and a triangulation Th(Ω). We identify with Tj the j-th triangle of Th(Ω). Then:

Th(Ω) =
M⋃
j=1

Tj

Tj ∩ Ti =

{
∅
σij

where σij is the edge between nodes i and j. For each T ∈ Th we denote;

hT = diameter of T = edge of maximum length of T;

ρT = diameter of the circle inscribed in T;
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The triangulation Th will be characterized by a single grid parameter h, defined as;

h = max
T∈Th

hT .

Consider a family of triangulations {Th(Ω)} indexed by h and a corresponding family of
functional spaces Vh = {v ∈ H1(Ω) : v|T ∈ P1(T)}. We have:

Definition 2.22 (Regular triangulation). A triangulation {Th(Ω)} is “regular” if there exists
a constant β > 0 independent of h and of the member Th of the family {Th} such that

ρT
hT
≥ β ∀T ∈ Th.

The constant β estimates the measure of the smallest angle among all triangles T. The
regularity of the triangulation ensures that during the limit process h −→ 0 no angle of the
triangulation tends to zero. We report here the classical interpolation result, whose proof can
be found for example in [22]:

Theorem 2.23. Let T ∈ Th be a triangle with vertices ξ(i), i = 1, 2, 3. Let v(x) ∈ Hr+1(T) and
πh,rv ∈ Pr(T) be its Lagrangian interpolating polynomial of degree r. Then for each triangle
T:

‖v − πh,rv‖L2(T) ≤ Chr+1
T

∥∥∂r+1v
∥∥
L2(T)

,

| v − πh,rv |H1(T) ≤ C
hr+1
T

ρT

∥∥∂r+1v
∥∥
L2(T)

≤ C

β
hrT
∥∥∂r+1v

∥∥
L2(T)

.

Remark 2.56. We note that the second inequality contains the grid parameter ρT, which comes
in play when we estimate the gradients of v and πh,rv on triangle T. In fact the norm of the
gradient of functions v ∈ Hr+1(T) is bounded by 1/ρT.

Remark 2.57. The basis functions φj ∈ P1(T) two-dimensional triangle T have the following
useful properties:

Lemma 2.24. For j = 1, 2 and x ∈ T the following properties hold:

3∑
i=1

φi(x) = 1
3∑
i=1

∂φi
∂xj

(x) = 0

The following corollary holds for the family of triangulations:
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Corollary 2.25. If the members of the family {Th} are regular triangulations, then there exist
two constants C1 and C2 independent of h and of v ∈ Hr+1(Ω) such that

‖v − πh,rv‖L2(Ω) ≤ C1h
r+1
∥∥∂r+1v

∥∥
L2(Ω)

, (2.73)

| v − πh,rv |H1(Ω) ≤ C2h
r
∥∥∂r+1v

∥∥
L2(Ω)

. (2.74)

Proof. We show the corollary for r = 1 (linear interpolation). In this case theorem (2.23)
specializes in:

‖v − πh,1v‖L2(T) ≤ Ch2
T

∥∥∂2v
∥∥
L2(T)

,

| v − πh,1v |H1(T) ≤ C
h2
T

ρT

∥∥∂2v
∥∥
L2(T)

.

Summing over all T ∈ Th we have:

‖v − πh,kv‖2
L2(Ω) =

∑
T∈Th

‖v − πh,kv‖2
L2(T) ≤

∑
T∈Th

C2h4
T

∥∥∂2v
∥∥2

L2(T)
≤ C2h4

∥∥∂2v
∥∥2

L2(Ω)
.

For the second inequality, recall that hT/ρT ≤ 1/beta. Then:

| v − πh,kv |2H1(Ω) =
∑
T∈Th

| v − πh,kv |2H1(T) ≤
∑
T∈Th

C2h
4
T

ρ2
T

∥∥∂2v
∥∥2

L2(T)
≤ C2

β
h2
∥∥∂2v

∥∥2

L2(Ω)
.

As typical of Lagrangian interpolation, accuracy is determined by the order of the interpolating
polynomial and by the smoothness of the interpolated function. In general, we have for
1 ≤ s ≤ r + 1:

‖v − πh,sv‖L2(T) ≤ ChsT ‖∂sv‖L2(T) ,

| v − πh,sv |H1(T) ≤ Chs−1
T ‖∂sv‖L2(T) .

FEM error and regularity of the solution From Céa Lemma we have immediately an
estimate of the FEM error:

‖u− uh‖V ≤
γ

α
‖u− πh,ku‖V ,

and using the interpolation error estimates above we can estimate the FEM error for different
problems.
For example, consider the following Poisson problem:

−∆u = f in Ω

u = 0 in Γ = ∂Ω
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Let V = H1
0 (Ω) and Vh = {v ∈ V : v|T ∈ Pr(T)∀T ∈ Th}. Then we have:

‖u− uh‖H1(Ω) ≤ Chr| u |Hr+1(Ω).

The regularity theory for elliptic equations ensures that if Γ is sufficiently regular, then we
have:

‖u‖Hs+2(Ω) ≤ C ‖f‖Hs(Ω) , (2.75)

or, intuitively, the solution gains two orders of derivatives with respect to the forcing function
f .

If Γ is non smooth, the estimate may not be true (even for s = 0). For example, if Ω is
not convex with an angular vertex pointing towards the interior of Ω, the solution will have
a singularity even though f is smooth. To give some intuition, we could approximate the
solution u in such a point as (we use polar coordinates centered in the angular point):

u(r, θ) = rγα(θ) + β(r, θ) γ =
π

ω
, (2.76)

where ω is the measure of the angle at the boundary. It is possible to show that (2.75) is valid
with s = 0 if ω < π, i.e., convex domain with polygonal boundary. If ω > π, a function of the
form (2.76) does not belong to H2(Ω) if α 6= 0. It is easy to verify that:∫

Ω

| ∂su |2 dx ≈ C

∫ R

0

[rγ−s]2r dr.

This integral exists and is finite, thus u ∈ Hs(Ω), if s < γ + 1. The error of the FEM
formulation can be described for every ε > 0 as:

‖u− uh‖H1(Ω) ≤ Chγ−ε ‖u‖Hγ−ε+1(Ω) = Chγ−ε,

where γ = π/ω, and ω is the measure of the largest angle of the angular point of Γ. For
example, if γ = 2/3, i.e., an angle with ω = 3π/2, we loose the (O(h)) convergence of the
method:

‖u− uh‖H1(Ω) ≤ Ch
2
3
−ε.

We can however conceive adaptive methods that try to decrease hT locally to prevent this
loss of accuracy. In principle these methods work very well, although the complication of
dynamically adjusting the triangulation renders problematic their application to large scale
problems problems. We will not pursue this approach further and refer the reader to the
specialized literature.
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` ‖u− uh,`‖L2
‖u− uh,`−1‖L2
‖u− uh,`‖L2

p

0 0.2241 –
1 0.0483 4.64 2.32
2 0.0117 4.13 2.06
3 0.0029 4.03 2.02

Figure 2.17: Left: Uniform refinements of initial triangle (` = 0, ` = 1, ` = 2). Right: L2

error norms and convergence rates p for ` = 0, . . . , 3.

L2 error for the Poisson equation. The Nitsche-Aubin- trick. From the preceding
analysis we realize that there is a discrepancy from the order of convergence of the FE scheme
as derived from Céa’s lemma and the order of convergence of the interpolation scheme. In
fact, we can only state the following FEM convergence estimate:

‖u− uh‖H1(Ω) ≤ Ch| u |H2(Ω),

and the following interpolation convergence estimate:

‖u− πh,1u‖L2(Ω) ≤ Ch2| u |H2(Ω).

Example 2.58 (FEM for Poisson equation with smooth solution). We solve the following
problem:

−∆u = f(x, y) (x, y) ∈ Ω ⊂ R2

u = 0 (x, y) ∈ ∂Ω

where Ω = {(x, y) : (x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1} and f(x, y) = −5/4π2 sin(π x) cos(π y/2).
The problem admits the solution u(x, y) = sin(π x) cos(π y/2).
We solve this problem with linear Galerkin FEM and use a sequence of four ` ∈ {0, 1, 2, 3}
unstructured triangulations Th,`(Ω) constructed by uniform refinements of an initial mesh
Th,0(Ω) obtained by halving h at each refinement level (Fig. 2.17, left panel). The table
on Figure 2.17 (right panel) shows the experimental L2 error norms and their ratio at the
different mesh levels. The errors decrease by a factor almost 4 at each refinement, showing
that convergence of the FEM method is optimal, in the sense that the L2 norm of the error is
proportional to h2, i.e., the same convergence rate of the theoretical interpolation error.

Backed up by numerical convergence, we see that we should find theoretical evidence for the
above calculations. This is obtained using by duality arguments using the so called “Aubin-
Nitsche trick”. We have the following:
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Theorem 2.26. Let Ω a convex polygonal domain and uh the FEM solution of the Poisson
equation with piecewise linear basis functions. Then there exists a constant C independent of
h and u such that:

‖u− uh‖L2(Ω) ≤ Ch2| u |H2(Ω).

Proof. Let e = u− uh be the error function. Strong consistency of the scheme implies:

a (e, v) = 0 ∀v ∈ Vh, (2.77)

We want to estimate the L2 error norm, which we note can be equivalently defined as:

‖e‖L2(Ω) = (e, e)1/2 = sup
v∈L2

∫
Ω
e v dx

‖v‖L2
.

The integral in the numerator reminds us of the linear form of the right-hand-side of a vari-
ational formulation for a Poisson equation with e as source function. Then we can let ϕ be
solution of the following dual (adjoint) problem:

−∆ϕ = e in Ω

ϕ = 0 in Γ.

Since Ω is convex, the elliptic estimate (2.75) holds with s = 0. Then:

‖ϕ‖H2(Ω) ≤ C ‖e‖L2(Ω) . (2.78)

Now we can use Green’s Lemma, the fact that e = 0 in Γ and the consistency of the FEM
scheme (2.77) stating that a (e, πh,1ϕ) = 0, to obtain:

(e, e) = (e,−∆ϕ) = a (e, ϕ) = a (e, ϕ− πh,1ϕ) .

Using again Green’s Lemma and noting that ϕ = 0 at the boundary, we have:

‖e‖2
L2(Ω) =

∫
Ω

∇e∇(ϕ− πh,1ϕ) ≤ ‖∇e‖L2(Ω) ‖∇(ϕ− πh,1ϕ)‖L2(Ω)

≤ ‖e‖H1(Ω) ‖ϕ− πh,1ϕ‖H1(Ω) .

We now use the interpolation error estimate (2.74) with r = 1:

‖e‖2
L2(Ω) ≤ C ‖e‖H1(Ω) h| ϕ |H2(Ω);

finally, using (2.78) on the auxiliary (adjoint) Poisson problem forced by the error:

‖e‖2
L2(Ω) ≤ Ch ‖e‖H1(Ω) h ‖e‖L2(Ω) .

Division by ‖e‖L2(Ω) yields:

‖e‖L2(Ω) ≤ Ch ‖e‖H1(Ω) ,

which using Céa Lemma gives immediately the desired result:

‖u− uh‖L2(Ω) ≤ ch2| u |H2(Ω).
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2.10 Estimate of the condition number of the stiffness matrix

We have now almost all the tools that allow to show the result stated in Remark 2.10. We
take as an example the Poisson equation with homogeneous Dirichlet conditions discretized
via linear finite elements on a regular triangulation Th (cfr. paragraph 2.9). The stiffness
matrix is given by::

A = {aij} aij = a (φi, φj) a (φi, φj) =

∫
Ω

∇φi · ∇φj,

with φj ∈ P1(Th). We have the following:

Theorem 2.27. The condition number of the stiffness matrix A can be estimated by:

κ(A) = O
(
h−2
)
.

In particular, the largest and smallest eigenvalues are λ1(A) = O (1) and λn(A) = O (h2),
respectively.

Before proceeding with the proof we show the following result, known as “inverse estimate”
(inverse of the Poincaré inequality), used to estimate the gradient of the solution with the
solution itself. Note that this is obtained at the cost of the appearance of a factor 1/h in the
estimate.

Lemma 2.28 (Inverse estimate). There exist two constants c and C depending only on the
regularity constants of the triangulation Th such that for all v =

∑N
i=1 αiφi ∈ Vh we have:

ch2| α |2 ≤ ‖v‖2
L2(Ω) ≤ Ch2| α |2; (2.79)

a (v, v) =

∫
Ω

| ∇v |2 dx ≤ Ch−2 ‖v‖2
L2(Ω) . (2.80)

Proof. We need to show that for each triangle T ∈ Th with vertex coordinates given by ξ(i),
i = 1, 2, 3 and for all v ∈ P1(T), we have:

ch2
T

3∑
i=1

| v(ξ(i)) |2 ≤ ‖v‖2
L2(T) ≤ Ch2

T

3∑
i=1

| v(ξ(i)) |2, (2.81)∫
T

| ∇v |2 dx ≤ Ch−2
T

∫
T

| v |2 dx. (2.82)

Then summing up over all T ∈ Th we obtain the result.
The strategy is to show the inequalities for a reference triangle T̂ with nodal coordinates
given by ξ̂(1) = (0, 0), ξ̂(2) = (1, 0), and ξ̂(3) = (0, 1) and then use an affine transformation to
translate the inequalities for a general triangle T in the reference system (x1, x2)
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(0,0)
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^ x1

x2
^

x2

x^

x

(0,h)

(h,0)(0,0)(1,0)

(0,1)

x

Figure 2.18: Coordinate transformation from a reference triangle T̂ to the scaled triangle T.

Let φ̂i(x̂) be the classical basis function for P1(T̂) and let:

v̂(x̂) =
3∑
i=1

γiφ̂i(x̂), ∀x̂ ∈ T̂.

Let γ = (γ1, γ2, γ3). We want to show that the function f : R3 −→ R defined as

f(γ) =

∫
T̂
| ∇v̂ |2 dx̂∫
T̂
v̂2 dx̂

, γ 6= 0,

satisfies:

f(γ) ≤ C ∀γ ∈ R3, γ 6= 0. (2.83)

From this we obtain (2.82) with T = T̂ e hT =
√

2. Note that f(γ) is a homogeneous function
of degree zero (f(αγ) = f(γ) ∀α ∈ R, α 6= 0). To show (2.83) we show that f(γ) is continuous
and bounded in a ball B = {γ ∈ R3 : ‖γ‖ = 1}. In fact, f(γ) 6= 0 for γ ∈ B and is continuous
since γi are the baricentric coordinates of v̂ in T̂. Since B is closed and bounded in R3, then
f reaches its maximum value in B contained in T̂.
Now we work on a simplified generic triangle T, similar to T̂ but with edges of length h and
hypotenuse hT =

√
h (see Fig. 2.18). The map F : T̂ −→ T is:

x = F (x̂) = (hx̂1, hx̂2) , x̂ ∈ T̂.

For every function v ∈ P1(T) we have:

v̂(x̂) = v (F (x̂)) , x̂ ∈ T̂,
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The Jacobian of the transformation is given by:

∂v̂

∂x̂i
=

∂v

∂x1

∂x1

∂x̂i
+

∂v

∂x2

∂x2

∂x̂i
=

∂v

∂xi
h.

Hence we have that ∇v̂ = h∇v and obviously dx = h2dx̂, dx̂ = dx/h2, yielding:∫
T̂

| ∇v̂ |2 dx̂ =

∫
T

h−2| ∇v |2h2 dx ≤ C

∫
T̂

v̂2 dx̂ = Ch−2

∫
T

v2 dx.

In analogy, to go from T̂ to a general triangle, we can form the coordinate transformation:

x = F (x̂) = ξ(1) +
(
ξ(2) − ξ(1)

)
x̂1 +

(
ξ(3) − ξ(1)

)
x̂2 = BTx̂+ p.

Using the fact that | ξ(i) − ξ(1) | ≤ ChT , i = 1, 2, 3 and dx = Ch2
tdx̂, which are true because

of the regularity property of Th, we obtain the sought result.

Proof of theorem 2.27. A generic function v ∈ Vh can be written as a linear combination of
the basis functions:

v(x) =
N∑
i=1

βiφi(x),

hence:

a (v, v) = β · Aβ,

with β = {βi}. Using the inverse inequality (2.79) and (2.80) of Lemma 2.28, we have:

β · Aβ
‖β‖2 =

a (v, v)

‖β‖2 ≤ Ch−2
‖v‖2

L2(Ω)

‖β‖2 ≤ C2 ∀β ∈ RN .

The coercivity of the bilinear form a (·, ·) together with eq. (2.79), yields (‖v‖H1(Ω ≥ ‖v‖L2(Ω)):

β · Aβ
‖β‖2 =

a (v, v)

‖β‖2 ≥ α
‖v‖2

L2(Ω)

‖β‖2 ≥ Cαh2 ∀β ∈ RN .

Thus there exist two constants c and C independent of h such that:

λmax ≤ C, λmin ≥ ch2,

and thus κ(A) = λmax/λmin ≤ Ch−2.
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Figure 2.19: Nodal patch and corresponding Voronoi control volume in Delaunay triangula-
tion (left). A subset of a Delaunay triangulation and Voronoi cells (right).

Remark 2.59. The stiffness matrix A is often scaled with a constant of the order O (h2), e.g.,
every row i is multiplied by the inverse of the area of the patch relative to node i. In this case
the matrix has eigenvalues that are λmin = O (1) and λmax = O (h−2). It can be shown that
these eigenvalues tend to the eigenvalues of the Laplace operator as h −→ 0. Note that the
eigenvalues of the Laplace operator are all localized in the unbounded interval [Λ,∞), Λ > 0.

Remark 2.60. Recall that the conjugate gradient (CG) algorithm for the solution of a linear
system converges with a number of iterations that is proportional to the square root of the
spectral condition number of the system matrix. Thus, the number of iterations for CG when
solving a diffusion equation on a sequence of refinements increases linearly with h. For ex-
ample, halving h at each refinement step means that the number of iterations for convergence
of CG (or PCG) doubles every time. This is a typical phenomenon common to all “elliptic”
problems.

2.11 Galerkin P1 Finite Elements and Finite Volumes

In two dimensional triangulations the Galerkin P1 can be interpreted as finite volumes. To
show this, we first note the following properties of the FEM basis functions and consequently
of the FEM stiffness matrix. The Galerkin FEM basis function form a partition of unity. In
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fact, since the basis functions satisfy the interpolation property (2.4) we have immediately:

N∑
i=1

φi(x) = 1.

From the definition of the stiffness matrix (2.69), we have:

aij = a (φi, φj) ,
M∑
j=1

ai,j = a

(
φ,

N∑
j=1

φj

)
= 0, aii = −

N∑
j=1

j 6=i

aij. (2.84)

From the above considerations, it follows immediately that the kernel of the Galerkin stiffness
matrix (before Dirichlet boundary conditions have been imposed) has dimension 1 and is
generated by the constant vector. Now, the i-th Galerkin equation is written as:

N∑
j=1

aijuj = bi aiiui +
N∑
j=1

j 6=i

aijuj = bi.

Using (2.84), we have immediately:

N∑
j=1

j 6=i

aij(uj − ui) = bi, or
N∑
j=1

j 6=i

aij| σij |
uj − ui
| σij |

= bi,

where | σij | is the length of edge σi with endpoints given by the nodes i and j. We can now
interpret the equation on the right as the sum of the fluxes entering/exiting a nodal control
volume Ωi centered in i. In fact, the term (uj − ui)/| σij | is a first order finite difference
approximation of the gradient along σij. Conservation, or the divergence theorem, calls for
the sum of the flux projected along the normal to the boundary of Ωi. Thus we can identify
Ωi as the region surrounding node i that is bounded by the polyline formed by the normals
passing through the midpoint of each edge σij, the so called axes of the triangular elements
(see Fig. 2.19). This region is called the Voronoi cell, the dual of a Delaunay triangulation, and
is always convex as long as the triangulation is of Delaunay type [24]. Using this identification
and assuming a constant diffusion coefficient, the normal flux on σij can be approximated by
the following:

qij = −D| σαβ |
uj − ui
| σij |

,

which implies that the stiffness matrix coefficient aij must be equal to:

aij = −D | σαβ |
| σij |

.
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Indeed this is true for Galerkin P1 in two dimensional Delaunay triangulations and constant
coefficients and can be proved using the properties of the classical scalar product [20]. Thus,
the Galerkin P1 finite element approach can be interpreted as a finite volume method where the
interpolation of the unknown is performed on the triangles, while Gauss’ theorem is applied
on the dual Voronoi control volumes. This approach is known as “Control Volume Finite
Element” method [15], an approach often used in multiphase simulation in porous media. We
will see in later chapters that classical finite volume methods rely on performing both of the
above tasks on the same control volume, and are less susceptible to ill-conditioning in case of
highly deformed elements linked to the difficulty in the precise evaluation of the geometrical
quantities of the control volumes.

3 Mixed formulation for elliptic equations

3.1 Equations in mixed form

We start this section with two important examples. The first concerns Stokes equation, the
second concerns Darcy’s equation. Both are important models in the application of computa-
tional fluid dynamics.

Example 3.1 (Stokes equations). The stationary Stokes equations for an incompressible New-
tonian fluid are a linear approximation of the corresponding Navier-Stokes equations that is
valid for small Reynolds numbers (tending to zero). They are:

−µ∆u+∇p = f in Ω,

div u = 0 in Ω,

u = 0 in Γ,

(3.1)

where µ > 0 is the fluid dynamic viscosity, u ∈ Rd (d =1,2, or 3) is the fluid velocity, the
forcing function is a vector function f ∈ Rd, and the Laplace operator ∆ is applied to the
vector u component by component. A variational formulation can be derived as follows. We
choose to use vector test functions v ∈ [H1

0(Ω)]
d

that satisfy the further condition of being
divergence free, i.e., ÷v = 0. After scalar multiplication by v and application of Green’s
Lemma, we obtain:∫

Ω

f · v dx = µ

∫
Ω

∇u ..∇v dx−
∫

Γ

(∇u · n) · v ds+

∫
Γ

pv · n ds−
∫

Ω

p div v dx,

where the “double dot product” (or dyadic product) “..” symbol is defined as ∇u .. ∇v =
Tr
(
(∇u)(∇v)T

)
where ∇, u, and v identified as column vectors. This equation can be equiva-

lently obtained using Einstein notation whereby repeated indices are summed over the spatial
dimension d, as:∫

Ω

fivi dx = µ

∫
Ω

∇ui · ∇vi dx−
∫

Γ

(∇u · n)ivi ds+

∫
Γ

pvini ds−
∫

Ω

pvi,i dx;
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where we have used Einstein convention whereby repeated indices denote summation over the
spatial dimension d. Since v = 0 on Γ and div v = vi,i = 0 in Ω. we can write the equation in
a more compact form:

µ

∫
Ω

∇u ..∇v dx =

∫
Ω

f · v dx ∀v ∈ V(Ω),

where V(Ω) =
{
v ∈ [H1

0(Ω)]
d

: div v = 0
}

. The variational formulation becomes then: find

u ∈ V such that:

a (u, v) = F (v) ∀v ∈ V , (3.2)

where:

a (v, w) = µ

∫
Ω

∇u ..∇v dx, F (v) =

∫
Ω

f · v dx.

We note that there is no variational equation for the pressure, as we work in a divergence free
space, and it seems that there is something we are missing for a sound development.
The numerical formulation is developed as usual by finding a finite dimensional subset of the
variational space. To do this, we analyze with more details the space V in a two-dimensional
domain (d = 2). In this case this space can be written as:

V(Ω) =

{
v = (v1, v2) ∈

[
H1

0(Ω)
]2

:
∂v1

∂x1

+
∂v2

∂x2

= 0 in Ω

}
,

with Ω ⊂ R2. If Ω ⊂ R2 is simply connected, then div v = 0 if and only if there exists a so
called “stream” function ϕ ∈ H2

0 (Ω) defining the vector potential ϕ = (0, 0, ϕ)T , so that:

v = curlϕ = ∇×ϕ =

(
∂ϕ

∂x2

,− ∂ϕ
∂x1

)
.

The functions ϕ are of class C1(Ω). We call our discrete subspace as Wh ⊂ H2
0(Ω) and see

that the basis functions need to be polynomials of degree 5 ϕ ∈ P5(T), that are determined
by the following conditions (we denote with ξ(i) the coordinates of the three vertices of the
triangle T and with ξ(ij) the coordinate of the midpoint of the edge σij having endpoints given
by vertices i and j):

Dαϕ(ξ(i)), i = 1, 2, 3; | α | ≤ 2

∂ϕ

∂n
(ξ(ij)), i, j = 1, 2, 3; i < j.

Our FEM space is then:

Vh = {v : v = curlϕ, ϕ ∈ Wh} ,
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and our numerical scheme is obtained by substituting this space in place of V in eq. (3.2).
Intuitively, assuming optimal order of convergence, we will have the following error estimate:

‖u− uh‖H1(Ω) ≤ Ch4| u |H5(Ω).

As we can see from the previous example, looking for basis function in a divergence free space
Vh (i.e., functions that satisfy the incompressibility condition (div v = 0) introduces limiting
constraints already for d = 2 and that become even more stringent in a three-dimensional
setting. It is then useful to consider the “mixed” form of the equation using the explicit
unknowns of the problem, i.e., fully utilizing the velocity u and the pressure p as unknowns.
Note that pressure is defined up to a constant given that only the gradient of p is present in
our equations, thus we add the condition on the average pressure:∫

Ω

p dx = 0.

Before addressing the problem of the Stokes equation, we look at a simpler example, namely
the “mixed” form of the diffusion equation:

− div (K(x)∇p) = f in Ω (3.3)

p = 0 in Γ = ∂Ω, (3.4)

where the diffusion coefficient a(x) is bounded from above and below by positive constants
and Ω ⊂ Rd, d = 2, 3. This equation, for example, governs the motion of a fluid in laminar
conditions, thus we talk about fluid pressure p and fluid velocity u = −K(x)∇p. The idea
of the mixed formulation is to simultaneously approximate both p and u hoping to obtain
properties of (u, p) that are more easily transferred to the discrete setting. Writing µ(x) =
(K(x))−1, the problem is transformed into:

µu+∇p = 0 in Ω, (3.5)

div u = f in Ω, (3.6)

p = 0 in Γ, (3.7)

where the similarity with the Stokes problem is self-evident. We use vector and scalar test
functions for the first and second equation, respectively, and apply Green’s lemma to the
second term of the first equation to obtain the following variational formulation5:

5This is the so called Dual Mixed Formulation and is the most widely used in applications. The Primal
Mixed Formulation is obtained by applying Green’s lemma to the second equation (for more details see [4]).
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Problem 3.2 (Mixed Dual formulation). Find (u, p) ∈ V(Ω)×Q(Ω) such that:∫
Ω

µu · v dx−
∫

Ω

p div v dx = 0 ∀v ∈ V(Ω),∫
Ω

q div u dx =

∫
Ω

fq dx ∀q ∈ Q(Ω),

We clearly have that Q = L2(Ω). The function space V contains vector functions that are in
H1(Ω) and with divergence in L2. In other words, V(Ω) = H(div,Ω) = Hdiv(Ω) is the Hilbert
space given by vector functions that admit divergence in L2, i.e.:

Hdiv(Ω) =
{
v ∈

[
L2
]d

: div v ∈ L2(Ω)
}
.

The norm defined as:

‖v‖2
HdivΩ) = ‖v‖2

L2(Ω) + ‖div v‖2
L2(Ω) .

Obviously, we have that [H1(Ω)]d ⊂ Hdiv(Ω) and ‖v‖Hdiv
≤ m ‖v‖H1 . In fact, since ∀v ∈

Hdiv(Ω):

‖v‖2
H1 =

∫
Ω

v · v +∇v ..∇v dx, ‖v‖2
Hdiv

=

∫
Ω

v · v + (div v)2 dx,

and since for d = 2:

(div v)2 =

(
∂v1

∂x1

+
∂v2

∂x2

)2

≤ 2

[(
∂v1

∂x1

)2

+

(
∂v2

∂x2

)2
]
≤ 2(∇v ..∇v),

and for d = 3:

(div v)2 =

(
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

)2

≤ 3

[(
∂v1

∂x1

)2

+

(
∂v2

∂x2

)2

+

(
∂v3

∂x3

)2
]
≤ 3(∇v ..∇v),

we have that:∫
Ω

v · v + (div v)2 dx ≤ 3

∫
Ω

v · v +∇v ..∇v dx.

Remark 3.3. We observe that in this Dual Mixed formulation homogeneous Dirichlet boundary
conditions are “natural” boundary conditions, i.e., they are contained naturally within the weak
formulation, as opposed to the standard formulation for which “natural” boundary conditions
are of homogeneous Neumann type.

95



We have the following theorem due to Brezzi:

Theorem 3.1 (Brezzi splitting theorem). If a : V × V 7→ R is continuous and coercive and
b : V ×Q 7→ R is continuous and satisfies the inf-sup condition:

inf
q∈Q

sup
v∈V

b (v, q)

‖v‖V ‖q‖Q
≥ β, (3.8)

then the problem 3.2 has a unique solution (u, p) ∈ V ×Q that satisfies the following stability
property:

‖u‖V + ‖p‖Q ≤ C ‖f‖Q .

Note that the coercivity assumption on a (·, ·) can be relaxed, as will be seen later in § 3.3.1.
The two bilinear forms a (·, ·) and b (·, ·) are obviously bounded, and thus continuous:

| a (v, w) | ≤ ‖K‖∞ ‖v‖V ‖w‖V | b (v, q) | ≤ ‖v‖V ‖q‖Q ,

where V = Hdiv(Ω) and Q = L2(Ω). The kernel of the bilinear form b (·, ·), or better the kernel
of the operator B associated with the bilinear form, is given by:

Ker b =
{
v ∈ Hdiv(Ω) : (div v, q) = 0 for all q ∈ L2(Ω)

}
,

and thus ‖div v‖2
L2(Ω) = 0 for all v ∈ Ker b ⊂ Hdiv(Ω). Hence:

a (v, v) = ‖v‖2
L2(Ω) = ‖v‖2

Hdiv(Ω) ,

showing the coercivity of the a (·, ·) bilinear form. For the other form, we have that for any
there exists a function vq ∈ [H1(Ω)]d such that for every q ∈ L2(Ω) we have that div vq = q
and ‖v‖H1 ≤ C ‖q‖L2 . Thus we have, for all q ∈ Q = L2(Ω) and v ∈ V = Hdiv(Ω) (taking
div vq = q):

sup
q∈Q

| b (v, q) |
‖v‖V

≥ sup
q∈Q

| b (vq, q) |
‖v‖V

≥ sup
q∈Q

(q, q)

C ‖v‖L2
=

1

C
‖q‖L2 .

Thus the problem admits a unique solution (u, p) ∈ V ×Q with the stability estimate:

‖u‖Hdiv
+ ‖p‖L2 ≤ C ‖f‖L2 .

We note here t,hat although the above estimate for p is in L2(Ω), it is easy to see, using again
integration by parts, that the pressure p has a weak derivative and satisfies the homogeneous
Dirichlet boundary conditions, yielding the desired result that p ∈ H1

0(Ω).
Alternatively, the mixed formulation can be rewritten using a symmetric bilinear form as:

c ((u, p), (v, q)) =

∫
Ω

µu · v dx−
∫

Ω

p div v dx−
∫

Ω

q div u dx.
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and a linear form:

F ((v, q)) = −
∫

Ω

fq dx.

Note that the original two equations can be obtained using (v, 0) and (0, q) in the second
argument of the above bilinear form. Thus we have:

c ((u, p), (v, q)) = F ((v, q)) ∀(v, q) ∈ Hdiv(Ω)× L2(Ω).

However, the form c (·, ·) is not coercive, but it can be shown that is satisfies the “inf-sup”
condition (2.61) and thus, because of its symmetry, also (2.62).

3.2 Mixed finite elements

Let Th(Ω) be a regular triangulation of Ω with grid parameter h. We want to build the FEM
spaces:

Vh ⊂ Hdiv(Ω) and Qh ⊂ L2(Ω).

It easy to see that the “inf-sup” condition required for stability introduces a relationships
between Vh and Qh, in the sense that Vh must be “sufficiently richer” than Qh (we will see
this in more details in the next section). Then the mixed finite element method can be written
directly as:

Problem 3.4 (Mixed FEM). Find (uh, ph) ∈ Vh ×Qh such that:

a (uh, v)− b (ph, v) = 0 ∀v ∈ Vh,
b (q, uh) = F (q) ∀q ∈ Qh,

(3.9)

where:

a (v, w) =

∫
Ω

µv · w dx b (v, q) =

∫
Ω

q div v F (q) =

∫
Ω

fq dx.

Remark 3.5. We note that using density arguments6, via integration by parts, one can show
that functions with continuous normal derivatives on edges of Th(Ω) are in Hdiv(Ω), i.e., given
Ti, Tj ∈ Th(Ω) two neighboring elements of the computational mesh, with σij = Ti ∩ Tj, we
have that:{

v ∈ [L2(Ω)]d : v|Ti ∈ [H1(Ti)]
d and v|Ti · ν = v|Tj · ν for all σij ∈ Th(Ω)

}
⊂ Hdiv(Ω).

6Typical density arguments rely on the fact that C∞(Ω̄) is dense in L2(Ω) and on the Sobolev (or Rellich-
Kondrachov) embedding theorem, and can be used, e.g., to show that weak normal derivatives on element edges
exist and that integration by parts formula hold (both globally on Ω and locally on Th) (see for example [7,
Thm. 3, §5.3.3, §5.6, §5.7]).
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Thus, we will chose vector basis functions for Hdiv(Ω) that have continuous normal component.
We will see later on a stronger result.

We have the following equivalent to the continuous case, which is easy to prove:

Theorem 3.2. If the following discrete inf-sup conditions hold;

inf
uh∈Ker b(·,·)

sup
vh∈Ker b(·,·)

a (uh, vh)

‖uh‖V ‖vh‖V
≥ αh,

and

inf
qh∈Qh

sup
vh∈Vh

b (vh, qh)

‖qh‖Q ‖vh‖V
≥ βh, (3.10)

then there exists a unique solution (uh, pu) ∈ Vh×Qh of Problem 3.4 and the pair satisfies the
following stability estimate:

‖uh‖V + ‖ph‖Q ≤ C ‖f‖V∗ .

For a proof of this theorem see [4].
Note that although the continuous problem satisfies the inf-sup condition, the discrete inf-sup
does not follows directly from the continuous counterpart. There is however a characterization
that allows to identify appropriate FEM spaces Vh and Qh that satisfy the above discrete inf-
sup:

Lemma 3.3 (Fortin criterion). If the continuous inf-sup condition is satisfied (eq. (3.8)), then
the discrete inf-sup condition (3.10) is satisfied is and only if there exists a linear operator
Πh : V 7→ Vh such that:

b (Πhv, q) = b (v, q) ∀q ∈ Qh,

and such that:

‖Πhv‖V ≤ γh ‖v‖V ∀v ∈ V .

Proof. Forward implication. Assume such a Πh exists. Then, since Πh(V) ⊂ Vh, we have,
for all q ∈ Qh:

sup
vVh

b (v, q)

‖v‖V
≥ sup

vV

b (Πhv, q)

‖Πhv‖V
≥ sup

vV

b (v, q)

γh ‖v‖V
≥ β

γh
‖q‖Q ,

i.e., the discrete inf-sup condition (3.10).
Backward implication. Assume the discrete inf-sup condition (3.10) holds. This means
that, given any v ∈ V , the bilinear form b (·, ·), identified as an operator, is surjective and has
continuous right inverse. Hence, there exist vh = Πhv ∈ Vh such that b (Πhv, q) = b (v, q) for
every q ∈ Qh. The stability inequality follows directly.

98



To obtain convergence estimates we assume some properties of the spaces Vh and Qh so that
the Fortin criterion is satisfied:

divVh = Qh, (3.11)

and that there exists a projection operator Πh : [H1(Ω)]d −→ Vh such that:∫
Ω

div(u− Πhu)q = 0 ∀u ∈
[
H1(Ω)

]d
,∀q ∈ Qh. (3.12)

Under these hypothesis we can show uniqueness of the solution of the discrete system. Thus
we prove that f = 0 implies (uh, ph) = (0, 0). For f = 0 the linear system becomes:∫

Ω

µuh · v dx−
∫

Ω

ph div v dx = 0 ∀v ∈ Vh∫
Ω

q div uh dx = 0 ∀q ∈ Qh

Since divVh ⊂ Qh and uh ∈ Vh, we can take q = div uh ∈ Qh in the second equation to obtain
div uh = 0. Then taking v = uh in the first equation yields immediately uh = 0. But since
divVh ⊃ Qh and ph ∈ Qh, we can choose v ∈ Vh such that div v = ph, from which ph = 0.
The error estimate is given by:

Theorem 3.4. Let Vh and Qh be mixed FEM spaces, satisfying (3.11) and let Πh be the
projector defined in (3.12). Then there exist a constant C independent of h such that:

‖u− uh‖L2(Ω) ≤ C
{
‖u− Πhu‖L2(Ω)

}
.

Proof. The error equation is easily recovered by subtraction:

a ((u− uh), v)− b ((p− ph), v) = 0 ∀v ∈ Vh, (3.13)

b (q, (u− uh)) = 0 ∀q ∈ Qh. (3.14)

Using (3.12), we can write the last equation as:

b (q, (Πhu− uh)) = 0 ∀q ∈ Qh.

Take q = div(Πhu− uh) to write:

div(Πhu− uh) = 0.

Now take v = Πhu− uh in (3.13) to obtain:

a ((u− uh), (Πhu− uh)) =

∫
Ω

µ(u− uh) · (Πhu− uh) dx = 0. (3.15)
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We can write:

‖u− uh‖2
L2(Ω) =

∫
Ω

(u− uh) · (u− uh) dx ≤ ‖K‖∞
∫

Ω

µ(u− uh) · (u− uh) dx

= ‖K‖∞
[∫

Ω

µ(u− uh) · (u− uh) dx+

∫
Ω

µ(u− uh) · (Πhu− uh) dx
]

≤ ‖K‖∞ a ((u− uh), (Πhu− uh))
≤ ‖K‖∞ ‖µ‖∞ ‖u− uh‖L2(Ω) ‖Πhu− uh‖L2(Ω) .

The final result follows by dividing by the nonzero term ‖u− uh‖L2(Ω).

The error estimate of the mixed FEM relies upon interpolation error estimates for scalar and
vector functions. Thus we assume the following (interpolation) estimates:

‖p‖H2(Ω) ≤ C ‖f‖L2(Ω) (3.16)

‖q − πhq‖L2(Ω) ≤ Ch ‖q‖H1(Ω) ∀q ∈ H1(Ω); (3.17)

‖v − Πhv‖L2(Ω) ≤ Ch ‖v‖H1(Ω) ∀v ∈
[
H1(Ω)

]d
; (3.18)

‖Πhv‖L2(Ω) ≤ C ‖v‖H1(Ω) . (3.19)

Then we can prove the following:

Theorem 3.5. Let Vh and Qh be mixed FEM spaces satisfying (3.11) and (3.12). Let Πh be
a projector satisfying (3.19). Then there exists a constant C independent of h such that:

‖πhp− ph‖L2(Ω) ≤ C ‖u− Πhu‖L2(Ω) .

Proof. Note that (3.12) together with (3.19) implies that for each q ∈ Qh exists a v ∈ Vh such
that div v = q and ‖v‖L2(Ω) ≤ C ‖q‖L2(Ω). In fact, we can use the auxiliary problem:

∆ϕ = q ∈ Ω,

ϕ = 0 ∈ ∂Ω,

and define w = ∇ϕ. From (3.16) we have ‖w‖H1(Ω) ≤ C ‖f‖L2(Ω). Then, using (3.11)
and (3.19) we see that the function v = Πhw satisfies the requested conditions.
We first note that for all v ∈ Vh eq. (3.11) ensures that (πhp, q) = (p, q) for all q ∈ Qh and
div v ∈ Qh. From the error equation we then have:∫

Ω

(p− ph) div v dx =

∫
Ω

(πh,p − ph) div v dx =

∫
Ω

(πhp− ph) div v dx =

∫
Ω

(u− uh) · v dx;

Take v ∈ Vh such div v = (πhp− ph) and that verifies:

‖v‖L2(Ω) ≤ C ‖πhp− ph‖L2(Ω) .
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We obtain:

‖πhp− ph‖2
L2(Ω) ≤ C ‖u− uh‖L2(Ω) ‖πhp− ph‖L2(Ω) .

The proof is concluded by invoking Theorem 3.4 and the triangular inequality.

Theorem 3.6. Let Vh and Qh be mixed FEM spaces satisfying (3.11) and (3.12). Let Πh be
a projector satisfying (3.19). Then there exists a constant C independent of h such that:

‖πhp− ph‖L2(Ω) ≤ C
{
h ‖u− uh‖L2(Ω) + h2 ‖div(u− uh)‖L2(Ω) +

}
Proof. We need to use a duality argument similar to the Aubin-Nitsche trick. Let φ be solution
of the dual problem:

div(K∇φ) = πhp− ph in Ω

φ = 0 in ∂Ω.

Then, assuming K(x) sufficiently regular and using (3.16)-(3.19), we can write:

‖πhp− ph‖2
L2(Ω) =

∫
Ω

(πhp− ph) div(K∇φ) dx

=

∫
Ω

(πhp− ph) div(Πh(K∇φ)) dx

=

∫
Ω

(p− ph) div(Πh(K∇φ)) dx

=

∫
Ω

µ(u− uh)(Πh(K∇φ)−K∇φ) dx+

∫
Ω

(u− uh)∇φ) dx

=

∫
Ω

µ(u− uh)(Πh(K∇φ)−K∇φ) dx−
∫

Ω

div(u− uh)(φ− πhφ) dx

≤ C ‖u− uh‖L2(Ω) h ‖φ‖H2(Ω) + C ‖div(u− uh)‖L2(Ω) h
2 ‖φ‖H2(Ω)

These theorems, together with (3.17) and (3.18), tells us that the Mixed Finite Element
scheme converges linearly for ph and uh as long as the real solution is sufficiently regular. In
practice, there are “super-convergence” theorems that show that the pressure ph converges
super-linearly in specific points of the triangles for all those cases in which (3.17) can be
written with an exponent of h larger than one.
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ξ(i)

ξ(j)

ξ(k)

σk
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σj

νi

νj

νk

Figure 3.1: Location of the “degrees of freedom” in the triangle for the spaces RT 0 (left) and
RT 1 (right). The arrows indicate the normal component v · n of the vector basis functions,
while the dot indicates the function v (left and middle). Triangular element with notation for
nodes, edges, and exterior normals (right).

3.2.1 Raviart-Thomas RT k finite dimensional spaces

To complete the numerical formulation we need to characterize the MFEM spaces Vh and Qh
that satisfy the requested properties. We recall that Vh is a subspace of Hdiv(Ω) and that
we will need to find an appropriate projector Πh. We consider in these notes only the case
of a two-dimensional domain (d = 2) and a regular triangulation Th = {T}. Moreover we
consider here only Raviart-Thomas spaces of degree k (RT k), referring the reader to, e.g., [4]
for further details.
We define the following family of RT spaces on the triangle T ∈ Th:

RT k(T) = [Pk]2 ⊕ xPk (3.20)

where x ∈ Rd. The finite dimensional space Vh can be described as:

Vh = {v ∈ Hdiv(Ω) : v|T ∈ RT k(T) ∀T ∈ Th} .

As done before, we denote with ξ(i) both the i-th node of T and its coordinate vector, with σi
the edge (face for d = 3) opposite to the i-th node and with νi the corresponding edge outer
unit normal (see Figure 3.1, right). For now, we work in a local (triangle based) enumeration
i = 1, 2, 3. We have the following:

Lemma 3.7. The family of mixed finite element spaces RT k has the properties:

1. dimRT k(T) = (k + 1)(k + 3);

2. if v ∈ RT k(T), then v · νi ∈ Pk(σi);

3. if div v = 0, v ∈ RT k(T), then v ∈ [Pk(T))n.

For the space Qh ⊂ L2(Ω), there are no special regularity requirements::

Qh =
{
q ∈ L2(Ω) : q|T ∈ Pk(T) ∀T ∈ Th

}
.
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We are missing only the construction of the projection operator Πh. We first note that a vector
function, whose components are elementwise continuous polynomials and with trace (assuming
enough regularity for its existence) having continuous normal projection along subdomain
edges, belongs to Hdiv(Ω). More precisely, we have the following:

Lemma 3.8. Given an arbitrary partition P(Ω) of the domain Ω into subdomains Ω̃k with
sufficiently regular boundary, i.e., P(Ω) = ∪kΩ̃k, and let S(Ω) be the space of piecewise Hdiv

functions, i.e., S(P) = {v ∈ [L2(Ω)]d : v|Ω̃k ∈ Hdiv(Ω̃k) ∀Ω̃k ∈ P(Ω)}. Then, v ∈ S(P) belongs
to Hdiv(Ω) if and only if its normal traces are continuous across all subdomain interfaces.

Proof. Let Γk be portion of the boundary of subdomain Ω̃k that does not lie in ∂Ω. By the
divergence theorem we can write:∫

Ω

v dx =

∫
∂Ω

v · n ds =

∫
P(Ω)

v dx =
∑
k

∫
Ω̃k

v dx =
∑
k

∫
Γk

v · nΓ ds+

∫
∂Ω

v · n ds,

where nΓ is the outward unit normal on Γk. Thus we have:∑
k

∫
Γk

v · nΓ ds = 0.

The inverse implication is obvious.

The definition of the basis function can then rely on degrees of freedom associated to k + 1
points on each edge of T. For example, for k = 0 in two dimensional triangulations we take
one point per edge (identified generally with the midpoint) where we impose the continuity
of the normal component of the basis functions of the two neighboring elements. In addition
we take the central point of the triangle for the function v (see Figure 3.1). Then we have the
following:

Lemma 3.9. Given a triangle T ∈ Th and a vector function v ∈ [H1(T)]
2
, there is a unique

operator Πhv ∈ RT k(T) such that:∫
σi

Πhv · νipk ds =

∫
σi

v · νipk ds ∀pk ∈ Pk(T), i = 1, 2, 3,

and: ∫
T

ΠTv · pk−1 dx =

∫
T

v · pk−1 dx ∀pk−1 ∈ [Pk−1(T)]2 .

Now convergence can be shown using similar reasoning as done for Galerkin methods using
appropriate transformations of the triangle into a reference triangle T̃ having vertex coordi-
nates ξ(1) = (0, 0), ξ(2) = (1, 0), ξ(3) = (0, 1). The transformation must conserve the properties
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in particular of the vector interpolation. This achieved by means of the (contravariant) Piola
transform, which is defined as follows. Given the (affine) map F that transforms triangle T̃
into triangle T, we define ṽ ∈ [L2(T̃)]2 via:

v(x) =
1

| det J(x̃) |
J(x̃)ṽ(x̃),

where x = F (x̃) e J(x̃) is the Jacobian of F . Then we have:

Lemma 3.10. There exists a constant C > 0 such that for all v ∈ [Hm(T)] with 1 ≤ m ≤ k+1:

‖v − ΠTv‖L2(T) ≤ ChmT ‖v‖Hm(T) .

Using this lemma and the interpolation estimates, we obtain:

Theorem 3.11. Let {Th} be a family of regular triangulations and given the functions u ∈[
Hk+1(Ω)

]2
and p ∈ Hk+1(Ω), then the numerical solution (uh, ph) ∈ Vh × Qh obtained with

the mixed finite element method satisfies:

‖u− uh‖L2(Ω) ≤ Chk+1 ‖u‖Hk1 (Ω) ,

and:

‖p− ph‖L2(Ω) ≤ Chk+1
[
‖u‖Hk1 (Ω) + ‖p‖Hk1 (Ω)

]
.

3.2.2 Practical implementation of RT 0 − P0 MFEM on triangles

As we have seen, mixed finite elements need information on the boundaries of the elements,
e.g., edges in two dimensional triangulations. In this section we look at a system for efficiently
defining this information on a regular triangulation. Consider a polygonal domain Ω ⊂ R2 and
let Th(Ω) be a regular triangulation of Ω. An example of the application of our data structure
to a specific triangulation is given in Figure 3.2. We start with the evaluation of the RT 0

basis functions and proceed next with the calculation of the elemental matrices to conclude
with some information of how assembly of these local matrices into the global system matrices
is performed.

RT 0 basis functions. We first show some properties of the vector basis functions that are
used in the lowest order Mixed FEM space. Recall that RT 0 ⊂ Hdiv. Thus, because of
Lemma 3.8, we need to have basis functions with continuous normal trace. From (3.20), RT 0

basis functions are of the form:

wm(x) =

[
amx+ bm
amy + cm

]
,
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Figure 3.2: Triangulation of a two-dimensional polygonal domain with cell, node, and edge
global numbering, and the (redundant) data structures that completely characterize the geom-
etry and topology of the mesh.
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Figure 3.3: Example of vector basis function for a rectangular triangle.

where subscript m is used to index triangle edges, (m = 1, 2, 3 in a local numbering system,
or i, j, k in a global numbering system). Let us focus on a general triangle T ∈ Th(Ω) with
vertices labeled i, j, and k, and corresponding opposite edges σi, σj, and σk.
The unit outward normal is denoted by νk, while the edge normal is denoted by νσk . These two
may differ by a sign depending on the triangulation node numbering. Using the data structure
proposed in Figure 3.2, we use the convention that the direction of the edge normal is defined
by the “Edge-cell connectivity” table according to the “Edge connectivity” node ordering. In
practice, given triangle T and edge i, if the left triangle in the “Edge-cell’ connectivity” table
is element T itself, then the edge normal for edge i points inward, otherwise, it points outward
(e.g., looking at element 1 and edge 1, the left triangle in the “Edge-cell connectivity” table
is equal to 1, thus the normal points inward to element 1).
We observe that using Lemma 3.7 with k = 0 we have immediately that divw = const and
w · νk = const. In fact we have the following:

Lemma 3.12. Given the triangle T with nodes ξ(i), ξ(j), and ξ(k), the function wi(x) ∈ RT 0(T)
given by:

wi(x) = 〈νσi , νi〉
| σi |
2| T |

(x− ξ(i))

has the following properties:

(i)
〈
wi(x)|σi , νσj

〉
= δij;

(ii) {wi, wj, wk} = Span (RT 0(T));

(iii) divwi = 2ai =
| σi |
| T |

.
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Proof. To prove the first property, we observe that for i 6= j and x ∈ σj we have:

(x− ξ(i))|σj · νj = 0,

since ξ(i) ∈ σj. If i = j, then | (x− ξ(j)) · νσj | is the height of T passing through ξ(j). Thus,

| T | = 1
2
(x − ξ(j)) · νj

〈
νj, νσj

〉
| σj |, since (x − ξ(j)) is in the direction of νj. The second

statement derives directly from the fact that Dim (RT 0T) = 3, and property (i) tells us that
the functions {wi, wj, wk} are orthogonal. Finally, the last property is a direct calculation:∫

T

divwi dx = 2ai| T | =
∫
∂T

wi · n ds = | σi |,

from which ai =
| σi |
2| T |

.

An example of such a function is given in Figure 3.3.

3.3 A closer look at the “inf-sup” condition

We first rewrite system (3.9) changing sign to the definition of the bilinear and linear forms
b (p, q) and F (q), respectively:

a (uh, v) + b (ph, v) = 0 ∀v ∈ Vh,
+b (q, uh) = F (q) ∀q ∈ Qh,

where:

a (v, w) =

∫
Ω

µv · w dx b (v, q) = −
∫

Ω

q div v F (q) = −
∫

Ω

fq dx.

For simplicity we use the lowest order spaces RT 0 − P0 an a triangulation Th formed by NT

triangles and Nσ edges. We can then express uh and ph as a linear combination of the basis
functions vk ∈ Vh, k = 1, . . . , Nσ and qt ∈ Qh, t = 1, . . . , NT :

uh =

Nσ∑
i=1

uivi, (3.21)

ph =

NT∑
m=1

pmqm. (3.22)

Substitution of the above equations into the linear system yields:[
A BT

B 0

] [
u
p

]
=

[
f
g

]
(3.23)
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where matrices A, B have dimensions Nσ ×Nσ and NT ×Nσ , respectively, and are given by::

A = {aij} aij = a (vi, vj) , i, j = 1, . . . , Nσ

B = {blm} blm = b (ql, vm) , l = 1, . . . , NT ,m = 1, . . . , Nσ .

The vectors u ∈ RNσ and p ∈ RNT contain the coefficients of the linear combinations (3.21)
and (3.22), while vectors f ∈ RNσ and g ∈ RNT are the known right hand sides. In our
previous case we had f = 0, but if we had non homogeneous Neumann boundary conditions
we would have had f 6= 0.
We take the algebraic point of we, and will indicate with A the system matrix:

A =

[
A BT

B 0

]
,

so that the full system will be denoted with Ax = b.
We first observe that A, coming from the discretization of the L2 scalar product, is symmetric
and positive definite. The full system is symmetric and corresponds to a “saddle point”
problem: the solution x = (u, p) ∈ RNσ×Nt can be viewed as the solution of the following
constrained minimization problem:

min
u∈RNσ

1

2
uTAu− fTv (3.24)

subject to Bu = g, (3.25)

where variable p plays now the role of a Lagrange multiplier. Every solution (u∗, p∗) is a saddle
point for the Lagrangian:

Lu, p =
1

2
uTAu− fTu+ (Bu− g)Tp,

as the pair (u, p) must satisfy:

Lu∗, p ≤ Lu∗, p∗ ≤ Lu, p∗, ∀u ∈ RNσ ∀p ∈ RNT ,

or, equivalently:

min
u

max
p
Lu, p = Lu∗, p∗ = max

p
min
u
Lu, p.

Matrix A can be block-factorized as follows:

A =

[
A BT

B 0

]
=

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1BT

0 I

]
=

[
A 0
B S

] [
I A−1BT

0 I

]
=

[
I 0

BA−1 I

] [
A BT

0 S

]
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where the Schur complement S is S = −(BA−1BT ). It is now easy to see that, since A is
nonsingular, the condition for the existence of the inverse of A is that B have maximum rank
(rank (B) = NT). In fact, there is the following [2]:

Theorem 3.13. Let A be a symmetric and semi-positive definite matrix, and let B be of
maximum rank. Then matrix A is nonsingular if and only if ker(A) ∩ ker(B) = {0}.

Proof. Sufficient condition. Let x = (u, p)T such that Ax = 0. Then we have Au + BTp = 0
and Bu = 0, from which uTAu = −uTBTp = −(Bu)Tp = 0. By hypothesis, A is spd, so that
uTAu = 0 implies Au = 0 and u ∈ ker(A) ∩ ker(B), which implies u = 0. Moreover, BTp = 0
and the conclusion p = 0 is a consequence of the fact that B has maximum rank.
N ecessary condition. Assume now that ker(A) ∩ ker(B) 6= {0} and let u ∈ ker(A) ∩ ker(B)
with u 6= 0. Then, for x = (u, 0)T we have Ax = 0 and thus A is singular and the condition
is also necessary.

It can be shown that u∗ is the A-orthogonal projection (orthogonal projection with respect to
the scalar product (v, w)A = vTAw) on the space C = {p ∈ RNT : Bp = g}, interpreted as the
space of the constraints. We assume B is of maximum rank and denote with β2 = σmin(B)
the smallest singular value of B, which we will assume always strictly positive. We assume
that also α, the minimum eigenvalue of A, is strictly positive. Then the inverse of A can be
written explicitly as:

A−1 =

[
A BT

B 0

]−1

=

[
A−1(I −BTS−1BA−1) A−1BTS−1

S−1BA−1 S−1

]
, (3.26)

and we get immediately the following estimates:

‖u‖A ≤ ‖f‖A−1 ≤
1

α
‖f‖ ‖p‖ ≤ 1

β
‖f‖A−1 ≤

1

αβ
‖f‖ .

The problem is well posed if there exist constants β∗ and α∗ independent of h such that
β > β∗ > 0 and α > α∗ > 0. We have the following:

Lemma 3.14. The condition β = σmin(B) > 0 is equivalent to the “inf-sup” condition for the
following saddle point problem:

inf
q∈RNT

sup
v∈RNσ

qTBv

‖q‖ ‖v‖
> β2 > 0 ∀q 6= 0, e ∀v 6= 0,

or, equivalently:

max
v∈RNσ

qTBv

‖v‖
> β2 ‖q‖ ∀q ∈ RNT , q 6= 0.
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Proof. Let B = UΣV T be the singular value decomposition of B and let:

q = ui, i = 1, . . . , NT e v =

Nσ∑
j=1

γjvj.

The orthogonality of V implies that ‖v‖2 =
∑
γ2
i . Thus, we can write:

qTBv

‖v‖
=
eTi ΣV Tv√∑

j γ
2
j

=
σiγi√∑

j γ
2
j

≥ σi ≥ β2.

On the other hand, taking q =
∑NT

j=1 ξjuj and indicating with γ = {γi} the vector of the
coefficients γi, we have:

max
v∈RNσ

qTBv

‖v‖
= max

γ 6=0

Nσ∑
i=1

ξi
σiγi√∑

j γ
2
j

≥ β2

NT∑
i=1

ξ2
i√∑
j ξ

2
j

= β2 ‖q‖ .

It is obvious that all these considerations can be extended immediately to the continuous case.
Hence, convergence of MFEM requires that matrix A be invertible for all Th uniformly for
h −→ 0. Thus, if Ah is the matrix related to Th, varying h we have a sequence of problems of
the type:[

Ah BT
h

Bh 0

] [
uh
ph

]
=

[
fh
gh

]
.

For every h, the system is solvable if σmin(Bh) = β2
h ≥ 0, or:

inf
q∈Wh

sup
v∈Vh

qTBhv

‖q‖ ‖v‖
> β2

h > 0 ∀q 6= 0, e ∀v 6= 0,

Hence, the spaces Vh and Wh need to satisfy the above “inf-sup” condition. If they do,
existence and uniqueness and continuous dependence of the solution on the data, or shortly
well-posedness, is guaranteed, and the MFEM converge. Note that the error constant in the
convergence proofs is proportional to 1/α and 1/β. If β decreases for h −→ 0 then convergence
will be slower than optimal.
On the other hand, if the spaces Vh and Wh do not satisfy the “inf-sup” condition then
convergence is not ensured. It may happen that the problem converge for a certain set of data
but not for another. In this case different situations may occur:

• the space of vectors v for which b (p, v) = g is empty. This may occur if NT > Nσ ,
i.e., there are more constraints than equations. A typical example is the pair of basis
function P1/P0 for the discretization of Stokes equation;
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• the kernel of b (p, v) is non empty and the saddle-point system matrix is singular. Typi-
cally in this case spurious oscillations p̃ may be generated, as these vectors are such that
b (p̃, v) = 0. Often, this situation is known as “mesh-locking”;

• the condition that B be of maximum rank is satisfied but the largest singular value tends
to zero with h: βh = O

(
hk
)
. In this case the system is highly ill-conditioned and we

may have convergence up to a certain value of h, but after that the rates decrease until
convergence is completely lost.

We would like to remark that the easiest way to cure the lack of fulfillment of the “inf-sup”
condition is to guarantee that the space Vh be sufficiently richer thanWh. In other words, the
constraints of the problem cannot be too stringent, and enough movement must be allowed in
the search space Vh.

3.3.1 More on the solution of the linear system: hybridization

A simple strategy to solve the linear system (3.23) comes from the observation that matrix A
is invertible (the form a (v, w) is coercive as it is the discretization of the L2 scalar product,
as already observed above) and we can use (3.26) to express (u, p) in terms of the Schur
complement S = (BA−1BT ). We obtain:

u = A−1(f −BTp),

Sp = BA−1f − g.

This is impractical as the inverse of A is a full matrix and both the costs of inversion and
of storing are overwhelmingly large. A more efficient way is to proceed with the so-called
“hybridization” strategy. The ensuing FE method is called the Mixed-Hybrid FE. The idea is
to find some strategy to simplify the inversion of matrix A.
The first observation is that our discrete spaces do not require the continuity of the candidate
solutions but only of the normal fluxes across element edges (requirement for belonging to
Hdiv). This last condition is the one that couples all the flux unknowns together. In fact, if
we apply Green’s lemma on a single element T to eq. (3.6) we obtain a boundary flux term
involving the normal fluxes on the element edges (faces). Continuity of the normal fluxes
implies that when we sum over all elements these normal fluxes cancel pairwise, since those
calculated on the same face from the two neighboring elements are equal and with opposite
signs. Thus we are left with the terms on the domain boundary, which are determined by the
boundary conditions.
The idea is then to relax the continuity assumption and to re-impose it as a constraint in
the linear system. More precisely, we relax the hypothesis that Vh ⊂ Hdiv(Ω) and we set
Vh ⊂ Hdiv(T), for all T ∈ Th. Thus, working on an element by element, continuity of the
normal fluxes is lost and the basis functions Vh can be defined independently on each element.
We re-impose continuity by means of Lagrange multipliers.
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To see how this works, we look at the lowest order RT 0−P0 and introduce the corresponding
discontinuous space:

Ṽh =
{
v ∈

[
L2(Ω)

]2
: v|T ∈ RT 0(T) ∀T ∈ Th

}
.

Note that Vh ⊂ Ṽh and that v ∈ Vh if and only if v ∈ Hdiv(Ω). We now put together all the
Nσ triangle faces σ ∈ Th of the mesh skeleton Γh:

Γh =
⋃
T∈Th

∂T =

Nσ⋃
i=1

σi,

and introduce the space of the Lagrange multipliers λ on the set Γh:

Λh =
{
µ ∈ L2(Γh) : µ|σ ∈ P0(σ) ∀σ ∈ Γh

}
.

Testing the mixed system with vector and scalar basis functions, (v, q) ∈ RT 0 × P0 and
applying Green’s lemma, we obtain:∑

T∈Th

[∫
T

µuh · v dx−
∫
T

ph div v dx+

∫
∂T

phv · ν ds
]

= 0

∑
T∈Th

∫
T

div uhq dx = 0

Hence, we can define the bilinear forms:

a (v, w) =
∑
T∈Th

∫
T

µv · w dx; b
h

(q, v) =
∑
T∈Th

∫
T

q div v dx.

for all q ∈ Wh and all v, w ∈ Ṽh, and the new bilinear form d (v, µ) defined on the mesh
skeleton Γh as:

d (v, µ) = −
∑
T∈Th

∫
∂T

µ v|T · ν dx =
∑
σ∈Γh

∫
σ

µ [v · ν] ds,

for all v ∈ Ṽh and all µ ∈ Λh, where νT is the exterior normal to ∂T and [v · ν] is the “jump”
of the normal component of v across edge σ. Note that d (v, µ) = 0 in every σ ∈ Γh if and

only if v ∈ Hdiv(Ω) (or v ∈ Vh). Moreover, since b (q, v) is not defined in Ṽh, we have to define
the “mesh” bilinear form b

h
(q, v) built on the triangles (and not on the entire Ω).

Then we can consider the following FEM problem: Find (uh, ph, λh) ∈ Ṽh × Wh × Λh such
that:

a (uh, v) + b
h

(ph, v) + d (v, λh) = f ∀v ∈ Ṽh
b
h

(q, uh) = g ∀q ∈ Wh

d (uh, µ) = 0 ∀µ ∈ Λh.
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The corresponding algebraic system is given by:
Ãu+BT

h p+ CTλ = f

Bhu = g

Cu = 0

,

with obvious expressions for the matrix elements. Now matrix Ã is block diagonal with blocks
of size nσ × nσ where nσ is the number of faces of the element, 3 in the case of triangles. The
matrix is thus easily invertible block-by-block with a relatively small computational cost. We
can proceed to the block elimination as done before to obtain:

u = Ã−1
(
f −BT

h p− Cλ
)
,

and after substitution we obtain:{
BhÃ

−1BT
h p+BhCλ = BhÃ

−1f − g
CÃ−1BT

h p+ CÃ−1Cλ = −CÃ−1f
.

Matrix H = BhÃ
−1BT

h is again block-diagonal and easily invertible. Writing S = Ã−1BT
h , we

have:

p = H−1
[
f − STg

]
,

from which, denoting by M the block-diagonal matrix given by: M = Ã−1 − SH−1ST , we
have the final system of dimension Nσ ×Nσ (Nσ being the total number of faces in the mesh)
having as unknowns the vector of Lagrange multipliers λ defined on each triangle face:

CTMCλ = CT
[
Mg − SH−1f

]
.

It is possible to see that this system is symmetric and positive definite and can be solved with
PCG. Comparing to the Galerkin FEM (for example P1 vs. R̂T [0]−P0), the size of the system
is larger for the MHFEM, being the number of faces in a triangulation approximately 3 times
the number of nodes in two dimensions and 7 times in three dimension. On the other hand,
the number of nonzero elements per row is on average equal to 2nσ − 1, independently on the
shape of the triangles, and is thus much sparser than Galerkin P1, increasing the efficiency of
any (non-diagonal) PCG preconditioning technique.

Remark 3.6. We remark that the bilinear form d (·, ·) acts on the triangulation skeleton Γh,
and thus d (v, µ) tests the trace of ph on the triangle edges. The Lagrange multipliers λh are thus
the trace of the pressure on the boundary of the triangles, and thus span a linear distribution
of the pressure inside the element (in absence of forcing functions, i.e., f = 0), with ph|T
being the average value. Hence, the lowest order mixed-hybrid finite element can be interpreted
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Figure 3.4: Comparison between the conforming P1 Galerkin (left) and the non-conforming
Mixed-Hybrid (right) interpolation of the pressure.

as a non-conforming P1 method defined on Th. Figure 3.4 highlights the intuitive difference
between conforming P1 FEM and the Mixed Hybrid approaches. It is clearly intuitive that, in
the case of constant diffusion coefficient, the P1 Galerkin method guarantees continuity of the
tangential component of the pressure gradient not of the normal component. The RT 0 − P0

Mixed-Hybrid method, on the contrary, guarantees continuity of the normal but not of the
tangential component of th pressure gradient.

3.4 Experimental comparison between Galerkin P1 and MFEMRT 0−
P0 in the solution of elliptic equations

A better understanding of the practical motivations highlighting the usefulness of the mixed
finite element approach is obtained by the following considerations on simple test problem. We
remark that we are looking here not to the convergence of the scheme for h → 0, a property
that is fundamental but cannot be tested in real applications. Rather we are investigating
properties of the numerical solution at a fixed h, comparing them with qualitative properties
that we expect from the real solution. In this case, we are investigating what is called the
“local conservation” properties of the schemes, similarly to what we have done in section 2.11.

Consider the domain and the mesh reported in Figure 3.5. We want to solve equation (3.3)
with boundary conditions shown on the Figure. The resulting solution will create a flux vector
field uh(x) = −a(x)∇ph(x) that enters the domain from the inflow boundary (the left edge of
the square) and flows towards the outflow boundary, localized in a central portion of the right
edge. We note within the domain the presence of two “column-like” internal regions where the
diffusion coefficient is a(x) = 10−12, much smaller than the background value a(x) = 1. The
mass flow inside the two pillars is thus impeded, and should be very small. Hence, particle
trajectories should leave the inflow boundary, circumnavigate the pillars, and exit from the
outflow boundary.

We solve the problem by calculating the flow field uh(x) with Galerkin P1 the with mixed
hybrid formulation based on RT 0 −P0 spaces. Then trajectories are calculated by distribut-
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Figure 3.5: Right panel: domain and boundary conditions for the solution of eq. (3.3). The
normal flux at the boundary is denoted by q = u · n. Left panel: graphic representation and
notations used in the “particle tracking” procedure.

ing uniformly 100 particle on the inflow boundary and numerically evaluating the following
integral:

X(x0, t) =

∫ t

t0

uh(X(x0, τ)) dτ

where X(x0, t) is the position at time t of the particle released at time t = 0 at position
x = x0, and uh(X(x0, t)) is the Eulerian velocity at that position. The integral is evaluated by
assuming that the velocity vector uh is constant on each triangle and we discretize the interval
[0, t] in subintervals of length hk that satisfy the CFL (Courant-Friedrichs-Lewy) condition
that the particle exactly reaches the boundary of the considered triangle within the time-step
hk (t0 = 0, tk = tk−1 + hk−1). The resulting algorithm is exemplified in Figure 3.5. At k = 0
we start from the point X(x0, 0) = x0, which is assumed to be in σk ∈ Tr, an edge of the
Dirichlet boundary where p = 1 is imposed. The next point X(x0, t

−
1 ) belongs to the boundary

of Tr and is found by joining X(x0, 0) with the boundary of Tr moving along the direction
uh,r, the (constant) velocity vector in Tr. Next, once the neighboring triangle Ts is identified,
we let X(x0, t

+
1 ) be the same point X(x0, t

−
1 ) but now belonging to Ts. This is the starting

point for the iterated procedure. Denoting with uh(xbk) the velocity vector within the triangle
containing X(x0, t

+
k ), the scheme can be written as:

X(X(x0, tk), t
−
k+1) = X(x0, t

+
k ) + λuh(xbk),
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where λ is given by
∥∥X(x0, t

+
k+1)−X(x0, t

+
k )
∥∥, i.e., the length of the path traveled by the

particle within the time step.

Figure 3.6 (top panels) shows the trajectories calculated with the above algorithm using the
Galerkin P1 (left) and the MHFEM RT 0−P0 (right) velocity fields starting from 100 particles
uniformly distributed on the inflow boundary. The differences between the two vector fields
are evident, but a few comments on these results are notable. Contrary to the MHFEM
method, the Galerkin trajectories are not uniformly spaced one-another inside the domain,
and converge in several clusters. We recall that convergence of the trajectories indicates the
presence of a sink term, while divergence indicates a source. The second observation is that
some of the P1 trajectories exit the domain from no-flow boundaries, obviously violating the
properties of the original problem. The numerical flow field is thus obviously non-conservative.
The RT 0 − P0 flow field, on the other hand, does not show any of these problems, and is
everywhere conservative. The lower panel in Figure 3.6 shows a detail of the mesh and the
ensuing P1 velocity field and relevant trajectory. The particle starting from the left inlet point
D proceeds along a direction parallel to the elemental velocity until it reaches the opposite
triangle edge (point E). Here the trajectory should now follow the direction pointed at by
vector w, and thus re-entering the triangle that was just left. This is obviously a contradiction
and the trajectory has to stop. In fact, the components of vectors v and w along edge AB have
opposite sign, indicating that along edge AB a sink is acting with magnitude | v · n |+ | w · n |,
violating the local conservation property. This does not occurs for the RT 0 − P0 MHFEM,
and is the explanation for the large differences in the trajectories shown in the upper panels
of Figure 3.6.

Two final remarks are in order. In the first one we would like to stress again the fact that
we are working at a fixed mesh size. At convergence, i.e., h → 0, the Galerkin P1 converges
towards the real solution, which satisfies both local conservation and maximum principles, and
evidently all these effects disappear. However, practically always, in practical applications, the
mesh size h is determined by the need to follow the geometrical constraints of the domain and
of the heterogeneities of the diffusion coefficient, and grid refinement can seldom be performed.
For these reasons we look at local properties of the numerical solutions at a fixed mesh size.

The second observation is related to the mass balance error relative to the scalar numerical
solution ph(x). The conservation error resulting from this numerically evaluated field is in
most cases negligible when calculated on the correct control volume and not necessarily on
the finite element (see discussion in section 2.11). Thus it cannot be mistaken for the error
arising from the numerical flow field, a different unknown. This is the reason why, starting
from the 1970’s, the field of the mixed approach emerged as an active research field, by trying
to approximate simultaneously both pressure and velocities.

As a final remark, we note that the computational complexity of the mixed and the mixed-
hybrid methods is much higher than Galerkin. In fact, for general triangulations, the number
of elements is approximately 1.7 and 3 times the number of nodes for two dimensional and three
dimensional triangulations, respectively, while the number of edges or faces is on the average
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Figure 3.6: Trajectories calculated using the velocity field calculated by Galerkin P1 (top
left panel) and with the MHFEM RT 0 − P0 (top right panel). The bottom panel shows a
zoom of the Galerkin P1 velocity field. We note several neighboring triangles where the normal
component of the velocity field have opposite sign. This obviously implies the presence of a
source or sink term, although in the original problem f(x) = 0. These unphysical source/sink
terms contribute substantially to the non satisfaction of a local conservation property, and
cause small local oscillations that violate the maximum principle of elliptic equations.
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between 3 and 7 times the number of nodes. For this reason, current research concentrates on
the development of post-processing techniques that starting from the P1 velocity, reconstruct
a locally conservative (divergence free) field.

3.5 The Stokes equation

We come back to discuss the numerical solution of the Stokes equation (3.1), which we rewrite
here:

−µ∆u+∇p = f in Ω,

div u = g in Ω,

u = 0 in Γ,

(3.27)

We note first that the pressure appears in this equation under the gradient sign, and is thus
defined only up to a constant. Thus we add the constraint:∫

Ω

p dx = 0.

Moreover, we have that the source term g must have zero mean, as we assume zero velocity
on the boundary. In fact, application of the divergence theorem to the the incompressibility
equation yields:∫

Ω

div u dx =

∫
Ω

g dx =

∫
Γ

u · ν ds = 0

because u = 0 on Γ.
We can then write the following variational formulation:

Problem 3.7 (Stokes variational formulation). Find (u, p) ∈ V ×Q such that:

a (u, v) + b (p, v) = F (v) ∀v ∈ V ,
b (q, u) = (g, q) ∀q ∈ Q,

(3.28)

where

a (v, w) = µ

∫
Ω

∇v ..∇w dx b (v, q) = −
∫

Ω

q div v

F (v) = −
∫

Ω

f · v dx (g, q) = −
∫

Ω

gq dx

(3.29)

and the spaces are given by:

V = [H1
0(Ω)]d

Q = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
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In this case

L(v, q) =
1

2
a (v, v)− F (v) + b (v, q) .

Then, the pair (u, p) must satisfy:

L(u, q) ≤ L(u, p) ≤ L(v, p), ∀v ∈ V ∀q ∈ Q,

i.e., (u, p) is the saddle point of the Lagrangian L(v, q). Again note, that in this formulation
p can be viewed as the Lagrange multiplier that enforces the constraint b (u, p) = 0.

Remark 3.8. This is equivalent to look for candidate solutions within the space where the
constraint is satisfied. In other words, we can define the space W ⊂ V:

W = {v ∈ V : b (v, q) = (g, q) ∀q ∈ Q} .

Within this space, assuming the bilinear form a (·, ·) to be coercive, the linear system (3.28)
reduces to:

a (u, v) = F (v) ∀v ∈ V .

Taking v = u in the previous equation and using Poincaré inequality yields the following:

‖u‖L2(Ω) ≤ CΩ ‖∇u‖L2(Ω) ≤ C ‖f‖L2(Ω)

analogous to the stability statement (2.60) in the Lax-Milgram theorem. The practical strategy
is to include the constraint for every function g is to solve for ũ = u− ug, where the function
ug is such that div ug = g, and thus solve the problem:

a (u, v) = F (v) + a (ug, v) ∀v ∈ V ,

and proceed as discussed in section 3.1. However, as we have already mentioned in this section,
constructing finite element spaces that satisfy the above properties is not easy and seldom used
in practical applications.

The well-posedness of the saddle point problem requires that the following two properties are
satisfied:

1. the bilinear form a (·, ·) is continuous and coercive, i.e., there exist a constant α > 0 such
that:

|a (v, v) | ≥ α ‖v‖V , ∀v ∈ W ;

2. the bilinear form b (·, ·) is continuous and satisfies the inf-sup condition, i.e., there exist
a constant β > 0 such that:

inf
q∈Q

sup
v∈V

b (v, q)

‖v‖V ‖q‖Q
≥ β.
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3.5.1 Stable FEM discretizations (Mixed FEM)

Given a regular triangulation Th(Ω) of the domain Ω, the FEM discretization of the Stokes
equation is the finite dimensional counterpart of problem 3.7 and reads as follows:

Problem 3.9 (Stokes Galerkin formulation). Find (uh, ph) ∈ Vh(Th)×Qh(Th) such that:

a (uh, v) + b (ph, v) = F (v) ∀v ∈ Vh(Th) ⊂ H1
0(Ω),

b (uh, q) = (g, q) ∀q ∈ Qh(Th ⊂ L2(Ω)

leading to the linear system:[
A BT

B 0

] [
u
p

]
=

[
f
g

]
with the matrix elements defined as:

A = {aij} aij = a (φi, φj) = µ

∫
Ω

∇φi ..∇φj dx i, j = 1, . . . , N

B = {bki} bki = b (φi, ψk) = −
∫

Ω

ψk div φi dx k = 1, . . . ,M ; i = 1, . . . , N

f = {fi} fi = −
∫

Ω

f · φi dx i = 1, . . . , N

g = {gk} gk = −
∫

Ω

gψk dx k = 1, . . . ,M

where φi(x) are vector functions and ψk(x) scalar functions forming the bases for Vh and Qh,
respectively, i.e.:

Vh(Th) = Span (φ1, . . . , φN) ⊂
[
H1

0(Ω)
]d Qh(Th) = Span (ψ1, . . . , ψM) ⊂ L2(Ω).

From what we have seen above, this problem is well posed, i.e., the solution exists and it is
unique so that it can be solved, if both the following properties are satisfied:

1. the bilinear form a (·, ·) is continuous and coercive:

| a (v, w) | ≤ γ ‖v‖Vh ‖w‖Vh a (v, v) ≥ α ‖v‖2
Vh for all v, w ∈ Vh;

2. the bilinear form b (·, ·) is continuous and satisfies the inf-sup condition, i.e.:

| b (v, q) | ≤ δ ‖v‖Vh ‖q‖Qh b (v, q) ≥ β ‖v‖Vh ‖q‖Qh for all (v, q) ∈ Vh ×Qh.
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When these properties are satisfied, the following analogues of Céa Lemma are valid:

‖u− uh‖H1(Ω) ≤ C1 ‖u− v‖H1(Ω) + C2 ‖p− p‖L2(Ω) ∀(v, q) ∈ Vh ×Qh
‖p− ph‖H1(Ω) ≤ C3 ‖u− v‖H1(Ω) + C4 ‖p− p‖L2(Ω) ∀(v, q) ∈ Vh ×Qh.

The FEM linear system is of the form given in (3.23), and thus, from Theorem 3.13, it is
well-posed if ker(A) ∩ ker(B) = {0}, or, equivalently as seen in Lemma 3.14, if it matrix B
satisfies the discrete inf-sup condition:

max
v∈RNσ

qTBv

‖v‖
> β2 ‖q‖ ∀q ∈ RNT , q 6= 0.

As already discussed in the case of the mixed FEM methods, the inf-sup condition must be
checked on the particular couple of spaces (Vh,Qh). In other words, the two FEM spaces
cannot be chosen independently of each other. Loosely speaking, we need to allow enough
degrees of freedom in Wh with respect to Qh so that we do not impose too many constraint
on the saddle point problem. Again, the Fortin criterion comes to help. We have the following
result:

Lemma 3.15 (Fortin criterion (for Stokes equation)). If the bilinear form b (v, q) defined
in (3.29) satisfies the following inf-sup condition:

inf
v∈H1(Ω)

sup
q∈L2(Ω)

b (v, q)

‖v‖H1(Ω) ‖q‖L2(Ω)

≥ β,

then the discrete inf-sup condition:

inf
q∈Vh

sup
v∈Qh

b (v, q)

‖v‖Vh ‖q‖Qh
≥ β,

is satisfied if and only if there exist a projection operator Πh : H2 7→ Vh such that:

b (Πhv, q) = b (v, q) ∀q ∈ Qh,

and:

‖Πhv‖V ≤ γh ‖v‖V ∀v ∈ V .

The proof is a simple extension of the proof of Lemma 3.3. Using this lemma we can find
the compatibility conditions between the discrete spaces V and Q, i.e., the relationships that
guarantee the well posedness of the discrete problem. In essence, we need to use the solution
v of the linear system

b (Πhv, q) = b (v, q) ∀q ∈ Qh

to define the operator Πh that satisfies Fortin’s Lemma. This is a difficult task and it is often
easier to verify it a posteriori (e.g., by counter examples).
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Inf-sup unstable spaces

P1/P1 P1/P0

Inf-sup stable spaces

P1 − bubble/P1 P1 − iso− P2/P1 P2/P1

Figure 3.7: Pairs of FEM Stokes spaces. Filled and empty circles indicate positions of veloc-
ity and pressure degrees of freedom, respectively. Each pair of triangles show velocity/pressure
nodes. The top row displys the inf-sup unstable spaces with the pairs of triangles referring
to P1 − /P1, P1 − /P0 spaces. The bottom row shows inf-sup stable spaces with the pairs of
triangles referring to P1 − bubble/P1, P1 − iso − P2/P1, and P2/P1 (Taylor-Hood) spaces,
respectively.

Remark 3.10. We note that the constant vector is in the null space of matrix BT , stating that
the pressure is defined up to a constant. In fact, if p ∈ RN is a constant vector, i.e., pk = C,
k = 1, . . . , N , we have:

V BTP = PBV =

{
M∑
i=1

b (φi, p) vi

}
=

{
C

M∑
i=1

b (φi, p) vi

}
=

∫
Ω

C div v dx = C

∫
Γ

v·ν ds = 0

because v is zero on Γ.

Inf-sup unstable spaces

The P1/P1 spaces. The first pair of spaces we study is the so called P1/P1 spaces. These
spaces are formed by piecewise linear basis functions discussed in Section 2.8.1 for both Vh
and Qh. Thus, given a regular triangulation Th(Ω), we have:

Vh(Th) = {v ∈ [C0(Th)]d : v|T ∈ [P1(T)]d for every T ∈ Th, v = 0 in Γ},
Qh(Th) = {q ∈ C0(Th) : q|T ∈ P1(T) for every T ∈ Th}.
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We discuss here a particular example. We take a square Ω =]0×1[2 with a regular triangulation
Th formed by rectangular triangles. Take a discrete pressure field defined by nodal values -1,
0, 1 at the three vertices of the triangles. This pressure field has zero mean on each triangle,

i.e.,
3∑
i=1

pj,T = 0. Since uh is piecewise linear, its divergence is piecewise constant, and then

obviously we have:∫
Ω

ph div v dx =
∑

T ∈ Th
∫
T

ph div v dx =
∑

T ∈ Th div v|T
|T|
3

3∑
j=1

pj = 0 ∀v ∈ Vh,

showing that the bilinear form b (·, ·) does not satisfy the inf-sup condition. This result is
expected, as the space of the pressure is too rich with respect to the space of the velocity.
Note that in this case the null space of BT is larger than one (when KerBT = 1 it is possible to
remove the singularity by imposing a null average pressur), and the end effect on the solution
is that, when an iterative method is used to solve the linear system, oscillations in the pressure
occur.

The P1/P0 spaces. In this case the use of a piecewise constant pressure field implies the
immediate satisfaction of the divergence constraint (in weak form). However, also this pair
does not satisfy the inf-sup condition. In fact, indicating with N the number of vertices of
Th, with N = NI + NB, where NI and NB are the number of internal and boundary nodes,
respectively, and withM the number of triangles. Then, Dim (Vh) = NI and Dim (Qh) = M−1
(remember we need to add the constraint of zero mean to fix the pressure). Using the Euler
characteristics of a triangulation of a polygonal domain it can be shown that M = 2NI+NB−2,
fromm which we deduce that M − 1 ≥ 2(NI − 1). Hence:

Dim
(
KerBT

)
= Dim (Qh)−Dim

(
ImBT

)
≥M − 1−Dim (Vh) = M − 1− 2NI = NB− 3.

Thus there are at least NB−3 spurious modes for the pressur. In other words, we are imposing
at least NB − 3 too many constraints in the divergence equation and BT is not surjective.

Inf-sup stable spaces

The (P1−bubble/P1) (mini element) spaces. The idea is to enrich the [P1]d for velocity
so that it is sufficiently richer than the pressure space P1. Following this idea, the mini element
adds a degree of freedom in the center of gravity of the triangle. In two dimensions we have
for the velocities the following:

Pβh,1 = [P1(T)⊕ Span (βT)]2,

where βT(x) is the so called bubble function taking on the value 1 at the gravity center of T
and zero at the boundary and it is always 0 ≤ βT ≤ 1. Indicating with φi(x) the basis function

123



for the sdundard P1 linear FEM space for the reference triangle with vertices in P1 = (0, 0),
P2 = (1, 0), and P3 = (0, 1). The P1 basis functions and the bubble function take then the
form:

φ1(x, y) = 1−x−y; φ2(x, y) = x; φ3(x, y) = y; φβ(x, y) = 27φ1(x, y)φ2(x, y)φ3(x, y).

The velocity vector and the pressure are given by:

uh(x, y) =
3∑
i=1

uiφi(x, y) + uβφβ(x, y) ph(x, y) =
3∑
i=1

piφi(x, y)

where ui and uβ are two-dimensional vectors containing the x and y components of the nodal
(baricentral) velocity vector.

The Pi− iso−P2/P1 space. This choice of spaces satisfying the inf-sup condition amounts
essentially in choosing P1 basis functions for both pressure and velocity spaces. The enrichment
of the latter space is obtained by using a uniformly refined triangulation obtained by connecting
the midpoints of each triangle (see Figure 3.7).

The Taylor-Hood (Pk/Pk−1) spaces. The Taylor-Hood spaces consider both continuous
velocity and continuous pressure fields and are of the type Pk/Pk−1, with k ≥ 2 to satisfy
the inf-sup condition. The simplest and most used approach is with k = 2, i.e., P2/P1, using
quadratic velocity and linear pressure.

3.5.2 Stabilized FEM discretizations

The mixed FEM described in the previous section require the use of different orders of ap-
proximation for velocity and pressure. In practical applications, especially when chemically
reactive flows are considered, different approximating polynomials may lead to both theo-
retical and implementation difficulties, as often chemical reactions require the use of derived
(interpolated) quantities. In these cases, equal order polynomials are much more beneficial.
However, we have seen that in order to being able to solve the saddle point problem arising
from the discretization of the Stokes equation we need the satisfaction of the inf-sup condi-
tion. The essence of this condition is to make sure that the linear system is not under- or
over-constrained, and thus can be solved. Looking at the expression of the saddle-point linear
system (3.23), it is intuitive to think that the empty (2,2) block is critical. If we can replace
this (2,2) block with an invertible matrix, then the linear system is always solvable as long as
matrix A (the (1,1) block) is invertible. The idea of stabilization is to introduce a “consistent”
variational crime into the formulation to generate a invertible matrix in the (2,2) blocks.

For example, we can define the following problem:
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Problem 3.11 (Stokes Galerkin GLS (satbilized) formulation). Find (uh, ph) ∈ Vh(Th) ×
Qh(Th) such that:

a (uh, v) + b (ph, v) = F (v) ∀v ∈ Vh(Th), q ∈ Qh(Th)
b (uh, q) + c ((uh, ph), (v, q)) = 0

with the new bilinear form given by:

c ((uh, ph), (v, q)) = δ
∑
T∈Th

h2
T

∫
T

(−µ∆uh +∇ph − f)(−µ∆v +∇q) dx

where δ is an empirical parameter that tunes the amount of stabilization. The above equation
is consistent with Stokes variational formulation (3.28) (with g = 0) as the term in c (·, ·) is a
residual that is equal to zero when we choose uh = u. Thus the consistency of the scheme is
preserved.
Using linear basis functions for both velocity and pressure, φi(x) and ψk(x) are vector and
scalar functions, respectively, that form the bases for Vh and Qh, i.e.:

Vh(Th) =
{
v ∈ C0(Ω) : v|T ∈ [P1(T)]2

}
= Span (φ1, . . . , φN) ⊂

[
H1

0(Ω)
]2
,

Qh(Th) =
{
w ∈ C0(Ω) : w|T ∈ P1(T)

}
= Span (ψ1, . . . , ψN) ⊂ H1

0(Ω).

This stabilized scheme leads to the linear system:[
A BT

B −C

] [
u
p

]
=

[
f
g

]
with the matrix elements defined as:

A = {aij} aij = a (φi, φj) = µ

∫
Ω

∇φi ..∇φj dx i, j = 1, . . . , 2N

B = {bki} bki = b (φi, ψk) = −
∫

Ω

ψk div φi dx k = 1, . . . , N ; i = 1, . . . , 2N

C = {ckm} cki = c (ψk, ψm) = δ
∑
T∈Th

∫
T

∇ψk · ∇ψm dx k,m = 1, . . . , N

f = {fi} fi = −
∫

Ω

f · φi dx i = 1, . . . , 2N

g = {gk} gk = −δ
∑
T∈Th

∫
T

f · ∇ψk dx k = 1, . . . , N
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4 Finite Volume Methods

In this section we work the details of the Finite Volume family of schemes for the solution of
elliptic/parabolic conservation equations.
We will be using most of the theoretical developments described in the previous sections as fun-
damental building blocks for our numerical approach. We will focus on standard finite volume
schemes maintaining and discussing as much as possible multidimensional problems. However,
as truly multidimensional methods are still open questions, we will spend much time looking
at one-dimensional approximations, without forgetting multidimensional approximations. For
the more recent developments we refer the reader to more specialized books.

4.1 The Differential Equation

Problem 4.1. Given a domain Ω ∈ Rd, which we assume possesses sufficient regularity, we
want to find a vector function u(x, t) : Ω× R+ −→ R, that satisfies the following equation:

ut + div f(u) = 0 for all x ∈ Ω and t ∈ [0, T ], (4.1)

u(x, 0) = u0 for all x ∈ Ω and t = 0, (4.2)

u(x, t) = ud for all x ∈ ∂Ωin and t ∈ [0, T ], (4.3)

where f : Ω −→ R.

We start by giving some basic definitions of the domain discretizations and its property and
define the geometric quantities that will be needed in the development.

4.2 Preliminaries

There are different equivalent ways to develop the Finite Volume Method. Our approach is to
rely mainly on Gauss (or Divergence) theorem and the derived integration by parts (Green’s
Lemma) in order to always focus on the conservation principle that is the foundation of the
models of interest. We recall here the most important mathematical results that will be of
use in our developments, reminding to standard analysis books for the details of the proofs.

Theorem 4.1 (Gauss or Divergence Theorem). Given a subset Ω ∈ Rd having piecewise
smooth boundary Γ = ∂Ω, and a continuously differentiable (C1(Ω)) vector field F (x) ∈ Ω, we
have: ∫

Ω

divF dx =

∫
Γ

F · ν ds, (4.4)

where ν is the outward unit normal to Γ, dx denotes the volume (surface) measure on Ω and
ds the surface measure on Γ and v ·w = 〈v, w〉 denotes the scalar product between vectors v, w
of Rd.
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Theorem 4.2 (First Green Identity – Green’s Lemma). Let v, w ∈ Rd be piecewise continuous
vector fields and let Ω and Γ as in the previous theorem, then:∫

Ω

∇v · ∇w dx =

∫
Γ

v∇w · ν ds−
∫

Ω

v div∇w dx, (4.5)

where div∇ = ∆ is Laplace differential operator of second derivatives.

Remark 4.2. In (4.4) the left-hand-side contains the sum of the partial derivatives of the
vector field F , and for this reason the hypothesis of the theorem contains the requirement that
F be continuously differentiable. The right-hand-side, on the other hand, does not contain any
derivative, and thus in principle the integral of the fluxes over the subset Ω could be defined
without the requirement that F be C1. However, the normal to the surface Γ must be well-
defined and this is the reason for the requirement that Γ be piecewise smooth. In fact, if the
boundary Γ is formed by the union of m smooth surfaces that intersect at boundaries that form
C1 curves, i.e.:

Γ =
m⋃
i=1

Γi γij(t) = Γi ∩ Γj ∈ C1 for all i and j, then

∫
Γ

=
m∑
i=1

∫
Γi

.

The same argumentation can be made, with the appropriate changes, for Green’s Lemma 4.5.

The Finite Volume (FV) scheme can be derived by the following operations:

1. partition the domain Ω into M polygonal “finite volumes” or cells Ti, i = 1, . . . ,M (see
next paragraph for a complete definition of cells);

2. integrate equation (4.1) in time and space over the domain Ω and the time interval
[tk, tk+1]:∫ tk+1

tk

(∫
Ω

ut + div f(u) dx

)
dt = 0;

3. use the linearity property of the integration to write:∫ tk+1

tk

(∫
Ω

ut + div f(u) dx

)
dt =

M∑
i=1

∫ tk+1

tk

(∫
Ti

ut + div f(u) dx

)
dt = 0;

impose that each term of the sum is zero:∫ tk+1

tk

∫
Ti

(ut + div f(u) dx) dt = 0 i = 1, . . . ,M ;
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4. apply the divergence theorem and use the fact that the cells are of polygonal shape:∫ tk+1

tk

(∫
Ti

ut dx+

∫
∂Ti

f(u) · ν dx
)
dt =∫ tk+1

tk

(∫
Ti

ut dx+

Nσ∑
j=1

∫
σij

f(u) · νj ds

)
dt = 0

5. exchange the first space integral with the time integral (the functions are assumed to be
continuous and the domain of integration is assumed to be constant):∫

Ti

∫ tk+1

tk
ut dt dx+

∫ tk+1

tk

(
Nσ∑
j=1

∫
σij

f(u) · νj ds

)
dt = 0 i = 1, . . . ,M ;

6. integrate the first addendum in time:∫
Ti

u(x, tk+1) dx−
∫
Ti

u(x, tk) dx+

∫ tk+1

tk

(
Nσ∑
j=1

∫
σij

f(u) · νj ds

)
dt = 0 i = 1, . . . ,M ;

(4.6)

7. define cell average and the edge flux operators as:

AT(u(t)) =
1

| T |

∫
T

u(x, t) dx, (4.7)

Gσ(u(t)) =
1

| σ |

∫
σ

f(u(x, t)) · ν ds; (4.8)

8. to obtain:

ATi(u(tk+1)) = ATi(u(tk))− 1

| Ti |

∫ tk+1

tk

Nσ∑
j=1

| σij |Gσj(u(t)) dt = 0 i = 1, . . . ,M ;

we remark that until now we have made no numerical approximations;

9. start the numerical approximation very naturally by approximating the cell average
uh,i ≈ ATi(u) = Ah(u) and use uh as unknown of our numerial scheme together with a
simple quadrature rule (e.g. left rectangles) to evaluate the remaining time integral to
obtain:

uk+1
h,i = ukh,i −

∆t

| Ti |

Nσ∑
j=1

| σij |Gkh,j = 0 i = 1, . . . ,M, (4.9)

where Gkh,j is the numerical approximation of the flux Gσ(u(tk)) at the cell face σij.
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Remark 4.3. The first few points of the derivation could have been replaced by a derivation
more aware of the definition of a weak formulation given in the previous sections. To this aim
we proceed as follows:

1. partition the domain Ω into M polygonal “finite volumes” or cells Ti, i = 1, . . . ,M (see
next paragraph for a complete definition of cells); define a piecewise smooth test function
φ(x) given by the characteristic function of the i-th cell:

φi(x, t) = χx(x)χt(t), where χx(x) =

{
1 if x ∈ Ti
0 otherwise;

χt(t) =

{
1 if t ∈ [tk, tk+1]

0 otherwise;

2. multiply equation (4.1) and integrate over the domain Ω and the interval [tk, tk+1]:∫ tk+1

tk

(∫
Ω

(ut + div f(u))φi(x, t) dx

)
dt = 0;

this equation must be satisfied for all functions φi(x, t):∫ tk+1

tk

(∫
Ti

ut + div f(u) dx

)
dt = 0, i = 1, . . . ,M,

which is exactly equation (4.6).

At ths point we are left with the task of defining the numerical flux Gkh,j for each mesh edge.
Before going into the development of how to evaluate the numerical flux we need to setup some
notation. We would like to stress here that this general Finite Volume setting is what is known
as “cell-based”. We could derive a “node-based” version more similar to the approach used in
the Finite Element Method without adding any complication. Within the same framework we
could tackle more complicated PDEs, as for example parabolic or elliptic equations, obtained
for example by adding to (4.1) a diffusion term proportional to the second derivatives of
u(x, t). For a general discussion on these topics we refer the reader to the specialized Finite
Volume literature [8, e.g.] for a complete mathematical theory and to [16] for application to
Computational Fluid Dynamics.

4.2.1 Notations

Geometrically we define the mesh Th(Ω) as a finite collection of non-overlapping and non-empty
two-dimensional “control volumes” or “cells” generally formed by simplices (e.g, subintervals,
triangles, tetrahedra in one-, two-, and three-dimensions, respectively) and denoted with the
letter “T” indexed by a Latin subscript, e.g. i, j, k. For example, Ti is the i-th control volume
(cell) of the mesh T = {Ti}, i = 1, . . . ,M , with M being the total number of cells. We assume
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that, for every possible choice of h, Th covers the domain Ω ⊂ Rd in the sense that for all i
and j:

Ω =
⋃
T∈T

T, and Ti ∩ Tj =

{
σij ⊂ Rd−1 if Ti and Tj, are neighbors,

∅, otherwise .

We identify with the symbol σ a mesh face, i.e., the intersection between two neighboring
cells, and index it with the indices of the two cells:

σij = Ti ∩ Tj,

and with the symbol ξ the vertices forming the cells. In a two-dimensional example, two
distinct cells are either neighbors, in which case their intersections is the common boundary
“edge”, or they are far apart, in which case their intersection is empty. Cells, faces, and vertices
are identified by global numbers and all are counted only once. Figure 3.2 reports typical
efficient data structures that can be used to completely describe the mesh and corresponding
quantities in a computer program. For more details consult [18].
Different meshes are parameterized by h, called the “mesh parameter” and defined as the
maximum face measure, and by the “mesh diameter” ρ, i.e., the maximum diameter of the
circles inscribed in each mesh cell. Letting hT and ρT being the maximum face measure and
inscribed circle diameter for the generic cell T we have then:

h = max
T∈T

hT

ρ = max
T∈T

ρT .

We require the triangulation to be “regular”, i.e., there exists a constant β > 0 independent
from h and ρ and from the triangulation T such that:

ρT
hT
≥ β for all T ∈ T .

The value of β is a measure of the minimum angle between two consecutive cell edges. The
assumption that the triangulation is regular implies that cell angles do not become too small
in the limiting process as h −→ 0, so that the problem of numerical interpolation of nodal or
edge values is well-posed.

131



132



5 Parabolic equations

Consider the model problem:

∂u

∂t
= div [K(x)∇u] + f(x, t) t ∈ [0, T ]; x ∈ Ω ⊂ Rd,

u(x, 0) = u0(x) t = 0, x ∈ Ω,

u(x, t) = uD(x, t) t ∈ [0, T ], x ∈ ΓD ⊂ ∂Ω,

−K(x)∇u(x, t) · ν = qN(x, t) t ∈ [0, T ], x ∈ ΓN ⊂ ∂Ω.

(5.1)

From a physical point of view, we can interpret this problem as governing the heat flow in
a solid characterized by a thermal conductivity given by the function K(x), assumed strictly
greater than zero a.e., to guarantee coercivity. We have thus an extra independent variable,
time t, which is assumed to vary within an interval I ⊂ R+.

5.1 One-dimensional model problem

An intuitive look at the behavior of the solution of eq. (5.1) in a simplified problem is obtained
by developing an explicit form of u(x, t). Consider the one-dimensional (in space) problem:

∂u

∂t
=
∂2u

∂x2
x ∈ (0, π), t > 0;

u(x, 0) = u0(x) x ∈ (0, π),

u(0, t) = u(π, t) = 0 t > 0.

The problem is periodic and thus we can use effectively the Fourier transform together with
the technique of variable separation to obtain the solution. By simple substitution, it is easy
to verify that the following function satisfies the above equation:

u(x, t) =
∞∑
j=1

u0,j e−j
2t sin(jx), u0,j =

√
2/π

∫ π

0

u0(x) sin(jx) dx, j = 1, 2, . . . .

where u0,j are the Fourier coefficients of the initial datum u0(x) expressed in the basis (or-

thonormal in L2((0, π))) {
√

2/π sin(jx)}∞j=1. The frequency component j (related to the
spatial basis sin(jx)) is characterized by a temporal scale varying on the order of O (j−2).
Varying j we have thus a continuous spectrum of components that decay faster and faster in
time. As a consequence, the solution becomes more regular as time progresses. Intuitively this
is exactly what we would expect from a diffusion-like process. However, for small times, the
solution is not necessarily smooth and it may happen that ‖u̇(t)‖ = ‖u̇(·, t)‖L2((0,π)) −→∞ for
t −→ 0 depending on the initial condition u(x, 0). For example, take u(x, 0) = u0(x) = π− x,
then, for an appropriate constant C, we obtain:

u0,j =
√

2/π

∫ π

0

(π − x) sin(jx) dx =
√

2/π
jπ − sin(jπ)

j2
=
√

2/π
π

j
= C/j.
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Figure 5.1: Solution of 1D diffusion problem of Example 5.1 as a function of space for
different increasing times. The initial steep transient is clearly visible, as well as the smoothing
property as time increases.

For t −→ 0 we have that ‖u̇(t)‖ ≈ Ct−α with α = 3/4. Now take u(x, 0) = u0(x) =
min(x, π − x), we find:

u0,j =
√

2/π

∫ π

0

min(x, π − x) sin(jx) dx =
√

2/π
2 sin(jπ/2)− sin(jπ)

j2
= C/j2,

and ‖u̇(t)‖ ≈ Ct−α with α = 1/4. In general, if u0,j decays faster than j−2.5 for j −→∞, then
‖u̇(t)‖ is bounded for t −→ 0.

The solution will always have a more or less important initial transient where some derivatives
may be non smooth. At large enough times, however, the solution will regularize. Note that
the presence of time-varying forcing functions may generate important transients also far from
the initial time. Some a priory stability estimates can be shown using the energy methods of
the next chapter or Parseval inequality. We have:

‖u(t)‖ ≤ ‖u0‖ , t ∈ (0, T ) (5.2)

‖u̇(t)‖ ≤ C

t
‖u0‖ , t ∈ (0, T ). (5.3)
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Example 5.1 (1D diffusion on the half line). Consider the following 1D example:

∂u

∂t
= D

∂2u

∂x2
x ∈ (0,∞) ;

u(0, t) = u0 ∀t;
u(∞, t) = 0 ∀t;

u(x, 0) =

{
u0, if x = 0,
0, if x ∈ (0,∞).

.

This equation admits an explicit solution given by:

u(x, t) = u0erfc

(
x

2
√
Dt

)
,

where erfc(x) is the complementary error function. Figure 5.1 shows the solution for uo = 1
at different times. The properties described above are clearly noticeable in this case.

5.2 Variational formulation

We can write now the variational formulation using the separation of variables, assuming for
simplicity homogeneous Dirichlet conditions, although the discussion presented in section 2.3.3
applies. We are looking for a function u:

u : Ω× (0, t) −→ R
(x, t) 7→ u(x, t),

that satisfies the above problem (5.1), assuming ΓD = Γ; ΓN = ∅, and uD = 0. We actually
can define a mapping

u : (0, T ) −→ H1
0(Ω),

t 7→ u(·, t)
intending with this notation that for a.e. t ∈ (0, T ) the functions u(t) ∈ H1

0(Ω) and u′(t) ∈
H−1(Ω) (the dual space of H1

0(Ω)) are defined as::

u(t) := u(x, t), u′(t) := ∂tu(x, t).

Thus we can say:

u ∈ L2(0, T ;H1
0(Ω)) and u′ ∈ L2(0, T ;H−1(Ω)),

such that u′ is the (time) derivative of u in the sense of distributions, i.e., as usual by means
of integration by parts, we have that for every v ∈ H1

0(Ω) and φ ∈ C∞c (0, T ):∫ T

0

(u′(t), v)H1
0
φ(t) dt = −

∫ T

0

(u(t), v)H1
0
φ′(t) dt.

The weak formulation can be written as:

135



Problem 5.2. Find u ∈ L2(0, T ;H1
0(Ω)) and u′ ∈ L2(0, T ;H−1(Ω)) such that

(u′, v) + a (u, v) = F (v) ∀v ∈ H1
0(Ω)

where

(u′, v) =

∫
Ω

u′ v dx; a (u, v) =

∫
Ω

K(x)∇u∇v dx; F (v) = (f, v) .

We note that:

(u′, v) =

(
du

dt
, v

)
=

d

dt
(u, v) ,

that the above variational formulation may be written as:

d

dt
(u, v) + a (u, v) = (f, v) .

which, for v = u(t), using the chain rule, becomes:

1

2

d

dt
‖u‖2 + a (u, u) = (f, u) .

Again with v = u(t), using the coercivity of the bilinear form a (·, ·) (eq. (2.57)), Poincaré
inequality (Lemma 2.6), and Cauchy-Schwartz inequality, we obtain the following chain of
inequalities:

1

2

d

dt
‖u(t)‖2

L2(Ω) + α ‖∇u(t)‖2
L2(Ω) ≤

1

2

d

dt
‖u(t)‖2 + α

(
‖u(t)‖2

L2(Ω) + ‖∇u(t)‖2
L2(Ω)

)
≤ 1

2

d

dt
‖u(t)‖2 + a (u, u) = (f, u) ≤ ‖f(t)‖L2(Ω) ‖u(t)‖L2(Ω) ≤ CΩ ‖f(t)‖L2(Ω) ‖∇u(t)‖L2(Ω) .

We use now Young’s inequality, which can be stated as follows: for every real scalars η and ξ,
and every ε > 0 we have that:

ηξ ≤ εη2 +
1

4ε
ξ2,

with ε = 1/2α to obtain:

1

2

d

dt
‖u(t)‖2

L2(Ω) + α ‖∇u(t)‖2
L2(Ω) ≤

C2
Ω

2α
‖f(t)‖2

L2(Ω) +
α

2
‖∇u(t)‖2

L2(Ω) ,

and finally, after simplification:

d

dt
‖u(t)‖2

L2(Ω) + α ‖∇u(t)‖2
L2(Ω) ≤

C2
Ω

α
‖f(t)‖2

L2(Ω) .
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Integration between 0 and t yields:

‖u(t)‖2
L2(Ω) + α

∫ t

0

‖∇u(τ)‖2
L2(Ω) dτ ≤ ‖u(0)‖2

L2(Ω) +
C2

Ω

α

∫ t

0

‖f(τ)‖2
L2(Ω) dτ.

The term on the left-hand side represents the total energy of the system at time t. Intuitively,
this energy must be smaller than the initial energy, i.e., the sum of the energy due to u0 and
f . Note that for α = 1, the left hand side is exactly the square of the norm of u(t) in H1(Ω).
For f = 0 we have eq. (5.2).
Another a priori estimate can be obtained by observing that:

1

2

d

dt
‖u(t)‖2 = ‖u(t)‖ d

dt
‖u(t)‖ .

Then, we can write:

‖u(t)‖L2(Ω)

d

dt
‖u(t)‖L2(Ω) +

α

CΩ

‖u(t)‖L2(Ω) ‖∇u(t)‖L2(Ω)

≤ ‖u(t)‖L2(Ω)

d

dt
‖u(t)‖L2(Ω) + α ‖∇u(t)‖2

L2(Ω)

≤ ‖u(t)‖L2(Ω)

d

dt
‖u(t)‖L2(Ω) + α

(
‖u(t)‖L2(Ω) + ‖∇u(t)‖2

L2(Ω)

)
≤ ‖u(t)‖L2(Ω)

d

dt
‖u(t)‖L2(Ω) + a (u(t), u(t))

= (f, u(t)) ≤ ‖f‖L2(Ω) ‖u(t)‖L2(Ω)

Assuming ‖u(t)‖L2(Ω) 6= 0, we have easily:

d

dt
‖u(t)‖L2(Ω) +

α

CΩ

‖∇u(t)‖L2(Ω) ≤ ‖f(t)‖L2(Ω)

and after integration between 0 and t:

‖u(t)‖L2(Ω) ≤ ‖u(o)‖L2(Ω) +

∫ t

0

‖f(τ)‖L2(Ω) dτ,

from which, in the case f = 0, again we obtain the estimate (5.2).

5.3 FEM formulation

We consider a FEM formulation by using Lagrangian basis functions and apply the Method
of Lines (MOL) [17]. Thus, for any t > 0, we look for uh(t) ∈ Vh such that:(

duh(t)

dt
, v

)
+ a (uh, v) = (f, v) ∀v ∈ Vh,

(5.4)

(uh(0), v) = (u0, v) .
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Separating variables x and t, we can write uh using the set of Lagrangian basis functions {φi}
of Vh as:

uh(t, x) =
N∑
i=1

uj(t)φj(x),

to yield:

N∑
j=1

duj(t)

dt
(φj, φi) +

N∑
j=1

uja (φj, φi) = (f(t), φi) i = 1, . . . , N.

This is an N ×N system of ODE that can be written in compact form:

Pu̇+ Au = b, (5.5)

where vector u = {ui(t)} collects all coefficients of uh(x, t), the mass matrix P has elements
given by pi,j = (φi, φj), the stiffness matrix A is as before aij = a (φi, φj), the right-hand-
side vector has components bi = (f(t), φi) and the initial solution is projected onto Vh, i.e.,
ui = (u0, φi). Both matrices, P and A, are symmetric and positive definite. Thus, formally,
we can invert P = ETE to yield:

η̇(t) + Ãη(t) = g(t), η(0) = η0. (5.6)

where matrix Ã = E−TAE−1 is symmetric and positive definite and with spectral condition
number κ(Ã) = O (h−1). The formal (C0-semigroup) mild solution to this equation is given
by:

η(t) = e−Ãt η0 +

∫ t

0

e−Ã(t−τ) g(τ) dτ. (5.7)

The system of ODEs given by (5.5) is “stiff”, i.e., the eigenvalues of A vary in a large interval,
as shown by the fact that κ(Ã) is large.
The a priori energy estimates shown for above for the continuous case can be extended to the
semi-discrete system (5.4). We have:

‖uh(t)‖2
L2(Ω) + α

∫ 2

0

‖∇uh(τ)‖2
L2(Ω) dτ ≤ ‖u0,h‖2

L2(Ω) +
C2

α

∫ t

0

‖f(τ)‖2
L2(Ω) dτ, (5.8)

or:

‖uh(t)‖L2(Ω) ≤ ‖u0,h‖L2(Ω) +

∫ t

0

‖f(τ)‖L2(Ω) dτ, (5.9)

The semi-discrete problem can be studied in more details in the case of a polygonal domain
Ω and using P1 basis functions (we assume for simplicity K(x) = 1). Let Th(Ω) a regular
triangulation with mesh parameter h. Then we have:
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Theorem 5.1. Under the above hypothesis, there exists a constant C such that:

max
t∈(0,T )

‖u(t)− uh(t)‖L2(Ω) ≤ C
(
1 + | log( T

h2
) |
)

max
t∈(0,T )

h2 ‖u(t)‖H2(Ω) ,

where u is solution of (5.1) and uh is solution of (5.4).

Proof. We define the following auxiliary problem. Given t ∈ (0, T ), let ϕh : (0, t) 7→ Vh a
function that satisfies:

− (ϕ̇h(τ), v) + a (ϕh(τ), v) = 0 ∀v ∈ Vh, τ ∈ (0, t), (5.10)

ϕh(t) = eh(t),

where eh(τ) = uh(τ)− ũh(τ) and ũh(τ) is such that:

a (u(τ)− ũh(τ), v) = 0 ∀v ∈ Vh, τ ∈ (0, T ).

Taking v = eh(τ) in the first of (5.10), and setting ε(τ) = u(τ)− ũh(τ), we obtain:

‖eh(t)‖2 =

∫ t

0

[− (ϕ̇h(τ), eh(τ)) + a (ϕh(τ), eh(τ))] dτ + (ϕh(t), eh(t))

=

∫ t

0

[(ϕh(τ), ėh(τ)) + a (ϕh(τ), eh(τ))] dτ + (ϕh(0), eh(0))

=

∫ t

0

[(ϕh(τ), ε̇h(τ)) + a (ϕh(τ), εh(τ))] dτ + (ϕh(0), εh(0))

= −
∫ t

0

(ϕ̇h(τ), εh(τ)) dτ + (ϕh(t), εh(t)) ,

from which:

‖eh(t)‖L2(Ω) ≤ −
∫ t

0

(εh(τ), ϕ̇(τ)) ds+ (εh(τ), ϕh(t)) .

Using the formal solution (5.7) applied to the auxiliary problem (5.10) and using the inverse
estimate given in Lemma 2.28, we arrive at:

‖ϕh(τ)‖L2(Ω) ≤ ‖εh(t)‖L2(Ω) , 0 ≤ τ ≤ t∫ t

0

‖ϕ̇h(τ)‖L2(Ω) dτ ≤ C
(
1 + | log( t

h2
) |
)
‖εh(t)‖L2(Ω) ,

from which we have immediately:

‖eh(t)‖L2(Ω) ≤ C
(
1 + | log( t

h2
) |
)

max
0≤τ≤t

‖εh(t)‖L2(Ω) .

The proof is completed by noting that u − uh = εh − eh and using the L2 estimate of Theo-
rem 2.26 applied to εh(τ) = u(τ)− ũh(τ).

In practice, this tells us that the solution accuracy at time t is independent from the accuracy
with which the initial transient is resolved.
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5.4 Full discretization

We study in this paragraph the simpler algorithms for time-discretization based on Euler or
Crank-Nicolson methods. We refer to the later chapter on the numerical solution of ODEs for
more advanced tools. Preliminary, however, we would like to discuss the interaction between
temporal and spatial discretization. To do so, we first analyze how the results of section (5.1)
can be extended to the fully discrete case. Thus we write the solution to eq. 5.6 in terms of
eigenpairs (µi, zi) of matrix Ã. In the case g(t) = 0 we have the classical spectral representation
of the solution:

η(t) =
N∑
j=1

(η0, zj) e−µjt zj.

It is easy to see the the mass matrix has uniform spectrum with eigenvalues all of the order
O (1). Thus the spectral interval of Ã is that of A, and hence, from Theorem 2.27, we can
conclude that µ1 = O (1) and µn = O (h−2). Larger eigenvalues correspond to oscillatory
modes (eigenvectors) while smaller eigenvalues correspond to the more regular modes. Hence,
the components of the solution η(t) are characterized by temporal scales that vary in a large
interval confined between O (h−2) and O (1), a signal that the problem is “stiff”. It is then
necessary to use implicit schemes to avoid the large restrictions on the temporal integration
step forces by stability constraints in case of explicit approaches.

5.4.1 Backward (implicit) Euler scheme

Let I = (0, T ] the time interval (T > 0) and let 0 = t0 ≤ t1 ≤ . . . ≤ tM a partition of I,
where tn+1 = tn + kn and In = (tn, tn+1). We start from the semi-discrete problem (5.4) and
substitute the time derivative duh(t)dt with its incremental ratio. We can write the following
problem. find unh ∈ Vh such that:(

un+1
h − unh
kn

, v

)
+ a

(
un+1
h , v

)
= (f(tn+1, v) ∀v ∈ Vh n = 0, 1, . . . , N − 1,

(5.11)(
u0
h, v
)

= (u0, v) ∀v ∈ Vh.

This corresponds to applying Backward (implicit) Euler scheme to the ODE system (5.5). We
obtain:(

1

kn
P + A

)
un+1 =

1

kn
Pun + bn+1. (5.12)

At every temporal step we need to solve a linear system of dimension n× n where the system
matrix is M = P/kn + A. Intuitively, we could factor matrix M once and for all, and use it
effectively to solve the linear system. On the other hand, from what we have seen above, it is
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also convenient to increase kn at every time step once the fast temporal scales are resolved.
Then we could think of factorizing separately P and A to form M . This route is feasible as
long as the matrix dimensions are not too large, in which case the preconditioned conjugate
gradient is often employed, sing as initial condition the solution calculated at the previous
time step.
The stability of backward Euler is immediately verified. In fact, taking v = uh in (5.11) we
have for f(t) = 0 7:∥∥un+1

h

∥∥2 −
(
un+1
h , unh

)
+ kna

(
un+1
h , un+1

h

)
= 0.

Using Young inequality yields:

1

2

∥∥un+1
h

∥∥2 − 1

2
‖unh‖

2 + kna
(
un+1
h , un+1

h

)
≤ 0, n = 1, . . . , N.

Summing over n we have:

∥∥un+1
h

∥∥2
+ 2

N∑
j=1

kna
(
ujh, u

j
h

)
≤
∥∥u0

h

∥∥2
,

and using the coercivity of a (·, ·) we find:

‖unh‖ ≤
∥∥u0

h

∥∥ ≤ ‖u0‖ , n = 1, . . . , N, (5.13)

an estimate corresponding to the stability estimate of the semi-discrete system given by (5.8)
and (5.9).
Another way to analyze the stability of backward Euler start from the algebraic system (5.12).
Assuming b = 0, the system becomes:(

1

kn
P + A

)
un+1 =

1

kn
Pun.

The mass matrix is symmetric and positive definite, and thus invertible, with a condition
number of the order of O (1). Multiplying by kn and by P−1 we obtain formally:

un+1 =
(
I + knP

−1A
)−1

un.

Matrix I+knP
−1A is similar to I+knL

−1AL−T , where P = LLT , L being its Choleski factor.
We have:∥∥(I + knL

−1AL−T )−1
∥∥ = max

i=1,n

[
1

λi(I + knL−1AL−T )

]
< 1

7We will always use L2(Ω) norms and for this reason we omit the corresponding subscript.
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and since the eigenvalues of P−1A are positive and kn > 0, we readily obtain again (5.13).
The backward Euler has a truncation error of the order of O (kn). Hence, optimal8 quadratic
convergence is obtained if kn = O (h2), a restriction that is often too strong in practical
applications. For this reason the Crank-Nicolson method, based on the trapezoidal quadrature
rule, is often used.

5.4.2 Crank-Nicolson method

The Crank-Nicolson scheme (or trapezoidal rule) can be derived by using again a simple
incremental ratio to approximate the time derivative and using the weighted arithmetic average
of the fluxes (the other terms) at time tn+1 and tn:(

un+1
h − unh
kn

, v

)
+

1

2

[
a
(
un+1
h , v

)
+ a (unh, v)

]
=

1

2
[(f(tn+1), v) + (f(tn), v)]

∀v ∈ Vh n = 0, 1, . . . , N − 1,(5.14)(
u0
h, v
)

= (u0, v) ∀v ∈ Vh.

or in matrix form:(
1

kn
P +

1

2
A

)
un+1 =

(
1

kn
P − 1

2
A

)
un +

1

2

(
bn+1 + bn

)
. (5.15)

This scheme has a truncation error of the order of O (k2
n), and is unconditionally stable. In

fact: ∥∥∥∥(I +
1

2
knL

−1AL−T )−1(I − 1

2
knL

−1AL−T )

∥∥∥∥ = max
i,j=1,n

∣∣∣∣2I − knλj(L−1AL−T )

2I + knλi(L−1AL−T )

∣∣∣∣ < 1.

5.4.3 Forward (explicit) Euler scheme

The forward or explicit Euler method is written as follows:(
un+1
h − unh
kn

, v

)
+ a (unh, v) = (f(tn), v)

∀v ∈ Vh n = 0, 1, . . . , N − 1,(
u0
h, v
)

= (u0, v) ∀v ∈ Vh.

or in matrix form:(
1

kn
P

)
un+1 =

(
1

kn
P − A

)
un + bn. (5.16)

8Optimal convergence is the maximal convergence rate allowable by the interpolation error
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Figure 5.2: Numerical results for explicit Euler (EE), implicit Euler (IE), and Crank-
Nicolson (CN) for the solution of the one-dimensional problem using P1 Galerkin FEM. The
left panel shows the solution for the stable cases, while the right panel shows an example of an
instable solution.

The forward Euler scheme has the same accuracy of backward Euler (O (kn)), but it is only
conditionally stable. In fact we have:∥∥(I − knL−1AL−T )

∥∥ = max
i=1,n

∣∣I − knλi(L−1AL−T )
∣∣ ≤ 1.

This inequality is satisfied only if kn ≤ 2
λ1(P−1A)

= O (h2), since from Theorem 2.27 λmin(A) =

O (h2). The stability condition can be rewritten as:

kn ≤ Ch2 or

√
Ckn
h
≤ 1. (5.17)

The constant C depends on the diffusion coefficient K(x), and asserts that the temporal
and spatial resolution must be such that the solution variation in passing from tn to tn+1

(approximately of the order of
√
Dkn) must remain within one cell (of size h). In other words,

the scheme must be able to resolve “correctly” the faster components of the solution during
the initial transient. In practice, explicit schemes are seldom used because of this stability
restriction, and implicit schemes are preferred as the time step restriction due to stability
typically offsets the higher cost for the linear system solution.

Experimental results for a one-dimensional model problem. In this section we discuss
the numerical results for the three schemes presented above. We use a P1 Galerkin FEM
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formulation for the spatial discretization of the one-dimensional model problem of Example 5.1.
Figure 5.2 (left panel) shows the solution obtained for D = 10−2 at times t = 0.1 e t = 1.0,
using Galerkin- P1 with Explicit Euler (EE), implicit Euler (IE), and Crank-Nicolson (CN).
We have used h = 1/100 and kn = 0.1 for IE and CN, while kn = 0.005 for EE (this value
guarantees stability). The right panel shows the results of EE obtained with kn = 0.0051.
The classical oscillations due to instability are clearly visible and their amplitude increases for
increasing kn.
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6 Pseudospectral Methods: an Overview

6.1 Introduction

Spectral and pseudospectral (PS for short) methods are a very classical approach for solving
PDEs. In such a framework, one considers approximations of the form

u(x) ≈ uN(x) :=
N∑
j=1

cjφj(x)

to the true solution u built by means of a given (usually very smooth) global orthogonal basis
{φk} of a function space, that we term space of trial functions, and takes in account exact
differentiation of uN .
PS methods are characterized by the following very desirable properties

• for an analytic function u the rate of convergence of the truncated expansion uN to u
is exponential (indeed this is called spectral convergence) instead of linear of polynomial
as for finite differences or finite elements methods.

• Even for non-smooth function this approach reveals to be profitable, provided that the
singularities are not too strong.

• Due to the fast convergence, in the most of applications a relatively coarse computational
grid suffices to achieve a rather good accuracy. This becomes a very beneficial property
when the spatial dimension of the problem grows large.

One of the main features of pseudospectral methods is that the trial (and eventually the test)
functions are global. Consequently, the considered finite dimensional spaces are rather rigid ;
however this turns in a disadvantage only on some classes of problems. The typical issues we
need to consider when choosing or implementing a spectral or PS method are

• irregular domains: choice of the basis,

• presence of strong shocks,

• variable resolution requirements in different parts of the domain.

Once the functional space F the solution u must belong to is known, in order to build the
method one needs to chose an orthogonal basis {φj} of F . In performing such a choice the
following task should be considered [10, 11]:

1. Rapid convergence. For smooth functions the truncated expansion needs to converge
very rapidly.
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2. Easy differentiation. For any N and any {aj}j=1,...,N ∈ `2 the operation

d

dx

(
N∑
j=1

ajφj(x)

)
=

N∑
j=1

bjφj(x)

should be computed easily and efficiently.

3. Easy evaluation and synthesis. The evaluation of the expansion at a given point and the
computation of the coefficients (synthesis) starting with u(xi), i = 1, . . . ,M needs to be
easy and fast.

4. Simple integration. When considering the weak formulation of differential equations and
complementing boundary conditions one needs to compute integrals over the domain or
its boundary of the basis functions, a fast and accurate computation algorithm is then
required.

5. Boundary conditions. In some methods we will need to easy characterize the functional
subspace (spanned by combinations of φj’s) satisfying the boundary conditions.

The result of the above requirements is that the typical choices for {φk} are

• Fourier basis {eikπ} for periodic problems

• Orthogonal polynomials (typically arising from a Sturm-Liouville singular operator)for
non-periodic boundary conditions.

6.2 Classification of Pseudospectral Methods

In this section we review the generalities on pseudospectral methods in a quite general frame-
work postponing the discussion on specific methods and function spaces to Section ?? and a
more detailed discussion on their well posedness and behaviour to Section ??.
In the sequel we will deal with linear problems of the following type{

Lu = f, in Ω

Bu = 0, on ∂Ω
, (6.1)

where Ω ⊂ R is a domain, L is a linear partial differential operator and B is a boundary
operator (as for instance the trace operator on ∂Ω or the trace of normal derivatives on ∂Ω).
We work on a Hilbert space H of function defined on Ω but in general L may be defined only
on a dense subset D(L) ⊂ H, also we will consider the (possibly affine) subspace DB(L) of H
where the boundary condition Bu = 0 is satisfied in the appropriate sense; hence

L : DB(L) ⊂ H → H.
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The mild formulation of the problem (6.1) is then

find u ∈ DB(L) : (Lu, v)H = F (v) := (f, v)H ∀v ∈ H.

More in general, one considers the associated weak formulation

a (u, v) = (u, f) , ∀v ∈ D̃(a),

where a bilinear form a on a (possibly larger than DB(L)) (linear or affine) subspace D̃(a) of
H is introduced starting by L and performing integration by parts.
To illustrate this standard procedure we consider two model problems: the Poisson Equation
with Dirichlet or Neumann boundary conditions in the unit ball B := {x ∈ RN : |x| < 1},
note that the unit normal on ∂B is x.{

∆u = f , in B

u(x) = 0 ,∀x ∈ ∂B
. (6.2)

{
∆u = f , in B

x · ∇u(x) = 0 ,∀x ∈ ∂B
. (6.3)

For the first integrating by parts we obtain

−
∫

Ω

∇u(x) · ∇φ(x)dm(x) +

∫
∂Ω

x · ∇u(x)φ(x)dσ(x) =

∫
Ω

f(x)φ(x)dm(x), ∀φ ∈ C∞c (Ω).

Now by the assumption on the support of φ the boundary integral vanishes and we get

−
∫

Ω

∇u(x) · ∇φ(x)dm(x) =

∫
Ω

f(x)φ(x)dm(x), ∀φ ∈ C∞c (Ω).

Notice that the domains of both the bilinear form of the left hand side and the linear form on
the right side of this equation can be extended to the whole H1

0 (Ω); indeed we take D̃(a) :=
C∞c (Ω), note that the closure of such a space in H1(Ω) is precisely H1

0 (Ω). This justifies the
following definition of weak solution of the problem (6.2) u ∈ H1

0 (Ω) is a weak solution of
problem (6.2) if

−
∫

Ω

∇u(x) · ∇φ(x)dm(x) =

∫
Ω

f(x)φ(x)dm(x), ∀φ ∈ H1
0 (Ω). (6.4)

In contrast, for the Neumann problem the boundary condition is encoded in the equation,
not in the space; this is a standard way of treating non-homogeneous conditions. After an
integration by parts, the boundary integral term vanishes not only for φ ∈ C∞c (Ω), it vanishes
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for any φ ∈ C1(Ω). Thus we set D̃(a) := C1(Ω), which is dense in H1(Ω). The weak solution
of problem (6.3) is then any u ∈ H1(Ω) such that

−
∫

Ω

∇u(x) · ∇φ(x)dm(x) =

∫
Ω

f(x)φ(x)dm(x), ∀φ ∈ H1(Ω). (6.5)

The spectral approximation of problem (6.1) can be split in three families, namely

• Galerkin

• Tau

• Collocation (pseudospectral)

where only the first arises (at least historically and for second order equations) from the weak
formulation, while the remaining two from the mild one. However, one may think to this three
families of methods as a different consequences of the technique of weighted residual : starting
by an equation (e.g. the mild or the weak formulation of the equation) one approximately
solves it in a finite dimensional subspace VN imposing the (weighted) residual LuN − f to be
orthogonal to each function ψ ∈ VN (or another subspace WN).
In the Galerkin Method we search uN ∈ VN such that

a (uN , v) = F (v), ∀v ∈ VN , (6.6)

here {VN} is a dense nested sequence of subspace of D̃(a) ∩ Z(B), i.e., such that Bv = 0
∀v ∈ VN .
Some variants are available to this scheme: in Petrov-Galerkin method one requires the con-
dition (6.6) ∀v ∈ WN instead of ∀v ∈ VN , i.e. the test functions space WN and the trial
functions space VN do not necessarily coincide. Instead, in the Galerkin method with numer-
ical integration (G-NI, for short) the functional F is replaced by an approximate version FN
given by certain quadrature formulas.
In the Tau Method we consider an orthogonal basis {φk} of H (thus not a priori satisfying
the boundary conditions Bφk = 0) consisting of smooth functions (thus elements of D(L))
and set VN := Span (φ1, . . . , φN) , then we search for uN :=

∑N
k=1 ckφk such that{

(LuN , φk) = (f, φk) , ∀k ∈ IN
BuN = 0

, (6.7)

where IN ⊂ {1, . . . , N} is chosen in a way that makes the above system uniquely solvable.
Finally we introduce the collocation method (PS). Here one requires the approximate
solution uN to satisfy{

LuN(xi) = f(xi), ∀i ∈ IN
BuN(xi) = 0, ∀i ∈ JN .

, (6.8)
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One can regard PS methods as a particular instance of spectral one since they can be derived
starting by the weighted residual and choosing as test ”functions” the Dirac delta functions
centred at the collocation points. Note that

〈LuN , δxi〉 = LuN(xi) = f(xi) = 〈f, δxi〉.

In contrast, most authors use a dedicated terminology for this method to underline a remark-
able practical difference they have with respect to the spectral methods. When considering
a spectral method (both for steady state or evolution problems) we solve equations in the
spectral variables/space ck to determine the solution; instead, when considering a PS method,
we solve equations with respect to the physical variable/space φk(xi).

6.3 Some Classical Example

To illustrate the construction of the methods we present some classical easy examples taken
from [19] and [5].

6.3.1 Galerkin Method and its Variants

Let us take in account the linear elliptic partial differential operator

Lu := −au′′ + bu′ + cu (6.9)

and, given a periodic function f ∈ L2[0, 2π], solve the problem Lu = f by a pure Galerkin
method.
We define uN as the truncated Fourier expansion uN(x) :=

∑N
k=−N ûke

ikx and we compute the

residual RN(x) := LuN − f =
∑N

k=−N ûkLeikx − f . The Galerkin method is implemented by
solving the equations

(
RN , e

ijx
)
L2[0,2π]

=
N∑

k=−N

ûk
(
Leikx, eijx

)
L2[0,2π]

−
(
f, eijx

)
L2[0,2π]

= 0, ∀j = −N, . . . , N.

Due to orthogonality and the fact that Leikx = (ak2 + ibk + c)eikx, the above equations turns
in

ûk(ak
2 + ibk + c) = 2πf̂k, ∀k = −N, . . . , N.

Note that actually the computation is even more efficient: since we are assuming u to be a
real functions, we need to compute ûk only for k = 0, 1, . . . , N then we can use the relation
û−k = ûk.
It is also worth to notice that, due to assumed periodicity we treated the above problem
without tacking into account any boundary condition; more rigoroursly, when we choose as
trial and as test function space the space of Fourier characters we are implicitly solving the
problem (6.9) complemented by periodic boundary conditions.
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When we introduced the Galerkin method we claimed that it generally arises from the weak
formulation of the differential problem; this is not in contrast with the above computations.
Indeed we could start by the weak formulation (integrate by parts twice the first member of
L and just once the second, then cancel boundary terms thanks to periodicity)

−a
(
u, φ′′j

)
L2[0,2π]

+ b
(
u, φ′j

)
L2[0,2π]

+ (u, φj)L2[0,2π] = (f, φj)L2[0,2π] , ∀j = −N, . . . , N

and this would lead to the same system of equations above due to the differential properties
of φks.
To illustrate the Galerkin method with numerical integration we introduce the following
advection diffusion reaction equation complemented by Dirichlet boundary condition at −1
and mixed Robin condition at 1.

d
dx

(
−ν du

dx
+ βu

)
+ γu = f , in ]− 1, 1[

u(−1) = 0,

−ν du(1)
dx

+ βu(1) = g

. (6.10)

Since we are dealing with non periodic boundary conditions we choose polynomials as dense
subspace of the domain of the differential operator, more precisely we set as basis of such
a space the Legendre orthogonal polynomials {Lk}, i.e. orthogonal polynomials in [−1, 1]
with respect to Lebesgue measure normalized to get Lk(1) = 1; such polynomials arise as
eigenfunctions of the singular Sturm Liouville operator d

dx
((1− x2)v′) + k(k + 1)v = 0.

Recall that the N − 1 zeros {x1, x2, . . . , xN−1} of L′N , complemented by the extremal points
x0 = −1 and x1 = 1, form the so called Gauss-Lobatto-Legendre nodes of degree N , that are
the support of a high (polynomial) precision quadrature formula∫ 1

−1

p(x) ∼
N∑
j=0

p(xj)wj, (6.11)

where equality holds for any p polynomial of degree at most 2N + 1.
To implement a ”pure” Galerkin method with numerical integration we should proceed as
follows.

• We enforce the homogeneous boundary condition u(−1) = 0 in a strong sense.

Using the symmetry of the Legendre basis Lk(−x) = (−1)kLk(x), we get Lk(−1) = (−1)k

and thus p(−1) =
∑N−1

k=0 (−1)kck(p). The boundary condition at −1 can be written
〈ck, zN〉 = 0, where we set zN := ((−1)k)k=0,1,...,N−1.

We can compute the subspace VN of PN−1 satisfying this condition. To solve this problem
and simultaneously compute an orthogonal basis we can use the Gram Schmidt procedure
or the QR algorithm, ending up with a new basis {φk}k=0,...,N−1 of PN−1 such that the
subspace spanned by (φ1, . . . , φN−1) enjoys the homogeneous boundary condition and φks
are orthogonal. This task and its possible generalization will be treated more rigorously
and more in detail in Section ??.
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• Starting by the remarkable differential properties (see Subsection 7.2) of the Legendre
polynomials one can obtain

x2 − 1

k
L′k+1(x) = (2k + 1)xLk(x)− kLk−1(x)

and expressing the term (x2 − 1) by means of L0, L1(x), L2(x) we derive the coefficients
of each L′j with respect to the basis {Lk}. Then, using the same change of basis that
lead from {Lk} to {φk}, we deduce the coefficients of each φ′j with respect to the basis
{φk}. We can arrange such coefficients Di,j := 〈φ′i, φj〉 in the differential matrix D, so

that d
dx

∑N−1
k=1 ckφk =

∑N−1
j=0 Dckφj.

• We consider the mild formulation of the problem: find uN =
∑N−1

k=1 ckφk such that∫ 1

−1

d

dx

(
−ν d

dx
uN(x) + βuN(x)

)
v(x) + dx =

∫ 1

−1

(f(x)− γuN(x))v(x)dx, ∀v ∈ VN .

Then we perform an integration by parts and we impose the condition for v = φ1, . . . , φN
getting

−
∫ 1

−1

(ν
d

dx
uN(x)− βuN(x))φ′j(x) + [(−ν d

dx
uN(x) + βuN(x))φj]

1
−1

=

∫ 1

−1

(f(x)− γuN(x))v(x)dx,∀j = 1, 2, . . . , N − 1

Using the non-homogeneous boundary condition the above equation reduces to

−
∫ 1

−1

(ν
d

dx
uN(x)− βuN(x))φ′j(x) = g +

∫ 1

−1

(f(x)− γ, uN(x))v(x)dx

∀j = 1, 2, . . . , N − 1

Let us rewrite this last equation using Linear Algebra

〈(−νD + βIN−1)c, D:,j〉 = g − γcj + bj , bj :=

∫ 1

−1

fφjdx

∀j = 1, 2, . . . , N − 1,

where IN−1 denotes the identity matrix, c := (c1, . . . , cN−1), D:,j is the jth column of D
and 〈·, ·〉 is the standard RN−1 duality.

• Here appears the numerical integration. We choose to approximate all the above
integrals bjs by the quadrature rule (6.11). Thus the final formulation of the problem
becomes

〈(−νD + βIN)c,D:,j〉 = g − γcj + bj , bj :=
N∑
h=1

f(xh)φj(xh)whdx

∀j = 1, 2, . . . , N.
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6.3.2 Collocation Method

We want to illustrate that Collocation (PS) method may arise as a variation on Galerkin
Method with NI. We consider the same problem (??) above, but we allow the coefficients ν, β
and γ to depend on x.
Starting by the Gauss-Lobatto-Legendre nodes we can form the fundamental Lagrange inter-
polating polynomials, i.e., polynomials having degree at most N and satisfying `k(xj) = δk−j,
they can be understood as discrete delta functions. Using the differential and recursive prop-
erties of Legendre polynomials and the nodes set we are considering, it is possible to prove
the following formula

`k(x) =
1− x2

N(N − 1)(xk − x)

L′N(x)

LN(x)
.

We would like to take as trial and test functions the whole set {`k}, but since `0(−1) = 1 we
drop it from the basis in order to satisfy the boundary condition u(−1) = 0.
To define a weak formulation of the problem is convenient to introduce the flux operator
F [u](x) := −ν(x) d

dx
u(x) + βu(x), we impose the mild formulation and then we integrate by

parts using the boundary conditions.∫ 1

−1

d

dx
F [u]`jdx+ γ

∫ 1

−1

u`jdx =

∫ 1

−1

f`jdx, ∀j = 1, . . . , N

−
∫ 1

−1

F [u]
d

dx
`jdx+ γ

∫ 1

−1

u`jdx =

∫ 1

−1

f`jdx, ∀j = 1, . . . , N

so we obtain (substituting u by uN)∫ 1

−1

νu′N`
′
jdx− β

∫ 1

−1

uN`
′
jdx+ γ

∫ 1

−1

uN`j = . . .

=

∫ 1

−1

f`jdx+ gδj−N , ∀j = 1, 2, . . . , N.

Finally we use the numerical integration (6.11) to approximate each integral obtaining the
following system of equations.

N∑
i=0

[(
ν
duN
dx

d`j
dx

)
(xi)−

(
βuN

d`j
dx

)
(xi) + (γuN`j)(xi)

]
wi =

N∑
i=0

(f`j)(xi)wi + gδN−j, ∀j = 1, . . . , N.

(6.12)

Taking in account that uN(x) =
∑N

i=1 `i(x)ci(u) =
∑N

i=1 `i(x)u(xi) and that this implies
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u′N(x) =
∑N

i=1 `
′
i(x)ci(u), the system of equations (6.12) may be written in the matrix form

Kc = b, c := (c1, . . . , cN), b := (b1, . . . , bN),

Kj,l :=
N∑
i=0

[(
ν
d`l
dx

d`j
dx

)
(xi)

]
wi −

(
β
d`j
dx

)
(xl) + γ(xj)wjδ|j−l|

bj := f(xj)wj + gδN−j.

Let us remark that the combination of the choice of the Lagrange basis (approximated delta
functions) and numerical integration leads to a system of linear equation in the variables
u(xi), as we announced for collocation methods. To better interpret this let us introduce the
numerical flux FN(x) :=

∑N
i=0 `i(x)Fu(xi), that is the interpolation of the flux.

Now we observe that the left side of equation (6.12) can be rewritten as

−
N∑
i=0

(
FN d`j

dx

)
(xi)wi +

N∑
i=0

(γuN`j)(xi)wi. (6.13)

Note that the first term is a quadrature rule of precision 2N + 1 applied to a polynomial of
degree at most 2N − 2, thus it is an exact integral. We perform integration by parts and we
use the boundary conditions to obtain an new formula for the expression in (6.13).

N∑
i=0

(
d

dx
FN`j

)
(xi)wi −

(
FN d`j

dx

)
(1) +

(
FN d`j

dx

)
(−1) +

N∑
i=0

(γuN`j)(xi)wi

=
N∑
i=0

(
d

dx
FN`j

)
(xi)wi −

(
FN d`j

dx

)
(1) +

N∑
i=0

(γuN`j)(xi)wi

When we substitute this last expression to the left hand side of (6.12), using the approximate
delta function property of the Lagrange basis we simply get(

dFN

dx
+ γuN − f

)
(xj) = 0, ∀j = 1, 2, . . . , N − 1

this is precisely a collocation method for the interpolated flux.

6.3.3 Tau Method

Lastly we illustrate the Tau Method when applied to the Poisson equation (6.2) with Dirichlet
boundary condition on Q := [−1, 1]2,{

∆u = f , in Q

u(x) = 0 ,∀x ∈ ∂Q
. (6.14)
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We pick as basis the tensor product space of polynomials VN := PN ⊗ PN with the tensor
product basis

φk,l(x, y) := cos(k arccos(x)) cos(l arccos(y)), k, l = 0, 1, . . . , N.

Note that this basis does not preserve the boundary condition, indeed we enforce them in a
weak form by choosing an additional set of test functions. Namely we set

ψk(x) := cos(k arccos(x))

and impose
uN :=

∑N
k,l=0 ck,lφk,l(x, y),∫

Q
∇uN · ∇φk,l dx dy =

∫
Q
fφk,l dx dy, ∀k, l = 0, 1, . . . , N − 2∫ 1

−1
uN(x, 1)ψj(x) dx =

∫ 1

−1
uN(x,−1)ψj(x) dx = 0, ∀j = 0, 1, . . . , N∫ 1

−1
uN(1, y)ψj(y) dy =

∫ 1

−1
uN(−1, y)ψj(y) dy = 0, ∀j = 0, 1, . . . , N

(6.15)

We stress that, despite the number of equations appearing in (6.15) is (N − 1)2 + 4(N + 1) =
(N + 1)2 + 4 = dimVN + 4, four of such conditions are linear dependent on the other and
may be drop out. This phenomena is due to the enforcement of boundary conditions on the
corners: each of them is counted twice.
The system (6.15) can be simplified to a system of linear equation with respect to the vari-
ables ck,l using the Chebyshev differentiation matrix DN = [〈φk,l, φm,n〉] that derives from the
relation

φ′k(x) =

[(k−1)/2]∑
j=0

2k

ηk−1−2j

φk−1−2j(x), where ηm :=

{
2, m = 0

1, otherwise
. (6.16)

Then the orthogonality of the basis lead to a linear system. Note that one needs to compute
(analytically, if possible) the right hand side terms

∫
Q
fφk,l dx dy.

6.3.4 Evolution Problems: an example

6.4 Stability Consistency and Convergence of Spectral Methods

We go back to the general linear problem{
Lu = f, in Ω

Bu = 0, on ∂Ω
, (6.17)

for f ∈ H and a bounded (sufficiently smooth) open set Ω ⊂ Rd.
Our aim is to analyse the behaviour of the methods we proposed above and furnish sufficient
conditions for their convergence.
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6.4.1 Analysis of the Galerkin Method

In this subsection we will assume that there exists an Hilbert space E (usually called energy
space) such that E is dense in H and a positive finite constant C such that

‖u‖H ≤ C‖u‖E , ∀u ∈ E .

Also we will deal with a sequence of finite dimensional subspaces VN of the set DB(L).
The celebrated Lax-Richtmyer Equivalence Theorem states that

• A consistent scheme is convergent if and only if it is stable.

In our framework consistency reads as follows: there exists a projection operator ΠN :
DB(L)→ VN such that, at least for a dense subspace of DB(L), we have

‖u− ΠNu‖E → 0, as N →∞. (6.18)

While stability is given by continuous dependence on data, more precisely we require a con-
stant M (not depending on N) to exist such that

‖uN‖E ≤M‖f‖H. (6.19)

Theorem 6.1 (Convergence of Galerkin Method). Assume that {VN} is a dense (w.r.t. the
‖ · ‖E norm) sequence of subspace of DB(L) ⊂ E ⊂ H, moreover the following two hypothesis
hold true.

i) (Coercivity.) There exists a positive finite constant α (not depending on N) such that

α‖u‖E ≤ (Lu, u)H , ∀u ∈ VN . (6.20)

ii) (Continuity.) There exists a positive finite constant M (not depending on N) such that

| (Lu, v)H | ≤M‖u‖E‖v‖E , ∀u, v ∈ VN . (6.21)

Then the Galerkin method based on VN is convergent, i.e., denoting by uN the approximate
solution, we have

‖u− uN‖H → 0, as N →∞.

Proof. The combination of (6.20) and the equation itself leads to stability of the Galerkin
approximation scheme. Precisely, we have

‖uN‖2
E ≤

(LuN , uN)H
α

=
1

α
‖f‖H‖uN‖H ≤

C

α
‖f‖H‖uN‖E .

155



On the other hand the density assumption on the subspaces VN gives us the consistency of
the method. Indeed one can set

ΠN :DB(L) −→ VN

u 7−→ ũN : ‖u− ũN‖E = inf
v∈VN
‖u− v‖E ,

that is the (best approximation) orthogonal projection onto VN with respect to the E norm.
By this choice of ΠN , consistency is precisely the density assumption.
Since by the hypothesis (6.21) the bi-linear operator L is continuous with respect to the ‖ · ‖E
we could apply the Lax-Richtmeyer Equivalence Theorem to get ‖u − uN‖E → 0; note that
this convergence is stronger than the convergence in H.

Remark 6.1 (Cea’s Lemma). It is probably more instructive to perform the explicit computa-
tions leading to the convergence result instead of relying on the Equivalence Theorem.
First define rN := uN − ΠNu, note that, using the property of uN , for any v ∈ VN we have

(LrN , v)H = (LuN , v)H − (LΠNu, v)H = (Lu, v)H − (LΠNu, v)H = (L(u− ΠNu), v)H ,

thus, taking v := rN and applying both continuity and coercivity, we get

α‖rN‖2
E ≤ | (LrN , rN)H | = | (L(u− ΠNu), rN)H | ≤Mα‖rN‖Eα‖u− ΠNu‖E .

Finally, we use triangle inequality

‖u− uN‖E ≤ ‖u− ΠNu‖E + ‖uN − ΠNu‖E ≤
(

1 +
M

α

)
‖u− ΠNu‖E → 0.

This last inequality makes Theorem 6.1 even more precise: the error of the Galerkin Method
is of the same order of the best approximation error with respect to the norm used in providing
the stability. This result is known as Cea’s Lemma.

Remark 6.2. The assumption (6.20) on the coercivity of L is not adapted to all type of
problems -indeed this assumption is modelled on uniform elliptic operators- and may be replaced
in the statement of Theorem 6.1 by other assumptions (leading to an equivalent conclusion)
as for instance the inf sup condition. The reader is invited to compare Theorem 6.1 with ??.

In order to illustrate the convergence of Galerin method, let us go back to the Poisson
Equation (6.2) with Dirichlet boundary condition{

∆u = f , in Q

u(x) = 0 ,∀x ∈ ∂Q
, (6.22)
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where Q :=]− 1, 1[2.
In this setting we pick H := L2(Q), E := H1

0 (Q) and consider the weak formulation of this
problem{

a (uN , v) = (f, V )L2 , for any v ∈ H1
0 (Q)

u ∈ H1
0 (Q) ,

, (6.23)

where a
L2 (uN , v) :=

∫
Q
∇uN · ∇v dx dy.

We choose, VN := {p ∈ PN ×PN , p|∂Q = 0} and we choose as a basis of VN the tensor product
basis generated by elements of the type φk(x)φj(y), where

φk(x) :=

{
L0(x)− Lk(x), k even

L1(x)− Lk(x), otherwise

and Lk denotes the Legendre polynomial of degree k.
Now we start to check the assumptions of Theorem 6.1. Stability follows by the famous Poincar
inequality (we can pick 1 as coercivity constant)

‖uN‖2
H1

0
= (∇uN ,∇uN)L2 = a (uN , uN) .

Similarly the continuity of the bilinear form easily follows from the fact that a (·, ·) is the inner
product of H1

0 .
On the other hand we consider the consistency, so we need to show the denseness of VN in
H1

0 , indeed we introduce a more precise result (without proof) that will be useful to estimate
precisely the rate of convergence.
First, let us introduce the following family of seminorms

|u|Hm,N :=

 m∑
k=min(m,N+1)

d∑
i

‖∂kxiu‖L2

1/2

.

The following inequality, which we will refer to as approximation inequality, is of fundamental
importance to our aims.

‖u− ΠNu‖Hk ≤ CΩ,k,mN
k−m|u|Hm,N , (6.24)

where ΠN is the best approximation projector onto PN ∩ {f : f |∂Q = 0} with respect to the
H1

0 (Q) norm.
Now we want to estimate the error en := u− un, by the Cea’s Lemma (see Remark 6.1) and
the approximation inequality (6.24) it follows immediately that

‖en‖H1
0
≤ 2‖u−ΠNu‖H1

0
≤ 2CΩ,1,0N

k|u|H0,N = 2CΩ,1,0N‖u‖L2 ≤ 2CΩ,k,mN‖f‖L2 . (6.25)
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Here the very last inequality follows by the stability.
We want to show that the so called elliptic regularity or the Moser trick allows to show that
the convergence of the function (no weak derivatives are consider) uN to u is, in an L2 sense,
faster than this rate. To this aim we consider the dual problem{

∆φ = eN , in Q

φ(x) = 0 ,∀x ∈ ∂Q
. (6.26)

Together with its weak formulation{
a (φ, v) = (f, v)L2 , for any v ∈ H1

0 (Q)

φ ∈ H1
0 (Q) ,

. (6.27)

Now the elliptic regularity theory furnish the estimate

‖φ‖H2 ≤ C‖eN‖L2 ,

the solution of this problem is indeed more regular.
On the other hand, integration by parts and the fact that φ solves the above problem lead to

‖φ‖2
H2 ≤ C‖eN‖2

L2 = Ca (φ, eN) .

Now notice that a (eN ,ΠNφ) = 0 since both a (uN ,ΠNφ) and a (u,ΠNφ) are equal to (f,ΠNφ)L2 .
Thus we get

‖eN‖2
L2 ≤ Ca (φ− ΠNφ, eN) ≤ C‖eN‖H1‖φ− ΠNφ‖H2 .

Finally we use the approximation inequality (6.24) to get

‖eN‖2
L2

≤Ca (φ− ΠNφ, eN) ≤ C‖eN‖H1CΩ,k,m‖φ− Πφ‖H2

≤C‖eN‖H1CΩ,2,0N
2‖φ‖H2 ≤ CN2‖eN‖2

H1

The combination with equation (??) leads to

‖eN‖L2 ≤ C ′N‖eN‖H1 ≤ C ′′N2‖f‖L2 .

6.4.2 Analysis of the Collocation Method

Throughout this subsubsection we assume Ω to be the interior of a parallepiped Ω = [a1, b1]×
· · · × [ad, bd] and denote by PN(Ω) the set of tensor product of polynomials having degree at
most N in each variable (separately).
We assume also that for any N > 0 a Gauss-Radau quadrature formula∫

Ω

f(x)w(x) dx(1) . . . dx(d) ≈
N∑
j1=0

N∑
j2=0

· · ·
N∑
jd=0

f(xj1 , . . . , xjd)w̃j1 . . . w̃jd
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is given with precision 2N − 1, i.e. the above integral is computed exactly if f ∈ P 2N−1.
Let us introduce the discrete scalar product

(u, v)N :=
N∑
j1=0

N∑
j2=0

· · ·
N∑
jd=0

u(xj1 , . . . , xjd)v(xj1 , . . . , xjd)w̃j1 . . . w̃jd , ∀u, v ∈ PN

and denote by ‖u‖N the corresponding norm (notice that ‖u‖N implies that u is the zero
polynomial since the set of considered points is unisolvent of degree N , thus ‖ · ‖N is a norm).
It is convenient to rearrange the indexes of our nodes of integration, precisely we enumerate
them in a way such that xk = (xj1 , . . . , xjd) ∈ ∂Ω for any k = 1, . . .Mb(N) while xk ∈ Ω for
k = Mb(N) + 1, . . . , (N + 1)d. Also we rearrange the weights setting

wk := w̃j1 · · · · · w̃jd , where xk = (xj1 , . . . , xjd).

We define the trial function space

VN := {u ∈ PN(Ω) : B(u)(xk) = 0,∀k = 1, . . .Mb(N)},

and the test function space

WN := {v ∈ PN(Ω) : v(xk) = 0,∀k = 1, . . .Mb(N)}.

We introduce the operator

QN : C0(Ω) −→ WN

f 7−→ QNv :

{
QNv(xk) = 0, ∀k ∈ {1, . . . ,Mb(N)}
QNv(xk) = v(xk) ∀k ∈ {Mb(N) + 1, . . . , (N + 1)d}

,

and the operator

LN : PN(Ω) −→ PN

u 7−→ LNu

that approximates L by interpolating varying coefficients and taking the derivation by inter-
polation.
Also we need the existence of a projection operator acting on a dense subspace F of DB(L),

ΠN : F −→ VN ∩DB(L)

u 7−→ ΠNu, (Πnu ≡ u, if u ∈ VN ∩DB(L)).

The collocation method approximate solution is defined by solving

Find uN ∈ VN such that

(LNu, `k)N = (f, `k)N ,∀k = Mb(N) + 1, . . . , (N + 1)2,
(6.28)
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where `k(x) is the Lagrange basis w.r.t. the nodes xk. Notice that the set {`k, k = Mb(N) +
1, . . . , (N + 1)2} generates WN , indeed it is an orthogonal basis of WN with respect to the
scalar product (·, ·)N .
Due to the definition of the operator QN we can rewrite equation (6.28) as

Find uN ∈ VN such that

QN(LNu− f) = 0, in WN ,
(6.29)

that is QN(LNu− f)(xk) = 0,∀k = Mb(N) + 1, . . . , (N + 1)2.

Proposition 6.2 (Stability of Collocation Methods). Assume that the collocation scheme is
coercive, i.e., there exists a strictly positive constant α such that for any N > 0 we have

α‖u‖2
E ≤ (QNLNu, u)N , ∀u ∈ VN (6.30)

and that there exists a positive finite constant N such that

‖u‖N := (u, u)
1/2
N ≤ C‖u‖E . (6.31)

Then the collocation scheme is stable in the sense that for each N we have

‖uN‖E ≤
C

α
‖f‖N (6.32)

Proof. Simply notice that

‖uN‖2
E ≤

1

α
(QNLNu, u)N =

1

α
(QNf, u)N ≤

1

α
‖QNf‖N‖uN‖N ≤

C

α
‖QNf‖N‖uN‖E ,

we used that QN is the projection operator upon WN

To explain where the consistency requirements arise from we show first how to compute an
error bound for collocation schemes. In the following computation we assume the bilinear
form (L·, ·)E to be continuous with norm 0 < M < ∞. Let us set rN := ΠNu− uN , we have,
∀v ∈ VN

(QNLNrN , v)N = (QNLNuN , v)N − (QNLNΠNu, v)N
= (QNLNuN , v)N − (Lu, v)E + (Lu, v)E − (QNLNΠNu, v)N
= (QNLNuN , v)N − (f, v)E + (L(u− ΠNu), v)E + (LΠNu, v)E − (QNLNΠNu, v)N .

Now we pick v := rN and we get

α‖rN‖2
E ≤ (QNLNrN , rN)N

= (QNLNuN , rN)N − (f, rN)E + (L(u− ΠNu), rN)E + (LΠNu, rN)E − (QNLNΠNu, rN)N
≤| (QNLNuN , rN)N − (f, rN)E |+M‖u− uN‖E‖rN‖E + | (LΠNu, rN)E − (QNLNΠNu, rN)N |.
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Finally we use triangle inequality to get

‖u− uN‖E ≤
(

1 +
M

α

)
‖u− ΠN‖E+

| (LΠNu, rN)E − (QNLNΠNu, rN)N |
α‖rN‖E

+
| (QNf, rN)N − (f, rN)E |

α‖rN‖E

(6.33)

Therefore we formulate the following consistency requirements: we say that the collocation
method is consistent if the following holds true.

‖u− ΠNu‖E → 0, as N →∞,∀u ∈ F . (6.34)

sup
v∈VN

| (QNf, v)N − (f, v)E |
α‖v‖E

→ 0, as N →∞,∀u ∈ F . (6.35)

sup
v∈VN

| (LΠNu, v)E − (QNLNΠNu, v)N |
α‖v‖E

→ 0, as N →∞, ∀u ∈ F . (6.36)

It follows by (6.33) that if the above consistency conditions are satisfied the method is con-
vergent.

6.4.3 Analysis of the Tau Method

Let us start for simplicity assuming that d = 1, i.e. Ω =] − 1, 1[, possibly applying an affine
transformation.
We consider a weight function w : Ω→ R and form a basis of orthogonal polynomials φk such
that φk has degree k and

∫ 1

−1
φk(x)φj(x)w(x)dx = ckδj,k.

Let m be the number of imposed boundary conditions (typically we will deal with m = 2) we
set WN := Span (φ0, φ1, . . . , φN−m) and VN := {u ∈ Span (φ0, . . . , φN) ,Bu(±1) = 0}. Then
the Tau Method can be written as

Find uN ∈ VN such that

(Lu, v) = (f, v) ,∀v ∈ WN .
(6.37)

Things becomes a little more complicated when d > 1. We introduce the lattice of indexes

I
(N)
int := {k = (k1, . . . , kd)|0 ≤ kj ≤ N −mj, j = 1, 2, . . . , d} ⊂ I(N) = {0, 1, . . . , N}d,

where mj is the number of the boundary conditions imposed on the couple of faces S±i :=

{xi = ±1}; also we set I
(N)
b := I(N) \ I(N)

int .
Accordingly we denote by φk(x) the functions

φk1(x1) · · · · · φkd(xd), where x := (x1, x2, . . . , xd).
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We set VN := Span
(
φk(x),k ∈ I(N)

)
, while the test function space isWN := Span

(
φk(x),k ∈ I(N)

int

)
.

The differential equation is then expressed as

Find uN ∈ VN such that

(Lu, φk) = (f, φk) ,∀k ∈ I(N)
int .

(6.38)

In order to impose the boundary conditions we consider the scalar product on ∂Ω defined as
follows. First we denote by wi(x) :=

∏d
i 6=j=1 w(xj) then set

(u, v)∂Ω :=
d∑
i=1

(∫
S+
i

u(x)v(x)wi(x)dσ(x) +

∫
S−i

u(x)v(x)wi(x)dσ(x)

)
.

Boundary conditions are imposed as

(Bu, φk)∂Ω = 0, ∀k ∈ I(N)
b . (6.39)

Thus the multidimensional Tau Method reads as

Find uN ∈ VN such that

(Lu, φk) = (f, φk) ,∀k ∈ I(N)
int

(Bu, φk)∂Ω = 0, ∀k ∈ I(N)
b .

(6.40)

Since in this setting the test and trial function spaces are different, to prove the convergence
we rely on a inf-sup type condition instead of a coercivity one.

Proposition 6.3. Let E ⊂ H be a Hilbert space such that DB(L) is dense in E. Let F
be a dense Hilbert subspace of H with continuous embedding (i.e., ∃0 < C < ∞ such that
‖v‖H ≤ C‖v‖F).
Assume that there exists a finite strictly positive constant α such that

α ≤ inf
u∈VN

sup
v∈WN

(Lu, v)

‖u‖W‖v‖V
. (6.41)

Then the Tau method is stable in the sense that

‖uN‖W ≤
C

α
‖f‖. (6.42)

The proof is very similar to the Galerkin coercive case.
As in the Galerkin case if we furthermore assume the consistence of the method we get the
convergence (and indeed a version of the Cea’s Lemma) for free. For instance one can assume
that there exists a dense subspace W1 of DB(L) and a sequence of projection operator (best
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W norm projection in general works) ΠN : H → VN such that limN ‖u−ΠNu‖W → 0 for any
u ∈ W1.
Let us consider the stability and convergence analysis of a concrete example of Tau Method
for solving the following problem{

Lu := − d2

dx2
u+ u = f in ]− 1, 1[

d
dx
u(−1) = d

dx
u(1) = 0

. (6.43)

We set w(x) := 1
π
√

1−x2 and consider the related Chebyshev orthogonal polynomials Tk(x).
The test and trial spaces are defined as

VN := {u(x) :=
N∑
k=0

ck(u)Tk(x),
d

dx
u(−1) =

d

dx
u(1) = 0},

WN := {v(x) :=
N−2∑
k=0

ck(v)Tk(x)}.

We want to show that the inf sup condition (6.41) holds true. To this aim, introduce the L2
w

projection operator ΠN−2 and note that

ΠN−2Lu = Lu− (u− ΠN−2u).

Now observe that (Parseval Identity)

sup
v∈WN

(Lu, v)

‖v‖V
=

(Lu,ΠN−2Lu)

‖ΠN−2Lu‖V
=

(Lu,Lu− (u− ΠN−2u))

‖ΠN−2Lu‖V

=
1

‖ΠN−2Lu‖V
(
‖Lu‖2 − (Lu, u− ΠN−2u)

)
≥‖Lu‖

2 − ‖Lu‖‖u− ΠN−2u‖
‖ΠN−2Lu‖V

Now we use the a priori estimate ‖u‖H2
w
≤ C‖Lu‖ and the approximation inequality ‖u −

ΠN−2u‖ ≤ C ′N−2‖u‖H2
w

to get

sup
v∈WN

(Lu, v)

‖v‖V
≥ 1

2CC ′
‖u‖H2

w
, ∀N >

√
2CC ′.
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7 Tools from Approximation Theory

7.1 Elements of Fourier Analysis

7.1.1 Fourier Series

We denote by {φk}k∈Z the set of Fourier Characters φk := eikx. The basis of Fourier Analysis
are contained in the following theorem.

Theorem 7.1. Fundamental Th. of Fourier Analysis. The sequence {φk} is a complete
orthogonal system in L2(T). The analysis operator (transform)

L2(T) −→ `2(C)

u 7→ û = {ûk}k∈Z := { 1

2π

∫ 2π

0

u(x)φk(x)}k∈Z

is an isometry of L2(T) onto `2(C), i.e.,

‖u‖L2(T) = ‖û‖`2(C) (Parseval Identity).

The inverse of this application is the synthesis operator

û 7→
∞∑

k=−∞

ûkφk,

where the convergence of the series has to be intended in the L2(T) sense.

Remark 7.1. The analysis makes sense even if u is merely L1 instead of L2, it turns out to
be a norm decreasing operator of L1 on `∞.

Definition 7.2. Truncated series. We denote by SNu(x) the truncated Fourier series up to
|k| ≤ N, i.e.,

SNu(x) :=
N∑

k=−N

ûkφk ∈ PN(T).

Here PN(T) := Span (φk, |k| ≤ N) is the space of trig-polynomials of degree at most N.

Remark 7.2. Note that by the Pyhagorean Theorem SNu(x) is the best L2(T) approximation
to u belonging to PN(T).
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Due to Theorem 7.1 SNu → u in L2(T). A antural question one may ask is weather the
convergence holds point-wise or even, possibly under additional conditions, uniformly. We
postpone this for a while. For the moment we just cite that Kolmogorov invented a technique
to build examples of bounded continuous functions on T such that their Fourier series is almost
everywhere divergent!
The other natural question to ask (especially to our aims, cfr. Ch.. . . ) is how farst the Fourier
coefficients of a differentiable function u decrease, in other words, how fast is the Fourier
truncated series convergent.

Proposition 7.3. Coefficients decay.

1. Let u ∈ Cm([0, 2π]) with u(j) periodic for any 0 ≤ j ≤ m− 1, then

ûk = O(k−m).

2. Let u ∈ C∞([0, 2π]) be periodic together with all its derivatives, then

ûk = O(k−M), ∀M ∈ N, (spectral convergence).

To prove the above result one needs simply to notice that

2πûk =

∫ 2π

0

u(x)φk(x) dx = −(ik)−1(u(0+)−u(2π−))+(ik)−1

∫ 2π

0

u′(x)φk(x) dx = (ik)−1û′ . . .

Remark 7.3. It is quite relevant to note that the same argument above can be used to prove
that, for a differentiable periodic function u with periodic derivative

(SNu)′(x) =
N∑

k=−N

ûkφ
′
k(x) =

N∑
k=−N

ikûkφk(x) =
N∑

k=−N

û′φk(x) = SN(u′)(x).

That is, projection commutes with differentiation.
We can note also that the Fourier basis offers the easiest example of differentiation matrix.
The function: the function SNu is represented by its coefficients û|N , the coefficients û′|N
of SN(u′) can be determined by left multiplying the vector û by the differentiation matrix
DN = diag(−iN,−i(N − 1), . . . , 0, i, . . . , iN), that is

û′|N = DN û|N .

We now take into account the issue of point-wise convergence of Fourier series. As a matter
of fact, the fundamental results and techniques in this very classical area of Analysis are very
difficult and the (possibly multi-dimensional) modern Fourier transform and analysis heavily
rely on these results.
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We recall that a function f :]0, 2π[→ R is said to be of bounded variation, f ∈ BV (]0, 2π[) in
symbols, if

sup
0<x1<...···<xM<2π

M−1∑
i=1

|f(xi+1)− f(xi)| <∞.

By definition this is the variation (i.e., the length) of the graph of f. This definition is usually
founded in the context of Riemann integration, the equivalent definition in the context of
Lebesgue integration is f ∈ L1(]0, 2π[) such that

sup
ψ∈C1c (]0,2π[),|ψ|≤1

∫
ψ′f dx <∞.

Probably the most useful results regarding the point-wise convergence of Fourier series are the
ones we collect in the following theorem.

Theorem 7.4. Point-wise and uniform convergence.

• Let f ∈ BV (]0, 2π[) be periodic, then SNf(x)→ 1
2
(f(x+) + f(x−)).

• If f is furthermore continuous, the the convergence is uniform in x.

In the case of jump discontinuities, note that this is compatible with the assumption f ∈
BV (]0, 2π[) the sequence of Fourier truncates exhibits a oscillatory behaviour near the discon-
tinuity, whose frequency increases as N →∞. This issue is termed the Gibbs Phenomenon.

Let us consider the subspace Hm
per(0, 2π) of Hm(0, 2π) consisting of square integrable functions

that are periodic together with their first m− 1 weak derivatives and have square integrable
m derivatives. We use the classical Sobolev norm

‖u‖Hm(0,2π) :=

(
m∑
l=0

∫ 2π

0

|u(l)(x)|2 dx

)1/2

.

We can show, just working with smooth approximations to u, that for any u ∈ Hm
per(0, 2π) we

have u(1) =
∑∞

k=−∞ ikûkφk, therefore, using Parseval Identity, the Sobolev norm ‖u‖Hm(0,2π)

is indeed equivalent to the norm

‖u‖m :=

(
∞∑

k=−∞

(1 + |k|2m)|ûk|2
)1/2

.

Even much more can be said: we can characterize the space Hm
per(0, 2π) as the set of periodic

square integrable functions for which we can differentiate the Fourier series term-wise.
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Proposition 7.5. Truncation Error. Let u ∈ Hm
per(0, 2π), then the following error bounds

holds.

‖u− SNu‖L2 ≤ CN−m‖u(m)‖L2 ≤ CN−m‖u‖Hm . (7.1)

‖u− SNu‖Hl ≤ CN l−m‖u(m)‖L2 ≤ CN l−m‖u‖Hm , ∀l = 0, 1, . . . ,m− 1. (7.2)

Proof.

1√
2π
‖u− SNu‖L2 =

∑
|k|>N

|ûk|2
1/2

=

∑
|k|>N

1

|k|2m
|k|2m|ûk|2

1/2

≤N−m
∑
|k|>N

|k|2m|ûk|2
1/2

≤ CN−m‖u(m)‖L2 ≤ CN−m‖u‖Hm .

7.1.2 Fourier Interpolation

7.2 Polynomial Approximation, Interpolation and Quadrature
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8 A pseudo-spectral solution to the Stokes Problem

8.1 The Method

8.1.1 Generalities

We are interested in setting up a pseudo-spectral method for the following Stokes Problem
∆u− σu−∇p = f in Ω

∇ · u = 0 in Ω

u|Γ = uΓ on Γ := ∂Ω

, (S-I)

where σ ≥ 0, Ω ⊂ R2 is a bounded domain, u : Ω̄→ R2 is the velocity field and p : Ω̄→ R is
the pressure.

It is worth to stress that this particular instance of the Stokes Problem may arise when one
deals with a Stokes evolution equation and uses numerical integration: a problem like (S-I)
must be solved aty each time step.

First we observe that ∇·∆u = ∆∇·u = ∆(0) = 0 thus the first two equations in (S-I) implies
∆p = ∇·f . Also we introduce the Helmotz operator Hσ := ∆−σId of parameter σ so we can
re-write (S-I) in the form

Hσu−∇p = f in Ω

∆p = ∇ · f in Ω

u|Γ = uΓ on Γ := ∂Ω

∇ · u = 0 on Γ

, (S-II)

It is rather important to note that (at least at this stage, i.e., no discretization procedure
performed so far) the latter formulation implies the first one. For (let us reason in term of
classical solutions for simplicity), set Q := ∇·û, where û solves (S-II). It follows that Q solves{

∆Q = σQ in Ω

Q = 0 on Γ
,

thus ∇ · û = Q ≡ 0 in Ω, that is û is divergence-free and thus solves (S-I) as well.

8.1.2 Rough Chebyshev-Chebyshev discretization

We focus on the very simple case of Ω =] − 1, 1[2. This leads to use Chebyshev polynomials
as basis functions. Let us denote by PN2 the space of tensor product polynomials of degree at
most N in each of the two variables separately.
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We will use the Chebyshev-Lobatto quadrature nodes

xi = cos

(
πi

N

)
, i = 0, 1, . . . , N

yj = cos

(
πj

N

)
, j = 0, 1, . . . , N

and define the following computational domains

ΩN := {(xi, yj) : (i, j) ∈ {1, 2, . . . , N − 1} × {1, 2, . . . , N − 1}},
ΩN := {(xi, yj) : (i, j) ∈ {0, 1, . . . , N} × {0, 1, . . . , N}},

Ω
int

N := {(xi, yj) ∈ ΩN : (i, j) /∈ {0, N} × {0, N}},
ΓN := {(xi, yj) : (i, j) ∈ {0, N} × {0, 1, . . . , N} ∪ {0, 1, . . . , N} × {0, N}},
Γint
N := {(xi, yj) ∈ ΓN : (i, j) /∈ {0, N} × {0, N}},

corresponding respectively to

• interior nodes

• all nodes

• all nodes but the corners

• boundary nodes

• all boundary nodes but the corners.

The resulting discretized problem becomes: find uN ∈ PN2 × PN2 and pN ∈ PN2 such that,
denoting by fN inPN2 × PN2 the interpolating polynomial of f on ΩN , we have


Hσu

N −∇pN = fN in ΩN

∆pN = ∇ · fN in ΩN

uN |Γ = uΓ on Γint
N

∇ · uN = 0 on Γint
N

, (S-CC)

We stress that, as usual in PS methods, the derivatives are taken in the interpolation sense,
that is one first interpolates than takes derivatives.
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8.1.3 A variational crime

In this discretization procedure a remarkable phenomena comes into play: even if any classical
solution u of (S-II) is a divergence free vector field, its approximation uN does not need to
fulfil the same property. This is a consequence of imposing the differential equations in the
strong sense point-wise. Remember that, when showing that a solution to (S-II) needs to be
divergence free, we used that the laplacian of an identically vanishing function is zero. Here
equations are satisfied only on a finite sets of points so we can’t perform the same reasoning:
in general ∇ · uN 6≡ 0 on Ω.

Recall that the divergence free condition represent the conservation of the mass, hence trying
to preserve such a condition seems very reasonable. More concretely, as often occurs, the lack
of physical meaning of the discretized equation (S-CC) boils down to numerical instability in
solving the steady state problem (S-I) and even worse behaviour of the final numerical solution
if (S-I) arises as a intermediate problem in the time integration of an evolution equation. We
need to overcome this problem.

We introduce a numerical flux BN ∈ PN2 ×PN2 such that its normal component at the boundary
is precisely the normal component of the residual, more precisely we replace the problem
(S-CC) with



Hσu
N −∇pN = fN in ΩN

∆pN = ∇ · fN −∇ ·BN in ΩN

BN = 0 in ΩN

uN |Γ = uΓ on Γint
N

BN · ν = (Hσu
N −∇pN − fN) · ν on Γint

N

. (S-CC’)

Here ν is the outer unit normal.

At this stage it is not clear why this variational crime should enforce the divergence free
condition on uN , indeed this will surface out in a while when presenting the Influence Matrix
Method that we use to solve (S-CC’).

8.1.4 Influence Matrix

We split (S-CC’) in two sub problems. More precisely, we assume that

uN = ũN + ūN , pN = p̃N + p̄N , BN = B̃
N

+ B̄
N
,

where each˜and¯function solves respectively the˜or the¯problem below.

171



{
∆p̃N = −∇fN in ΩN

p̃N = 0 on Γint
N

, (˜problem I){
Hσũ

N = fN +∇p̃N in ΩN

ũN = uΓ on Γint
N

, (˜problem II)
B̃
N

= 0 in ΩN

B̃
N · ν = (Hσũ

N − fN −∇pN) · ν on Γint
N

B̃
N · τ = 0 on Γint

N

, (˜problem III)

Here τ is the unit tangent.

∆p̄N = −∇(B̃
N

+ B̄
N

) in ΩN

Hσū
N = ∇p̄N in ΩN

ūN = 0 on Γint
N

∇ · ūN = −∇ · ũN on Γint
N

B̄
N · ν = (Hσū

N −∇p̄N)ν on Γint
N

(¯problem)

First, notice that the ˜ problems I, II and III can be considered separately in this order.
We compute p̃N solving (˜problem I), then we compute the gradient of p̃N , we plug it in

(˜problem II) and we compute ũN by solving it; finally B̃
N ·ν is computed and stored. Recall

that the solution to our final problem consists in finding uN and pN , while the numerical flux
is an additional variable whose tangential or normal values we are going to compute only when
these are required in order to compute uN or pN .
Now we consider (¯problem). We use a quite unusual method,termed superposition method.

In this technique each function φ of the set {p̄N , ūN , RN := B̄
N · ν,B} is expanded in the

form

φ =
2L∑
l=1

ξlφl, L := CardΓint
N = 2(2N − 2), (8.1)

but the coefficients are fixed: what varies are the φl themselves.
More precisely, we consider two families of problems, each of them of L problems.
For l = 1, 2, . . . , L solve{

∆p̄Nl = 0 in ΩN

p̄Nl (ηm) = δl,m ηm ∈ Γint
N

(8.2){
∆ūNl = ∇p̄Nl in ΩN

ūNl = 0 on Γint
N

(8.3)

BN
l = 0 in ΩN (8.4)
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For l = L+ 1, L+ 2, . . . , 2L solve

{
BN
l = 0 in ΩN

BN
l · ν(ηm) = δL+m,l ηm ∈ Γint

N

(8.5){
∆p̄Nl = −∇BN

l · in ΩN

p̄Nl = 0 in ΩN

(8.6){
Hσū

N = ∇p̄N in ΩN

ūN = 0 on Γint
N

(8.7)

Again, one first solves (8.2)to determine p̄Nl , l ∈ {1, . . . , L}, computes the gradient of the
pressure and solves (8.3) by plugging it into the equation. This leads to compute ūlN , l ∈
{1, . . . , L}, then we compute its laplacian and finally the values RN

l = (∆ūlN − ∇p̄Nl ) · ν at
the nodes in Γint

N .

Now consider the case l > L. It is worth to stress that (8.5) fully characterize the values of
∇ ·BN

l at points of ΩN , this is a consequence of the tensor product construction of both the
domain and the functions space we took into account: notice that the normal derivatives are
polynomial of only one variable. In order to get convinced is convenient to draw a picture of
Ω3 (the easiest example), pick any l,m and write the values of BN

l given by (8.5) and try to
compute ∇ ·BN

l (x2, y2) (the only node in Ω3).

After determining the value of ∇ ·BN
l at ΩN by solving (8.5), we plug it into (8.6), we solve

it and we compute p̄Nl and RN
l (ηm) for l = L+ 1, L+ 2, . . . , 2L, m = 1, . . . , L.

Finally we compute the gradient of p̄Nl , we plug it in (8.7) and we solve it to determine ūNl
and RN

l for l > L.

Now note that any set of functions {p̄N , ūN ,RN ,B} defined by a superposition of the form
(8.1), that is for any ξ ∈ R2L, satisfy the first three equations in (¯problem); we want to
determine ξ by imposing the remaining two equations.

{∑2L
l=1 ξl∇ · ūNl (ηm) = −∇ · ũN(ηm) ηm ∈ Γint

N∑2L
l=1 ξl(B

N
l · ν −RN

l )(ηm) = (B̃
N · ν)(ηm) ηm ∈ Γint

N

(8.8)
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This system may be written in the form INξ = c, where the matrix

IN :=



∇ · ūN1 (η1) ∇ · ūN2 (η1) . . . . . . . . . ∇ · ūN2L(η1)
∇ · ūN1 (η2) ∇ · ūN2 (η2) . . . . . . . . . ∇ · ūN2L(η2)

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
∇ · ūN1 (ηL) ∇ · ūN2 (ηL) . . . . . . . . . ∇ · ūN2L(ηL)

(BN
1 · ν −RN

1 )(η1) (BN
2 · ν −RN

2 )(η1) . . . . . . . . . (BN
2L · ν −RN

2L)(η1)
(BN

1 · ν −RN
1 )(η2) (BN

2 · ν −RN
2 )(η2) . . . . . . . . . (BN

2L · ν −RN
2L)(η2)

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
(BN

1 · ν −RN
1 )(ηL) (BN

2 · ν −RN
2 )(ηL) . . . . . . . . . (BN

2L · ν −RN
2L)(ηL)


is the Influence Matrix and

c =



−∇ · ũN(η1)
−∇ · ũN(η2)

...
−∇ · ũN(ηL)

(B̃
N · ν)(η1)

(B̃
N · ν)(ηL)

...

(B̃
N · ν)(ηL)


.

Unfortunately a problem may arise when solving the influence matrix system: in general
the matrix IN may be not invertible; experimentally four zero singular values appear. Two
situations may occur: if c lies in the image of IN the system has solution(s), otherwise there
exists no solution.

We present two methods to cope with this issue, the firs one, due to . . . , is a spectral regular-
izing technique that leads to recover a true solution if there exists one. The second is a mixed
approach between exact solution and least squares approximation.

Regularization method. We compute the factorization

IN = UTΣV, Σ = Iσ, σ = (σ1, . . . , σ2L−4, 0, 0, 0, 0)T

and we replace IN by the regularized matrix

INλ := UTΣλV, Σλ = Iσλ, σ = (σ1, . . . , σ2L−4, λ, λ, λ, λ)T .

Then we solve the system INλ ξ = c. Note that, if a ”true” solution ξ̂ of the original system

exists, then ξ̂ is a solution of the regularized system as well.
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Mixed approach. We divide the influence matrix IN ∈ M2L×2L(R) in two sub-matrices
A,B ∈ML×L(R)

IN =

[
A
B

]
,

A :=


∇ · ūN1 (η1) ∇ · ūN2 (η1) . . . . . . . . . ∇ · ūN2L(η1)
∇ · ūN1 (η2) ∇ · ūN2 (η2) . . . . . . . . . ∇ · ūN2L(η2)

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
∇ · ūN1 (ηL) ∇ · ūN2 (ηL) . . . . . . . . . ∇ · ūN2L(ηL)



B :=


(BN

1 · ν −RN
1 )(η1) (BN

2 · ν −RN
2 )(η1) . . . . . . . . . (BN

2L · ν −RN
2L)(η1)

(BN
1 · ν −RN

1 )(η2) (BN
2 · ν −RN

2 )(η2) . . . . . . . . . (BN
2L · ν −RN

2L)(η2)
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

(BN
1 · ν −RN

1 )(ηL) (BN
2 · ν −RN

2 )(ηL) . . . . . . . . . (BN
2L · ν −RN

2L)(ηL)


We solve exactly the problem Aξ = (c1, . . . , cL)T . To do that we use the QR factorization

A = RTQT =

[
RT

1

O

]
QT .

We get
ξ1 := (ξ1, . . . , ξM)T = QR−T1 c1, M := Rank A.

Then we split the matrix B as B = [B1, B2] with B1 ∈ ML,M(R) thus the condition Bξ = c2

is equivalent to
B1ξ

1 +B2ξ
2 = c2 ⇐⇒ B2ξ

2 = c2 −B1ξ
1.

This last equation is finally solved with respect to the variable ξ2 in the least squares sense.

8.2 Implementation
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A Finite difference discretization of the convection dif-

fusion equation.

The finite difference method for the discretization of the constant coefficient convection-
diffusion equation in one dimension proceeds as follows. Consider a uniform partition of
the interval I = [0, 1] into n subintervals of length h and whose endpoints are given by xi
xi+1 = xi + h, i = 0, 1, . . . , n+ 1. Let ui be the numerical approximation of the solution u at
point xi: ui ≈ u(xi). Using Taylor series expansions we have:

ui+1 = ui + hu′i +
h2

2
u′′i + . . . (A.1)

ui−1 = ui − hu′i +
h2

2
u′′i + . . . . (A.2)

Summing the two equations and neglecting the higher order terms we recover the following
approximation of the second derivative at the i-th node:

u′′i ≈
−ui−1 + 2ui − ui+1

h2
.

Subtracting the equations (A.1) and (A.2) we obtain a centered approximation for the the
first derivative in xi:

u′i ≈
ui+1 − ui−1

2h
,

Using these to approximation in the differential equation (2.50) we obtain the difference equa-
tion:

D

h2
(−ui−1 + 2ui − ui+1) +

b

2h
(ui+1 − ui−1) = 0,

that can be written for all i = 1, . . . , n. This equation coincides with (2.51) and is an approx-
imation of order of accuracy O (()h2).
The first derivative can be expressed using a first order approximation that uses the forward
(eq. (A.1)) or the backward (eq. (A.2)) Taylor expansions. We then obtain:

D

h2
(−ui−1 + 2ui − ui+1) +

b

2h
(ui+1 − ui−1) = 0,

D

h2
(−ui−1 + 2ui − ui+1) +

b

2h
(ui+1 − ui−1) = 0.
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B Finite difference operators

We introduce in this section the classical difference operators that are often used in developing
finite difference approximations to differential equations. The reader is referred to general
books on numerical analysis, such as Stoer and Bulirsch [25] for more details.
Let {un} be a sequence of real numbers. The shift, forward difference, and backward difference
operators E, ∇, ∆ are defined as:

E : un 7→ un+1; E−1 : un+1 7→ un; ∆ : un 7→ (un+1−ujndx); ∇ : un 7→ (un−un−1).

Noting that the inverse of the shift operator exists, we can write immediately the relationships:

∆ = E− I = E∇; ∇ = I − E−1; E = (I −∇)−1;

Hence, we can write, for any positive integer m:

∆mun = (E− I)mun =
m∑
j=0

(−1)j
(
m

j

)
un+m−j

∇mun = (I − E−1)mun =
m∑
j=0

(−1)j
(
m

j

)
un−j

Assuming that all derivatives of u exists in the appropriate sense, we can write formally

Esun = u(tn + sh) = un + sh
dun
dt

+
1

2
(sh)2d

2un
dt2

+ . . .

=
∞∑
k=0

1

k!
(sh)k

dk

dtk
un =

∞∑
k=0

1

k!

(
sh

d

dt

)k
un

= e(sh d
dt

)kun.
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C Numerical solution of Ordinary Differential Equa-

tions

In this chapter we address the problem of solving systems of ODEs (Ordinary Differential
Equations). It is an elementary introduction to a vast subject matter that has reached nowa-
days a mature development. These notes are a personal re-elaboration and synthesis of the
material presented in [23]. For more details we refer to classical textbooks such as [12, 13, 14, 1].

C.1 The Cauchy problem

The Cauchy problem looks for the solution y(t) of a first-order differential equation in which
the derivative of y(t) is equal to a given function f(t, y(t)). Moreover, the function y(t) satisfies
an initial conditiony(t0) = y0. Consider the following:

Problem C.1 (Cauchy Problem). Find y(t) ∈ C1(I), I = [t0, T ] (0 < T <∞), such that:

y′(t) = f(t, y(t)) t ∈ I,
(C.1)

y(t0) = y0, Initial Condition (IC)

where f(t, y) : S → R, S = I × (−∞,+∞).

The solution this problem is a function y(t) : I → R which can be written in the following
integral form:

y(t) = y0 +

∫ t

t0

f (τ, y(τ)) dτ. (C.2)

We can give the following “local” interpretation of the Cauchy problem. Let δ and η two
positive real numbers, and let t0 ∈ I and y0 ∈ R. We form the intervals K = [t0 − δ, t0 + δ]
and J = [y0 − η, y0 + η], and we let I × J ⊆ Σ ⊂ R. We assume that the function f : Σ→ R
is Lipschitz9 in Σ, i.e., there exist a constant L > 0 such that

| f(t, y1)− f(t, y2) | ≤ L| y1 − y2 |
9A Lipschitz function f is continuous in J , but not all continuous functions are Lipschitz. For example,

g(y) = | y |1/3 is continuous but not Lipschitz in [−1, 1], as

g(y)− g(x)

y − x
∼ x−2/3 as x approaches 0.

In particular, a function g ∈ C1(J) and such that a constant K > 0 exists so that | g′(y) | ≤ K for all y ∈ J is
Lipschitz in J . In fact:

| g(y1)− g(y2) | = | g′(ξ)(y1 − y2) | ≤ K| y1 − y2 |.

The function g(y) = | y | /∈ C1(I) but is evidently Lipschitz in I.
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Figure C.1: Geometric interpretation of y := φ(t) solution of the Cauchy problem (C.1).

for every t ∈ I and for every y1 and y2 ∈ J .
Let M = maxt∈I,y∈J | f(t, y) | and let Mδ < η. Then there exists one and only one φ : K → R
such that:

1. φ(t) and φ′(t) are continuous for all t in I;

2. φ(t0) = y0;

3. φ(t) is in J for all t ∈ I;

4. φ′(t) = f(t, φ(t)) for all t is in= I.

The function φ(t) is called solution or integral of the Cauchy problem (C.1), and hence y(t) :=
φ(t). An intuitive geometric picture is given in Figure C.1. For each point t ∈ I, the derivative
of φ(t) is equal to the value assumed by f at that point.
This discussion can be made formal by recalling (without proof) Picard’s theorem, which can
be stated in all generality for systems of ODEs given by Problem C.1, when y : I 7→ Rm,
f : I × Rm 7→ Rm, and ‖·‖ is a vector norm, e.g., the Euclidean norm:

Theorem C.1 (Picard). Let f(·, ·) be a continuous function of (t, y) in the region U containing
the parallelepiped:

R = {(t, y) : t0 ≤ t ≤ T, ‖y − y0‖ ≤ Y } ,

and Lipschitz in the variable y, i.e., for any (t, y1) ∈ R and (t, y2) ∈ R:

‖f(t, y1)− f(t, y2)‖ ≤ L ‖y1 − y2‖ . (C.3)
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Assume the constant M = max[‖f(t, y)‖ : (t, y) ∈ R] is such that:

M(T − t0) ≤ Y.

Then there exists a unique function t 7→ y(t), continuous and differentiable in I that satis-
fies (C.1) and solves Problem C.1.

In the case of systems, a sufficient condition for which f is Lipschitz is to require that the
Jacobian matrix of f has bounded norm:∥∥∥∥∂f∂y

∥∥∥∥ ≤ L (C.4)

where the matrix norm must be compatible with the employed vector norm. The converse is
not true. For example, the function y 7→ f(y) = (| y1 |, . . . , | ym |)T with t0 = 0 and y0 = 0
satisfies (C.3) but not (C.4) since f is not differentiable at y = 0.
Similarly to what we have done for PDEs in Definition 1.1, we can give a definition of well-
posedness for a Cauchy problem:

Definition C.2 (Well posedness). The Cauchy Problem (C.1) is well posed if its solution
exists, it is unique, and it depends continuously on the initial data and on the flux function f .

We can render the statement of continuous dependence upon the data more precise by looking
at the stability of the Cauchy problem:

Definition C.3 (Stable problem (Lyapunov)). The Cauchy problem (C.1) is stable if for each
perturbation (δ0, δ(t)), such that δ(t) is a continuous function in I, and | δ0 | < ε and | δ(t) | < ε
for each t ∈ I, the solution z(t) of the perturbed problem:

z′(t) = f(t, z(t)) + δ(t) t ∈ I,
(C.5)

z(t0) = y0 + δ0,

is such that:

‖y(t)− z(t)‖ < Kε ∀t ∈ I,

with the constant K depends only on the problem data (t0, y0, and f) and not on ε.

Given the Cauchy problem (C.1), if f(t, y) is continuous and uniformly Lipschitz in y for t ∈ I
and y ∈ R, then the Cauchy problem is well posed and we have the following:

Theorem C.4. Under the hypotheses of Picards theorem, the (unique) solution y to the
Cauchy problem C.1 is stable in I (assuming −∞ < t0 < T < +∞).
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Proof. We sketch the proof for y ∈ R. If w(t) = y(t) − z(t) then its derivative is w′(t) =
f(t, y(t))− f(t, z(t)) + δ(t) and we have:

w(t) = w(0) +

∫ t

t0

w′(τ) dτ = δ0 +

∫ t

t0

[f(τ, y(τ))− f(τ, z(τ))] dτ +

∫ t

t0

δ(τ) dτ

Applying Gronwall lemma10, we obtain:

| w(t) | ≤ (1 + | t− t0 |) ε+ L

∫ t

t0

| w(τ) | dτ

≤ ε (1 + | t− t0 |) eL| t− t0 |, ∀t ∈ I
≤ Cε, C = (1 +Mt)e

MtL, Mt = max
t
| t− t0 |.

Example C.2.

y′(t) = −y(t) + t t ∈ I = [0, 1],

y(t0) =1,

with solution given by: y(t) = 2e−t + t− 1.

z′(t) = −z(t) + t+ δ t ∈ I = [0, 1],

z(t0) = 1 + δ0,

whose solution is: z(t) = (2 + δ0 − δ)e−t + t+ δ − 1. Then:

| y(t)− z(t) | = | (δ − δ0)e−t − δ | ≤ | δ |(1− e−t) + | δ0 |e−t ≤ ε,

for every t ∈ I.

C.2 One step linear methods

Explicit solutions to the Cauchy (C.1) are available only for specific f(t, y). In general, nu-
merical solutions are sought. Thus, we want to find an algorithm that approximates y(t) for

10Gronwall lemma is important and can be stated as follows:

Lemma C.5 (Gronwall). Let g(t) be an integrable non-negative function in I, and let ϕ(t) and ψ(t) be two
continuous functions in I, with ψ non-decreasing. If ϕ(t) satisfies:

ϕ(t) ≤ ψ(t) +

∫ t

t0

g(τ)ϕ(τ) dτ, ∀t ∈ I,

then:

ϕ(t) ≤ ψ(t)e

(∫ t
t0
g(τ) dτ

)
∀t ∈ I.
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Figure C.2: Discretization of the interval I = [t0, T ] in N subinterval of size h.

some discrete set tn ∈ I. To this aim, we discretize the interval I, i.e., we subdivide I in
subintervals of size h. The discretization is identified by the endpoints of the subintervals that
are denoted with tn = t0 + nh, j = 0, 1, . . . , N , with h = (T − t0)/N (see Figure C.2). We
denote with yn the numerical solution at step tn: yn ≈ y(tn). Thus, our numerical schemes
will approximate y(t) pointwise, i.e., they will look for yn, j = 1, . . . , N .

C.2.1 Forward (explicit) Euler method.

The Taylor expansion of y(t+ h) is

y(t+ h) = y(t) + hy′(t) +
1

2
h2y′′(t) +O

(
h3
)

Neglecting the second order terms we have the following approximation:

y′(t) ≈ y(t+ h)− y(t)

h
.

Thus we can write the original ODE at t = tn as:

y′(tn) = f (tn, y(tn)) ; y′(tn) ≈ y(tn+1)− y(tn)

h
,

to yield:

y(tn+1) ≈ y(tn) + hf (tn, y(tn)) .

Starting from the initial condition y(t0) = y0 we define the forward Euler method as:

yn+1 = yn + hf(tn, yn), n = 0, 1, . . . (C.6)

This scheme is also known as explicit Euler method, since the computation of yn requires only
the evaluation of the function f(t, y) at the previous point (tn−1, yn−1).
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Algorithm Forward Euler
Input: t0, y0, N , h;
for j = 0, 1, . . . , N − 1

1.tn = t0 + nh

2.fn = f(tn, yn)

3.yn+1 = yn + hfn

end for

Example C.3. Let us apply the Explicit Euler method above to the Cauchy problem defined
with f(t, y) = −y(t), t0 = 0, T = 1, and y0 = 1. The explicit solution is easily found by
separation of variables and is given by y(t) = e−t. Substituting f = −y in (C.6), we have:

yn+1 = (1− h)yn

Using an integration step h = 0.1, from which N = 10, we obtain the following table:

j yn y(tn)
0 1 1
0.1 0.9 0.904837418
0.2 0.81 0.818730753
0.3 0.729 0.740818221
0.4 0.6561 0.670320046
0.5 0.59049 0.60653066
0.6 0.531441 0.548811636
0.7 0.4782969 0.496585304
0.8 0.43046721 0.449328964
0.9 0.387420489 0.40656966
1.0 0.34867844 0.367879441
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We can see that the forward difference scheme produces a good approximation of the explicit
solution.

Example C.4. As second example, consider the Cauchy problem with f(t, y) = −5y(t),
t0 = 0, T = 3, and y0 = 1. The explicit solution is now y(t) = e−5t. Using Algorithm (C.6)
with f = −5y we obtain:

yn+1 = (1− 5h)yn.

Using h = 0.3 (N = 10) we have the following table:
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j yn y(tn)
0 1 1
0.3 -0.2 0.301194212
0.6 0.04 0.090717953
0.9 -0.008 0.027323722
1.2 0.0016 0.008229747
1.5 -0.00032 0.002478752
1.8 6.4E-05 0.000746586
2.1 -0.0000128 0.000224867
2.4 0.00000256 6.77287E-05
2.7 -5.12E-07 2.03995E-05
3 1.024E-07 6.14421E-06
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In this case the forward Euler scheme yields a numerical solution that oscillates, resulting in
a less accurate estimate of the explicit solution. In fact, in this case, the scheme is not stable,
although the original Cauchy problem is Lyapunov-stable. The experimental observation of
the results of this and the previous examples suggest that Forward Euler is stable under some
restricting conditions on the step h. This restriction can by found by analyzing the convergence
of the scheme, which will be done in the next section.

C.2.2 Backward (implicit) Euler method.

Writing the original ODE at t = tn+1 as:

y′(tn+1) = f(tn+1, y(tn+1)). (C.7)

we can use the Taylor expansion of y(tn) = y(tn+1 − h) to yield:

y(tn) = y(tn+1 − h) = y(tn+1)− hy′(tn+1) +
h2

2
y′′(tn+1) +O

(
h3
)
.

Again, neglecting O (h2) terms we can write:

y′(tn+1) ≈ y′n+1 =
yn+1 − yn

h
,

and, after substitution in (C.7), we obtain the Backward Euler (implicit) scheme:

yn+1 = yn + hf(tn+1, yn+1) j = 0, 1, . . . , N − 1. (C.8)

The scheme is termed implicit as the unknown, i.e., the value yn+1, appears in both left and
right hand sides of the equal sign and is contained as an argument of the function f(t, y),
which thus in general cannot be evaluated explicitly. In this case we would need to use a
Newton-Raphson like iteration to evaluate yn+1 at every step. We have then the following
algorithm:
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Algorithm Backward Euler
Input: t0, y0, N , h;
for j = 0, 1, . . . , N − 1

1.tn+1 = tn + h

2.Solve yn+1 − yn − hf(tn+1, yn+1) = 0

end for

We solve the same problems as before but using Backward Euler. Note that, since f(t, y) is
linear in y, the scheme is effectively explicit.

Example C.5. Case f(t, y) = −y(t), with t0 = 0, T = 1 and y0 = 1. Using f = −y in (C.8),
we have:

yn+1 =
1

1 + h
yn.

Let h = 0.1, from which N = 10. The solution is then given in the following table:

j yn y(tn)
0 1 1
0.1 0.909090909 0.904837418
0.2 0.826446281 0.818730753
0.3 0.751314801 0.740818221
0.4 0.683013455 0.670320046
0.5 0.620921323 0.60653066
0.6 0.56447393 0.548811636
0.7 0.513158118 0.496585304
0.8 0.46650738 0.449328964
0.9 0.424097618 0.40656966
1 0.385543289 0.367879441
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We can see that the Backward Euler approximation is similar to the Forward Euler numerical
solution, but it overestimates the real solution, contrary to the Explicit Euler case.

Example C.6. We try now the case f(t, y) = −5y(t), with t0 = 0, T = 3 and y0 = 1:

yn+1 =
1

1 + 5h
yn,

and using h = 0.3 (N = 10) we have:
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Figure C.3: Geometric interpretation of the Forward (left) and Backward (right) Euler
schemes for the differential equation y′ = −5y. The dotted and dashed-dotted lines represents
f(t, y) evaluated at n and n+ 1 for the Forward and Backward Euler schemes, respectively.

j yn y(tn)
0 1 1
0.3 0.4 0.22313016
0.6 0.16 0.049787068
0.9 0.064 0.011108997
1.2 0.0256 0.002478752
1.5 0.01024 0.000553084
1.8 0.004096 0.00012341
2.1 0.0016384 2.75364E-05
2.4 0.00065536 6.14421E-06
2.7 0.000262144 1.37096E-06
3 0.000104858 3.05902E-07
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In this case, Backward Euler produces estimates that are less accurate with respect to the pre-
vious case, but, contrary to the Forward Euler case, there are no oscillations. In fact, Backward
Euler has the same order of accuracy of Forward Euler and is always stable, independently of
the step size h.

Let us look at the geometrical interpretation of the Forward and Backward Euler schemes
reported in Figure C.3. Looking at the implicit method of eq. (C.8) we see that the point
(tn+1, yn+1) lies on the line with direction y′n+1 = (yn+1 − yn)/h = f(tn+1, yn+1) passing by
(tn, yn), while for the explicit scheme the line goes through the same point but has slope given
by y′n = (yn+1 − yn)/h = f(tn, yn). Thus, in the Backward Euler method the next point is
obtained using the slope evaluated at tn+1 given in this case by y′(t) = f(t, y) = −5y, which
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is decreasing with t (y(t) = e−5t), thus giving reason to the overestimation of the real solution
(Figure C.3, right). In the case of Forward Euler, similar considerations give reason to the
underestimation (Figure C.3, left).

C.2.3 Crank-Nicolson Method.

For both Euler schemes, we used a Taylor expansion and neglected all the terms of the order
O (h2). The Crank-Nicolson method tries to neglect terms of greater order. To do so, we see
that subtracting the two forward and backward Taylor series we can exploit cancellation of
terms. More precisely, we have:

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

h3

6
y′′′(tn) +O

(
h4
)

y(tn) = y(tn+1)− hy′(tn+1) +
h2

2
y′′(tn+1)− h3

6
y′′′(tn+1) +O

(
h4
)
,

from which we have immediately:

y′(tn+1) + y′(tn) ≈ y′n+1 + y′n =
yn+1 − yn

h
.

Writing eq. (C.1) as an average between times tn+1 and tn, we have the Crank-Nicolson scheme:

yn+1 = yn +
h

2
[f(tn+1, yn+1) + f(tn, yn)] . (C.9)

The method is clearly implicit, and we have the following algorithm:

Algorithm Crank-Nicolson
Input: t0, y0, N , h;
for j = 0, 1, . . . , N − 1

1.tn+1 = tn + h

2.fn = f(tn, yn) = 0

3.Solve yn+1 − yn − 0.5h [f(tn+1, yn+1) + fn] = 0

end for

We show now the same results as before obtained with the Crank-Nicolson scheme. We note
that, as occurred with Backward Euler, since f(t, y) is linear in y, so is in this case the overall
scheme.

Example C.7. Case of f(t, y) = −y(t), with t0 = 0, T = 1 and y0 = 1. Using f = −y
in (C.9), we have:

yn+1 =
2− h
2 + h

yn.

Let h = 0.1, from which N = 10. We obtain:
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j yn y(tn)
0 1 1
0.1 0.904761905 0.904837418
0.2 0.818594104 0.818730753
0.3 0.740632761 0.740818221
0.4 0.670096308 0.670320046
0.5 0.606277612 0.60653066
0.6 0.548536887 0.548811636
0.7 0.496295278 0.496585304
0.8 0.449029061 0.449328964
0.9 0.406264389 0.40656966
1 0.367572542 0.367879441
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The CN method gives approximations of the solution that are more accurate than both Euler
schemes. The reason is due to the fact that we have neglected terms in the Taylor expansions
that were of higher order with respect to those neglected for the Euler approaches.

Example C.8. Case f(t, y) = −5y(t), with t0 = 0, T = 3 and y0 = 1. Setting f = −5y
in (C.6), yields:

yn+1 =
2− 5h

2 + 5h
yn.

Using h = 0.3, from which N = 10, we have:

j yn y(tn)
0 1 1
0.3 0.217391304 0.22313016
0.6 0.047258979 0.049787068
0.9 0.010273691 0.011108997
1.2 0.002233411 0.002478752
1.5 0.000485524 0.000553084
1.8 0.000105549 0.00012341
2.1 2.29454E-05 2.75364E-05
2.4 4.98813E-06 6.14421E-06
2.7 1.08438E-06 1.37096E-06
3 2.35734E-07 3.05902E-07
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Also in this case the accuracy of Crank-Nicolson is better than the Euler Schemes, and there are
no oscillations, suggesting that it is stable. One may think, rightly, that it is the implicitness
of the formulation that makes the schemes unconditionally stable. We will see this more
precisely in the next sections.
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Remark C.9 (Derivation of the schemes from quadrature formulas). The derivation of the
studied one-step schemes can be effectively done from the point of view of integration, instead
of differentiation. Thus, we integrate the ODE between tn and tn+1, to obtain:

y(tn+1) = y(tn) +

∫ tn+1

tn

f(τ, y(τ)) dτ

Now, the integral on the right-hand-side can be approximated by a quadrature formula. The
Forward and Backward Euler schemes are easily obtained by using a quadrature formula based
on piecewise constant interpolation using information on the endpoints of the interval. Thus we
build rectangles that have a base of h = tn+1− tn a height of y(tn) and y(tn+1) for Forward and
Backward Euler, respectively. Crank-Nicolson method is obtained by means of the trapezoidal
rule. We have then:

y(tn+1) ≈ y(tn) + hf(tn, y(tn)),

y(tn+1) ≈ y(tn) + hf(tn+1, y(tn+1)),

y(tn+1) ≈ y(tn) +
h

2
[f(tn+1, y(tn+1)) + f(tn, y(tn))] ,

The scheme are readily obtained by using yn in place of y(tn).

C.2.4 Explicit Runge-Kutta methods

The numerical schemes presented in the previous sections are part of the more general Runge-
Kutta family of methods for the solution of ODEs of higher order. In the m-stage Runge-Kutta
method the numerical solution of the Cauchy problem can be written as:

yn+1 = yn + ω1Y
′

1 + ω2Y
′

2 + . . .+ ωmY
′
m, (C.10)

where Y ′1 , . . . , Y
′
m are defined from the general expression:

Y ′s = hf

(
t+ αs h, yj +

m−1∑
i=1

βs,iY
′
i

)
, s = 1, . . . ,m.

It is simple to show that the forward difference scheme is obtained with m = 1 and imposing
ω1 = 1, α1 = 0, and β1,1=0. In a similar way, the backward difference is obtained with ω1 = 1,
α1 = 1, and β1,1=1.

In the explicit Runge-Kutta methods the coefficients Y ′s can be derived explicitly and have
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the form:

Y ′1 = hf(tn, yn)

Y ′2 = hf(tn + α2h, yn + β2,1Y
′

1)

Y ′3 = hf(tn + α3h, yn + β3,1Y
′

1 + β3,2Y
′

2)

...

Y ′m = hf(tn + αmh, yn + βm,1Y
′

1 + βm,2Y
′

2 + . . .+ βm,m−1Y
′
m−1).

The coefficients w1, . . . , wm, α0, α1, . . . and β2,1, β3,1, β3,2, . . . are computed using the Taylor
series. In the following we derive the computation of these coefficients for m = 2:

yn+1 = yn + ω1Y
′

1 + ω2Y
′

2 . (C.11)

Let y(t) be the solution of the Cauchy problem. For the chain rule, the second derivative of
y(t) satisfies:

y′′(t) =
d

dt
[y′(t)] =

d

dt
[f(t, y(t)] =

∂f

∂t
(t, y(t)) +

∂f

∂y
(t, y(t))y′(t).

Thus, the Taylor series of y(tn + h) can be written as:

y(tn+h) = y(tn)+h f(tn, y(tn))+
1

2
h2

[
∂f

∂t
(tn, y(tn)) + f(tn, y(tn))

∂f

∂y
(tn, y(tn))

]
+R1, (C.12)

where R1 is the residual term. Now we write Y ′2 using the Taylor series of f in (tn, y(tn)):

Y ′2 = h

[
f(tn, y(tn)) + α2h

∂f

∂t
(tn, y(tn)) + β2,1Y

′
1

∂f

∂y
(tn, y(tn)) +R2

]
where R2 is the residual term, R2 = O (h2).
Eq.(C.11) becomes:

yn+1 = yn + (ω1 + ω2)hf(tn, yn)+ω2α2h
2∂f

∂t
(tn, yn) + ω2β2,1h

2∂f

∂y
(tn, yn) + ω2hR2. (C.13)

Imposing that (C.12) equals (C.13), we obtain the conditions for the parameters ω1, ω2, α2

and β2,1:
ω1 + ω2 = 1
α2ω2 = 1/2
β2,1ω2 = 1/2

(C.14)

Since this system has four unknowns and three equations, it admits infinite solutions. For
example:
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• Heun formula: ω1 = ω2 = 1/2, α2 = β2,1 = 1.

• Runge formula (RK2): ω1 = 0, ω2 = 1, α2 = β2,1 = 1/2.

The order of accuracy of the schemes with m = 2 can be derived as follows. Note that,
dividing (C.13) by h, the residual term is ω2R2, which is proportional to h2. Thus the schemes
with m = 2 are of the second order accuracy. We will see in the next section a more detailed
definition of order of accuracy.

Remark C.10. Heun and Runge formula are written explicitly as:

yn+1 = yn +
1

2
[h f(tn, yn) + f(tn + h, yn + h f(tn, yn))]

and

yn+1 = yn + h f

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
,

respectively. The former can be interpreted as an explicit version of Crank-Nicolson, where
we have resolved the implicitness deriving by the use of the trapezoidal rule by estimating yn+1

with one step of Forward Euler. Analogously, Runge’s scheme can be thought of as the use
of the mid-point quadrature rule (one-point Gaussian quadrature where the Gauss point is the
center of the integration interval) where yn+1/2 is again evaluated using Forward Euler with a
step-size h/2. Thus we have:

y∗n+1 = yn + h f(tn, yn)
Heun (C.15)

yn+1 = yn +
1

2
h
[
f(tn, yn) + f(tn + h, y∗n+1)

]

y∗n+1/2 = yn +
h

2
f(tn, yn)

Runge (C.16)

yn+1 = yn + h f

(
tn +

h

2
, y∗n+1/2

)

The Runge-Kutta scheme (RK4) is largely used. It is obtained with an analogous procedure,
but with m = 4 and ω1 = ω4 = 1/6, ω2 = ω3= 2/6:

yn+1 = yn +
1

6
Y ′1 +

2

6
Y ′2 +

2

6
Y ′3 +

1

6
Y ′4 , (C.17)

and the coefficients Y ′1 , Y ′2 , Y ′3 and Y ′4 are:
Y ′1 = h f(tn, yn)
Y ′2 = h f(tn + 1

2
h, yn + 1

2
Y ′1)

Y ′3 = h f(tn + 1
2
h, yn + 1

2
Y ′2)

Y ′4 = h f(tn + h, yn + Y ′3)

.
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The order of accuracy of RK4 is 4, equal to the number of stages.
It is intuitive to assume that the order of accuracy for a m-stage RK method is p = m. This is
true for m = 1, 2, 3, 4, not not so anymore for m ≥ 5. Runge-Kutta methods were extensively
analyzed by John Butcher, who demonstrated that the order of accuracy for RK methods
with m = 5, 6, 7, 8, 9 stages is p = 4, 5, 6, 6, 7, respectively, and for m ≥ 10 the highest order is
p ≤ m− 2. The suboptimality of high order RK methods leads to the question whether it is
possible to find efficient high-order methods.

C.2.5 Adams methods

An intuitive idea to extend RK methods comes from the reinterpretation of RK schemes as
quadrature rules. In fact, we can write:

y(tn+1) = y(tn) + h

∫ 1

0

y′(tn + αh) dα. (C.18)

Then we approximate y′(t) = f(t, y(t)) by quadrature formula with weights ωs and quadrature
nodes βs. We have:

yn+1 = yn + h
m∑
s=1

ωsY
′
s

Y ′s = f(tn + αsh, Ys)

where Ys ' y(tn+αsh). These intermediate values can be approximated with another quadra-
ture formula approximating the integral from tn to αsh;

Yi = yn + h
s∑
j=1

βijY
′
j , i = 1, . . . , s.

Starting from (C.18), Adams methods replace the integrand with the interpolating polynomial
πk(t) passing through points (tn−j, fn−j), j = 0, . . . , k, where we have simplified the writing
by setting fn = f(tn, yn). Using Newton interpolation formula with a constant stepsize h we
obtain readily:

yn+1 = yn + hfn +
k−1∑
i=1

γi∇ifn,

where we have denoted with ∇fn = (1− E)fn = fn − fn−1 the backward difference operator,
and ∇ifn = ∇i−1fn −∇i−1fn−1, defined in Section B. Note that the interpolating polynomial
is used in “extrapolation” mode, i.e., not with the interpolation interval. This is remedied by
adding the additional point (tn+1, y(tn+1)) and use a few iterations of a Picard iteration to
solve the nonlinearity.
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C.3 Errors and Convergence

In this section we want to study the convergence of the sequence of numerical approximates
yn towards the real solution y(tn). Thus, we define the error as the difference between the
numerical and real solutions, e(tn) = yn − y(tn), and say that convergence requires that the
error tends to zero as h −→ 0. From the experiences collected in the previous practical
examples, we can pose the following questions given a numerical scheme:

1. does the numerical solution tend to the real solution (i.e., the error tends to zero) as
h→ 0?

2. How fast does the error go to zero?

3. what is the maximum value of h that returns a numerical solution close in some sense
to the real solution up to a prescribed tolerance?

The error is defined for all tn ∈ I, we can ask for example that the infinity norm of the error
(the maximum absolute value) tend to zero. In this case we would have:

Definition C.6 (Convergence). A numerical scheme for the solution of the Cauchy prob-
lem (C.1) is convergent if:

lim
h→0

max
0≤j≤N

| yn − y(tn) | = 0

But we can use any equivalent functional norm:

lim
h→0
‖yh − y(t)‖ = 0

where yh = {y0, y1, . . . , yN}. observing that y ∈ C1(I), at least, we can use, for example, the
L2(I) norm given by:

‖g(t)‖ =

[∫
I

| g(t) |2 dt
] 1

2

C.3.1 Experimental convergence

Before discussing theoretical convergence, we look at it experimentally. We consider the
following (relative) error norm, which assumes the use of a constant integration step h =
tn+1 − tn:

eh,xx = ‖yh − y(t)‖ ≈

[
h
∑N=1

j=0 | yn − y(tn) |2
] 1

2

[
h
∑N=1

j=0 | y(tn) |2
] 1

2

,
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h eh,FE eh,BE eh,CN
eh,FE
eh−1,FE

eh,BE
eh−1,BE

eh,CN
eh−1,CN

0.2 5.75E-02 7.42E-02 2.62E-03 – – –
0.1 2.49E-02 3.62E-02 6.21E-04 2.31 2.05 4.23
0.05 1.16E-02 1.78E-02 1.51E-04 2.15 2.03 4.11
0.025 5.60E-03 8.28E-03 3.48E-05 2.07 2.15 4.33

Table C.1: Convergence of the methods Forward (FE) and Backward (BE) Euler and Crank-
Nicolson (CN) methods. The error norm and its ratio is shown for successively refined mesh
subdivisions h. The ratio between the error norms at consecutive refinements approaches 2 for
both Euler scheme and 4 for Crank-Nicolson, indicating linear (O (h)) and quadratic (O (h2)
convergence, respectively.

where xx = FE, BE, CN per Forward (Explicit) Euler, Backward (Implicit) Euler and
Crank-Nicolson. We compute this norm for different values of h, for example in a geometric
sequence h =0.2, 0.1, 0.05, 0.025. We obtain the following table:
Table C.1 shows the experimental results obtained on the test case of example C.3. From
the ratio between the error norms of two successively refined discretizations, we see that both
Euler schemes show first order convergence (O (h)) while Crank-Nicolson shows second order
convergence (O (h2)). We have learned by now that convergence rates typically depend on the
scheme and on the regularity of the real solution and we will need to justify theoretically the
experimental convergence rates.

C.3.2 Consistency and truncation error.

We observe first that, as expected, the experimental convergence rates follow the pattern of
the order of the terms that were neglected in the Taylor series expansion defining the different
methods. We say that the order convergence depends on the truncation error. However, we
need to distinguish between the truncation error, which occurs at each step, and its propa-
gation through the steps needed to evaluate the solution at a fixed time. More precisely, the
former is the error arising from a one-step calculation (from tn to tn+1), assuming that the
initial solution is exact (yn = y(tn)). The latter, is the propagation (or global) error arising
from the accumulation of the truncation errors at previous steps. Hence, we can write:

en+1 = y(tn+1)− yn+1 = y(tn+1)− y∗n+1 + y∗n+1 − yn+1 = τn+1 + εn+1

where y∗n+1 is the approximation calculated by the numerical scheme starting from the exact
solution y(tn). The accumulation (or propagation error) and the truncation error are embodied
by the concepts of stability and consistency, respectively. We analyze in this section the latter,
leaving the former for the next section.
Let us write the previous schemes in abstract form as (all the one-step methods can be written
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Figure C.4: Geometric exemplification of the truncation error τj+1(h) for Forward Euler
applied to example C.4.

as in the following):

yn+1 = yn + hΦ(tn, yn;h), 0 ≤ j ≤ N − 1, (C.19)

where the function Φ(·, ·;h) identifies the particular scheme11 Substituting in the previous
equation the real solution y(t) we obtain:

y(tn+1) = y(tn) + hΦ(tn, y(tn);h) + εn+1, (C.20)

where εn+1 is the residual at step n+ 1. We can rewrite this residual as:

εn+1 = hτn(h)

where τn+1(h) is the Truncation Error (TE), given formally by:

τn(h) =
y(tn+1)− y(tn)

h
− Φ(tn, y(tn);h). (C.21)

The maximum value of the TE is denoted by τ(h):

τ(h) = max
0≤n≤N−1

τn+1(h). (C.22)

11For example, Forward Euler is given by: Φ(tn, yn;h) = f(tn, yn).
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Assume that the function Φ is such that:

lim
h→0

Φ(tn, y(tn);h) = f(tn, y(tn)) j = 1, 2, . . . , N.

Recalling the expression of the Taylor expansion by which y(tn+1)− y(tn) = hy′(tn) + O(h2),
we see immediately that the previous equation implies that τn+1(h) → 0 for h that tends to
zero, from which we have immediately:

lim
h→0

τ(h) = 0,

which implies that the scheme (C.19) is consistent, in the general sense already specified in
Section 2.1.4. We say that the scheme has order of convergence or of accuracy equal to p if:

τ(h) = O(hp).

From eq. (C.21) we see then that the global (propagation) error is of order p.

Example C.11 (Error analysis of Forward Euler.). Assuming f sufficiently continuous in
both arguments so that we can assume y′′ to be bounded in the interval [t0, TN ], using Tailor
series expansion of f and noting that y′ = f(x, y), subtracting equations (C.19) from (C.20)
we obtain:

en+1(h) = y(tn+1)− y∗n+1 = y(tn) +hy′(tn)) +
h2

2
| y′′(ξ) |− yn−hf(xn, y(tn)) =

h2

2
| y′′(ξ) |

with ξ ∈ I an appropriate point (arising from application of Lagrange, or mean value, theo-
rem). We can define the truncation error for the Forward Euler scheme as:

τn(h) =
y(tn+1)− y(tn)

h
− f(xn, y(xn))

so that we find:

| τn(h) | = h

2
| y′′(ξ) | ≤ hM

2
, M = max

η∈[t0,TM ]
| y′′(η) |.

Thus, the Forward Euler scheme is first order accurate, as experimented in the test cases
shown in table C.1. Figure C.4 shows a geometrical exemplification of the differences between
the TE and the propagation error. In a similar fashion, it can be verified that both Euler
schemes are formally consistent and first order accurate, while Crank-Nicolson is second order
accurate, thus confirming the experimental observations reported in table C.1.
Convergence can be analyzed as follows. Define the total error en

def
= y(tn) − yn. Then, the

error equation becomes:

en+1 = en + h [f(xn, y(xn))− f(xn, yn)] + hτn(h)
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Using the assumption of Lipschitz continuity of f with respect to the second argument we
have:

| en+1 | ≤ (1 + hL)| en |+ hτn. (C.23)

Letting τ = max0≤n≤(M−1) | τn |, the solution of the above difference inequality is:

| en | ≤
τ

L
[(1 + hL)n − 1] + (1 + hL)n| e0 | ≤

τ

L
(eL(tn−t0) − 1) + eL(tn−t0)| e0 |. (C.24)

Remark C.12. To find the solution of the above inequality (C.23) we can proceed either by
induction or using an approach similar to the technique for finding solutions to linear constant
coefficients ODEs. Using the latter approach, using the equal sign in place of the ≤ sign,
we add to the general solution of the homogeneous equation ẽn one particular solution of the
complete equation e∗n. Thus, looking at the homogeneous equation, we let ẽ)n = λn, to yield
immediately:

ẽn = C1(1 + hL)n.

Now, we look for a particular solution of the form e∗n = An+B. Substituting into the complete
equations we have:

An+ A+B = (An+B)(1 + hL) + hτ.

Equating the polynomials of same order in n we get A = 0 and B = −τ/L. Imposing en = e0

for n = 0, we obtain immediately (C.24).

Hence, the error of FE can be estimated by:

| en | ≤ eL(tn−t0)| e0 |+
τ

L

[
(eL(tn−t0) − 1)

]
≤ eL(tn−t0)| e0 |+

Mh

2L

[
(eL(tn−t0) − 1)

]
,

which tells us that, if there is no round-off error so that the initial solution is represented exactly
(e0 = 0), then the error tends to zero as h −→ 0 and n −→ ∞ so that tn = t0 + nh −→ t,
and the scheme converges to the exact solution. If we consider round-off errors, we can argue
that the accuracy with which the scheme approximate the solution is bound by the time-
propagation of the initial error, in this case bounded by the exponential of the Lipschitz
constant of f .

Example C.13 (the θ-method). The Forward and Backward Euler and the Crank-Nicolson
methods can be grouped into one single method generally called the θ method. In fact we
have:

yn+1 = yn + h [(1− θ)f(tn, yn) + (θ)f(tn+1, yn+1)] .
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For θ = 0 we recover FE, for θ = 1 BE, and θ = 1/2 returns CN. Using the same technique as
before we see that the error behaves as:

| en | ≤ eL
tn−t0
1−θLh | e0 |+

h

L

(
| 1

2
− θ |M +

1

3
M̃h

)[
(eL(tn−t0) − 1)

]
,

where M̃ = maxt∈[t0,tn] | y′′′(t) |. From the previous equation we see that, in the case e0 = 0,
the global error is | en | ≤ O (h2) for θ = 1/2 and | en | ≤ O (h) for θ 6= 1/2. Finally, we
note that if we use θ = 1/2 and employ Forward Euler to render explicit the Crank-Nicolson
scheme (see Heun scheme (C.15)), we again obtain second order convergence | en | ≤ O (h2).

Explicit one-step methods. We can specialize precisely the above discussion for a general
one-step method of the form:

yn+1 = yn + hΦ(tn, yn;h), n = 0, . . . , N − 1, (C.25)

where Φ is assumed to be a continuous function of its arguments. We define the global error
and the truncation error as:

Definition C.7 (Global error and truncation error). Given the explicit one-step method (C.25),
the global error (GE) at time tn is given by:

en
def
= y(tn)− yn (C.26)

and the truncation error (TE) is:

τn
def
=
y(tn+1)− y(tn)

h
− Φ(tn, y(tn);h).

We can bound GE in terms of TE as the following theorem states.

Theorem C.8. Given the explicit one-step method (C.25), assume the scheme function Φ is
continuous and Lipschitz in the second argument, i.e. it satisfies the hypothesis of Picard’s
theorem:

| Φ(t, y1;h)− Φ(t, y2;h) | ≤ L| y1 − y2 | for (t, y) ∈ R. (C.27)

Then, if | yn − y0 | ≤ Y we have for n = 0, . . . , N :

| en | ≤ eL(tn−t0)| e0 |+
[
eL(tn−t0)

L

]
τ

where τ = max
0≤n≤N−1

| τn(h) |.
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Proof. The proof is a immediate extension of the proof given in Example C.11.

We can now proceed and define what we mean by consistency. We have then:

Definition C.9 (Consistency). A one-step explicit method is consistent with the Cauchy
problem C.1 if for any ε > 0 there exists a step-size h(ε) > 0 for which | τn | < ε and
0 < h < h(ε) and for every (tn, y(tn)) and (tn+1, y(tn+1)).

Assuming enough regularity of both y and Φ, we can restate the consistency condition as:

lim
h−→0

τn = y′(tn)− Φ(tn, y(tn);h) = 0

from which we obtain immediately the necessary and sufficient condition for consistency:

Φ(t, y; 0) = f(t, y) (C.28)

We can now precisely specify the conditions for the convergence of the explicit one-step meth-
ods:

Theorem C.10. Given an explicit one-step method of the form (C.25), and assume that the
solutions of the Cauchy problem C.1 and of the one-step method both lies in the region R of
the Picard’s theorem for some 0 < h < h0. Moreover, assume the function Φ(·, ·; ·) satisfies
the consistency condition (C.28), is uniformly continuous in R and satisfies the Lipschitz
condition (C.27) on R× [0, h0].
Then the sequence (yn) of approximates generated by the explicit one-step method (C.25) with
successively smaller values of h < h0 converges to the solution of the Cauchy problem C.1 in
the sense that:

| y(tn)− yn | −→ 0 for h −→ 0, tn −→ t ∈ [t0, T ].

Proof. Let h = T−t0
N

, with N > 0 and h < h0. We assume that there is no round-off error, so
that y(t0) = y0 and e0 = 0. From Theorem C.8 we have:

| en | = | y(tn)− yn | ≤
[
eL(tn−t0)

L

]
max

0<n<N−1
| τn |.

We need to work now on τn(h). Using the consistency condition (C.28), and the continuity of
y and y′, we can write:

τn =
y(tn)− yn

h
− Φ(tn, y(tn);h) + Φ(tn, y(tn); 0)− f(tn, y(tn))

= y′(ξ)− y′(tn) + Φ(tn, y(tn); 0)− f(tn, y(tn))

202



where ξ ∈ [tn, tn+1] comes from the application of the mean value theorem. From the uniform
continuity of y′ and Φ we have that

| y′(ξ)− y′(tn) | ≤ 1

2
ε h < h1(ε),∀n,

and

| Φ(tn, y(tn; 0)− Φ(tn, y(tn);h) | ≤ 1

2
ε h < h2(ε),∀n.

Hence we find:

| τn | ≤ ε,

from which we can write:

| en | ≤
[
eL(tn−t0)

L

]
ε −→ 0 as h −→ 0.

Moreover, from the uniform continuity of y we have immediately:

| y(t)− yn | ≤ | y(t)− y(tn) |+ | y(tn)− yn | −→ 0 as h −→ 0.

We can now give a formal definition of order of convergence, coming directly from the previous
theorem.

Definition C.11 (Order of accuracy). The explicit one-step method (C.25) is said to have
order of accuracy p if there exist constants K and h0 such that:

| τn | ≤ Khp for 0 < h < h0.

From this definition it is immediate to see that both Euler schemes are of order p = 1, while
Crank-Nicolson, Runge, and Heun are of order p = 2. With somewhat lengthy calculations,
it can be shown that the 4-stage Runge-Kutta scheme is of order p = 4.

C.3.3 Stability

The stability of a scheme is related to the well-posedness of the Cauchy problem as discussed
in Definition C.2 and its stability (Definition C.3). In practice, we need to understand how
the local errors, which we necessarily observe in any numerical scheme because of truncation,
behave under the different conditions. In other words, we require that local errors do not
grow with increasing applications of the numerical scheme. The number of times we apply
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the numerical scheme may increase because we increase time or because we decrease h. To
accommodate these two different views, we need to define different kinds of stability .
Assume we are looking for the solution in a bounded time interval I = [t0, T ], we concentrate
on a given time tn ∈ I and look for small perturbations of the numerical solution as h tends
to zero. Since tn = t0 + nh, we let n tend to infinity so that

lim
h→0
n→∞

tn = t

We can introduce the following definition:

Definition C.12 (Zero stability). A one-step scheme (eq. (C.19)) is zero stable if perturbations
of the solution remain bounded as h tends to zero.
Equivalently, the one step scheme (C.19) for the numerical solution of (C.1) is zero stable if
there exists h0 > 0 and a constant C > 0 such that for each h ∈ (0, h0] and ε > 0, for | δn | ≤ ε
we have that:

| yn − zn | ≤ ε ∀0 ≤ n ≤ N,

where yn is the numerical solution of Problem (C.1), and zn is the numerical solution of
Problem (C.5).

The explicit scheme (C.19) whenever Φ(t, y;h) is Lipschitz continuous, is zero stable. In fact,
a Lipschitz function Φ(t, y;h) is characterized by:

| Φ(tk, yk;h)− Φ(tk, zk;h) | ≤ Λ| yk − zk |.

Let wk = yk − zk, then we obtain:

wk+1 = wk + h [Φ(tk, yn;h)− Φ(tk, zn;h)] + hδk.

Summing for k = 0, 1, . . . , n:

wn+1 = w0 + h

n∑
k=0

δkh

n∑
k=0

[Φ(tk, yn;h)− Φ(tk, zn;h)] .

From the fact that Φ is Lipschitz we have:

| wn+1 | ≤ | w0 |+ h

n∑
k=0

δk+1 + hΛ
n∑
k=0

| wk |

Using the discrete version of Gronwall Lemma 12 we readily find:

| wn | ≤ ε (1 + hn) eΛhn.

The proof concludes noting that hn ≤ T .
A similar argument leads to the following:

12
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Theorem C.14 (Lax-Richtmeyer-Dahlquist Theorem). A scheme that is zero stable and con-
sistent is convergent.

Note that the Euler methods are zero stable because Problem (C.1) is well posed. Since they
are consistent, then they are also convergent.

Example C.14 (Convergence analysis of Forward Euler method). As done before, we define
the error at time tn+1 as en+1 = y(tn+1) − yn+1 and denote with y∗n+1 the solution obtained
after one step of FE starting from the exact solution:

y∗n+1 = y(tn) + hf(tn, y(tn)).

Then we can write:

en+1 =
(
y(tn+1)− y∗n+1

)
+
(
y∗n+1 − yn+1

)
.

The first term on the right-hand-side is the residual (h times the truncation error), while the
second term takes care of the accumulation of this error in time. Hence:

| en+1 | ≤ h| τn+1 |+ (1 + hL)| en |.

Noting that e0 ≤ τ(h) and bounding the truncation error with the global one, we obtain by
recurrence:

| en+1 | ≤ [1 + (1 + hL) + . . .+ (1 + hL)n]h| τ(h) | ≤ eL(tn+1−t0) − 1

L
τ(h),

since (1 + hL) ≤ ehL and tn+1 = t0 + (n + 1)h. From the consistency of Forward Euler we
have:

τn+1(h) =
h

2
y′′(ξ), ξ ∈ [tn, tn+1],

and using M = maxξ∈I | y′′(ξ) | we have convergence of the Forward Euler scheme with first-
order (p = 1) accuracy:

| en | ≤
eL(tn+1−t0) − 1

L

M

2
h.

Lemma C.13 (Discrete Gronwall Lemma). Let Kn a non-negative sequence and ϕn a sequence such that,
given ϕ0 ≤ g0:

ϕn ≤ g0 +

n−1∑
k=0

pk +

n−1∑
k=0

Kkϕk.

If g0 ≥ 0 and pn ≥ 0 for every n ≥ 0, then:

ϕn ≤

(
g0 +

n−1∑
k=0

pk

)
e(
∑n−1

k=0 Kk).
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Remark C.15. Up to now our analysis assumed that no round-off error (finite precision)
occurs. Including this sort of errors in the analysis is straight forward, but if we do it we cannot
conclude that the error tends to zero as h tends to zero. In fact, an extra term proportional
to 1/h appears in the expression for the global error (generally with a small constant). Hence,
there will be an optimal value of h∗ that will minimize the global error, and below which the
error will start increasing, signaling the dominance of the round-off error over the truncation
error. In practice, most of the times h∗ is very small and the effects of round-off are negligible
for practical values of h.

C.3.4 Absolute stability

Zero stability does not explain the behavior of Forward Euler for the Example C.4, where the
scheme was stable for h < 0.2. To see this, we need to look at what is called absolute stability,
that emphasizes stability for fixed h and increasing t. However, this stability concept depends
strongly on f(t, y(t)), and is customary checking stability against the so called test equation:

y′ = λy
(C.29)

y(0) = 1

whose explicit solution is given by y(t) = eλt. Although in general λ ∈ C, we will assume
for simplicity λ ∈ R. It is clear that the solution will tend to zero for t that tends to
infinity for λ < 0, otherwise it will tend to infinity. Thus, for λ < 0, stability implies that
perturbation must become smaller and smaller and tend to zero asymptotically. In the case
λ > 0 the definition of stability will have to take into consideration the fact that the solution
is unbounded for t −→∞. Hence, it is sufficient to require that perturbations remain increase
in time but not too much, so that the accuracy of the numerical solution is not overshadowed.
We will consider in what follows only the case λ < 0, and refer to more specialized textbooks
for in depth analysis.
We can then define:

Definition C.15 (Absolute stability). The one-step scheme (C.19) is absolutely stable if, when
applied to the test equation (C.29) with λ < 0, the numerical solution yn satisfies:

lim
tn→∞

| yn | → 0

Remark C.16. Note that the test equation resemble a linearized version of the general Cauchy
problem (C.1):

y′(t) =
∂f

∂y
(t, y(t))y(t)

y(0) = 1
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Figure C.5: Numerical solution of the test equation with λ = −10 obtained with Forward
Euler for different values of h compared with the real solution.

from which the test equation is obtained by setting λ = ∂f
∂y

(y, y(t)).

Absolute stability of Euler and Crank-Nicolson schemes We study now the absolute
stability for the one-step methods studied so far.

Forward Euler. Applying Forward Euler to the test equation (C.29) we obtain:

yn+1 = yn + λhyn = (1 + hλ)yn.

By recursion, starting from n = 0, we have immediately:

yn = (1 + hλ)ny0,

that tends to zero only if:

| 1 + hλ | < 1.

Thus the condition for which the Forward Euler scheme is absolutely stable is:

0 < h <
2

−λ
λ < 0.

In the case λ = −1 (Example C.3) the scheme is stable if h < 2. In the case λ = −5
(Example C.4) the scheme is stable if h < 0.4. In this case the solution tends to zero, following
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the real solution. More precisely, the numerical solution will tend to zero monotonically for
0 < 1 + hλ < 1, which implies 0 < h < 0.2, while it will oscillate around the true solution
(overshooting and undershooting it at successive iterations) for −1 < (1 + hλ) < 0), i.e.,
0.2 < h < 0.4 In the case λ = −10, the scheme is stable only if h < 0.2, and the numerical
solution oscillates if h < 0.1, as can be seen from Figure C.5, where the results obtained in
this last case for different values of h are shown.

Backward Euler. Application of this scheme to the test equation (C.29) yields:

yn+1 = yn + λhyn+1 =
1

1− hλ
yn.

As done before, starting from n = 0, we obtain the stability condition:

| 1
1−hλ | < 1,

which is always verified for all values of h assuming, as before, λ < 0. The scheme is thus
unconditionally absolutely stable. It is easy to see that the scheme will always be monotone.

Crank-Nicolson. As mentioned before, Crank-Nicolson is an implicit scheme and it should
be unconditionally absolutely stable. In fact:

yn+1 = yn +
λh

2
(yn+1 + yn) =

2 + hλ

2− hλ
yn,

from which the absolute stability condition becomes:∣∣∣∣2 + hλ

2− hλ

∣∣∣∣ < 1,

always satisfied for all values of h > 0 (recall that a negative h would make no sense). On
the other hand, the monotonicity of the Crank-Nicolson scheme will be ensured only for
h < 2/| λ |.

C.3.5 Practical implementation of implicit schemes

We now look at the implementation of Backward Euler scheme. The algorithm is:

Algorithm Implicit Euler
Input: t0, y0, N , h;
for j = 0, 1, . . . , N − 1

1.tn+1 = tn + h

2.Solve yn+1 − yn − hf(tn+1, yn+1) = 0

end for
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Step # 2 requires the solution of a nonlinear equation for the unknown yn+1. This step
is typically implemented using a Newton-like scheme. For simplicity let x be our unknown
(x := yn+1). The problem becomes:
Find the zero of the function g(x), i.e., find the solution of the nonlinear equation g(x) = 0,
where:

g(x) = x− yn − hf(tn+1, x) = 0.

We can use for example the Newton or Picard methods. Let us study in details what happens
with the Picard method. To this aim, we indicate with r the nonlinear (Picard) iteration
index. Thus we can write:

x(r+1) = g(x(r)) = x(r) − yn − hf(tn+1, x
(r)).

It is well known that this iterative scheme converges if | g′(x) | < 1 for x ∈ Iξ, where Iξ is a
neighborhood of the fixed point ξ. The derivative of g is:

g′(x) = 1− h∂f
∂x

(tn+1, x),

which entails the following convergence condition:∣∣∣∣1− h∂f∂x (tn+1, x)

∣∣∣∣ < 1.

We see that this is equivalent to the restriction on h imposed by the absolute stability for the
Forward Euler scheme:

h

∣∣∣∣∂f∂x (tn+1, x)

∣∣∣∣ < 2.

If instead of the Picard method we use Newton’s scheme we have no restriction on h for the
convergence of the nonlinear iteration, assuming the initial guess is sufficiently close to the
final solution. This study can be repeated, with the appropriate adjustments, also for the
Crank-Nicolson scheme.

Remark C.17. For other schemes, such as Runge-Kutta, in general the rule is that explicit
schemes are conditionally stable, while implicit schemes are unconditionally stable.

Remark C.18. In practical applications, the restriction due to stability is often very strong,
and it is often preferable (i.e., computationally less expensive) to use an implicit scheme to-
gether with Newton’s methods. However, this conclusion must be verified case by case, and
depends strongly by the behavior of f(t, (y(t)).
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C.4 Linear multistep methods

The methods presented in the previous sections compute yn+1 using only one previously-
computed point, (tn, yn). These methods are called single-step methods. It is intuitive that
multi-step methods can be obtained in an attempt to achieve higher accuracy of the approxi-
mate solution yn+1 using m previously computed points. Indeed, for example, we can extend
eq.(C.18) on the interval [tn−1, tn+1] and use Simpson’s Rule to approximate the integral:

y(tn+1) = y(tn−1) + h

∫ tn+1

tn−1

y′(t) dt,

' y(tn−1) +
h

3
[f(tn−1, y(tn−1)) + 4f(tn, y(tn)) + f(tn+1, y(tn+1)))

This procedure can be generalized to a general m-step method. This class of schemes are
called linear multistep method and have as particular case the one-step methods described
above, and can be implicit or explicit. A linear multistep method (LMM) can be written as:

amyn+m+am−1yn−1 + . . .+ a0yn =

h (bmf(tn+m, yn+m) + bm−1f(tn+m−1, yn+m−1) + . . .+ b0f(tn, yn))

where a0, . . . am and b0, . . . , bm are fixed coefficients. In a more compact form, an LMM scheme
can be written as:

m∑
k=0

akyn+k = h
m∑
k=0

bkf(tn+k, yn+k). (C.30)

Note that to apply a multistep method we need m initial points,

y(t0) = y0, . . . , y(tm−1) = ym−1.

Example C.19. • Backward Euler (implicit one-step method, m = 1): a1 = 1, a0 = −1;
b0 = 0, b1 = 1:

yn+1 = yn + hf(tn+1, yn+1);

• Forward Euler (explicit one-step method, m = 1) am = 1, am−1 = −1, am−2 . . . = a0 = 0;
b0 = 1, b1 = 0:

yn+1 = yn + hf(tn, yn);

• Crank-Nicolson (implicit one-step method, m = 1): a1 = 1, am0 = −1; b0 = 1/2,
b1 = 1/2:

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)] ;
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• Adams-Bashforth (explicit four-step method, m = 4): a4 = 1, a3 = −1, a2 = a1 = a0 =
0; b4 = 0, b3 = 55/24, b2 = −59/24, b1 = 37/24, b0 = −9/24:

yn+4 = yn+3 +
h

24
[55f(tn+3, yn+3)− 59f(tn+2, yn+2) + 37f(tn+1, yn+1)− 9f(tn, yn)]

Adams-Moulton (implicit four-step method): a4 = 1, a3 = −1, a2 = a1 = a0 = 0;
b4 = 9/24, b3 = 19/24, b2 = −5/24, b1 = −9/24, b0 = 0:

yn+4 = yn+3 +
h

24
[9f(tn+4, yn+4) + 19f(tn+3, yn+3)− 5f(tn+2, yn+2)− 9f(tn+1, yn+1)]

C.4.1 Convergence of LMMs

Truncation error and zero-stability. The definition of the truncation error for an LMM
is a straight forward generalization of the definition of TE for one=step methods.

Definition C.16 (Truncation error of LMM). Given the linear multistep method of eq. (C.30),
the truncation error (TE) is defined as:

τn =

∑m
k=0 aky(tn+k)− h

∑m
k=0 bkf(tn+k, y(tn+k))

h
∑m

k=0 bk
.

Again, this definition can be interpreted as the residual obtained by substituting the real
solution y(tn) in place of the numerical approximation in the expression of the LM scheme,
written in terms of direct approximation of y′ = f(t, y). It coincides with the global error.
Hence we can state the following.

Definition C.17 (Consistency of LMM). A LMM of the form (C.30) is consistent with the
Cauchy Problem C.1 if the TE tends to zero in the limit for h that tends to zero:for all ε > 0
there exists h(ε) > 0 such that

| τn | < ε for all 0 < h < h(ε)

and for all m+ 1 points (tn, y(tn) (tn+1, y(tn+1) . . . , (tn+m−1, y(tn+m−1).

We can define the zero-stability using the same concept as before, but taking now into account
that we have m initial solutions to start the full method.

Definition C.18 (Zero stability of LMM). An m-step LMM of the form (C.30) is zero-stable
if there exists a constant K such that, given the sequences {yn} and {ŷn} generated by the
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same scheme but for different starting conditions y0, y1, . . . , ym−1 and ŷ0, ŷ1, . . . , ŷm−1, then we
have:

| yn − ŷn | ≤ K max {| y0 − ŷ0 |, | y1 − ŷ1 |, . . . , | ym−1 − ŷm−1 |}

for all tn ≤ T and h −→ 0.

It is typical to define LMM characteristic polynomials as follows.

Definition C.19 (First and Second Characteristic Polynomials of LMM). Given the LMM
of (C.30), the first and second characteristic polynomials are given by:

ρ(z) =
m∑
k=0

akz
k am 6= 0;

σ(z) =
m∑
k=0

bkz
k a2

0 + b2
0 6= 0

Consistency and the fact that the LMM has m − step requires that am 6= 0 and that a0 and
b0 be both nonzero at the same time.

We have the following theorem:

Theorem C.20 (LMM root condition). Given the LMM of (C.30), is zero-stable for the
Cauchy Problem C.1 (with Lipschitz f) is and only if the first characteristic polynomial has
roots that are all within the unit disk, and any root that is on the unit circle is simple.

Proof. The proof of the necessary condition of the theorem is easy. Not so the sufficiency.
Thus we prove only the former, and refer to the literature (e.g., [12]) for the proof.

⇒ For zero stability we look at the solution of the equation y′ = 0. In this case the m-step
LMM scheme is:

amyn+m + . . .+ a0yn = 0.

Looking for the solution of the form yn = zn, z ∈ C, we have:

yn =
∑
s

ρs(n)zns ,

where zs is a root of the first characteristic polynomial ρ(z) of the LMM and ρs(n) is a
polynomial of degree r − 1, where r is the multiplicity of zs. Obviously, if | zs | > 1 there
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exist some starting points for which the solution explodes as | zs |n. If | zs | = 1 and r > 1,
again there exist some starting points for which the solution grows as nh−1. In both cases, the
yn −→∞ as n −→∞ and h −→ 0 with fixed nh, and the scheme is not zero-stable.

Example C.20. Simple examples.

1. (Backward and Forward) Euler and Crank-Nicolson. All these schemes are zero
stable. Since they differ in the way the function on the RHS of Problem C.1, their first
characteristic polynomial is the same:

ρ(z) = (z − 1).

It has obviously a root z = 1 which is on the unit circle but is simple.

2. Adams-Bashforth and Adams-Moulton. Again Adams-Bashforth and Adams-
Moulton differ for the right-hand-side. Their first characteristic polynomial is:

ρ(z) = z3(z − 1)

and are both zero-stable

The following (order p = 6) LMM is not zero stable:

11yn+3 + 27yn+2 − 27yn+1 − 11yn = 3h (fn+3 + 9fn+2 + 9fn+1 + fn) .

Its first characteristic polynomial ρ(z) = 11z3 + 27z2 − 27z − 11 has roots given by: z1 = 1;
z2 ' −0.3189; ze ' −3.1356.

To verify the consistency of any LMM scheme we can use Taylor series (assuming enough
regularity) to expand y(tn+m) and y′(tn+m) and evaluate the residual of the truncation error
τn. Lengthy (but easy) calculations show that:

τn =

∑m
k=0 aky(tn+k)− h

∑m
k=0 bkf(tn+k, y(tn+k))

h
∑m

k=0 bk

=
1

hσ(1)

[
c0y(tn) + c1hy

′(tn) + c2h
2y′′(tn) + c3h

3y′′′(tn) + . . .
] (C.31)

where the constants are given by:

c0 =
m∑
k=0

ak, c1 =
m∑
k=1

kak −
m∑
k=0

bk = ρ′(1)− σ(1)

(C.32)

c2 =
m∑
k=1

k2

2!
ak −

m∑
k=1

kbk cs =
m∑
k=1

k2

2!
ak −

m∑
k=1

ks−1

(s− 1)!
bk.
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For the consistency of the scheme we require that c0 = c1 = 0. This results into ρ(1) = 0 and
ρ′(1) = σ(1) 6= 0. Hence zs = 1 is a root of the first characteristic polynomials that lies on the
unit circle, but it is simple, and thus it does not violate the root condition.
We are now in a position to define the order of accuracy, exactly as done in the case of one-step
methods.

Definition C.21 (Order of accuracy of LMM). An LMM (eq. (C.30)) is said to posses order
of accuracy p if the truncation error is O (hp), i.e., if there exists a h0 > 0 such that

| τn | ≤ Khp 0 ≤ h ≤ h0

for all m+ 1 starting points (tn, y(tn)), (tn+1, y(tn+1)), . . ., (tn+m, y(tn+m)).

Looking at eq. (C.31), we note that to have order of accuracy p we need c0 = c1 = . . . = cp = 0
and cp+1 6= 0. The constant cp+1 is called the error constant and we have:

τn =
cp+1

σ(1)
hpy(p+1)(tn) +O

(
hp+1

)
.

Example C.21. We want to build a m = 2-step LMM with maximum order and one free
parameter. A two-step LMM is written as:

a0yn+1 + a1yn+1 + a2yn = h
(
b2y
′
n+2 + b1y

′
n+1 + b0y

′
n

)
where we need to impose the requirements a0 6= 0 and a2

0 + b2
0 6= 0. Expanding in Taylor

series and substituting, or using directly the expressions of the constants ci given by (C.32),
we have:

(a2 + a1 + a0)y(tn) + (2a2 + a1)y′(tn) + (2a2 +
1

2
a1)y′′(tn) + . . .

= h [(b2 + b1 + b0)y′(tn) + (2b2 + b1)y′′(tn) + . . .] .

From the first consistency condition we obtain c0 = a2 + a1 + a0 = 0. Since we want one free
parameter, we take a2 = 1 and we let a0 = α be the free parameter. From the last condition
we have thus a1 = −1− α. The remaining conditions needed for consistency are then:

c1 = 2+a1−(b2+b1+b0) = 0 c2 =
1

2
(a1+4)−(b1+2b2) = 0 c3 =

1

3!
(a1+8)−1

2
(b1+4b2) = 0

leading to:

b0 = − 1

12
(1 + 5α) b1 =

2

3
(1− α) b2 =

1

12
(5 + α).
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The final scheme is then:

yn+2 − (1 + α)yn+1 + αyn = h

[
1

12
(5 + α)y′n+2 +

2

3
(1− α)y′n+1 −

1

12
(1 + 5α)y′n+2

]
.

The error constants c4 and c5 are:

c4 = − 1

4!
(1 + α) c5 = − 1

3 · 5!
(17 + 13α).

We can see that we cannot have both c4 = c5 = 0. Hence, to have maximum order we choose
α = −1 so that c4 = 0 and we have order p = 4 and error constant c5 = −4/3 · 5!. The wanted
scheme is:

yn+1 = yn +
h

3

[
y′n+2 + 4y′n+1 + y′n

]
which is Simpson rule.

We now look at the convergence of LMMs.

Definition C.22 (Convergence of LMM). An m-step LMM for the Cauchy Problem C.1 is
convergent for any initial value y0 if

lim
h−→0

nh−→t−t0

yn = y(t).

for all t ∈ (t0, T ] and for all solutions of the LMM difference equations with consistent starting
values, i.e., ys = ηs(h), s = 0, . . . ,m− 1, and lim

h−→0
nh−→t−t0

ηs(h) = y0.

We state here without proof two important theorems due to Dahlquist.

Theorem C.23 (Dahlquist (Lax-Richtmeyer)). A consistent m-step LM scheme with con-
sistent starting values converges if and only if it is zero-stable. If y(t) ∈ Cp+1([t0, T ]) and
τn = O (hp) then the scheme has order of accuracy p and the global error is O (hp).

Theorem C.24 (Dahlquist I barrier). There are no zero-stable m-step LM methods with order
of accuracy larger than m+ 2 if m is even or m+ 1 is m is odd.

Absolute stability. We now look at the properties of absolute stability, i.e., how the scheme
behave when applied to the test equation:

y′ = λy λ ∈ C Re(λ) < 0
(C.33)

y(t0) = y0
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at a fixed h and as n −→ ∞, i.e., t −→ ∞. We note that since | y(t) | −→ 0 as t −→ ∞, we
must have that yn −→ 0 as n −→∞.
Applying the LMM (C.30) to (C.33) we obtain:

m∑
k=0

(ak − hλbk) yn+l = 0. (C.34)

The polynomial

πm(z;hλ) = ρ(z)− hλσ(z)

is called the stability polynomial. Since the solution of the difference equation (C.34) is given

by yn =
m∑
k=0

γkz
n
k , we have that | yn | −→ 0 if all the roots of the stability polynomials are

internal to the unit disk, | zk | < 1.

Definition C.25. The m-step LMM is absolutely stable if all roots of πm(z;hλ) are such that
| zk | < 1, k = 1, . . . ,m. Otherwise, it is absolutely unstable.
The region A of the complex plane hλ for which LMM is absolutely stable is called the absolute
stability region.

We have the following.

Theorem C.26. For Re(hλ) > 0, all linear multistep methods are absolutely unstable.

Example C.22. We report here some examples of stability regions.

Forward Euler The FE method for the test equation is an LMM with a1 = 1, a0 = −1,
b1 = 0, and b0 = 1:

yn+1 − yn = hy′n.

The stability polynomial is thus given by:

πm(z, hλ) = −1 + z − hλ.

Its only root is given by z1 = 1 + hλ. The region of absolute stability is thus:

AFE = {hλ ∈ C : | 1 + hλ | < 1,Re(λ) < 0}

which is the unit disk centered in -1 (Figure C.6, left).
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Figure C.6: Regions of absolute stability for Forward Euler (left) and Backward Euler (right)

Backward Euler The BE method for the test equation is an LMM with a1 = 1, a0 = −1,
b1 = 1, and b0 = 0:

yn+1 − yn = hy′n+1.

The stability polynomial is thus given by:

πm(z, hλ) = −1 + z(1− hλ).

Its only root is given by z1 = 1/(1 − hλ) whose absolute value is always smaller than
unity since Re(λ) < 0. The region of absolute stability is thus:

ABE = {hλ ∈ C : | 1− hλ | > 1,Re(λ) < 0}

which is the region outside the unit disk centered in +1 (Figure C.6, right).

C.5 Systems of ODEs

We extend here the above results to the case of systems of ODEs of the first order. Hence, we
assume that y ∈ Rd is an d-dimensional vector i.e., y(t) = (y1(t), . . . , yd(t)) and the function
f : R×Rd 7→ Rd is also an n-dimensional vector. The vector function y satisfies the following
system of ODEs of the first order:{

P (t)y′ = f(t, y), t ∈ [t0, T ]

y(t0) = y0 ∈ Rd,
(C.35)
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where matrix P is d-dimensional and non-singular, with coefficients that depend possibly on t,
y′ is the derivative of y, and y0 is the vector of given initial conditions. The numerical methods
presented in section C can be applied also to Eq. (C.35). Note that, when the function f is
nonlinear, the use of implicit schemes implies the solution of a d-dimensional nonlinear system
of equations at each step of the scheme.
If f is a linear function of y, i.e., it can be written as f(t, y) = H(t)y + q(t), where H and q
are d-dimensional matrix and vector, respectively. Eq. (C.35) rewrites:

P (t)y′ +H(t)y + q(t) = 0. (C.36)

Assuming for simplicity that both P and H ar not dependent upon t and that q = 0, the
solution can be written explicitely as:

y(t) =
n∑
i=1

cie
λitui, (C.37)

where λ1, . . . , λn and u1, . . . , un are the eigenvalues and the eigenvectors of the matrix −P−1H.
The coefficients c1, . . . cn satisfy the initial condition:

y0 = c1u1 + . . .+ cdud.

Actually, solution (C.37) can be extended to the time-dependent case and for q 6= 0, using
standard techniques. However, this approach at the solution is complicated as the computation
of the eigenvalues and eigenvectors of −P−1H is an expensive procedure, and is seldom done.
One typically resorts to numerical schemes also for linear equations.
Before applying the LMM to the system, we transform it in a more common form, by multi-
plying the above system by P−1 to yield:

y′ = Ay + g A = −P−1H, g = −P−1q.

Applying the LMM of eq (C.30) we get:

m∑
k=0

(akI − hbkA) yn+k = hσ(1)g.

We need the hypothesis that A is diagonalizable, so that there exists a matrix U such that
UAU−1 = Λ, where Λ is the d× d diagonal matrix containing the eigenvalues of A:

UAU−1 =


λ1

λ2

. . .

λd

 .
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Defining z = Uy and substituting we have immediately:

m∑
k=0

(akU − hbkUA)U−1yn+k = hc = hσ(1)Ug,

from which: Assuming for simplicity that P and H do not depend on t and q = 0, then
Eq. (C.36) admits an explicit solution:

m∑
k=0

(akI − hbkΛ) zn+k = hc,

or, for the component i:

m∑
k=0

(ak − hbkλi) zn+k,i = hci. (C.38)

We see that the stability polynomial can be defined in terms of the eigenvalues λi of A, and
we can state the following:

Definition C.27. An m-step LMM is absolutely stable in an open set A of the complex plane
if for all hλi ∈ A the roots of the stability polynomial πm(z;hλi) of (C.38) are such that
| zk | < 1, k = 1, . . . ,m for all eigenvectors λi of A. The set A is called the region of absolute
stability of the LMM.

Example C.23. Consider the second order constant coefficient equation:

y′′ + (λ+ 1)y′ + λy = 0 y(0) = 1; y′(0) = λ− 2.

This equation can be easily solved by standard procedures to obtain:

y(x) = 2e−t − e−λt.

We transform this into a system of first order equations by setting z = (u, v)T , where u = y
and v = y′. Then we have:

z′ = Az
z(0) = z0

A =

(
0 −1
−λ −(λ+ 1)

)
z0 =

(
λ− 2

2

)
The eigenvalues of matrix A are µ1 = −1 and µ2 = −λ. The solution of the system is given
by:

u(t) = 2e−t − e−λt v(t) = −2e−t + λe−λt. (C.39)
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Figure C.7: Functions u(t) and v(t) of eq. (C.39) of Example C.23 for λ = 20

The stability polynomial of the Forward Euler method is:

πFE,m(z;hµ) = −1− z − hµ, for µ = µ1 = −1 and µ = µ2 = −λ.

The root condition for stability explicitates into the following conditions that should be sat-
isfied simultaneously:

µ = µ1 | 1− h | < 1 0 < h < 2

µ = µ2 | 1− hλ | < 1 0 < h <
2

λ

Obviously, the second equation is more stringent if λ > 1.
Let us look at a concrete case, and take λ = 20 (v(0) = 18). The solutions are shown in
Figure C.7. In this case, absolute stability of Forward Euler requires h < 1/10.

It is clear from the Example above that the two functions that solve the system behave
differently. In particular, u(t) is smooth and varies slowly in time, while v(t) displays a fast
initial transient, i.e., at small times v(t) shows a strong variations. This fast transient is
responsible for the strongest stability constraint of the time step size of Forward Euler. This
is a prototypical stiff system of equations.
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C.5.1 Stability of LMMs for stiff systems

If we apply Backward Euler to the problem of Example C.23, we find immediately that its
stability polynomial is:

πBE,m(z;hµ) = z(1− hµ)− 1, for µ = µ1 = −1 and µ = µ2 = −λ.

and the region of absolute stability is given by:

A = {hµ : | 1− hµ | > 1}.

In particular, A containes the entire negative complex half plane. We conclude that BE is
always absolutely stable independently of h. This motivates the following:

Definition C.28 (A-stability). An m-step LMM is A-stable if its region of absolute stability
A containes the negative complex half plane Re(hλ) < 0.

Then, Backward Euler is A-stable. Unfortunately, there is Dahlquist’s II barrier to the order
of accuracy of A-stable LMMs, that we state without proof.

Theorem C.29 (Dahlquist II barrier). 1. There are no explicit LMMs that are A-stable.

2. The maximum order of accuracy of an A-stable implicit LMM is 2.

3. The A-stable implicit LMM with smallest error constant is Crank-Nicolson.

In light of this theorem, we conclude that it is inconvenient to use explicit schemes for stiff
problems. But we are restricted with the order of accuracy that we can use.
In practice, the A-stability property is often too strong, and there are implicit schemes that
are not A-stable but that work well for most stiff problems. Thus we define the following
stability classes.

Definition C.30 (A(α)-stability). An m-step LMM is A(α)-stable, for α ∈ (0, π/2), if its
region of absolute stability A contains the wedge:

Wα = {hλ : π − α < arg (hλ) < π + α}

Definition C.31 (A(0)-stability). An m-step LMM is A(0)-stable if there exists α ∈ (0, π/2)
for which it is A(α)-stable.

Figure C.8 gives a geometrical interpretation of the above definitions. If hλ belongs to the
shaded region, then the scheme is absolutely stable.
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Figure C.8: A-stable region (left). A(α)-stable region (right)

C.5.2 Forward Euler

We apply the forward Euler scheme (explicit) to Eq. (C.36) with step h = ∆t:

1

∆t
Ptyt+∆t =

(
1

∆t
Pt −Ht

)
yt − qt.

As seen in the previous section, this scheme is consistent and of the first order. Also in this
case the scheme is conditionally stable, in fact the error can be written as:

1

∆t
Pet+∆t =

(
1

∆t
Pt −Ht

)
et

i.e.,

ek = Eke0,

where t = k∆t and E = ∆tP−1
(

1
∆t
P −H

)
. Stability of the method requires:

lim
k→∞

Ek = 0

which is satisfied if and only if the spectral radius of E, ρ(E) is smaller than one. Note that
E = I − ∆tP−1H, where I is the n-dimensional identity matrix. Assuming that P−1H has
positive real eigenvalues, the condition for the stability of the scheme is

∆t <
2

ρ(P−1H)
.
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C.5.3 Backward Euler

The backward Euler scheme is:(
1

∆t
Pt+∆t +Ht+∆t

)
yt+∆t =

1

∆t
Pt+∆tyt − qt+∆t.

The error matrix is:

E = (P + ∆tH)−1 P =
(
I + ∆tHP−1

)−1
,

with spectral radius that is always smaller than one under the hypothesis that P−1H has
positive real eigenvalues. For this reason, also in the multidimensional case the backward
Euler scheme is unconditionally stable.

C.5.4 Crank-Nicolson

The Crank-Nicolson scheme is:(
1

∆t
Pt+∆t +

1

2
Ht+∆t

)
yt+∆t =

(
1

∆t
Pt+∆t −Ht

)
yt − qt+∆t.

Also in this case it is easy to see that the spectral radius of the error matrix is always smaller
than one under the hypothesis that P−1H has positive real eigenvalues.
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