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Abstract. The notion of flows’ commutativity for vector fields is here ex-
tended to control vector fields, i.e. vector fields depending on a parameter. By

saying that a family of control vector fields commute we mean that, for ev-

ery choice of the control functions, the flows of the resulting (time-dependent)
vector fields commute. Let us remark that the control vector fields here con-

sidered are locally Lipschitz continuous. Hence, even in the trivial case when
controls are kept constant, the usual characterization in terms of Lie brackets

is not meaningful. In fact, we utilize a notion of (set-valued) bracket intro-

duced in [RS1], which is fit for locally Lipschitz vector fields and extends the
usual bracket for C1 vector fields.

The main achievement (see Theorem 2.11) of the paper consists in a

twofold characterization of flows’s commutativity of control vector fields. On
one hand, this property is characterized by means of a zero-bracket–like con-

dition, namely condition (ccLBZ) below. On the other hand, commutativity

turns out to be equivalent to an invariance condition formulated in terms of
lifts of multi-time paths.

In particular this result is exploited in order to establish sufficient con-

ditions for the commutativity of optimal control problems, here called inf-
commutativity —see Definitions 3.2 and 3.3 below.

1. Introduction

1.1. The problem. Roughly speaking, one says that the flows of two vector
fields f1 and f2 commute if, starting from a point y (of a real vector space, or
a manifold) and moving first in the direction of f1 for a time t1 and then in the
direction of f2 for a time t2, one reaches the same point that would be achieved
by reversing the implementation’s order of the two vector fields. Commutativity of
vector fields’ flows lies at the basis of many applications, e.g. in mechanics or in
differential geometry. For instance, in Hamiltonian mechanics, a function K is a
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constant of the motion if it is in involution with the Hamiltonian H, which means
that the Hamiltonian flows originated by H and K, respectively, commute.

Commutativity —say, on an Euclidean space ℝn— is characterized (at least
locally) by the the well-known point-wise condition

(1.1) [f1, f2](x) = 0 ∀x ∈ ℝn

where [f1, f2] denotes the Lie bracket of f1 and f2. We recall that [f1, f2](x) =
Df2(x) ⋅ f1(x) − Df1(x) ⋅ f2(x) 1 and that condition (1.1) is usually stated for
C1 vector fields. In the case of locally Lipschitz vector fields, (1.1) is not even
meaningful. However, in [RS2], commutativity of flows has been characterized in
terms of vanishing of the set-valued Lie bracket introduced in [RS1] —see Definition
1.1 below.

In this paper we aim to extend the notion of commutativity to families of
(nonsmooth) control vector fields and to families of optimal control problems. The
commutativity concept for control vector fields will be sketched in the next subsec-
tion, where we provide a more thorough outline of the paper. As for the notion of
commutativity for optimal control problems —which in the present paper will be
called inf-commutativity— let us illustrate it by means of an example.

Suppose we are given the minimum problems

(1.2)

{
inf
(∫ T1

0
l(x(t), c(t))dt+

∫ T2

0
m(y(t), d(t))dt

)
ẋ = f(x, c) x(0) = x̄ ẏ = g(y, d) y(0) = x(T1)

and

(1.3)

{
inf
(∫ T2

0
m(y(t), d(t))dt+

∫ T1

0
l(x(t), c(t))dt

)
ẏ = g(y, d) y(0) = x̄ ẋ = f(x, c) x(0) = y(T2).

where c(⋅) and d(⋅) are controls which range over a given control set A.
The obvious meaning of problem (1.2) is that the infimum is taken over the four-

uples (c, x, d, y) verifying the following conditions: i) c and d are controls defined
on [0, T1] and [0, T2] respectively ; ii) x is the solution of the Cauchy problem ẋ =
f(x, c) x(0) = x̄; iii) y is the solution of the Cauchy problem ẏ = g(y, d) y(0) =
x(T1) (where x(⋅) is as in ii)). The meaning of (1.3) is the same, up to reversing
the order of implementation of (f, l) and (g,m).

A natural question is the comparison between the optimal values of the two
problems. In particular, one can wonder if the optimal value of problem (1.2)
coincides with that of (1.3). In this case we say that the two problems inf-commute
(see section 3). Of course, we can generalize this question by partitioning the
two intervals into several subintervals2 and running these subintervals (and the
corresponding control systems) in an arbitrary order. Also one can consider the
interactions of more (than two) optimal control systems, and the latter can include
final costs as well.

The question of commutativity of optimal control problems can be interesting,
for instance, in the framework of switchings systems, where it would mean a kind
of invariance of the output with respect to the order of the optimal switchings.
Some direct economic applications —se e.g. [Ro]— pose the commutativity issue

1As is well known, the Lie bracket is a geometric object, and this is its expression in a given
system of coordinates.

2A generalization of this discrete implementation of different systems is represented by the
lifts of multi-time paths —see Subsection 1.2.
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quite naturally. Yet, our original motivation —which is not necessarily the most
important— was in fact the question of the solution’s existence for so-called systems
of multi-time Hamilton-Jacobi equations —see e.g. [BT], [MR]. Indeed, it turns
out that the existence of a solution for multi-time systems is, in a sense, equivalent
to the commutativity of the underlying control problems. Let us point out that
the relationship between inf-commutativity and PDE systems is not surprising at
all. For instance, it is well-known that in the case of systems of linear first order
PDE’s the existence issue is intimately connected with commutativity properties of
the involved vector fields. 3

1.2. Outline of the paper. In Section 2 we address the question of com-
mutativity of control vector fields. In short, one says that the flows of a family of
control vector fields fi : ℝn × A → ℝn, i = 1, ..., N , commute if the flows of the
(time dependent) vector fields obtained by implementing arbitrary control func-
tions a1(⋅), ...,aN (⋅) in f1, ..., fN , respectively, commute. Theorem 2.11—which is
the main result of the paper — characterizes commutativity both in terms of three
(equivalent) zero bracket conditions and in terms of lifts of multi-time paths.

One of these zero bracket characterizations states that the (nonsmooth) control
vector fields f1, ..., fN commute if and only if

(1.4) [fi(⋅, �), fj(⋅, �)]set(x) = {0} ∀x ∈ ℝn ,

for all i, j = 1, ..., N and all control values �, �, where [, ]set is the afore-mentioned
set-valued Lie bracket. Alternatively, (1.4) can be replaced by an analogous condi-
tion involving the ordinary bracket at almost all points.

Instead, the characterization dealing with lifts establishes an equivalence be-
tween commutativity and the invariance with respect to lifts of multi-time paths.
Let us briefly explain what this means exactly. If (t1, ..., tN ), (t̃1, ..., t̃N ) ∈ ℝN ,
ti ≤ t̃i, ∀i = 1, ..., N , a multi-time path connecting (t1, ..., tN ) and (t̃1, ..., t̃N ) is a
curve t : [S�, S!] → ℝN such that the components ti are absolutely continuous,
increasing maps that verify ti(S�) = ti and ti(S!) = t̃i. If ai : [ti, t̃i] → A are L1

maps and a = (a1, ...,aN ), the a-lift of t (from a point y ∈ ℝn) is nothing but the
solution xa,t[y] of the Cauchy problem

dx(s)

ds
=

N∑
i=1

fi(x(s),ai ∘ ti(s))
dti(s)

ds
x(S�) = y.

The characterization of commutativity by means of lifts establishes that, for ev-
ery two multi-time paths t : [S�, S!] → ℝN and t̂ : [Ŝ�, Ŝ!] → ℝN connecting

(t1, ..., tN ) and (t̃1, ..., t̃N ), one has xa,t[y](S!) = xa,t̂[y](Ŝ!).
In order to prove Theorem 2.11 one needs two sets of results which will be

proved in n Sections 4 and 5, respectively. The former family of results concerns
the continuity properties of the input-output map (a, t) 7→ xa,t[y]. The latter set
of results deal with multi-time control strings, which are easy-to-handle represen-
tations of the pairs (a, t) when the controls ai are piece-wise constant and the

3The afore-mentioned question of the constant of the motions in Hamiltonian mechanics is
another example of this kind of relationship, for the fact that a number of functions are invariant
along the trajectories can be expressed by a system of first order partial differential equations.

More generally, many questions of simmetries and integrability of systems are directly connected
with existence issues for systems of PDE (see e.g. [O])



4 FRANCO RAMPAZZO

multi-time paths t are piece-wise affine with derivatives ranging in the canonical
basis of ℝN .

It is quite intuitive that commutativity of control vector fields is a sufficient
condition for inf-commutativity. As a matter of fact, every characterization of the
former notion turns out to be a sufficient condition for the latter. The question of
inf-commutativity is treated in Section 3. The latter is concluded by a brief discus-
sion on an open question concerning the characterization of inf-commutativity.

1.3. Notation and definitions. If H is a set and K ⊂ H, �K : H → {0, 1}
will denote the indicator function of K. This means that �K(ℎ) = 1 if and only if
ℎ ∈ K.

If n is a positive integer, y = (y1, ..., yn) a point of the Euclidean space ℝn, we
shall set

∣y∣ =

⎛⎝ ∑
i=0,...,n

(yi)
2

⎞⎠ 1
2

, ∣y∣1 =
∑

i=0,...,n

∣yi∣.

If R is a non negative real number, we shall use B[y,R] to denote the closed ball
(with respect to the norm ∣ ⋅ ∣) of center y and radius R. If E ⊂ ℝn, we shall set

B[E, r] = ∪y∈EB[y, r]

We shall use ∥⋅∥∞ and ∥⋅∥ to denote the C0 norm and the the L1 norm (on suitable
spaces).

A control vector field on ℝn is a map f : ℝn×A→ ℝn, where A is any set, called
set of control values. If I is a real interval, and A ⊂ ℝm for some positive integer m,
we shall use ℬ(I, A) [resp. L1(I, A)] to denote the sets of Borel measurable [resp.
Lebesgue integrable] maps from I to ℝm that take values in A.

If y ∈ ℝn, I is a real interval, a : I → A is a map —called control—, t0 ∈ I,
and if the Cauchy problem

(1.5) ẋ(t) = f(x(t), a(t)) x(t0) = y

has a unique solution on I, for any t ∈ I we shall use

ye
∫ t
t0
f(a)

to denote the value at t ∈ I of this solution. This notation is borrowed from [AG]
and [KS]. If f = f(x) is independent of the control —i.e., f is an autonomous
vector field— we shall write

ye(t−t0)f

instead of

ye
∫ t
t0
f
.

If N > 1 is an integer, and, for every i = 1, ..., N , fi : ℝn×A→ ℝn is a control
vector field, Ii is a real interval, t0i ∈ Ii, and ai : Ii → A is a control (and for every
y ∈ ℝn the Cauchy problem

(1.6) ẋ(t) = fi(x(t),ai(t)) x(t0i) = y
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has a unique solution on Ii) we define inductively the product ye
∫ t1
t01

f1(a1)
...e

∫ tq
t0q

fq(aq)

by setting

ye
∫ t1
t01

f1(a1)
...e

∫ tq
t0q

fN (aN ) .
=
(
ye

∫ t1
t01

f1(a1)
...e

∫ tq−1
t0q−1

fN−1(aN−1)
)
e
∫ tq
t0N

fq(aN )
,

for every (t1, ..., tN ) ∈ I1 × ...× IN .
If q, n are positive integers and m : ℝq → ℝn is a locally Lipschitz continuous

map, we let DIFF (m) denote the set of points x ∈ ℝq such that f is differentiable
at x. Then Rademacher’s Theorem implies that ℝq∖DIFF (m) is a subset of zero
Lebesgue measure. If x ∈ DIFF (m) we shall use Dm(x) to denote the Jacobian
matrix of m at x.

The ordinary Lie bracket at x ∈ ℝn of two C1 vector fields f, g will be denoted
by [f, g]ord(x). That is, we shall set

[f, g]ord(x) = Dg(x) ⋅ f(x)−Df(x) ⋅ g(x)

If f, g are just locally Lipschitz continuous vector fields, we shall use both
the ordinary Lie bracket —which, by Rademacher’s theorem is defined almost
everywhere— and the following notion of (set-valued) Lie bracket, which has been
introduced in [RS1].

Definition 1.1. If f, g are locally Lipschitz continuous vector fields and x ∈
ℝn, we define the Lie bracket [f, g](x) of f and g at x to be the convex hull of the
set of all vectors

(1.7) v = lim
j→∞

[f, g]ord(xj),

for all sequences {xj}j∈ℕ such that

1. xj ∈ DIFF (f) ∩DIFF (g) for all j,
2. limj→∞ xj = x,
3. the limit v of (1.7) exists.

For every x ∈ ℝn, it is clear that [f, g](x) is a convex, compact, and nonempty
subset of ℝn. Moreover, the skew-symmetry identity

(1.8) [f, g](x) = −[g, f ](x)

clearly holds for all x ∈ ℝn. (This means that [f, g](x) = {w : −w ∈ [g, f ](x)). In
addition, each locally Lipschitz continuous vector field g satisfies the identity

(1.9) [g(x), g(x)] = {0} for every x ∈ ℝn .

Remark 1.2. If both f and g are continuously differentiable in a neighborhood
of a point x then [f, g](x) = {[f, g]ord(x)}. However this is not true in general at the
points of DIFF (f) ∩DIFF (g), where only the inclusion [f, g](x) ⊇ {[f, g]ord(x)}
holds true everywhere.

2. Commutativity of flows of nonsmooth control vector fields

In this section we shall extend the notion of flows’ commutativity to (non-
smooth) control vector fields. We shall characterize this commutativity essentially
in two ways: first, like in the case of vector fields, commutativity will be shown
to be equivalent to each of the three suitable Constant Control Zero Lie Bracket
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conditions introduced in Definition 2.7 below; secondly, commutativity will be char-
acterized in terms of lifts of (absolutely continuous) multi-time paths—see Definition
2.8 below.

Let n,m,N be positive integers an integer and let A ⊂ ℝm. Let f1, ..., fN be a
family of control vector fields defined on ℝn ×A.

We shall assume the following structural hypotheses (H1)-(H2) on the data:

(H1) For every i = 1, ..., N and every compact subset K ∈ ℝn, there exists
LK ≥ 0 such that

∣fi(x, a)− fi(y, b)∣ ≤ LK(∣x− y∣+ ∣a− b∣) ∀(x, a), (y, b) ∈ K ×A.
(H2) 4 There exists a constant C such that

fi(x, �) ≤ C(1 + ∣x∣+ ∣�∣) ∀(x, �) ∈ ℝn ×A

Let us give a notion of commutativity for control vector fields, which essentially says
that the corresponding flows commute for every choice of the control maps ai(⋅).

Definition 2.1. Let us consider multi-times 5 t = (t1, ..., tN ), t̃ = (t̃1, ..., t̃N )
such that t ≤ t̃ (i.e. ti ≤ t̃i , ∀i = 1, ..., N). Let us set

A[t,t̃] =
(
ℬ([t1, t̃1], A) ∩ L1([t1, t̃1], A)

)
× ...×

(
ℬ([tN , t̃N ], A) ∩ L1([tN , t̃N ], A)

)
Each element a = (a1, ...,aN ) ∈ A[t,t̃] will be called a N -control defined on [t, t̃].6

Definition 2.2. We say that the flows of the control vector fields f1, ..., fN
commute if for every N -control

a = (a1, ...,aN ) ∈ A[t,t̃]

and any permutation (i1, ..., iN ) of (1, ..., N) one has

ye
∫ t̃1
t1
f1(a1)... e

∫ t̃q
tq
fq(aq) = ye

∫ t̃i1
ti1

fi1 (ai1 )
... e

∫ t̃iq
tiq

fiq (aiq )

Remark 2.3. When the fi are independent of the controls —that is, when
they are vector fields— this condition reduces to the usual notion of commutativity
of flows of vector fields:

ye(t̃1−t1)f1 ... e(t̃q−tq)fq = ye(t̃i1−ti1 )fi1 ... e(t̃iq−tiq )fiq

To begin with, let us consider the case of vector fields without controls. Let us
state three Zero Lie Bracket conditions which will be used for the characterization
of the commutativity of locally Lipschitz continuous vector fields.

4Via a standard application of Gronwall’s inequality, this growth hypothesis guarantees global

existence of solutions for the ordinary differential equation we are going to consider. Of course
it can be replaced by conditions of different type, one can assume the fi’s verify some Nagumo’s

type condition.
5Motivated by the context, we call multi-time each element on ℝN .
6The need for Borel measurable controls ai comes from the fact we want compositions ai ∘ ti

with continuous ti to be Lebesgue measurable —actually they turn out to be Borel measurable
as well.
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Definition 2.4. Let {g1, ..., gq} be a finite family of locally Lipschitz continu-
ous vector fields on ℝn. We shall say that:

∙ the vector fields g1, ..., gq verify the ordinary Zero Lie Bracket condition
(ZLB)ord if, for every i, j ∈ 1, ..., N ,

[gi, gj ]ord(x) = 0 ∀x ∈ DIFF (gi) ∩DIFF (gj);

∙ the vector fields g1, ..., gq verify the a.e. Zero Lie Bracket condition
(ZLB)a.e.

7 if, for every i, j ∈ 1, ..., N ,

[gi, gj ]ord(x) = 0 for a.e. x ∈ DIFF (gi) ∩DIFF (gj);

∙ the vector fields g1, ..., gq verify the set-valued Zero Lie Bracket condition
(ZLB)set if, for every i, j ∈ 1, ..., N ,

[gi, gj ](x) = {0} ∀x ∈ ℝn.

Remark 2.5. In view of Theorem 2.6 below these conditions are in fact equiv-
alent. In particular the non trivial relation (ZLB)a.e. ⇒ (ZLB)ord holds true.

Let us recall from [RS2] a result valid for vector fields (without control).

Theorem 2.6. [RS2] Let {g1, ..., gq} be a finite family of locally Lipschitz con-
tinuous, complete8, vector fields on ℝn. Then the following conditions are equiva-
lent:

i) the flows of g1, ..., gq commute;
ii) the vector fields g1, ..., gq verify condition (ZLB)ord

iii) the vector fields g1, ..., gq verify condition (ZLB)a.e. ;
vi) the vector fields g1, ..., gq verify condition (ZLB)set.

Let us generalize conditions (ZLB)ord, (ZLB)a.e., and (ZLB)set to control
vector fields as follows.

Definition 2.7. Let {f1, ..., fN} be a finite family of control vector fields on
ℝn satisfying the structural hypotheses (H1)-(H2). We shall say that:

∙ the vector fields f1, ..., fN verify the ordinary Constant Control Zero Lie
Bracket condition (ccZLB)ord if, for every choice of the controls values
a1, ..., aN ∈ A and every i, j ∈ 1, ..., N ,

[fi(x, ai), fj(x, aj)]ord = 0 ∀x ∈ DIFF (fi(⋅, ai)) ∩DIFF (fj(⋅, aj));
(i.e. the vector fields f1(⋅, a1), ..., fN (⋅, aN ) verify (ZLB)ord)

∙ the vector fields f1, ..., fN verify the a.e. Constant Control Zero Lie
Bracket condition (ccZLB)a.e. if, for every choice of the controls values
a1, ..., aN ∈ A and every i, j ∈ 1, ..., N ,

[fi(x, ai), fj(x, aj)]ord = 0 for a.e.x ∈ DIFF (fi(⋅, ai)) ∩DIFF (fj(⋅, aj));
(i.e. the vector fields f1(⋅, a1), ..., fN (⋅, aN ) verify (ZLB)a.e.);

7Let us mention that for a different purpose —namely the generalization of Frobenius’ theo-
rem to Lipschitz continuous vector fields— an almost everywhere condition involving ordinary Lie
brackets has been exploited in [S].

8By saying that a vector field f is complete we mean that the solution t 7→ yetf is defined

for all y ∈ ℝn and t ∈ ℝ. For a more general definition of commutativity, including the case of
non complete vector fields, we refer to [RS2].
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∙ the vector fields f1, ..., fN verify the set-valued Constant Control Zero Lie
Bracket condition (ccZLB)set if, for every choice of the controls values
a1, ..., aN ∈ A and every i, j ∈ 1, ..., N ,

[fi(x, ai), fj(x, aj)] = {0} ∀x ∈ ℝn;

(i.e. the vector fields f1(⋅, a1), ..., fN (⋅, aN ) verify (ZLB)set)

In Theorem 2.11 below it will be proved that conditions (ccZLB)ord, (ccZLB)a.e.,
and (ccZLB)set are mutually equivalent and characterize commutativity of control
vector fields.

Before stating Theorem 2.11, let us introduce the concepts of multi-time path
and its a-lift.

Definition 2.8. Let S� < S! be real numbers. An, absolutely continuous
map

t = (t1, ..., tN ) : [S�, S!]→ ℝN

is called a multi-time path if the components ti are increasing maps 9 and ∣dt(s)
ds ∣ > 0

for almost every s ∈ [S�, S!]. It t
.
= t(S�) and t̃

.
= t(S!) we say that t connects

t with t̃. For every pair t, t̃ ∈ ℝN such that t ≤ t̃, the set of all multi-time paths
connecting t with t̃ will be denoted by MTt,t̃.

Definition 2.9. A multi-time path t is called simple if it is piece-wise affine
and verifies

dt

ds
(s) ∈

{ ∂

∂t1
, ...,

∂

∂tN

}
,

for all s where it is differentiable, where
{

∂
∂t1
, ..., ∂

∂tN

}
is the canonical base of ℝN .

Definition 2.10. Let t, t̃ ∈ ℝN be multi-times such that t ≤ t̃, and let a be a
N -control defined on [t, t̃]. Let t : [S�, S!]→ ℝN be a multi-time path connecting t
with t̃ . Let us define the a-lift of t from a point y ∈ ℝn as the solution on [S�, S!]
of the Cauchy problem

(2.1)
dx

ds
=

N∑
i=1

fi(x(s),ai ∘ ti(s))
dti
ds

x(S�) = y

(We shall see in Theorem 4.3 that this solution exists and is unique.) We shall use
x(a,t)[y](⋅) to denote the a-lift of t from the point y ∈ ℝn

Here is the main theorem, which is also crucial for proving the results of the
next section.

Theorem 2.11. The following statements are equivalent:

i) the flows of the control vector fields f1, ..., fN commute;

9We say a real map r defined on an interval I is increasing [resp. strictly increasing] if
�, � ∈ I and � < � imply r(�) ≤ r(�) [resp. r(�) < r(�)] .
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ii) if t ≤ t̃ are multi-times , a is a N -control defined on [t, t̃], and t :

[S�, S!]→ ℝN , t̂ : [Ŝ�, Ŝ!]→ ℝN are simple multi-time paths connecting
t with t̃, then

x(a,t)[y](S!) = x(a,t̂)[y](Ŝ!);

iii) if t ≤ t̃ are multi-times , a is a N -control defined on [t, t̃], and t :

[S�, S!] → ℝN , t̂ : [Ŝ�, Ŝ!] → ℝN are multi-time paths connecting t
with t̃, then

x(a,t)[y](S!) = x(a,t̂)[y](Ŝ!);

iv) the vector fields f1, ..., fN verify condition (ccZLB)ord ;
v) the vector fields f1, ..., fN verify condition (ccZLB)a.e. ;
vi) the vector fields f1, ..., fN verify condition (ccZLB)set.

The proof of this theorem requires some preparatory tools which will be pro-
vided in Sections 4 and 5. The proof itself will be given in Section 6.

Remark 2.12. In the particular case when the vector fields are independent
of controls, condition iii) can be regarded as a further condition (in terms of lifts)
equivalent to those stated in Theorem 2.6.

3. Inf-commutativity

In this section we propose a notion of commutativity for optimal control prob-
lems, which we shall call inf-commutativity.

Let N be a positive integer, and let {f1, ..., fN} be a family of N control vector
fields, on which we assume the same hypotheses as in section 2.

Definition 3.1. Let us consider two multi-times t ≤ t̃, and let ' : ℝn → ℝ be
a function. Let t : [S�, S!]→ ℝN be a multi-time path connecting t with t̃.

For any y ∈ ℝn, let us consider the optimal control problem

Pt[', y] minimize
{
'
(
x(a,t)[y](S!)

)
a ∈ A[t,t̃]

}
,

Moreover, let us consider the value function

Vt[', y]
.
= inf

a∈A[t,̃t]

'
(
x(a,t)[y]S!()

)
.

A N -control ǎ for problem Pℱt [', y] will be called optimal if

'
(
x(ǎ,t)[y](S!)

)
= Vt[', y]

Definition 3.2. We say that the flows of the control vector fields f1, ..., fN inf-
commute if for any map ' : ℝn → ℝ, any y ∈ ℝn, any pair (t, t̃) =

(
(t1, ..., tN ), (t̃1, ..., t̃N )

)
,

t ≤ t̃, and any two multi-time paths t, t̂ connecting t and t̃, one has

Vt[', y] = Vt̂[', y]

Definition 3.3. We say that the flows of the control vector fields f1, ..., fN
strongly inf-commute if both the following conditions hold true:

i) the flows of the control vector fields = f1, ..., fN inf-commute;
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ii) for any map ' : ℝn → ℝ, any y ∈ ℝn, any pair (t, t̃) =
(
(t1, ..., tN ), (t̃1, ..., t̃N )

)
,

t ≤ t̃, and any two multi-time paths t, t̂ connecting t and t̃, an N -control
a is optimal for problem Pℱt [', y] if and only if a is optimal for problem
Pℱ

t̂
[', y].

Remark 3.4. Definitions 3.2 and 3.3 deal only with the so-called Mayer prob-
lems —say, problems with a final cost. Actually, this is not restrictive, in that it
is possible to consider problems including a current cost as well, by means of a
standard enlargement of the state-space’s dimension —see e.g. the example below.

Example 1. Going back to the example proposed in the Introduction, one can
consider the following question:
Q1Does the infimum value of the problem

(3.1)

{
inf
(∫ T1

0
l(x(t), c(t))dt+

∫ T2

0
m(y(t), d(t))dt

)
ẋ = f(x, c) x(0) = x̄ ẏ = g(y, d) y(0) = x(T1)

coincide with the infimum value of the problem

(3.2)

{
inf
(∫ T2

0
m(y(t), d(t))dt+

∫ T1

0
l(x(t), c(t))dt

)
ẏ = g(y, d) y(0) = x̄ ẋ = f(x, c) x(0) = y(T2) ?

A further reasonable question is :
Q2Provided (c, d) is an optimal pair of controls for (3.1), is (c, d) an optimal

pair for (3.2) as well?
Let us consider the enlarged state-space ℝn × ℝ and the control vector fields

f1, f2 obtained by supplementing f and g with new components l and m, respec-
tively. If the flows of the control vector fields f1, f2 inf-commute [resp. strongly
inf-commute], the answer to the former [resp. the latter] question is positive. In
fact, stating that the two infima coincide is equivalent to taking (in Definition 3.2
[resp. 3.3]) (x̄, 0) as initial point, '(x, z) = z ∀(x, z) ∈ ℝn × ℝ, and

t(s) =
∫ s

0

[
�(0,T1)(�)

∂
∂t1

+ �(T1,T1+T2)(�)
∂
∂t2

]
d�,

t̂(s) =
∫ s

0

[
�(T2,T2+T1)(�)

∂
∂t1

+ �(0,T2)(�)
∂
∂t2

]
d�,

s ∈ [0, T1 + T2].

In Remark ?? below we shall provide answers to questions Q1 and Q2.

Remark 3.5. Because of the arbitrariness of the map ' in Definition 3.2 one
could suspect that the mere commutativity —see Definition 2.2— coincides with
inf-commutativity. Actually commutativity implies strong inf-commutativity —see
Proposition 3.6 below— but the two condition are not equivalent, as shown in the
counterexample in Remark 3.8 below.

Proposition 3.6. If the flows of the control vector fields = {f1, ..., fN} com-
mute, then they strongly inf-commute.

Proof. Let ', y ∈ ℝn, (t, t̃), t ≤ t̃, and let t : [S�, S!] → ℝN , t̂ : [Ŝ�, Ŝ!] →
ℝN belong to MTt,t̃. Let us consider the reachable set from y of the lift of t:

ℛt[y] =
{
x(a,t)[y](S!), a is a N -control for the problem Pℱt [', y]

}
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Let us define ℛt̂[y], the reachable set from y of the ℱ-lift of t̂, in a similar way. By
Theorem 2.11 it follows that

ℛt[y] = ℛt̂[y],

so,in particular,

inf '
(
x(a,t)[y](S!)

)
= inf
z∈ℛt[y]

'(z) = inf
z∈ℛt̂[y]

'(z) = inf '
(
x(a,t̂)[y](Ŝ!)

)
.

Hence the control vector fields f1, ..., fN inf-commute. Let us check that they
strongly inf-commute. Let ǎ be an optimal N -control for problem Pℱt [', y]. By
Theorem 2.11, for every N -control a, one has

x(a,t)[y]S!() = x(a,t̂)[y](Ŝ!)

Hence

'
(
x(ǎ,t̂)[y](Ŝ!)

)
= '

(
x(ǎ,t)[y](S!)

)
= inf '

(
x(a,t)[y](S!)

)
= inf '

(
x(a,t̂)[y](Ŝ!)

)
,

that is, ǎ is an optimal N -control for problem Pℱ
t̂

[', y] as well. □

By the previous Proposition and Theorem 2.11 we get:

Theorem 3.7. Let us assume hypothesis (ccZLB)a.e. (or, equivalently, (ccZLB)set).
Then the flows of the control vector fields = f1(x, a), ..., fN (x, a) strongly inf-commute.

Remark 3.8. Let us point out that condition (ccZLB)a.e. (or, equivalently,
(ccZLB)set) allows one to address problems with nonsmooth data. Moreover it is
invariant by changes of coordinates on ℝn. However, it must be observed that
its validity depends on the parameterization of the set-valued maps Fi(x)

.
=

{y ∈ ℝn ∣ y = fi(x, a) a ∈ A}. In other words, if Fi(x)
.
= {y ∈ ℝn ∣ y =

f̃i(x, a) a ∈ A} for an n-uple (f̃1, ..., f̃N ) ∕= (f1, ..., fN ), the validity of (ccZLB)a.e.
for (f1, ..., fN ) does not imply that the same property holds for (f̃1, ..., f̃N ) as well.

Remark 3.9. The dependence of (ccZLB)a.e. (or, equivalently, (ccZLB)set)
on the parameterization of the fi’s explains why (ccZLB)a.e. is not necessary even
for the mere inf-commutativity. Indeed, let us consider the case when n = 1, N = 2,
A = [−1, 1]× [0, 1],

f1(x, a1, a2) = a1 f2(x, a1, a2) = a1(1− a2 sin2 x)

Notice that f1, f2 do not verify condition (ccZLB)a.e.. Indeed

[f1(x, a1, a2), f2(x, a1, a2)] = −2a1a2 sinx cosx

Yet, the flows of control the vector fields f1, f2 do inf-commute. In fact, the following
stronger fact holds true for f1 and f2:

If ǎ(⋅) : [�, �] → A is a Borel measurable map and x̌(⋅) is the solution of a
Cauchy problem

ẋ = f2(x, ǎ), x(�) = y

then there exists a Borel measurable map a(⋅) such that, if x̂(⋅) is the solution of

ẋ = f1(x,a) x(�) = y,

then

x̂(t) = x(t) ∀t ∈ [�, �].
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Indeed, it is sufficient to set

a = (a1(t),a2(t))
.
=
(
ǎ1(t)(1− ǎ2(t) sin2 x̌(t)) , 0

)
Hence it is easy to check that, for any multi-time path t and any y ∈ ℝn,

(3.3) ℛt[y] = ℛt[y]

where ℛt[y] and ℛt[y] are the reachable sets of t — see the proof of Proposition
3.6— corresponding to the control vector fields {f1, f2} and {f̄1, f̄2}, respectively,
where f̄1 = f̄2 = f1. Since f1 is control-independent, f̄1 and f̄2 commute, so they
inf-commute. Hence, by (3.3), f1 and f2 commute as well.

Remark 3.10. Since condition (ccZLB)a.e. is equivalent to commutativity,
the example of the previous remark shows also that (ccZLB)a.e. is stronger than
inf-commutativity. We refer to Subsection 3.1 for short remarks about the question
of the identification of a necessary (and sufficient) condition for inf-commutativity.

Remark 3.11. (Working out the previous example) By applying Theorem 3.7
to Example 1 we obtain, in particular, that the infimum of problem (1.2) coincides
with the infimum of problem (1.3) provided f1 = (f, l) f2 = (g,m) verify condition
(ccZLB)a.e.

In the particular case of Calculus of Variations —i.e., when f(x, a) = g(x, a) =
a— this condition reduces to the fact that for every v, w ∈ ℝn one has

⟨Dl(x, v), w⟩ = ⟨Dl(x,w), v⟩
for all x such that both l(⋅, s) and m(⋅, r) are differentiable at x. In turn, it is easy
to verify that this condition is equivalent to the existence of Lipschitz continuous
1-forms A(x) = (A1(x), ..., An(x)), B(x) = (B1(x), ..., Bn(x)), such that

l(x, r) = ⟨A(x), v⟩ m(x, s) = ⟨B(x), w⟩ ∀x, v, w ∈ ℝn

and
∂Ai
∂xj

(x) =
∂Bj
∂xi

(x)

for almost every x ∈ ℝn.

3.1. An open question. As it has been shown in Remark 3.8, condition
(ccLBZ) is not necessary for inf-commutativity. In a sense, this should have been
expected, for condition (ccLBZ) affects all trajectories and not only optimal tra-
jectories.

We are not moving any step in this delicate direction. Yet we wish to briefly
illustrate the nature of the problem. As a matter of fact, a condition on optimal
trajectories should likely involve the adjoint variables arising in necessary conditions
fit for these minimum problems. The appropriate condition for commutativity
should be likely a condition on the associated characteristic vector fields

XHi =

(
∂Hi

∂p
, −∂Hi

∂x
,
∂Hi

∂p
p−Hi

)
Hi = sup

a∈A
{p ⋅ fi(x, a)}

Roughly speaking, this would mean that the Lie bracket [XHi , XHj ] should be zero,
which causes serious drawbacks from the regularity viewpoint. Indeed, in general
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the vector fields XHi are not even continuous. Some hint could come from the fact
that, provided all function have the sufficient regularity, one has

[XHi , XHj ] = X{Hi,Hj}

where {H,K} denotes the Poisson bracket of H and K, i.e.,

{H,K} =

N∑
1

∂H

∂xi

∂K

∂pi
− ∂K

∂xi

∂H

∂pi

Notice that [XHi , XHj ] = 0 if and only if {Hi, Hj} = 0, so one could try to use the

latter condition, which in principle requires less regularity. 10. As a matter of fact
it is easy to prove that (ccLBZ) implies

(3.4) {Hi, Hj} = 0 a.e.

Incidentally, let us notice that in the example of Remark 3.8 condition (3.4) is
verified (while (ccLBZ) is not).

Hence it is reasonable to conjecture that (some weak form of ) (3.4) might
characterize the inf-commutativity. At the moment we are unable to go beyond
this conjectural level and leave the question as an open problem.

4. The input-output map (a, t) 7→ x(a,t)[y]

In this section we will investigate (for a fixed y ∈ ℝn) some continuity properties
of the input-out map

(a, t) 7→ x(a,t)[y].

These properties, besides being interesting e.g. in controllability questions, turn
out to be essential essential in the proof of Theorem 2.11.

Let us begin by observing that the equation

(4.1)
dx(s)

ds
=

N∑
i=1

fi(x(s),ai ∘ ti(s))
dti(s)

ds

is invariant with respect to changes of the parameter s. More precisely, one has:

Lemma 4.1. Let s : [L�, L!] → [S�, S!] is a stricly increasing, absolutely
continuous map. Then a map x : [S�, S!] → ℝn is a solution of (4.1) if and only
if the map z

.
= x ∘ s is (absolutely continuous and is) a solution of

(4.2)
dz(�)

d�
=

N∑
i=1

fi(z(�),ai ∘ t̃i(�))
dt̃i(�)

d�

on [L�, L!], where t̃(�)
.
= t(s(�)).

.
In view of the uniqueness properties of equations (4.1) and (4.2), the proof of

this result is trivial as soon as one exploits the following fact:

Lemma 4.2. If a map s : [a, b]→ [c, d] is stricly increasing, absolutely continu-
ous, and such that s′(�) > 0 for almost every � ∈ [a, b], then then the inverse map
s−1 turns out to be a stricly increasing and absolutely continuous map as well.

10An indication in this direction comes also from some results concerning existence of solu-

tions for Hamilton-Jacobi multi-time systems ( see [BT], [LR],[MR]), which, as we have men-
tioned in the Introduction, is closely related to the question of inf-commutativity.
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Proof of Lemma 4.2. Of course it is not restrictive to assume that s(⋅) is onto.
For any measurable subset E ⊂ ℝ, let meas(E) denote the Lebesgue measure of E.
We have to show that if B ⊂ [a, b] is a measurable set such that meas(s(B)) = 0
then meas(B) = 0 Indeed

0 = meas(s(B)) =

∫
�B(�)s′(�) d�

implies that �B(�)s′(�) = 0 almost everywhere. Since s′(�) > 0 for almost every
� ∈ [a, b] this implies that meas(B) = 0.

Let t, t̄ ∈ ℝN , t < t̄. Let MT#
[t,t̄] ⊂MT[t,t̄] denote the family of multi-time paths

(connecting t and t̄ and) parameterized on the interval [0, 1]. In view of Lemma
4.1, this turns out to be not restrictive for the purpose of proving Theorem 2.11.

Let us define the set AP [t,t̄] of admissible policies between t and t̄ by setting

AP [t,t̄]
.
= A[t,t̄] ×MT#

[t,t̄] ⊂
(
Πi=1L

1([ti, t̄i], A)
)
× C0([0, 1],ℝN ),

and let us endow it with the topology induced by the product topology.

Theorem 4.3. Let y ∈ ℝn, t, t̄ ∈ ℝN , t ≤ t̄. For every (a, t) ∈ AP [t,t̄] there
exists a unique solution x(a,t)[y] of (2.1).

Moreover, the input-output functional

Sy[t,t̄] : AP [t,t̄] → C0([0, 1],ℝn)

defined by

Sy[t,t̄](a, t) = x(a,t)[y]

is continuous.

We shall prove this theorem as an application of the following version of Ba-
nach’s fixed point Theorem.

Theorem 4.4. Let X be a Banach space with norm ∥ ⋅ ∥, M a metric space,
and let Φ : M ×X → X be a continuous function such that

∥Φ(m,x)− Φ(m, z)∥ ≤ L∥x− z∥ ∀ m ∈M, x, z ∈ X,

for a suitable L < 1. Then, for every m ∈M there exists a unique x(m) ∈ X such
that

(4.3) x(m) = Φ(m,x(m)).

The map m→ x(m) is continuous: more precisely, it satisfies

(4.4) ∥x(m)− x(m′)∥ ≤ (1− L)−1∥Φ(m,x(m′)) − Φ(m′, x(m′))∣

for all m,m′ ∈M .

In order to prove Theorem 4.3 let us set

X = {x(⋅) ∈ C0([0, 1],ℝn) ∣ x(0) = y} M = AP [t,t̄]

and let us consider the functional

Φ[t,t̄][⋅] : M ×X → X
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Φ[t,t̄][(a, t), z](s)
.
= y +

N∑
i=1

∫ s

0

fi(z(�),ai ∘ ti(�))
dti
d�

d� ∀s ∈ [0, 1]

In order to apply Theorem 4.4 we need to prove the following result on the
continuity properties of the functional Φ[t,t̄].

Proposition 4.5. Let us assume that [(H1)-(H2) are verified and] there exists
a constant L1 such that

(4.5) ∣f(x, a)− f(y, b)∣ ≤ L1(∣x− y∣+ ∣a− b∣) ∀(x, a), (y, b) ∈ ℝn ×A.

Then the functional Φ[t,t̄] is continuous and verifies

(4.6) ∥Φ[t,t̄][(a, t), z]− Φ[t,t̄][(ã, t), z]∥∞ ≤ L1

N∑
i=1

∥ai − ãi∥1.

for all a, ã ∈ A[t,t̄] and t ∈ MT#
[t,t̄]. Moreover, if one endows the space X with the

norm ∥x∥∗ = sups∈[0,1] e
−2L1s∣x(s)∣ 11 then one has

(4.7) ∥Φ[t,t̄][(a, t), z1]− Φ[t,t̄][(a, t), z2]∥∗ ≤
1

2
∥z1 − z2∥∗

for all (a, t) ∈ AP [t,t̄].

Proof. The proof of (4.7) is straighforward, so we omit it. Let us examine
the dependence in the variable a. Let (a, t), (ã, t) ∈M and z ∈ X. Then, for every
s ∈ [0, 1] one has

∣Φ[t,t̄][(a, t), z](s)− Φ[t,t̄][(ã, t), z](s)∣ ≤∑N
i=1

∫ s
0
∣fi(z(�),ai ∘ ti(�))− fi(z(�), ãi ∘ ti(�))∣t′i(�) d� ≤
L1

∑N
i=1

∫ s
0
∣ai ∘ ti(�)− ãi ∘ ti(�)∣t′i(�) d� =

L1

∑N
i=1

∫ ti(s)

0
∣ai(�)− ãi(�)∣ d� ≤ L1

∑N
i=1 ∥ai − ãi∥1

By taking the maximum over [0, 1] we obtain (4.6).

Finally, let us examine the continuity in t. For this purpose let us set

MT#,+
[t,t̄]

.
= {t ∈MT#

[t,t̄] ∣ ∀i = 1, ..., N ti is either constant or strictly increasing }

Since MT#,+
[t,t̄] is dense MT#

[t,t̄], Lemma 4.6 below implies that, for every a and

z, the map

t 7→ Φ[t,t̄][(a, t), z]

is continuous. Since (a, z) → Φ[t,t̄][(a, t), z] is continuous in (a, z), uniformly with
respect to t, we can conclude that Φ[t,t̄] is continuous. □

In order to conclude the proof of Proposition 4.7 we need to prove the following
result:

11This norm is equivalent to the usual C0 norm ∥ ⋅ ∥∞.



16 FRANCO RAMPAZZO

Lemma 4.6. For every ((a, t), z) ∈ AP [t,t̄] and every sequence tn in MT#,+
[t,t̄]

such that
lim
n→∞

∥tn − t∥∞ = 0

one has
lim
n→∞

∥Φ[t,t̄][(a, t
n), z]− Φ[t,t̄][(a, t), z]∥∞ = 0

This result will be proved after Lemma 4.7 below, which concerns the asymp-
totic behavior of the inverses of a sequence of monotone maps converging to a given
function. For any map � : A→ B and any subset C ⊆ B, let us use �−1 to denote
the counter image of C.

Lemma 4.7. Let I, J ⊂ ℝ be compact intervals and let g : I → J be a continu-
ous, surjective, increasing map. Let gk : I → J , k ∈ ℕ, be a sequence of continuous,
surjective, strictly increasing maps such that

lim
k→∞

∥gk − g∥∞ = 0.

Then, for every � ∈ J one has

lim
k→∞

d
(
g−1
k (�) , g−1({�})

)
= 0

where d denotes the usual distance between a point and a set.

Proof. Let us observe that g−1({�})) is a compact interval. Assume by con-
tradiction that the thesis is false. Then, by possibly passing to a subsequence, there
exists � such that either

(4.8) g−1
k (�) ≤ min g−1({�}))− �

or

(4.9) g−1
k (�) ≥ max g−1({�})) + �

for all k ∈ ℕ Let us continue the proof by assuming that (4.8) holds —the proof in
the alternative case being akin.

Let us set sk = g−1
k (�), and let us observe that by (4.8) there exists � > 0 such

that

(4.10) g(sk) ≤ � − �
for all k ∈ ℕ. Indeed, this follows from g(sk) ≤ g(min g−1({�}))− �) < �.

On the other hand,

∣� − g(sk)∣ = ∣gk(sk)− g(sk)∣
converges to zero, for gk converges to g uniformly. This contradicts (4.10), which
concludes the proof. □

Proof of Lemma 4.6. Let Z be the maximal subset of {1, ..., N} such that
ti > t̃i for every i ∈ Z. Let us observe that for every j ∈ {1, ..., N}∖Z, every k ∈ ℕ,
and every s ∈ [0, 1], tkj (s) = tj(s) = tj = t̄j . For every i ∈ Z and every integer
k ∈ ℕ, let us consider the map

ski
.
= (tki )−1 ∘ ti : [0, 1]→ [0, 1],

and let us set

Wi
.
= {� ∈ [ti, t̄i] ∣ t−1

i (�) is a non trivial interval} Ji
.
= t−1

i (Wi)
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Notice that Wi is a countable set, so Ji is a countable union of compact, pair-wise
disjoint intervals. Moreover, for every i ∈ Z and every s ∈ [0, S]∖Ji one has

(4.11) lim
k→∞

∣s− ski (s)∣ = 0

Indeed, if s ∈ [0, 1]∖Ji then {s} = (ti)
−1({ti(s)}). Hence, by Lemma 4.7 one

obtains

lim
k→∞

∣s− ski (s)∣ = lim
k→∞

d
(

(ti)
−1({ti(s)}) , (tki )−1(ti(s))

)
= 0

Now, for every s ∈ [0, 1] and any k ∈ ℕ, by applying the change of variable
� = ski (�) we obtain
(4.12) ∣∣∣Φ[t,t̄]((a, t

k), z)(s)− Φ[t,t̄]((a, t), z)(s)
∣∣∣ ≤∑

i∈Z

∣∣∣∫ s0 fi(z(�),ai ∘ ti(�)
)

(ti)
′(�) d� −

∫ s
0
fi

(
z(�),ai ∘ tki (�)

)
(tki )′(�) d�

∣∣∣ =∑
i∈Z

∣∣∣ ∫ s0 fi(z(�),ai ∘ ti(�)
)

(ti)
′(�) d� −

∫ �ki (s)

0
fi

(
z(ski (�)),ai ∘ ti(�)

)
(ti)
′(�) d�

∣∣∣ ≤
ℐk +Wk

s ,

where

�ki (s) = min t−1
i ({tki (s)}) ,

ℐk =
∑
i∈Z

∫ 1

0

∣∣∣fi(z(�),ai ∘ ti(�)
)
− fi

(
z(ski (�)),ai ∘ ti(�)

)∣∣∣(ti)′(�) d� ,

and

Wk =
∑
i∈Z

∫ max{s,�ki (s)}

min{s,�ki (s)}

∣∣∣fi(z(ski (�)),ai ∘ ti(�)
)∣∣∣(ti)′(�) d�.

Setting, for every i ∈ Z,

Di = {s ∈ [0, 1] ∣ t′i(s) > 0}

one has

ℐk ≤
∑
i∈Z

L1

∫ 1

0

∣z(�)− z(ski (�))∣�Dit′i(�) d�

Clearly Di ⊂ [0, 1]∖Ji, so by (4.11) (and by the continuity of z) for every � ∈ Di

one has

lim
k→∞

(z(�)− z(ski (�))t′i(�) = 0

Hence by Lebesgue’s Dominated Convergence Theorem one obtains

(4.13) lim
k→∞

ℐk = 0

Moreover, since ∀i ∈ Z tki converges uniformly to ti, one has

lim
k→∞

Wk
s = lim

k→∞

∑
i∈Z

∫ max{t(s),tk(s)}

min{ti(s),tki (s)}

∣∣∣fi(z((tki )−1(�)),ai(�)
)∣∣∣d� = 0

Notice that, by the absolute continuity of the maps

� 7→
∫ �

ti

∣∣∣fi(z((tki )−1(�)),ai(�)
)∣∣∣d� ,
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this limit is equal to zero, uniformly with respect to s. That is, there exists a
sequence Wk such that

(4.14) Wk
s ≤ Wk ∀(s, k) ∈ [0, 1]× ℕ and lim

k→∞
Wk = 0 .

By (4.12), (4.13), and (4.14), taking the maximum in s over [0, 1] we obtain the
thesis. □

Proof of Theorem 4.3. Let us begin by proving the theorem under the additional
hypothesis (4.5). Since a solution of (2.1) is a fixed point of the functional

z 7→ Φ[t,t̄][(a, t), z][y]

by (4.7) and Theorem 4.4 we obtain that there exists a unique solution x(a,t)[y].
Moreover, since in view of Theorem 4.4 one has

(4.15) ∥x(a,t)[y]− x(ã,t̃)[y]∥∗ ≤ 2∥Φ[t,t̄][(a, t), x(ã,t̃)[y]]− Φ[t,t̄][(ã, t̃), x(ã,t̃)[y]]∥∗
by Proposition 4.5 one obtains

(4.16)

∥x(a,t)[y]− x(ã,t̃)[y]∥∗ ≤

2
∑N
i+1 ∥a− ã∥1 + 2

∥∥∥Φ[t,t̄][(a, t̃), x(ã,t̃)[y]]− Φ[t,t̄][(ã, t̃), x(ã,t̃)[y]]
∥∥∥
∞

which, by the continuity of Φ[t,t̄] implies the thesis of the theorem (when (4.5) is
assumed).

Let us prove that the thesis is still valid under the only structural hypotheses
(H1)-(H2). This will be done by means of standard cut-off function arguments. Let

ã,a ∈ A[t,t̄], t̃ ∈ MT#
[t,t̄], y ∈ ℝn, and let �R : ℝn → ℝ be a C∞ function such

that � = 1 on B[y , R] and � = 0 on the complement of B[y , R + 1], where R is a
positive number to be determined a posteriori. Let us consider the control vector
fields fR1 , ..., f

R
N defined, for every i = 1, ..., N , by

fRi (x, a) = �R(x)fi(x, a) ∀(x, a) ∈ ℝn ×A

In particular, these control vector fields verify hypothesis (4.5), with L1 = LB[y,R+1].
Hence, by the first part of the proof, for every (a, t) ∈ AP [t,t̄] there exists a unique
solution of the Cauchy problem

dx(s)

ds
=

N∑
i=1

fRi (x(s),ai ∘ ti(s))
dti(s)

ds
x(0) = y

which will be denoted by xR(a,t)[y]. Let us fix t̃ ∈ MT#
[t,t̄] and ã ∈ A[t,t̄]. Then for

all a ∈ A[t,t̄] and t ∈MT#
[t,t̄], by (4.16), one has

(4.17) ∥xR(a,t)[y]− xR
(ã,t̃)

[y]∥∞ ≤ 2L1∥
N∑
i=1

ãi − ai∥1 + !(∥t− t̃∥∞),

where ! = !(�) is a positive, strictly increasing function converging to 0 when �
tends to 0.

By the structural hypothesis (H2) and by a standard application of Gronwall’s
inequality there exists a number M (depending on ã and independent of R) such
that

(4.18) xR
(ã,t̃)

[y]([0, 1]) ⊂ B[y,M ] ,
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Let � > 0 be such that

(4.19) 2L1N� + !(�) < 1

Then, by (4.17)-(4.19), for all a, t such that

(4.20) ∥ai − ãi∥1 < � ∀i = 1, ..., N ∥t− t̃∥∞ < � ,

one has

xR(a,t)[y]([0, 1]) ⊂ B[y,M + 1] .

Therefore, if we choose R to be equal to M + 1 it follows that, for all a, t sat-
isfying (4.20), xR(a,t)[y] are solutions of the original equation as well (corresponding

to (ã, t̃) and (a, t), respectively). By the (obvious) local uniqueness of the solution
it follows that

xR(a,t)[y] = x(a,t)[y].

for all a, t satisfying (4.20). Hence the thesis follows from the first part of the
theorem. □

5. Multi-time control strings

Let us introduce the notion of multi-time control string, which will be exploited
in the next section in order to prove Theorem 2.11. Multi-time control strings are
discrete, easy-to-handle, representations of the pairs (a, t), where a is an N -control
whose components are piecewise constant and t is a simple multi-time path.

Definition 5.1. A multi-time control string is a four-uple

� =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)
,

where R is a positive integer, (�1, ..., �R) is a R-uple of non-negative real numbers,
ℎ is a map from {1, ..., R} into {1, ..., N}, and �� ∈ A, for every � = 1, ..., R. To
every multi-time control string � let us associate the number

S� =

R∑
�=1

��

The set of all multi-time control strings will be denoted by C.

Definition 5.2. Let � =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)
be a multi-time con-

trol string, and let us set s0 = 0, s� =
∑�
�=1 �� for every � = 1, ..., R. Let y ∈ ℝn.

By trajectory starting at y and corresponding to the multi-time control string �.
we mean the solution of the Cauchy problem 12

dx

ds
(s) =

R∑
�=1

�(s�−1,s�)(s)fℎ(�)(x(s), ��) x(0) = y

This map will be denoted by x[�, y](⋅)

12This means that at each interval (s�−1, s�) the state evolves according to the vector field
fℎ(�)(⋅, ��).
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5.0.1. Multi-time control strings and lifts. We are going to establish a one-to-
one correspondence between the set of multi-time control strings and the class of
pairs (a, t), such that the components ai of the N -control a are piece-wise constant
maps and t is a simple multi-time path.

Let us begin with the notion of i-projection of a multi-time string.

Definition 5.3. For every i = 1, ..., N let us define the map

�i : C → C

by setting, for every � =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)
,

�i(�) =
(
Ri, (��i1 , ..., ��iRi

), ℎi, (��i1 , ..., ��iRi
)
)
,

where {�i1, ..., �iRi} coincides with the subset ℎ−1(i) ⊂ {1, ..., R} endowed with the
natural order, Ri is its cardinality, and ℎi = ℎ∣ℎ−1(i)

—that is, ℎi is constantly equal

to i. The map �i will be called the i-projection of C.

Given a multi-time control string � =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)
, let us

define a pair (a�, t�), where a� is an N -control and t� is a simple multi-time path
defined as follows:

Definition 5.4. For every i = 1, ..., N , let us consider its i-projection

�i(�) =
(
Ri, (��i1 , ..., ��iRi

), ℎi, (��i1 , ..., ��iRi
)
)
,

and let us set t̃i =
∑Ri
k=1 ��ik . Let us define the piecewise-constant control

a�i =

Ri∑
k=1

��ik �(tik−1,t
i
k) : [0, t̃i]→ A ,

where we have set

ti0 = 0, tik =

k∑
l=1

��il ∀k = 1, ..., Ri,

and let us define the N -control a� by setting

a� = {a�1 , ..., a�N}.
Moreover, let us consider the simple multi-time path

t�(s) =

∫ s

0

R∑
�=1

�(S�−1,S�)(�)
∂

∂tℎ(�)
d�,

where

S0 = 0, S� =

�∑
�=1

�� ∀� = 1, ..., R

Conversely, let a = (a1, ...,aN ) be N -control such that a1, ...,aN are piece-wise
constant maps defined on intervals [0, t̃1],..., [0, t̃N ], respectively, and let

t(s) =

∫ s

S0

(
R−1∑
�=1

�(S� ,S�+1)(�)
∂

∂tℎ(�)

)
d�
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be a simple multi-time path connecting (0, ..., 0) with (t̃1, ..., t̃N ) . Let us assume
that the choice of S1, ..., SR is such that if ℎ(�) = i then the map ai is constant on
the interval ]S�−1, S� ]. Let us call a-fit such a multi-time path.

Let us construct a multi-time control string from the pair (a, t) as follows:

Definition 5.5. Call �� the constant value of ai on ]S�−1, S� ]. For any � =
1, ..., R, let us set �� = S� − S�−1, and let us define the multi-time control string
�(a,t) by setting

�(a,t) =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)

The following trivial result establishes a connection between multi-time control
strings and the above pairs of N -controls and simple multi-time paths :

Lemma 5.6. Let y be a point in ℝn, and let � be a multi-time control string.
Then

x(a�,t�)[y](⋅) = x[�, y](⋅)
Conversely, let a = {a1, ...,aN} be an N -control made of constant maps defined on
intervals [0, t̃1],..., [0, t̃N ], respectively, and let t be an a-fit simple multi-time path.
Then

x[�(a,t), y](⋅) = x(a,t)[y](⋅)

Remark 5.7. The assumption of a-fitness made on t is not restrictive. Indeed,
it is easy to verify that up to a refinement of the partition S1, ..., SR we can always
find a multi-time path t̂ verifying this assumption and such that the a�-ℱ-lifts at
y of the multi-time paths t and t̂ do coincide.

5.1. Concatenation, equivalence, and ordering.

Definition 5.8. For every pair of multi-time control strings

� =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)
�̃ =

(
R̃, (�̃1, ..., �̃R̃), ℎ̃, (�̃1, ..., �̃R̃)

)
let us define the concatenation of � and �̃ as the multi-time control string

� ★ �̃ =
(
R+ R̃, (�̂1, ..., �̂R+R̃), ℎ ★ ℎ̃, (�̂1, ..., �̂R+R̃)

)
where

(�̂1, ..., �̂R+R̃) = (�1, ..., �R, �̃1, ..., �̃R̃) ,

and ℎ ★ ℎ̃(�) = ℎ(�) if � ≤ R and ℎ ★ ℎ̃(�) = ℎ̃(�−R) if � > R. Moreover, for every
finite set of multi-time control strings �1, ..., �d, let us define the concatenation
�1 ★ ... ★ �d by the obvious associativity of the operation ★.

Definition 5.9. Let � =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)
be a multi-time con-

trol string. We say that �̃ =
(
R̃, (�̃1, ..., �̃R̃), ℎ̃, (�̃1, ..., �R̃)

)
is simply equivalent

to �, and we write if � ∼ �̃, if either they coincide or one of the following two
conditions are verified:
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1) there exist � ∈ {1, ..., R}, such that R̃ = R+1, (�i, �i) = (�̃i, �̃i) for every
i ≤ � − 1, (�i, �̃i) = (�̃i+1, �̃i+1) for every i ≥ � + 1, �� = �̃� + �̃�+j , and
�̃�+j = �� for j = 0, 1;

2) � can be obtained from �̃ in the same way �̃ has been obtained from � in
1).

We say that � and �̃ are equivalent if there exists a finite number of multi-time
control strings �1, ..., �r such that

� ∼ �1 ∼ .... ∼ �r ∼ �̃
We write �̃ ≃ � to mean that �̃ is equivalent to �.

Clearly ≃ is an equivalence relation on the set C of multi-time control strings.

The next (trivial) Proposition implies the map � 7→ x[�, y](⋅) induces a well-
defined map on the quotient C/≃.

Proposition 5.10. If �̃ ≃ � then

x[�̃, y](s) = x[�, y](s)

for all y ∈ ℝn and s ∈ [0, S�] = [0, S�̃].

5.1.1. Time-reordering of a multi-time control string. Let us introduce the no-
tion of time-reordering of a multi-time control string � ∈ C. Successively we shall
investigate the effects of time-reordering on trajectories.

Definition 5.11. Let

� =
(
R, (�1, ..., sR), ℎ, (�1, ..., �R)

)
,

be a multi-time control string, and let � ∈ {1, ..., R−1} be such that ℎ(�) ∕= ℎ(�+1).
We define the �-th elementary time-reordering of � as the multi-time control string

!�(�) =
(
R, (��(1), ..., ��(R)), ℎ, (��(1), ..., ��(R))

)
where �(�) = � if � /∈ {�, � + 1}, and �(�) = � + 1, �(� + 1) = �.

Remark 5.12. The condition

ℎ(�) ∕= ℎ(� + 1)

means that we do not allow the interchange of adjacent intervals corresponding to
the same time component. Roughly speaking, within the evolution of the same
time component we keep the given order.

Definition 5.13. Let � be a multi-time control string. A control �̃ is called
a time-reordering of � if either �̃ = � or there exists a set of elementary time-
reordering �1, ..., �Q such that �

�̃ = !�Q ∘ ... ∘ !�1(�)

We shall write �̃ ⊳⊲ � to mean that �̃ is a time-reordering of �.

Clearly ⊳⊲ is an equivalence relation on the set C of multi-time control strings.
The next theorem implies that under hypothesis (ccLBZ) the map � 7→

x[�, y](⋅) induces a well-defined map on the quotient C/⊳⊲.
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Theorem 5.14. Let us assume hypothesis (ccLBZ). Let �, �̂ ∈ C such that of

� ⊳⊲ �̂. Then

x[y, �](S) = x[y, �̂](S)

where S = S�(= S�̂).

Proof. Since �̂ is obtained by � after applying a finite number of elementary

time-reordering, it is sufficient to prove the theorem in the event when �̂ is an
elementary time-reordering of �. So, in view of Lemma 5.6 the thesis easily follows
from Theorem 2.11. □

5.1.2. (j1, ..., jN )-ordered multi-time control strings. If (j1, ..., jN ) is a permu-
tation of (1, ..., N), we call (j1, ..., jN )-ordered those multi-time control strings such
that each time component is run only once, according to the order (j1, ..., jN ). More
precisely:

Definition 5.15. For each permutation (j1, ..., jN ) of the N -uple (1, ..., N), let
us define Cj1,...,jN ⊂ C as the set of those multi-time control strings � such that

� = �j1(�) ★ ... ★ �jN (�)

where, for every i = 1, ..., N , �i is the i-projection introduced in Definition 5.3.
Cj1,...,jN will be called the set of (j1, ..., jN )-ordered multi-time control strings.

Definition 5.16. The map

Prj1,...,jN : C → Cj1,...,jN
defined by

Prj1,...,jN (�) = �j1(�) ★ ... ★ �jN (�)

will be called the (j1, ..., jN )-projection of C.

Let us state, without proof, some trivial properties of the map Prj1,...,jN .

Lemma 5.17. The following properties are verified:

i) The map Prj1,...,jN induces the identity on the set Cj1,...,jN
ii) If �, �̃ ∈ C and � ⊳⊲ �̃, then

Prj1,...,jN (�) = Prj1,...,jN (�̃).

iii) For every �1, �2 ∈ C one has

Prj1,...,jN (�1 ★ �2) = Prj1,...,jN (Prj1,...,jN (�1) ★ �2) =
Prj1,...,jN (�1 ★ Prj1,...,jN (�2)) = Prj1,...,jN (Prj1,...,jN (�1) ★ Prj1,...,jN (�2)) .

Moreover one has:

Theorem 5.18. Let � =
(
R, (�1, ..., �R), ℎ, (�1, ..., �R)

)
be a multi-time control

string. Then Prj1,...,jN (�) ⊳⊲ �.

Proof. We shall proceed by induction on the number R. The thesis is trivial
for R = 2. Let R be greater than 2 and let us consider the multi-time control string

�̂ =
(
R− 1, (�1, ..., �R−1), ℎ, (�1, ..., �R−1)

)
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(where, with a small notational abuse, we have written ℎ to mean the restriction of

ℎ to {1, ..., R − 1}). By the inductive hypothesis Prj1,...,jN (�̂) ⊳⊲ �̂ , that is, there
exist �1, ..., �Q ∈ {1, ..., R− 1} such that

(5.1) Prj1,...,jN (�̂) = !�Q ∘ ... ∘ !�1(�̂)

Let us set �̃1 = �R, c̃ = �R, ℎ̃(1) = ℎ(R), and let us define the multi-time
control string

� =
(

1, �̃1, ℎ̃, c̃)
)
,

so, in particular, � = �̂ ★ �. Hence, in view of iii) of the previous lemma, one has

(5.2) Prj1,...,jN (�) = Prj1,...,jN (�̂ ★ �) = Prj1,...,jN (Prj1,...,jN (�̂) ★ �).

Since Prj1,...,jN (�̂) ∈ Cj1,...,jN , it is trivial to verify that there exists P ∈ {1, ..., R}
such that

(5.3) Prj1,...,jN

(
Prj1,...,jN (�̂) ★ �

)
= !R−P ∘ !R−P−1... ∘ !R

(
Prj1,...,jN (�̂) ★ �

)
.

(When P = R we mean that the right-hand side coincides with
(
Prj1,...,jN (�̂)★�).)

Since by (5.1) one has

(5.4) Prj1,...,jN (�̂) ★ � = !�Q ∘ ... ∘ !�1(�̂ ★ �) = !�Q ∘ ... ∘ !�1(�),

by (5.2)-(5.4) we obtain

Prj1,...,jN (�) = !R−P ∘ ... ∘ !R ∘ !�Q ∘ ... ∘ !�1(�) ,

so the theorem is proved. □

Corollary 5.19. Let (j1, ..., jN ) be any permutation of (1, ..., N) and let �, �̃
be multi-time control strings. Then the following conditions are equivalent:

i) � ⊳⊲ �̃;

ii) Prj1,...,jN (�) = Prj1,...,jN (�̃)

Corollary 5.20. Let us assume Hypothesis (ccZLB)a.e. (or, equivalently,

(ccZLB)set). Let � ∈ C and set �̃ = Prj1,...,jN (�), S = S�(= S�̃) Then, for every
y ∈ ℝn,

x[y, �](S) = x[y, �̃](S)

Proof. By Theorem 5.18 �̃ is a time-reordering of �. Hence the result follows
from Theorem 5.14 □

6. Proof of Theorem 2.11

Thanks to the results of the Sections 4 and 5 we are now in the condition of
proving Theorem 2.11, which is recalled below for the reader’s convenience:

Theorem 2.11. The following statements are equivalent:

i) the flows of the control vector fields f1, ..., fN commute;
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ii) if t ≤ t̃ are multi-times , a is a N -control defined on [t, t̃], and t :

[S�, S!]→ ℝN , t̂ : [Ŝ�, Ŝ!]→ ℝN are simple multi-time paths connecting
t with t̃, then

x(a,t)[y](S!) = x(a,t̂)[y](Ŝ!);

iii) if t ≤ t̃ are multi-times , a is a N -control defined on [t, t̃], and t :

[S�, S!] → ℝN , t̂ : [Ŝ�, Ŝ!] → ℝN are multi-time paths connecting t
with t̃, then

x(a,t)[y](S!) = x(a,t̂)[y](Ŝ!).;

iv) the vector fields f1, ..., fN verify condition (ccZLB)ord ;
v) the vector fields f1, ..., fN verify condition (ccZLB)a.e. ;
vi) the vector fields f1, ..., fN verify condition (ccZLB)set.

Proof. Let us begin by observing that the equivalence of iv), v), and vi) is
a straightforward consequence of the equivalence of ii), iii), and iv) in Theorem
2.6. By the same theorem, considering the case when the controls in Definition
2.2 are constant, we obtain that i) implies iv), v), and vi). The implication ii) ⇒
i) is trivial, in that the products of exponentials showing up in Definition 2.2 are
nothing but particular case of a-lifts of simple multi-time paths. The implication
iii) ⇒ ii) is trivial as well, for in fact ii) is just a particular case of iii).

Therefore it is sufficient to prove that iv) implies iii). In view of Lemma 4.1 we
can conveniently choose the parameterization of each multi-time path. In particular
we can assume that both t and t̂ are parameterized on the interval [0, 1].

Let us begin by considering the case when the multi-times paths t and t̃ are
simple and the ai are piecewise constant.

Since, without loss of generality, we can assume that both t and t̂ are a-fit (see

Remark 5.7) , let us consider the multi-time control strings �(a,t), �(a,t̂).

It is easy to check that there exist �̃(a,t) ≃ �(a,t) and �̃(a,t̂) ≃ �(a,t̂) such that,
for every i = 1, ..., N ,

Pri(�̃
(a,t)) = Pri(�̃

(a,t̂))

Hence

Pr1,...,N (�(a,t)) = Pr1,...,N (�(a,t̂))

Moreover, by Corollary 5.19,

�̃(a,t) ⊳⊲ �̃(a,t̂)

so, by Proposition 5.10, Theorem 5.14, and Lemma 5.6, we obtain

x(a,t)[y](1) = x[�(a,t), y](1) = x[�̃(a,t), y](1) = x[�̃(a,t̂), y](1) = x[�(a,t̂), y](1) = x(a,t̂)[y](1)

from which we get the thesis (in the considered particular case).

In order to conclude the proof we shall exploit a density argument. For every
i = 1, ..., N , let (aki )k∈ℕ be a sequence of piece-wise constant controls such that

lim
k→∞

∥aki − ai∥1 = 0
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Moreover, let (tk)k∈ℕ and (t̂k)k∈ℕ be sequences of simple multi-time paths (param-
eterized on [0, 1]) connecting t with t̃ such that

lim
k→∞

∥tk − t∥∞ = 0 lim
k→∞

∥t̃k − t̃∥∞ = 0

The existence of such sequences is guaranteed by Lemma 6.1 below. Then, by the
first part of the proof and in view of Theorem 4.3, one has

x(a,t)[y](1) = lim
k→∞

x(ak,tk)[y](1) = lim
k→∞

x(ak,t̃k)[y](1) = x(a,t̂)[y](1)

which concludes the proof. □

Lemma 6.1. Let t, t̃ ∈ ℝN be such that t ≤ t̃, and let t : [0, 1] → ℝN be a
multi-time connecting t with t̃. Then there exists a sequence tk : [0, 1] → ℝN ),
k ∈ N of simple multi-time paths connecting t with t̃ and such that

lim
k→∞

∥tk − t∥∞ = 0.

Proof. The approximating simple multi-time path tk will be obtained from
t as follows: i) the interval [0, 1] is partitioned in k subinterval of equal length; ii)
for every j = 1, ..., k one replaces t on the j-th subinterval with the path (whose
derivative has modulus equal to 1 and) whose image is given by the union of the
N segments connecting, respectively, the N pairs of multi-times(

t( (j−1)
k ) , t( (j−1)

k ) +
(
t1( jk )− t1( (j−1)

k )
)

∂
∂x1

)(
t( (j−1)

k ) +
(
t1( jk )− t1( (j−1)

k )
)

∂
∂x1

, t( (j−1)
k ) +

∑
r=1,2

(
tr(

j
k )− tr(

(j−1)
k )

)
∂
∂xr

)
........
........(
t( (j−1)

k ) +
∑N−1
r=1

(
tr(

j
k )− tr(

(j−1)
k )

)
∂
∂xr

, t( jk )
)

More precisely, let t1, ..., tN be the components of t, and, for any positive
integer k, every j = 1, ..., k, and every ℎ = 2..., N , let us set

Ikj1 =
[ (j − 1)

k
,

(j − 1)

k
+

(
t1(

j

k
)− t1(

(j − 1)

k
)

)]
,

Ikjℎ =
[ (j − 1)

k
+

ℎ−1∑
r=1

(
tr(

j

k
)− tr(

(j − 1)

k
)

)
,

(j − 1)

k
+

ℎ∑
r=1

(
tr(

j

k
)− tr(

(j − 1)

k
)

)]
.

Let us observe that for every k one has13

Ik11 ≤ Ik12 ≤ ... ≤ Ik1N ≤ Ik21 ≤ ... ≤ Ik2N ≤ ... ≤ Ikk1 ≤ .... ≤ IkkN
and

∪j=1,...,k(∪ℎ=1,...,NI
k
jℎ) = [0, S]

For every integer k > 0 let us define the simple multi-time path tk by setting

tk(s) =

k∑
j=1

N∑
1

∫ s

o

�Ikjℎ(�)
∂

∂tℎ
d�.

It is easy to verify the following two properties:

13where I ≤ J means that a ≤ b as soon as a ∈ I and b ∈ J
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a) all the curves tk, t̂k are simple multi-time paths defined on [0, 1] and verify

(∣dt
k

ds ∣1 = ∣dt̂
k

ds ∣1 = 1 and) tk(0) = t̂k(0) = t(0) = t̂(0), tk(1) = t̂k(1) =

t(L) = t̂(1);
b) the tk converge uniformly to t.

The proof is concluded. □

References

[AG] A.A. Agrachev and R. Gamkrelidze, Exponential representation of flows and the chronolog-
ical calculus. Mat. Sb., 107(149), 1978, 467–432

[BT] G. Barles, A. Tourin, Commutation properties of semigroups for first-order Hamilton-Jacobi

equations and application to multi-time equations Indiana Univ. Math. J. 50 (2001), no. 4,
1523–1544.

[KS] M.Kawski, H.J. Sussmann, Noncommutative power series and formal Lie-algebraic tech-

niques in nonlinear control theory Operators, systems, and linear algebra (Kaiserslautern,
1997), 111–128, European Consort. Math. Indust., Teubner, Stuttgart, 1997.

[LR] P.L. Lions and J.C. Rochet, Hops formula and multi-time Hamilton–Jacobi equations. Pro-

ceedings of Am. Math. Soc., vol. 96 , No. 1, 1986, 79–84.
[MR] M. Motta, F. Rampazzo, Nonsmooth multi-time Hamilton-Jacobi systems submitted for

publication
[O] P.J.Olver, Equivalence, Invariants and Symmetry, Cambridge Un. Press, Cambridge, 1995

[Ro] J.C. Rochet, The taxation principle and multi–time Hamilton–Jacobi equations. Jour. of

Math. Economics, vol. 14, 1985, 113–128. North–Holland
[RS1] F. Rampazzo, H.J. Sussmann, Set-valued differentials and a nonsmooth version of Chow’s

theorem Proceedings of the 40th IEEE Conference on Decision and Control; Orlando, Florida,

December 4 to 7, 2001 (IEEE Publications, New York, (2001)), Volume 3, 2613-2618.
[RS2] F. Rampazzo, H.J. Sussmann, Commutativity and highe order controllability for nonsmooth

vector fields, in preparation.

[S] S. Simić, Lipschitz distributions and Anosov flows Proc. Amer. Math. Soc., 124. 1996, 1869–
1877.

Acknowledgments. The author wishes to thank Nicola Fusco and Monica Motta for
some useful technical advices.

Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste
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