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Chapter 1

Introduction

1.1 Coordinates (=constraints) as controls

A mechanical system can be controlled in two fundamentally different ways.
In a commonly adopted framework [18, 39], the controller modifies the time
evolution of the system by applying additional forces. This leads to a control
problem in standard form, where the time derivatives of the state variables
depend continuously on the control function.

In other situations, also physically realistic, the controller acts on the
system by directly assigning (as controls) the values of some of the coordi-
nates. 1 The evolution of the remaining coordinates can then be determined
by solving a control system where the vector field is a quadratic polynomial
of the time derivatives of the control-coordinates.

This alternative point of view was introduced, independently, in [?] and
in [29]. An akin approach can also be found within in the literature of
underactuated system (see e.g. [3]).

Pre-assigning some coordinates’ evolution have a global counterpart in
the following scheme: consider a system whose configuration space is a dif-
ferential manifold Q, and assume that a surjective submersion2

π : Q → U

is given (see Figure 1.1). A control t 7→ u(t) ∈ U acts on the system as
a moving bilateral constraint, meaning that a trajectory q(·) agrees with
this constraint if π(q(t)) = u(t) for every time t. As it is well-known from

1In a more intrinsic language one says that the controls are additional time-dependent
(bilateral) constraints.

2See Definition A.2.1 in Appendix A.
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Surjective submersions, in 2- and 1-dimensional control spaces.

elementary Mechanics, the problem is not well-posed unless we specify the
set of reaction forces one utilizes to implement u: we simply assume that
this reaction forces are orthogonal (with respect to the Riemannian metric
induced by the inertial tensor) to the submanifolds π(q) = u = cost (the
so-called frozen constraint) . This is, in fact, nothing but the d’Alembert
hypothesis.

Within this second approach, a number of classical control problems can
be investigated.

For instance one can study stabilizability or optimal control problems.
Actually, these notes are mainly concerned with stabilizability, and, more
specifically, with vibrational stabilizability. However we will touch an impor-
tant aspect connected with optimization in the chapter dealing with impul-
sive control systems (see Chapter 4).

1.2 Vibrational stabilizability

By ”vibrational stabilizability” we shall mean the possibility of stabilizing
the system at a given state q̄ by means of some control u(·) that oscillates
rapidly around ū = π(q̄).

A well known example where stability is obtained by oscillation of a
parameter is provided by a pendulum whose suspension point can oscillate
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on a vertical guide, as in Figure 1.2. In this case Q = S1 × I, U = I, where
S1 is the circle and is an open interval, and π is simply the projection on
the second factor I. Calling q1 the angle and q2 the height of the pivot, one
has u = q2. If we take q̄1 = 0 as the (unstable) upper vertical position of
the pendulum, it is well-known (see for example [1, 25, 26] and references
therein) that this configuration can be made stable by rapidly moving the
pivot up and down a fixed value ū. (This is commonly refereed as the
”Kapitza pendulum”).

Figure 1.2: A pendulum with vertically moving pivot.

More generally, we will see that this system can be asymptotically sta-
bilized at any angle q̄1 with −π/2 < q̄1 < π/2, by a suitable choice of an
oscillating control function.

On the other hand, consider the variable length pendulum, where the
pivot is fixed at the origin, but the radius of oscillation r can be assigned
as a function of time, see Figure 1.2. The system is again described by two
coordinates (q1, q2), the angle and the length. However, in this case, the
upright equilibrium position is not stabilizable by any oscillatory motion of
the control u = q2(t) (the radius) around a fixed value q̄2.

The crucial difference between the above systems is that the equation
of motion of the first one contains a quadratic term in the time derivative
u̇

.
= du/dt, while the equation for the variable-length pendulum is affine

w.r.t. the variable u̇. An akin case where vibrational stabilizability is not
achievable occurs if, instead of the length of the pendulum, the control
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Figure 1.3: Length as control.

u represents a second pendulum attached at the free end of the primary
pendulum (see Figure 1.2).

Figure 1.4: Second pendulum as control.

In order to understand the general problem, one has to consider two
main issues:

• The geometric issue. It involves the orthogonal curvature of the
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foliation made of the fibers of the projection π, namely the family

Λ
.
=
{
π−1(q) q ∈ Q

}
. Orthogonality is here meant with respect

to the Riemannian metric associated with the kinetic energy. The or-
thogonal curvature is a measure of how a geodesic, which is orthogonal
to the leaf π−1(q) at a given point q, fails to remain perpendicular to
the other leaves it meets. If this curvature is non-zero, then the result-
ing control equations (which are second order for q, or, equivalently,
first order for the corresponding Hamiltonian-type system) contain a
quadratic term in the time derivative u̇ of the control function. This
will be analyzed in detail in Chapter 4.

The above geometrical considerations are valid when the original sys-
tem on Q is holonomic, i.e. it derives from a Newtonian system sub-
ject to space (ideal) constraints. However, if also non holonomic con-
straints3 act on the original system, the relation between quadratic
dependence and geometry is much more involved, as it will be illus-
trated in Chapter 5.

• The analytical issue. In brief, the question consists in how to exploit
the quadratic terms in u̇, in order to achieve stabilization. In partic-
ular, we shall study the set of solutions for a system with quadratic,
unbounded, controls, making essential use of reparameterization tech-
niques. These, in turn, will be combined with arguments involving
local controllability or Lyapunov functions for the convexification of
the reparameterized system.

Incidentally, a chapter (Chapter 3) will be devoted to the particu-
lar case when the quadratic term is zero (which corresponds, on the
mechanical side, to the vanishing of the orthogonal curvature). Actu-
ally, this subject is more crucial in optimization than in stabilization,
even though it provides a case where vibrational stabilization is not
attainable.

1.3 These notes’ organization

This notes are organized as follows: There are two Parts, the former dealing
with control systems depending on the (unbounded) derivative of the con-
trols, the latter concerning applications to mechanical systems. In particular

3i.e. constraints on the velocities which cannot be integrated, namely obtained from
holonomic constraints by diffrentiation.
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Part 1 consists of Chapter 2 and Chapter 3. In Chapter 2 one investigates
the case when the derivative of the control appear quadratically in the equa-
tions. The closure of solutions’ set is studied together with stabilizability
issues. Chapter 3 concerns the particular case when the dependence on the
derivative of the control is affine. The question of the closure of the solu-
tions’ set is briefly mentioned, together with its strict connection with the
interaction between impulses —namely, discontinuities of the control— and
Lie brackets of the involved vector fields.

Part 2 is made of Chapters 4-6. Chapter 4 is devoted to the dynamics
of holonomic systems driven by active constraints. In particular the control
equations are presented. Moreover, some sections are devoted to curvature-
like aspects and their close relation with the functional dependence of the
equations on the control’s derivative. In Chapter 5 the more involved dy-
namics of non holonomic systems is investigated. Equation in coordinates
are deduced. In addition, intrinsic interpretation of the quadratic depen-
dence on the control’s derivative extend the results found for non-holonomic
systems. In particular, besides the curvature-term already present in the
holonomic case, one sees that the ”lack of holonomy” brings in the equation
a new quadratic term. This is essential in many issues, e.g. in vibrational
stabilization, as it is also illustrated by an example.

Two Appendices conclude these notes. The former is a quite basic and
rapid exposition of fundamental notions on differential manifolds. The lat-
ter, which is not directly connected with the other parts of the notes, con-
sists of a medley of elementary considerations on the invariant structure of
Lagrangian and Hamiltonian equations.



Part I

Nonlinear Systems with
Unbounded Controls

13





Chapter 2

Quadratic control systems

We investigate general control systems of the form:

ẋ = f(x) +

m∑
α=1

gα(x) u̇α +

m∑
α,β=1

hα,β(x) u̇αu̇β . (2.1)

The state variable x and the control variable u take values in IRn and in IRm,
respectively. We remark that no a priori bounds are imposed on the deriva-
tive u̇. The important degenerate case where all the hα,β vanish identically
–namely, the affine control case– will be discussed in Chapter 3 .

Remark 2.0.1 To avoid confusion with other issues that go under the same
name in literature, let us point out that

1. The vector fields g, h (2.1) are not assumed to be constant. In partic-
ular, the unboundedness of u̇ interferes with the nonlinearity of these
fields;

2. The controls v
.
= u̇ are point-wise unbounded . (Actually, this is true

also in the standard case of quadratic systems).

Our main goal is to understand under which conditions the system can
be stabilized to a given point x̄. In particular, relying on the quadratic
dependence on u̇ of the right-hand side of (2.1), in Section 2.3 we shall
investigate what can be called vibrational stabilization, that is a stabilization
achieved by means of small rapid oscillations of the control function. In
Chapter 6 these results will be applied to the stabilization of the mechanical
systems.

15
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We assume that the functions f , gα, and hα,β = hβ,α are at least twice
continuously differentiable. We remark that the more general system

ẋ = f̃(t, x, u) +
m∑
α=1

g̃α(t, x, u) u̇α +
m∑

α,β=1

h̃α,β(t, x, u) u̇αu̇β ,

where the vector fields depend also on time and on the control u, can be
easily rewritten in the form (2.1). Indeed, it suffices to work in the extended
state space x ∈ IR1+n+m, introducing the additional state variables x0 = t
and xn+α = uα , with equations

ẋ0 = 1 , ẋn+α = u̇α α = 1, . . . ,m .

2.1 Quadratic control systems

Given the initial condition
x(0) = x̌ , (2.2)

for every smooth control function u : [0, T ] 7→ IRm one obtains a unique
solution t 7→ x(t, u) of the Cauchy problem (2.1)-(2.2). More generally,
since the equation (2.1) is quadratic w.r.t. the derivative u̇, it is natural to
consider admissible controls in a set of absolutely continuous functions u(·)
with derivatives in  L2. For example, for a given K > 0, one could allow the
controls to belong to{

u : [0, T ] 7→ IRm ;

∫ T

0

∣∣u̇(t)
∣∣2 dt ≤ K

}
. (2.3)

Since our aim is stabilization, it is conceivable to investigate the limits of
this set of trajectories. In fact, the main goal of the following analysis is to
provide a characterization of the closure (in appropriate topologies) of this
set of trajectories. This will be achieved in terms of an auxiliary differential
inclusion.

It is expectable that three main factors interplay in this program:

(I) the (pointwise) unboundedness of the controls derivatives u̇;

(II) the quadratic dependence on u̇;
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(III) the usual chattering phenomena.

Let us comment on these factors:

(I) Notice that the pointwise unboundedness of u̇ cannot be approached
with mere measure-theoretical tools. This has been widely recognized in the
case of affine dependence (namely hα,β ≡ 0) —see Chapter 3 — and has a
basic-theoretical explication in the fact that the vector fields gα and hα,β are
not constant. Incidentally, we remark that the fact of gα and hα,β being not
constant, despite appearance, is an intrinsic property, easily expressed by
the condition that all Lie brackets are equal to zero (See Theorem A.4.2 and
the following comments). One can say that unboundedness of the controls
makes the non-commutativity of the vector fields crucial in the very definition
of solution.

(II) If the system where affine in u̇ we would allow a wider class of con-
trols then the one in (2.3). An instance is given by a family of controls whose
derivatives are uniformly L1-bounded (see Chapter 3). In the general case,
it is crucial that for rapidly one dimensional oscillations of the controls u
(smaller and smaller in the C0 norm) the linear term is practically negligible
so the dynamics is asymptotically governed only by the quadratic term.

(III) The chattering phenomena are already present in the case of L∞-
bounded controls, so there is no surprise in finding them in this more gen-
eral situation. In particular, once reduced the system to a bounded-control
system (via suitable reparameterization) the limits of trajectories are repre-
sented as trajectories of the convexified dynamics.

2.1.1 A graph-differential inclusion

Let us notice that the system (2.1) is naturally connected with the differen-
tial inclusion

ẋ ∈ F(x), (2.4)

where, for every x ∈ IRn,

F(x)
.
= co

f(x) +

m∑
α=1

gα(x)wα +

m∑
α,β=1

hα,β(x)wαwβ ; (w1, . . . , wm) ∈ IRm

 .

(2.5)
Here and in the sequel, for any given subset A of a topological vector space,
coA denotes the closed convex hull of A.
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In addition, it will be convenient to work also in an extended state space,

using the variable x̂ =

(
x0

x

)
∈ IR1+n, where x0 represents time. For every

x̂, consider the set

F (x̂)
.
= co

{(
1

f(x)

)
(a0)2 +

∑m
α=1

(
0

gα(x)

)
a0aα+

+
∑m

α,β=1

(
0

hα,β(x)

)
aαaβ ; a0 ∈ [0, 1],

∑m
α=0(a

α)2 = 1
}
.

(2.6)

Notice that F is a convex, compact valued multifunction on IR1+n, Lipschitz
continuous w.r.t. the Hausdorff metric [2]. (Instead, F is not bounded).

For a given interval [0, S], the set of trajectories of the graph differential
inclusion

d

ds
x̂(s) ∈ F (x̂(s)) , x̂(0) =

(
0
x♯

)
(2.7)

is a non-empty, closed, bounded subset of C
(
[0, S] ; IR1+n

)
. Consider one

particular solution, say s 7→ x̂(s) =

(
x0(s)
x(s)

)
, defined for s ∈ [0, S]. Assume

that T
.
= x0(S) > 0. Since the map s 7→ x0(s) is non-decreasing, it admits

a generalized inverse

s = s(t) iff x0(s) = t . (2.8)

Indeed, for all but countably many times t ∈ [0, T ] there exists a unique
value of the parameter s such that the identity on the right of (2.8) holds.
We can thus define a corresponding trajectory

t 7→ x(t) = x
(
s(t)

)
∈ IRn. (2.9)

This map is well defined for almost all times t ∈ [0, T ].

2.1.2 L2-reparameterizazion

To establish a connection between the original control system (2.1) and the
differential inclusion (2.7), consider first a smooth control function u(·). Let
us define a reparameterized time variable by setting1

s(t)
.
=

∫ t

0

(
1 +

m∑
α=1

(u̇α)2(τ)
)
dτ . (2.10)

1See [46] for a more general version of reparameterization including the polynomial
dependence on u̇.
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Notice that the map t 7→ s(t) is strictly increasing. The inverse map s 7→ t(s)
is uniformly Lipschitz continuous and satisfies

dt

ds
=

(
1 +

m∑
α=1

(u̇α)2(t)

)−1

.

Let now x : [0, T ] 7→ IRn be a solution of (2.1) corresponding to the smooth

control u : [0, T ] 7→ IRm. We claim that the map s 7→ x̂(s)
.
=

(
t(s)

x(t(s))

)
is a

solution to the differential inclusion (2.7). Indeed, setting

a0(s)
.
=

1√
1 +

∑m
β=1(u̇

β)2
(
t(s)

) , aα(s)
.
=

u̇α
(
t(s)

)√
1 +

∑m
β=1(u̇

β)2
(
t(s)

) ,
(2.11)

α = 1, . . . ,m, one has

dt
ds = (a0)2(s)

dx
ds = f

(
x(s)

)
(a0)2(s) +

∑m
α=1 gα

(
x(s)

)
a0(s)aα(s)+

+
∑m

α,β=1 hα,β

(
x(s)

)
aα(s)aβ(s) .

(2.12)

Hence x̂(·) = (t(·), x(·)) verifies (2.7), because, by (2.11),

a0(s) ∈ [0, 1] ,

m∑
α=0

(aα)2(s) ≡ 1 .

Notice that the derivatives u̇α can now be recovered as

u̇α(t) =
aα(s(t))

a0(s(t))
α = 1, . . . ,m . (2.13)

The following theorem shows that every solution of the differential inclu-
sion (2.7) can be approximated by smooth solutions of the original control
system (2.1).

Theorem 2.1.1 Let x̂ = (x0, x) : [0, S] 7→ IR1+n be a solution to the mul-
tivalued Cauchy problem (2.7) such that x0(S) = T > 0. Then there exists
a sequence of smooth control functions uν : [0, T ] 7→ IRM such that the
corresponding solutions

s 7→ x̂ν(s) =

(
tν(s)
xν(s)

)
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of the equations (2.11)-(2.12) converge to the map s 7→ x̂(s) uniformly on
[0, S]. Moreover, defining the function x(t) = x(s(t)) as in (2.9), we have

lim
ν→∞

∫ T

0

∣∣x(t) − xν(t)
∣∣ dt = 0 . (2.14)

Proof. By the assumption, the extended vector fields

f̂ =

(
1
f

)
, ĝα =

(
0
gα

)
, ĥα,β =

(
0

hα,β

)
are Lipschitz continuous. Consider the set of trajectories of the control
system

d

ds
x̂ = f̂ ·(a0)2+

m∑
α=1

ĝα a
0aα+

m∑
α,β=1

ĥα,β a
αaβ , x̂(0) =

(
0
x♯

)
, (2.15)

where the controls a = (a0, a1, . . . , am) satisfy the pointwise constraints

a0(s) ∈ [0, 1] ,
m∑
α=0

(aα)2(s) = 1 s ∈ [0, S] . (2.16)

In the above setting, it is well known [2] that the set of trajectories

s 7→ x̂(s) = (x0, x1, . . . , xn)(s)

of (2.15)-(2.16) is dense on the set of solutions to the differential inclu-
sion (2.7). Hence there exists a sequence of control functions s 7→ aν(s) =(
a0ν , . . . , a

m
ν

)
(s), ν ≥ 1, such that the corresponding solutions s 7→ x̂ν(s) of

(2.15) converge to x̂(·) uniformly for s ∈ [0, S]. In particular, this implies
the convergence of the first components:

x0ν(S) =

∫ S

0

[
a0ν(s)

]2
ds → x0(S) = T . (2.17)

We now observe that the “input-output map” a(·) 7→ x̂(·, a) from controls
to trajectories is uniformly continuous as a map from  L1

(
[0, S] ; IR1+m

)
into

C
(
[0, S] ; IR1+n

)
. By slightly modifying the controls aν in  L1, we can replace

the sequence aν by a new sequence of smooth control functions ãν : [0, S] 7→
IR1+m with the following properties:

ã0ν(s) > 0 for all s ∈ [0, S] , ν ≥ 1 . (2.18)
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∫ S

0

[
ã0ν(s)

]2
ds = T for all ν ≥ 1 , (2.19)

lim
ν→∞

∫ S

0

∣∣ãν(s) − aν(s)
∣∣ ds = 0 . (2.20)

This implies the uniform convergence

lim
ν→∞

∥∥x̂(·, ãν) − x̂(·)
∥∥
C([0,S]; IR1+n)

= 0 . (2.21)

By (2.18), for each ν ≥ 1 the map

s 7→ x0ν(s)
.
=

∫ s

0

[
ã0ν(s)

]2
ds

is strictly increasing. Therefore it has a smooth inverse s = sν(t). Recalling
(2.13), we now define the sequence of smooth control functions uν : [0, T ] 7→
IRm by setting uν(t) =

(
u1ν , . . . , u

m
ν )(t), with

uαν (t) =

∫ t

0

ãαν (sν(τ))

ã0ν(sν(τ))
dτ . (2.22)

By construction, the solutions t 7→ xν(t , uν) of the original system (2.1) cor-
responding to the controls uν coincide with the trajectories t 7→ (x1ν , . . . , x

n
ν )(sν(t)),

where x̂ν = (x0ν , x
1
ν , . . . , x

n
ν ) is the solution of (2.15) with control ãν =

(ã0ν , . . . , ã
m
ν ).

To prove the last statement in the theorem, define the increasing func-
tions

t(s) =

∫ s

0

[
ã0(r)

]2
dr , tν(s) =

∫ s

0

[
ã0ν(r)

]2
dr ,

and let t 7→ s(t), t 7→ sν(t) be their inverses, respectively. Notice that each
sν(·) is smooth. Moreover,∣∣∣∣ ddst(s)

∣∣∣∣ ≤ 1 ,

∣∣∣∣ ddstν(s)

∣∣∣∣ ≤ 1 , (2.23)

lim
ν→∞

∫ T

0

∣∣s(t) − sν(t)
∣∣ dt = lim

ν→∞

∫ S

0

∣∣t(s) − tν(s)
∣∣ ds = 0 . (2.24)

Using (2.23), we obtain the estimate∫ T

0

∣∣x(t) − xν(t)
∣∣ dt =

∫ T

0

∣∣∣x(s(t)) − xν(s(t))
∣∣∣ dt+

∫ T

0

∣∣∣xν(s(t)) − xν(sν(t))
∣∣∣ dt

(2.25)

≤
∫ S

0

∣∣x(s) − xν(s)
∣∣ ds+ C ·

∫ T

0

∣∣s(t) − sν(t)
∣∣ dt .
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Here the constant C denotes an upper bound for the derivative w.r.t. s,
for example

C
.
= sup

x

∣∣f(x)
∣∣+
∑
i

∣∣gα(x)
∣∣+
∑
α,β

∣∣hα,β(x)
∣∣ , (2.26)

where the supremum is taken over a compact set containing the graphs of all
functions xν(·). By (2.21) and (2.24), the right hand side of (2.25) vanishes
in the limit ν → ∞. This completes the proof of the theorem. ♢

Remark 2.1.2 For a given time interval [0, T ], we are considering con-
trols u(·) in the Sobolev space W 1,2. The corresponding solutions are ab-
solutely continuous maps, namely they belong to W 1,1. Now consider a
sequence of control functions uν , whose derivatives are uniformly bounded
in L2. Assume that the corresponding reparameterized trajectories s 7→
(tν(s), xν(s)), constructed as in (2.11)-(2.12), converge to a path s 7→ (t(s), x(s)),
providing a solution to (2.7). We wish to point out that, in general, the pro-
jection on the state space t 7→ x(s(t)) may well be discontinuous. Notice
that, on the contrary, the uniform limit of the controls t 7→ uν(t) must be
Hölder continuous, because of the uniform L2 bound on the derivatives. A
completely different situation arises when all the vector fields hα,β vanish
identically, so that (2.1) reduces to

ẋ = f(x) +

m∑
α=1

gα(x) u̇α (2.27)

This case will be treated in Chapter 3.

2.2 Stabilization

In this section we examine various concepts of stability for the impulsive
system (2.1) and relate them to the weak stability of the differential inclusion
(2.6)-(2.7).

Definition 2.2.1 We say that the control system (2.1) is stabilizable at the
point x̄ ∈ IRn if, for every ε > 0 there exists δ > 0 such that the following
holds. For every initial state x♯ with |x♯−x̄| ≤ δ there exists a smooth control
function t 7→ u(t) = (u1, . . . , um)(t) such that the corresponding trajectory
of (2.1)-(2.2) satisfies

|x(t, u) − x̄| ≤ ε ∀t ≥ 0 . (2.28)
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We say that the system (2.1) is asymptotically stabilizable at the point
x̄ if a control u(·) can be found such that, in addition to (2.28), there holds

lim
t→∞

x(t, u) = x̄ . (2.29)

Remark 2.2.2 Notice that the point x̄ needs not to be an equilibrium point
for the vector field f .

Remark 2.2.3 We require here that the stabilizing controls be smooth. As
it will become apparent in the sequel, this is hardly a restriction. Indeed, in
all cases under consideration, if a stabilizing control u ∈ W 1,2 is found, by
approximation one can construct a smooth control ũ which is still stabilizing.

Remark 2.2.4 In the above definitions we are not putting any constraint
on the control function u : [0,∞[ 7→ IRm. In principle, one may well have
|u(t)| → ∞ as t→ ∞. If one wishes to stabilize the system (2.1) and at the
same time keep the control values within a small neighborhood of a given
value ū, it suffices to consider the stabilization problem for an augmented
system, adding the variables xn+1, . . . , xn+m together with the equations

ẋn+α = u̇α α = 1, . . . ,m .

Similar stability concepts can be also defined for a differential inclusion

ẋ ∈ K(x) , (2.30)

see for example [56]. We recall that a trajectory of (2.30) is an absolutely
continuous function t 7→ x(t) which satisfies the differential inclusion at
a.e. time t.

Definition 5.2. The point x̄ is weakly stable for the differential inclusion
(2.30) if, for every ε > 0 there exists δ > 0 such that the following holds.
For every initial state x♯ with |x♯ − x̄| ≤ δ there exists a trajectory x(·) of
(2.30) such that

x(0) = x♯ , |x(t) − x̄| ≤ ε ∀t ≥ 0 . (2.31)

Moreover, x̄ is weakly asymptotically stable if, there exists a trajectory which,
in addition to (2.31), satisfies

lim
t→∞

x(t) = x̄ . (2.32)
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In connection with the multifunction F defined at (2.6), we consider a
second multifunction F♢ obtained by projecting the sets F (x̂) ⊂ IR × IRn

into the second factor IRn. More precisely, we set

F♢(x)
.
= co

{
f(x) (a0)2 +

∑m
α=1 gα(x) a0aα +

∑m
α,β=1 hα,β(x) aαaβ ;

w0 ∈ [0, 1] ,
∑m

α=0(w
α)2 = 1

}
.

(2.33)
Observe that, if the vector fields f, gα , and hα,β are Lipschitz continuous,
then the multifunction F♢ is Lipschitz continuous with compact, convex
values. Our first result in this section is:

Theorem 2.2.5 The impulsive system (2.1) is asymptotically stabilizable at
the point x̄ if and only if x̄ is weakly asymptotically stable for the projected
graph differential inclusion

d

ds
x(s) ∈ F♢(x(s)) . (2.34)

Proof. Let x̄ be weakly asymptotically stable for (2.34). Without loss
of generality, we can assume x̄ = 0.

Given ε > 0, choose δ > 0 such that, if |x♯| ≤ δ, then there exists a
trajectory t 7→ x(s) of the differential inclusion (2.34) such that x(0) = x♯,
|x(s)| ≤ ε/2 for all t ≥ 0 and x(s) → 0 as t → ∞. Using the basic
approximation property stated in Theorem 2.1.1, we will construct a smooth
control t 7→ u(t) = (u1, . . . , um)(t) such that the corresponding trajectory
x(·;u) of (2.1)-(2.2) satisfies

|x(t)| ≤ ε ∀t ≥ 0 , lim
t→∞

x(t) = 0 . (2.35)

Define the decreasing sequence of positive numbers εk
.
= ε 2−k. For each

k ≥ 0, choose δk > 0 so that, whenever |x♯| ≤ δk, there exists a solution to
(2.34) with

x(0) = x♯ , lim
s→∞

x(s) = 0 , |x(s)| < εk
2

∀s ≥ 0 . (2.36)

Choose a sequence of strictly positive integers k(1) ≤ k(2) ≤ · · · , such that

lim
j→∞

k(j) = ∞ ,
∞∑
j=1

δk(j) = ∞ . (2.37)
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Note that the second condition in (2.37) is certainly satisfied if the numbers
k(j) grow at a sufficiently slow rate.

Assume |x♯| ≤ δ0. A smooth control u steering the system (2.1) from x♯

asymptotically toward the origin will be constructed by induction on j. For
j = 1, let x : [0, s1] 7→ IRn be a trajectory of the differential inclusion (2.34)
such that

x(0) = x♯ , |x(s1)| <
δk(1)

3
, |x(s)| < ε0

2
∀s ∈ [0, s1] .

By the definition of F♢, there exists a trajectory of the differential inclusion
(2.7) having the form s 7→ x̂(s) = (x0(s), x(s)). Notice that, in order to
apply Theorem 2.1.1 and approximate x(·) with a smooth solution of the
control system (2.1) we would need x0(s1) > 0. This is not yet guaranteed
by the above construction. To take care of this problem, we define s′1

.
=

s1 + δk(1)/3C, where C provides a local upper bound for the magnitude of
the vector field f , as in (2.26). We then prolong the trajectory x̂(·) to the
larger interval [0, s′1], by setting

d

ds

(
x0(s)
x(s)

)
=

(
1

f(x)

)
s ∈ ]s1, s

′
1] .

This construction achieves the inequalities

x0(s′1) ≥ s′1 − s1 ≥
δk(1)

3C
, |x(s′1)| <

2

3
δk(1) .

Set τ1
.
= x0(s′1). By Theorem 2.1.1, there exists a smooth control u :

[0, τ1] 7→ IRm such that the corresponding solution s 7→ (x0(s, u), x(s, u)) of
(2.11)-(2.12) differs from the above trajectory by less than δk(1)/3, namely

|x0(s, u) − x0(s)| <
δk(1)

3
, |x(s, u) − x(s)| <

δk(1)

3
∀s ∈ [0, s′1] .

In particular, setting x(t, u)
.
= x(s(t), u) as in (2.9), this implies

|x(τ1, u)| < δk(1) , |x(t, u)| < ε0
2

+
δk(1)

3
≤ ε0 ∀t ∈ [0, τ1] .

The construction now proceeds by induction on j. Assume that a smooth
control u(·) has been constructed on the time interval [0, τj ], in such a way
that

|x(τj , u)| < δk(j) , |x(t, u)| < εk(j−1) ∀t ∈ [τj−1, τj ] . (2.38)
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By assumptions, there exists a trajectory s 7→ x(s) of the differential inclu-
sion (2.34) such that

x(0) = x(τj , u) , |x(sj)| <
δk(j+1)

3
, |x(s)| <

εk(j)

2
∀s ∈ [0, sj ] .

(2.39)
This trajectory is extended to the slightly larger interval [0, s′j ], with s′j =
sj + δk(j)/3C, by setting

d

ds

(
x0(s)
x(s)

)
=

(
1

f(x)

)
s ∈ ]sj , s

′
j ] . (2.40)

Notice that, by (2.39), (2.40), and (2.26), we have

x0(s′j) ≥ s′j − sj ≥
δk(j)

3C
, |x(s′j)| <

2

3
δk(j+1) . (2.41)

Set τj+1
.
= τj + x0(s′j). Using again Theorem 2.1.1, we can extend the

control u : [0, τj ] 7→ IRm to a continuous, piecewise smooth control defined on
the larger interval [0, τj+1], such that the corresponding solution s 7→ x(s, u)
of (2.1)-(2.2) satisfies

|x(τj+1, u)| < δk(j+1) , |x(t, u)| < εk(j) ∀t ∈ [τj , τj+1] . (2.42)

Notice that, at this stage, the control u is obtained by piecing together
two smooth control functions, defined on the intervals [0, τj ] and [τj , τj+1]
respectively. This makes u continuous but possibly not C1 in a neighborhood
of the point τj . To fix this problem, we slightly modify the values of u in
a small neighborhood of τj , so that u becomes smooth also at this point,
while the strict inequalities (2.42) still hold.

Having completed the inductive steps for all j ≥ 1 we observe that

lim
j→∞

τj =
∑
j

δk(j)

3C
= ∞

because of (2.37). As t → ∞, by (2.42) we have x(t, u) → 0. This shows
that the impulsive system (2.1) is asymptotically stabilizable at the origin,
proving one of the implications stated in the theorem.

The converse implication is obvious, because every solution of the system
(2.1) corresponding to a smooth control yields a solution to the differential
inclusion (2.34), after a suitable time rescaling.
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Corollary 2.2.6 Let a point x̄ be weakly asymptotically stable for the dif-
ferential inclusion (2.4), namely ẋ ∈ F(x). Then the system (2.1) is asymp-
totically stabilizable at x̄.

Proof. Since the point x̄ is weakly asymptotically stable for (2.4), then
it is asymptotically stable for the differential inclusion (2.34), which, in turn,
implies that the impulsive system (2.1) can be stabilized at x̄.

2.2.1 Lyapunov functions

There is an extensive literature, in the context of O.D.E’s and of control sys-
tems or differential inclusions, relating the stability of an equilibrium state
to the existence of a Lyapunov function. We recall below the basic defini-
tion, in a form suitable for our applications. For simplicity, we henceforth
consider the case x̄ = 0 ∈ IRn, which of course is not restrictive.

Definition 2.2.7 A scalar function V defined on a neighborhood N of the
origin is a weak Lyapunov function for the differential inclusion

ẋ ∈ F(x)

if the following holds.
(i) V is continuous on N , and continuously differentiable on N \ {0}.
(ii) V (0) = 0 while V (x) > 0 for all x ̸= 0.
(iii) For each δ > 0 sufficiently small, the sublevel set {x ; V (x) ≤ δ}

is compact.
(iv) At each x ̸= 0 one has

inf
y∈F(x)

∇V (x) · y ≤ 0 . (2.43)

The following theorem relates the stability of the impulsive control sys-
tem (2.1) to the existence of a Lyapunov function for the differential inclusion
(2.4).

Theorem 2.2.8 Consider the multifunction F defined at (2.5). Assume
that the differential inclusion (2.4) admits a Lyapunov function V = V (x)
defined on a neighborhood N of the origin. Then the control system (2.1)
can be stabilized at the origin.

Remark 2.2.9 Notice that the multifunction F in (2.5) has unbounded
values. Yet we can rephrase condition (iv) in the definition 2.2.7 with the
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following equivalent condition, which is formulated in terms of the bounded
multifunction F governing (2.6):

(iv′) For every x ∈ N \ {0}, there exists ŷ = (y0, y) ∈ F (x) such that

∇V (x) · y ≤ 0 y0 > 0 . (2.44)

Remark 2.2.10 The set of conditions (i)-(iii) and (iv’) represents a slight
strengthening of the notion of weak Lyapunov function when this is applied
to the projected graph differential equation (2.34). Yet, let us point out that
the weak stability of (2.34) is not enough to guarantee the stability of the
control system (2.1), so the condition y0 > 0 in (2.44) plays a crucial role.
Indeed, on IR2, consider the constant vector fields f = (1, 0), h11 = (0, 1),
h22 = (0,−1), g1 = g2 = h12 = h21 = (0, 0). Then, choosing a0 = 0,
a1 = a2 = 1/

√
2 we see that (0, 0, 0) ∈ F (x) for every x ∈ IR2. Hence

condition

inf
y∈F (x)

∇V · y ≤ 0

is trivially satisfied by any function V . However, it is clear that in this case
the system (2.1) is not stabilizable at the origin.

Remark 2.2.11 Theorem 2.29 is somewhat weaker than its counterpart,
Theorem 2.2.5, dealing with asymptotic stability. Indeed, to prove that the
impulsive control system (2.1) is stabilizable, we need to assume not only
that the differential inclusion (2.34) is weakly stable, but also that there
exists a Lyapunov function.

Proof of Theorem 2.2.8. Given ε > 0, choose δ > 0 such that

V (x) ≤ 2δ implies |x| ≤ ε.

Let an initial state x♯ be given, with V (x♯) ≤ δ.

According to Remark 2.2.9, for every x ̸= 0 there exists (y0, y) ∈ F (x)
such that (2.44) holds. We recall that the multifunction F in (2.6) is Lips-
chitz continuous, with compact, convex values. Since the set Ω

.
= {x ; δ ≤

V (x) ≤ 3δ} is compact, by the continuity of ∇V we can find κ > 0 such
that, for every x ∈ Ω, there exists ŷ = (y0, y) ∈ F (x) with

∇V (x) · y ≤ 0 , y0 ≥ κ.

The control u will be defined inductively on a sequence of the time
intervals [τj−1, τj ], with τj ≥ jκ. Set τ0 = 0. Consider the differential
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inclusion

d

ds
x̂(s) ∈

{
F (x(s)) ∩ {(y0, y) ; ∇V (x) · y ≤ 0 , y0 ≥ κ} if δ < V (x) < 2δ ,
F (x(s)) if V (x) ≤ δ or V (x) ≥ 2δ ,

(2.45)
with initial data x̂(0) = (0, x♯). The right- hand side of (2.45) is an up-
per semicontinuous multifunction, with nonempty compact convex values.
Therefore (see for example [2]), the Cauchy problem admits at least one
solution s 7→ x̂(s) = (x0(s), x(s)), defined for s ∈ [0, 1]. We observe that
this solution satisfies

x0(1) ≥ κ , V (x(s)) ≤ δ ∀s ∈ [0, 1] .

Hence, by Theorem 2.1.1 there exists a smooth control u : [0, τ1] 7→ IRm,
with τ1 = x0(1) ≥ κ, such that the corresponding trajectory of (2.1)-2.2)
satisfies

V (x(t, u)) <
3

2
δ = 2δ − 2−1δ ∀t ∈ [0, τ1] .

By induction, assume now that a smooth control u(·) has been con-
structed on the interval [0, τj ] with τj ≥ κ j, and that the corresponding
trajectory t 7→ x(t, u) of the impulsive system (2.1)-(2.2) satisfies

V (x(t, u)) ≤ 2δ − 2−jδ t ∈ [0, τj ] . (2.46)

We then construct a solution s 7→ x̂(s) = (x0(s), x(s)) of the differential
inclusion (2.45) for s ∈ [0, 1], with initial data x̂(0) = (0, x(τj , u)). This
function will satisfy

x0(1) ≥ κ , V (x(s)) < 2δ − 2−jδ ∀s ∈ [0, 1] .

Using again Theorem 2.1.1, we can prolong the control u to a larger time
interval [0, τj+1], with τj+1 − τj = x0(1) ≥ κ, in such a way that

V (x(t, u)) < 2δ − 2−j−1δ t ∈ [0, τj+1] . (2.47)

At a first stage, this control u will be piecewise smooth, continuous but not
C1 in a neighborhood of the point τj . By a local approximation, we can
slightly change its values in a small neighborhood of the point τj , making it
smooth also at the point τj , and preserving the strict inequalities (2.47).

Since τj ≥ k j for all j ≥ 1, as j → ∞ the induction procedure generates
a smooth control function u(·), defined for all t ≥ 0, whose corresponding
trajectory satisfies V (x(t, u)) < 2δ for all t ≥ 0. This completes the proof
of the theorem. ♢
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Let us consider the 2-homogeneous term of F :

F2
.
= f(x) + co


m∑

α,β=1

hα,β(x)wαwβ ; (w1, . . . , wm) ∈ IRm


In Remark 2.3.2 one easily shows that

f(x) + F2 ⊂ F .

Therefore, from Theorem 2.2.8 we obtain the following result.

Corollary 2.2.12 Assume that the reduced differential inclusion

ẋ ∈ f(x) + F2 (2.48)

admits a Lyapunov function V = V (x) defined on a neighborhood N of the
origin. Then the control system (2.1) can be stabilized at the origin.

2.3 A selection technique

In the previous section we proved two general results, relating the stability
of the control system (2.1) to the weak stability of the differential inclusion
(2.4). A complete description of the sets F(x) in (2.5) may often be very
difficult. However, as shown in [56], to establish a stability property it
suffices to construct a suitable family of smooth selections. We shall briefly
describe this approach.

Let a point x̄ ∈ IRn be given, and assume that there exists a C1 selection

γ(x, ξ) ∈ F1(x)
.
= co


m∑
α=1

gα(x)wα +

m∑
α,β=1

hα,β(x)wαwβ ; (w1, . . . , wm) ∈ IRm


depending on an additional parameter ξ ∈ IRd, such that

f(x̄) + γ(x̄, ξ̄) = 0 . (2.49)

for some ξ̄ ∈ IRd. Assuming that γ is defined on an entire neighborhood
of (x̄, ξ̄), consider the Jacobian matrices of partial derivatives computed at
(x̄, ξ̄):

A
.
=
∂f

∂x
+
∂γ

∂x
, B

.
=
∂γ

∂ξ
.
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Theorem 2.3.1 In the above setting, if the linear system with constant
coefficients

ẋ = Ax+Bξ (2.50)

is completely controllable, then the differential inclusion (2.4)-(2.5) is weakly
asymptotically stable at the point x̄.

We recall that the system (2.50) is completely controllable if and only if
the matricesA,B satisfy the algebraic relation Rank

[
B, AB, . . . , An−1B

]
=

n. This guarantees that the system can be steered from any initial state to
any final state, within any given time interval [8, 58].

To prove the theorem, consider the control system

ẋ = f(x) + γ(x, ξ). (2.51)

By a classical result in control theory, the above assumptions imply that,
for every point x♯ sufficiently close to x̄, there exists a trajectory starting
from x♯ reaching x̄ in finite time. In particular, in view of (2.49), the system
(2.51) is asymptotically stabilizable at the point x̄. Since all trajectories
of (2.51) are also trajectories of the differential inclusion (2.4), the result
follows. ♢

Remark 2.3.2 Toward the construction of smooth selections from the mul-
tifunction F we observe that each closed convex set F(x) can be equivalently
written as

F(x)
.
= f(x) + F1(x) + F2(x)

= f(x) + co
{∑m

α=1 gα(x)wα +
∑m

α,β=1 hα,β(x)wαwβ ; (w1, . . . , wm) ∈ IRm
}

+co


m∑

α,β=1

hα,β(x)wαwβ ; (w1, . . . , wm) ∈ IRm


(2.52)

Indeed, by definition we have F(x) = f(x)+F1(x). To establish the identity
(2.52) it thus suffices to prove that

F1 + F2 ⊆ F1 . (2.53)

Since the set F1(x) is convex and contains the origin, for every (w1, . . . , wm) ∈
IRm and ε ∈ [0, 1] we have

yε
.
= ε

 m∑
α=1

gα(x)
wα√
ε

+
m∑

α,β=1

hα,β(x)
wαwβ

ε

 ∈ F1 .
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Letting ε→ 0 we find

lim
ε→0+

yε =

m∑
α,β=1

hα,β(x)wαwβ . (2.54)

Since F1(x) is closed, it must contain the right hand side of (2.54). This
proves the inclusion F2 ⊆ F1. Next, observing that F2 is a cone, for every
y2 ∈ F2 and ε > 0 we have ε−1y2 ∈ F2 ⊆ F1. Therefore, if y1 ∈ F1 we can
write

y1 + y2 = lim
ε→0+

(1 − ε)y1 + ε(ε−1y2) ∈ F1

because F1 is closed and convex. This proves (2.53).

Remark 2.3.3 By Theorem 2.3.1 and the above remark, one may establish
a stability result be constructing suitable selections γ(x, ξ) ∈ F2(x) from the
cone F2.



Chapter 3

Affine control systems

In this chapter we shall deal with systems affine in the control, namely the
case when the quadratic coefficients hα,β in the general control equation
(2.1) vanish identically and reduces to

ẋ = f(x) + g1(x)u̇1 + · · · + gm(x)u̇m. (3.1)

It is clear that classes of controls larger than those of the general case can be
considered for equation (3.1): certainly absolutely continuous controls are
o.k., but it is also intuitive –even though not trivial– that even discontinuous
controls might be allowed. There is a wide literature for systems like (3.1),
and we give here just a small and non-exhaustive account of the existing re-
sults. Moreover, systems like (3.1) are more interesting in optimization with
slow growth than in stabilization, even though they provide an interesting
example where vibrational stabilizability is not achievable.

As we have mentioned, the interest in this extension of the ordinary no-
tion of trajectory for equation (3.1) is motivated e.g. by optimal control
problems with slow growth, where minimizing sequences possibly converge
to discontinuous maps. We stress two main facts. First, the genuine non-
linear nature of the problem implies that a naive distributional approach
does not work, even if the control is scalar valued. In other words the dy-
namical equation governing the motion cannot be interpreted as an equality
between distributions. Secondly, as soon as the control is vector-valued,
the noncommutativity of Lie brackets of vector fields makes the problem

33
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of determining a discontinuity of the trajectory much more involved. For
instance, assume that the control [appears linearly in the dynamics and]
consists of a [vector-valued] measure concentrated at time t̂. It turns out
that the mere knowledge of this measure is not sufficient for determining the
corresponding jump of the trajectory. In fact, in order to compute this jump
one needs a description of the path bridging (istantaneously at t = t̂) the
gap of the control’s primitive. This leads to a notion of space-time control,
which can be regarded as the limit of the graphs of primitives of ordinary
–i.e. absolutely continuous– controls. Let us point out that two distinct
space-time controls may have the same spatial projection. And, unless all
involved Lie brackets vanish identically, two such space-time controls pos-
sibly generate distinct (space-time) trajectories and, hence, distinct costs.
Let us remark that the set of [the graphs of] ordinary trajectories is dense
in the set of space-time trajectories. Moreover, for a large class of minimum
problems an optimal space-time trajectory does exist. Hence, the space-time
embedding can be considered as a natural extension of the original problem
with slow growth.Besides Mechanics, further applications can be found in
mathematical modelling of optimal advertising [20].

There is a lot of important references moving around nonlinear impulsive
problems. The following is a short, incomplete, list of these works: [20],[40],
[53],[54],[55],[62],[63].

3.1 Introduction

While there is no difficulty to give a robust notion of solution to{
ẋ = f(x) +Gξ = f(x) + g1ξ1 + · · · + gmξm

x(t̄) = x̄
t ∈ [t̄, T ] (3.2)

when G is a constant matrix (and g1, . . . , gm are its columns), ξ is a first
order distribution –i.e., ξ = u̇, u ∈ L1

loc – a distributional approach turns out
to be not adequate as soon as the gi are x-dependent:{

ẋ = f(x) +G(x)ξ = f(x) + g1(x)ξ1 + · · · + gm(x)ξm

x(t̄) = x̄
. (3.3)

In fact, we observe that x is a solution of (3.2) corresponding to a control
ξ ∈ L1 if and only if the map

z = x−G · u, (3.4)
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with u(t)=̇
∫ t
t̄ ξ(s) ds, is a solution of{

ż = f̂(z, u)=̇f(z +Gu)

z(t̄) = x̄.
(3.5)

Notice that since ξ belongs to L1, the map u belongs to AC, where AC
denotes the set of absolutely continuous maps. Yet both (3.4) and (3.5) are
meaningful for a control u ∈ L1 as well. Moreover in view of the linearity
of (3.4) and of wellknown properties of the input-output map of (3.5) we
may pass to the limit when a sequence of controls un ∈ AC converges (e.g.,
in the L1-norm) to a control u ∈ L1. Hence, given a map u ∈ L1, one can
define the solution x of (3.2) corresponding to (the distribution) ξ = u̇ as

x=̇z +Gu,

where z is the solution to (3.5).

In other words the input-output map Φ : AC → L1, which to a control u
associates the solution x = Φ(u) of (3.2) corresponding to ξ = u̇ [is contin-
uous when AC is endowed with the L1-topology and] can be continuously
extended to a map Φ̃ : L1 → L1. That is, the continuous map Φ̃ renders
the diagram commutative, where e denotes the (dense) embedding of AC

ACL1L1ΦẽΦin L1. And the above given notion of solution x corresponding to a control
u ∈ L1 is nothing but Φ̃(u). Notice that the solution Φ̃(u) is defined up to a
set of null measure. (Yet, a notion of solution pointwise defined of a subset
I ⊂ [t̄, T ] can be trivially given by considering sequences un converging to u
in L1 and pointwise in I (see [6] and [9])).

We remark that as soon as u has bounded variation – which implies that
ξ = u̇ is a Radon-measure – the solution x = Φ̃(u) is a solution ”in measure”
of (3.2), that is, (3.2) is verified as an identity between the measure ẋ and the
measure on the right-hand side. Summing up the above considerations we
can say that for equations like (3.2) no difficulty arises when one wishes to
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extend the notion of solution in order to include the case where the control
ξ is the (distributional) derivative of a L1 function (see also [52] for the
case when G depend on t). This can be done by continuous extension of
the input-output map. And, as soon as u has bounded variation, this is
equivalent to give a notion of solution “in measure”.

However, there are essentially two crucial drawbacks in the attempt of
extending the arguments of the linear case to the nonlinear equation (3.3):

(i) for m = 1, i.e., when (3.3) reduces to{
ẋ = f(x) + g1(x)ξ

x(t̄) = x̄
(3.6)

the approach based on the continuous extension of the input-output
map still works. On the contrary, the approach “in measure” lacks
natural features of well-posedness (see below);

(ii) the “continuous extension” approach, valid for the scalar control-case
(i.e., m = 1), does not hold any longer when m ≥ 2.

While the problem described in (i) is a genuine analytical question (rely-
ing essentially in the fact that a naive distributional approach does not work
for nonlinear systems), the difficulty pointed out in (ii) is directly related to
a more differential geometric issue, namely the fact that (in general)

[gi, gj ](x) ̸= 0,

where [gi, gj ] is the Lie bracket of gi and gj :

[gi, gj ] = ∇gjgi −∇gigj .

Actually, when

[gi, gj ](x) = 0 ∀x ∈ Rn, i, j = 1, . . . ,m, (3.7)

the “extension approach” does work [9], just as in the case when m = 1
(which trivially verifies the commutativity hypothesis (3.6)).

3.2 The scalar case and the commutative case

As mentioned above, when m = 1, we can address the problem of giving a
robust notion of solution to (3.3) by exploiting the same extension argument
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which turned out to be successful in the linear case. At various levels of gen-
erality this approach has been pursued in [59], [6] (see also [50],[21],[51] and
the references therein). More precisely, under standard regularity assump-
tions one proves that the input-output map of (3.6)

Φ : AC → L1

–where Φ(u) is the classical (i.e., Caratheodory) solution of (3.6) correspond-
ing to u(t) =

∫ t
t̄ ξ(s) ds – is uniformly continuous when AC is endowed with

the L1 topology: hence Φ can be continuously extended to (3.6).
Therefore, just as in the linear case, there is a continuous mapping Φ̃

which renders the diagram commutative. The reason why this happens relies

ACL1L1ΦẽΦon the fact that (3.6) can be transformed into a linear system. Indeed, let
us consider the system 

α̇ = ξ

ẋ = f(x) + g1(x)ξ

(α, x)(t̄) = (0, x̄),

(3.8)

which is formally obtained from (3.6) by adding the variable α and the
equation α̇ = ξ.

It is straightforward to show that the change of coordinates

(α, y) = Γ(α, y)=̇(α, exp[−αg1]x)

transforms the vector field (1, g1) into the constant vector (1, 0, . . . , 0).
Hence, (α, x)(·) = (u, x)(·) is the solution of (3.8) corresponding to ξ if

and only if
(α, y)=̇Γ ◦ (α, x)

is the solution to 
α̇ = ξ

ẏ = f̂(α, y)

(α, y)(t̄) = (0, x̄),

(3.9)
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where, for every (α, y) = Γ(α, x),

(0, f̂)(α, y)=̇dΓ(α, x) · (0, f(x)),

dΓ denoting the derivative of Γ.
Let us set u=̇

∫ t
t̄ ξ(s) ds and let us denote the solution to{

ẏ = f̂(u, y)

y(t̄) = x̄

by Φ̂(u). Hence

(u,Φ(u)) = Γ−1 · (u, Φ̂(u)). (3.10)

It is easy to show that Φ̂(u) can be extended from AC to L1, continuously
with respect to the L1-topology (see [6], [9]). Hence by (3.10), the same can
be stated for Φ.

In other words the solution x of (3.6) corresponding to ξ = u̇, with
u ∈ L1, coincides with the L1-limit of (classical) solutions xn corresponding
to a sequence un ∈ AC converging to u in L1. The above arguments show
that x is independent of the particular sequence un approximating u and
is defined up to a set of measure zero. (Yet the notion of solution can be
refined in order to get a trajectory pointwise defined e.g., at the final time).
We conclude this section by remarking that a direct approach “in measure”
does not work although it works for the transformed system (3.9). Moreover,
it is easy to check that the above given notion of solution x corresponding
to a distribution ξ = u̇ is nothing but the Γ−1-transform of the (measure)
solution (y0, y) of (3.9), namely (u, x) = Γ−1(y0, y).

A quite critical (and convincing) argument against a direct approach
in measure can be found in [22]. An heuristic, non-rigorous explanation of
the reason why a “solution in measure” cannot verify elementary properties
of well-posedness can be argued by considering, the control ξ = u̇ where
u(t) = 0 for all t ∈ [t̄, t̂] and u(t) = 1 for t ∈]t̂, T ]. Is is clear that a solution
x to (3.6) corresponding to ξ has to jump at t = t̂ and that the jump should
satisfy a relation like

x(t̂+) − x(t̂−) = g1(x(t̂))(u(t̂+) − u(t̂−)).

Now the question is: which is the “value of x(t̂)” where g has to be evaluated?
It is obvious that an answer to this question is crucial in the attempt of
giving to (3.6) a distributional meaning. Yet, any such answer (for example
one could decide to take the right-limit of x at t̂, or the left-limit, the
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intermediate point, ect.) turns out to be unsatisfactory in that it does not
agree with elementary well-posedness requirements (again, see [22]).

When g1, . . . , gm verify the commutativity conditions

[gi, gj ] = 0 ∀i, j = 1, . . . ,m (3.11)

the approach pursued in the scalar case can be easily extended to system
(3.3) for any m ≥ 1. The details can be found e.g. in [9]. We only remark
that a trasformation of coordinates analogous to the one performed in the
linear-case plays a crucial role in the proof of the extendability of the input-
output map. More precisely one considers the trasformation Γ : Rm×Rn →
Rm × Rn defined by1

Γ(α, x)=̇(α, exp[−α1g1] ◦ · · · ◦ exp[−αmgm]x), (3.12)

for every (α, x) = (α1, . . . , αm, x1, . . . , xn) ∈ Rm × Rn.

It is straigthforward to check that Γ changes the system
α̇ = ξ

ẋ = f(x) +
∑m

i=1 gi(x)ξi

(α, x)(t̄) = (0, x̄)

(3.13)

into the simpler system 
α̇ = ξ

ẏ = f̂(α, y)

(α, y)(t̄) = (0, x̄)

(3.14)

where, for every (α, y) = Γ(α, y),

(0, f̂)(α, y)=̇dΓ(α, x) · (0, f(x)).

Therefore one can proceed as in the scalar case and prove the extendability
of the input-output map of (3.14), which in turn implies the extendability
of the input-output map of (3.13).

1If h is a vector field, we use the standard notation exp[th] to mean the function that
maps an initial condition y into the value at t of the solution of the Cauchy problem
ẋ = f(x), x(0) = y.
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3.3 Non commutative systems

For the purpose of continuously extending the input-output map from the set
of L1 controls to the set of controls which are the distributional derivatives
of L1-maps the commutativity condition (3.11) is crucial, as is illustrated
by the following example.

Example 3.3.1 Let g1 and g2 be smooth vector fields in Rn such that
[g1, g2] ̸= 0 and let us consider the system{

ẋ = g1(x)ξ1 + g2(x)ξ2

x(0) = 0,
t ∈ [0, 2].

Let us fix the control (ξ1, ξ2) = u̇, u = (χ[0,1[, χ[0,1[), where χE denotes the
characteristic function of E.

Both sequences

u1n(t) =


(1, 1) t ∈ [0, 1 − 1/n]

(1, 1 − n(t− 1 + 1/n)) t ∈ [1 − 1/n, 1]

(1 − n(t− 1), 0) t ∈ [1, 1 + 1/n]

(0, 0) t ∈ [1 + 1/n, 2]

and

u2n(t) =


(1, 1) t ∈ [0, 1 − 1/n]

(1 − n(t− 1 + 1/n), 1) t ∈ [1 − 1/n, 1]

(0, 1 − n(t− 1)) t ∈ [1, 1 + 1/n]

(0, 0) t ∈ [1 + 1/n, 2]

(are in AC and) converge to u in the L1-topology.

Yet the solutions x1n corresponding to the controls u1n converge to the
map

x1(t) = a1χ[1,2] a1=̇exp(g1) ◦ exp(g2)(0)

while the solutions x2n corresponding to the controls u2n converge to the map

x2(t) = a2χ[1,2] a2=̇exp(g2) ◦ exp(g1)(0)

Since [g1, g2] ̸= 0, in general one has a1 ̸= a2.
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This example might suggest that, whereas the input-output of (3.6) fails
to be continuously extendable to a set of controls that includes measures,
one could try to extend the input-output map corresponding to the graphs
of the controls (and of the trajectories). Actually this is the idea underlying
the approach pursued in [12], [30]-[33], [34]-[38], [53]-[54]. Let us briefly
illustrate the main idea of this approach.

To begin with, let us consider the set

UK=̇{u ∈ AC([t̄, T ],Rm), V T
t̄ (u) ≤ K},

where AC([t̄, T ],Rm) denotes the set of absolutely continuous maps from
[t̄, T ] into Rm and V T

t̄ (u) denotes the variation of u in [t̄, T ]. Since u is
absolutely continuous, one has

V T
t̄ (u) =

∫ T

t̄
|u̇| dt.

Now let ϕ0 : [0, I] → [t̄, T ] be a differentiable surjective map, with ϕ
′
0(s) ≥ 0

∀s ∈ [0, 1], where the sign “′” denotes differentiation with respect to the
variable s. It is trivial to verify that a map x is the trajectory of (3.6)
corresponding to a control ξ = u̇, u ∈ UK , if and only if the space-time
trajectory (y0, y) : [0, 1] → R1+n defined by

(y0, y)(s)=̇(ϕ0(s), x ◦ ϕ0(s)) ∀s ∈ [0, 1]

is the solution of 
y
′
0 = ϕ

′
0

y
′

= f(y)ϕ
′
0 +

∑
gi(y)ϕ

′
i

(y0, y)(0) = (0, x̄)

(3.15)

corresponding to the space-time control

(ϕ0, ϕ)(s)=̇(ϕ0(s), u ◦ ϕ0(s)).

In other words (3.15) is the system resulting from (3.6) – more precisely,
from (3.6) supplemented with the equation ṫ = 1– after reparametrizing
time by means of t = ϕ0(s). And the equivalence between (3.6) and (3.15)
relies on the injectivity of ϕ0. Yet, in principle there is no problem in
considering space-time controls (ϕ0, ϕ) with a ϕ0 merely non decreasing.
Of course, unless ϕ0 is injective, the space-time control (ϕ0, ϕ) is not the
reparametrization of (the graph of a) control u ∈ UK .
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In fact a “spatial projection” of (ϕ0, ϕ), say a selection of ϕ◦ϕ−1
0 (t), is in

general discontinuous. Hence it cannot belong to UK . In a sense, (ϕ0, ϕ) con-
tains the information of a “spatial control” u(t) ∈ ϕ ◦ ϕ−1

0 (t) plus the extra-
information represented by the restriction of ϕ to those intervals where ϕ0
is constant. Actually, let [s1, s2] ⊆ [0, 1] be such that ϕ

′
0(s) = 0 ∀s ∈ [s1, s2].

One has ϕ0(s) = ϕ0(s1) = t̂ ∀s ∈ [s1, s2], while in general ϕ(s1) ̸= ϕ(s2).
Hence (ϕ0, ϕ)(s) cannot be the reparametrization of the graph of a con-
tinuous control u(t): actually one has u(t̂−) = ϕ(s1), u(t̂+) = ϕ(s2). The
extra-information is here provided by the restriction ϕ|[s1,s2]. Indeed, in
order to compute the “jump” of the trajectory x at t1, namely the vector

x(t̂+) − x(t̂−) = y(s2) − y(s1),

it is not sufficient to know the gap u(t̂+) − u(t̂−) = ϕ(s2) − ϕ(s1), because
“during” the s-interval [s1, s2] the state y evolves according to the controlled
dynamics

y
′

=

m∑
i=1

gi(y)ϕ
′
i. (3.16)

Therefore in order to calculate the “jump” y(s2) − y(s1) one has to know
the whole restriction ϕ|[s1,s2].

Remark 3.3.2 Of course in the commutative case the mere knowledge of
the gap ϕ(s2)−ϕ(s1) is sufficient for the computation of y(s2)−y(s1). This
very fact, together with the density theorem below, explain why there are
no problems in extending the input-output map when the vector fields gi
commute.

Let us make the above considerations more precise. We shall consider
the set ΦK of space-time controls with variation bounded by K, defined by

ΦK =
{

(ϕ0, ϕ) ∈ Lip([0, 1], [t̂, T ] × Rm) : |(ϕ′
0, ϕ

′
)(s)| ≤ K + T, ϕ

′
0(s) ≥ 0

a.e. in [0, 1], ϕ0([0, 1]) = [t̂, T ], V 1
0 (ϕ) ≤ K

}
,

where 0 ≤ t̂ < T and Lip(E,F ) denotes the set of Lipshitz continuous maps
from E into F . Let us denote the set of corresponding solution to [3.15]
by ΛK . In the space-time setting, the set UK has to be identified with the
subset

Φ+
K=̇
{

(ϕ0, ϕ) ∈ ΦK , ϕ
′
0 ≥ 0 a.e. in [0, 1]

}
⊂ ΦK

in a obvious way (see e.g. [34], [36], [47]). Let us denote the corresponding
set of solutions to (3.15) by Λ+

K . The following can be trivially proved:
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Lemma 3.3.3 Let Φ̄+
K denote the closure of Φ+

K in C0([0, 1],R1+n). Then
Φ̄+
K = ΦK .

Remark 3.3.4 In Lemma 3.3.3 and in the results below concerning the den-
sity of Λ+

K and the continuity of the input-output map a topology could be
considered on both ΦK and ΛK , that is (weaker and) more appropriate than
the C0-topology (see e.g., [6] and [34]). We only point out that this topology
keeps track of the free-parameter character of system (3.15), namely of the
fact that if (y0, y)(s) is the solution corresponding to (ϕ0, ϕ)(s) and s(σ) is
a reparametrization of [0, 1] than (y0, y) ◦ s(σ) is the solution corresponding
to (ϕ0, ϕ) ◦ s(σ). Yet we use the C0 topology, for this choice is not too
restrictive and, at the same time, allows one to simplify the presentation of
several subjects.

Theorem 3.3.5 ([12]). The input-output map I : ΦK :→ ΛK , which to
every (ϕ0, ϕ) ∈ ΦK associates the corresponding solution to (3.15), is con-
tinuous w.r. to the C0 norm on both ΦK and ΛK .

From the relations Λ+
K = I(Φ+

K),ΛK = I(ΦK) and the continuity of I we
obtain:

Corollary 3.3.1 Let Λ̄+
K denote the closure of Λ+

K in the C0 norm. Then
Λ̄+
K = ΛK .

Now let us come back to our original question, that is: can one give
a notion of solution to (3.3) corresponding to a control ξ = u̇, with u an
L1-map? Let us restrict our attention (see Remark 3.3.7 below) to the set
of controls

U∗
K=̇
{
u ∈ BV ([t̄, T ],Rm), V T

t̄ (u) ≤ K
}
.

Observe that the original set UK is dense in U∗
K w.r. to the L1-topology.

Fix u ∈ U∗
K . On one hand, the previous example show that the we cannot

extend continuously the notion of solution corresponding to a control u from
UK to U∗

K . In fact, distinct sequences, (un), (ũn) in UK approximating u
give rise to sequences of solutions (xn) and (x̃n) respectively, that in general
converge to distinct limits.

On the other hand one can consider a graph-completion of u.

Definition 3.3.6 A graph-completion of u is a space-time control (ϕ0, ϕ) ∈
ΦK such that u([t̂, T ]) ⊆ ϕ([0, 1]).
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Notice that a graph-completion always exists: it is sufficient to bridge the
gaps of u with straight lines and to parametrize the so-obtained (rectifiable)
(m+ 1) path with an abscissa that is proportional to the arc-length (in this
case the total variation of ϕ equals the total variation of u). Of course, there
is no special reason to prefer this graph-completion to another one where
gaps are filled with curves which are not rectilinear (see the next section).

Now, whereas we are not able to define a solution of (3.3) corresponding
to a control u ∈ U∗

K , we can consider the solution (y0, y)(s) of (3.15) corre-
sponding to a graph-completion (ϕ0, ϕ) of u. If one whishes to come back to
the parameter t, any selection of y0 ◦ y−1

0 (t) can be considered as a solution
of (3.3) corresponding to the graph-completion (ϕ0, ϕ).

Notice that in view of Corollary 3.3.1 the space-time trajectory (y0, y)
can be uniformly approximated by means of trajectories (yn0 , y

n) ∈ Λ+
K cor-

responding to space-time controls (ϕn0 , ϕ
n) uniformly converging to (ϕ0, ϕ).

In practice this means that the solution (y0, y) corresponding to a graph-
completion (ϕ0, ϕ) of u can be approached by the graphs of the solutions
xn corresponding to controls un whose (reparametrized) graphs converge to
(ϕ0, ϕ).

We have constructed a class of trajectories, namely the set ΛK , in which
the class of original trajectories, here identified with Λ+

K , is dense. The set
ΛK concides with the set of outputs of system (3.15) corresponding to the in-
puts in ΦK , the set of graph-completions (it is obvious that each space-time
control (ϕ0, ϕ) is the graph-completion of a suitable control u ∈ U∗

K). This
gives an answer to the question of defining a notion of output of (3.3) cor-
responding to a control ξ = u̇, with u ∈ U∗

K . In fact, in order to define such
an output we have to choose –in principle, arbitrarily – a graph-completion
(ϕ0, ϕ) of u and to consider the corresponding trajectory. Let us remark
that for a wide class of optimal control problems having (3.3) as dynam-
ics the optimal control exists only in the set ΦK (see next section). In
this case the optimal strategy consists of a control u ∈ U∗

K and a suitable
graph-completion of u.

Remark 3.3.7 When the variation of u is not bounded the situation is
much more involved. For example, the input-output map is not continu-
ous even when it is restricted to continuous controls, as is shown in [59].
The question is addresses in [10] where a concept of looping control is intro-
duced: roughly speaking a looping control is a represantation of the limit of
a sequence of controls with larger and larger variation.
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3.4 Optimal control problems

In order to give an idea of the questions involved in optimal control problems
subject to a dynamics of the form (3.3), let us consider the following Mayer
problem: let ψ : Rn → R be a continuous map and let us define the final
cost functional as

C(u)=̇ψ(x[u](T )),

where x[u](·) denotes the trajectory of{
ẋ = f(x) +

∑m
i=1 gi(x)u̇i

x(t̄) = x̄
(3.17)

corresponding to the control ξ = u̇. The problem

minimizeu∈UKC(u̇) (3.18)

consists in looking for a control û ∈ UK such that C(û) = minu∈UKC(u).
We begin by observing that an optimal control û ∈ UK in general does

not exists. This is due essentially to the lack of compactness of UK . In order
to frame this phenomenon of non-existence in a more theoretical picture
we begin by observing that it is not related to any lack of convexity: no
chattering controls are needed here. Instead, the non-existence of an optimal
control û ∈ UK is linked to a fact that, in analogy with a similar pathology
occurring in the Calculus of Variations, could be called lack of coerciveness.
As a matter of fact, in the classical problem

minimize
x ∈ AC

x(a) = A

x(b) = B

∫ b

a
L(x, ẋ) dt, (3.19)

the term coerciveness refers to the fact that the Lagrangian L is superlinear
in ẋ. Roughly speaking, this avoids the occurrence of minimizing sequences
of trajectories that converge to a discontinuous map. In Control Theory, on
one hand several problems involve a bounded dynamics: this is sufficient to
avoid jumps of the optimal trajectories. On the other hand it often happens
that, although the dynamics is unbounded, a sort of coerciveness condition
penalizes the use of too large velocities. For instance, this is the case of the
so-called linear-quadratic problems.

On the contrary, problem (3.18) involves a unbounded dynamics – u̇ has
no bounds – and no condition makes the use of larger and larger controls
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unfavorable for the pursuit of the infimum of C. The Example 3.4.1 below
provides a typical situation of non-existence of an optimal control. Succes-
sively we shall present an extension of the general problem (3.18) and test
this extension with the special problem of Example 3.4.1.

Example 3.4.1 Let us consider the system
ẋ1 = u̇1

ẋ2 = u̇2

ẋ3 = arctan(x21 + x22) − x2u̇1
2 + x1u̇2

2

(x1, x2, x3) = (0, 0, 0)

t ∈ [0, 1] (3.20)

and let us address the problem of minimizing the Mayer functional

C(u) = x3[u](1)

over the set Uπ, where x[u](·) denotes the solution to (3.20) and xi[u], i = 1, 2, 3,
is its i-th component. Since the integral∫ α

0

x1(σ)ẋ2(σ) − ẋ2(σ)x1(σ)

2
dσ

coincides with the area spanned by the vector (x1, x2)(σ) in the interval [0, α],
it is not difficult to check that the maps

ûn(t)=̇[cos(πn(1 − 1/n− t)) − 1, sin(πn(1 − 1/n− t))]χ[1−1/n,1]

define a minimizing sequence. Moreover, one has

infu∈UπC(u) = limn→∞C(ûn) = −π/2.

Now, one can easily verify that every minimizing sequence ũn verifies

limn→∞x3(ũn)(t) = 0 ∀t ∈ [0, 1[,

limn→∞x3(ũn)(t) = −π/2,

which, in particular, implies that no optimal control exists in Uπ. Also,
observe that although the sequence

ǔn=̇[cos(πn(t− 1 + 1/n)) − 1, sin(πn(t− 1 + 1/n))]χ[1−1/n,1]

it is not minimizing (in that limn→∞C(ǔn) = π/2) one has

lim|ûn(t) − ǔn(t)| = 0 ∀t ∈ [0, 1].
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Extension of problem (3.18). We now introduce an extension of the
problem (3.18), that is, a new minimum problem (3.22) having the following
features:

(i) the infimum value of (3.18) coincides with the infimum value of (3.22);

(ii) the class of elements where one seeks the infimum of (3.18) is dense in
the corresponding class of (3.22), with respect to a topology for which
the functional of (3.22) is continuous.

We shall consider the extended cost functional

Ce(ϕ0, ϕ)=̇ψ(y[ϕ0, ϕ](1))

where (y0, y)[ϕ0, ϕ](·) denotes the solution of
y
′
0 = ϕ

′
0

y
′

= f(y)ϕ
′
0 +

∑m
i=1 gi(y)ϕ

′
i

(y0, y)(0) = (0, x̄)

(3.21)

corresponding to the space-time control (ϕ0, ϕ) ∈ ΦK . We define the ex-
tended problem (3.22) as

minimize(ϕ0,ϕ)∈ΦKCe(ϕ0, ϕ). (3.22)

Theorem 3.4.2 Problem (3.22) admits an optimal control (ϕ̂0, ϕ̂) ∈ ΦK ,
that is

Ce(ϕ̂0, ϕ̂) = inf(ϕ0,ϕ)∈ΦKC(ϕ0, ϕ). (3.23)

Moreover, for every sequence (ϕn0 , ϕ
n)(·) in Φ+

K which converges to (ϕ0, ϕ)
one has that the sequence (un) in UK defined by

un(t) = ϕn ◦ (ϕn0 )−1(t) ∀t ∈ [t̄, T ]

verifies

limn→∞C(un) = infu∈UKC(u) = Ce(ϕ̂0, ϕ̂). (3.24)

Remark 3.4.3 In particular (3.23)-(3.24) yield

infu∈UKC(u) = inf(ϕ0,ϕ)∈ΦKCe(ϕ0, ϕ)
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Proof of Theorem 3.4.2 By Theorem 3.3.5 the map

(ϕ0, ϕ) → ψ(y[ϕ](1))

is continuous with respect to the C0-norm. Moreover by Ascoli-Arzelà’s the-
orem the set ΦK is compact, from which the existence of an optimal control
follows. The remaining part of the thesis is a straightforward consequence
of the density of Φ+

K in ΦK and of the continuity of the input-output map
I.

Application to Example 3.4.1. The space-time versions of the system
and the cost-fuctional in Example 3.4.1 are given by

y
′
0 = ϕ

′
0

y
′
1 = ϕ

′
1

y
′
2 = ϕ

′
2

y
′
3 = arctan(y21 + y22) − y2ϕ

′
1

2 +
y1ϕ

′
2

2

(y0, y1, y2, y3)(0) = (0, 0, 0, 0),

and
Ce(ϕ0, ϕ) = y3[ϕ0, ϕ1](1),

respectively. By Theorem 3.4.2 the extended problem

minimize(ϕ0,ϕ)∈ΦπCe(ϕ0, ϕ)

has one solution. By the considerations made in Example 3.4.1 it is clear
that the space-time control

(ϕ̂0, ϕ̂(s))=̇(2s, 0, 0)χ[0,1/2[(s) + (0, cos(π − 2πs) − 1, sin(π − 2πs))χ[1/2,1](s)

is optimal for the extended problem.
It is straightforward to check that the sequence (ϕ̂n0 , ϕ̂

n) defined by

(ϕ̂n0 , ϕ̂
n(s))=̇

(
(s− s/n)χ[0,1/2[(s) + (1 + s/n− 1/n)χ[1/2,1](s), ϕ̂(s)

)
lies in Φπ, converges to (ϕ̂0, ϕ̂), and verifies

ûn(t) = ϕ̂n ◦ (ϕ̂n0 )−1(t)

for every n and every t ∈ [0, 1], where (ûn) is the sequence of maps defined
in Example 3.4.1. This explains why (ûn) is a minimizing sequence, while
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(ǔn) is not a minimizing sequence. In fact, the space-time controls (ϕ̌n0 , ϕ̌
n)

defined by

(ϕ̌n0 , ϕ̌
n)(s)=̇(ϕ̂n0 (s), ϕ̌(s))

ϕ̌(s)=̇(0, cos(2πs− π) − 1, sin(2πs− π))

are space-time representations of the ǔn, that is

ǔn(t) = ϕ̌n ◦ (ϕ̌n0 )−1(t),

and they converge uniformly to the space-time control (ϕ̂0, ϕ̌), which is not
optimal, for

Ce(ϕ̂0, ϕ̌) =
π

2
.

We conclude by remarking that both (ûn) and (ǔn) converge pointwise to
the control û = (−1, 0)χ{1}. Yet the information that (ûn) [resp. ǔn] is [resp.
is not] a minimizing sequence cannot be deduced by the mere knowledge of
û (or equivalently, of ξ = (−1, 0)u = (−1, 0)δ{1}). On the contrary, this

information is contained in the specification of the graph-completion (ϕ̂0, ϕ̂)
of û.
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Part II

Moving, bilateral, constraints
as controls for mechanical

systems
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Chapter 4

Control of holonomic systems

4.1 Introduction

Let N,M, ν be positive integers such that ν ≤ N . Let Q be an (N + M)-
dimensional differential manifold, which will be regarded as the space of
configurations of a mechanical system 1.

The system will be controlled by means of an active (holonomic, time-
dependent) constraint. Let an M -dimensional differential manifold U be
given, together with a surjective submersion

π : Q 7→ U . (4.1)

The fibers π−1(u) ⊂ Q will be regarded as the states of the active constraint.
The set of all these fibers can be identified with the control manifold U .

Let I be a time interval and let u : I 7→ U be a continuously differentiable
map. We say that a trajectory q : I → Q agrees with the control u(·) if

π ◦ q(t) = u(t) ∀t ∈ I . (4.2)

For each q ∈ Q, consider the subspace of the tangent space at q given by

∆q
.
= ker Tqπ .

Here Tqπ denotes the linear tangent map between the tangent spaces TqQ
and Tπ(q)U . Clearly, ∆ is the integrable distribution whose integral mani-
folds are precisely the fibers π−1(u).

The general setting will be as follows:

1As customary, we assume that such mechanical system is obtained by a finite collection
of material points and rigid bodies connected by time-independent holonomic constraints,
physically obeying to D’Alembert Principle.

53
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Figure 4.1: Length as control

1) The manifold Q is endowed with a Riemannian metric g = gq[·, ·],
the so-called kinetic metric, which defines the kinetic energy T . More
precisely, for each q ∈ Q and v ∈ TqQ one has

T (q,v)
.
=

1

2
gq[v,v] . (4.3)

We shall use the notation v 7→ gq(v) to denote the isomorphism from
TqQ to T ∗

qQ induced by the scalar product gq[·, ·]. Namely, for every
v ∈ TqQ, the 1-form gq(v) is defined by

⟨gq(v),w⟩ .
= gq[v,w] ∀w ∈ TqQ , (4.4)

where ⟨·, ·⟩ is the duality between the tangent space TqQ and the
cotangent space T ∗

qQ.

If q ∈ Q and W ⊂ Tq, W⊥ denotes the subspace of Tq consisting of
all vectors that are orthogonal to every vector in W :

W⊥ .
= {v ∈ Tq | gq[v,w] = 0 ∀w ∈W} . (4.5)

For a given distribution E ⊂ TQ, the orthogonal distribution E⊥ ⊂
TQ is defined by setting E⊥

q
.
= (Eq)⊥, for every q ∈ Q.

We use PE : TqQ → Eq to denote the orthogonal projection on Eq.
Namely, for every v ∈ TqQ, PE(v) is the unique vector in Eq such
that v − PE(v) ∈ E⊥

q .
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2) The mechanical system is subject to forces. In the Hamiltonian for-
malism, these are represented by vertical vector fields on the cotangent
bundle T ∗Q. We recall that, in a natural local system of coordinates
(q, p), the fact that F is vertical means that its q-component is zero,
namely F =

∑N+M
i=1 Fi

∂
∂pi

.

3) The constraints (5.1) and (5.3) are dynamically implemented by reac-
tion forces obeying

D’Alembert Principle: If t 7→ q(t) is a trajectory which satisfies
both (5.1) and (5.3), and R(t) is the constraint reaction at a time t,
then

R(t) ∈ ker
(

∆q(t) ∩ Γq(t)

)
. (4.6)

In other words, regarding the reaction force R(t) as an element of the
cotangent space T ∗

q(t)Q, one has

⟨R(t) , v⟩ = 0 ∀v ∈ ∆q(t) ∩ Γq(t) ⊆ Tq(t)Q . 2 (4.7)

Figure 4.2: Second pendulum as control

We deal here with the case without non-holonomic constraints (formally
Γ = TQ). We begin by presenting the control equation of a curve agree-

2By considering the ”vector VR(·) corresponding to R(·) ”, namely VR
.
= g−1(R), one

has gq(t)[VR,v] = 0 for all v ∈ ∆q(t), that is R is ”orthogonal” to ∆q(t), which is the
way D’Alembert Principle is sometimes formulated.
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ing with a control u(·)(under the assumptions stated in the Introduction).
These equations can be formulated in an intrinsic way (see [29], [11]). We
prefer to state them in coordinates, and we refer e.g. to [?], [?], [8] for
their deductions (see also [19] and [29]). Successively we will see how the
functional dependence of the dynamics on the derivative u̇ is related to the
geometric properties of the foliation Λ

.
= {π−1(u) u ∈ U}. In particular

Figure 4.3: A pendulum with vertically moving pivot.

the quadratic dependence is equivalent to the existence geodesics orthogo-
nal to Λ. This, in turn, is necessary and sufficient for a certain orthogonal
curvature is equal to zero. We remark (see Part I) that the non-vanishing
of the term quadratic in u̇ is crucial for vibrational stabilization.

4.2 Control equations

Consider a ∆-adapted coordinate chart (qi, qN+α), i = 1, . . . , N, α = 1, . . . ,M ,
on an open subset O of U , and a coordinate chart (uα) on a subset of the
projection π(O) ⊂ U . We can obviously set xN+α = uα, α = 1, . . . ,M .
So, without danger of confusion, we shall sometimes refer to (qi, uα) (in-
stead of (qi, qN+α)) as ∆-adapted coordinates. We also use the compact
notation (q♯, q♭), where q♯

.
= (q1, . . . , qN ), q♭

.
= (qN+1, . . . , qN+M ). Let(

(qi, uα), (pi, pN+α)
)

= (q♯, q♭, p♯, p♭) be the corresponding local coordinates

on the fiber bundle T ∗Q. Let G = (gr,s)r,s=1,...,N+M be the matrix represent-
ing the kinetic metric g, and let G−1 = (gr,s)r,s=1,...,N+M denote its inverse.
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In the following, we consider the sub-matrices

G1
.
= (gi,j) , G2

.
= (gN+α,N+β) , (G−1)2

.
=
(
gN+α,N+β

)
,

G12
.
= (gi,N+α) , (G−1)12

.
=
(
gi,N+α

)
,

with the convention that the Latin indices i, j run from 1 to N , while the
Greek indices α, β run from 1 to M . Let us also set

A = (ai,j)
.
= (G1)

−1, E = (eα,β)
.
= ((G−1)2)

−1,

K = (kiN+α)
.
= (G−1)12E .

(4.8)

Proposition 4.2.1 Let u(·) : I 7→ U be twice continuously differentiable,
and let (q,p) : I 7→ T ∗Q be a curve verifying the Hamiltonian equations of
motion and such that q agrees with u. 3

Then the coordinate maps t 7→ (q(t), p♯(t)) =
(
q♯(t), q♭(t), p♯(t)

)
satisfy

the control equation differential equation
q̇♯

q̇♭

ṗ♯

 =


Ap♯

t

0

−1
2p♯

t ∂A
∂q p♯

+


Ku̇

u̇

−p♯t ∂K∂q♯ u̇

+


0

0

1
2 u̇

t ∂E
∂q u̇

+


0

0

F u(·),u̇(·)

 ,

(4.9)
where

F u(·),u̇(·)
.
=
(
F
u(·),u̇(·)
1 , . . . , F

u(·),u̇(·)
N

)
. (4.10)

For convenience, in (4.9) we have written all vectors as column vectors,
while the superscript t denotes transposition. Componentwise, (4.9) reads:

q̇i = ai,jpj + kiN+αu̇
α

q̇α = u̇α

ṗi = −1
2
∂aℓ,j

∂qi
pℓpj − ∂kjα

∂qi
pj u̇

α + 1
2
∂eα,β
∂qi

u̇αu̇β + F
u(·),u̇(·)
i .

(4.11)

As announced above, we do not give here a proof of Proposition 4.2.1, for
which we refer to the quoted references. However, we shall hint how to
deduce the control equations (4.11) from the more general case where non
holonomic constraints act on the system as well (see Subsection 5.3.3).

3By possibly restricting the size of the interval I, we can assume that q(t) remains
inside the domain of the single chart (q, q♭) for every t ∈ I.
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4.3 The input-output map

The presence of the derivative u̇ in the dynamic equations (4.9) depends
on the Riemannian metric g defining the kinetic energy and the integral
foliation Γ of ∆,

Λ
.
= {π−1(u) u ∈ U}. (4.12)

In this section we review the main results in this direction. To simplify
the discussion, throughout this section we shall assume that the additional
forces F vanish identically, so that in (4.10) one has

F
u(·),u̇(·)
Q ≡ 0 .

The following definitions were introduced in [?].

Definition 4.3.1 A local, ∆-adapted, system of coordinates (q♯, q♭) on Q
is called N -fit for hyperimpulses if, for every differentiable control function
u(·), the right-hand side of the corresponding equation of motion (4.11) does
not contains any quadratic term in the variable u̇.

A local, ∆-adapted, system of coordinates (q♯, q♭) on Q is called strongly
N -fit for hyperimpulses if, for every differentiable control function u(·), the
right-hand side of (4.11) is independent of the variable u̇.

Moreover, we shall call generic any local , ∆-adapted, system of coordi-
nates (q♯, q♭) which is not N -fit for hyperimpulses.

Remark 4.3.2 The denomination “N -fit for hyperimpulses” for a system
of coordinates (q♯, q♭) refers to the fact that, if the dependence on u̇ is only

linear, one can then construct solutions
(
q♯(·), p♯(·)

)
also for discontinuous

controls u(·). In general, a jump in u(·) will produce a discontinuity of
both q(·) and p(·). For this reason we call it a hyperimpulse, as opposite to
impulse, which can cause a discontinuity in the component p(·) only.

A first characterization of N -fit coordinates was derived in [?]. It is
important to observe that the property of being N -fit depends only on the
metric g and on the foliation Λ, while it is independent of the particular
the system of ∆-adapted coordinates. This allows one to give the following
definitions.

Definition 4.3.3 [?] The foliation Λ is called N -fit for hyperimpulses if
there exists an atlas of ∆-adapted charts that are also N -fit for hyperim-
pulses. In this case, all ∆-adapted charts are N -fit for hyperimpulses.
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The foliation Λ is called strongly N -fit for hyperimpulses if there exists
an atlas of ∆-adapted charts which are strongly N -fit for hyperimpulses.

Moreover, the foliation Λ will be called generic if it is not N -fit for
hyperimpulses.

The paper [?] established the connection between the N -fitness of the
foliation Λ and the bundle-like property of the metric, introduced in [49, 48].
We recall here the main definitions and results.

Definition 4.3.4 The metric g is bundle-like with respect to the foliation
Λ if, for one (hence for every) Λ- adapted chart, it has a local representation
of the form

N∑
i,j=1

gi,j(q
♯, q♭)ωi ⊗ ωj +

M∑
α,β=1

gN+α,N+β(q♭)dqN+α ⊗ dqN+β ,

where ω1, . . . , ωN are linearly independent 1-forms such that, for each q ∈ Q
in the domain of the chart, one has

(i)
(
ω1, . . . , ωN , dqN+1, . . . , dqN+M

)
is a basis of the cotangent space

T ∗
qQ× T ∗

uU ;
(ii)

⟨
ωi(q), Y

⟩
= 0, for every Y ∈ ∆⊥

q and all i = 1, . . . , N .

We recall that ∆⊥
q is the orthogonal bundle (see defined at (4.5)). If

g is bundle-like with respect to the foliation Λ, the latter is also called a
Riemannian foliation, because in this case a Riemannian structure can be
well defined also on the quotient space.

Theorem 4.3.5 Consider the foliation Λ as in (4.12). The following state-
ments are equivalent:

i) The foliation Λ is N -fit for hyperimpulses.

ii) The metric g is bundle-like with respect to the foliation Λ, i.e., the
foliation Λ is Riemannian.

iii) For any u, ū ∈ U the map du,ū(·) : Q 7→ IR defined by

du(q)
.
= dist

(
q, π−1(ū)

)
is constant. In other words, given two leaves, the points of one of the two
are all at the same distance from the other leaf. (This allows one to define
a metric on the set of leaves.)
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iv) If t 7→ q(t) is any geodesic curve with respect to the metric g, and
if q̇(τ) ∈ ∆⊥

(q(τ),u(τ)) at some time τ , then q̇(t) ∈ ∆⊥
q(t) for all t. In other

words, if a geodesic crosses perpendicularly one of the leaves, then it crosses
perpendicularly also every other leaf it meets.

v) If (q♯, q♭) is a ∆-adapted system of coordinates, then

∂gN+α,N+β

∂qi
= 0 i = 1, . . . , N, α, β = 1, . . . ,M , (4.13)

where G−1 = (gr,s) denotes the inverse of the matrix G = (gr,s) representing
the metric g in the coordinates (q♯, q♭).

Proof. The equivalence of i) and ii) is a trivial consequence of the defi-
nitions of bundle-like metric and of N -fit system of coordinates. The equiv-
alence of ii), iii), and iv), is a classical result on bundle-like metrics [49].
Moreover, by (4.11), the foliation is fit for jumps if and only if ∂eα,β/∂q

i ≡ 0.
Recalling that the matrix (eα,β) is the inverse of (G−1)2 = (gN+α,N+β), we
conclude that i) is equivalent to v).

♢

Theorem 4.3.6 The following statements are equivalent:
i) The foliation Λ is strongly N -fit for hyperimpulses .
ii) The foliation Λ is N -fit for hyperimpulses and the orthogonal bundle

∆⊥
q in (4.5) is integrable.

iii) There is an atlas such that, for every (∆-adapted) chart (q♯, q♭), one
has

∂gN+α,N+β

∂qi
= 0, gi,N+α = 0 ∀i = 1, . . . , N, α, β = 1, . . . ,M.

Indeed the equivalence of i) and ii), formulated in terms of Riemannian
foliations, was proved in [49]. The equivalence between i) and iii) follows
from (4.11). See again [49] and [?] for details.

4.4 The orthogonal curvature

For any (q♯, q♭) in the range of a ∆-adapted chart, let us consider

∂eα,β
∂qi

dcα ⊗ dcβ ⊗ dqi (4.14)

Definition 4.4.1 We shall refer to the function (4.14) as the orthogonal
curvature tensor of the foliation.
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Lemma 4.4.2 The function in (4.14) is intrinsically defined with respect

to the foliation Λ. This means that if (q̃♯, q̃♭) is a ∆-adapted chart then

∂ẽα,β
∂q̃i

=
∂uγ

∂q̃N+α

∂qN+δ

∂q̃N+β

∂qj

∂q̃i
∂eγ,δ
∂qj

. (4.15)

Proof. Since (q♯, q♭) and (q̃, q̃♭) are ∆-adapted, the coordinate transfor-

mation (q♯, q♭) 7→ (q̃, q̃♭) satisfies ∂q̃♭

∂q = 0. Therefore,

g̃N+α,N+β =
∂q̃N+α

∂qN+γ

∂q̃N+β

∂qN+δ
gN+γ,N+δ.

By inverting the matrices on both sides of the above identity one obtains

ẽα,β =
∂qN+γ

∂Q̃N+α

∂qN+δ

∂q̃N+β
eγ,δ,

which implies (4.15), because q♭ = q♭(q̃♭) is independent of q̃♯.

♢

Remark 4.4.3 Although the quantity in (4.14) is not a tensor in the strict
sense of the word, by (4.15) it still transforms like a tensor w.r.t. to changes
of ∆-adapted coordinates. Hence, it is intrinsically defined in terms of the
foliation. By a slight abuse of language, we thus define (4.14) as the orthog-
onal curvature tensor of the foliation Λ.

According to Theorem 4.3.5, the foliation Λ is N -fit for hyperimpulses if
and only if the the corresponding orthogonal curvature is identically equal
to zero. We now give a geometric construction which clarifies the meaning
of the coefficients ∂eα,β/∂q

i in (4.14), in the general case (see Figure 4.4).

In the following, given a tangent vector V ∈ T(q̄,ū)(Q × U), we denote
by τ 7→ γV(τ) the geodesic curve starting from (q̄, ū) with velocity V. In
other words,

γV(0) = (q̄, ū) ,
dγV
dτ

(0) = V .

The exponential map is then defined by setting

Exp(q̄,ū)(V)
.
= γV(1).

This is well defined for all vectors V in a neighborhood of the origin.
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Fix any point q ∈ Q and consider any non-zero vector V ∈ ∆⊥
(q) . Con-

struct the geodesic curve that originates at q with speed V, namely

s 7→ γV(s)
.
= Expq(sV) . (4.16)

Next, for each s ̸= 0, consider the orthogonal space ∆⊥
qs at the point qs =

γV(s). Assuming that s is sufficiently small, a transversality argument yields
the existence of a unique vector W ∈ ∆⊥

qs such that

ExpqsW = q̄s ∈ π−1(π(q)) . (4.17)

In other words, we are moving back to a point q̄s on the original leaf
π−1(π(q)), following a second geodesic curve that is orthogonal to π−1(π(qs)).
In general, q̄s ̸= q. We claim that, setting σ

.
= s2, the map

σ 7→ q̄√
σ

defines a unique tangent vector Z(V) ∈ Tq . Moreover, the map V 7→ Z(V)
is a homogeneous quadratic map from ∆⊥

q into the tangent space TqQ ⊂
Tq(Q). In turn, this determines a unique symmetric bilinear mapping B :
∆⊥

q ⊗ ∆⊥
q 7→ TqQ such that B(V,V) = Z(V), namely

B(V1,V2)
.
=

1

4
Z(V1 + V2) −

1

4
Z(V1 −V2) . (4.18)

The relation between the bilinear mapping (4.18) and the curvature ten-
sor (4.14) can be best analyzed by using coordinates. Consider an orthonor-
mal basis (J1, . . . , JM ) of ∆⊥

q , together with local ”U-orthonormal coordi-

nates” (q♯, q♭), constructed as [11]. If V = w1J1 + · · ·+wMJM , then by con-
struction the point (qs,us) has coordinates (0, sw) = (0, . . . , 0, sw1, . . . , swM ).
Let (q1w(s), . . . , qNw (s), 0, . . . , 0) be the coordinates of the point q̄s, (con-
structed as in [11]). We have:

Theorem 4.4.4 The curve s 7→ qw(s) ∈ IRN is continuous and satisfies

lim
s→0

q̄iw(s)

s2
=

1

2

M∑
α,β=1

∂eα,β
∂qi

wαwβ i = 1, . . . , N . (4.19)

♢
We refer to [11] for the proof of this result, which is based on the con-

struction of U-orthonormal coordinates.
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Figure 4.4: The geodesics involved in the computation of the orthogonal
curvature.



64 CHAPTER 4. CONTROL OF HOLONOMIC SYSTEMS



Chapter 5

Control of non-holonomic
systems

We consider a mechanical system as in Chapter 4 with, in addition, a non
holonomic constraint. This means that, at each point q ∈ Q, velocities must
belong to a given subset of the tangent space. We shall consider ”linear”
non holonomic constraints, which means that at each q ∈ Q the velocities
have to lie in a subspace Γq ⊆ TqQ. The fact that the constraint is non
holonomic means that the distribution q → Γq is not integrable: there is
no foliation whose leaves have the Γq as tangent spaces. (see Appendix
A.) In other words, the constraints on the velocities cannot be deduced by
differentiations from configuration constraints.

5.1 Non-holonomic systems with active constraints
as controls

Let N,M, ν be positive integers such that ν ≤ N . Let Q be an (N + M)-
dimensional differential manifold, which will be regarded as the space of
configurations of a mechanical system.

Let Γ be a distribution on Q, i.e. a vector sub-bundle of the tangent
space TQ. Throughout the following, we consider trajectories t 7→ q(t) ∈ Q
of the mechanical system which are continuously differentiable and satisfy
the geometric constraint

q̇(t) ∈ Γq(t) . (5.1)

We do not assume Γ to be integrable, so that (5.1) is a non holonomic
constraint.

65
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In our model, the system will be controlled by means of an active (holo-
nomic, time-dependent) constraint. To describe this constraint, let an M -
dimensional differential manifold U be given, together with a submersion

π : Q 7→ U . (5.2)

The fibers π−1(u) ⊂ Q will be regarded as the states of the active constraint.
The set of all these fibers can be identified with the control manifold U .

Let I be a time interval and let u : I 7→ U be a continuously differentiable
map. We say that a trajectory q : I → Q agrees with the control u(·) if

π ◦ q(t) = u(t) ∀t ∈ I . (5.3)

For each q ∈ Q, consider the subspace of the tangent space at q given by

∆q
.
= ker Tqπ .

Here Tqπ denotes the linear tangent map between the tangent spaces TqQ
and Tπ(q)U . Clearly, ∆ is the holonomic distribution whose integral mani-
folds are precisely the fibers π−1(u).

5.1.1 General setting

1) The manifold Q is endowed with a Riemannian metric g = gq[·, ·],
the so-called kinetic metric, which defines the kinetic energy T . More
precisely, for each q ∈ Q and v ∈ TqQ one has

T (q,v)
.
=

1

2
gq[v,v] . (5.4)

We shall use the notation v 7→ gq(v) to denote the isomorphism from
TqQ to T ∗

qQ induced by the scalar product gq[·, ·]. Namely, for every
v ∈ TqQ, the 1-form gq(v) is defined by

⟨gq(v),w⟩ .
= gq[v,w] ∀w ∈ TqQ , (5.5)

where ⟨·, ·⟩ is the duality between the tangent space TqQ and the
cotangent space T ∗

qQ.

If q ∈ Q and W ⊂ Tq, W⊥ denotes the subspace of Tq consisting of
all vectors that are perpendicular to every vector in W :

W⊥ .
= {v ∈ Tq | gq[v,w] = 0 ∀w ∈W} .
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For a given distribution E ⊂ TQ, the orthogonal distribution E⊥ ⊂
TQ is defined by setting E⊥

q
.
= (Eq)⊥, for every q ∈ Q.

We use PE : TqQ → Eq to denote the orthogonal projection on Eq.
Namely, for every v ∈ TqQ, PE(v) is the unique vector in Eq such
that v − PE(v) ∈ E⊥

q .

2) Throughout the following, we shall assume that the holonomic distri-
bution ∆ and the non-holonomic distribution Γ satisfy the tranversal-
ity condition

∆q + Γq = TqQ ∀q ∈ Q . (5.6)

Notice that this is equivalent to

∆⊥ ∩ Γ⊥ = {0} . (5.7)

3) The mechanical system is subject to forces. In the Hamiltonian for-
malism, these are represented by vertical vector fields on the cotangent
bundle T ∗Q. We recall that, in a natural local system of coordinates
(q, p), the fact that F is vertical means that its q-component is zero,
namely F =

∑N+M
i=1 Fi

∂
∂pi

.

4) The constraints (5.1) and (5.3) are dynamically implemented by reac-
tion forces obeying

D’Alembert Principle: If t 7→ q(t) is a trajectory which satisfies
both (5.1) and (5.3), and R(t) is the constraint reaction at a time t,
then

R(t) ∈ ker
(

∆q(t) ∩ Γq(t)

)
. (5.8)

In other words, regarding the reaction force R(t) as an element of the
cotangent space T ∗

q(t)Q, one has

⟨R(t) , v⟩ = 0 ∀v ∈ ∆q(t) ∩ Γq(t) ⊆ Tq(t)Q . (5.9)

5.1.2 Equations of motion

For each q ∈ Q, we shall use g−1
q to denote the inverse of the isomorphism

gq at (5.5). Moreover we define the scalar product on the cotangent space
g−1
q [·, ·] : T ∗

qQ× T ∗
qQ 7→ IR by setting

g−1
q [p, p̃]

.
= gq [g−1

q (p), g−1
q (p̃)] ∀ (p, p̃) ∈ T ∗

qQ× T ∗
qQ .
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For every q ∈ Q, we shall use H(q, ·) to denote the Legendre transform of
the map v → T (q,v), so that

H(q,p) =
1

2
g−1
q [p,p]

(
= T (q,g−1(p))

)
∀ p ∈ T ∗

qQ . (5.10)

The map H : T ∗Q → IR will be called the Hamiltonian corresponding to the
kinetic energy T .

Let (q) = (q♯, q♭) be local, ∆-adapted, coordinates on Q, and let (u) co-
ordinates on U , such that the domain of the chart (q) is mapped by π into the
domain of the chart (u). We can assume, as usual, q♭(= (qN+1, . . . , qN+M )) =
u(= (u1, . . . , qM )). From Classical Mechanics it follows that, given a smooth
control t 7→ u(t) (here regarded as a time-dependent holonomic constraint
verifyng d’Alembert Hypothethis), the corresponding motion t 7→ (q, p)(t) on
T ∗Q verifies the relations

q̇(t) =
∂H

∂p
(q(t), p(t))

ṗ(t) = − ∂H

∂q
(q(t), p(t)) + F (t, q(t), p(t)) +R(t)

q♭(t) = u(t)

p(t) ∈ gq(t)(Γq(t))

R(t) ∈ ker ∆q(t) + ker Γq(t) .

(5.11)

We have used H, F , R, and g to denote the local expressions of H, F, R, and
g, respectively. For simplicity, we use the same notation for the distributions
Γ,∆ on Q and their local expressions in coordinates. Moreover, we use
the notation v 7→ gq(v) to denote the local expression of the isomorphism
v 7→ gq(v).

The first two equations in (5.11) are the dynamical equations written in
Hamiltonian form. The first one yields the inverse of the Legendre transform.
The third equation represents the (holonomic) control-constraint. Relying
on the fact that π is a submersion, we shall always choose local coordinates
(qr) and (uα) such that qN+α = uα, for all α = 1, . . . ,M . We thus regard
this equation as prescribing a priori the evolution of the last M coordinates:
qN+1, . . . , qN+M . The fourth relation in (5.11) is the Hamiltonian version of
the non holonomic constraint (5.1). The fifth relation is clearly equivalent
to (5.8), i.e. it represents d’Alembert’s Principle.
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Remark 5.1.1 Although a global, intrinsic formulation of these equations
can be given (see [29]) we are here mainly interested in their local coordinate-
wise expression. Indeed, a major goal of our analysis is to understand the
functional dependence on the time derivative u̇ of the control.

The special case where no active constraints are present can be obtained
by taking ∆ ≡ T ∗Q, i.e. ker(∆) = {0}. In this case, (5.11) reduces to
the standard Hamiltonian version of the dynamical equations with non-
holonomic constraints, namely

q̇(t) =
∂H

∂p
(q(t), p(t))

ṗ(t) = − ∂H

∂q
(q(t), p(t)) + F (t, q(t), p(t)) +R(t)

p(t) ∈ gq(t)(Γq(t))

R(t) ∈ ker Γq(t) ,

(5.12)

5.2 Orthogonal decompositions of the tangent and
the cotangent bundles

To derive a set of equations describing the constrained motion, it will be
convenient to decompose both the tangent bundle TQ and the cotangent
bundle T ∗Q as direct sums of three suitable vector sub-bundles. We recall
that Q is a manifold of dimension N +M , while ∆ and Γ are distributions
on Q, having dimensions N and N +M − ν, respectively.

5.2.1 Tangent bundle

Definition 5.2.1 For every q ∈ Q, we define the following three subspaces
of TqQ.

(TqQ)I
.
= ∆q∩Γq , (TqQ)II

.
= Γ⊥

q , (TqQ)III
.
= (∆q∩Γq)⊥∩Γq .

(5.13)

Proposition 5.2.1 For each q ∈ Q, the three subspaces in (5.13) are mu-
tually orthogonal and span the entire tangent space, namely

TqQ = (TqQ)I ⊕ (TqQ)II ⊕ (TqQ)III . (5.14)
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Moreover,

(TqQ)I ⊕ (TqQ)III = Γ . (5.15)

If the transversality condition (5.6) holds, then the above subspaces have
dimensions

dim(TqQ)I = N − ν , dim(TqQ)II = ν , dim(TqQ)III = M .
(5.16)

Proof. The orthogonality of the subspaces (TqQ)I and (TqQ)II is im-
mediately clear from the definitions. Observing that(

(TqQ)I⊕(TqQ)II

)⊥
=
(

(TqQ)I

)⊥
∩
(

(TqQ)II

)⊥
= (∆q∩Γq)⊥∩Γq = (TqQ)III ,

we obtain the orthogonal decomposition (5.14). In particular, this implies

(TqQ)I ⊕ (TqQ)III =
(

(TqQ)II

)⊥
= Γq .

Finally, if (5.6) holds, then

dim(∆q∩Γq) = dim(∆q)+dim(Γq)−dim(TqQ) = N+(N+M−ν)−(N+M) = N−ν .

Moreover, dim
(

(TqQ)II

)
= dim(TqQ) - dim(Γq) = ν. The last equality in

(5.16) now follows from (5.14).

♢

For J ∈ {I, II, III}, the perpendicular projection onto the subspace
(TQ)J will be denoted by

PJ : TqQ 7→ (TqQ)J . (5.17)

Remark 5.2.2 Under the assumption (5.6), the third subspace in the de-
composition (5.14) can be equivalently written as

(TqQ)III = PΓ(∆⊥
q ).

Indeed, for any vector v ∈ TqQ one has v ∈ PΓ(∆⊥
q ) iff

v ∈ Γq ∩ (∆⊥
q + Γ⊥

q ) = Γq ∩ (∆q ∩ Γq)⊥.
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5.2.2 Cotangent bundle

Thanks to the isomorphism g : TQ 7→ T ∗Q defined at (5.5), one can use
(5.14) to obtain a similar decomposition of the cotangent bundle as the
direct sum of three vector bundles:

T ∗Q = (T ∗Q)I ⊕ (T ∗Q)II ⊕ (T ∗Q)III , (5.18)

where, for J ∈ {I, II, III},

(T ∗
qQ)J

.
= gq

(
(TqQ)J

)
. (5.19)

We denote by P∗
J : T ∗

qQ → (T ∗
qQ)J the perpendicular projection w.r.t. the

metric g−1. The above construction yields

P∗
J = g ◦ PJ ◦ g−1 . (5.20)

In view of Proposition 5.2.1 one obtains:

Proposition 5.2.2 If the transversality condition (5.6) holds, then

dim
(

(T ∗
qQ)I

)
= N−ν , dim

(
(T ∗

qQ)II

)
= ν , dim

(
(T ∗

qQ)III

)
= M .

(5.21)
Moreover, for every q ∈ Q the three subspaces (T ∗

qQ)I , (T
∗
qQ)II , (T

∗
qQ)III

are pairwise orthogonal (w.r.t. the metric g−1). In particular, (T ∗
qQ)II =

ker(Γq).

5.3 A closed system of control equations

The following result, providing different ways to express the constraint (5.1),
is straightforward.

Lemma 5.3.1 Let t 7→ q(t) ∈ Q be a C1 map. Let p(t)
.
= g(q̇(t)). More-

over, set
q̇II(t)

.
= PII(q̇(t)), pII

.
= P∗

II(p(t)).

Then the non-holonomic constraint q̇(t) ∈ Γq(t) can be expressed in any of
the following equivalent forms:

p(t) ∈ g(Γq(t)) ⇐⇒ q̇II(t) = 0 ⇐⇒ pII(t) = 0. (5.22)
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On a given, natural chart (q, p) on T ∗Q, and for J ∈ {I, II, III}, we de-
note by P ∗

J the (q-dependent) matrix representing the projection P∗
J . In this

coordinate system, the components of the force and of the constraint reac-
tion will be denoted as FJ

.
= P ∗

J F and RJ
.
= P ∗

J R. For every J = I, II, III,
consider the bilinear (q-dependent, possibly not symmetric), IRN+M -valued
map

(p, p̃) 7→ θJ [p, p̃]
.
=
(

[θJ ]r,sℓ prp̃s

)
ℓ=1,...,N+M

, (5.23)

where

[θJ ]r,sℓ
.
=

N+M∑
i=1

(
∂(P ∗

J )rℓ
∂qi

gi,s − 1

2

∂gr,s

∂qi
(P ∗

J )iℓ

)
. (5.24)

The following result will be essential in deriving the equations of motions,
relative to the bundle decomposition introduced above.

Lemma 5.3.2 Let t 7→ (q, p)(t) be a C1 map. For J ∈ {I, II, III}, define

pJ(t)
.
= P ∗

J p(t) , (5.25)

so that p(t) = pI(t) + pII(t) + pIII(t) for all t. Let t 7→ R(t) be a continuous
map. Then the following statements are equivalent.

A) The map p(·) satisfies the equation

ṗ(t) = − ∂H

∂q
(q(t), p(t)) + F (t, q(t), p(t)) +R(t) . (5.26)

B) The maps (pI)(·), (pII)(·), (pIII)(·) satisfy the system

ṗJ(t) = θJ [p(t), p(t)]+FJ(t, q(t), p(t))+RJ(t), J ∈ {I, II, III} .
(5.27)

Remark 5.3.1 In general θJ [p, p] /∈ P ∗
J (IRN+M ). Indeed, the derivative ṗJ

may not be contained in the sub-space P ∗
J (IRN+M ).

Proof of Lemma 5.3.2. Assume that B) holds. By summing the three
equations in (5.27) one obtains

ṗ(t) = ṗI(t) + ṗII(t) + ṗIII(t)

= θI [p(t), p(t)] + θII [p(t), p(t)] + θIII [p(t), p(t)] + F (t, q(t), p(t)) +R(t)

= (P ∗
I + P ∗

II + P ∗
III)

(
−∂H
∂q

(q(t), p(t))

)
+ F (t, q(t), p(t)) +R(t)

= −∂H
∂q

(q(t), p(t)) + F (t, q(t), p(t)) +R(t)
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where we have exploited the identities

P ∗
I + P ∗

II + P ∗
III = Id,

∂P ∗
I

∂q
+
∂P ∗

II

∂q
+
∂P ∗

III

∂q
=

∂(Id)

∂q
= 0.

This proves the validity of the differential equation (5.26).

Conversely, assume that A) holds. Then, for J ∈ {I, II, III} one has

ṗJ =
d

dt
(P ∗

J p) =
(∂P ∗

J

∂q
· q̇(t)

)
p(t) + P ∗

J ṗ(t)

=
(∂P ∗

J

∂q
· g−1(p)

)
p(t) + P ∗

J

(
−1

2

∂g−1

∂q
[p(t), p(t)] + F (t, q(t), p(t)) +R(t)

)
= θJ [p(t), p(t)] + FJ(t, q(t), p(t)) +RJ(t) .

This proves the validity of the differential equations for pI , pII , and pIII in
(5.27).

♢

5.3.1 The system without control-constraints

The equations of motion for a non-holonomic system with external forces
can be found in several textbooks, see for example [1, 5, 4]. We review here
a form of these equations, relative to decompositions (5.14) and (5.18)

Theorem 5.3.1 Let t 7→ q(t) be a continuously differentiable path and set
p(t)

.
= g(q̇(t)). Then the path (q, p)(·) satisfies the non-holonomic equations

(5.12) (with no active constraints) if and only if it is a solution of

q̇ = g−1(p)

ṗI = θI [p, p] + FI

pII = 0

ṗIII = θIII [p, p] + FIII .

(5.28)

Proof. Assume that the relations (5.12) hold. For every J ∈ {I, II, III}
consider the projection q̇J(t)

.
= PJ q̇(t), where PJ is the coordinate represen-

tation of the projection PJ . By Lemma 5.3.1 one has q̇II(t) = 0 and hence
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pII(t) = 0, for every t. Therefore, the third and the first equation in (5.28)
are straightforward:

pII ≡ 0 , q̇ = g−1(pI + pIII) = g−1(p).

Next, since P ∗
I (IRN+M ) ⊕ P ∗

III(IR
N+M ) = g(Γ), the last relation in (5.12)

(i.e. the d’Alembert condition) implies P ∗
I (R(t)) = P ∗

III(R(t)) = 0 for all
t. Using the second equation in (5.12 and Lemma 5.3.2, for J ∈ {I, III} we
thus obtain

ṗJ = θJ [p, p] + FJ(t) .

This proves the validity of the differential equations for pI and pIII in (5.28).

Conversely, let the equations in (5.28) hold, with θI , θIII defined as in
(5.23)-(5.24).

The third equation in (5.12) follows from pII = 0. In particular p =
pI + pIII . The first equation in (5.12) follows by

q̇ = g−1(pI + pIII) = g−1(p) =
∂H

∂p
.

If the constraint reaction R(t) is defined by

R(t)
.
= ṗ(t) +

∂H

∂q
(q(t), p(t)) − F (t, q(t), p(t)), (5.29)

then the second equation in (5.12) is trivially satisfied.

We claim that the fourth relation in (5.12) also holds, namely R(t) ∈
ker Γq(t) for every time t. Indeed, by Lemma 5.3.2, (5.29) is equivalent to


ṗI(t) = θI(p(t), p(t)) + FI(t, q(t), p(t)) +RI(t)

ṗII(t) = θII(p(t), p(t)) + FII(t, q(t), p(t)) +RII(t)

ṗIII(t) = θIII(p(t), p(t)) + FIII(t, q(t), p(t)) +RIII(t) .

Hence, by the second and third equations in (5.28) one hasRI(t) = RIII(t) =
0. This implies R(t) ∈ P ∗

II(IR
N+M ) = ker Γq(t).

♢
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5.3.2 The non-holonomic system with control-constraints

In this section we write the equations of motion controlled by means of active
constraints (5.11) in an equivalent form, as a closed system of controlled
differential equations, supplemented by algebraic relations.

Since π : Q 7→ U is a submersion, the transversality assumption (5.6)
implies that, for every q ∈ Q, the restriction of the tangent map Tqπ to the
subspace (TqQ)III is an isomorphism from (TqQ)III onto TUπ(q). We shall
use h to denote the inverse of this isomorphism, and define k

.
= g ◦ h.

We now choose local coordinates (q, p) on T ∗Q, together with coordinates
u on U , such that

qN+1 = u1 , . . . , qN+M = uM . (5.30)

The expressions of h and k in local coordinates will be denoted by h and
k, respectively. We recall that the bilinear map θI was defined at (5.23)-
(5.24). In the following, it is understood that the maps u, q should take
values within the domains of the respective charts.

Theorem 5.3.2 Let I be a time interval and let u : I → IRM be a C1

control function. Let q : I 7→ IRN be a C1 path and set p(t)
.
= g(q̇(t)).

Then the path (q, p) : I → T ∗Q satisfies the non holonomic equations (5.11)
(with constraints as controls) if and only if the following two conditions are
satisfied.

(i) Setting pJ(t)
.
= P ∗

J (p(t)), for every t ∈ I one has

q̇ = g−1(pI) + h(u̇)

ṗI = θI [pI + k(u̇) , pI + k(u̇)] + FI

pII = 0

pIII = k(u̇) .

(5.31)

(ii) At some time t0 ∈ I one has qN+α(t0) = uα(t0) for all α = 1, . . . ,M .

Proof. 1. Assume that all relations in (5.11) are satisfied. By (5.22)
the fourth relation in (5.11) implies pII = 0. Using the third equation in



76 CHAPTER 5. CONTROL OF NON-HOLONOMIC SYSTEMS

(5.11) we obtain
pIII = g(q̇III) = g(h(u̇)) = k(u̇)

p = pI + pIII = pI + k(u̇)

q̇(t) = g−1(p) = g−1(pI + k(u̇)) = g−1(pI) + h(u̇) .

(5.32)

Finally, the fifth relation in (5.11), i.e. the d’Alembert condition, implies
P ∗
I R(t) = 0. Hence, by the second equation on (5.11) and Lemma 5.3.2, we

obtain

ṗI =
d

dt

(
P ∗
I p
)

= θI [p, p] + FI = θI [pI + k(u̇), pI + k(u̇)] + FI .

This yields the second equation in (5.31).

2. Viceversa, assume that all the relations in (5.31) hold, and let us set
p
.
= pI + k(u̇). By (5.22), the equation pII = 0 implies the fourth relation

in (5.11). Moreover, from the first equation in (5.31) and the identities in
(5.32) we obtain

q̇ = g−1(pI) + h(u̇) = g−1(p) =
∂H

∂p
(q, p) .

By defining

R(t)
.
= ṗ+

∂H

∂q
(q, p) − F (t, q(t), p(t)), (5.33)

the second equation in (5.11) is clearly satisfied. It remains to check the fifth
equation in (5.11), namely R(t) ∈ ker ∆q(t)+ker Γq(t). Since by construction
ker ∆+ker Γ = (T ∗Q)II+(T ∗Q)III , this is equivalent to proving that RI = 0.
By Lemma 5.3.2, (5.33) is equivalent to the three equalities

ṗI = θI [p, p] + FI +RI

ṗII = θII [p, p] + FII +RII

ṗIII = θIII [p, p] + FII +RIII .

(5.34)

By subtracting the second equation in (5.31) from the first identity in
(5.34) we obtain RI(t) = 0.

♢
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Remark 5.3.2 In order to express more clearly the functional dependence
on u̇, let us write the equations (5.31) in the form

q̇ = g−1(pI) + h(u̇)

ṗI = θI [pI , pI ] + Υ[pI , u̇] + Ψ[u̇, u̇] + FI

pII = 0

pIII = k(u̇) ,

(5.35)

where

Υ[pI , k(u̇)]
.
= θI [pI , k(u̇)]+θI [k(u̇) , pI ], Ψ[u̇, u̇]

.
= θI [k(u̇) , k(u̇)].

(5.36)

5.3.3 The case without non-holonomic constraints

When there is no presence of non-holonomic constraints, that is, when
Γq = TQ for all q ∈ Q, the equations in (5.35) should reduce to (4.9),
the controls system we have introduced in Chapter 4. In fact, we had not
proved the validity of those equations and we have referred to the fact that
they could be obtained as a degenerate case (ν = 0) of the case with non
holonomic constraints. We leave to the reader the explicit deduction of (4.9)
from (5.35). While this is a bit laborious, we point out that it reduces to
elementary steps based on basic matrix computations and on the following
crucial issues:

1. when ν = 0, the decomposition T ∗Q = (T ∗Q)I ⊕ (T ∗Q)II ⊕ (T ∗Q)III
reduces to (T ∗Q)I = g(∆), (T ∗Q)II = {0}, (T ∗Q)III = g(∆⊥),
g(∆) ⊕ g(∆⊥).

2. In any natural system of coordinates on T ∗Q connected with ∆-adapted
coordinates (q♯, q♭), the projection P∗

I reduces to the projection on the
first n-dimensional component, namely it is given by the (N + M) ×
(N + M) constant matrix where upper left N × N minor coincides
with the unit matrix and the other digits are zero.

3. The space ∆⊥
q is generated my the last M columns of the matrix g

representing the kinetic metric g.

Remark 5.3.3 Notice that the simplifying issue in passing from the case
with non holonomic constraints to that without such constraints relies just
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on the fact that (in all ∆- adapted coordinates) the projection P∗
I is constant.

Hence, the only possible occurrence of the u̇-quadratic term in the control
equations is due to the non vanishing of the orthogonal curvature introduced
in Chapter 4. On the contrary, in the general case, an extra occurrence of
the quadratic term is due to the fact that in general the projection P∗

I is
not constant, which is indeed a manifestation of the non-holonomy of the
additional constraint q̇ ∈ Γq.

5.4 A control system with a reduced number of
equations

Let q = (q1, . . . , qN+M ) be ∆-adapted coordinates on a open set Ø ⊆ Q , so
that

∆ = span
{ ∂

∂q1
, . . . ,

∂

∂qN

}
.

The main goal of this section is to write the equations of motion in terms of
these state coordinates, together with additional coordinates ξ1, . . . , ξN+M

corresponding to suitable bases of the cotangent bundle T ∗Q, decomposed
as in (5.18). It will turn out that the number of control equations can be
reduced to 2N − ν. In fact, the relevant equations will involve only the
variables q1, . . . , qN , ξ1, . . . , ξN−ν .

Consider a family {V1, . . . ,VN+M} of smooth, linearly independent vec-
tor fields on Q, such that

(TqQ)I = span
{
V1(q), . . . ,VN−ν(q)

}
,

(TqQ)II = span
{
VN−ν+1(q), . . . ,VN (q)

}
,

(TqQ)III = span
{
VN+1(q), . . . ,VN+M (q)

}
.

(5.37)

Throughout the following, we assume that the vectors {V1, . . . ,VN−ν},
which generate (TqQ)I , are orthogonal, i.e.

g[Vr,Vs] = 0 ∀r, s ∈ {1, . . . , N − ν}, r ̸= s . (5.38)

In addition, for i = 1, . . . , N +M , we define the basis of cotangent vectors

Ωi
.
=

g(Vi)
g[Vi, Vi]

, (5.39)
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By (5.19), this yields

(T ∗
qQ)I = span

{
Ω1(q), . . . ,ΩN−ν(q)

}
,

(T ∗
qQ)II = span

{
ΩN−ν+1(q), . . . ,ΩN (q)

}
,

(T ∗
qQ)III = span

{
ΩN+1(q), . . . ,ΩN+M (q)

}
.

By (5.40) and (5.39), the differential forms {Ω1, . . . ,ΩN−ν} are mutually
orthogonal with respect to the metric g−1, namely

g−1[Ωr, Ωs] = 0 ∀r, s ∈ {1, . . . , N − ν}, r ̸= s . (5.40)

Moreover, the basis
{
Ω1(q), . . . ,ΩN−ν(q)

}
is dual to the basis

{
V1(q), . . . ,VN−ν(q)

}
,

i.e.

⟨Ωr, Vs⟩ = δr,s ∀r, s = 1, . . . , N − ν.

This choice of orthogonal bases makes it easy to compute the projections PI
and P∗

I . Indeed, for any tangent vector w and any cotangent vector p one
has

PI(w) =
N−ν∑
ℓ=1

⟨Ωℓ, w⟩ Vℓ =
N−ν∑
ℓ=1

g[w,Vℓ]
g[Vℓ,Vℓ]

Vℓ, (5.41)

P∗
I (p) =

N−ν∑
ℓ=1

⟨p, Vℓ⟩Ωℓ =
N−ν∑
ℓ=1

g−1[p,Ωℓ]

g−1[Ωℓ, Ωℓ]
Ωℓ . (5.42)

In the following, to simplify notation, whenever repeated indices taking
values from 1 to N+M are summed, the summation symbol will be omitted.
On the other hand, summations ranging over a smaller set of indices will be
explicitly written. Let g = (gr,s) be the matrix representing the Riemannian
metric g in the q-coordinates. In turn, the inverse matrix g−1 = (gr,s)
represents the metric g−1 on the cotangent space.

For ℓ = 1, . . . , N + M , let V 1
ℓ, . . . , V

N+M
ℓ be the q-components of Vℓ,

so that Vℓ = V i
ℓ
∂
∂qi

. If the (column) vector v ∈ IRN+M yields the coor-
dinate representation of v, then by (5.41) the projected vector PI(v) has
coordinates PI v, where the (N +M) × (N +M) matrix PI is defined by

(PI)
s
r
.
=

N−ν∑
ℓ=1

gr,kV
k
ℓV

s
ℓ

gi,jV i
ℓV j

ℓ
r, s = 1, . . . , N +M .



80 CHAPTER 5. CONTROL OF NON-HOLONOMIC SYSTEMS

Similarly, let Ωr,1, . . . ,Ωr,N+M be the components of Ωr, so that Ωr =
Ωr,sdq

s. If the (row) vector p ∈ IRM+N yields the coordinate representation
of the covector p, then by (5.42) the projected the vector P∗

I (p) has coordi-
nates given by pP ∗

I , where the (N + M) × (N + M) matrix P ∗
I is defined

by

(P ∗
I )rs

.
=

N−ν∑
ℓ=1

gr,k Ωℓ,k Ωℓ,s

gi,j V i
ℓ V j

ℓ
. (5.43)

In order to derive a reduced form of the system (5.31), we need to write
an explicit expression of the (q-dependent) matrices h and k. Let us define
the (N +M) ×M matrix VIII and the M ×M matrix V III

III by setting

VIII
.
=
(
V r

N+α

)
, V III

III
.
=
(
V N+β

N+α

)
Here and in the sequel, Greek indices such as α, β range from 1 to M ,
while Latin indices such as r, s range from 1 to N + M . Recalling the
identities (5.30), it is easy to check that the injective linear map h : TUπ(q) 7→
(TqQ)III ⊂ TqQ introduced in Section 5.3.2 is represented by the (N+M)×
M matrix

h = VIII ·
(
V III

III

)−1
.

In turn, the linear map k(·) = g(h(·)) is represented by the (N +M)×M
matrix

k
.
= g · h = g · VIII ·

(
V III

III

)−1
.

5.4.1 Reduction of the number of equations

It clearly suffices to derive equations describing the first N components
(q1, , . . . , qN ) of q, because by (5.30) the last M components coincide with
those of the control u. This already reduces the number of differential equa-
tions in (5.31) from 2N + 2M to 2N +M .

Relying on the fact that the projection P∗
I takes values in the subbundle

(T ∗Q)I , which has dimension N−ν, one can reduce the number of equations
to 2N − ν, as shown in the following theorem.

Theorem 5.4.1 Let (q, p, u)(·) be as in Theorem 5.3.2. Moreover, let (ξ, η, λ)
be the components of p = pidq

i w.r.t. the frame {Ω1, . . . ,ΩN+M}, so that

p(t) =

N−ν∑
ℓ=1

ξℓ(t)Ωℓ +

N∑
ℓ=N−ν+1

ηℓ(t)Ωℓ +

N+M∑
ℓ=N+1

λℓ(t)Ωℓ .
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Then the curve t 7→ (q(t), pI(t), pII(t), pIII(t), u(t)) satisfies the control sys-
tem (5.35) if and only if the curve t 7→ (q(t), ξ(t), η(t), λ(t), u(t)) is a solution
of



q̇r =

N−ν∑
ℓ=1

W r
ℓξℓ + hrN+αu̇

α r = 1, . . . , N

ξ̇m = θ̃m[ξ, ξ] + Υ̃m [ξ , u̇] + Ψ̃m[u̇, u̇] + F̃m m = 1, . . . , N − ν

qN+α = uα α = 1, . . . ,M

η = 0

λ = (VIII)
t · k · u̇

(5.44)
where: i) for every ℓ = 1, . . . , N − ν, and r = 1, · · · , N we have set W r

ℓ
.
=

V r
ℓ/(gh,kV

h
ℓV

k
ℓ); ii) the superscript t denotes transposition; and iii) for

every m = 1, . . . , N − ν,

θ̃m[ξ, ξ̂]
.
=
∑N−ν

a,b=1 θ̃
a,b
m ξaξ̂b, with

θ̃a,bm
.
=

[θI ]
r,s
i Ωr,aΩs,b −

N∑
j=1

∂Ωi,a

∂qj
gj,sΩs,b

V i
m,

Υ̃m [ξ , u̇]
.
=
∑N−ν

a=1 Υ̃a
α,m ξa u̇

α, with

Υ̃a
α,m

.
=

Υr
α,i Ωr,a −

∂Ωi,a

∂qN+α
−

N∑
j=1

∂Ωi,a

∂qj
V i

mh
j
N+α

V i
m,

Ψ̃m [w, w̃]
.
= Ψ̃α,β,mw

αw̃β, with

Ψ̃α,β,m
.
= Ψα,β,iV

i
m , F̃m

.
= FiV

i
m .

(5.45)
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Proof. Recalling that pI i =
∑N−ν

ℓ=1 ξℓΩi,ℓ, one obtains

ṗi =

N−ν∑
ℓ=1

ξ̇ℓΩi,ℓ +

N−ν∑
ℓ=1

N∑
j=1

ξℓ
∂Ωi,ℓ

∂qj
q̇j

=

N−ν∑
ℓ=1

ξ̇ℓΩi,ℓ +

N−ν∑
ℓ=1

N∑
j=1

(
ξℓ
∂Ωi,ℓ

∂qj
gjrpIr + hjN+αu̇

α

)
+

N−ν∑
ℓ=1

M∑
α=1

ξℓ
∂Ωi,ℓ

∂qN+α
u̇α

=

N−ν∑
ℓ=1

ξ̇ℓΩi,ℓ +

N−ν∑
ℓ=1

N∑
j=1

(
ξℓ
∂Ωi,ℓ

∂qj
gjr(

N−ν∑
ℓ=1

ξℓΩi,ℓ) + hjN+αu̇
α

)
+

N−ν∑
ℓ=1

M∑
α=1

ξℓ
∂Ωi,ℓ

∂qN+α
u̇α .

(5.46)
Since Ωi,rV

i
m = δr,m, for all r,m = 1, . . . , N − ν, by (5.46) and the second

equation in (5.31) one obtains the equations for the adjoint variable ξ. The
other equations in (5.44) are trivially derived by substitution.

5.5 Continuity properties of the input-output map

We now examine the connections between the following properties:

i) The continuity of the input-output functional u(·) 7→ (q(·), p(·)).

ii) The vanishing of the “centrifugal” term Ψ[u̇, u̇] in (5.36).

iii) The invariance of the distribution Γ∩(Γ∩∆)⊥ in Γ-constrained inertial
motions.

As in Section 2, T will denote the kinetic energy associated with the
metric g, defined at (5.4), while Γ denotes a non-holonomic distribution on
the manifold Q.

Definition 5.5.1 Let I be a time interval. A C2 map q : I → Q will be
called a free inertial motion if, in any set of coordinates, its local expression
q(·) provides a solution to the Euler-Lagrange equations

d

dt

∂T
∂q̇

− ∂T
∂q

= 0. (5.47)

Definition 5.5.2 A C2 map q : I → Q will be called a Γ-constrained inertial
motion if, in any set of coordinates, its local expression q(·) is a solution of

d

dt

∂T
∂q̇

− ∂T
∂q

∈ ker Γ (5.48)
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and satisfies non holonomic constraints

q̇ ∈ Γ. (5.49)

Definition 5.5.3 Let S ⊆ TQ be any set. We say that S is invariant for
the free inertial flow, (or equivalently: inertially invariant), if, for every free
inertial motion q : I → Q such that (q, q̇)(t0) ∈ S for some t0 ∈ I, one has

(q, q̇)(t) ∈ S ∀t ∈ I. (5.50)

Definition 5.5.4 Let S ⊆ T Q be any set. We say that S is invariant for
the Γ-constrained inertial flow, (or equivalently: Γ-inertially invariant), if,
for every Γ-constrained inertial motion q : I → Q such that (q, q̇)(t0) ∈ S
for some t0 ∈ I, one has

(q, q̇)(t) ∈ S ∀t ∈ I. (5.51)

Theorem 5.5.1 The following conditions are equivalent:

1) If F ≡ 0, for every C1 control u(·) and every solution q(·) of the control
differential equation (on Q)

q̇ = h(u̇),

the map

t 7→ (q(t), p(t))
.
=
(
q(t) , k(u̇(t))

)
is a solution of (5.31). Equivalently, pI(t) = 0 for all t ∈ I.

2) For every local chart (q) the (vector-valued) quadratic form Ψ defined
at (5.36) vanishes identically.

3) For every local chart (q), the (vector-valued) quadratic form v 7→
θI [v, v] in (5.23) vanishes on the subspace P ∗

III(IR
N+M ).

4) The sub-bundle (TQ)III = Γ ∩ (Γ ∩ ∆)⊥ is Γ-inertially invariant.

Proof. Let a continuously differentiable control u(·) be given. If condition
2) holds true then, by the linearity of the equation for pI , there is a solution
(q, p)(·) of (5.31) such that pI ≡ 0. This solution verifies the equation for q,
so that q̇ = h(u̇) and p = pIII = g(q̇) = k(u̇). Hence condition 1) is verified.
Conversely, if Ψ is not identically zero, then it is not possible that for every
initial condition and every control there exists a solution (q, p) such that
pI ≡ 0. Hence conditions 1) and 2) are equivalent.
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The equivalence of 1) and 3) follows directly by the definition of θI and
Ψ.

Finally, 1) holds true if and only if 4) is verified: indeed, on one hand
it is well known that the equations (5.31) can be (locally) written in the
Lagrangian form (5.48)-(5.49). On the other hand the condition pI = 0 is
equivalent to q̇ ∈ Γ ∩ (Γ ∩ ∆)⊥.

5.6 A geometric interpretation of the quadratic
term

Let us fix ū ∈ U , w̄ ∈ TuU and let u : V → IRM be a chart defined on a
neighborhood of ū.

Let ū = (ū1, . . . , ūM ) be the coordinates of ū, and let the M -tuple w̄ =
(w̄1, . . . , w̄M ) be defined by w̄ =

∑M
α=1 w̄

α ∂
∂uα . Fix a map η : [0, 1] → IR of

class C1 such that

∥η̇∥2 = 1, η(0) = η(1) = 0, η̇(0+) = η̇(1−) (5.52)

Finally, let the family of curves

{uϵ : [0, ϵ] → U ϵ ∈ [0, 1]}

be such that for every ϵ ∈]0, 1] (the image uϵ([0, 1]) is entirely included in
the coordinates’ domain V and) the local expression uϵ(·) of uϵ is given by :

uϵ(t)
.
= ū+ ϵη(t/ϵ)w ∀t ∈ [0, 1] (5.53)

Notice that

u̇ϵ(0) = w ∀ϵ ∈]0, 1],

∫ ϵ

0
uϵ(s)ds = 0,

∫ ϵ

0
η̇2(t/ϵ)dt = ϵ (5.54)

Now choose q̄ ∈ Q such that ū = π(q̄). For every ϵ ∈]0, 1], let us consider
the solution (qϵ,pϵ) : [0, ϵ] → T ∗Q of the control system locally expressed
by (5.35), with initial condition (qϵ(0),pϵ(0)) = (q̄,g(h · w̄)). 1

Let us consider the continuous curve b : [0, 1] → Q

ϵ 7→ b(ϵ)
.
= qϵ(ϵ)

Remark 5.6.1 The image b([0,1]) lies on the leaf π−1(ū) , i.e. π (b(ϵ)) =
u, for all ϵ ∈ [0, 1].

1See Section 5.4 for the definition of the isomorphism h.
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Theorem 5.6.1 The map b is twice differentiable at ϵ = 0 and, for any
natural system of coordinates (q, v) one has

db

dϵ
(0) = 0

d2 b

dϵ2
(0) = gjiΨi[w,w]

∂

∂vj

where the Ψi’s are the components of the (IRN+M -valued) quadratic form Ψ
defined in (5.36).

Definition 5.6.2 In view of Theorem 5.6.1, for every q ∈ Q let us call the
bilinear map

w → Ψi[w,w]gij
∂

∂vj

(
=
d2b

dϵ2
(0)

)
the curvature of the Γ-constrained orthogonal bundle (TqQ)III .

Proof of Theorem 5.6.1. Let local coordinates (q) and (u) be chosen
near q and u = π(q), respectively. It is not restrictive to assume that
q(q) = 0, u(u) = 0. For every r = 1, . . . , N + M let v̄r

.
= hrαw̄

α, so that,
hw̄ = v̄ = v̄r ∂

∂qr ∈ (TqQ)III). Let qϵ be the coordinate representation of

the curve qϵ. For every s ∈ [0, ϵ] let us set pϵ(s)
.
= g(q̇ϵ) (where the matrix

g is evaluated at (qϵ(s))), and let us notice that (qϵ, pϵ)(·) verify



q̇ = pI · g−1(q) + h · u̇

ṗI = θI [pI + k(u̇) , pI + k(u̇)]

pII = 0

pIII = k(u̇)

q(0) = 0

(pI , pII , pIII)(0) = (0, 0, kw).

(5.55)

where pJ
.
= PJ(p), for J = I, II, III. In particular, since the derivatives

u̇ϵ are equi-bounded, by standard estimates it follows that the trajectories
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(qϵ, pϵ) are equi-bounded as well. Therefore, since pI(0) = 0,

qϵ(ϵ) =

∫ ϵ

0

(
(pϵ)I(s) · g−1(qϵ(s)) + h(qϵ(s)) · u̇ϵ(s)

)
ds =

∫ ϵ

0

(
(pϵ)I(0) · g−1(0) + h(0) · u̇ϵ(s) + o(ϵ)

)
ds =

o(ϵ2) + h(0) ·
∫ ϵ

0
u̇ϵ(s) ds = o(ϵ2)

(5.56)

and

q̇ϵ(ϵ) − v = g−1
(
qϵ(ϵ)

)
· pϵ(ϵ) − g−1

(
(0)
)
· (k(0) · w) =

g−1
(
qϵ(ϵ)

)
·
∫ ϵ

0
θI(qϵ(s))

[
pI ϵ(s) + k(qϵ(s)) · u̇ϵ(s) , pI ϵ(s) + k(qϵ(s)) · u̇ϵ(s)

]
ds =

g−1 (0) ·
∫ ϵ

0
θI(0)

[
k(0) · u̇ϵ(s) , k(0) · u̇ϵ(s)

]
ds+ o(ϵ2) =

g−1 (0) · θI(0)[k(0) · w , k(0) · w]

∫ ϵ

0
η̇2(t/ϵ) dt+ o(ϵ2)

= ϵg−1 (0) · θI(0)[k(0) · w , k(0) · w] + o(ϵ2)
(5.57)

By (5.56) and (5.57), if b(·) is the local expression of b(·), we get

db

dϵ
= lim

ϵ→0

(
qϵ(ϵ), q̇ϵ(ϵ)

)
− (0, v)

ϵ
=
(

0 , g−1 (0) ·
(
θI(0)

[
k(0) · w , k(0) · w

])
=
(

0 , g−1 (0) · Ψ(0)
[
w ,w

])
= (0, g1,iΨi[w,w], . . . , gN+M,iΨi[w,w])



Chapter 6

Stabilization by
control-constraints

6.1 Holonomic systems

Let us recall the control equations from Chapter 4. LetG = (gr,s)r,s=1,...,N+M

be the matrix that represents the covariant inertial tensor in a given coor-
dinate chart (q♯, q♭). In particular, the kinetic energy of the whole system
at a state (q♯, q♭) with velocity (v, w) ∈ IRN+M is given by

T =
1

2
gi,j(q

♯, q♭)vivj + gi,N+α(q♯, q♭)viwα +
1

2
gN+α,N+β(q♯, q♭)wαwβ.

Here and in the sequel, i, j = 1, . . . , N while α, β = 1, . . . ,M . By G−1 =
(gr,s)r,s=1,...,N+M we denote the inverse of G. Moreover, we consider the
sub-matrices G1

.
= (gi,j), (G−1)2

.
=
(
gN+α,N+β

)
, and (G−1)12

.
=
(
gi,N+α

)
.

Finally, we introduce the matrices

A =
(
ai,j
) .

= (G1)
−1 , E = (eα,β)

.
= ((G−1)2)

−1 , K =
(
kiα
) .

= (G−1)12E .
(6.1)

We recall that all the above matrices depend on the variables q = (q♯, q♭).
Concerning the external force, our main assumption will be

Hypothesis (A). The force F u,w acting on the whole system does not
explicitly depend on time,and, moreover, is affine w.r.t. the time derivative
of the control, so that

F u,u̇ = F u,u̇(q♯, p♯) = F u0 (q♯, p♯) + F u1 (q, p♯) · u̇ . (6.2)

where we have set p♯ = (p1, . . . , pN ).

87
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(E.g., positional forces F u,u̇(q) = F u0 (q, p♯) not necessarily conservative,
verify this hypothesis. Forces which are affine functions of the velocity,
which implies F u,u̇(q♯, p♯) = F u0 (q♯, p♯) + F u1 (q) · u̇ are o.k. as well.)

We can thus write the control equations in the form
q̇♯

q̇♭

ṗ♯

 =


Ap♯

t

0

−1
2p♯

∂A
∂q♯
p♯

t + F u0

+


K

1M

−p♯ ∂K∂q♯ + F u1

 u̇+ u̇t


0

0

1
2
∂E
∂q♯

 u̇ .

(6.3)

Our main goal is to find conditions which imply that the system (6.3) is
stabilizable at a point (q̄♯, q̄♭, 0).

Two results concerning stabilizability will be described here. The first
one relies on suitable smooth selections from the corresponding set-valued
maps, as in Theorem 2.3.1. The second one is based on the use of Lyapunov
functions.

For each (q♯, q♭), consider the cone

Γ(q♯, q♭)
.
= co

{
wt∂E(q♯, q♭)

∂q♯
w ; w ∈ IRM

}
. (6.4)

Let ξ ∈ IRd be an auxiliary control variable, ranging on a neighborhood
of a point ξ̄ ∈ IRd. Aiming to apply Theorem 2.3.1, let us consider a control
system of the form q̇♯ = Ap♯

t

ṗ♯ = F ū0 (q♯, p♯) + γ(q♯, p♯, ū, ξ) ,

(6.5)

where γ is a suitable selection from the cone Γ. It will be convenient to
write (6.5) in the more compact form(

q̇♯

ṗ♯
t

)
= Φ(q♯, p♯, ū, ξ) , (6.6)

regarding (q♯, p♯) ∈ IRN+N as state variables and ξ ∈ IRd as control variable.
Assume that

F ū0 (q̄♯, 0) + γ(q̄♯, 0, ū, ξ̄) = 0 . (6.7)



6.1. HOLONOMIC SYSTEMS 89

By (6.5) this implies Φ(q̄♯, 0, ū, ξ̄) = 0 ∈ IR2N . To test the local controlla-
bility of (6.5) at the equilibrium point (q̄♯, 0, ū, ξ̄) we look at the linearized
system with constant coefficients(

q̇♯

ṗ♯
t

)
= Λ

(
q♯

p♯
t

)
+ Bξ , (6.8)

where

Λ =
∂Φ

∂(q♯, p♯)
B =

∂Φ

∂ξ

with all partial derivatives being computed at the point (q̄♯, 0, ū, ξ̄).1 We
can now state

Theorem 6.1.1 Assume that a smooth map

(q♯, p♯, u, ξ) 7→ γ(q♯, p♯, u, ξ) ∈ Γ(q♯, q♭) (6.9)

can be chosen in such a way that (6.7) holds and so that the linear system
(6.8) is completely controllable. Then the system (6.3) is asymptotically
stabilizable at the point (q̄♯, 0, ū).

Proof. According to Theorem 2.3.1 and Remark 2.3.2, it suffices to show
that the control system

q̇♯

ṗ♯

u̇

 =


Ap♯

t

−1
2p

t ∂A
∂q♯
p♯ + F u0

0

+


K

−p♯t ∂K∂q♯ + F u1

1M

w+

wt


0

1
2
∂E
∂q♯

0

w +


0

γ(q♯, p♯, u, ξ)

0



(6.10)

is locally controllable at (q̄♯, 0, ū). Notice that in (6.10) the state variables
are q♯, p♯, u, while w, ξ are the controls. Computing the Jacobian matrices

1Exploiting the equality q♭ = u, hereon we are sometimes using the notation u instead
q♭.



90 CHAPTER 6. STABILIZATION BY CONTROL-CONSTRAINTS

of partial derivatives at the point (q♯, p♯, u, w, ξ) = (q̄♯, 0, ū, 0, ξ̄), we obtain
a linear system with constant coefficients, of the form

 q̇♯

ṗ♯
u̇

 =

 Λ11 0 0
Λ21 Λ22 Λ23

0 0 0

 q♯

p♯
u

+

 0 B12

B21 B22

0 1M

( ξ
w

)
.
=

.
= Λ̃

 q♯

p♯
u

+
(
B̃1 B̃2

)( ξ
w

)
(6.11)

By assumption, the linear system (6.8) is completely controllable. There-
fore

Rank
[
B, ΛB, . . . , Λ2N−1B

]
= 2N . (6.12)

We now observe that the matrices Λ,B at (6.8) correspond to the submatri-
ces

Λ =

(
Λ11 0
Λ21 Λ22

)
, B =

(
0
B21

)
. (6.13)

Hence from (6.12) it follows

span
[
B̃1, Λ̃B̃1, . . . , Λ̃2N−1B̃1

]
=


 q♯

p♯
0

 ; q♯ ∈ IRN , p♯ ∈ IRN

 .

(6.14)
Adding to this subspace the subspace generated by the columns of the ma-
trix B̃2, we obtain the entire space IR2N+M . We thus conclude that the linear
system (6.11) is completely controllable. In turn, this implies that the non-
linear system (6.10) is asymptotically stabilizable at (q̄♯, 0, ū), completing
the proof.

♢

By choosing a special kind of selection and relying of the particular
structure of (6.5), we can deduce Corollary 6.1.1 below. To state it, if k is a
positive integer such that kM ≥ N and W = (w1, . . . , wk) ∈ IRM×k, let us
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consider the N × kM matrix

M(u, q♯,W )
.
=


∂e1,β
∂q1

wβ1 , . . . ,
∂eM,β
∂q1

wβ1 , . . . . . . . . . ,
∂e1,β
∂q1

wβk , . . . ,
∂eM,β
∂q1

wβk

· · · · · ·

∂e1,β
∂qN

wβ1 , . . . ,
∂eM,β
∂qN

wβ1 , . . . . . . . . . ,
∂e1,β
∂q1

wβk , . . . ,
∂eM,β
∂qN

wβk

 .

(6.15)

Corollary 6.1.1 Let k be a positive integer and assume that for a given
state (q̄♯, ū) there exists a k-tuple W̄ = (w̄1, . . . , w̄k) ∈ (RM )k such that

Rank
(
M(ū, q̄♯, W̄ )

)
= N (6.16)

and 
(F u0 )1 +

∑M
α,β=1

∂eα,β
∂q1

∑k
r=1 w̄

α
r w̄

β
r = 0

· · ·
· · ·

(F u0 )N +
∑M

α,β=1
∂eα,β
∂qN

∑k
r=1 w̄

α
r w̄

β
r = 0,

(6.17)

where the involved functions are computed at (q♯, p♯, u) = (q̄♯, 0, ū). Then
the system (6.3) is asymptotically stabilizable at the point (q̄♯, 0, ū).

Proof. Let us observe that the matrices Λ and B in (6.13) have the
following form:

B =

 0N×d

∂γ
∂ξ

 Λ =

 0N×N A

∂(F+γ)
∂q♯

∂(F+γ)
∂p♯

 (6.18)

so that, in particular,

ΛB =

 A · ∂γ∂ξ

∂(F+γ)
∂p♯

· ∂γ∂ξ

 . (6.19)

Let us set d = kM , ξ = W = (w1, . . . , wk), and

γi(q
♯, u,W )

.
=

1

2

k∑
ℓ=1

∂eα,β
∂qi

wαℓ w
β
ℓ i = 1, . . . , N.
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Notice that, by 2-homogeneity γ = (γ1, . . . , γN ), is in fact a selection of the
set-valued map Γ defined in (6.4). In view of Theorem 6.1.1, to prove the
asymptotic stability it is sufficient find

ξ̄ = W̄

such (6.17) holds and, moreover,

Rank [B,ΛB] (q̄♯, 0, ū, W̄ ) = 2N.

Since A is a non-singular matrix, by (6.19) the latter condition is equivalent
to

Rank

(
∂γ

∂W

)
(q̄♯, 0, ū, W̄ ) = N. (6.20)

In turn, this coincides with (6.16), so the proof is concluded.
♢

We now describe a second approach, based on Corollary 2.2.12 and on
the construction of a suitable, energy-like, Lyapunov function. Through-
out the following we assume that the external force F in (6.2) admits the
representation

F = F (q♯, p♯, u, w) = − ∂U

∂(q♯, u)
+ F1(q

♯, p♯, u) · w (6.21)

in terms of a potential function U = U(q♯, q♭).

Definition 6.1.1 Given a k-tuple of vectors W
.
= {w1, . . . , wk} ⊂ IRM , the

corresponding asymptotic effective potential (q♯, u) 7→ UW (q♯, u) is defined
as

UW (q♯, u)
.
= U(q♯, u) − 1

2

k∑
ℓ=1

wt
ℓE(q♯, u)wℓ

(
= U(q♯, u) − 1

2

k∑
ℓ=1

M∑
α,β=1

eα,β(q♯, u)wαℓ w
β
ℓ

)
.

Theorem 6.1.2 . Let the external force F have the form (6.21). For a
given state (q̄♯, ū), assume that there exist a neighborhood N of (q̄♯, ū) and a
k-tuple W

.
= {w1, . . . , wk} ⊂ IRM , as in Definition 6.1.1 which, in addition,

satisfy the following property:
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There exists a continuously differentiable map u 7→ β(u) defined on a
neighborhood of ū such that the function

(q♯, u) 7→ UW (q♯, u) + β(u)

has a strict local minimum at (q♯, u) = (q̄♯, ū).

Then the system (6.3) is stabilizable at (q̄♯, 0, ū).

Proof. As in Section 2.3, consider the symmetrized differential inclusion
corresponding to (6.3), namely q̇♯

ṗ♯
ż

 ∈ co


 Ap♯

t

−1
2p♯

t ∂A
∂q♯
p♯ − ∂U

∂q♯

0

+ wt

 0
1
2
∂E
∂q♯

0

w , w ∈ IRM

 .

(6.22)

To prove the theorem, it suffices to show that the point (q̄♯, 0, ū) is a
stable equilibrium for the differential equation q̇♯

ṗ♯
u̇

 =

 Ap♯
−1

2p♯
t ∂A
∂q♯
p♯ − ∂UW

∂q♯

0

 . (6.23)

Indeed, by the definition of UW , the right hand side of (6.23) is a selection
of the right hand-side of (6.22). Introducing the Hamiltonian function

HW
.
=

1

2
pApt + UW ,

the equation (6.23) can be written in the following Hamiltonian form:

(
q̇♯ , ṗ♯ , u̇

)t
=

(
∂HW

∂p♯
, − ∂HW

∂q♯
, 0

)
. (6.24)

Therefore the map

V (q♯, p♯, u)
.
= HW (q♯, p♯, u) + β(u) (6.25)

is a Lyapunov function for (6.23), from which it follows that (q̄♯, 0, z̄) is a
stable equilibrium for (6.23).

♢
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u

q

θg

g

v

v

θ

h

Figure 6.1: A pendulum whose pivot oscillates vertically (on the left) and
horizontally (center). On the right: a bead sliding without friction along a
rotating axis.

6.2 Examples

Example 1 (pendulum with oscillating pivot).2 Let us consider a
pendulum with fixed length r = 1, whose pivot is moving on the vertical y-
axis, as shown in Figure 6.2, left. Its position is described by two variables:
the clockwise angle θ formed by the pendulum with the y-axis, and the
height h of the pivot. We now consider h = u(t) to be our control variable,
while the evolution of the other variable θ = q(t) will be determined by the
equations of motion. We assume that the control function t 7→ u(t) can be
assigned as a function of time, ranging over a neighborhood of the origin.

We assume that the both the pendulum and its pivot have unit mass, so
that the kinetic matrix G and the matrices in (6.1) take the form

G =

(
1 − sin q
− sin q 2

)
A = (1), E = (1+cos2 q), K = (sin q).

Remark 6.2.1 To be consistent with the general theory we need to put a
mass on the pivot as well. This is needed in order that the matrix G be
invertible. On the other hand it is easy to show that the resulting control
equations are independent of the mass of the pivot. Actually this should
expected, since the motion of the pivot is here considered as a control. Of
course, what is not independent of the mass of the pivot is the constraint
reaction necessary to produce a given motion of u.

2Without danger of confusion, in these examples we shall use the notation q instead of
q♯.
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Notice that orthogonal curvature of the constraint foliation Λ –i.e. the co-
efficient of (u̇)2, see Section 4.4— is different from zero, for dE

dq = −2 sin q cos q.
In the presence of downward gravitational acceleration g, the control

equations for q and the corresponding momentum p is given by
q̇ = p+ (sin q)u̇

ṗ = −∂U
∂q − p(cos q)u̇− (sin q)(cos q)u̇2 ,

(6.26)

where U(q, u)
.
= g cos q is the gravitational potential.

Using Theorem 6.1.2, it is easy to check that this system is stabilizable at
the upward equilibrium point (q̄, p̄, ū) = (0, 0, 0). Indeed, choosing W = {w}
with w > g , the corresponding effective potential

UW = g cos q − 1

2
(1 + cos2 q)w2.

has a strict local minimum at q = 0.
To illustrate an application of Theorem 6.1.1, we now show that the

above system is asymptotically stabilizable at every position (q̄, 0, 0) with
0 < |q̄| < π/2. To fix the ideas, assume q̄ > 0, the other case being entirely
similar. For ξ > 0, the map γ(q, p, ξ) = −ξ provides a smooth selection from
the cone

Γ(q, u)
.
= co

{
∂E(q, u)

∂q
w2 ; w ∈ IR

}
= {−ξ ; ξ ≥ 0}.

The corresponding system (6.5), with ξ as control variable, now takes the
form {

q̇ = p
ṗ = g sin q − ξ .

(6.27)

It is easy to check that (q̄, p̄, ξ̄) = (q̄, 0, g sin q̄) is an equilibrium position
and the system is locally controllable at this point. Indeed, the linearized
control system with constant coefficients is(

q̇
ṗ

)
=

(
0 1

−g cos q̄ 0

)(
q
p

)
+

(
0
−1

)
ξ .

By Theorem 6.1.1, the system (6.26) is asymptotically stabilizable at (q̄, 0, 0).
By similar arguments one can show that, by means of horizontal oscilla-

tions of the pivot, one can stabilize the system at any position of the form
(q̄, 0, 0), with π

2 ≤ |q̄| ≤ π.
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Example 2 (sliding bead). Consider the mechanical system repre-
sented in Figure 6.2(right), consisting of a bead sliding without friction
along a bar, and subject to gravity. The bar can be rotated around the ori-
gin, in a vertical plane. Calling q the distance of the bead from the origin,
while u is the angle formed by the bar with the vertical line. Regarding u as
the controlled variable, in this case the kinetic matrix G and the matrices
in (6.1) take the form

G =

(
1 0
0 q2

)
, A = (1) , E = (q2) , K = (0) .

The orthogonal curvature of the constraint foliation Λ is not vanishing iden-
tically: indeed, one has dE

dq = 2q. The control equations for q and the
corresponding momentum p are{

q̇ = p
ṗ = −g cosu+ qu̇2 .

(6.28)

This case is more intuitive than the previous ones. Indeed, it is clear
that a rapid oscillation of the angle u generates a centrifugal force that
can contrast the gravitational force. More precisely, the system can be
asymptotically stabilized at each (q̄, p̄, ū) ∈ ]0,+∞[×{0}× ] − π/2, π/2[ . A
simple proof of this fact follows from Theorem 6.1.1. Indeed, for q > 0 we
trivially have Γ(q, u) = {qw2 ; w ∈ IR} = {ξ ∈ IR ; ξ ≥ 0}. It is now clear
that, if cos ū > 0, then the control system{

q̇ = p
ṗ = −g cos ū+ ξ ,

(6.29)

admits the equilibrium point (q̄, 0, ξ̄), with ξ̄ = g cos ū > 0. Moreover,
this system is completely controllable around this equilibrium point, using
with controls ξ ≥ 0. An application of Theorem 6.1.1 yields the asymptotic
stability property.

We remark that the stabilizing controls cannot be independent of the
position q and the velocity p. In particular, the approach in Theorem 6.1.2,
based on effective potential, cannot be pursued in this case, because a con-
stant control w cannot stabilize the system{

q̇ = p
ṗ = −g cosu+ qw2.

Example 3 (double pendulum with moving pivot). So far we
have considered examples with scalar controls. We wish now to study a case
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where the control u is two-dimensional, hence the cone (6.4) is also two-
dimensional. Consider a double pendulum consisting of three point masses
P0, P1, P2, such that the distances |P0P1|, |P1P2| are fixed, say both equal
to 1. Let these points be subject to the gravitational force and constrained
without friction on a vertical plane. Let (u1, u2) be the cartesian coordinates
of the pivot P0 , and let q1, q2 the clockwise angles formed by P0P1 and P1P2

with the upper vertical half lines centered in P0 and P1, respectively, see
Figure 6.2. Because of the constraints, the state of the system {P0, P1, P2}
is thus entirely described by the four coordinates (q1, q2, u1, u2). The reduced
system, obtained by regarding the parameters (u1, u2) as controls and the
coordinates (q1, q2) as state-coordinates, is two-dimensional. We assume
that the all three points have unit mass, so that the matrix G = (grs)
representing the kinetic energy is given by

G =



2 cos(q1 − q2) 2 cos q1 −2 sin q1

cos(q1 − q2) 1 cos q2 − sin q2

2 cos q1 cos q2 3 0

−2 sin q1 − sin q2 0 3


,

Moreover, recalling (6.1), we have

E =

 1 − 4(sin q1)2

−3+cos 3(q1−q2) − 2 sin 2q1

−3+cos 3(q1−q2)

− 2 sin 2q1

−3+cos 3(q1−q2) 1 − 4(sin q1)2

−3+cos 3(q1−q2)

 ,

(F u0 )1 = 2g sin q1, (F u0 )2 = g sin q2.

Let us observe, as in Remark 6.2.1, that the matrix E and the corresponding
control equations are independent of the pivot’s mass.

Proposition 6.2.1 For every q̄1 ∈]0, π/4[ (resp. q̄1 ∈] − π/4, 0[) there
exists δ > 0 such that for all q̄2 ∈] − δ, 0[ (resp. q̄2 ∈] − δ, 0[) the system is
stabilizable at (q1, q2, p1, p2, u1, u2) = (q̄1, q̄2, 0, 0, 0, 0).
Moreover, the system is stabilizable at (q1, q2, p1, p2, u1, u2) = (0, 0, 0, 0, 0, 0).

Remark 6.2.2 For obvious reasons of translational invariance, if we replace
(u1, u2) = (0, 0) with any other value (ū1, ū2) ∈ IR2 the result holds true as
well.
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u

u1
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q2 P

P
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0

1

Figure 6.2: Controlling the double pendulum by moving the pivot at P0 .

Proof of Proposition 6.2.1. Using Corollary 6.1.1 with N = M = 2 and
k = 1, we have that the system can be stabilized to (q̄1, q̄2, ū1, ū2) provided
there exist w̄ ∈ IR2 such that

2g sin q̄1 +
∑2

α,β=1
∂eα,β
∂q̄1

w̄αw̄β = 0

g sin q̄2 +
∑2

α,β=1
∂eα,β
∂q̄2

w̄αw̄β = 0

(6.30)

and

det


∂e1,1
∂q1

w̄1 +
∂e1,2
∂q1

w̄2 ∂e2,1
∂q1

w̄1 +
∂e2,2
∂q1

w̄2

∂e1,1
∂q2

w̄1 +
∂e1,2
∂q2

w̄2 ∂e2,1
∂q2

w̄1 +
∂e2,2
∂q2

w̄2

 ̸= 0 (6.31)

Notice that the latter relation can be written as

Qα,βw̄
αw̄β ̸= 0 (6.32)

where the matrix Q =
(
Qα,β

)
is defined by

Q
.
=
∂E

∂q1
·
(

0 −1
1 0

)
· ∂E
∂q2

. (6.33)

We recall that E denotes the matrix (eα,β). Moreover, it is meant that the
functions in (6.30)-(6.33) are computed at (q̄1, q̄2).

Let us fix q̄1 ∈]0, π/4[. In order to establish the existence of a δ > 0 such
that for every q̄2 ∈] − δ, 0[ there is a w̄ verifying the relations (6.30),(6.31),
we need to study the intersections of the level sets of the quadratic forms
Q, ∂E

∂q1
, ∂E
∂q2

.
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Let us write the matrix ∂E
∂q1

and ∂E
∂q2

explicitly:

∂E
∂q1

=



8 sin q1
(
−3 cos q1+cos(q1−2q2)

)
(
−3+cos(2(q1−q2))

)2 −
4

(
−3 cos 2q1+cos 2q2

)
(
−3+cos(2(q1−q2))

)2

−
4

(
−3 cos 2q1+cos 2q2

)
(
−3+cos(2(q1−q2))

)2 −
8 cos q1

(
3 sin q1+sin(q1−2q2)

)
(
−3+cos(2(q1−q2))

)2



∂E
∂q2

=


8 sin2 q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2
4 sin 2q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2

4 sin 2q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2
8 cos2 q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2


In particular, one has

det

(
∂E

∂q1
(q1, q2)

)
= − 16(

− 3 + cos(2(q1 − q2))
)2 < 0 , det

(
∂E

∂q2
(q1, q2)

)
= 0

for all q1, q2.
Hence, one has:

(i) The quadratic form w 7→ wt ∂E
∂q1

w is indefinite, so it can be factorized

by two linear, independent, forms. Let us assume that, q̄2 ∈] − q̄1, 0[,

so that, in particular,
∂e2,2
∂q1

< 0. Hence, for suitable functions a =

a(q1, q2), b = b(q1, q2) such that a(q1, q2) ̸= b(q1, q2) for all q1, q2, one
has

∂eα,β
∂q1

wαwβ =
∂e2,2
∂q1

(w2 − aw1)(w2 − bw1).

(ii) If q̄2 ∈] − q̄1, 0[, the quadratic form w 7→ wt ∂E
∂q2

w is positive semi-
definite. Hence it can be factorized by the positive scalar function
∂e2,2
∂q1

and the square of a linear function. Moreover this linear function
coincides with one of the two linear factors of the quadratic form w 7→
wt ∂E

∂q1
w. This is a trivial consequence of the identity(

∂e1,2
∂q2

∂e2,2
∂q1

)2

−2
∂e2,1
∂q1

∂e2,2
∂q1

∂e1,2
∂q2

∂e2,2
∂q1

∂e2,2
∂q2

+
∂e1,1
∂q1

∂e2,2
∂q1

(
∂e2,2
∂q2

)2

= 0,
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which can be verified by direct computation. Let (w2 − aw1) be the
common factor of the two quadratic forms. Hence, we obtain

∂eα,β
∂q2

wαwβ =
∂e2,2
∂q2

(w2 − aw1)2.

(iii) The quadratic form w 7→ wtQw is semi-definite and, at each (q1, q2),
it is proportional to the form wt ∂E

∂q2
w. More precisely, one has

Qα,βw
αwβ =

(
∂e2,2
∂q1

· a− b

2

)
∂eα,β
∂q2

wαwβ =

(
∂e2,2
∂q1

· ∂e2,2
∂q2

· a− b

2

)
(w2−aw1)2.

This is easily deduced by (6.33). Notice, in particular, the form
Qα,βw

αwβ is never equal to the null form, since a(q1, q2) ̸= b(q1, q2)
for all q1, q2.

If S is a 2 × 2 matrix and ρ ∈ IR let us set

{wtSw = ρ} .
= {w ∈ IR2 | wtSw = ρ}.

Since wt ∂E
∂q2

w is positive definite and sin q2 < 0, there exists a real number
η > 0 such that{
wt ∂E

∂q2
w = − sin q̄2v

}
= {w ∈ IR2 : (w2−aw1) = η}∪{w ∈ IR2 : (w2−aw1) = −η},

so that, in particular,{
wt ∂E

∂q2
w = −g sin q̄2

}
∩ {w ∈ IR2 : (w2 − aw1) = 0} = ∅.

By (iii) this implies{
wt ∂E

∂q2
w = −g sin q̄2

}
∩ {wtQw = 0} = ∅. (6.34)

Moreover, by (i) the line {w ∈ IR2 : (w2 − aw1) = 0} is asymptotic to the
hyperbolic arc {

wt ∂E

∂q1
w = −2g sin q̄1

}
,

which implies{
wt ∂E

∂q1
w = −2g sin q̄1

}
∩
{
wt ∂E

∂q2
w = −g sin q̄2

}
̸= ∅ . (6.35)
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Putting (6.34) and (6.35) together, we obtain the first statement of the
theorem.

On the other hand, the second statement will be proved by an application
of Theorem 6.1.2. Since U(q) = g(2 cos q1 + cos q2) is a potential, by letting
W = {(0, η)} and β(u)

.
= (u1)2 + (u2)2, we have that the effective potential

UW (q, u)
.
= U(q) + η2e2,2(q) + β(u)

has a strict minimum at (q, u) = (0, 0, 0, 0) as soon as |η| is large enough.
In view of Theorem 6.1.2, this implies the that the system is stabilizable at
(q1, q2, p1, p2, u

1, u2) = (0, 0, 0, 0, 0, 0).

♢

6.3 Non-holonomic systems

Let us remark a crucial difference with the case without non holonomic
constraints. In that case the presence of the quadratic term is completely
determined by the relation between the kinetic metrics and the distribu-
tion ∆. In particular this quadratic term accounts for the curvature of the
orthogonal distribution ∆⊥ (see Chapter 4 and [11]). Instead, when the
non holonomic constraint q̇ ∈ Γ is acting on the system we may well have
that the orthogonal distribution ∆⊥ has zero-curvature while the dynamical
equations still contain a term which is quadratic in u̇. This is the case, for
instance, of the Roller Racer.

6.4 An Example: the Roller Racer

The Roller Racer is a classical example of a non-holonomic system, widely
investigated within the theory of the momentum map, see e.g. [5, 18]. It
consists of two rigid planar bodies, connected at a point by a rotating joint,
as shown in fig.6.4. One of the two bodies has a much larger mass than the
other. Let ρ be the distance between the joint and the center of mass of the
heavier body. To simplify computations we also assume that the center of
mass of the lighter body coincides with the joint.

The coordinates (q1, q2, q3, u) are as follows . We let (q3, q1) = (x, y) be
the Euclidean coordinates of the center of mass of the large body. Moreover,
q2 = θ is the counter-clockwise angle between the horizontal axis and the
major axis of the large body, and u = ϕ is the counter-clockwise angle
between the major axes of the two bodies.
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Figure 6.3: The roller racer.

The non-holonomic constraint consists in assuming that each pair of
wheels rotate (without slipping) parallel to the corresponding body. This
corresponds to the condition

(q̇, u̇) ∈ Γ
.
= ker(ω1) ∩ ker(ω2),

where {
ω1 .

= cos q2 dq1 − sin q2 dq3

ω2 .
= cos(q2 + u) dq1 + ρ cosu dq2 − sin(q2 + u) dq3 .

(6.36)

Γ is the (non-integrable) distribution determining the non-holonomic con-
straint. In other words, admissible motions t 7→ (q, u)(t) are subject to

cos q2(t) q̇1(t) − sin q2(t) q̇3(t) = 0 ,
cos(q2(t) + u(t)) q̇1(t) + ρ cosu(t) q̇2(t) − sin(q2(t) + u(t)) q̇3(t) = 0 .

(6.37)
The coordinate ϕ = u is regarded as a control.
The transversality condition is trivially satisfied, because

∆ker = span{du}, Γker = span{ω1, ω2},
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and span{ω1, ω2} ∩ span{du} = {0}.
For simplicity, we normalize the mass of the large body, setting it = 1.

The moment of inertia of the large body with respect to the vertical axis
passing through its center of mass is denoted by I. The mass of the small
body is regarded as negligible, but its moment of inertia J with respect to
the vertical axis passing through the center of mass (of the small body) is
assumed to be different from zero.3 The kinetic matrix (gi,j) and its inverse
(gi,j) are computed as

(gi,j) =



1 0 0 0

0 I + J 0 J

0 0 1 0

0 J 0 J


(gi,j) = G−1 =



1 0 0 0

0 1
I 0 −1

I

0 0 1 0

0 −1
I 0 I+J

JI


.

Let us start by finding a basis for the decomposition TQ = (TQ)I ⊕
(TQ)II ⊕ (TQ)III . Notice that the vectors

w1 = 2ρ cosu sin q2
∂

∂q1
+ 2 sinu

∂

∂q2
+ 2ρ cosu cos q2

∂

∂q3
and w2 =

∂

∂u

form a basis for Γ. Since Γ = span{ ∂
∂q1

, ∂
∂q2

, ∂
∂q3

}, w1 is a basis for (TQ)I =
Γ ∩ ∆.

It is also straightforward to verify that

(TQ)II = Γ⊥ = ker {g(w1),g(w2)} = span {v2,v3} , (6.38)

where

v2 =
I csc q2 tanu

ρ

∂

∂q1
− ∂

∂q2
+

∂

∂u
, v3 = − cot q2

∂

∂q1
+

∂

∂q3
.

Since (TQ)III is perpendicular to both (TQ)I ⊕ (TQ)II and we get

(TQ)III = ker
{
g(v1),g(v2O),g(w3)

}
= span{v4} (6.39)

where we have set

v4
.
=

1

∆0

(
−1

2
Jρ sin q2 sin 2u

∂

∂q1
− J sin2 u

∂

∂q2
− 1

2
Jρ cos q2 sin 2u

∂

∂q3

)
,

3This is a standard approximation adopted in the existing literature.
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∆0
.
= ρ2 cos2 u+ (I + J) sin2 u.
Then setting V1

.
= v1,V2

.
= v2,V3

.
= v3,V4 .

= v4 we have obtained a
family of vector fields (on an open subset of the configuration manifold) as
in (5.37).

To get the equation we need primarily the computation of the coefficients
(5.45). For this purpose, let us begin with observing that the form Ω1

generating (T ∗Q)I is given by

Ω1 = Ω1,1dq
1 + Ω2,1dq

2 + Ω3,1dq
3 + Ω4,1dq

4 = g(V1) =

(2ρ cosu sin q2)dq1 + (2(I + J) sinu)dq2 + (2ρ cosu cos q2)dq3 + (2J sinu)dq4

Let us remind that the projection matrix P ∗
I is computed as (see (5.43))

(P ∗
I )rs =

4∑
k=1

gr,kΩk,1Ωs,1∑4
a,b=1 ga,bV

a
1V b

1

.

Let us set ∆1 = I + J + ρ2 + (−I − J + ρ2) cos 2u, ∆2 = (I + J) sin q2 +
J cos q2 cosu sinu, ∆3 = −(I + J) cos q2 + J cosu sin q2 sinu, ∆4 = −I −
3J + 5IJ2 + 4J3 − ρ2.

Then, trivial computations make the four differential equations in (5.44)
explicit:

q̇1 = 2ρ cosu sin q2 · ξ − Jρ sin q2 sin 2u
2∆0

· u̇

q̇2 = 2 sinu · ξ − J sin2 u
∆0

· u̇

q̇3 = 2ρ cos q2 cosu · ξ − Jρ cos q2 sin 2u
2∆0

· u̇

ξ̇ = − sin 2u
(
(I+J−ρ2)

∆1
+ 1

2(ρ2/∆4+sin2 u)

)
· ξu̇− 2Jρ2 cosu

∆2
1

· u̇2.

(6.40)

Remark 6.4.1 By implementing a rapidly oscillating control like, for in-
stance, uϵ = ū+ϵ sin t/ϵ, one can simply verify that the motion of the Roller
Racer’s barycenter will approximate a forward line (if ū = 0) or a circle (if
ū ̸= 0, |u| < π/2.

This could be easily modified into a result of stabilization, for example in
the case when the Roller Racer runs on a non horizontal plane (and gravity
is present).

Let us remark that the force producing the motion (under the action
of the control uϵ) is essentially due to the quadratic term —see Chapter
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2—, which, in turn, would be zero if a non holonomic constraint were not
acting on the system —see also Remark 5.3.3 . Notice that this last circum-
stance could be regarded as modeling the Roller Racer running on a ideally
frictionless plane.

Remark 6.4.2 In view of Remark 6.4.1 it would be interesting to investi-
gate the problem of obtaining the non holonomic constraint as a ”limit” of
larger and larger orthogonal friction acting on the toy’s wheels.
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Appendix A

Basics on Differential
Manifolds

A.1 Differential manifolds

Let M be a set, let r be a positive integer, and let (Ui, ϕi)i∈I be a collection
of pairs such that

• for all i ∈ I, Ui ⊂ M, and
∪
i∈I Ui = M

• for all i ∈ I, ϕi is a injective map from Ui into IRni , for some positive
integer ni

• ϕi(Ui) is an open subset

• for all pairs i, j such that Ui ∩ Uj ̸= ∅ the map

ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)

is a Cr diffeomorphism.

Every collection (Ui, ϕi)i∈I having the properties stated above is called
an atlas for M, and the pairs (Ui, ϕi) are called charts.

There is a unique topology on M such that every chart’s domain Ui is
an open subset, and every ϕi is a homeomorphism from Ui onto its image
ϕ(Ui). It is easy to check that with respect to this topology a subset A ⊂ M
is open if for every chart (Ui, ϕi) such that Ui ∩A ̸= ∅, the image ϕi(Ui ∩A)
is an open subset of IRni .

In principle, for i ̸= j, nj and nj need not to be equal. However, they
are equal if Ui and Uj lie on the same connected component:

107
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Lemma A.1.1 Let n be a positive integer. Then the set C(n) made of point
m ∈ M such that for every chart (Ui, ϕi) at m

1 one has ni = n is closed and
open. In particular, on every connected component of M the ni’s coincide.

Proof. 2 For every pair of indexes i, j such that Ui ∩ Uj ̸= ∅ one has
ni = nj . Indeed the map

f
.
= ϕi ◦ ϕ−1

j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj)

is a Cr-isomorphism. Let x ∈ ϕj(Ui ∩ Uj) and let Df(x)(·) denote the
differential of f at x. In particular, Df(x) is a linear isomorphism from IRnj

onto IRni , so nj = ni.

Let n be a positive integer. If C(n) is non-empty there exists m ∈ M
such that ni = n for one —hence for every— chart (Ui, ϕi) at m. The set
C(n) is clearly open: if m ∈ C(n), and (Ui, ϕi) is a chart at m, then ni = n.
Since (Ui, ϕi) is also a chart at every m′ ∈ Ui, Ui ⊆ C(n). Let us prove that
C(n) is closed as well. If m ∈ A

.
= M\C(n) and (Uj , ϕj) is a chart at m,

then Uj ⊆ A. In particular, A is open, so C(n) is closed.

Let U ⊆ M be an open subset, let q be a positive integer, and let
ϕ : U → IRq be a homeomorphism from U onto its image ϕ(U) ⊆ IRq. Let
i ∈ I be such that U∩Ui ̸= ∅. The pairs (ϕ,U), (Ui, ϕi) are called compatible
if ϕ ◦ ϕ−1

i is a Cr-isomorphism (from ϕi(U ∩ Ui) onto ϕ(U ∩ Ui)).
Two atlases on M (Ui, ϕi)i∈I , (Uj , ϕj)i∈J are called compatible if for

every i ∈ I and every j ∈ J the charts (Uj , ϕj), (Ui, ϕi) are compatible.
Clearly compatibility is an equivalence relation on the set of atlases on M.
An equivalence class of atlases is a differential structure on M of class Cr.

Definition A.1.2 A set M together with a differential structure of class
Cr is called a manifold of class Cr. If (Ui, ϕi)i∈I is an atlas belonging to
the given differential structure and there is n such that ni = n for all i ∈ I
then one says that the manifold M has dimension n, or, equivalently, that
M is a n-manifold.3

1We say that a chart (Ui, ϕi) is at m if m ∈ Ui.
2Actually, there would be no need of the differentiable structure. Indeed, thanks to

the Invariance Domain Theorem this fact is true also when the maps ϕi ◦ ϕ−1
j are homeo-

morphism.
3It is straightforward to check that n is well defined, i.e. it does not depend on the

particular atlas used to define it. Actually it is easy to show that n depends only on M:
that is, if it is defined for a Cr differential structure on M it is defined also for all Cr

differential structures on M.
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When speaking of a manifold, we shall tacitly always make the following
assumption:

• If m1,m2 ∈ M, m1 ̸= m2, there are charts (U1, ϕ1), (U2, ϕ2) such that
m1 ∈ U1, m2 ∈ U2, and U1 ∩ U2 ̸= ∅.

(This makes our manifold a Hausdorff topological space.)

Remark A.1.3 Let us point out that one can have different differential
Cr structures on a set M. For instance, if M = IR then the atlas A1

made of the one chart (U1, ϕ1) = (IR, id), where id denotes the identity map
gives IR the same differential structure as the one given by the atlas A2

made of the unique chart (U2, ϕ2) = (IR, arctan). Also, the same structure
is given by the union A1 ∪ A2. Instead, the atlas A3 made of the unique
chart (U3, ϕ3(t)) = (IR, t3), which gives a C∞ differential structure is not Cq

equivalent to A1, for the map s→ s
1
3 is not even differentiable at s = 0. Of

course A1 and A3 endow IR with the same C0 (=topological) structure. It
is easy to construct atlases which give the same Cr structure but a different
Cr

′
structure on a set M. For this purpose, observe that for every positive

integer n and every open subset A ⊂ IRn, any atlas on A made by only one
chart (U, ϕ) gives A a C∞ structure as soon as ϕ is a homeomorphism! For

instance the square M =] − 1, 1[×] − 1, 1[ with the chart ϕ(x, y) = (x
1
3 , y 1

5)
is a C∞ (actually, analytic !) manifold...

When no otherwise specified, by manifold we shall mean a differential
manifold of class (at least ) C1 with dimension n > 0.

Definition A.1.4 Let M, M′ be manifolds of dimension n and d, respec-
tively, let s be a non-negative integer such that s ≤ r, and let f : M → M′

be a map. Let m ∈ M. The map f is said differentiable at m if, for ev-
ery chart (U, ϕ) of M at m and every chart (V, ψ) of N at f(m), the map
ψ ◦ f ◦ ϕ−1 is differentiable at ϕ(m) 4. The map f is said differentiable if it
is differentiable at each point of M.

Remark A.1.5 Clearly, the notion of differentiability depends on the dif-
ferential structure. for instance, with reference to Remark A.1.3, the map
t 7→ t

1
3 is not differentiable from (IR, ϕ1) into itself but it is differentiable as

map from (IR, ϕ3) into (IR, ϕ1).

4Notice that ψ ◦ ϕ−1 maps an open subset of IRn into IRd —with the usual Euclidean
structure—, where the notion of differentiability coincides with the classical one.
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A.1.1 The tangent bundle

Definition A.1.6 Let M be a n-manifold and let us fix m̄ ∈ M. If (U, ϕ),
(Ũ , ϕ̃) are charts at m and v, ṽ ∈ IRn we say that the triples (U, ϕ, v) and
(Ũ , ϕ̃, ṽ) are equivalent if

∂(ϕ̃ ◦ ϕ−1)

∂x
(x̄)(v) = ṽ,

where we have set x̄
.
= ϕ(m̄). It is easy to check that this is indeed an equiv-

alence relation. Let [(U, ϕ, v)] denote the class of equivalence of (U, ϕ, v).
Every equivalence class will be called a tangent vector at m. The set of
tangent vectors at m will be called the tangent space of M at m, and will
be denoted by TmM.

TmM inherits the structure of vector space from IRn. Namely, if v =
[(U, ϕ, v)] ,w = [(U, ϕ,w)], α, β ∈ R, we set

αv + βw
.
= [(U, ϕ, αv + βw)].

Because of the linearity of the maps ∂(ϕ̃◦ϕ−1)
∂x (x̄)(·), this definition is in fact

independent of the representatives of v and w.

Let M be a n-manifold of class Cr, with r > 1. Let us consider the set

TM .
=
∪

m∈M
TmM.

We can endow TM with a Cr−1 differential structure in the following way.
For every subset U ⊆ M let us define the subset TU ⊆ TM by letting

TU
.
=
∪
m∈U

TmM.

Let (Ui, ϕi)i∈I be an atlas for M. Let us define an atlas (Ûi,Φi)i∈I for TM
by setting

Ûi
.
= TUi Φi(m,v)

.
= (x, v)

as soon as ϕi(m) = x and v = [(Ui, ϕi, v)].
Clearly, each map Φi is a bijection from Ûi onto ϕi(Ui)× IRn. Moreover,

for all pair i, j such that Ui ∩Uj ̸= ∅, one has Ûi ∩ Ûj ̸= ∅. Furthermore, the
transition map Φi ◦ Φ−1

j is defined by

Φi ◦ Φ−1
j (x, v) =

(
ϕi ◦ ϕ−1

j (x) ,
∂(ϕi ◦ ϕ−1

j )

∂x
· v

)
,
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which is clearly a diffeomorphism of class Cr−1 from ϕj(Uj) × IRn onto

ϕi(Ui) × IRn Let us remark that the maps ϕ̂i are linear in the second argu-
ment.

Fix m ∈ M and let (ϕ,U) be a chart at m. If x1, . . . , xn denote the
coordinates corresponding to the chart (ϕ,U) , the vectors

∂

∂xj
.
= [(ϕ,U, ej)], j = 1, . . . , n

—where ej stands for the j-th element of the canonical base of IRn— form
a basis for the vector space TmM. In particular, Φi(m,v) = (x, v) if and
only if x = ϕi(m) and

v = vi
∂

∂xi
,

where we have adopted the so-called Einstein summation convention (which
prescribes that if in an expression an index i ∈ I appears twice we have to
perform the summation of the expression for all i ∈ I.)

The collection (TUi,Φi)i∈I is clearly a Cr−1 atlas on TM which makes
TM a 2n-manifold of class Cr−1. This manifold is called the tangent bundle
of M 5

Notational convention. If f : M → Q is a map between two manifolds
M and Q, m ∈ M, and if (U, x = ϕ) and (V, y = ψ) are charts at m
and f(m), respectively, respectively, let us define the map fϕ,ψ : IRn ⊇
ϕ(U ∩ f−1(V )) →→ IRd by setting

fϕ,ψ
.
= ψ ◦ f ◦ ϕ−1.

Let us call this map the representation of f in the coordinate charts (U, x =
ϕ) and (V, y = ψ).

♢

Definition A.1.7 Let M,Q be manifolds of dimension n and d, respec-
tively, and let f : M → Q be a differentiable map. We define a map

Df : TM → TQ

by setting, for every m̄ ∈ M and v ∈ Tm̄M,

Df(m̄,v)
.
=
(
f(m̄), Tm̄f(v)

) (
∈ Tf(m̄)Q

)
5If we performed the same construction starting with an atlas (U ′

i′ , ϕ
′
i′)i′∈I′ equivalent

to (Ui, ϕi)i∈I we would end up with an atlas (Û ′
i′ , ϕ̂

′
i′∈I′)i′∈I′ for TM which is equivalent

to (Ûi, ϕ̂i)i∈I . We leave the proof of this trivial fact as an exercise.
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where, if (U, x = ϕ) and (V, y = ψ) are charts at m̄ and f(m̄), respectively,
and v = vi ∂

∂xi
, x̄

.
= ϕ(m̄), we have set

Tm̄f(v) =

(
∂f jϕ,ψ
∂xi

(x̄)vi

)
∂

∂yj
. (A.1)

The function Df is called the tangent map of f , and the linear function

Tm̄f(·) : TmM → TnQ

is called the tangent map to f at m. Sometimes f∗ is also called the deriva-
tive (or the differential) of f .

Notice that (A.1) gives the coordinate expression of Tm̄f(m)(v) = wj ∂
∂yj

:

wj =
∂f jϕ,ψ
∂xi

vi ∀j = 1, . . . , d

The proof that the definition of Tm̄f(v) is independent of the choices of
the charts at m and f(m) is trivial, and we let it as an exercise.

Let us observe that the rank of the Jacobian matrix
∂fϕ,ψ
∂x (x̄) is in fact

independent of the chosen charts. We call this number the rank of Tm̄f . If
the rank of Tm̄f is equal to k for every m̄ ∈M , we say that Df has constant
rank equal to k.

A.2 Submanifolds

Definition A.2.1 Let M,Q be manifolds of dimension n and d, respec-
tively, and let f : M → Q be a differentiable map.

• f is called an immersion if, for every m ∈M , Tm̄f is injective, i.e., if
Df has constant rank equal to n.

• f is called a submersion if, for every m ∈ M , Tm̄f is surjective, i.e.,
if Df has constant rank equal to d.

The following Lemma characterizes immersions and submersions as hav-
ing special local expression when composed with suitable charts.
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Lemma A.2.2 A function f : M → Q is a submersion if and only if
(A) d ≤ n, and, for every m ∈ M, there exists a chart (U, x = ϕ) at

m such that, for every chart (V, y = ψ) at f(m), fϕ,ψ coincides with the
projection on the first d components, i.e.,

fϕ,ψ(x1, · · · , xd, . . . , xn) = (x1, · · · , xd) ∀(x1, · · · , xd, . . . , xn) ∈ ϕ(U).

In particular, every submersion is an open map, i.e. it maps open sets into
open sets.

Proof Let us assume (A). Then, for every m ∈ M, f is a submersion
because

rankTm̄f = rank
∂fϕ,ψ
∂x (x̄)

= rank


1d 0d,n−d

0n−d,d 0n−d,n−d

 = d,

where x̄
.
= ϕ(m), 1d stands for the unit matrix of dimension d, and, for

all positive integers i, j, 0i,j denotes the i × j zero matrix. Conversely, let
f be a submersion at a point m ∈ M. Let (W, z = ξ) and (V, y = ψ) be
charts at m and f(m) respectively. For every element z ∈ IRn let us set
zI = (z1, . . . , zd), and zII = (zd+1, . . . , zn). Without loss of generality, we

can assume that the first d columns of the Jacobian matrix
∂fξ,ψ
∂z (x̄) form a

non-singular matrix. We use
∂fξ,ψ
∂zI

(x̄) to denote this matrix. Let us consider
the map

k : ξ(W ) → IRn

defined by

k(z) =
(
k1(z), kII(z)

)
=
(
fξ,ψ(z), zII

)
Since the matrix

∂fξ,ψ
∂zI

(x̄) is non singular, the matrix ∂k
∂z (x̄) is non-singular

as well, so, by the Inverse Map Theorem, there exists an open neighborhood
Z ⊆ ξ(W )(⊆ IRn) of x̄ such that k(Z) ⊆ IRn is open and the restriction k|Z
is a diffeomorphism from Z onto k(Z). Hence the pair (U, x = ϕ) defined by

U
.
= ξ−1(Z) ϕ

.
= k ◦ ξ : U → ϕ(U) ⊆ IRn.

is a chart. Moreover, it verifies (A). Indeed, one has

fϕ,ψ(x) = fξ,ψ ◦ k−1(x) = kI ◦ k−1(x) = xI = (x1, · · · , xd)

for all x ∈ ϕ(U).
♢
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Definition A.2.3 We call a chart (U, x = ϕ) on M like the one whose
existence is stated in Lemma A.2.2 a chart adapted to the submersion f .

Lemma A.2.4 A function f : M → Q is an immersion if and only if
(B) n ≤ d, and, for every m ∈ M, there exists a chart (V, y = ψ) at

f(m) such that, for every chart (U, x = ϕ) at m, there is a neighborhood U ′

of f(m) such that

fϕ,ψ(x1, · · · , xd) = (x1, · · · , xd, 0, . . . , 0)

for all (x1, · · · , xd) ∈ ϕ(U ∩U ′) . In particular, every immersion f is locally
injective, i.e., for every m ∈ M , there exists a neighbourhood U of M such
that the restriction f : U → Q is injective.

Proof For any vector v = (v1, . . . , vd) ∈ IRd, let us set vI
.
= (v1, . . . , vn)

and vII
.
= (vn+1, . . . , vd). Let (U, x = ϕ) be a chart of M at m, let (W, z = ξ)

be a chart of M′ at m′ = f(m), and let us set x̄
.
= ϕ(m). Let us consider

the map
x 7→ f Iϕ,ξ(x)

from ϕ(U) into IRd.
Clearly, it is not restrictive to assume that the Jacobian matrix

∂f Iϕ,ξ
∂x

(x̄)

is non-singular. Then, by the Inverse Mapping Theorem, there exists an
open neighborhood A of x̄ such that f Iϕ,ξ(A) ⊂ IRn is open and the restriction

f Iϕ,ξ : A→ f Iϕ,ξ(A)

is a diffeomorphism of class Cr. Let

η : f̃ Iϕ,ξ(A) → A

denote the inverse map, and let us define the map ψ = (ψI , ψII) by setting

ψI
.
= η ◦ ξI ψII

.
= ξII − f IIϕ,ξ ◦ η ◦ ξI

For every y ∈ ξ(W ∩ V ) one has,

ψ ◦ξ−1(y) =
(
η(yI) , yII−f IIϕ,ξ ◦η ◦ξI ◦ξ−1(y)

)
=
(
η(yI) , yII−f IIϕ,ξ ◦η(yI)

)
,
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so the Jacobian matrix of ψ ◦ ξ−1 is nonsingular at any y ∈ ξ(W ∩ V ), for
the Jacobian matrix of η is nonsingular at any y ∈ f Iϕ,ξ(A). It follows that

the map ψ is a homeomorphism from V
.
= W ∩ ξ−1(f Iϕ,ξ(A)) onto its image,

and (V, y = ψ) is a chart at f(m).

Finally, for every x ∈ ϕ(A), one has

fϕ,ψ(x) = (ψI , ψII) ◦ f ◦ ϕ−1(x) = (x, 0),

which concludes the proof.

♢

Definition A.2.5 We call a chart (V, y = ϕ) on Q like the one of Lemma
A.2.4 a chart adapted to the immersion f . 6

Definition A.2.6 (Submanifolds).Let r, s be positive integers such that
s ≤ r. A subset Q of a differential manifold M of class Cr is called a
submanifold of class Cs if

i) Q is a manifold of class Cs, and

ii) the inclusion map i : Q → M is am immersion of class Cs.

We shall say that Q is a submanifold (without additional specification)
if it is a submanifold of class Cr.

Definition A.2.7 (Embedded submanifolds). A submanifold Q ⊆ M
(of any class) is called embedded if the manifold topology of Q coincides with
the relative topology induced by the topology of M. A submanifold Q ⊆ M
(of any class) is called locally embedded if for any point q ∈ Q there exist
a neighborhood Aq of q (in Q !) such that Aq is an embedded submanifold.

Examples The image Q1 = c(]0, 2π[) of the map c :]0, 2π[→ IR2, c(s)
.
=

(sin s, sin(2s)) can be given the structure a one-dimensional submanifold of
IR2of class C∞ 7But Q is not embedded: for instance, c(]π−1, π+1[), which
is a neighborhood of q = (0, 0) in the topology of Q, does not contain any
neighborhood of q in the topology induced by the topology of IR2.

60f course, 0 can be replaced with any other constant a ∈ IRn−d.
7We mean that Q1 is endowed with the one-chart atlas A = {Q1, c

−1}. Of course one
can consider different, non equivalent atlases. For instance, if c′

.
= c(s)

.
= (sin s,− sin(2s)),

A′ .= {Q1, c
′−1} is not equivalent to A.
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On the other hand Q2 = {(x, y) ∈ IR2 x2 + y2 = 1} is an embedded
submanifold of class C∞. Finally Q3

.
= c[0, π] cannot be given the struc-

ture of a C1 submanifold .(Why? Prove that Q3 is a Lipschitz embedded
submanifold8)

Proposition A.2.8 (Characterization of embedded submanifolds)
Let M be a manifold of class Cr and consider a subset Q ⊆ M. Then the
following conditions are equivalent:

1) Q is an embedded submanifold of class Cr and dimension n− d ≤ n,

2) for every q ∈ Q there exists a chart (U, ϕ) and open subsets A1 ⊂
IRd, A2 ⊂ IRn−d such that, m(U) = A1 × A2, and, if x(q) = (a1, a2),
then

Q∩ U = ϕ−1({a1} ×A2)

Charts like the one in condition 2) are called adapted to the (embedded)
submanifold Q.

Remark A.2.9 Clearly, if Q is an embedded submanifold, the collection of
pairs {(

Ui ∩Q, ϕi|Ui∩Q

)
| (U, ϕ) is adapted to N

}
is an atlas for the manifold N .

Embedded submanifolds are often obtained as pre-image of submersions
or as images of suitable restrictions of immersions. This is made precise by
the following result:

Theorem A.2.10 Let M M′ be manifolds of class Cr, with r ≥ 1, and let
n and d be the dimensions of M and M′, respectively. Let

f : M → M′

be a differentiable mapping of class Cr. Then:

1) if f is a submersion, for each m′ ∈ f(M), f−1(m′) is an embedded
submanifold of M of class Cr and dimension n− d;

8A Lipschitz manifold is a manifold whose transition maps are locally Lipschitz.
Clearly, all manifolds of class Cr with r ≥ 1, are Lipschitz. A Lipschitz submanifold
of a M is a subset Q ⊂ M with the structure of a Lipschitz manifold and such that the
immersion i : Q → M is locally injective and locally Lipschitz.
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2) if f is an immersion, then the image f(M) is a locally embedded
submanifold of class Cr.

Proof Let us prove 1). Let m′ ∈ M′ and let us set Q .
= f−1(m′). Let

us choose m ∈ Q, and let (V, y = ψ) be a chart at m′. By Lemma ?? there
exists a chart (U, x = ϕ) at m such that

fϕ,ψ(x1, . . . , xn) = (x1, . . . , x
d)

for all (x1, . . . , xn) ∈ ϕ(U). Of course, it is not restrictive to assume that
there exist open subsets A1 ⊂ IRd, A2 ⊆ IRn−d such that ϕ(U) = A1 × A2

and ψ(V ) = A1 and ϕ(m) = (0, 0) ∈ A1 ×A2. Hence

ϕ(Q∩ U) = {0} ×A2,

which, by Proposition A.2.8, implies that Q(= f−1(m′)) is an embedded
submanifold od dimension n− d.

Let us prove [2)]. Let m ∈ M and let us set m′ .= f(m). Let (U, x = ϕ)
be a chart at m. By Lemma A.2.4 there is a chart (V, y = ψ) and an open
neighborhood U ′ ⊆ U of m such that

fϕ,ψ(x1, · · · , xd) = (x1, · · · , xd, 0, . . . , 0) (A.2)

for all (x1, · · · , xd) ∈ A1
.
= ϕ(U ∩ U ′). It is not restrictive to assume that

there exists an open subset A2 ∈ IRd−n such that (0, 0) ∈ A1 ×A2, ψ(m′) =
(0, 0), and ψ(V ) = A1 ×A2. Hence, by (A.2),

ψ(f(U ∩ U ′) ∩ V ) = ψ ◦ f ◦ ϕ−1(ϕ(U ∩ U ′) ∩ V ) = A1 × {0},

which, by Proposition A.2.8 implies that f(U ∩U ′) is an embedded subman-
ifold.

♢
Theorem A.2.10 can be easily generalized to the following result, some-

times referred to as the constant rank theorem

Theorem A.2.11 (Constant rank theorem)Let M M′ be manifolds of
class Cr, with r ≥ 1. Let f : M → M′ be a differentiable mapping of class
Cr such that Df has constant rank k. Then:

• for each m′ ∈ f(M) f−1(m′) is an embedded submanifold of M of
class Cr and dimension n− k, where n is the dimension of M;

• for each m ∈ M there is a neighborhood Um of m such that the image
f(Um) is an embedded submanifold of M′ of dimension k.
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A.3 Vector bundles

Definition A.3.1 Let r, s be non-negative integers. A s-dimensional vector
bundle of class Cr is a triple (E,M, π), where E is a manifold of class Cr

(the total space), M is a manifold (the base manifold, or simply the base)
and π : E → M is a surjective map (the projection), verifying the following
conditions:

i) for every m ∈ M, the fiber Em
.
= π−1(m) has a structure of vector

space;

ii) for every m ∈ M, there is a neighborhood U of m and a diffeomor-
phism Φ : π−1(U) → U × IRs of class Cr —called a local trivialization
of E— such that,

Pr1 ◦ Φ(e) = π(e),

for all e ∈ π−1(U), where Pr1 denotes the projection of U × IRs onto
the first factor. Moreover, for every m ∈ U , the restriction of Φ to the
fiber Em, Φ : Em → {m} × IRs is a linear isomorphism.

The first example of fiber bundle is the tangent bundle TM of a n −
dimensional manifold M of class Cr, with r ≥ 2, which is in fact a n-
dimensional fiber bundle of class Cr−1 as soon we let the total space, the
base, and the projection be TM, M and πTM , the latter denoting the
canonical projection of TM onto M. For each m ∈ M, if (U, x = ϕ) is a
chart at m, Φ

.
=
(
πTM ,Φ

)
is clearly a local trivialization from (πTM)−1(U)

onto U × IRn.

Definition A.3.2 (Sections) Let (E,M, π) be a fiber bundle. A map s :
M → E is called a section of (E,M, π) (shortly, of E) if

π ◦ s(m) = m

for all m ∈ M′. In particular, a section of the tangent bundle TM is called
a vector field.

Starting from the tangent bundle TM, we can construct other fiber
bundles on the base M, the tensor bundles. Let us begin with recalling the
notion of tensor on a vector space.
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A.3.1 Tensor calculus on vector spaces

. Let n be a positive integer, and let V be a n-dimensional real vector space.
We use V ∗ to denote the dual space of V , that is the n-dimensional vector
space of linear functionals from V into IR —which are also called covectors,
or linear forms. If (α, v) ∈ V ∗ × V let us set

< α, v >
.
= α(v).

< ·, · > is called the natural pairing of V and V ∗. We identify (V ∗)∗ = V ∗∗

with V via the pairing ≺ v, α ≻ .
=< α, v >.

Let r be a positive integer. A covariant r-tensor on V is a multilinear
mapping

G : V × · · · × V︸ ︷︷ ︸→ IR

r times

The vector space of r-covariant tensors will be denoted by T r0 (V )

Let s be a positive integer.A contravariant s-tensor on V is a multilinear
mapping

G : V ∗ × · · · × V ∗︸ ︷︷ ︸→ IR

s times

The vector space of s-contravariant tensors will be denoted by T 0
s (V ) (Notice

that T s0 (V ) = T 0
s (V ∗)).

A mixed tensor of type

(
r
s

)
( i.e.,r-covariant and s-contravariant ) is

a multilinear mapping

G : V ∗ × · · · × V ∗︸ ︷︷ ︸× V × · · · × V︸ ︷︷ ︸→ IR

s times r times

The vector space of tensors of type

(
r
s

)
will be denoted by T rs (V ). Clearly’

one has T 0
1 (V ) = V (via the identification V ∗∗ = V , T 1

0 (V ) = V ∗. Moreover,
one can identify T 1

1 (V ) with End(V ), the space of endomorphisms on V 9: it
is sufficient to identify any f ∈ End(V ) with the tensor Lf ∈ T 1

1 (V ) defined
by Lf (α, v)

.
=< α, f(v) > (α ◦ f(v)).

9An endomorphism is an linear mapping from V into itself.
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Given two tensors F ∈ T rs (V ), G ∈ T pq (V ) let us define the tensor F⊗G ∈
T r+ps+q (V ) by setting

F ⊗G(α1, . . . , αs+q, v1, . . . , vr+p)
.
=

F (α1, . . . , αs, v1, . . . , vr)G(αs+1, . . . , αs+q, vr+1, . . . , vr+p)

The tensor F ⊗G is called the tensor product of F and G. In particular, if
{v1, . . . , vn} is a basis of V and {v1, . . . , vn} is the dual basis of V ∗, for all
ordered s-tuples i1, . . . , is and all ordered r-tuples j1, . . . , ir of elements of
{1, . . . , n} one can consider the tensor products

vi1 ⊗ · · · ⊗ vis ⊗ vj1 ⊗ · · · ⊗ vjr .

It is trivial to verify that the so-obtained ns+r tensors (of type

(
r
s

)
) form

a basis for the vector space T rs (V ). In particular, T rs (V ) has dimension equal
to ns+r. In fact, for every tensor F ∈ T rs (V ), one has

F = F i1,...,isj1,...,ir
vi1 ⊗ · · · ⊗ vis ⊗ vj1 ⊗ · · · ⊗ vjr

where the components F i1,...,isj1,...,ir
are defined as follows:

F i1,...,isj1,...,ir

.
= F (vj1 , . . . , vjr , vi1 , . . . , vis) .

Proposition A.3.3 (Change of variables) Let us consider two basis,

B = {v1, . . . , vn} , B̃ = {ṽ1, . . . , ṽn}

and the corresponding dual bases,

B∗ = {v1, . . . , vn} , B̃∗ = {ṽ1, . . . , ṽn}

. Let F ∈ T rs (V ) and let F i1,...,isj1,...,ir
and F̃ i1,...,isj1,...,ir

be the components of F in the

bases B,B∗ and B̃, B̃∗, respectively, that is

F = F i1,...,isj1,...,ir
vi1 ⊗ · · · ⊗ vis ⊗ vj1 ⊗ · · · ⊗ vjr =

F̃ i1,...,isj1,...,ir
ṽi1 ⊗ · · · ⊗ ṽis ⊗ ṽj1 ⊗ · · · ⊗ ṽjr .
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Let A = (Akj ) be the real, nonsingular n × n matrix —where the upper and
lower indexes be regarded as a column and row indexes, respectively— such
that

ṽj = Akj vk ∀j = 1, . . . , n.

Let Â = Âkj denote the transposed of A, namely Âkj
.
= Ajk, and let C = Ckj

denote the inverse of Â. Then

F̃ i1,...,isj1,...,ir
= Ci1k1 . . . C

is
ks
Âh1j1 . . . Â

hr
js
F k1,...,ksh1,...,hr

.

Alternating forms

For every non negative integer k ≤ let us consider the subspace Λk(V ) ⊂
T k0 (V ) of those multinear maps

ω : V × · · · × V︸ ︷︷ ︸→ IR

(i.e. k-covariant 0-contravariant tensors) which are alternating (equivalently,
anti-symmetric). In general, a tensor F is alternating if it change sign
whenever two arguments are interchanged. With obvious meaning of the
notation, this means that:

F (. . . , a, . . . , b, . . . ) = −F (. . . , b, . . . , a, . . . )

These tensors of Λk(V ) called (exterior) k-forms. Clearly Λ1(V ) = V ∗.

Let us just define the wedge product ∧ on external forms. The wedge
product is bilinear and associative. Moreover r is a non-negative integer,
and ω1, . . . , ωr are 1-forms, the product ω1 ∧ · · · ∧ ωr is a r− form defined
by setting

ω1 ∧ · · · ∧ ωr(v1, . . . , vr) = det (⟨ωi, vj⟩)i,j=1,...r

The extension to all forms can be made by linearity, by observing that

• If v1, . . . , vn is a basis of V ∗, for every k ≤ n, the

(
n
k

)
elements

vi1 ∧ · · · ∧ vik i1 < · · · < ik

form a basis of Λk(V ), which in particular has dimension

(
n
k

)
In particular, let us observe that
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• If α, β ∈ V ∗(= Λ1(V )) one has

α ∧ β = −β ∧ α = α⊗ β − β ⊗ α.

• If α is a k-form and β is a h-form, and k + h ≤ n, then α ∧ β is a
k + h-form, and

α ∧ β = (−1)k+h+1β ∧ α.

Symplectic forms

A symplectic form on a vector spaceV is a non-degenerate 2-form on V . We
recall that a 2-form ω is non-degenerate if, for a given v ∈ V ,

ω(v, w) = 0 ∀w ∈ V ⇒ v = 0.

Using non-degeneracy and skew-symmetry one can show that the existence
of a symplectic form implies that the dimension of V is even.

A symplectic form establishes a isomorphism S : V → V ∗, which is
defined by setting, for all v, w ∈ V ,

< S(v), w >
.
= ω(v, w).

Clearly, S is linear. Moreover, since ω is non-degenerate, one has

v ∈ kerS ⇔ S(v) = 0 ⇔ ω(v, w) = 0 ∀w ∈ V ⇔ v = 0,

so that S is injective, which implies that that S is an isomorphism. The map
S−1 is used to define Hamiltonian vector fields on the cotangent bundle of
a manifold (see below).

A.3.2 Tensor bundles

Let k, l be non-negative integers and let us consider the set

T lkM
.
=
∪

m∈M
T lk(TmM)

Similarly to the case of the tangent bundle, this set can be endowed with a

structure of fiber bundle as follows ...... T lkM is called the bundle of

(
l
k

)
-

tensors on M . Notice that this bundle (with base M) have dimension nl+k.
So, if M is a manifold of class Cr, with r ≥ 1, as a manifold T lkM has
dimension n+ nl+k.
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Also, we shall set

ΛkM .
=
∪

m∈M
Λk(TmM)

and endow it of a structure of fiber bundle in the usual way. Notice that

this bundle (with base M) have dimension

(
n
k

)
). So, if M is a manifold

of class Cr, with r ≥ 1, the manifold ΛkM has dimension

(
n
k

)
.

A.3.3 Some examples of sections of tensor bundles

We have already given the general notion of section of a fiber bundle. In
particular, sections of tensor bundles on M are called also tensor fields on
M. The sections of TM are usually called vector fields, while the sections
of T ∗M are called differential 1-formon M, or, also, covector fields.
The sections of ΛkM are called differential k-forms M. (For brevity,
sometimes they are simply called k-forms.)

Since tensor fields are mappings between differentiable manifolds it is
clear what one means that a tensor field is of class Cr. Notice, in particular,
that id M is a manifold of class Cs then a tensor field can be at most of
class Cs−1.

Let us see some special cases of tensor fields that are of common use.

Vector fields

The vector fields are the sections of the tangent bundle. They are connected
with the notion of ordinary differential equation (see below).

Riemannian metrics

A 2-covariant tensor field g is called a Riemannian metric if for every m ∈
M g(m) is non-degenerate, symmetric, and positive definite. This means,
respectively,

g(m)(v, w) = 0 ∀w ∈ TmM → v = 0

g(m)(v, w) = g(m)(w, v) ∀v, w ∈ TmM,

and
g(m)(v, v) > 0 ∀v ∈ TmM.

In other words, for every m ∈ M g(m) is a scalar product on the vector
space TmM. A manifold of class Cr (r ≥ 1) equipped with a Riemannian
metrics is called a Riemannian manifolds.
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Using partition of unity 10 one can prove that on every manifold there
exists one Riemannian metric. The metric is said flat if there is exists atlas
A such that on each chart (U, x = ϕ) of A one has

g(m) = gijdxi ⊗ dxj ∀m ∈ U

with all the components gij’s constant (Of course the gij ’ can change with
the chart).

If (M, gM) and (Q, gQ) are Riemannian manifolds, and F : M → Q is a
diffeomorphism, f is called an isometry if F∗g

Q = gM, F∗g
Q is the pull-back

of gQ, that is the 2-covariant tensor on M defined by

F∗g
Q(m)(v, w)

.
= gQ(F (m))

(
TmF (v), TmF (w)

)
for all m ∈ M and all v, w ∈ TmM.

Riemannian Geometry investigates the properties of Riemannian mani-
folds up to isometries. We refer the interested reader to the many existing
textbooks on the subject(see e.eg. []).

The duality tensor field.

Let M be any manifold. There exists a tensor I ∈ T 1
1 (M) such that for

every chart (U, xϕ) one has

I(m) =

n∑
1=1

dxi ⊗ ∂

∂xi

In others word, in all coordinate systems, (Iji ) coincides with the identity
matrix. This can be defined directly (using any atlas and verifying that if
a tensor as components (Iji ) on a chart, then it has the same components
with the other charts on the intersection of the respective domains), or by
defining Id intrinsically: in fact it is sufficient to set

I(m)(α, v)
.
= ⟨α, v⟩ ∀α ∈ T ∗M, v ∈ TM

where, as usual, ⟨·, ·⟩ denotes the duality pairing.

10A partition of unity is....
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The Lieuville 1-form on T ∗M

Let M be any manifold class C2. There exists a one 1-form θ on T ∗M
—that is θ ∈ T ∗(T ∗M)— such that for every chart (U, x = ϕ) on M one
has

θ(m, p) = pidx
i ∀(m, p) ∈ T ∗U, (A.3)

where the pi are the components of p ∈ T ∗
mM with respect to the basis

dx1, . . . , dxn. The form θ is called the Lieuville form. Let us remark that this
is a form on T ∗M, so (A.3) means that, in the basis dx1, . . . , dxn, dp1, . . . , dpn

of T ∗
m,p(T

∗M), the covector θ(m, p) ∈ T ∗
m,p(T

∗M) has components (p1, . . . , pn, 0, . . . , 0).
The existence of such a form can be verified directly ( by testing that it

transforms in the right way with the bundle- transition maps).
However it is usually defined intrinsically as follows:

• Call piT ∗M the canonical projection

The symplectic 2-form on T ∗M

Let M be any manifold class C2. There exists a 2-form ω on T ∗M —that
is ω ∈ Ω2(M)— such that for every chart (U, x = ϕ) on M one has

ω(m, p) = dxi ∧ dpi ∀(m, p) ∈ T ∗U, (A.4)

where the pi are the components of p ∈ T ∗
mM with respect to the basis

dx1, . . . , dxn. The form ω is called the canonical symplectic form on T ∗M.

A.4 Ordinary Differential Equations

Definition A.4.1 Let M be a manifold of class Cr, with r ≥ 1. A vector
field on M is a section of (TM,M, πTM), where πTM denotes the canonical
projection of TM onto M. In other words, f is a vector field if and only if
f is a map f : M → TM verifying

f(m) ∈ {m} × TmM

for all m ∈ M.11

A time-dependent vector field on M is a map is a map f : I×M → TM
such that i) I is a real interval, and ii) for every t ∈ I, f(t, ·) is a vector
field on M.

11Sometimes the notation f(m) is used to denote what is in fact, the second component
of f(m) —i.e., an element of TmM. Yet, in general the real meaning is unambiguous
because of the context.



126 APPENDIX A. BASICS ON DIFFERENTIAL MANIFOLDS

We wish to give an chart-independent notion for a differential equation
defined by a (possibly) time-dependent vector field. For this purpose, if I is
a real interval, m : I → M is a continuous map, and t is an interior point
of I such that m(·) is differentiable at t, we use ṁ(t) or dm

dt (t) to denote the

image of the vector ∂
∂t ∈ TtI through the tangent map of m(·) at t. Namely,

we let

ṁ(t) =
dm

dt
(t)

.
= m∗(t)

(
∂

∂t

)
(∈ Tm(t)M)

Let us (U, x = ϕ) be a chart at m(t), so that the map x(s)
.
= ϕ◦m(s) can be

defined in ]t− δ, t+ δ[ for a δ sufficiently small. Then x(·) :]t− δ, t+ δ[→ IRn

is differentiable at s = t, and

ṁ(t) =
dm

dt
(t) =

dxi

dt
(t)

∂

∂xi
.

Therefore, if f is a time-dependent vector field defined on I×M, the notation

ṁ(t) = f(t,m(t)) (A.5)

makes perfectly sense.

Let us observe that, if

f(m) = f i(t,m)
∂

∂xi

with respect to the chart (U, x = ϕ), (A.5) is equivalent to

dx

dt
(t) = fϕ(t, x(t)) (A.6)

where fϕ is the the representation of f with respect to the chart (U, x = ϕ),
which is defined by

fϕ(t, x) =
(
f1(t, ϕ−1(x)), · · · , fn(t, ϕ−1(x))

)
∀x ∈ ϕ(U).

So, via composition with charts, most of the questions for ODE’s can
be reduced to analogous questions for ODE’s on IRn. On the other hand,
there a lot of issues even in the Euclidean setting that have a chart invari-
ant formulation. For instance the transport of both vectors and covectors,
which are accounted by variational and adjoint equations (see below), can
be expressed in a chart-independent way.
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A.4.1 The Flow-Box Theorem

The Flow-box theorem says the if f is a locally Lipschitz, time-independent,
vector field and m ∈M is a non-equilibrium point, i.e. f(m) = 0, then f is
constant in a neighborhood of m.

Theorem A.4.2 Let M be a manifold and let f be a time-independent
vector field on M, of class C1. Let m ∈M be a point such that

f(m) ̸= 0.

Then there exists a chart (U, x = ϕ) near m such that

fϕ(x) =
∂

∂x1
∀x ∈ ϕ(U) 12

The theorem can be extended to locally Lipschitz vector fields. (see [41])

As it is known the thesis is not valid for more than one vector fields (with
the same chart). In fact, according to the ”multiple flow-box theorem”, two
vector fields can be rendered constant in a chart if and only if their Lie
bracket (see below) is equal to zero.

A.5 Distributions, co-distributions, integral sub-
manifolds

A distribution 13 ∆ on a differentiable manifold M is a set-valued function
q 7→ ∆q which maps a point q ∈ M into a subspace ∆q of the tangent
space TqM . (If ∆q has constant dimension a distribution can also be re-
garded as a vector sub-bundle of the tangent bundle). If n is the dimension
of M , a distribution ∆ with constant dimension k ≤ n is called (com-
pletely) integrable if in a neighborhood of any point q ∈ M one can find
local coordinates (x, y) = (x1, . . . , xk, y1, . . . , yn−k) such that i) each level
set Lq̄

.
= {q | y(q) = y(q̄)} is a k-dimensional submanifold of M , and ii)

the tangent space to Lq̄ at a point q ∈ Lq̄ coincides with ∆q. The sets Lq
are called (local) integral submanifolds of the distribution ∆. Clearly, the

12Of course, the statement is still valid when ∂
∂x1

is replaced by any constant, non-zero,
vector field in the open subset ϕ(U).

13This notion of distribution has nothing to do with the synonymous concept of Schwartz
distributions.
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question whether integral manifolds do exist is trivial when k = 1, for the
problem reduces to a question of solutions’ existence for an ODE. On the
contrary, if k > 1, local integral submanifolds do not exist unless a geo-
metrical condition, namely involutivity, is verified. As is well-known, the
Frobenius Theorem characterizes local integrability by means of involutiv-
ity. We recall that a distribution ∆ is called involutive if for every pair of
fields (f, g) belonging to ∆,14 the Lie bracket

[f, g] = Dg · f −Df · g

belongs to ∆ as well.

A.5.1 Lie derivatives, Lie brackets, exterior derivatives

Let us begin by recalling the classical notions of Lie derivative and exterior
derivative. 15.

Though the two definitions below are given in coordinate terms, it is
trivial to verify they are invariant for local changes of coordinates. In fact,
intrinsic definitions can be given as well.

Definition A.5.1 (Lie derivatives) Let M be a manifold, let r, s be non-
negative integers and let E be the (r, s)-type tensor bundle on M 16. If
T : M → E is a section of E (i.e. a (r, s)-type tensor field) of class C1 and
f is a vector field on M of class C1, then the Lie derivative LfT of T along
f is the (continuous) section of E defined as follows.

Let (U, x) be a coordinate chart, and let

T (q) = T i1,...,irj1,...,js
(q)

∂

∂xi1
⊗ . . .

∂

∂xir
⊗ dxj1 ⊗ . . . dxjs ∀q ∈ U ,

where: i)the multi-indexes i1, . . . , ir and j1, . . . , js range, respectively, over
all r-tuples and s-tuples of elements of {1, . . . , n}; ii)the real functions T i1,...,irj1,...,js

are of class C1; and iii)the summation convention is adopted. Then the Lie
derivative LfT is expressed on U by

LfT = W i1,...,ir
j1,...,js

∂

∂xi1
⊗ . . .

∂

∂xir
⊗ dxj1 ⊗ . . . dxjs , (A.7)

14We say that a vector field f belongs to ∆ if f(q) ∈ ∆q for every q ∈M .
15Extensions of these objects to the case when the involved functions are locally Lips-

chitz can be found in [41]
16This means that, for each q ∈M ,

Eq = TqM ⊗ · · · ⊗ TqM︸ ︷︷ ︸
r times

⊗T ∗
qM ⊗ · · · ⊗ T ∗

qM︸ ︷︷ ︸
s times
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where, for every value of the multi-indexes (i1, . . . , ir) and (j1, . . . , js), the
map W i1,...,ir

j1,...,js
: U → IR is defined by

W i1,...,ir
j1,...,js

.
= f c

∂T
i1...ir
j1...js

∂xc − ∂f i1
∂xc T

c...ir
j1...js

− . . .− ∂f ir

∂xc T
i1...ir−1c
j1...js

+

∂fc

∂xj1
T i1...irc...js

+ . . .+ ∂fc

∂xjs
T i1...irj1...js−1c

.

Definition A.5.2 (Lie bracket) If f and g are vector field of class C1,
the vector field [f, g] is defined as

[f, g]
.
= Lfg.

[f, g] is called the Lie bracket of f and g. In particular, in coordinates
(x1, . . . , xn) one has

[f, g]i =
∂gi

∂xrf r
− ∂f i

∂xrgr
.

We remind that the skew-symmetry of the Lie derivative, [f, g] = −[g, f ],
from which it follows idempotency: [f, f ] = 0 for all vector fields f of class
C1 (but see [41] for the Lipshcitz case). Let us also recall the Jacobi’s
identity, [f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0, valid for all triples f, g, h.

Let n be a positive integer, let M be a n-dimensional manifold, and let
U ⊂M be open. For every integer h such that 0 ≤ h ≤ n and every q ∈ U ,
let Λhq denote the space of skew-symmetric, h-linear forms, on (TqM)h. Let

Λh(U) be the (U -based) corresponding vector bundle, and, for every r = 0, 1
let us use

Ωh
r (U)

to denote the set of sections of Λh(U) that are of class Cr. Namely, Ωh
r (U)

is the set of h-forms on U that are of class Cr. In addition, we use

Ωh
0,1(U)

(
⊂ Ωh

0(U)
)

to denote the set of h-forms defined on U that are of class C0,1, also called
locally Lipschitz h-forms. In particular, Ω0

1(U) and Ω0
0,1(U) denote the set of

real functions defined on U that are, respectively, continuously differentiable
and locally Lipschitz.

Let us recall the definition of exterior derivative for a h-form of class C1.
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Definition A.5.3 (Exterior derivative) Let h be an integer such 0 ≤
h ≤ n−1, and let ω ∈ Ωh

1(U). The exterior derivative dω of ω is a h+1-form
of class C0 defined as follows: if

ω(q) =
∑
σ

cσ1,...,σhdx
i1 ∧ . . . dxih 17

is the local expression of ω on a coordinate chart (U ′, x), then

dω(q) =
∑
σ

n∑
r=1

∂ci1,...,ih
∂xr

dxr ∧ dxσ1 ∧ . . . dxσh , (A.8)

for all q ∈ U ′ .

A.5.2 Distributions and codistributions

For any finite subset {v1, . . . , vr} of a real vector space V , let us use span{v1, . . . , vr}
to denote the linear subspace generated by {v1, . . . , vr}.

Definition A.5.4 Let n, k be non-negative integers such that k ≤ n, and let
M be a n-dimensional manifold. By a k-dimensional distribution of class
C1 we mean a subset ∆ ⊆ TM such that, for every q̄ ∈M ,

i) ∆q̄
.
= ∆ ∩ Tq̄M is a linear subspace of Tq̄M of dimension k,

ii) there is a neighborhood U of q̄ and vector fields f1, . . . , fk of class C1,
defined on U verifying

∆q = span {f1(q), . . . , fk(q)}

for all q ∈ U . Any such set of vector fields is called a local frame of
class C1 for ∆.

Definition A.5.5 Let n, h be non-negative integers such that h ≤ n, and
let M be a n-dimensional manifold. By a h-dimensional codistribution of
class C1 we mean a subset Θ ⊆ T ∗M such that, for every q̄ ∈M ,

i) Θq̄
.
= ∆ ∩ T ∗

q̄M is a linear subspace of T ∗
q̄M of dimension h,

17Of course the coefficients cσ1,...,σh are functions of class Cr, and the summation is
performed over all strictly increasing h-tuples σ = (σ1, . . . , σh) with values in {1, . . . , n}.
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ii) there is a neighborhood U of q̄ and 1-forms ω1, . . . , ωh of class C1,
defined on U verifying

Θq = span
{
ω1(q), . . . , ωh(q)

}
for all q ∈ U . Any such set of 1-forms is called a local frame of class
C1 for Θ.

We shall be mainly concerned with distributions [resp. codistributions] of
class C0,1, which we also call Lipschitz distributions [resp. codistributions].

Definition A.5.6 If ∆ is a distribution on a manifold M , and f is a vector
field defined on a subset M ′ ⊆ M , we shall say that f belongs to ∆ if, for
every q ∈M ′, f(q) ∈ ∆q. In a similar way, we define the notion of a 1-form
belonging to a codistribution.

Definition A.5.7 Let M and ∆ as in Definition A.5.4. The (n − k)-
dimensional codistribution ∆t defined by

∆t
q = {ω ∈ T ∗M | ⟨ω, v⟩ = 0 ∀v ∈ ∆q} ∀q ∈M

is called the annihilating codistribution of ∆ .

Remark A.5.8 By the Implicit Function Theorem, a distribution ∆ is of
class C1 if and only if the codistribution ∆t is of class C1.

A.5.3 Involutivity, commutativity, and integrability

Definition A.5.9 (Involutivity of distributions) Let n, k be non-negative
integers such that k ≤ n, let M be a n-dimensional manifold, and let ∆ be
a k-dimensional distribution on M of class C1. We say that ∆ is involutive
if, for every pair of vector fields f and g (of class C1) belonging to ∆, one
has

[f, g](q) ∈ ∆q ∀q ∈M. (A.9)

Definition A.5.10 (Involutivity of families of vector fields) Let n be a non-
negative integer, and let M be a n-dimensional manifold. Let U ⊆M be an
open subset and let V be a family of vector fields of class C1 on U . We say
that V is involutive if, for every pair f, g ∈ V and every q ∈M , one has

[f, g](q) ∈ span{h(q) |h ∈ V}. (A.10)
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Let us give the notion of commutativity for vector fields.

Definition A.5.11 (Commutativity of vector fields) Let n be a non-negative
integer let M be a n-dimensional manifold. Let U ⊆ M be an open subset
and let f and g vector fields on U . We say that f and g commute if

[f, g](q) = {0} ∀q ∈ U . (A.11)

Finally, let us give the notion of integrability for distributions.

Definition A.5.12 (Integrability) Let n, k be non-negative integers such
that k ≤ n. Let ∆ be a k-dimensional distribution of class Cr (r ≥ 1) on a
n-dimensional manifold M (of class Cr+1). One says that ∆ is completely
integrable if for each ∈ M there exist a neighborhood U of q, open subsets
X ⊆ IRk, Y ⊆ IRn−k, and a coordinate chart (U, (x, y)) of class Cr verifying
(x, y)(U) = X × Y , such that

Tq̄

(
(x, y)−1

)
(X × {ȳ}) = ∆q̄,

for every q̄ ∈ U , where ȳ is such that (x, y)(q̄) = (x̄, ȳ), for a suitable x̄.
The sets (x, y)−1(X × {ȳ}) are called local leaves of ∆, and the family

of such leaves is sometimes referred as the foliation corresponding to ∆.

♢

Remark A.5.13 The Cr-regularity of the submanifolds (x, y)−1(X × {ȳ})
is guaranteed by the Implicit Function Theorem. (See [41] for the more
involved case of Lipschitz distributions).

♢

A.5.4 Frobenius Theorem

We are going to state Frobenius theorem in the form of three conditions,
each of which is equivalent to complete integrability. The first two of these
conditions involve vector fields and their Lie brackets. The third one deals
only with the forms spanning the annihilating distribution and their exterior
derivatives. Finally, the fourth one involves both forms and vector fields (and
the Lie derivative of the former along the latter).
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Theorem A.5.14 Let n, k be non-negative integers such that k ≤ n, and
let ∆ be a k-dimensional distribution of class Cr (r ≥ 1) on a n-dimensional
manifold M (of class Cr+1. Then the following conditions are equivalent:

1) ∆ is involutive.

2) For every q̄ ∈ M there exists an open neighborhood U ⊆ M of q̄ local
frame {g1, . . . , gk} of ∆ such that for every i, j = 1, . . . , k, gi and gj
commute, i.e., [gi, gj ] = 0 on U .

3) If U ⊆M and {ω1, . . . , ωn−k} are an open subset and a frame of ∆t on
U , respectively, then, for every α = 1, . . . , n− k and for every q ∈ U ,
one has

(dωα)(q) = θ1 ∧ ω1(q) + · · · + θn−k ∧ ωn−k(q),

for suitable one-forms θ1, . . . , θn−k.

4) If f is a vector field belonging to ∆ and ω is 1-form (of class Cr)
belonging to ∆t, then, for every q ∈M , one has

(Lfω)(q) ∈ ∆t(q) .

5) ∆ is completely integrable.

A non smooth extension of this Theorem can be found e.g. in [41].
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Appendix B

Lagrangian and Hamiltonian
type equations

The aim of this Appendix –which is formally disconnected from the remain-
ing part of these notes– is to recall some very basic facts on Lagrangian
and Hamiltonian equations. We do not even mean to give an ”introduc-
tion” to Lagrangian or Hamiltonian Mechanics. Of course there is plenty
of textbooks ant treatises, some of them quite celebrated. Rather, these
few pages might be regarded as a appetizer for much more substantial tools
of Mechanics, some of which are involved in the previous chapters. Every-
thing is here treated on Euclidean spaces, and no configuration manifolds
or their tangent and cotangent bundle show up. Still, the main focus lies on
coordinate-invariance.

B.1 Parametrized Fenchel-Legendre transforms

Let V be a finite-dimensional real vector space, and let V ∗ the dual space
of V , and let L : V → IR be a function.

The function L∗ : V ∗ → IR ∪ {+∞} defined by

L∗(p)
.
= sup

v∈IRn
{p · v − L(v)}

is called the Legendre-Fenchel transform of L. Being defined as the sup of
a family of linear functions L∗ is a convex map. If L is strictly convex then
L∗ is strictly convex as well. It is well-known that if L is lower bounded,
the map

(L∗)∗ : V → IR ∪ {+∞}

135
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is the convex envelope of L, that is

(L∗)∗ ≥ f ∀f : V → IR convex, f ≤ L

In particular, if L is lower bounded, (L∗)∗ is real valued, and L = (L∗)∗ is
and only if L is convex. Moreover, if

If Γ is a set and L : Γ × V → IR is a map, when there will be no danger
of confusion we shall use L∗ to denote the map Fenchel-Legendre transform
made with respect to the variable v ∈ V , namely

L∗(γ, p)
.
= sup

v∈IRn

{
p · v − L(λ, v)

}
.

Theorem B.1.1 Let L : V → IR be strictly convex and let us set H = L∗.
Then

i) For every p ∈ (IRn)∗, there is a unique v = vH(p) such that

H(p) = p · vH(p) − L(vH(p)).

Furthermore, if H(·) is differentiable at p, then

vH(p) =
∂H

∂p
(p) .

ii) For every v ∈ IRn, there is a unique p = pL(v) such that

L(v) = pL(v) · v −H(pL(v)).

Furthermore, if L(·) is differentiable at v, then

pL(v) =
∂L

∂v
(v) .

iii) Both pL and vH are bijective, and

vH = (pL)−1.

♢
Let I be an interval , let n a positive integer, and let O ⊂ IRn. L :

I × O × V → IR is a map, we shall use L∗ to denote the map Fenchel-
Legendre transform made with respect to the variable v ∈ V , namely

L∗(t, x, p)
.
= sup

v∈IRn

{
p · v − L(t, x, v)

}
.
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Moreover, setting H
.
= L∗, for every (t, x) ∈ I×O, we shall use vHt,x and pLt,x

to denote vH(t,x,·) and pL(t,x,·), respectively.
Hence, in view of Theorem B.1.1, for every (t, x) ∈ I ×O, one has

H(t, x, p) = p·vHt,x(p)−L(t, x, vHt,x(p)) L(t, x, v) = pL(t, x, v)·v−H(t, x, pL(v))

Furthermore, if H(t, x, ·) is differentiable at p, then

vHt,x(p) =
∂H

∂p
(t, x, p) ,

and if L(t, x, ·) is differentiable at v, then

pLt,x(v) =
∂L

∂v
(t, x, v) .

Theorem B.1.2 Let the map L be continuous and strictly convex in v. If
for every (t, v) the map x 7→ L(t, x, v) is differentiable, then for every (t, p)
the map x 7→ H(t, x, p) is differentiable as well, and

∂L

∂x
(t, x, v) = −∂H

∂x
(t, x, pLt,x(v)) ∀(t, x, v) ∈ IR× IRn × IRn.

A case interesting Mechanics is the one when there exist maps U =
U(t, x) and T = T (t, x, v) such that

L(t, x, v) = −U(t, x) + T (t, x, v), (B.1)

with v 7→ T (t, x, v) strictly convex for every (t, x). Then

H(t, x, p)
.
= L∗(t, x, p) = U(t, x) + T ∗(t, x, p).

In particular, if

T (t, x, v) =
1

2
vtG(t, x)v +A(t, x)v +

1

2
B(t, x),

where, for every (t, x), G(t, x) A(t, x), and B(t, x) are a n × n, positive
definite matrix, a 1 × n covector, and a positive real number, respectively,
then

H = U(t, x, v)+T ∗(t, x, p) = U(t, x, v)+
1

2
ptG−1p−AG−1pt+

1

2
AG−1At

From Theorem B.1.2 we obtain
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Corollary B.1.3 If G,A,B are differentiable in x, then (x 7→ G−1 is dif-
ferentiable as well, and)

∂L

∂x
(t, x, v) = −∂U

∂x
+

1

2
p
∂G−1

∂x
p− ∂AG−1

∂x
p+

1

2

∂AG−1At

∂x

for all (t, x, v) ∈ IR× IRn × IRn, where we have set p = pLt,x(v)

B.2 Lagrangian and Hamiltonian type equations

Let L = L(t, x, v), F = F (t, x, v) be maps defined on I × O × IRn, where
O is an open subset of IRn. Let us define the Lagrangian type equation
corresponding to the the Lagrangian L and the force F as the following
(implicit) second order ODE:

d

dt

∂L

∂v
(t, x, ẋ) =

∂L

∂x
(t, x, ẋ) + F (t, x, ẋ) (B.2)

If H = H(t, x, p) and F̌ = F̌ (t, x, p) are with domain equal to I × O ×
(IRn)∗ let us define the Hamiltonian type equation corresponding to the the
Hamiltonian L and the force F̌ as the first order ODE:

ẋ = ∂H
∂p (t, x, p)

ṗ = −∂H
∂x (t, x, p) + F̌ (t, x, p)

(B.3)

Remark B.2.1 Of course one needs that the derivatives involved in these
equations exist in order they can be well defined, though various general-
izations can be considered (see.e.g. [?], ...., and Remark ??). Moreover,
existence and uniqueness results on ODE’s can be applied at various levels
of generality. We shall discuss this aspect of the question later, and in the
following we shall assume sufficient regularity in order to retain a higher
clarity in establishing the relation between (B.2) and (B.3).

Using In to denote the n× n unit matrix, and setting

J
.
=

 0n Id

−In 0d


one can write the Hamiltonian type equation (B.3) as ẋ

ṗ

 = J · ∇H(t, q, p) +

 0

F̌ (t, x, p)

 , (B.4)
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where ∇H(t, q, p) denotes the phase-space gradient of H, that is, the column
vector whose entries are the partial derivatives with respect to (q1, . . . , qn, p1, . . . , pn).
The vector field

XH
.
=

 ∂H
∂p

−∂H
∂x

 = J · ∇H

is called the Hamiltonian vector field corresponding to H. Notice that XH

is in fact a vector field, possibly dependent on time.
The following result establishes the relationship between Lagrangian-

type and Hamilton-type equations, when the Lagrangian is strictly convex
(in v) and H = L∗.

Theorem B.2.2 Let L be function of class C2, strictly convex in v for every
(t, x) ∈ I ×O. Let F be a continuous map. Let J ⊂ I be a subinterval and
let x : J → O be a solution of (B.2) of class C2. If we define H and F̌ by
setting

H(t, x, p)
.
= L∗(t, x, p) F̌ (t, x, p)

.
= F (t, x, vLt,x(p)),

then H is of class C1 and the map

(x, p)(t)
.
=
(
x(t), pLt,x(t)(ẋ(t))

)
(B.5)

is a solution of (B.3).
Conversely, let H be a map of class C2. If (x, p) : J → O × IRn∗ is a

solution of class C1 of (B.3), then the map x(·) is in fact of class C2 and is
a solution of (B.2), with

L(t, x, v)
.
= H∗(t, x, p) F (t, x, p)

.
= F̌ (t, x, pHt,x(p)).

Proof. Let x : J → O a solution of (B.2) of class C2 and let us set
(x, p)(·) be the map defined in (B.5). By Theorem B.1.1 we obtain, for
every t ∈ J ,

p(t) =
∂L

∂v

(
t, x(t), ẋ(t)

)
, ẋ(t) = vHt,x(p(t)) =

∂H

∂p

(
t, x(t), p(t)

)
(B.6)

so that

∂L

∂x

(
t, x(t), ẋ(t)

)
+F (t, x(t), ẋ(t)) =

d

dt

(
∂L

∂v

(
t, x(t), ẋ(t)

))
= ṗ(t) ∀t ∈ J.

Therefore, by Theorem B.1.2 and the definition of F̌ , we obtain

ṗ(t) = −∂H
∂x

(
t, x(t), p(t)

)
+ F̌

(
t, x(t), p(t)

)
. (B.7)
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By (B.6) and (B.7), the first part of the theorem is proved.

Now let (x, p) : J → O × IRn∗ be a solution of class C1 of (B.3). Since
L∗ = (H∗)∗ = H, by Theorem B.1.1 we have, for every t ∈ J ,

ẋ =
∂H

∂p

(
t, x(t), p(t)

)
= vHt,x(t)(p(t)).

so that, in particular, x(·) is of class C2. In addition,

p(t) =
(
vLt,x(t)

)−1
(ẋ(t)) =

(
pLt,x(t)

)
(ẋ(t)) =

∂L

∂v

(
t, x(t), ẋ(t)

)
Hence, by Theorem B.1.2 and the definition of F̌ , we obtain

d
dt

(
∂L
∂v (t, x(t), ẋ(t))

)
= ṗ(t) = −∂H

∂x

(
t, x(t), p(t)

)
+ F̌ (t, x(t), p(t)) =

−∂L
∂x

(
t, x(t), p(t)

)
+ F (t, x(t), ẋ(t),

namely x(·) is a solution of (B.2).

B.2.1 Invariance by coordinates changes

A striking property of both Lagrangian type equations and Hamiltonian type
equations is that they are invariant with respect to changes of coordinates,
as it will be made precise in Theorem ??. In particular, this is essential
in Mechanics, e.g. when one derives the equations in the presence of ideal
constraints. Of course, this invariance says that there are intrinsic equa-
tions of which Lagrangian type equations and Hamiltonian type equations
are the coordinate expressions, and that these equations can be written on
manifolds. 1

Invariance for Lagrangian type equations

Let O′ ⊆ O be an open subset, and let y : J ×O → O′ be a time dependent
change of coordinates . More precisely, y is of class C2, and for every t, the
map y(t, ·) is a diffeomorphism with an inverse of class C2. In particular,

1An intrinsic approach is part of well established theories, respectively the geometry of
sprays and symplectic geometry. We refer the reader interested into an account of these
geometrical theories to the vast specialized literature.
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this implies that the Jacobian matrix ∂y
∂x(t, x) is non-singular at each x ∈ O.

Let us use x(t, ·) to denote the inverse of y(·, t)
Let L,F : I → O× IRn be continuous functions and let L be of class C2,

and, for all (t, y, w) ∈ J ×O′ × IRn, let us set

L̃(t, y, w)
.
= L

(
t, x(t, y),

∂x

∂y
· w
)
, F̃ (t, y, w)

.
=
∂x

∂y
· F
(
t, y,

∂x

∂y
· w
)
.

Proposition B.2.3 Let J ⊂ I be a subinterval and let x̂ : J → O be a
solution of the corresponding Lagrangian type equation

d

dt

∂L

∂v
(t, x, ẋ) =

∂L

∂x
(t, x, ẋ) + F (t, x, ẋ)

Then the map
ŷ : J → O′ ŷ(t)

.
= y(t, x̂(t))

verifies the Lagrangian type equation

d

dt

∂L̃

∂w
(t, y, ẏ) =

∂L̃

∂y
(t, y, ẏ) + F̃ (t, y, ẏ).

Proof. For every t ∈ J and for all r = 1, . . . , N , one has

d

dt

(
∂L̃

∂wr

)
=

d

dt

(
∂xs

∂yr
· ∂L
∂vs

)
=

∂xs

∂yr
· d
dt

(
∂L

∂vs

)
+

∂L

∂vs

(
∂2xs

∂t∂yr
+

∂2xs

∂yj∂yr
· ˙̂yj(t)

)
and

∂L̃

∂yr
=
∂xs

∂yr
· ∂L
∂xs

+
∂L

∂vs

(
∂2xs

∂t∂yr
+

∂2xs

∂yj∂yr
· ˙̂yj(t)

)
where we mean that functions of (t, x, v), (t, y, w), (t, x), and (t, y) are calcu-
lated in (t, x̂(t), ˙̂x(t)), (t, ŷ(t), ˙̂y(t)), (t, x̂(t)), and (t, ŷ(t)), respectively, and
we have used the relation ˙̂x(t) = ∂x

∂t + ∂x
∂yℓ

· ˙̂yℓ(t).
♢

Invariance for Hamiltonian type equations

An analogous result holds true for Hamiltonian type equations, even though
the new Hamiltonian is not merely the old one composed with the inverse
transformation x(·, y) (and theone induced on the adjoint variables). Here
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we shall give an ad hoc proof of this invariance. In order to better understand
this invariance — which finds its proper environment in the classical theory
of canonical and symplectic transformations— the interested reader can refer
to classical text-books.

Let O′ ⊂ O be an open subset and let y : I ×O → O′ a time-dependent
change coordinates with the same properties as the one considered above.
For every t ∈ I let x(t, ·) denote the inverse of y(t, x). Let H, F̌ : I →
O × (IRn)∗ be continuous functions and, in addition, let H be of class C1.

Define H̃ and ˜̌H by setting for all (t, y, π)I ×O × (IRn)∗

H̃(t, y, π)
.
= π · ∂y

∂t
(t, x(t, y)) +H

(
t , x(t, y) , π ·

(
∂y

∂x

)t

(x(t, y))

)
˜̌F (t, y, π)

.
=
∂x

∂y
(t, y) · F̌

(
t , x(t, y) , π ·

(
∂y

∂x

)t

(x(t, y))

)
Proposition B.2.4 Let J ⊂ I be a subinterval and let (x̂, p̂) : J → O ×
(IRn)∗ be a solution of the Hamiltonian type equations

ẋ = ∂H
∂p (t, x, p)

ṗ = −∂H
∂x (t, x, p) + F̌ (t, x, p)

(B.8)

Then the map (ŷ, π̂) : J → O′ × (IRn)∗ defined by(
ŷ(t), π̂(t)

)
.
=

(
y(t, x̂(t)) , p̂(t) ·

(
∂x

∂y

)t

(t, ŷ(t))

)
verifies the Hamilton type equation

ẏ = ∂H̃
∂π (t, y, π)

π̇ = −∂H̃
∂y (t, y, π) + ˜̌F (t, y, π) ,

We shall derive this Proposition B.2.4 from a more general result , namely
Corollary B.2.1 below. Let us recall the notion of symplectic transformation:
a differentiable map (y, π) = (y(x, p), π(x, p) from O × IRn onto O′ × IRn is
called symplectic if, for every (x, p) ∈ O × IRn, one has

∂(y, π)

∂(x, p)
J

(
∂(y, π)

∂(x, p)

)t

= J
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Lemma B.2.5 If the map (y, π) = (y(x, p), π(x, p) is symplectic then for
every differentiable map H = H(t, x, p) one has

XH̃ =
∂(y, π)

∂(x, p)
·XH

where

H̃(t, y, π) = H

(
t, x(y, π),

(
∂(y, π)

∂(x, p)

)t

· π

)

(Of course, the matrix
(
∂(y,π)
∂(x,p)

)t
is calculated at (x, p) = (x(y, π), p(y, π)).)

Proof. Let the transformation (x, p) 7→ (y, π) be symplectic. Then

XH̃ = J · ∇H̃ = J ·
(
∂(y,π)
∂(x,y)

)t
· ∇H = ∂(x,p)

∂(y,π) · J · ∇H = ∂(x,p)
∂(y,π) ·XH

Remark B.2.6 The converse of the implication in Lemma B.2.5 holds true
as well.

Corollary B.2.7 Let A,A′ ⊆ IRn× (IRn)∗ be open subsets, let I ⊂ IR be an
interval, and let A ∋ (x, p) 7→ (y, π) ∈ A′ be a symplectic map. For given H
and F̌ defined on A , a map (x̂, p̂) : I → A is a solution of the Hamiltonian
type equations  ẋ

ṗ

 = XH(t, x, p) +

 0

F̌ (t, x, p)

 , (B.9)

if and only if the map (ŷ, π̂) : I → A′ defined by(
ŷ(t), π̂(t)

)
.
=
(
y
(
x̂(t), p̂(t)

)
, π
(
x̂(t), p̂(t)

))
verifies the Hamilton type equation ẏ

π̇

 = XH̃(t,y,π) +

 0(
∂x
∂y

)t
F̌ (t, x(y, π), p(y, π))

 , (B.10)

Proof of Proposition B.2.4 We begin we the case when the coordi-
nate transformation is time-independent, so that we shall write y(x) (and
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x(y) for its inverse). In view of Corollary it is sufficient to show that the
transformation

(x, p) 7→
(
y(x),

(
∂x

∂y

)t

· p
)

is symplectic. This means we have to check that
∂y
∂x 0n(

∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
ji

(
∂x
∂y

)t
 · J ·


∂y
∂x

(
∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
ij

0n

(
∂x
∂y

)t
 = J.

(B.11)
Indeed

∂y
∂x 0n(

∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
ji

(
∂x
∂y

)t
 · J ·


∂y
∂x

(
∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
ij

0n

(
∂x
∂y

)t
 =

 0n
∂y
∂x

−
(
∂x
∂y

) (
∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
ij

 ·


∂y
∂x

(
∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
ij

0n

(
∂x
∂y

)t


So (B.11) is verified as soon as

−
(
∂xi

∂yk

)
·
(

∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
+

(
∂2xℓ

∂yj∂yr
∂yr

∂xi
pℓ

)
·
(
∂xi

∂yk

)t

= 0

for all j, k = 1, . . . , n. This is straightforward, so the proof of the time-
independent case is concluded.

In order to prove the Proposition in the general case, let us set (x0, x),
and let (p0, p) denote the general variables of IR1+n and (IR1+n)∗, respec-
tively and let us consider the Hamiltonian H ′ : (I × O) × (IR1+n)∗ → IR
defined by

H ′(x0, x, p0, p) = p0 +H(x0, x, p)

, and let us observe that if (x̂(·), p̂(·)) is a solution of (B.8) then, setting

x0(t)
.
= t p0(t) = −

∫ t

t̄

∂H

∂s
(s, x̂(s), p̂(s))ds
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, the map (x̂0, x̂, p̂0, p̂)(t) solves the Hamiltonian type equation

ẋ0 = ∂H′

∂p0

ẋ = ∂H′

∂p

ṗ0 = −∂H′

∂x0

ṗ = −∂H′

∂x + F̌

(B.12)

B.3 Newton’s equations as Lagrangian and Hamil-
tonian type equations

In this section we write Newton equation in two equivalent forms, which we
call Lagrangian and Hamiltonian, respectively. This might appear pointless
and unnecessarily obscure, especially when we will use the Legendre-Fenchel
transform to obtain the Hamiltonian form. Indeed the two forms of Newton
equations differ just in the fact that in the Lagrangian form we use velocities,
and in the Hamiltonian form we use momenta, namely the velocities multi-
plied by the corresponding masses. Actually this section has essentially the
pedagogical goal of showing that the trivial of substituting velocities with
velocities-times-masses is nothing the simplest instance of the process that
in a more abstract context allows one to pass from the Lagrangian approach
to the Hamiltonian one.

B.3.1 Newton’s equations

Let us consider a finite number of mass-points {P1, . . . , PN} of massm1, . . . ,mN ,
respectively. For every S = 1, . . . , N let xS = (x1S , x

2
S , x

3
S) ∈ IR3 be the coor-

dinates of PS with respect to a given inertial frame. So, when no constraints
are acting on the system, the state space is the vector space (IR3)N , which
we identify with IR3N by setting

(x1, x2, x3, x4, . . . , x3N−1, x3N )t
.
= (x11, x

2
1, x

3
1, . . . , x

2
N , x

3
N )t ,

where the apex |dag denotes transposition. (We regard the elements of IR3N

as column vectors.) Similarly, if {V1, . . . , VN} are the velocities of the points
{P1, . . . , PN} and for every S let (v1S , v

2
S , v

3
S) are the component of VS , we

set
(v1, v2, v3, v4, . . . , v3N−1, v3N )t

.
= (v11, v

2
1, v

3
1, . . . , v

2
N , v

3
N )t .
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Let us consider the 3N × 3N inertial matrix

G
.
=



m1 0 0
0 m1 0
0 0 m1

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
mN 0 0
0 mN 0
0 0 mN


which allows us to define the kinetic energy T : IR3N → IR as the positive
definite quadratic form

T (v) =
1

2
vtGv =

1

2

N∑
S=1

(
mS((v1S)2 + ((v2S)2 + ((v3S)2

)
For each S = 1, . . . , N , and every (t, x, v) ∈ IR× IR3N × IR3N , let

F̃S(t, x, v) = (F̃ 1
S , F̃

2
S , F̃

3
S)(t, x, v)

denote the force acting on the mass-point PS at time t when the system is
in the configuration x with velocity v. Let us set

F̃ = (F̃1, . . . , F̃N ).

Component-wise, we have

F̃ = (F̃ 1, . . . , F̃ 3N )t : IR× IR3N × IR3N → IR3N × IR3N ,

where
F̃ 3(S−1)+k .

= F̃ kS

for all S = 1, . . . , N , k = 1, 2, 3. For every (t, x, v) ∈ IR×IR3N×IR3N , we call
F(t, x, v) force acting at time t on the system when this has configuration x
and velocity v.

According to Newton’s second law the evolutions of the points PS verify
the second order evolution equations

mS ẍS = FS(t, x, v) SS = 1, . . . , N , (B.13)

which can be written as first order equations in the following form:
ẋS = vS

v̇S = FS
mS

(t, x, v) SS = 1, . . . , N ,
(B.14)
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Equations (B.13) and (B.14) can be rewritten as

Gẍ = F̃(t, x, ẋ). (B.15)

and  ẋ

v̇

 =

 v

G−1F̃(t, x, v)

 , (B.16)

respectively.
Of course existence and uniqueness properties for equation (B.16) —or,

equivalently, (B.15)—depend the assumptions made on F. For instance, if F
is continuous in t and locally Lipschitz with respect to (x, v), uniformly with
respect to t, then local existence and uniqueness of a solution to a Cauchy
problem is guaranteed. Global solutions exist in the presence of growth
assumptions —e.g. sublinearity in (x, v) — or geometrical assumptions —
e.g. Nagumo’s conditions. It is also possible to relax the assumption on the
regularity in t by allowing to be merely measurable in t, as in the classical
Caratheodory’s conditions.

B.3.2 Newton’s equations as Lagrangian type equations

Let U : IR× IR3N → IR be a differentiable real function defined on IR3N and
let F : IR× IR3N × IR3N → IR3N be a force such that

F̃(t, x, v) = −∂U
∂q

(t, x) + F(t,x,v).

U = U(t, x) is called a potential acting on the system, and we use −∂U
∂q to

denote its gradient with respect to x. Of course there exist infinitely many
such decompositions, the more significative being suggested by the physical
model. The extreme cases occur when U is identically equal to a constant,
—that is, ∂U

∂q (t, x) = 0 — or, conversely, when F̃(t, x, v) = 0. In the latter

case, if, in addition, U is time-independent, F̃ is called a conservative force
and U is the potential of F̃

The Lagrangian L associated with the potential U (and the matrix G) is
defined by

LL(t, x, v)
.
= −U(t, x, v) + T (v), (B.17)

By means of the Lagrangian L one can write Newton’s equation (B.15) as
a Lagrangian type equations:

d

dt

(
∂L

∂v

)
− ∂L

∂x
= F. (B.18)
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The corresponding Lagrangian first order system is given by dx
dt

d
dt
∂L
∂v

 =

 G−1 · ∂L∂v

−∂L
∂x

+

 0

F

 (B.19)

Of course, system (B.19) can be made explicit in the variable v as well,
by simply using the relation v = G−1 ∂L

∂v . Indeed this implies implies dv
dt =

G−1 d
dt
∂L
∂v , so that (B.19) reduces to ẋ

v̇

 =

 G−1 · ∂L∂v

−G−1 · ∂L∂x

+

 0

G−1 · F


which, of course, coincides with (B.16).

B.3.3 Newton’s equations in Hamiltonian form

If we consider the momenta

pS
.
= mSvS ß + 1, . . . , N ,

then Newton’s equations of motion can be written as follows:
ẋS = pS

mS

ṗS = F̌S(t, x, p),

where we have set p = (p1, . . . , p3N ), with

p3S+j
.
= mSv

3S+j S = 1, . . . , N, j = 0, 1, 2,

and
F̌S(t, x, p)

.
= FS(t, s,

p1
m1

, . . . ,
p3N
mN

.

In other words, one introduce s the linear isomorphism

p = vtG

from IR3N onto its dual space (IR3N )∗ , so that Newton’equation is reduced
to the first order differential system ẋ

ṗ

 =

 G−1p

F(t, x,G−1p)

 (B.20)

Let us observe that
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• these equations are Hamiltonian type equations with

H(t, x, p)
.
= U(t, x) +

1

2
pG−1p

t F̌ (t, x, p)
.
= F(t, x, pG−1) (B.21)

• In fact, equations (B.20)are exactly the Hamiltonian type equations
corresponding to the Newton’s equation in the Lagrangian type form
(B.18) as described in Theorem B.2.2.

Indeed, as observed in Subsection B.1, if L and H are defined as in ??
and B.21 one has

H = L∗
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and H.J. Sussmann eds. Birkhäuser, Boston Inc. (1983), 1-115.



156 BIBLIOGRAPHY

[61] J. L. Synge and A. Schild, Tensor Calculus, Dover Publications, New
York, 1978.

[62] R. B. Vinter and F. Pereira, A Maximum Principle for Optimal Pro-
cesses with Discontinuous Trajectories, SIAM J. Control and Optim.,
26, (1988), 205-229.

[63] P. Wolenski and S. Zabic, A sampling method and approximation results
for impulsive systems, SIAM Journal on Control and Optimization,
Volume 46, Issue 3, 2007, 983-998.


