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Before speaking of analysis, control, and geometry,

let us begin with

SOME EXAMPLES of MECHANICAL SYSTEMS:

Franco Rampazzo, Università di Padova Control and Mechanics



Before speaking of analysis, control, and geometry,
let us begin with

SOME EXAMPLES of MECHANICAL SYSTEMS:
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THREE C EXAMPLES:

(C stands for centrifugal)
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(1C) The angle as control

Franco Rampazzo, Università di Padova Control and Mechanics



(2C) The pendulum with oscillating pivot
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(3C) The ”Roller Racer”
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(The Roller Racer is a well-known toy):
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what is shared by these mechanical systems?

...in each of
them, motion can be generated by oscillations of a part...
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NC EXAMPLES:

( NC stands for non centrifugal)
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(1NC) The pendulum with length as control

Figure: Length as control
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(2NC) The pendulum with a second pendulum as
control

Figure: Second pendulum as controlFranco Rampazzo, Università di Padova Control and Mechanics



OBSERVE: in the former two examples the control can be
thought as ”shape” of the whole system.

More generally:
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Franco Rampazzo, Università di Padova Control and Mechanics



(3NC)”Shape” as control

A rigid movement
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A rigid movement (the shape u is unchanged)
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Change of shape
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Change of shape
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Change of shape (i.e. change of u)
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what is shared
by the last three mechanical systems?

...in each of them,
motion cannot be generated by oscillations of a part...
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THE GENERAL QUESTION. Investigate
analysis and geometry related to the following
program:

Consider a (N + M)-dimensional mechanical system and
let Q be the (N + M)-dimensional configuration manifold,
locally parameterized by

q = (q1, . . . , qN , qN+1, . . . , qN+M)

Assign the ”control”

u(t) = (u1, . . . , uM) ≡ (qN+1(t), . . . , qN+M(t))

(i.e. give the evolution of the last M coordinates)

PROBLEM:

What can be said on the whole motion q = q(t) ?
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Standard goals:

Optimization
Controllability
Stabilizability
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Optimization Very interesting and much investigated, but almost
skipped in this presentation.
Controllability
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Standard goals:

Optimization Very interesting and much investigated, but almost
skipped in this presentation.
Controllability Somehow related to both Optimization and
Stabilizability.
Stabilizability The main object of this presentation.
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Standard goals:

Optimization ...
Optimization has been investigated mostly for NC
(=non-centrifugal) systems. Actually being ”non-centrifugal”
translates in ”slow growth” of the functional.⇒ impulses and Lie
bracket phenomena.

It will be not treated here.
Stabilizability

Actually, the main focus in this talk will be

Vibrational Stabilizability
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NOTICE:

In the conventional applications of Control Theory to Mechanics
controls are forces (or powers)

.

Instead

here
controls coincide with some of the coordinates:

u(t) = (qN+1, . . . , qN+M)(t)

(Which is a local way of imposing moving constraints as controls.)
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The abstract framework:

Figure: The foliation {u = cost}

Given the projection control u = u(t)
(

= (q2, q3)(t)
)

, we aim

to analyze the whole motion q(t)
(

= (q1, q2, q3)(t)
)
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2-dimensional controls, 1-dimensional leaves
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Rapidly oscillating controls. E.g. u = ε sin(t/ε)ū

Let us consider

THREE CASES when RAPID OSCILLATIONS OF
THE CONTROL-COORDINATES

PRODUCE a ”FORCE”

NOW GUESS:

Which of the previous examples do the job?
The C(=centrifugal) systems
or
the NC (=non-centrifugal) systems?
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(1C) The angle as control

Figure: Oscillations of the angle do generate a (centrifugal!) force on the
sliding ring
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(2 C) The pendulum with oscillating pivot

Figure: Oscillations of the pivot do stabilize the unstable equilibrium
(Kapiza pendulum). This means that they do generate forces
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(3C) The ”Roller Racer”

Figure: Oscillations of handlebar generate forward motion
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YES,

in the above three examples,
oscillations are force-generating.
Notice that we have called them C(=centrifugal)
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IMPORTANT ANTICIPATION

• Example 1 (angle as control) and Example 2 (inverted
pendulum) are similar: in both case a certain curvature term has
the right sign.
This can be regarded as the Riemannian geometric
origin of what is usually called centrifugal force.

• Example 3 (the Roller Racer) is different from the previous ones:
the ”centrifugal effect” is due to interaction
between Riemannian structure and the imposed
non-holonomic constraint.

(In both case by ”Riemannian structure” we mean the one the
configuration manifold inherits from the Kinetic Energy)
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So in a centrifugal system oscillations generate forces...

QUESTION: Is it true that in NC(=non-centrifugal) systems
”oscillations DO NOT generate forces”?

Let us give one more look to what we have called NC(=non-centrifugal)

systems:
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(1NC) The pendulum with length as control

Figure: In fact: it is almost insensitive to small oscillation of length
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(2NC) The pendulum with a second pendulum as
control

Figure: Again: the first pendulum almost insensitive to small oscillation
of the second pendulum
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(3NC)”Shape” as control

Change of shape (i.e. change of u)
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(3NC)”Shape” as control

Also in this case, the body is almost
insensitive to small rapid oscillation of the control (=the shape)
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So, in the case of NC(=non centrifugal) systems, small rapid
oscillation of the control-coordinate

”DO NOT PRODUCE FORCES ”

QUESTION:Is there some crucial geometric-analytical reason for
this behavior’s discrepancy between these two classes (centrifugal
and non centrifugal) of systems?

Franco Rampazzo, Università di Padova Control and Mechanics



So,

in the case of NC(=non centrifugal) systems, small rapid
oscillation of the control-coordinate

”DO NOT PRODUCE FORCES ”

QUESTION:Is there some crucial geometric-analytical reason for
this behavior’s discrepancy between these two classes (centrifugal
and non centrifugal) of systems?
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Let us forget mechanics for a while

and let us consider
a particular class of control systems:
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ODE’s depending quadratically on the control derivative u̇

ẋ = f (x , u) +
m∑
α=1

gα(x , u)u̇α +
m∑

α,β=1

hαβ(x , u)u̇αu̇β

Notice: the actual ”controls” are the derivatives u̇α
We can even neglect the dependence on u just by adding variables

xn+α = uα

so obtaining

ẋ = f (x) +
m∑
α

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

(where

x
.

= (x , u), f
.

= (f , 0), gα
.

= (gα, eα), hα,β
.

= (hα,β, 0) )
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ẋ = f (x , u) +
m∑
α=1

gα(x , u)u̇α +
m∑

α,β=1

hαβ(x , u)u̇αu̇β

Notice: the actual ”controls” are the derivatives u̇α

We can even neglect the dependence on u just by adding variables

xn+α = uα

so obtaining
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Flashforward to Mechanics:

The reason why we are interested in this class of control systems is
simple:

If we set

(q1, . . . , qN , p1, . . . , pn) = x

in the mechanical examples above, we obtain control
equations of the form

ẋ = f (x) +
m∑
α=1

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

In view of mechanical applications, we distinguish between:

The affine case : hαβ = 0 .... (non-centrifugal...)

The general case : hαβ 6= 0 ... (centrifugal...)
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The general, quadratic, case

ẋ = f (x) +
m∑
α

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

WE ARE INTERESTED IN USING THE QUADRATIC PART FOR
STABILIZABILITY
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STABILIZABILITY

The control system

(Eq) ẋ = f (x) +
m∑
α

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

is
stabilizable at x̄ ∈ RI n

if,
∀ε > 0 ∃δ > 0 such that : ∀ x̂ ∈ B(x̄ , δ) there exists a
piecewise smooth control function t 7→ u(t) = (u1, . . . , um)(t)
such that

x(t, u) ∈ B(x̄ , ε) ∀t ≥ 0

If, in addition,
lim
t→∞

x(t, u) = x̄

(Eq) is called
asymptoticly stabilizable at x̄ .
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The differential inclusion

The control system

(Eq) ẋ = f (x) +
m∑
α=1

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

can be associated with the following convexified DIFFERENTIAL
INCLUSION:

dx

dt
∈ F(x) ,

where

F(x)
.

= co
{

f (x)+
m∑
α=1

gα(x)wα+
m∑

α,β=1

hαβ(x)wαwβ ; (w1, . . . ,wm) ∈ RI m
}
.
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THE ”SYMMETRIZED DIFFERENTIAL INCLUSION”

A further differential inclusion can be considered, having in mind
u-oscillations:

dx

dt
∈ G(x)

where

G(x)
.

= co
{

f (x) +
m∑

α,β=1

hαβ(x)wαwβ (w1, . . . ,wm) ∈ RI m
}

Notice that

G(x) is the differential inclusion associated with

(Eq) ẋ = f (x) +
m∑

α,β=1

hαβ(x)u̇αu̇β

where there is no u̇-linear term;

G(x) ⊂ F(x) (this is elementary but not completely trivial)
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(Eq) ẋ = f (x) +
m∑

α,β=1

hαβ(x)u̇αu̇β

where there is no u̇-linear term;

G(x) ⊂ F(x) (this is elementary but not completely trivial)
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(Eq) ẋ = f (x) +
m∑

α,β=1

hαβ(x)u̇αu̇β

where

there is no u̇-linear term;

G(x) ⊂ F(x) (this is elementary but not completely trivial)
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Weak Lyapunov functions for differential inclusions

Definition. A scalar function V is a weak Lyapunov function
for the set-valued vector field F if :

V is continuous on N , and continuously differentiable on
N \ {x̄}.
V (x̄) = 0 while V (x) > 0 for all x 6= x̄ .

For each δ > 0 sufficiently small, the sublevel set
{x ; V (x) ≤ δ} is compact.

At each x 6= x̄ one has

inf
y∈F (x)

DV (x) · y ≤ 0 .
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Franco Rampazzo, Università di Padova Control and Mechanics



Weak Lyapunov functions for differential inclusions

Definition. A scalar function V is a weak Lyapunov function
for the set-valued vector field F if :

V is continuous on N , and continuously differentiable on
N \ {x̄}.
V (x̄) = 0 while V (x) > 0 for all x 6= x̄ .

For each δ > 0 sufficiently small, the sublevel set
{x ; V (x) ≤ δ} is compact.

At each x 6= x̄ one has

inf
y∈F (x)

DV (x) · y ≤ 0 .
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Weak Lyapunov functions for differential inclusions

Figure: infy∈F(x) DV (x) · y ≤ 0
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Theorem

Assume that the differential inclusion

dx

ds
∈ F(x)

admits a weak Lyapunov function V = V (x) defined on a
neighborhood N at x̄ .
Then the control system

ẋ = f (x) +
m∑
α=1

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

can be stabilized at x̄ .
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ẋ = f (x) +
m∑
α=1

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

can be stabilized at x̄ .
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Corollary.

Assume that the
”simmetrized” differential inclusion

dx

ds
∈ G(x)

admits a weak Lyapunov function V = V (x) defined on a
neighborhood N at x̄ .
Then the control system

ẋ = f (x) +
m∑
α

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

can be stabilized at x̄ .
Proof of the Corollary:
G(x) ⊂ F(x), so

inf
y∈F(x)

DV (x) · y ≤ inf
y∈G(x)

DV (x) · y ≤ 0 .
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It is intuitive that the symmetrized differential inclusion

dx

dt
∈ G(x)

has something to do with ”vibrational controls”.

Indeed G(x) is the convexification of

ẋ = f (x) +
m∑

α,β=1

hαβ(x)u̇αu̇β

while F(x) is the convexification of

ẋ = f (x) +
m∑
α=1

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

( MORAL: Rapid oscillations of u cancel out the u̇-linear
term.)
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A main technical device: reparameterization

NOTICE:

The above differential inclusions have unbounded values, i.e.
F(x) is unbounded at each x . To overcome this difficulty, one exploits
L2-reparameterizations. For a control u ∈W 1,2 consider a new time
parameter

σ(t)
.

=

∫ t

0
(1 + |u̇|2)dτ

T + ‖u̇‖2
2

and set

φ0(s) = t(s)
.

= σ−1(s) v 2
0
.

=
dt

ds

φα(s)
.

= uα(t(s)) α = 1 . . . ,m, vα
.

=
φα
ds

Setting y(s) = x(t(s)), the original control system

ẋ = f (x) +
m∑
α=1

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇αu̇β

is turned into the reparameterized system

dy

ds
= f (y)v 2

0 +
m∑
α=1

gα(y)v0vα +
m∑

α,β=1

hα,β(y)vαvβ
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Franco Rampazzo, Università di Padova Control and Mechanics



A main technical device: reparameterization

NOTICE: The above differential inclusions have unbounded values, i.e.
F(x) is unbounded at each x . To overcome this difficulty, one exploits
L2-reparameterizations. For a control u ∈W 1,2 consider a new time
parameter

σ(t)
.

=

∫ t

0
(1 + |u̇|2)dτ

T + ‖u̇‖2
2

and set

φ0(s) = t(s)
.

= σ−1(s) v 2
0
.

=
dt

ds

φα(s)
.

= uα(t(s)) α = 1 . . . ,m, vα
.

=
φα
ds

Setting y(s) = x(t(s)), the original control system
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Franco Rampazzo, Università di Padova Control and Mechanics



Correspondingly, one has the
REPARAMETERIZED DIFFERENTIAL INCLUSION:

dy

ds
∈ F(y)

F(y)
.

= co
{

f (y)v 2
0 +

m∑
α=1

gα(y)v0vα +
m∑

α,β=1

hα,β(y)vαvβ;

v0 ∈ [0, 1], v 2
0 + · · ·+ v 2

m = 1
}
.

which has bounded values
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BACK TO MECHANICS

assigning the control u = u(t) is nothing but adding the
new time-dependent ”constraint”
u = u(t)... to the original system.
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The Kinetic Energy

T = T [(q, u)(q̇, u̇)]

is a quadratic form in (q̇, u̇),

i.e. , it is a Riemannian metric on
the configuration manifold:

T = (q̇, u̇) · A · (q̇, u̇)t A = (ar ,s)r ,s=1,...,N+M

(A is the so-called kinetic matrix)
The Hamiltonian is nothing but its Legendre transform:

H[(q, u)(p, π)]
.

= T ∗

In particular H is quadratic in the momenta (p, π)

H = (p, π)A−1(p, π)t A−1 = (ar ,s)r ,s=1,...,N+M
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Franco Rampazzo, Università di Padova Control and Mechanics



The Kinetic Energy

T = T [(q, u)(q̇, u̇)]

is a quadratic form in (q̇, u̇),i.e. , it is a Riemannian metric on
the configuration manifold:

T = (q̇, u̇) · A · (q̇, u̇)t A = (ar ,s)r ,s=1,...,N+M

(A is the so-called kinetic matrix)

The Hamiltonian is nothing but its Legendre transform:

H[(q, u)(p, π)]
.

= T ∗

In particular H is quadratic in the momenta (p, π)

H = (p, π)A−1(p, π)t A−1 = (ar ,s)r ,s=1,...,N+M
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Franco Rampazzo, Università di Padova Control and Mechanics



The Kinetic Energy

T = T [(q, u)(q̇, u̇)]

is a quadratic form in (q̇, u̇),i.e. , it is a Riemannian metric on
the configuration manifold:

T = (q̇, u̇) · A · (q̇, u̇)t A = (ar ,s)r ,s=1,...,N+M

(A is the so-called kinetic matrix)
The Hamiltonian is nothing but its Legendre transform:

H[(q, u)(p, π)]
.

= T ∗

In particular H is quadratic in the momenta (p, π)

H = (p, π)A−1(p, π)t A−1 = (ar ,s)r ,s=1,...,N+M
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The Hamiltonian equations of motion before the
imposition of the constraint-control (i.e.. the
control) u = u(t)



q̇i = ∂H
∂pi

u̇α = ∂H
∂πα

ṗi = −∂H
∂qi

+ Fi

π̇α = − ∂H
∂uα

+ Fuα

Now: there is an isomorphism between the momentum (p, π) and
the velocity (q̇, u̇). By partially inverting this isomorphism we
obtain
π as a linear combination of (p, u̇).
Therefore, we get the control equations for (q, p):
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ṗi = −∂H
∂qi

+ Fi

π̇α = − ∂H
∂uα

+ Fuα

Now there is an isomorphism between the momentum (p, π) and
the velocity (q̇, u̇). By partially inverting this isomorphism we
obtain
π as a linear combination of (p, u̇).
Therefore, we get the control equations for (q, p):
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The equations of motion after the imposition of the
constraint (=control) u = u(t) :

 q̇

ṗ

 =

f (q, p, u)︷ ︸︸ ︷ 0

F u(·)

+ φ+
∑m
α=1 gαu̇α +

∑M
α,β=1 hα,β u̇αu̇β

with suitable vector fields f (q, p, u), gα(q, p, u), hα,β(q, p, u)
determined by the Kinetic Energy and the applied forces.

Notice: Setting x = (q, p) the equations take the same form as
the control equations we have considered above, namely

ẋ = f (x) +
M∑
α=1

gα(x)u̇α +
M∑

α,β=1

hαβ(x)u̇αu̇β
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The origin of the quadratic term:

 q̇

ṗ

 =

 0

F u(·)

+ φ+
M∑
α=1

gαu̇α +
M∑

α,β=1

hα,β u̇αu̇β

hα,β =



0
.
0

∂eα,β
∂q1

.
∂eα,β
∂qN


where

E =

 e11, . . . , e1M

. . .
eM1, . . . , eMM

 .
=

 aN+1,N+1, . . . , aN+1,N+M

. . .
aN+M,1, . . . , aN+M,N+M

−1
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Remark:

The quadratic part hα,β u̇αu̇β is zero

IF AND ONLY IF
the matrix

E =

 e11, . . . , e1M

. . .
eM1, . . . , eMM

 =

 aN+1,N+1, . . . , aN+1,N+M

. . .
aN+M,1, . . . , aN+M,N+M

−1

does not depend on q.
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Stabilizability of mechanical systems

Let us assume that the force F acting on the system is
conservative, and let U = U(q, u) be a potential of F .

Theorem. Let us fix ū, and let us assume that there exist positive
real coefficients λ1, . . . , λk verifying

∑k
r=1 λr = 1, and vectors

w1, . . . ,ws such that the effective potential

Û(q)
.

= U(ū, q)− 1

2

k∑
r=1

λr

m∑
α,β=1

eα,β(q, ū)wα
r wβ

r

has a strict minimum at q = q̄.

Then,the control mechanical system can be stabilized to (q̄, ū).

(Observe incidentally: q̄ might well be an unstable equilibrium.)
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Theorem. Let us fix ū, and let us assume that there exist positive
real coefficients λ1, . . . , λk verifying

∑k
r=1 λr = 1, and vectors

w1, . . . ,ws such that the effective potential
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Idea of the proof: the choice of the λr ,wr selects from the
corresponding symmetrized differential inclusion ẋ ∈ G
a conservative mechanical system with potential energy equal
to Û = U(ū, q)− 1

2

∑k
r=1 λr

∑m
α,β=1 eα,β(q, ū)wα

r wβ
r

OBSERVE :If q̄ is unstable for the frozen control u = ū, a
necessary condition for making x̄ stable with rapid
oscillations of u is that
the matrix eα,β be q-dependent.
(That is, the quadratic term hα,β does not vanish.)
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Pendulum with moving pivot


q̇ = p + (sin q)u̇

ṗ = −∂U
∂q − p cos qu̇ − (sin q cos q)(u̇)2 ,

where U(q, c)
.

= cos q.
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The kinetic matrix:

A =

 1 − sin q

− sin q 2


...so that the 1× 1 matrix E is

E = e11 = 1 + cos2 q

Notice: The necessary condition (i.e. ”E depends on q”) is
verified; Moreover: the effective potential

U{1}{w} = cos q − 1

2
(1 + (cos q)2)w 2.

has a minimum at q = 0 as soon as w 2 ≥ 1. Therefore: The
system is vibrationally stabilizable at 0.
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In order to give the answer one
needs not even know the equation of motion...
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Indeed the kinetic matrix is

A =

 u2 0

0 1

 ,

so that
the 1× 1 matrix E is equal to 1...
In particular,
E is independent of q !
i.e. the necessary condition for vibrational stabilizability is
not satisfied

in other words the control equations are AFFINE in u̇.

.
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The affine case

ẋ = f(x) +
m∑
α=1

gα(x)u̇α

(hα,β = 0)

These systems are called ”impulsive”, because one might
want to implement discontinuous controls u. (This is natural in
optimal control problems like

minimize ψ(x(T)),

because minimizing sequences un could exist with larger and larger

derivatives u̇n)

FACTS:

(i) A distributional approach does not work.

(ii) A robust definition of solution can be given by a density
argument (on the graphs)

(iii) Such a definition allows for jumps of u.
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ẋ = f(x) +
m∑
α=1

gα(x)u̇α

(hα,β = 0) These systems are called ”impulsive”, because one might
want to implement discontinuous controls u. (This is natural in
optimal control problems like

minimize ψ(x(T)),

because minimizing sequences un could exist with larger and larger

derivatives u̇n)

FACTS:

(i) A distributional approach does not work.

(ii) A robust definition of solution can be given by a density
argument (on the graphs)

(iii) Such a definition allows for jumps of u.
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There is a lot of work done on affine systems, dealing strongly with
NON-COMMUTATIVITY OF VECTOR FIELDS g1, . . . , gm. (i.e.
[gα, gβ] 6= 0).

A partial list of authors on the subject:
H. Sussmann, A. Bressan, A.Bressan-F.Rampazzo, M.Motta- F.

Rampazzo, B. Miller, Dal Maso-F. Rampazzo, C. Sartori-F. Rampazzo, J.

Dorroh-G.Ferreyra, A. Sarychev, R. Vinter-G. Silva, F.Lobo Pereira, P.

Mason, P. Wolenski-S.Zabic, H. Zidani...

WE SHALL SKIP THIS SUBJECT
except
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Franco Rampazzo, Università di Padova Control and Mechanics



There is a lot of work done on affine systems, dealing strongly with
NON-COMMUTATIVITY OF VECTOR FIELDS g1, . . . , gm. (i.e.
[gα, gβ] 6= 0).

A partial list of authors on the subject:
H. Sussmann, A. Bressan, A.Bressan-F.Rampazzo, M.Motta- F.

Rampazzo, B. Miller, Dal Maso-F. Rampazzo, C. Sartori-F. Rampazzo, J.

Dorroh-G.Ferreyra, A. Sarychev, R. Vinter-G. Silva, F.Lobo Pereira, P.

Mason, P. Wolenski-S.Zabic, H. Zidani...

WE SHALL SKIP THIS SUBJECT
except
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An important property of affine systems

ẋ = f(x) +
m∑
α=1

gα(x)u̇α

Forget discontinuous u, and take only continuous ones (with
bounded variation)
The input-output map

φ : u(·)→ Φ(u) = x(·)

is continuous with respect to C 0 topologies.

HENCE
VIBRATIONAL STABILIZABILITY

CANNOT BE ACHIEVED

this ”explains” the non-stabilizability of the double pendulum
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QUESTION

Is the fact that the control system is affine in u̇
related to some differential geometric property?
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SOME GEOMETRY RELATED TO THE
QUADRATIC DEPENDENCE ON u̇:

THEOREM
(1) The quadratic part hα,β u̇αu̇β is zero

IF AND ONLY IF
(2) Geodesics orthogonal to one leaf {u = constant} are
orthogonal to all leaves they meet.

IF AND ONLY IF
(3) If {u = c1}, {u = c2} are leaves, then the ”DISTANCE”
from the points of {u = c1} to {u = c2} is CONSTANT
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The ”orthogonal curvature”

∂eα,β
∂qi

measures how much geodesics which are orthogonal to a
leaf {u = constant} at a point fail to remain orthogonal at
the other points.

The orthogonal curvature
∂eα,β
∂qi

is a tensor with respect to the
coordinate transformations that respect the foliation structure.
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EXAMPLES
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The angle as control:
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Franco Rampazzo, Università di Padova Control and Mechanics



The angle as control:
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Franco Rampazzo, Università di Padova Control and Mechanics



The angle as control:

Non-zero
quadratic part!
Hence, chance of vibrational stabilization!
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No quadratic part!
Hence, no vibrational stabilization!
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Pendulum with oscillating pivot
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Non-zero quadratic part!
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The length of the pendulum as control
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The length of the pendulum as control

No quadratic part!
Hence, no vibrational stabilization!
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Something similar happens for the double pendulum:

Geodesics keep orthogonality to leaves. Hence no quadratic
part!Hence, no vibrational stabilization!
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Remember?
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What about the Roller Racer?

Up to now all systems were holonomic...
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We NOW assume our mechanical system, locally described by
coordinates (q1, . . . , qN+M), is subject to a non holonomic
constraint.

WHAT DOES THIS MEAN?
A non holonomic constraint is a (linear) constraint on the velocity
q̇

ω1(q̇) = 0 . . . ων(q̇) = 0

which cannot be deduced by differentiation of a constraint
φ(q) = 0 on the configuration q.
EQUIVALENTLY:
At each point a subspace ∆(q) ⊂ TqQ is given, and

q̇ ∈ ∆(q)

but ∆(q) is not integrable
i.e., there is no foliation of Q whose leaves have ∆(q) as tangent
space at any q.
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EXAMPLE in R3
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The Roller Racer

The fact that the velocity of the first body must be directed as the
angle q2 and the analog fact for the velocity of the second body, is
non holonomic constraint on the system.
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Franco Rampazzo, Università di Padova Control and Mechanics



The Roller Racer

The fact that the velocity of the first body must be directed as the
angle q2 and the analog fact for the velocity of the second body,

is
non holonomic constraint on the system.
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If the Roller Racer were on a icy surface, it would be not
subject to

the holonomic constraints,
and the control u would be a ”shape” control (as in the
double pendulum.)
This would mean

orthogonal curvature = 0

i.e. the control system would be affine in u̇.
In particular,
no forces would be produced by rapid small oscillations of u.
One could conjecture that nothing new happens by adding non
holonomic constraints (the wheels)
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Franco Rampazzo, Università di Padova Control and Mechanics



If the Roller Racer were on a icy surface, it would be not
subject to
the holonomic constraints,
and the control u would be a ”shape” control (as in the
double pendulum.)
This would mean

orthogonal curvature = 0

i.e. the control system would be affine in u̇.
In particular,
no forces would be produced by rapid small oscillations of u.
One could conjecture that nothing new happens by adding non
holonomic constraints (the wheels)
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INDEED: One could think that the imposition of the non
holonomic constraint q̇ ∈ ∆(q) is just a fact of linear projection
of the equations on ∆.

So one could conjecture that

”the system is affine in u̇
if and only if

this was true before the imposition of the non holonomic
constraint.”

IN FACT, THIS IS WRONG.

because the non holonomic constraint, quite surprisingly, in general
adds quadratic terms (in u̇) to the equations.
One could say the non holonomic constraint produces a
”centrifugal” effect
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The control equations for the Roller Racer (on a surface
with friction):



q̇1 = 2ρ cos u sin q2 · ξ − Jρ sin q2 sin 2u
2∆0

· u̇

q̇2 = 2 sin u · ξ − J sin2 u
∆0
· u̇

q̇3 = 2ρ cos q2 cos u · ξ − Jρ cos q2 sin 2u
2∆0

· u̇

ξ̇ = − sin 2u
(

(I+J−ρ2)
∆1

+ 1
2(ρ2/∆4+sin2 u)

)
· ξu̇ − 2Jρ2 cos u

∆2
1
· u̇2.
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RollerRacers’ race . . .

Franco Rampazzo, Università di Padova Control and Mechanics



The white street is without friction:

the kinetic-Riemannian geometry does NOT display
quadratic term (0-curvature)

NO non-holonomic constraint.

⇒ no quadratic term at all ⇒ oscillations do not produce a force (
...the Roller Racer does not move)
BUT
The grey street is with friction:

kinetic-Riemannian geometry does NOT display quadratic
term (as above, for the white street)

non-holonomic constraint gives rise to a quadratic term ⇒
oscillations do produce a force ( ...the Roller Racer does
moves)
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GRAZIE

PER L’ATTENZIONE
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