
Nonsmooth Multi-time Hamilton-Jacobi Systems
MONICA MOTTA & FRANCO RAMPAZZO

ABSTRACT. We establish existence of a solution for systems of
Hamilton-Jacobi equations of the form (1.1). A previous result—
see [3]—valid for C1 Hamiltonians is here extended to the case
where Hamiltonians are locally Lipschitz continuous. The main
tool for dealing with this kind of non-smoothness consists in the
interpretation of the existence issue in terms of commutativity of
the minimum problems originating the Hamiltonians involved in
(1.1). In turn, a sufficient condition for such commutativity is
based on a notion of Lie bracket for nonsmooth vector-fields in-
troduced in [20]. Besides existence, we establish uniqueness—
actually, a comparison result—, regularity, and four different repre-
sentations of the solution. Moreover, we prove a front-propagation
property in the vector-valued time (t1, . . . , tN). The paper also
contains results concerning semigroup properties of the solution
and the additivity of a suitable defined exponential map.

1. INTRODUCTION

1.1. The problem In this paper we investigate existence and uniqueness of
a solution to the so-called multi-time systems of Hamilton-Jacobi equations. For a
given T > 0, these systems have the form

(1.1)



∂u
∂t1
+H1(x,Dxu) = 0,

· · ·
∂u
∂tN

+HN(x,Dxu) = 0,

(t1, . . . , tN, x) ∈ ]0, T [N ×Rn, and are associated with an initial condition

(1.2) u(0, . . . ,0, x) = ψ(x) ∀x ∈ Rn.
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By a solution of (1.1) we mean a map u : [0, T]N × Rn → R verifying each of
the equations in (1.1) as a viscosity solution in ]0, T [N × Rn—see Definition 2.1.
In particular, we are given a vector-valued time variable t = (t1, . . . , tN)—the
so-called multi-time variable—, whose dimension coincides with the number of
equations of (1.1). If, for a given i = 1, . . . , N, we regard the variables tj such
that j ≠ i as parameters, the i-th equation is a standard Hamilton-Jacobi equation
in the time-variable ti.

An obvious starting observation is that, as soon as N > 1, (1.1) is an over-
determined system, namely we have more equations than the dimension (= 1) of
the solution’s range. It is then natural to expect that in the general case a solution
fails to exist. Hence, it is reasonable to look for sufficient conditions on the data
in order that a solution does exist (in a sense to be made precise).

System (1.1) can be regarded as a possible nonlinear generalization of over-
determined linear systems, which have been widely investigated both for their im-
portance in physical applications and because of (and thanks to) their differential
geometric content—see e.g.[16].

An application in Economics has been proposed by Rochet in [22]. In that
paper the solution of (1.1)–(1.2) has the meaning of a Benefit Function for a mo-
nopolist who wishes to optimize a selling strategy to a population of retailers. In
this case the ti’s are parameters affecting the costs of the retailers.

More abstractly, as soon as the Hamiltonians are of the (control-theoretical)
form Hi(x,p) = supa∈A{−〈p, fi(x,p)〉 − `i(x,p)} one can consider a situa-
tion where N control systems—the i-th one being characterized by the dynamics-
Lagrangian pair (fi, `i)—are evolving in their own times ti. A potential appli-
cation of the results on (1.1)–(1.2) could concern switching systems, where the
existence of the solution to (1.1)–(1.2) would mean a sort of invariance of the
output with respect to the order of implementation of the optimal switchings.

1.2. The case with x-independent Hamiltonians The first contribution
explicitly devoted to systems of Hamilton-Jacobi equations is due to P.L. Lions
and J.C. Rochet [15], who investigated the case when the Hamiltonians are state-
independent, that is Hi = Hi(p), where p denotes the adjoint variable. As in
the case of a single equation, this case has the advantage that solutions can be ex-
plicitly computed by means of Hopf or Lax-Oleinik formulas. In particular, the
existence of a solution is checked by means of a direct verification of the commuta-
tivity of semigroups generated by the single equations. In fact, the commutativity
issue—which later will be interpreted in the sense of commutativity of optimal con-
trol problems—is intimately related to the question of existence of solutions. In the
case of state-independent Hamiltonians investigated by Lions and Rochet it turns
out that the semigroups always commute, so no quantitative restrictions are to be
imposed on the Hamiltonians in order that a solution exists. This can be intu-
itively regarded as a consequence of the Euclidean structure lying behind the fact
that the Hamiltonians are state-independent (so-to-speak, the spatial projections
of characteristic lines are straight lines).
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Still by means of some Hopf-like formulas, recently S. Plaskacz and M. Quin-
campoix [17] have extended the investigation to the case when the Hamiltonians
depend on times and on the solution as well but are independent of x.

1.3. The general case The major contribution to the non Euclidean case—
i.e., when the Hamiltonians are state-dependent—is due to G. Barles and A.
Tourin [3]. They assume two main conditions, which we label [BT ]smooth and
[BT ]ZPB:

Hypothesis [BT ]smooth (Smoothness of the Hamiltonians). The Hamiltonians
Hi are of class C1 and convex in the gradient variable.

Hypothesis [BT ]ZPB (Zero Poisson Bracket). for all i, j = 1, . . . , N and all
(x,p) ∈ Rn ×Rn1

{Hi,Hj}(x,p) = 0

is verified, where {Hi,Hj} denotes the Poisson bracket of Hi and Hj :

{Hi,Hj} = DxHjDpHi −DxHiDpHj.

On one hand, the smoothness condition [BT ]smooth is needed in order to
give a classical sense to the Zero Poisson Bracket condition [BT ]ZPB. On the
other hand, Barles and Tourin have proven that under hypotheses [BT ]smooth–
[BT ]ZPB there exists a (unique) solution to (1.1)–(1.2).2 Let us remark that
condition [BT ]ZPB is in fact sufficient for the commutativity of the semigroups
corresponding to the equations forming the system (1.1) (the parameter of the
i-th semigroup being the i-th time variable ti). Namely, if ψe−tiHi denotes the
value at time ti of the solution to the Cauchy problem corresponding to the i-th
equation of (1.1) (see Subsection 2.1), [BT ]ZPB implies that

ψe−tiHie−tjHj = ψe−tjHje−tiHi

for all i, j = 1, . . . , N and all ti, tj ∈ [0, T]. Although some special situa-
tions involving nonsmooth Hamiltonians are treated in [3] (e.g. when one of two
Hamiltonians Hi, Hj is smooth and the other one is just Lipschitz continuous,
and condition [BT ]ZPB is verified almost everywhere)3 by means of regulariza-
tion techniques, the more general case of (locally) Lipschitz continuous Hamil-
tonians seems to be outside the range of this approach. On the other hand, the

1To be more precise: (x,p) ∈ Rn × T∗x Rn.
2Due to the adopted proof ’s strategy, some growth and boundedness hypotheses are also assumed

in [3] in order to obtain a Lipschitz continuous solution (see Subsection 5.1).
3A further case treated in [3] is when the regularized HamiltoniansHni are such that {Hni ,Hnj } = 0

for all i, j = 1, . . . , N and all n ∈ N. But the (differential geometric) problem of finding such
approximations is, to our knowledge, without an answer up to now, and it may well be that such
approximations do not exist in general.
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interest for nonsmooth Hamiltonians is obviously justified by the applications to
optimal control problems, where Hamiltonians have the form:

(1.3) Hi(x,p) = sup
a∈A
{−〈fi(x,a),p〉 − `i(x,a)} (i = 1, . . . , N).

Here the fi are control vector fields, i.e., vector fields depending on a parame-
ter a ∈ A, and the `i are real functions, sometimes called Lagrangians. Notice
that, as an effect of the involved maximization, these Hamiltonians happen to be
nonsmooth (in p), even in the case where the data fi, `i are very regular.

1.4. Our main goal The principal purpose of the present paper is to give
existence results4 for a general case where the smoothness condition [BT ]smooth
is not verified and the commutativity condition [BT ]ZPB is replaced by a new
condition which is meaningful even when the data are nonsmooth.

Actually, hypotheses [BT ]smooth and [BT ]ZPB will be replaced by hypothe-
ses [H ]Lip (or [H′]Lip) and [H ]CCZLB below, respectively.

Definition 1.1 (Hypothesis [H ]Lip). By saying that the Hamiltonians Hi
verify hypothesis [H ]Lip (Lipschitz continuous data) we mean that the Hamiltoni-
ans have the form (1.3),5 and the data fi, `i verify the following set of conditions:

For any i = 1, . . . , N the functions fi : Rn × A → Rn, `i : Rn × A → R are
continuous. Moreover, there is a constant M and, for every R > 0, there are some
LR, MR > 0 such that

(1.4)
|fi(x,a)− fi(y,a)| ≤ LR|x −y|
|`i(x,a)− `i(y,a)| ≤ LR|x −y|

∀ (x,a), (y,a) ∈ Bn(0, R)×A,

|`i(x,a)| ≤MR ∀ (x,a) ∈ Bn(0, R)×A
(where Bn(0, R) is the open ball of radius R of Rn); and

|fi(x,a)| ≤ M(1+ |x|) ∀ (x,a) ∈ Rn ×A.

We shall also consider a slightly stronger hypothesis:

Definition 1.2 (Hypothesis [H′]Lip). By saying that the Hamiltonians Hi
verify hypothesis [H′]Lip we mean that all the hypotheses in [H ]Lip are verified
and (1.4) is changed into the stronger condition:

|fi(x,a)− fi(y, b)| ≤ LR|(x,a)− (y, b)|
|`i(x,a)− `i(y, b)| ≤ LR|(x,a)− (y, b)|

∀ (x,a), (y, b) ∈ Bn(0, R)×A.

4The uniqueness issue will be also treated—see Section 3. Let us remark that it is partially based
on the recognition of some boundary conditions that are implicit in the definition of solution.

5In view of the assumed convexity of the Hi (in the p variable), the fact of considering Hamiltoni-
ans of the form (1.3) is not too restrictive (see [9], [13], [18]).
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In order to state condition [H ]CCZLB below, let us consider product coor-
dinates (x0, x) ∈ R1+n and let us define the control vector fields f̂i on R1+n by
setting, for every i = 1, . . . , N,6

f̂i(x,α) = `i(x,α) ∂∂x0
+

n∑
j=1

fij(x,α)
∂
∂xj

.

Notice that, although the f̂i’s are vector fields on R1+n, they are x0-independent.

Definition 1.3 (Hypothesis [H ]CCZLB). By saying that the family of pairs
(`i, fi) verifies hypothesis [H ]CCZLB (Constant Control Zero Lie Bracket) we mean
that:
� for any i = 1, . . . , N the functions fi : Rn × A → Rn, `i : Rn × A → R

are continuous in (x,a) and locally Lipschitz continuous in x, uniformly with
respect to the control;

� for each α, β ∈ A and i, j = 1, . . . , N one has7

[f̂i(x,α), f̂j(x, β)] = 0 for a.e. x ∈ DIFF(f̂i(·, α))∩DIFF(f̂j(·, β)),
where:

(i) for each k = 1, . . . , N and each a ∈ A we use DIFF(f̂k(·, a)) to denote the
subset of R1+n on which f̂k(·, a) is differentiable—which, by Rademacher’s
Theorem, is a full measure set; and

(ii) for any subset E ⊂ R1+n, the expression for a.e. x ∈ E means for every
x ∈ E \N , whereN is a subset of zero Lebesgue measure.

1.5. An example Let us consider the initial value problem on [0, T]2 ×R2
∂u
∂t1
+H1(x,Dxu) = 0,

∂u
∂t2
+H2(x,Dxu) = 0,

(1.5)

u(0,0, x) = ψ(x),(1.6)

where

H1(x,p) = −|x1 − arctanx2|p1 + |p1|,

H2(x,p) =
|x2p1|
1+ x2

2
+ |x2p2|,

6We use (∂/∂x0, ∂/∂x1, . . . , ∂/∂xn) to denote the canonical basis of R1+n, while fij stands for
the components of fi with respect to the basis (∂/∂x1, . . . , ∂/∂xn) of Rn.

7We recall that for each x ∈ Rn the value of the Lie bracket [h, k](x) of two vector fields h, k
which are differentiable at x is defined by

[h, k](x) = Dk(x) · h(x)−Dh(x) · k(x).
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and
ψ(x) = |x1 − arctanx2| + |x2| ∀x ∈ R2.

Notice that

Hi(x,p) = max
a∈{0,−1,1}

{−p · fi(x,a)}, i = 1,2

where the control vector fields f1, f2 are defined by

f1(x,a) =

|x1 − arctanx2| + a

0

 , f2(x,a) =


|x2|a
1+ x2

2

|x2|a

 .

Clearly, hypothesis [H′]Lip is verified. Moreover, for every

a, ā ∈ {0,−1,1} and x ∈ DIFF(f1(x,a))∩DIFF(f2(x, ā)),

one has

[
f1(x,a), f2(x, ā)

] = Df2(x, ā)f1(x,a)−Df1(x,a)f2(x, ā)

=


0

sign(x2)(1− x2
2)ā

(1+ x2
2)2

0 sign(x2)ā

 ·
|x1 − arctanx2| + a

0



−


sign(x1 − arctanx2)

− sign(x1 − arctanx2)
1+ x2

2

0 0

 ·

|x2|ā
1+ x2

2

|x2|ā

 =
0

0



so that the commutativity condition [H ]CCZLB is verified as well. Hence, by
Theorem 5.1 there is a unique viscosity solution U of the initial value problem
(1.5)–(1.6). Actually, one can easily check that the function U : [0, T]2 × R2

defined by

(1.7) U(t1, t2, x) = −e−t1(x1 − arctanx2)− (1− e−t1)+ |x2|e−t2 ,

if x1 − arctanx2 ≤ 1− et1 ,

(1.8) U(t1, t2, x) = |x2|e−t2
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if 1− et1 < x1 − arctanx2 < 1− e−t1 , and

(1.9) U(t1, t2, x) = et1(x1 − arctanx2)+ (1− et1)+ |x2|e−t2

if x1 − arctanx2 ≥ 1 − e−t1 , is a (viscosity) solution of system (1.5) verifying the
initial condition (1.6). In Section 5.4 we shall show how the results of the next
sections allow one to construct this solution, which, on the basis of Theorem 5.1,
is in fact the unique solution.

1.6. Main tools and outline of the paper In order to deal with the different
kinds of non-smoothness affecting the gradient variable and the state variable, we
shall exploit two separate tools. The first one is the interpretation of the prob-
lem in terms of minimization, so that the existence problem can be regarded as a
question of commutativity of minimum problems. In fact, this allows us to skip the
problem of the non-smoothness of the Hamiltonians in the variable p.8

The second tool allows us to treat the non-regularity in x and consists in a
notion of Lie bracket for locally Lipschitz continuous vector fields which has been
introduced in [20]. Let us remind that for two smooth vector fields h,g, the
condition [h, g] = 0 is equivalent to the (local) commutativity of the flows corre-
sponding to h and g, respectively.9 Let us point out that hypothesis [H ]CCZLB
generalizes this condition in two ways. On one hand, when the controls α and
β are fixed, [H ]CCZLB is a generalization of the above zero bracket condition
to nonsmooth vector fields, according to [21]. On the other hand, [H ]CCZLB
extends the zero bracket condition from vector fields to control vector fields. The
characterization of (the suitably defined) flows’ commutativity for control vector
fields by means of condition [H ]CCZLB was proved in [19].

The outline of the paper is as follows. In Section 2 we introduce an exponen-
tial notation which will prove useful to state various results of the paper. In Section
3 we deal with the uniqueness question. In Section 4 we introduce the notion of
commutativity of optimal control problems, which we call inf-commutativity. Sec-
tion 5 contains our main result on the existence of solution to (1.1)–(1.2). Here
is a partial statement:

Theorem 5.1 (Partial statement). Let us assume hypotheses [H ]Lip and
[H ]CCZLB. Then for any continuous map ψ, there exists a unique viscosity solu-
tion Uψ = Uψ(t,x) of the system (1.1)–(1.2).

8This approach is distinct from the one that focuses on the commutativity of the semigroups
associated to the Hamiltonians. Yet the two approaches are obviously connected, as shown e.g. in
Theorem 5.1 below.

9That is, if xetf denotes the value at t of the solution to the Cauchy problem ẏ = f(y)y(0) = x,
the validity of [h,g] in a open neighborhood U of x is equivalent to the existence, for every z ∈ U ,
of some εz > 0 such that

zethesg = zesgeth

for all t, s such that 0 ≤ t, s ≤ εz .
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Moreover, three different representations of the solution are provided in The-
orem 5.1. In particular, the solution can be represented as the composition of
the N semigroups corresponding to the single equations (and the fact that this is
independent of the order of such composition is due to hypothesis [H ]CCZLB).
For each multi-time (t1, . . . , tN) the solution can also be represented as the value
function obtained by choosing any simple multi-time path connecting (t1, . . . , tN)
with (T , . . . , T). Actually, if the stronger hypothesis [H′]Lip is verified, the so-
lution of (1.1)–(1.2) turns out to coincide with the value function obtained by
choosing any absolutely continuous multi-time path connecting (t1, . . . , tN) with
(T , . . . , T). Incidentally, as soon as [H ]CCZLB is assumed, this allows to prove
that the above-defined exponential map is commutative and additive:10

e−t1H1e−t2H2 = e−t2H2e−t1H1 , e−t1H1e−t2H2 = e−t1H1−t2H2 .

In Section 6 we introduce a further value function, which we call the Best
Value. When hypothesis [H ]CCZLB is in force, the Best Value coincides (up to re-
versing time) with the solution to (1.1)–(1.2) (see Theorem 6.3)—and this, in fact,
provides a further representation of this solution. Yet the Best Value is perfectly
meaningful also when there is no solution of (1.1)–(1.2). So, from the viewpoint
of applications, it can be regarded as a possible replacement of the (generally non
existing) solution of (1.1)–(1.2).

In Section 7 we establish some regularity properties of the solution. Moreover,
thanks to the commutativity of the N one-parameter semigroups e−tiHi , under
hypothesis [H ]CCZLB the solution of (1.1) is a N-parameter semigroup, as shown
in Theorem 7.2.

In Section 8 we show that as soon as the Hamiltonians are positively homo-
geneous in the adjoint variable a Front Propagation Property analogous to the one
holding true for single equations is valid for multi-time systems as well.

Up to now, with the expression existence of a solution we (and the authors of the
quoted papers) have meant existence for every continuous initial data ψ (subject,
in [15] and in [3], only to some regularity conditions). However, even when the
commutativity condition [BT ]ZPB is not verified, it may happen that a solution
exists only for suitable initial conditions ψ. We devote Section 9 to illustrate an
example of such an occurrence, leaving as an open question the search of general
sufficient conditions on ψ for the existence of a solution to (1.1)–(1.2) in the case
when [BT ]ZPB is not satisfied.

2. NOTATION AND GENERAL DEFINITIONS

Let M be a positive integer. For any z ∈ RM , |z| will denote the usual Euclidean
norm of z, while |z|1 will denote the `1-norm, i.e., |z|1 =

∑M
i=1 |zi|. For any

R > 0 and for any z0 ∈ RM , B(z0, R) denotes the open ball {z ∈ RM :
|z − z0| < R}, and, for any E ⊂ RM , Ē stands for the closure of E in RM . A

10See Subsection 2.1 for a rigorous definition of the exponential map.
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scalar real function h : [a, b] → [c, d] will be called increasing [resp.: strictly
increasing] if for any pair s0, s1 ∈ [a, b] such that s0 < s1 one has h(s0) ≤ h(s1)
[resp.: h(s0) < h(s1)]. An increasing function ω : [0,+∞ [→[0,+∞[, con-
tinuous at 0 and such that ω(0) = 0 will be called a modulus. A function
ω : [0,+∞[2 → [0,+∞[ will be called a local modulus if it is increasing in the
second variable and, for every R ≥ 0, the map ω(·, R) is a modulus.

If Q ⊂ RM and I is a real interval, L1(I,Q) will denote the subset of Lebesgue
integrable maps from I into RM which take values inQ, while B(I,Q) will denote
the subset of the maps belonging to L1(I,Q) which are Borel measurable.

If n1, . . . , nq are positive integers and k is a function from a subset of
Rn1 × · · · × Rnq to R, for any i = 1, . . . , q we use Dzik to denote (possibly
in a weak sense) the gradient of k with respect to the zi variable. Moreover, we
use Dk to denote the gradient of k with respect to z = (z1, . . . , zq).

We will consider solutions to (1.1)–(1.2) in the viscosity sense. Let us recall
the definitions of viscosity sub- and supersolution—see e.g. [7].

Definition 2.1. Let q be a positive integer and let E be a subset of Rq. Let
F : E ×Rq → R and u : E → R be continuous functions, and let y0 ∈ E.

The function u is called a viscosity subsolution (resp.: a viscosity supersolution)
of

(2.1) F(y,Du) = 0

at y0 if for everyϕ ∈ C1(Rq) such that y0 is a local maximum (resp.: minimum)
in E for

u(y)−ϕ(y)
one has

F(y0,Dϕ(y0)) ≤ 0 (resp.: ≥ 0).

u is a viscosity solution of (2.1) at y0 if it is both a viscosity subsolution and a
viscosity supersolution of (2.1) at y0.

In particular, for i = 1, . . . , N the i-th equation in (1.1) has the form (2.1)
with q = N +n, y = (t, x) ∈ RN ×Rn, and F(t1, . . . , tN, x,pt1 , . . . , ptN , px) É
pti +Hi(x,px).

2.1. Exponential notation System (1.1) is made of autonomous equations.
However, for the sake of completeness, we prefer to define the exponential nota-
tion for the more general case of non autonomous equations. In particular, we
shall assume that the Hamiltonian is measurable in the time variable, which re-
quires a more general definition of (viscosity) solution. In fact, this is originally
due to I. Ishii [11] and we recall it below in the equivalent form stated in [14]. Let
us remark that, when H is continuous, the two notions of (sub- and super-) solu-
tion do coincide. Moreover, Definition 2.2 turns out to be the natural extension
by density of Definition 2.1 (see [11], [14], [5]).
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Definition 2.2. Let H = H(t,x,p) be Lebesgue-measurable in t and contin-
uous in (x,p). Let u(t,x) be a continuous function on Q É ]0, T [ × O. u is a
viscosity subsolution (resp.: a viscosity supersolution) of

(2.2)
∂u
∂t
+H(t,x,Dxu) = 0

at (t0, x0) ∈ Q if for every ϕ ∈ C1(O) and b ∈ L1([0, T],R) such that (t0, x0)
is a local maximum (resp.:minimum) for

u(t,x)+
∫ t

0
b(s)ds −ϕ(x)

one has

lim
δ↓0+

inf ess
|t−t0|<δ

inf{H(t,x,p)− b(t) : |x − x0| ≤ δ, |p −Dϕ(x0)| ≤ δ} ≤ 0,

respectively

lim
δ↓0+

sup ess
|t−t0|<δ

sup{H(t,x,p)− b(t) : |x − x0| ≤ δ, |p −Dϕ(x0)| ≤ δ} ≥ 0.

u(t, x) is a viscosity solution of (2.2) at (t0, x0) ∈ Q if it is both a viscosity subso-
lution and a viscosity supersolution of (2.2) at (t0, x0).

Definition 2.3. We say that H = H(t,x,p) verifies condition [EU] if for
each continuous mapψ : Rn → R and each pair s0, s1, s0 < s1, a viscosity solution
uψ(s,x) to the Cauchy problem

(2.3)
∂u
∂s
+H(s,x,Dxu) = 0, (s, x) ∈ ]s0, s1[×Rn, u(s0, x) = ψ(x)

exists and is unique.

IfH verifies [EU], for every s ∈ [s0, s1] we shall use the exponential notation

ψe−
∫ s
s0 H(σ)dσ

to denote the continuous map x , uψ(s,x), while

[x]ψe−
∫ s
s0 H(σ)dσ

will stand for its evaluation at x.11

Let us prove a parameter-invariance property for the equation in (2.3).

11This notation is borrowed from an analogous notation introduced by Agrachev and Gamkrelidze
for (finite-dimensional) flows of control vector fields, [1]. Let us notice that it is consistent with a
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Lemma 2.4. Let σ0, σ1, s0, s1 be real numbers such that σ0 < σ1, s0 < s1, and
let s : [σ0, σ1] → [s0, s1] be an absolutely continuous, strictly increasing, surjective
map such that s′(σ) > 0 for a.e. σ ∈ ]σ0, σ1[. Let H : [s0, s1]×Rn ×Rn → R be
continuous and let it verify the uniqueness and existence hypothesis [EU]. Then there
exists a unique viscosity solution to the Cauchy problem

(2.4)

∂v
∂σ
(σ,x)+H(s(σ),x,Dv(σ,x))s′(σ) = 0,

(σ ,x) ∈ ]σ0, σ1[×Rn, v(σ0, x) = ψ(x),

that is, the Hamiltonian H(s(·), ·, ·)s′(·) satisfies [EU] in [σ0, σ1] × Rn × Rn.
Moreover, the corresponding solutions verify

ψe−
∫ s(σ)
s0 H(r)dr = ψe−

∫ σ
σ0
(H(s(η))s′(η))dη

for all σ ∈ [σ0, σ1].12

The proof of this lemma is postponed to the Appendix.

Remark. Let us observe that the property stated in Lemma 2.4 is far beyond
what is needed in this paper. In fact, we will only consider the trivial case of C1

reparametrizations s(·) such that s′ > 0.

2.1.1. The autonomous case In the autonomous case, i.e., when the Hamil-
tonian H is independent of s, we shall simplify notation by setting, for every real
number r ≠ 0,

erH É e−
∫ |r |
0 (−rH/|r |)dσ (= e−

∫ s0+|r |
s0 (−rH/|r |)dσ ∀ s0 ∈ R).

There is no ambiguity in using this notation, for, in view of Lemma 2.4, one has

(2.5) erH = e−
∫ 1
0 (−rH)dσ = e−1(−rH) = e1(rH).

formal interpretation of the exponential operator. Indeed, ifH is given as in (2.2), for every s ∈ [s0, s1]
let us define the operator H(s) : C1(Rn)→ C0(Rn) by setting,

H(s) : ϕ ,ϕH(s) É H(s, ·,Dxϕ(·)).

Then, setting u(s,x) = [x]ψe−
∫ s
s0 H(σ)dσ and proceeding formally, we obtain:

∂u
∂s
(s,x) = −[x]ψe−

∫ s
s0 H(σ)dσH(s) = −H(s,x,Du(s,x)).

12In other words, if uψ(s,x) is the solution of (2.3) on [s0, s1]×Rn, then

v(σ,x) É uψ(s(σ),x)
is the (unique) solution of (2.4) on [σ0, σ1]×Rn.
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If H1, H2 are given Hamiltonians and t1, t2 ∈ R, then

et1H1et2H2 6= et1H1+t2H2

unless suitable hypotheses are made on H1, H2. Actually, in order to have an
equality, it is sufficient that either H1 = H2 or [H ]CCZLB be verified. More
precisely, we have the following result.

Proposition 2.5 (Additivity properties of the exponential). LetH be an Hamil-
tonian verifying the existence and uniqueness hypothesis [EU]. Then for every t,
s ∈ R one has

(2.6) etHesH = etH+sH.

Moreover, if H and H̃ are defined by

H(x,p) = sup
a∈A
{−〈f(x,a),p〉 − `(x,a)},

H̃(x,p) = sup
a∈A
{−〈f̃ (x,a),p〉 − ˜̀(x,a)},

and the pairs (f , `), (f̃ , ˜̀) verify hypotheses [H′]Lip and [H ]CCZLB, then for every
t, s ∈ R one has

(2.7) etHesH̃ = etH+sH̃ .

While the proof of (2.6) is a straightforward consequence of the definition,
(2.7) is non trivial and will be proved in Section 5.

3. COMPARISON AND UNIQUENESS OF SOLUTIONS

While postponing the investigation on existence of solutions to (1.1)–(1.2), let us
begin with the (comparison and) uniqueness issue.

Let us fix two positive numbers C and T , and let us set

DC É {(t1, . . . , tN, x) : (t1, . . . , tN) ∈ [0, T [N \ {(0, . . . ,0)}, |x| < C|T − t|1}.

The following comparison result states the validity of a so-called domain of
dependence property. An analogous result is well-known in the case of a single
evolution equation (see e.g [4]).

Theorem 3.1 (Domain of dependence). Let us assume that there exists a mod-
ulus ω such that for any i = 1, . . . , N the Hamiltonian Hi : B(0, CT)×Rn → R is
continuous and satisfies

|Hi(x,p)−Hi(x, q)| ≤ C|p − q|,
|Hi(x,p)−Hi(y,p)| ≤ω(|x −y|)+ω(|x −y| |p|)
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for all x, y ∈ B(0, CT), p, q ∈ Rn.
Let u1, u2 : DC → R be a viscosity sub- and supersolution, respectively, of the

multi-time system (1.1) at every (t, x) in the interior ofDC . If they verify u1(0, x) ≤
u2(0, x) for all x ∈ B(0, CT), then u1(t, x) ≤ u2(t, x) for all (t, x) ∈ DC .

Here is the uniqueness result. Notice that, in particular, the hypotheses on
the Hamiltonians cover our hypothesis [H ]Lip on the data of the problem.

Theorem 3.2 (Uniqueness). Let us assume that there exists K > 0 such that for
any i = 1, . . . , N, the Hamiltonian Hi : Rn ×Rn → R is continuous and satisfies

|Hi(x,p)−Hi(x, q)| ≤ K(1+ |x|)|p − q|
for all x, p, q ∈ Rn. Moreover, let us assume that there exists a local modulusω(·, ·)
such that for any R > 0 one has

|Hi(x,p)−Hi(y,p)| ≤ω(|x −y|, R)+ω(|x −y| |p|, R)
for all p ∈ Rn, x, y ∈ B(0, R). Then for any T > 0, problem (1.1)–(1.2) has at
most one viscosity solution in [0, T]N ×Rn.

We shall prove Theorems 3.1 and 3.2 in the next subsection as corollaries of
analogous results concerning the auxiliary Hamilton-Jacobi equation (3.1) below.

Remark. Let us remark that neither convexity nor any commutativity hypo-
thesis—like [BT ]ZPB or its nonsmooth counterpart [H ]CCZLB—are assumed in
Theorem 3.2. This is particularly relevant in view of the fact that a solution (for a
particular initial datumψ) may well exist even if no commutativity conditions are
verified (see Section 9). Incidentally, Theorem 3.2 improves the uniqueness result
contained in [3], in that the latter was proved under the commutativity hypothesis
[BT ]ZPB.

3.1. An auxiliary HJ equation Let us consider the auxiliary boundary value
problem13

max
{
∂u
∂t1
+H1(x,Dxu), . . . ,

∂u
∂tN

+HN(x,Dxu)
}
= 0(3.1)

∀ (t, x) ∈ ]0, T [N ×Rn,

max
{
∂u
∂t1
+H1(x,Dxu), . . . ,

∂u
∂tN

+HN(x,Dxu)
}
≥ 0(3.2)

on ∂0( ]0, T [N ×Rn),
u(0, . . . , x) = ψ(x) ∀x ∈ Rn,(3.3)

13The boundary condition (3.2)—often called constrained boundary condition—means that the
solution has to be found among the functions u : [0, T ]N ×Rn → R that are supersolutions of

max
{ ∂u
∂t1

+H1(x,Dxu), . . . ,
∂u
∂tN

+HN(x,Dxu)
}
= 0

at each (t,x) ∈ ∂0( ]0, T [N ×Rn).
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where

∂0( ]0, T [N ×Rn) =
⋃

i=1,...,N
∂i0( ]0, T [

N ×Rn),

∂i0( ]0, T [
N ×Rn) É

{
(t, x) ∈ ( [0, T [N \ {(0, . . . ,0)})×Rn :

ti 6= 0, and tj = 0 for some j 6= i
}
.

In Section 6 we shall illustrate a control-theoretical interpretation of the bound-
ary value problem (3.1)–(3.3) in the case where the Hamiltonians are convex in
the gradient variable. Roughly speaking, (3.1), is the boundary value problem for
the value function—called Best Value in Section 6—of the optimal control prob-
lem obtained by suitably partitioning the time intervals of the optimal control
problems underlying the single equations in (1.1) and by optimizing the imple-
mentation’s order of such intervals.

Theorem 3.3. Let us assume that there exists a modulus ω such that, for any
i = 1, . . . , N, the Hamiltonian Hi : B(0, CT)×Rn → R is continuous and satisfies

|Hi(x,p)−Hi(x, q)| ≤ C|p − q|,
|Hi(x,p)−Hi(y,p)| ≤ω(|x −y|)+ω(|x −y| |p|)

for all x, y ∈ B(0, CT), p, q ∈ Rn.
If u1 and u2 : DC → R are a viscosity sub- and supersolution of (3.1) in

the interior of DC and in DC , respectively, and u1(0, x) ≤ u2(0, x) for all x ∈
B(0, CT), then u1(t, x) ≤ u2(t, x) for all (t, x) ∈ DC .

Corollary 3.4. Assume that there exists a K > 0 such that for any i = 1, . . . , N
the Hamiltonian
Hi : Rn ×Rn → R is continuous and satisfies

|Hi(x,p)−Hi(x, q)| ≤ K(1+ |x|)|p − q|

for all x, p, q ∈ Rn. Moreover, assume that there exists a local modulus ω such that
for any i = 1, . . . , N and for every R > 0, one has

|Hi(x,p)−Hi(y,p)| ≤ω(|x −y|, R)+ω(|x −y| |p|, R)

for all p ∈ Rn, x, y ∈ B(0, R). Then for any T > 0 there is at most one viscosity
solution v : [0, T]N×Rn of the auxiliary boundary value problem (3.1), (3.2), (3.3).

Theorem 3.3 and Corollary 3.4 will be proved in the Appendix.
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Proof of Theorem 3.1 and Theorem 3.2 These results follow from Theorem
3.3 and Corollary 3.4, respectively, via the following fact:

Proposition 3.5. Assume that for any i = 1, . . . , N the Hamiltonian
Hi : Rn × Rn → R is a continuous function. Then, for any T > 0, both (i) and
(ii) below hold true:

(i) any function u ∈ C([0, T]N ×Rn) which is a viscosity solution of (1.1) at any
(t, x) ∈ ]0, T [N ×Rn verifies (3.1), (3.2);

(ii) any viscosity solution of (3.1) is a viscosity subsolution of (1.1) in ]0, T [N×Rn.

Proof. Statement (ii) is trivial. As for (i), it is obvious that u verifies (3.1).
Finally, in order to prove that u verifies (3.2), let us remark that for each i = 1,
. . . , N the function

Ki(t1, . . . , tN, x,pt1 , . . . , ptN , px) É pti +Hi(x,px)

is in fact independent of each ptj such that j 6= i. In view of the result in [8], this
implies that for any i = 1, . . . , N, u is a supersolution of

∂u
∂ti
+Hi(x,Dxu) = 0

on ∂i0( ]0, T [
N ×Rn), which in turn yields (3.2). ❐

4. INF-COMMUTATIVITY

By inf-commutativity we mean commutativity of optimal control problems. This is
a generalization—introduced in [19]—of the notion of commutativity for con-
trol systems, which, in turn, extends the standard concept of commutativity of
vector fields’ flows. As a matter of fact, we shall prove existence of a solution to
(1.1)–(1.2) by proving that the optimal control problems associated with the pairs
(fi, `i) do commute. Before giving a formal definition of inf-commutativity (see
Definition 4.6 below), let us illustrate this notion by means of a simple example.

Suppose we are given the minimum problemsinf
(∫ T1

0
`(x(t1), c(t1))dt1 +

∫ T2

0
m(y(t2), d(t2))dt2

)
ẋ = f(x, c), x(0) = x̄, ẏ = g(y,d), y(0) = x(T1)

(4.1)

and inf
(∫ T2

0
m(y(t2), d(t2))dt2 +

∫ T1

0
`(x(t1), c(t1))dt1

)
ẏ = g(y,d), y(0) = x̄, ẋ = f(x, c), x(0) = y(T2).

(4.2)

where c(·) and d(·) are controls which range over a given control set A.
The obvious meaning of problem (4.1) is that the infimum is taken over the

four-uples (c, x,d,y) verifying the following:
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(i) c and d are controls defined on [0, T1] and [0, T2], respectively;
(ii) x is the solution over [0, T1] of the Cauchy problem ẋ = f(x, c), x(0) = x̄;

(iii) y is the solution over [0, T2] of the differential equation ẏ = g(y,d) taking
the final value x(T1) as its own initial condition: y(0) = x(T1).

The meaning of (4.2) is analogous, up to an exchange between (f , `) and (g,m).
One can wonder if the infimum value of problem (4.1) coincides with that of

(4.2). This would mean that the order according to which one implements the
two control systems does not affect the final infimum value. If this holds true for
any choice of x̄ and of the times T1, T2, we shall say that the two control systems
(f , `), (g,m) inf-commute. Of course, we can generalize this question by parti-
tioning the two intervals into several subintervals and running these subintervals
(and the corresponding control systems) in whatever order. Also one can consider
the interactions of more (than two) optimal control systems, and the latter can
include final costs as well.

We shall see in Section 5 that the existence of a solution to the multi-time
problem (1.1)–(1.2) is practically equivalent to such a commutation property.

4.1. Multi-time control problems Let us consider a partial order ≤ on RN

by saying that (t1, . . . , tN) = t ≤ t̃ = (t̃1, . . . , t̃N) if ti ≤ t̃i for all i = 1, . . . , N.
Let us denote the set [t1, t̃1]× · · · × [tN, t̃N], which we call the interval between
t and t̃, by [t, t̃ ].

Definition 4.1. Let S > 0 and let t, t̃ ∈ RN , t ≤ t̃. A map

τ = (τ1, . . . , τN) : [0, S] → RN

is called a multi-time path connecting the multi-times t and t̃ if it is absolutely
continuous, for every i = 1, . . . , N the map τi is increasing, |(dτ/ds)(s)| > 0
for almost every s ∈ [0, S], and τ(0) = t, τ(S) = t̃.

Definition 4.2. A simple multi-time path is a piece-wise affine multi-time path
τ : [0, S] → RN such that14

dτ
ds
(s) ∈

{
∂
∂t1
, . . . ,

∂
∂tN

}
for all s where it is differentiable.

Definition 4.3. Let us consider multi-times t, t̃ ∈ RN such that t ≤ t̃.
An N-uple

a = (a1, . . . , aN) ∈ B([t1, t̃1],A)× · · · × B([tN, t̃N],A)

will be called an N-control defined on [t, t̃ ].

14We recall that (∂/∂t1, . . . , ∂/∂tN) denotes the canonical basis of RN .
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Definition 4.4. Let us assume that the N pairs (`i, fi) verify hypothesis
[H ]Lip. Let t, t̃ ∈ RN be multi-times such that t ≤ t̃, and let a be an N-control
defined on [t, t̃ ]. Let τ : [0, S] → RN be a multi-time path such that

τ(0) = t τ(S) = t̃.

Let us define the a-lift of τ at a point (x0, x) ∈ R1+n as the solution of the Cauchy
problem

(4.3)
d(y0, y)
ds

=
N∑
i=1

(`i, fi)(y(s), ai ◦ τi(s))
dτi
ds
, (y0, y)(0) = (x0, x).

The a-lift of τ at a point (x0, x) ∈ R1+n will be denoted by (y0, y)(a,τ)[x0, x](·).
When x0 = 0 we will write, in short, (y0, y)(a,τ)[x](·).

Remark. Notice that, because of hypothesis [H ]Lip, the a-lift of τ is well-
defined, for all a and τ.

Definition 4.5. Let ψ : Rn → R be a function and let τ : [0, S] → RN be a
multi-time path connecting two multi-times t, t̃ such that t ≤ t̃.

For any x ∈ Rn let us consider the minimization problem

minimize
{
ψ(y(S))+

∫ S
0

( N∑
i=1

`i(y(s), ai ◦ τi(s))
dτi
ds
(s)
)
ds
}

where the infimum is searched over all N-controls a ∈ B([ t̄1, t̃1],A) × · · · ×
B([ t̄N, t̃N],A), and, for every such a, y(·) stands for y(a,τ)[x](·).

Moreover, for any 0 ≤ s ≤ S let us set

Vτψ(s, x)

É inf
{
ψ(y(a,τ)[x](S))+

∫ S
s

( N∑
i=1

`i(y(a,τ)[x](σ),ai ◦ τi(σ))dτidσ
)
dσ

}
.

Let us introduce the notion of ψ-inf-commutativity:

Definition 4.6. Let ψ : Rn → R be an arbitrary continuous map. We say
that the flows of the control vector fields (`1, f1)(x,a), . . . , (`N, fN)(x,a) inf-
commute at ψ [resp. simply inf-commute at ψ] if for any x ∈ Rn, any pair (t, t̃) =
((t1, . . . , tN), (t̃1, . . . , t̃N)), t ≤ t̃, and any two [resp. simple] multi-time paths τ,
τ̂ : [0, S] → RN connecting t and t̃, one has

Vτψ(0, x) = Vτ̂ψ(0, x)
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We say that the flows of the control vector fields (`1, f1)(x,a), . . . , (`N, fN)(x,a)
inf-commute [resp. simply inf-commute] if they inf-commute at ψ [resp. simply
inf-commute at ψ] for any continuous map ψ : Rn → R.

Theorem 4.7 ([19]). Assume the regularity hypothesis [H ]Lip and the zero Lie
bracket hypothesis [H ]CCZLB. Then the flows of the control vector fields (`1, f1)(x,a),
. . . , (`N, fN)(x,a) simply inf-commute.

Moreover, if hypothesis [H ]Lip is replaced by the stronger hypothesis [H′]Lip,
then the flows of the control vector fields (`1, f1)(x,a), . . . , (`N, fN)(x,a) inf-
commute.

Remark. A case where one hasψ-inf-commutativity without having commu-
tativity will be discussed in Section 9.

5. EXISTENCE AND SOME REPRESENTATIONS OF A SOLUTION

For any continuous initial data ψ and any multi-time path τ connecting some
t ∈ [0, T]N to (T , . . . , T), let us define the map

Wτψ(s,x) = Vτψ(S − s, x) ∀ (s, x) ∈ [0, S]×Rn.

Theorem 5.1 (Existence and representations). Let us assume hypotheses [H ]Lip
and [H ]CCZLB. Then for any continuous map ψ, there exists a unique viscosity
solution Uψ = Uψ(t,x) of the problem (1.1)–(1.2).

Moreover, for any simple multi-time path τ : [0, S] → RN such that τ(0) = t =
(t1, . . . , tN) and τ(S) = (T , . . . , T) and any permutation (i1, . . . , iN) of (1, . . . , N),
one has the following two representations of this solution:

Uψ(t,x) = Wτ
ψ(0, x)(1)

Uψ(t,x) = [x]ψe−tNHN · · ·e−t1H1 (= [x]ψe−tiN HiN . . .e−ti1Hi1 )(2)

for all (t, x) ∈ [0, T]N ×Rn.
If hypothesis [H ]Lip is replaced by the stronger regularity assumption [H′]Lip,

then representation (1) above holds for all—i.e., not necessarily simple—multi-time
paths τ : [0, S] → RN such that τ(0) = t = (t1, . . . , tN) and τ(S) = (T , . . . , T)
and one also has the following third representation of the solution of (1.1)–(1.2):

(3) Uψ(t,x) = [x]ψe−tNHN−···−t1H1 (= [x]ψe−tiN HiN−···−ti1Hi1 ).

This theorem will be proved in Subsections 5.2, 5.3, while in the next sub-
section we make some comments on the commutativity hypothesis [H ]CCZLB.
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5.1. Some remarks on the hypotheses

Neither bounded fields nor controllability Although our main goal was the
removal of the smoothness assumption on the Hamiltonians, notice that neither
we are assuming that the vector fields or the Lagrangian are bounded, nor we
are making some controllability hypothesis. As a matter of fact, these kinds of
hypotheses were made in [3]15 in order to exploit a priori bounds on the solution’s
gradient which is essential for the proof ’s strategy adopted there.

The commutativity hypothesis [H ]CCZLB The main achievement of Theorem
5.1 is the fact that the Hamiltonians are not assumed to be smooth. Hence, it
is reasonable to investigate the relation occurring between hypothesis [H ]CCZLB
and hypothesis [BT ]ZPB, which was made in [3] to prove existence.

For any i = 1, . . . , N, let us define the i-th unminimized Hamiltonian

hi(x,p,a) É 〈−p, fi(x,a)〉 − `i(x,a) ∀ (x,p,a) ∈ Rn ×Rn ×A.

By definition, the Hamiltonian Hi is given by

Hi(x,p) = sup
a∈A

hi(x,p,a).

Under assumption [H ]Lip the function hi is locally Lipschitz in x and differ-
entiable in p uniformly with respect to a. Hence by Rademacher’s Theorem for
any a ∈ A there is a setNi,a ⊂ Rn of zero Lebesgue measure such that hi(·, ·, a)
is differentiable at every (x,p) ∈ (Rn \Ni,a)×Rn.

Actually, in the result below we add a uniformity condition on the set of
differentiability points.

Proposition 5.2. Let us assume hypotheses [H ]Lip and [H ]CCZLB. Moreover,
let the following additional conditions be verified:

(i) for any i = 1, . . . , N there is a setNi ⊂ Rn of zero Lebesgue measure such that
for all p ∈ Rn the map hi(·, p, a) is differentiable in Rn \Ni, uniformly with
respect to a (that is, the setsNi,a ⊂ Rn defined above do not depend on a);

(ii) for any i = 1, . . . , N, the map a → Dxhi(x,p,a) is continuous at every
(x,p) ∈ (Rn \Ni)×Rn;

(iii) the control set A is compact.
Then the zero Lie bracket hypothesis [H ]CCZLB implies that the zero Poisson bracket
hypothesis [BT ]ZPB is verified almost everywhere.

15The “coercivity” assumption

lim
|p|→+∞

Hi(x,p) = +∞ uniformly for x ∈ Rn,

which was made in [3], is in fact a first order controllability hypothesis on the underlying optimal
control problem.
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Proof. Let us fix an arbitrary i ∈ {1, . . . , N}, and let us consider the set

Mi(x,p) É argmax
a∈A

hi(x,p,a) É {b ∈ A : hi(x,p, b) = max
a∈A

hi(x,p,a)}

which, by (iii) turns out to be non-empty for all (x,p) ∈ Rn×Rn. Furthermore,
for all (x,p) ∈ (Rn \Ni)×Rn let us define the subset Yi(x,p) by setting

Yi(x,p) É {(Dxhi(x,p,a),Dphi(x,p,a)) : a ∈Mi(x,p)}
(= {(−Dxfi(x,a)p −Dx`i(x,a),−fi(x,a)) : a ∈Mi(x,p)}).

Under hypothesis [H ]Lip the Hamiltonian Hi(·, ·) is locally Lipschitz con-
tinuous. Hence by Rademacher’s Theorem there exists a subset Ñi ⊂ Rn × Rn

of zero Lebesgue measure such that Hi(·, ·) is differentiable at every (x,p) ∈
(Rn ×Rn) \ Ñi. By hypothesis (i), it follows that at every (x,p) ∈ ((Rn \Ni)×
Rn) \ Ñi both Hi(·, ·) and hi(·, ·, a) are differentiable (uniformly with respect
to a). Hence by well known properties of marginal functions (see e.g. Proposition
2.13, II, in [4]), for every (x,p) ∈ ((Rn \ Ni) × Rn) \ Ñi the set Yi(x,p) is a
singleton and

DxHi(x,p) = Dxhi(x,p,a) = −Dxfi(x,a)p −Dx`i(x,a),
DpHi(x,p) = Dphi(x,p,a) = −fi(x,a)

for any a ∈ Mi(x,p). Hence for any i, j ∈ {1, . . . , N}, i 6= j and for any
(x,p) ∈ ((Rn \ (Ni ∪Nj))×Rn) \ (Ñi ∪ Ñj) one has

(5.1) {Hj,Hi}(x,p) = (p,1)[f̂j(x,aj), f̂i(x,ai)]

for arbitrary ai ∈ Mi(x,p) and aj ∈ Mj(x,p). By [H ]CCZLB and the regularity
hypothesis (i), at any x ∈ Rn \ (Ni ∪Nj) one has

[f̂j(x,aj), f̂i(x,ai)] = 0 ∀aj, ai ∈ A.

Therefore (5.1) implies that

{Hi,Hj}(x,p) = 0 for all (x,p) ∈ ((Rn \ (Ni ∪Nj))×Rn) \ (Ñi ∪ Ñj),

which concludes the proof. ❐

5.2. Preliminary results for the proof of Theorem 5.1 Theorem 5.1 will
be proved in the next subsection as a consequence of Theorems 5.4 and 5.6 below.

To begin with, to every multi-time t = (t1, . . . , tN) ∈ [0, T]N we can attach
canonically special simple multi-time paths, namely those which run each time
component only once.
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Definition 5.3 (Time-ordered value functions). For any permutation ι =
{i1, . . . , iN} of {1, . . . , N} and any t = (t1, . . . , tN) such that 0 ≤ t ≤ (T , . . . , T),
let us set S0 É 0, Sj É

∑j
r=1(T − tir ) for any j = 1, . . . , N, S É SN , and let us

consider the simple multi-time path

τtι (s) É τt1,...,tNi1,...,iN (s) = (t1, . . . , tN)+
∫ s

0

N∑
j=1

χ]Sj−1,Sj](ξ)
∂
∂tij

dξ

for all s ∈ [0, S]. Correspondingly, for any arbitrary continuous map ψ and any
x ∈ Rn, let us define the value function

Vi1,...,iNψ (t, x) É Vτ
t
ι
ψ (0, x),

where Vτ
t
ι
ψ is defined according to Definition 4.5. We will refer to the maps

Vi1,...,iNψ as time-ordered value functions.

Remark. For anyψ, there are exactly N! time-ordered value functions. Notice

that they are defined on [0, T]N ×Rn, while the functions Vτ
t
ι
ψ are defined on sets

of the form [0, S]×Rn.

For each permutation ι = (i1, . . . , iN), let us define the map Wi1,...,iNψ on
[0, T]N ×Rn by setting

Wi1,...,iNψ (t1, . . . , tN, x) = Vi1,...,iNψ (T − t1, . . . , T − tN,x).

Theorem 5.4. Let us assume hypothesis [H ]Lip. For any permutation {i1, . . . , iN}
of {1, . . . , N} the map Wi1,...,iNψ is a viscosity solution of the equation

∂u
∂ti1

(t, x)+Hi1(x,Dxu(t, x)) = 0

on ]0, T ]N ×Rn. Moreover, it verifies the boundary condition

Wi1,...,iNψ (0, . . . ,0, x) = ψ(x) ∀x ∈ Rn.

Furthermore, if the function ψ is locally Lipschitz continuous, the map Wi1,...,iNψ is
locally Lipschitz continuous as well. Finally, if the function ψ is globally Lipschitz
continuous and the dynamics fi and the Lagrangians `i are bounded and globally Lip-
schitz continuous in x, uniformly with respect to the controls, then the map Wi1,...,iNψ
turns out to be globally Lipschitz continuous.

Proof. This theorem is an easy consequence of well known results on evolu-
tion equations (see e.g. Sect. III in [4]) and of the representation formula for the
map Wi1,...,iNψ proved in Theorem 5.6 below. ❐
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In order to prove Theorem 5.6 below, we shall make use of the following dynamic
programming principle, whose proof is omitted, because it can be easily obtained
by arguing as in the proof of the dynamic programming principle for finite horizon
problems (see e.g. Proposition 3.2, III in [4]).16

Proposition 5.5 (Dynamic Programming Principle). Let us assume hypothesis
[H ]Lip and let ψ be an arbitrary continuous function. Let us fix (t, x) ∈ [0, T]N ×
Rn, t 6= (T , . . . , T), and a permutation ι = {i1, . . . , iN} of {1, . . . , N}. Let us set
S0 É 0, Sj É

∑j
r=1(T − tir ) for any j = 1, . . . , N and S = SN , and τ(·) = τtι (·).

Then for any 0 < σ < S one has

Vi1,...,iNψ (t, x) = inf
{∫ σ

0

( N∑
j=1

`ij (y(s), aij ◦ τij (s))χ[Sij−1 ,Sij ]
(s)
)
ds

+ Vi1,...,iNψ (τ(σ),y(σ))
}
,

where the infimum is taken over the set of controls

a = (a1, . . . , aN) ∈ B([t1, T],A)× · · · × B([tN, T],A),

and y(·) = y(a,τ)[x](·).
Theorem 5.6. Let us assume hypothesis [H ]Lip. Let ψ be an arbitrary contin-

uous function and let (i1, . . . , iN) be any permutation of (1, . . . , N). Then for every
(t1, . . . , tN) ∈ [0, T]N and any x ∈ Rn one has

Wi1,...,iNψ (t1, . . . , tN, x) = [x]ψe−tiNHiN e−tiN−1HiN−1 · · ·e−ti1Hi1 .

Proof. For every (τ,x) ∈ [0, T]×Rn let us consider the value function

(5.2) Vjψ(τ,x) É inf
{
ψ(y(T))+

∫ T
τ
`j(y(ξ), a(ξ))dξ

}
where the infimum is taken over the set of controls a(·) ∈ B([τ, T],A) and y(·)
stands for the solution of17

(5.3)
dy
dξ
(ξ) = fj(y(ξ), a(ξ)), y(τ) = x.

16Let us notice, however, that this dynamic programming principle is not completely standard
because of the dependence of Vi1 ,...,iN (t,x) on t through the t-parameter family of multi-time paths
{τtι }t .

17It is convenient to notice that, since the problem is autonomous, Vjψ can be equivalently defined

as Vjψ(τ,x) = inf{ψ(y(T −τ))+
∫ T−τ
0 `j(y(ξ),a(ξ))dξ}, where the control a(·) ranges over the

set B([0, T − τ],A) and y solves the equation in (5.3) with initial condition y(0) = x.
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It is well-known that for every τ ∈ [0, T] one has

(5.4) [x]ψe−τHj = Vjψ(T − τ,x) ∀x ∈ Rn.

Up to renaming indexes, we can limit ourselves to prove the theorem for
(i1, . . . , iN) = (1, . . . , N). Moreover, since e0Hj coincides with the identity map,
without loss of generality, we can consider only points (t, x) ∈ ]0, T ]N ×Rn. We
argue by induction on N. For N = 1, the thesis follows from (5.4) with j = 1. Let
N > 1. For any continuous map ϕ, any (t1, . . . , tN−1) ∈ [0, T]N−1, any x ∈ Rn,
and any j = 1, . . . , N−1 let us set S0 É 0, Sj É

∑j
r=1(T−tr ) and let us introduce

the value function

V 1,...,N−1
ϕ (t1, . . . , tN−1, x)

= inf
{∫ SN−1

0

N−1∑
j=1

`j(ỹ(s), ãj ◦ τ̃j(s))χ]Sj−1,Sj](s)ds +ϕ(ỹ(SN−1))
}
,

where the infimum is taken over the set of controls

ã = (ã1, . . . , ãN−1) ∈ B([t1, T],A)× · · · × B([tN−1, T],A),

τ̃ is defined by

τ̃(s) = (t1, . . . , tN−1)+
∫ s

0

N−1∑
j=1

χ]Sj−1,Sj](ξ)
∂
∂tj

dξ

for all s ∈ [0, SN−1], and, for any control ã, ỹ(·) denotes the solution of

dy
ds
=
N−1∑
j=1

fj(y(s), ãj ◦ τ̃j(s))χ]Sj−1,Sj] s ∈ ]0, SN−1[ , y(0) = x.

Furthermore, let us set

W 1,...,N−1
ϕ (t1, . . . , tN−1, x) = V 1,...,N−1

ϕ (T − t1, . . . , T − tN−1, x).

By the inductive hypothesis it follows that

(5.5) W 1,...,N−1
ϕ (t1, . . . , tN−1, x) = [x]ϕe−tN−1HN−1 . . .e−t1H1

for all (t1, . . . , tN−1, x) ∈ [0, T]N−1 ×Rn. Since

V 1,...,N
ψ (T , . . . , T , tN, x) = VNψ (tN,x) ∀ tN ∈ [0, T], x ∈ Rn,



1596 MONICA MOTTA & FRANCO RAMPAZZO

choosing σ = SN−1 in Proposition 5.5, we get

(5.6) V 1,...,N
ψ (t1, . . . , tN, x)

= inf
{∫ SN−1

0

N−1∑
j=1

`j(y(s), aj ◦ (τt)j(s))χ[Sj−1,Sj](s)ds

+ VNψ (tN,y(SN−1))
}

where:
(i) the infimum is taken over the set of controls

a = (a1, . . . , aN) ∈ B([t1, T],A)× · · · × B([tN, T],A);

(ii) τt = τt1,...,tN1,...,N and (τt)j denotes its j-th component;
(iii) for any control a, we have written y(·) instead of y(a,τt)[x](·).

Since the restrictions to the interval [0, SN−1] of the functions τt(·), a(·), and
y(·) can be identified, respectively, with the functions τ̃(·), ã(·), and ỹ(·) de-
fined above, by (5.6) it follows that (see footnote (17))

(5.7) V 1,...,N
ψ (t1, . . . , tN, x) = V 1,...,N−1

VNψ (tN,·)(t1, . . . , tN−1, x).

Thus (5.7), (5.4) and (5.5)—where we chooseϕ(·) É VNψ (tN, ·)—yield that

W 1,...,N
ψ (t1, . . . , tN, x) = [x]VNψ (tN, ·)e−tN−1HN−1 · · ·e−t1H1

= [x]ψe−tNHNe−tN−1HN−1 · · ·e−t1H1 ,

which concludes the proof. ❐

Remark. The relevant property, stated in Theorem 5.6, that for any permu-
tation (i1, . . . , iN) of (1, . . . , N) the map Wi1,...,iNψ may be defined as composition
of elements of N one-parameter semigroups of solutions generated by the single
Hamilton-Jacobi equations belonging to the multi-time system (1.1) holds even if
a solution to (1.1)–(1.2) does not exist. In particular, it is independent of the zero
Lie bracket hypothesis [H ]CCZLB. Incidentally, this implies that we do not need
hypothesis [H ]CCZLB also in Theorem 5.4.

5.3. Proof of Theorem 5.1 Let us fix a point (t, x) ∈ [0, T]N × Rn. By
Theorem 4.7 we easily obtain that for any simple multi-time path τ : [0, S] →
RN such that τ(0) = (t1, . . . , tN) and τ(S) = (T , . . . , T) and any permutation
(i1, . . . , iN) of (1, . . . , N), the maps Wτψ(0, x), W

i1,...,iN
ψ (t, x), and W 1,...,N

ψ (t, x)
do coincide. Actually, in view of Theorem 5.4, the map

(t, x), Uψ(t,x) = W 1,...,N
ψ (t, x)
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(or, equivalently, each of the maps Wi1,...,iNψ ) is a viscosity solution of the problem
(1.1)–(1.2). This proves the existence issue and the representation (1)—while
uniqueness comes from Theorem 3.2.

Representation (2) has been proved in Theorem 5.6.
If hypothesis [H′]Lip is assumed, Theorem 4.7 ensures that the representa-

tion formula (1) for the solution of (1.1)–(1.2) holds also for any multi-time path.
In order to prove (3), for any C1 multi-time path τ : [0, S] → RN joining

some t ∈ [0, T]N to (T , . . . , T) let us introduce the Hamiltonian

Hτ(s, x,p) É
N∑
i=1

Hi(x,p)
dτi
ds
(s),

defined for all (s, x,p) ∈ [0, S] × Rn × Rn. From well known uniqueness and
representation results (see e.g. Theorem 3.17, III in [4]) it follows that, under
hypothesis [H ]Lip, the Cauchy problem

(5.8)

∂v
∂s
(s, x)+Hτ(s, x,Dxv(s, x)) = 0,

(s, x) ∈ ]0, S[×Rn, v(0, x) = ψ(x)

has a unique viscosity solution, which, according to the notation introduced in
Section 2, is denoted by [x]ψe−

∫ s
0 Hτ(r)dr . Moreover,

[x]ψe−
∫ s
0 Hτ(r)dr = Wτψ(s,x) ∀ (s, x) ∈ [0, S]×Rn.

This allows us to prove (3): indeed, choosing

τ(s) É (t1, . . . , tN)+ s(T − t1, . . . , T − tN) s ∈ [0,1],

one has

Hτ = −t1H1 − · · · − tNHN,

so, by representation (1),

Uψ(t,x) = Wτ
ψ(0, x) = [x]ψe−tNHN···−t1H1 .

Proof of the second part of Proposition 2.5. The additivity property (2.7) is a
straightforward consequence of the representation formulas (2) and (3) in Theo-
rem 5.1. ❐
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5.4. Solving the initial value problem (1.5)–(1.6) In the Introduction we
have considered the initial value problem

∂u
∂t1
+H1(x,Dxu) = 0,

∂u
∂t2
+H2(x,Dxu) = 0,

u(0,0, x) = ψ(x),

where
ψ(x) = |x1 − arctanx2| + |x2| ∀x ∈ R2

and

Hi(x,p) = max
a∈{0,−1,1}

{−p · fi(x,a)}, i = 1,2,

f1(x,a) =
(
|x1 − arctanx2| + a

0

)
, f2(x,a) =


|x2|a
1+ x2

2

|x2|a

 .
After having observed that this problem verifies the hypotheses of Theorem 5.1,
we have given an explicit solution U (see (1.7), (1.8), (1.9)). We now show how
this solution can be constructed on the basis of the results of the previous subsec-
tions. For every (t1, t2, x) = (t, x) ∈ [0, T]2 × R2 let us set S1 É (T − t1) and
S É (T − t1)+ (T − t2) and let us consider the simple multi-time path

τ(s) = (t1, t2)+
∫ s

0

(
χ]0,S1](ξ)

∂
∂t1
+ χ]S1,S](ξ)

∂
∂t2

)
dξ

for all s ∈ [0, S]. Correspondingly, for any x ∈ R2 let us introduce the time
ordered value function

V 1,2(t1, t2, x) É inf{ψ(y(S))},

where:
(i) the infimum is searched over all 2-controls

a = (a1, a2) ∈ B([t1, T], {0,−1,1})×B([t2, T], {0,−1,1});

and
(ii) for every such a, y(·) stands for the solution of the Cauchy problem

dy
ds
= f1(y(s), a1◦τ1(s))χ]0,S1](ξ)+f2(y(s), a1◦τ2(s))χ]S1,S](ξ), y(0) = x.
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Notice that for every 2-control a one has

y2(s) = x2,
dy1

ds
= |y1(s)− arctanx2| + a1 ◦ τ1(s), ∀ s ∈ ]0, S1]

and that the map E(x) É x1 − arctanx2 evaluated along y(s) remains constant
for all s ∈ [S1, S]. Hence, one easily deduces that the optimal policy consists in:

(i) minimizing |y1(s)− arctanx2| for s ∈ [0, S1]; and
(ii) minimizing |y2(s)| for s ∈ ]S1, S].

A direct computation yields:

V 1,2(t1, t2, x) = −e−(T−t1)(x1 − arctanx2)− (1− e−(T−t1))+ |x2|e−(T−t2)

when x1 − arctanx2 ≤ 1− eT−t1 ;

V 1,2(t1, t2, x) = |x2|e−(T−t2)

when 1− eT−t1 < x1 − arctanx2 < 1− e−(T−t1);

V 1,2(t1, t2, x) = eT−t1(x1 − arctanx2)+ (1− eT−t1)+ |x2|e−(T−t2)

when x1 − arctanx2 ≥ 1 − e−(T−t1). In view of Theorem 5.1, we obtain the
solution U by simply setting, for every (t1, t2, x) ∈ [0, T]2 ×R2,

U(t1, t2, x) = V 1,2(T − t1, T − t2, x).

6. THE BEST VALUE

In this section we wish to introduce the (standard) control problem obtained by
the whole family of multi-time control problems by considering the multi-time
paths as new controls, so that the optimizing strategy consists not only in the
choice of the N-control a, but also in the choice of the path joining the given
initial multi-time (t1, . . . , tN) with the end multi-time (T , . . . , T).

The interest for this auxiliary problem is obvious from the point of view of
applications. Indeed, unless commutativity hypotheses are assumed (as in The-
orem 4.7), the cost depends on the multi-time path followed from (t1, . . . , tN)
to (T , . . . , T). So, one could be interested to single out the best choice of the
multi-time path. This provides the multi-time control problem with a reasonable
concept of value, the Best Value, even when there is no existence for the original
multi-time system (1.1)–(1.2).

But the auxiliary optimal control problem we are introducing is interesting
also from an other viewpoint. Indeed the corresponding Hamilton-Jacobi equa-
tion is exactly equation (3.1), used in Section 3 to prove the uniqueness of the
solutions to (1.1)–(1.2). Moreover, as soon as the multi-time problem (1.1)–(1.2)
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admits a solution, this coincides (up to reversing time) with the Best Value (see
Theorem 6.3). In particular this can be used to study the regularity of the solution
to (1.1)–(1.2),18 which (thanks to the uniqueness property of equation (3.1)) can
be reduced to the regularity of the value function of a standard optimal control
problem.

Let us consider the optimal control problem

P[t, x] minimize
{
ψ(y(S))+

∫ S
0

( N∑
i=1

`i(y(s), ai ◦ τi(s))wi(s)
)
ds
}
,

where 
τ′(s) = w(s),

y ′(s) =
N∑
i=1

fi(y(s), ai ◦ τi(s))wi(s),
(6.1)

(τ,y)(0) = (t, x) τ(S) = (T , . . . , T),(6.2)

and the minimization is performed over the set of all control pairs (w,a) such that
the control w : [0, S] → RN is piecewise constant and ranges over the canonical
basis of RN , a = (a1, . . . , aN) ∈ B([t1, T],A)×· · ·×B([tN, T],A), and τ(S) =
(T , . . . , T).19 In the sequel, we will refer to this set as admissible control set and we
will denote it by A(t). Furthermore, for any (w,a) the corresponding solution
to (6.1)–(6.2) will be denoted by the pair (τw[t](·),y(w,a)[t, x](·)). By the
definition of w it follows thatA(t) 6= ∅ for all t ∈ [0, T]N \ {(T , . . . , T)}.

Notice also that S is determined by t; indeed, one has

S =
N∑
i=1

(T − ti).

Problem P[t, x] can be regarded either as a control problem with target T =
{(T , . . . , T)} ×Rn and S = inf{s > 0 : τ(s) = (T , . . . , T)}, or, equivalently, as an
exit-time control problem, where S turns out to be the first exit-time of the pair
(τ,y) from the region ([0,+∞[N \ {(T , . . . , T)})×Rn.

Let us consider the value function associated with problem P[t, x]:

Vψ(t, x) = inf
(w,a)∈A(t)

{
ψ(y(S))+

∫ S
0

( N∑
i=1

`i(y(s), ai ◦ τi(s))wi(s)
)
ds
}
.

The map Vψ(·, ·) will be called the Best Value of the multi-time control problem
(1.1)–(1.2).

18See the two proofs of Theorem 7.1.
19This is equivalent to say that τ is chosen among simple multi-time paths connecting t with

(T , . . . , T).
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Theorem 6.1 (Regularity of the Best Value). Let us assume hypothesis [H ]Lip.
(i) For any continuous map ψ, the map Vψ(·, ·) is continuous on [0, T]N ×Rn.

(ii) If the functionψ is locally Lipschitz continuous, then Vψ(·, ·) is locally Lipschitz
continuous as well.

(iii) If the function ψ is globally Lipschitz continuous and the dynamics fi and the
Lagrangians `i are bounded and globally Lipschitz continuous uniformly with
respect to the controls, then Vψ(·, ·) turns out to be globally Lipschitz continuous.

Proof. For any t, x, (w,a) ∈ A(t), and S ∈ [0, NT] we set

I(t, x,w,a, S) = ψ(y(S))+
∫ S

0

( N∑
i=1

`i(y(s), ai ◦ τi(s))wi(s)
)
ds

where τ(·) = τw[t](·) and y(·) = y(w,a)[t, x](·). By applying Gronwall’s
inequality, one has that, for any R > 0 and for all (s, x) ∈ [0, S]× B(0, R),

(6.3) |y(s)| ≤ |x| +M(1+ |x|)seMs ≤ R +M(1+ R)NTeMNT É C1(R),

where M is the same constant introduced in assumption [H ]Lip.
For a fixed t ∈ [0, T]N , the regularity properties in the variable x can be

deduced by standard arguments. Moreover, such properties turn out to be uniform
with respect to the variable t as the latter ranges in [0, T]N .

Let us fix x ∈ Rn. The proof of the continuity of Vψ(·, x) requires some care
because of the dependence of the admissible control set A(t) on t. Let (t̄, x),
(t̃, x) ∈ [0, T]N ×Rn and suppose that Vψ(t̄, x) ≥ Vψ(t̃, x). Since

Vψ(t̄, x)− Vψ(t̃, x) = [Vψ(t̄, x)− Vψ(t̃1, t̄2, . . . , t̄N, x)]
+ [Vψ(t̃1, t̄2, . . . , t̄N, x)− Vψ(t̃1, t̃2, t̄3, . . . , t̄N, x)]
+ · · · + [Vψ(t̃1, . . . , t̃N−1, t̄N, x)− Vψ(t̃, x)],

we can consider only the case where t̄i 6= t̃i for a given i, and t̄j = t̃j for j 6= i.
For any ε > 0, let (w,a) ∈A(t̃) be a control such that

Vψ(t̃, x) ≥ I(t̃, x,w,a, S)− ε,

where S =∑Nr=1(T − t̃r ). In general, the control (w,a) does not belong toA(t̄),
so let us construct a second control pair (w̄, ā) ∈ A(t̄) as follows.

If t̃i < t̄i, we consider the control ā = (ā1, . . . , āN) such that āj = aj for
all j 6= i and āi(r) coincides with the restriction of ai(r − (t̄i − t̃i)) to [t̄i, T].
Furthermore, let us set

s̄ É inf{s > 0 : (τw[t̃ ])i(s) > T − (t̄i − t̃i)} (≤ S)



1602 MONICA MOTTA & FRANCO RAMPAZZO

and define the control

w̄(s) = w(s)χ[0,s̄](s)+
[
w(s)−

〈
w(s),

∂
∂ti

�
∂
∂ti

]
χ]s̄,S](s)

for all s. Notice that w̄ is not yet an admissible control, in that it takes the
value 0 ∉ {∂/∂t1, . . . , ∂/∂tN} on a finite number of intervals. However, it is clear
that on the intervals where w̄ = 0 the corresponding solution to (6.1) and the cost
function I remain constant. Let us consider the control one obtains from w̄ when,
loosely speaking, all the intervals where w̄ = 0 are removed and the remaining
intervals are translated backwards, so that, in particular, the corresponding simple
multi-time path τ̄ verifies τ̄(S̄) = (T , . . . , T) at S̄ = S − (t̄i − t̃i). There is no
danger of confusion in using again the notation (w̄, ā) for the so obtained control.
In particular, (w̄, ā) turns out to belong toA(t̄).

If t̃i > t̄i, let us fix an arbitrary ā ∈ A and consider the control ā =
(ā1, . . . , āN) such that āj = aj for all j 6= i, and

āi(r) = ai(r − (t̄i − t̃i))χ[t̄i,T+(t̄i−t̃i)](r)+ āχ]T+(t̄i−t̃i),T](r) for all r .

Moreover, we define the control

w̄(s) = w(s)χ[0,S](s)+
∂
∂ti
χ]S,S+(t̃i−t̄i)](s)

for all s. Clearly, the control pair (w̄, ā) belongs toA(t̄).
Setting ỹ(s) = y(w,a)[t̃, x](s) and ȳ(s) = y(w̄,ā)[t̄, x](s) for all s, standard

estimates yield that

|ỹ(s)− ȳ(s)| ≤M(1+ |x|)e(N−1)TLC1 |t̄i − t̃i| É C4|t̄i − t̃i|,

and

|I(t̄, x, w̄, ā, S̄)− I(t̃, x,w,a, S)| ≤ C5|t̄i − t̃i| +ω(C4|t̄i − t̃i|, C1),

where C1 = C1(|x|) is the same as in (6.3), the parameters M, LC1 are the same
as in assumption [H ]Lip, C5 = NTLC1C4 +NMC1 , and, for any r > 0,ω(·, r ) is
the modulus of continuity of ψ in B(0, r ). Hence

0 ≤ Vψ(t̄, x)− Vψ(t̃, x) ≤ C5|t̄ − t̃| +ω(C4|t̄ − t̃|, C1)+ ε,

which, by the arbitrariness of ε, proves the continuity of Vψ(·, x) for any x. If ψ
is locally Lipschitz continuous, the same estimate implies that Vψ(·, x) is locally
Lipschitz continuous in t. Furthermore, Vψ(·, x) turns out to be globally Lips-
chitz continuous in t wheneverψ is Lipschitz continuous and the functions fi, `i
are globally Lipschitz continuous in x, uniformly with respect to the controls, i.e.,
LR in [H ]Lip does not depend on R, and moreover, all the fi, `i are bounded. ❐
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Theorem 6.2 (A HJ equation for the Best Value). For any continuous function
ψ, the map

Wψ(t, x) É Vψ(T − t1, . . . , T − tN,x) (t, x) ∈ [0, T]N ×RN

is the unique viscosity solution of (3.1), (3.2), (3.3).

Proof. Because of hypothesis [H ]Lip, the uniqueness of the solution is a con-
sequence of Theorem 3.4. By standard results on exit-time value functions (see
[12], [2]), Wψ turns out to be a viscosity solution of the equation

(6.4) max
w∈{∂/∂t1,...,∂/∂tN}

N∑
i=1

[
∂u
∂ti
+Hi(x,Dxu)

]
wi = 0

in ]0, T ]N ×Rn. Moreover, it is a viscosity supersolution of (6.4) on ∂0( ]0, T ]N ×
Rn) (see the definition of ∂0( ]0, T ]N ×Rn) in Section 3). Finally, in view of the
continuity result established in Theorem 6.1, Wψ satisfies the boundary condition

Wψ(0, x) = ψ(x)

for all x ∈ Rn. Since

max
w∈{∂/∂t1,...,∂/∂tN}

N∑
i=1

[pti +Hi(x,p)]wi

= max{pt1 +H1(x,p), . . . , ptN +HN(x,p)},

for all pt1 , . . . , ptN ∈ R, p ∈ Rn, and x ∈ Rn, this concludes the proof. ❐
As a Corollary of Theorem 5.1 (and the definition of the Best Value) we obtain a
further representation formula for the solution of (1.1)–(1.2).

Theorem 6.3. Let us assume hypotheses [H ]Lip, [H ]CCZLB, and for any con-
tinuous map ψ let Uψ = Uψ(t,x) be the unique solution of (1.1)–(1.2). Then

Uψ(t,x) =Wψ(t, x) ∀ (t, x) ∈ [0, T]N ×Rn.

7. REGULARITY OF THE SOLUTION AND SEMIGROUP PROPERTIES

Theorem 7.1 (Regularity). Let us assume hypotheses [H ]Lip, [H ]CCZLB. If the
function ψ is locally Lipschitz continuous, the solution Uψ of (1.1)–(1.2) is locally
Lipschitz continuous. Moreover, if the function ψ is globally Lipschitz continuous and
the vector fields f̂i(·, a) are globally Lipschitz continuous, uniformly with respect to
the controls a, and bounded, then the solution Uψ turns out to be globally Lipschitz
continuous.
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Theorem 7.2 (Semigroup Property). Let us assume hypotheses [H ]Lip,
[H ]CCZLB. Then for every continuous map ψ and every pair (t, t̃) ∈ [0, T]N ×
[0, T]N such that t + t̃ ∈ [0, T]N one has

(7.1) UUψ(t,·)(t̃, x) = Uψ(t + t̃, x)

for all x ∈ RN .

First proof of Theorem 7.1. Since the solution coincides with W 1,...,N
ψ (t, x) =

V 1,...,N
ψ (T − t1, . . . , T − tN,x), the result is a corollary of Theorem 5.4. ❐

Second proof of Theorem 7.1. On the basis of Theorem 3.2 and Proposition
3.5 the solution is unique and coincides with the solution Wψ of the auxiliary
Hamilton-Jacobi equation (3.1). Hence the regularity of Uψ is simply a direct
consequence of Theorem 6.1. ❐

Proof of Theorem 7.2. By the additivity property (2.7), for every permutation
(i1, . . . , iN) of (1, . . . , N) one has

[x]ψe−τHie−σHj = [x]ψe−σHje−τHi

for all i, j = 1, . . . , N, i ≠ j τ, σ ∈ [0, T]. Therefore, by (2.6), one has

Uψ(t + t̃, x) = W 1,...,N
ψ (t + t̃, x)

= [x]ψe−(tN+t̃N )HN · · ·e−(t1+t̃1)H1

= [x]ψe−tNHNe−t̃NHN · · ·e−t1H1e−t̃1H1

= [x]ψe−tNHN · · ·e−t1H1e−t̃NHN · · ·e−t̃1H1

= W 1,...,N
ψe−tNHN ···e−t1H1 (t̃, x)

= W 1,...,N
W 1,...,N
ψ (t,·)(t̃, x)

= UUψ(t,·)(t̃, x),

which proves (7.1). ❐

8. MULTI-TIME FRONT PROPAGATION

Let us assume Hypotheses [H ]Lip and [H ]CCZLB. In Section 5 we have proved
that under these hypotheses a unique solution exists for the multi-time problem
(1.1)–(1.2). In order to keep track of the dependence on the Hamiltonians let us
use U(H1,...,HN)

ψ —instead of Uψ—to denote this solution. In the case of a single
Hamiltonian it is well-known that, as soon as the Hamiltonian is positively 1-
homogeneous in p, the propagations of the zero level and sub-level depend only on
the zero and sub-zero levels of the initial datum (i.e., these propagations coincide
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for two initial data whose zero level and sub-level are equal). It is then natural to
wonder if a similar property—which we call the Front Propagation Property holds
true for multi-time systems as well. To begin with, let us state rigorously this
property. For a given map φ : Rn → R we shall use {φ(·) < 0} and {φ(·) = 0},
respectively, to denote the sets {x ∈ Rn : φ(x) < 0} and {x ∈ Rn : φ(x) = 0}.

Definition 8.1. We say that the Hamiltonians H1, . . . , HN verify the Front
Propagation Property (FPP) if for every pair of continuous functions ψ, ψ̃ such
that

{ψ(·) < 0} = {ψ̃(·) < 0},
{ψ(·) = 0} = {ψ̃(·) = 0},

one has

{U(H1,...,HN)
ψ (t1, . . . , tN, ·) < 0} = {U(H1,...,HN)

ψ̃ (t1, . . . , tN, ·) < 0},
{U(H1,...,HN)
ψ (t1, . . . , tN, ·) = 0} = {U(H1,...,HN)

ψ̃ (t1, . . . , tN, ·) = 0},

for all multi-times (t1, . . . , tN) ∈ [0, T]N .

Theorem 8.2 (Front propagation for multi-time systems). Let us assume that
each Hamiltonian Hi is positively 1-homogeneous.20 Then (FPP) is verified for all
(t1, . . . , tN) ∈ [0, T]N .

Remark. Notice that under our structural hypothesis on the Hamiltonians
Hi, the 1-homogeneity hypothesis (in p) is equivalent to the fact that all `i are
equal to zero. Moreover, the 1-homogeneity hypothesis implies that (FPP) holds
if and only if for every real number r the property (FPP)r holds as well, where
(FPP)r is obtained by (FPP) by replacing zero with r (so that, in particular, (FPP)0

coincides with (FPP)).

Proof of Theorem 8.2. Let t = (t1, . . . , tN) ∈ [0, T]N and let ψ, ψ̃ be con-
tinuous maps such that

{ψ(·) < 0} = {ψ̃(·) < 0},
{ψ(·) = 0} = {ψ̃(·) = 0}.

If (t1, . . . , tN) = (0, . . . ,0), then there is nothing to prove. If (t1, . . . , tN) ≠
(0, . . . ,0), let us set

j = inf{i = 1, . . . , N : th = 0 ∀h > i}
20I.e., Hi(x,λp) = λHi(x,p) for all (x,p,λ) ∈ Rn × Rn × [0,+∞[. Sometimes this property

is referred to as the geometric property.
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and let us proceed inductively on j. Let us recall that, by Theorem 5.1,

U(H1,...,HN)
ψ (t1, . . . , tN, x) = [x]ψe−t1H1 · · ·e−tNHN .

If j = 1, then U(H1,...,HN)
ψ (t1, . . . , tN, x) = [x]ψe−t1H1, so we are in the case of

a single equation for which the property is known to be true (see e.g.[6], [10]).
Now assume that the thesis holds true for a j > 1 and let us prove that it is valid
for j + 1 as well. Indeed, the inductive hypothesis implies that

{x ∈ Rn : [x](ψe−t1H1 · · ·e−tjHj ) < 0}
= {x ∈ Rn : [x](ψ̃e−t1H1 · · ·e−tjHj ) < 0}

and
{x ∈ Rn : [x](ψe−t1H1 · · ·e−tjHj ) = 0}

= {x ∈ Rn : [x](ψ̃e−t1H1 · · ·e−tjHj ) = 0}.

Since (FPP) holds for a single equation, we deduce

{U(H1,...,HN)
ψ (t1, . . . , tN, ·) < 0}
= {x ∈ Rn : [x](ψe−t1H1 · · ·e−tjHj )e−tj+1Hj+1 < 0}
= {x ∈ Rn : [x](ψ̃e−t1H1 · · ·e−tjHj )e−tj+1Hj+1 < 0}
= {U(H1,...,HN)

ψ̃ (t1, . . . , tN, ·) < 0}
and

{U(H1,...,HN)
ψ (t1, . . . , tN, ·) = 0}
= {x ∈ Rn : [x](ψe−t1H1 · · ·e−tjHj )e−tj+1Hj+1 = 0}
= {x ∈ Rn : [x](ψ̃e−t1H1 · · ·e−tjHj )e−tj+1Hj+1 = 0}
= {U(H1,...,HN)

ψ̃ (t1, . . . , tN, ·) = 0}

so the thesis is verified for j + 1 as well, which concludes the proof. ❐

9. AN OPEN QUESTION

The main achievement of this paper is the replacement of the Zero Poisson Bracket
condition [BT ]ZPB with the Constant Control Zero Lie Bracket condition
[H ]CCZLB, which allows to deal with nonsmooth Hamiltonians.

However, it must be noticed that both these conditions imply (under different
regularity conditions) existence of a solution to the multi-time problem (1.1)–
(1.2) for every initial datum ψ. Then a natural question is: if neither [BT ]ZPB
nor [H ]CCZLB are verified, can a solution exist for some particular choice of the
initial datum ψ?
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We conclude this paper with an example showing that such a case can actu-
ally occur. Moreover, the example suggests that, at least for linear systems, some
intrinsic condition must be satisfied by the function ψ in order that a solution u
such that u(0, x) = ψ(x) may exist.

Example. Let us consider the multi-time system

(9.1)



∂u
∂t1
+H1(x,Dxu) = 0,

∂u
∂t2
+H2(x,Dxu) = 0,

u(0,0, x) = ψ(x),

where
H1(x,p) = p2(1+ (x1)3), H2(x,p) = p1.

Notice that one can write

H1(x,p) = p · f1(x), H2(x,p) = p · f2(x)

where
f1(x) = (1+ (x1)3)

∂
∂x2

, f2(x) = ∂
∂x1

.

In particular, one has

[f1, f2]x = −3(x1)2
∂
∂x2

,

which implies

{H1,H2}(x,p) = p · [f1, f2]x = −3p2(x1)2.

Therefore the commutativity condition [H ]CCZLB (which in this case is equiva-
lent to the Zero Poisson Bracket condition (ZPB)) is not verified for this system.
Actually it is easy to verify that there is no solution for ψ := π2 where π2 de-
notes the projection on the second coordinate, that is, π2(x) = x2.21 Yet, for
every differentiable map ψ = ψ(x1, x3) depending only on x1 and on x3 it is
straightforward to check that the map

u(t1, t2, x) = ψ(x1 − t2, x3)

is a classical solution of (9.1).

21Indeed by applying the theory of characteristics, if u were a solution, one would obtain
u(t1, t2, x) = π2(xe−t2f2e−t1f1), where we have used the notation xesg to denote the solution
of the Cauchy problem ẋ = g(x) at time s. In particular, one would have

0 = π2(0,0,0) = π2 ◦ ((0,0,0)e−t1f1e−t2f2et1f1et2f2) = −t1(t2)3,
which is false for every pair t1, t2 ∈ R \ {0}.
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Remark. In the previous example we have seen that a solution exists provided

∂ψ
∂x2

= 0.

It is not difficult to check that the maps ψ satisfying this relation are in fact the
only ones for which a solution exists.

Notice the intrinsic character of the above condition, for it can be written as
the Hamilton-Jacobi equation

K(x,Dψ(x)) = 0,

where K(x,p) = p · g(x) and g(x) = ∂/∂x2.
Hence it appears plausible that in the general case some sufficient condition

can be found on ψ in order that a solution to the multi-time problem (1.1)–(1.2)
does exist.

APPENDIX A. PROOF OF LEMMA 2.4

Let us use uψ(s,x) to denote the solution to (2.3).

Step 1 Let us begin by assuming that s(·) is C1 with s′(σ) > 0 ∀σ ∈
]σ0, σ1[. Hence the inverse function of s(·) is C1 as well and its derivative is
strictly positive. Let us denote the inverse function of s(·) by σ = σ(·). Let us
show that v(σ,x) É uψ(s(σ),x) is a viscosity subsolution of (2.4) in ]σ0, σ1[×
Rn. Let ϕ ∈ C1([σ0, σ1] × Rn) and let (σ̄ , x̄) ∈ ]σ0, σ1[ × Rn be a local
maximum point of v(σ,x)−ϕ(σ,x). Hence setting

s̄ É s(σ̄ ), ϕ̃(s, x) Éϕ(σ(s), x),

one has that (s̄, x̄) is a local maximum point of u(s,x)− ϕ̃(s, x). Then

∂ϕ̃
∂s
(s̄, x̄)+H(s̄, x̄,Dxϕ̃(s̄, x̄)) ≤ 0.

Since s′(σ̄ ) > 0 and (∂ϕ̃/∂s)(s̄, x̄)s′(σ̄ ) = (∂ϕ/∂σ)(σ̄ , x̄), multiplying the
above expression by s′(σ̄ ) one obtains that

∂ϕ
∂σ
(σ̄ , x̄)+H(s(σ̄ ), x̄,Dxϕ(σ̄ , x̄))s′(σ̄ ) ≤ 0,

which proves that v is a viscosity subsolution of (2.4) at (σ̄ , x̄). The proof that v
is a viscosity supersolution of (2.4) in ]σ0, σ1[×Rn is akin, so we omit it. Hence
v is a viscosity solution of (2.4).

Since s(·) is a C1 diffeomorphism, by applying the previous arguments in the
opposite direction we obtain that v is a viscosity solution of (2.4) if and only if
u is a viscosity solution of (2.3). In particular, (2.4) admits a unique solution as
soon as this holds true for (2.3).
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Step 2 Let s : [σ0, σ1] → [s0, s1] be an absolutely continuous, strictly in-
creasing, surjective map such that s′(σ) > 0 for a.e. σ ∈ ]σ0, σ1[. Let us denote
byω the function defined as

ω(σ) =
{
s′(σ) σ ∈ [σ0, σ1],
0 σ ∈ R \ [σ0, σ1].

Hence ω ∈ L1(R) and supp(ω) = {σ ∈ R :ω(σ) 6= 0} ⊂ [σ0, σ1]. Moreover,
let us set

ρ(σ) =
{
e1/(σ 2−1) |σ | < 1,
0 |σ | ≥ 1,

and let us consider the sequence of mollifiers {ρn}n ⊂ C∞c (R) defined by

ρn(σ) É Cnρ(nσ), where C É 1∫
R
ρ(r)dr

.

Then the maps

ωn(σ) Éω∗ ρn(σ) =
∫
R
ω(σ − r)ρn(r)dr

belong to C∞c (R) for all n and verify

lim
n

∫
R
|ωn(σ)−ω(σ)|dσ = 0.

Observe that for all n one has ωn(σ) > 0 for every σ ∈ ]σ0, σ1[. Hence for any
n the map

sn(σ) É s0 +
∫ σ
σ0

ωn(r)dr

is C1 from [σ0, σ1] to sn([σ0, σ1]), s′n(σ) > 0 ∀σ ∈ ]σ0, σ1[. Moreover, the
sn(·)’s converge uniformly to s(·) on [σ0, σ1]. For any n let us introduce the
function vn : [σ0, σ1]×Rn → R given by

vn(σ,x) É uψ(sn(σ),x).

Owing to Step 1, for any n the function vn is the (unique) viscosity solution of

∂v
∂σ
(σ,x)+H(sn(σ),x,Dxv(σ,x))ωn(σ) = 0, v(σ0, x) = ψ(x).

By the continuity of uψ and the properties of the ωn’s and sn’s it is now easy to
deduce that the vn’s converge uniformly to v on any compact subset of [σ0, σ1]×
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Rn and the H(sn(·), x,p)ωn(·)’s converge to H(s(·), x,p)ω(·) in
L1([s0, s1], C(K)) for any compact subset K ⊂ Rn×Rn.22 Thus the stability result
in [11], implies that v is a viscosity solution of (2.4), according to Definition 2.2.

In order to prove the uniqueness of the solution to (2.4), let us assume that
w ∈ C([σ0, σ1] × Rn) solves (2.4). Let us denote by σ = σ(s) the inverse
function of s = s(σ) and let us set ν(s, x) = w(σ(s), x). Let us recall that σ(·)
turns out to be absolutely continuous and strictly increasing with σ ′(s) > 0 for
a.e. s ∈ [s0, s1]. Therefore by applying the previous arguments in the opposite
direction we obtain that ν is a viscosity solution to (2.3). Since problem (2.3)
has a unique solution, ν(s, x) = uψ(s,x) ∀ (s, x) ∈ [s0, s1] × Rn. Hence
w(σ,x) = ν(s(σ),x) = uψ(s(σ),x) = v(σ,x) ∀ (σ,x) ∈ [σ0, σ1]×Rn.

APPENDIX B. PROOFS OF THEOREMS 3.3 AND COROLLARY 3.4

These proofs, which we give in detail for the sake of self-consistency, are slight
modifications of standard arguments usually exploited in the proof of comparison
theorems for single equations (see e.g. Theorem 3.12, III in [4]). We point out
that such arguments exploit the natural order on R and the special role played by
the time derivative in the equation. In our case, the time variable is vector valued,
but still the corresponding derivatives appear in the equation in a way which allows
us to exploit the partial order of RN .

Proof of Theorem 3.3. Assume by contradiction there are 0 < δ < NT and
(t̃, x̃) ∈ DC such that

(B.1) u1(t̃, x̃)−u2(t̃, x̃) = δ, |x̃| ≤ C|T − t̃|1 − 2δ.

Let us choose M > sup{|u1(t, x) − u2(s,y)| : (t, x, s,y) ∈ D2
C} (≥ δ) and

h ∈ C1(R) such that h′ ≤ 0, h(r) = 0 for r ≤ −δ, h(r) = −3M for r ≥ 0.
Choose positive parameters ε, η, β and define

Φ(t, s, x,y) = u1(t, x)−u2(s,y)−
|x −y|2 +

N∑
i=1

|ti − si|2

2ε
− η|t + s|1

+ h((|x| + β2)1/2 − C|T − t|1)+ h((|y| + β2)1/2 − C|T − s|1).

Let (t̄, s̄, x̄, ȳ) ∈ DC2 be such that

max
DC 2

Φ = Φ(t̄, s̄, x̄, ȳ).
22That is,

lim
n

∫ s1
s0
|H(sn(r),x(r),p(r))ωn(r)−H(s(r),x(r),p(r))ω(r)|dr = 0

for all pairs of continuous functions (x,p) : [s0, s1]→ K.
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We claim that min{|t̄ |1, |s̄|1} = 0 or (t̄, s̄, x̄, ȳ) lies in D2
C , for β and η small

enough. Indeed, if, by contradiction, it happens that |x̄| = C|T − t̄ |1 or |ȳ| =
C|T − s̄|1, by the definition of h we get

Φ(t̄, s̄, x̄, ȳ) ≤M − 3M = −2M.

On the other hand, by (B.1) it follows that, for any β < δ and η < δ/4|t̃|1,

(B.2) max
DC 2

Φ ≥ Φ(t̃, t̃, x̃, x̃) = δ− 2η|t̃|1+ 2h((|x̃| +β2)1/2 −C|T − t̃|1) ≥ δ2 ,

which proves the claim.
From the inequality Φ(t̄, t̄, x̄, x̄)+ Φ(s̄, s̄, ȳ, ȳ) ≤ 2Φ(t̄, s̄, x̄, ȳ), we have

|x̄ − ȳ|2 +
N∑
i=1

|t̄i − s̄i|2

ε
≤ u1(t̄, x̄)−u1(s̄, ȳ)+u2(t̄, x̄)−u2(s̄, ȳ).

Hence |x̄−ȳ|2+∑Ni=1 |t̄i− s̄i|2 ≤ 2Mε and by the continuity of u1, u2 it follows
that

|x̄ − ȳ|2 +
N∑
i=1

|t̄i − s̄i|2

ε
≤ω1(ε)

for some modulusω1.
Furthermore, neither |t̄ |1 = 0 nor |s̄|1 = 0 for a suitable ε. Indeed, if |t̄ |1 =

0, since u1(0, x̄) ≤ u2(0, x̄),

Φ(0, s̄, x̄, ȳ) ≤ u1(0, x̄)−u1(s̄, ȳ)+u2(0, x̄)−u2(s̄, ȳ) ≤ω2(
√

2Mε),

where ω2 is the modulus of continuity of u2 in DC , which contradicts (B.2) as
soon as ε is small enough. The proof that |s̄|1 > 0 is analogous. Hence if we
define the test functions

φ(t,x) =
|x − ȳ|2 +

N∑
i=1

|ti − s̄i|2

2ε
+ η|t + s̄|1

− h((|x| + β2)1/2 − C|T − t|1),

γ(s,y) = −
|x̄ −y|2 +

N∑
i=1

|t̄i − si|2

2ε
− η|t̄ + s|1

+ h((|y| + β2)1/2 − C|T − s|1),



1612 MONICA MOTTA & FRANCO RAMPAZZO

so that u1−φ has a maximum at (t̄, x̄) and u2−γ has a minimum at (s̄, ȳ) and
use the definition of viscosity sub- and supersolution for (3.1), (3.2), we get that
there is some i = 1, . . . , N such that

2η ≤ C(h′(Y)+ h′(X))+Hi
(
ȳ,
x̄ − ȳ
ε

+ h′(Y) ȳ
(|ȳ| + β2)1/2

)

− Hi
(
x̄,
x̄ − ȳ
ε

− h′(X) x̄
(|x̄| + β2)1/2

)
,

where X = (|x̄| + β2)1/2 − C|T − t̄ |1 and Y = (|ȳ| + β2)1/2 − C|T − s̄|1. Now
standard calculations together with the hypotheses on the Hi’s yield that

2η ≤ C(h′(Y)+ h′(X))+ω(|x̄ − ȳ|)+ω
(
|x̄ − ȳ|2
ε

+ |x̄ − ȳ| |h′(Y)|
)

+ C
∣∣∣∣∣h′(Y) ȳ

(|ȳ| + β2)1/2
+ h′(X) x̄

(|x̄| + β2)1/2

∣∣∣∣∣ .
Since h′ = −|h′|, letting ε tend to 0 leads to a contradiction, which completes
the proof. ❐

Proof of Corollary 3.4. As a first step, one easily shows that the comparison
result stated in Theorem 3.3 holds also in the set

DC(x0) É
{
(t1, . . . , tN, x) : (t1, . . . , tN) ∈ [0, T [N \ {(0, . . . ,0)},

|x − x0| < C|T − t|1
}

for any x0, provided the hypotheses on the Hamiltonians Hi introduced there
hold for all x, y ∈ B(x0, CT) and u1(0, x) ≤ u2(0, x) for all x ∈ B(x0, CT).

As a second step, assume that T < K. Let both u1, u2 be viscosity solutions
of (3.1), (3.2), (1.2) in [0, T]N ×Rn. Fixed x0 ∈ Rn, one defines

r = KT(1+ |x0|)
1− KT > 0 and C = K(1+ |x0| + r) > 0.

It is now easy to check that for such a choice of C the Hamiltonians Hi satisfy
all the hypotheses of Theorem 3.3 in B(x0, CT). Hence by Step 1 and consid-
ering u1, u2, as viscosity sub- and supersolutions of (3.1), and of (3.1), (3.2)
respectively, it follows that u1(t, x) ≤ u2(t, x) for all (t, x) ∈ DC(x0). Since
]0, T [N ×Rn = ⋃x0 DC(x0), the thesis is proved by interchanging the role of u1
and u2.

At this point the proof of the general case T ≥ K is obtained by iterating the
previous argument on a suitable finite number of N dimensional time intervals of
fixed length smaller than 1/K. ❐
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