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1. Introduction

In this note we present a simple application of the
method developed by one of us in recent years to prove
general smooth, nonsmooth, high-order, and hybrid
versions of the maximum principle (abbr. MP) for finite-
dimensional, deterministic optimal control problems
without state space constraints. As explained in
Sussmann [3, 4, 5, 6], such versions can be derived in a
unified way, by using a modified version of the approach
of the classical book [2] by Pontryagin et al.. In the
classical approach, one constructs “packets of needle
variations,” linearly approximates these packets at the
base value of the variation parameter, and propagates
the resulting linear approximations to the terminal
point of the trajectory by means of the differentials
of the reference flow maps. This technique must
be modified by (a) replacing the classical differential
by other objects, called generalized differentials (abbr.
GDs), (b) replacing the time-varying vector fields that
occur in the classical MP by flows, and (c) replacing
the needle variations by abstract variations. A notion of
GD will yield a version of the MP provided it satisfies
some natural properties such as the chain rule and
an appropriate “directional open mapping property.”
(Details are provided in [3, 4, 5, 6].)

Here we will show how to apply the general theory
to derive a “nonsmooth” version of Chow’s theorem,
in which some of the vector fields involved are just
continuous, while the others are Lipschitz continuous
but not necessarily of class C'. (We only consider the
version involving brackets of two system vector fields.
Versions involving higher-order brackets can be proved
in a similar way, but require more regularity of the
vector fields.) The result is the one to be expected, that
is, that small-time local controllability from a point x,
follows if the values at z, of the system vector fields,
together with the Lie brackets at x, of the vector fields
that are Lipschitz continuous, linearly span the whole
space. To render this meaningful, one needs to give
a precise definition of the notion of “Lie bracket” of
two Lipschitz continuous vector fields f, ¢g. This is
done in §5, where we give a definition according to
which [f, g](z.) is always a nonempty compact convex
set of vectors. Since the values of the Lie brackets
are now sets, rather than single vectors, the notion of
“linearly spanning the whole space” needs to be made
precise. This is done in the statement of our main result,
Theorem 2.1.

The GD theory used to prove Theorem 2.1 is that of
“generalized differential quotients” (abbr. GDQs), so we
include a section—§3—briefly reviewing the definition
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and basic properties of this GD theory.
2. Statement of the main theorem

The result stated below involves the notion of “Lie
bracket” [f,g] of two locally Lipschitz vector fields f,
g. In order to understand the statement, all the reader
needs to know at this point is that for every x belonging
to the domain of f and g the bracket [f,g](z) is a
nonempty set of vectors, rather than a single vector as in
the classical notion of Lie bracket of vector fields of class
C'. The precise definition of the Lie bracket of locally
Lipschitz vector fields is given in §5 below, and is such
that the set [f, g](x) is always compact and convex.

Theorem 2.1 Assume thatn € Z, n > 0, Q is an open
subset of R™, f1,..., fm,91,-..,9r are vector fields on
Q, f1,..., fm are continuous, and g1, ..., g, are locally
Lipschitz. Let ¥ be the driftless control system

DE &= uifi(z)+ > vgi(z),
i=1 Jj=1

with control constraints |u;| < 1 fori =1,...,m and
lvj] <1 forj=1,...,r. Let x. be a point of Q such
that, for every choice V. = {vpe}1<p<i<r of members
Vke € gk, ge](x4) the set of vectors

{filx):i=1,...,m}U{gj(z):5=1,...,r}
W{oge(x) :k=1,...,r—1,0=k+1,...,r}

linearly spans R™. Then X is locally controllable from
x4 tn small time. More precisely, there exists a positive
constant A having the property that for every sufficiently
small € it is possible to reach every point within a
distance < e from x, in time not exceeding A./e
by means of a piecewise constant bang-bang control
such that at each time t only one of the numbers
up(t), ..., um(t),v1(t),...,v.(t) is nonzero.

3. Generalized differential quotients (GDQs)

A set-valued map (abbr. SVM) is a triple F = (A, B, G)
such that A and B are sets and G is a subset of
A x B. The sets A, B, G are, respectively, the source,
target, and graph of F, and we write A = So(F),
B = Ta(F), G = Gr(F). If z is any object, we write
F(z) ={y: (z,y) € Gr(F)}. (Hence F(x) = (0 unless
x € So(F).) The sets Do(F) = {z € So(F) : F(z) # 0},
Im(F) = U,eso(r) F'(2), are, respectively, the domain
and image of F. If F = (A, B,G) is an SVM, we say
that F'is an SVM from A to B, and write F': Aq ——DB.
We use SV M (A, B) to denote the set of all SVMs from
A to B.

If X, Y are metric spaces, then SV M omp(X,Y)
will denote the subset of SVM(X,Y) whose members
are the set-valued maps from X to Y that have a
compact graph. We say that a sequence {F}};en of



members of SV M omp(X,Y) inward graph-converges to

an F' € SV Momp(X,Y)—and write F) I8 P if for
every open subset Q of X x Y such that Gr(F) C Q
there exists a jo € N such that Gr(F;) C 2 whenever
J = Jja-

Definition 3.1 Assume that X, Y are metric spaces.
A regular set-valued map from X to Y is a set-valued
map F € SVM(X,Y) such that

e for every compact subset K of X, the restriction
F[K of F to K belongs to SV Mcomp(K,Y) and is
a limit—in the sense of inward graph-convergence—
of a sequence of continuous single-valued maps from
KtoY.

We use REG(X;Y) to denote the set of all regular
set-valued maps from X to Y. &

It is easy to see that if F': X — Y is an ordinary (that

is, single-valued and everywhere defined) map, then F’

belongs to REG(X;Y) if and only if F' is continuous.
It is not hard to prove the following.

Theorem 3.2 Assume that X, Y, Z are metric spaces.
Let F e REG(X:;Y), G € REG(Y;Z). Then the
composite map G o F belongs to REG(X; Z). &

Definition 3.3 Let m,n € Z,, let F': R™ ¢ ——R" be
a set-valued map, and let A be a nonempty compact
subset of R™"*™. Let S be a subset of R™. We say
that A is a generalized differential quotient (abbreviated
“GDQ”) of F at (0,0) in the direction of S, and write
A € GDQ(F';0,0;95), if for every positive real number &
there exist U, G such that
1. U is a compact neighborhood of 0 in R™ and UN.S
is compact;
2. G is a regular set-valued map from U N S to the
5-neighborhood A? of A in R™*™;
3. G(z) -2 C F(x) for every x € U N S. O

If X, Y are real linear spaces, we use Lin(X,Y) to
denote the set of all linear maps from X to Y. A linear
multimap from X to Y is a subset of Lin(X,Y). A linear
multimultimap from X to Y is a set of linear multimaps
from X to Y.

If M, N are C' manifolds, ze M, yc N, SCM,
and F:Mqgr——N, then we can define a linear
multimultimap GDQ(F;z,y; S) from Tz M to TyN
by picking coordinate charts M >z — &(x) € R™,
N 3y —n(y) € R"—where m =dim M, n = dim N—
defined near Z, § and such that &£(Z) = 0, n(g) = 0,
and declaring a subset A of Lin(Tz M, Ty N) to belong
to GDQ(F; #,7; S) if the multimap Dn(y)oAo DE(x) ™1
isin GDQ(no Fo&1;0,0;£(S)). It turns out that, with
this definition, the set GDQ(F'; Z,y; S) does not depend
on the choice of the charts £, n. Moreover, the following
four results can be proved.

Theorem 3.4 GDQ is a generalized differentiation
theory in the sense of [4].

Theorem 3.5 GDQ has the strong directional open
mapping property with linear rate (SDOMPLR). &

The meaning of the SDOMPLR is as follows:

(SDOMPLR) Assume that n,m are nonnegative
integers, F R"qg+——R™, v € R™, C is a closed
convezx cone in R™, A belongs to GDQ(F’;0,0;C), and
vE(pep Int(LC). Then there exist a closed convex cone
D in R™ and a function

10, +00[2 §+—¢€(d) €]0, +o0]

such that v € Int(D), the function §+—e(0) is linear for
small enough 6, and

(*) if ye D and ||ly|| <e(d) then there exists a compact
connected subset Z, of {x€C:|z||<d}x[0,1] such
that (0,0)€ Z,, (z,1) € Z, for some z € C such
that ||z|| <6, and ry€ F(z) whenever 0<r<1 and
(x,m)€EZ,.

Theorem 3.6 If F : R" — R™ is a continuous map,
x € R™, and F is classically differentiable at x, then
[DF(2)} € GDQ(F;z, F(x);R"). o

Theorem 3.7 IfF : R™ — R™ is Lipschitz-continuous,
and x € R™, then the Clarke generalized Jacobian OF (x)
belongs to GDQ(F;x, F(z); R™). &

4. Flows of continuous vector fields

We assume throughout this section that
(A) n€Z,n>0, and Q is an open subset of R™.

If f:Q+— R™is a continuous vector field on €2, we use
®7 to denote the flow of f. By definition, ®f is the set-
valued map from Q x R to Q whose value, for a given
(z,t) € Q xR, is the set of all y € Q having the property
that there exists an integral curve £ : I — Q of f which
is defined on some subinterval I of R such that 0 € T
and ¢ € I and is such that £(0) = z and £(¢) = y. If
r, € Q, we let Lf(z,) be the linear map from R™ x R
to R™ given by

LI (z)(v,r) =v+7rf(z.).

Theorem 4.1 Assume (A) holds, and f : Q+— R"™ is a
continuous vector field on . Let x, € Q). Then the set
{Lf(z.)} is a generalized differential quotient of ®f at
((x4,0),24) in the direction of R™.

Proof. If v € R”, w € R¥, and v # 0, we let E}f be
the linear map from R” to R* given by
Eph(u) = <U1;|1|L2>w for u € RY.
Then
B —w and e =

Fix a positive number §. Let p be such that p > 0
and the compact ball V- = {& € R : ||z — z.|| < p} is

contained in Q. Let x = sup{||f(z)| : z € V}.
For every pi, p2 such that 0 < p; < pa < p, let

w(p, p2) ™ supf | f(w) = f(a')]]
o — 2| < p1, [l — 2] < p2, (2" — 2] < po} s
so that
limw(pl,pg) =0if 0< p2 < p.
p1l0



Now fix p such that

p>0, 2+kK)p<p, and w((1+k)p,p)<9.
Let V be the closed ball in R™ of radius p, and center
T4, and let - -

W=V x [757 /5} .

More generally, if 0 < p < p, we let V(p) be the closed
ball in R™ of radius p and center x,, and then define
W(p) =V(p) x [=p, p].

For (z,t) € W,y € R", (z,t) # (2, 0), define a linear
map M, ¢, : R" x R— R" by letting

Mm,t,y — L‘f(l'*) +En+1,n (2)

(x—my,t),y—x—tf(zs) "
We then let A(z,t) be the set of all linear maps M, ; ,,
for all y € ®f (x,t).

We remark that if ¢+ = 0 then ®f(x,t) = {z}, so
A(z,t) = {Lf(x.)}. We extend the definition of A by
defining A(z,,0) = {Lf (x.)}.

Now let (z,t) € W, (z,t) # (x.,0). If a linear map M
belongs to A(z,t), and M = My 4,, y € ®/(z,t), then

To+ M- (v —x4,t) = a:*JrLf(x*)(xf:E*,t)
+Ep ity - (T — T4, t)

= Tt w—2h +1f(T4)

+y —x—tf(zs)

= y.
where

Sx,t,y(gE&tlgf,t),y_z—tf(z*) :
Therefore

Al t).(x — 2., t) C & (2,1). (3)

Now suppose that 0 < p < p, (z,t) € W(p), and
M € A(z,t). Write M = M, 4, y € ®/(x,t), and let I,
denote the interval [min(0, ¢), max(0,¢)]. Then

n+1l,n
HMr,t,y - Lf(x*)” = ||E(mtx*,t),y—m—tf(m*)

ly — 2 —tf(z.)z]

Vie—wlP+e

But
ly—z =t = | [ (5(e) = s@) s

if £ : I; — Q is an integral curve of f such that £(0) =«
and £(t) = y. Now, the curve ¢ satisfies £(s) = f(£(s)),
and then ||€(s)|| < k, whenever £(s) € V. Let I be the
set of all s € I; such that &(c) € V for all o € I,. Then I

is a compact subinterval of I; such that 0 € I;. So I= I,
for some 7 € I;. If 7 # t then [[{(7) — z.[| = p. But
&(s) — x| < k|s] for all s € I, and then the inequality
&(1) — x«|| < K|s| + p holds for all such s. Therefore
E(1) — x| < (14 kK)p < (14 k)p < p contradicting
the fact that [[(7) — .|| = p. It follows that 7 = and
I = I, so that

l€(s) — x| < (1+kK)p whenever

)

s € It . (4)
Then

1£(&(s)) = flz )| Sw((X+K)p,p) if s€L,.
Therefore

ly — 2 = tf (@)l < [tlo((L + K)p, p) -

If we pick p = p, we get
ly —x —tf(x)] < [t]6,
from which it follows that

lv—z =t/ _
iz == P57

and then ||M,;, — LY (z.)|| < 6.
So we have shown that
|M — LY (x,)|| <8 whenever M € A(z,t), (5)
as long as (z,t) € W and (z,t) # (4,0).
On the other hand, given any (x,t) € W, we can pick
p = max(||z — x|, [t|), and then get the estimate

IM — L (2.)] < w(maX(Ilw — x|, [t]) ﬁ)

whenever (z,t) e W, M € Az, 1), (6)

It is clear that equations (3) and (5), which have been
proved under the assumption that (z,t) # (x4,0), are
also valid when (z,t) = (z4,0). So (3) and (5) hold for
all (z,t) € W.

To complete our proof, we have to show that the set-
valued map W > (z,t) — A(x,t) C Lin(R*" R") is
regular. To prove this, we first have to prove that the
set

G={(z,t, M) : (x,t) € W,M € A(z,t)}
is compact.

For this purpose, we let {(z7,t/,M7)}jen be a
sequence of members of G, and try to extract a
subsequence that converges to a member of G.

If (27,t) = (z4,0) for infinitely many indices j,
then M = L7(z,) for all such indices, so the existence
of the desired subsequence is obvious. Otherwise, we
may assume that (z7,4/) # (z.,0) for all indices j.
Write M? = M, 4 i, where y € ®f (z7,47). We
may clearly assume that the sequence {z7,¢/};cy itself
converges to a limit (Z,%). Now choose integral curves
& of f, defined on the intervals I7 = I,;, such that
€(0) = 27 and & (¥) = 3/. As in the proof of (4),
we conclude that &/(s) € V whenever s € I9. Then
167 ()l = 1f(&(s))ll < &, so the sequence {&"};en is

equicontinuous. Since this sequence is also uniformly
bounded, we may assume, by passing to a subsequence,
that the curves & converge uniformly to a limit curve
¢, defined on I;. It then follows by familiar arguments
that § = £(t) € ®/(z,1).

Let M = Mgz, if (2,1) # (24,0), M = L (x,) if
(z,t) = (74,0). Then M € A(Z,t). Let us prove that
M7 — M as j — co. Assume first that (z,f) # (z,0).
Since 2/ — z, t# — , and 3/ — 7, if follows from
(2) that M7 — M, since the maps (v,w) — EJk
are continuous on (R¥\{0}) x R¥. Now assume that
(#,%) = (24,0). Then 27 — x, and t/ — 0. So (6)
implies that M7 — Lf(x,) = M.

We must now show that A is a limit, in the sense of
inward graph convergence of set-valued maps from W
to Lin(R"*!, R™), of single-valued continuous maps. To
prove this, we first let F' be a continuous map from R"
to R™ which coincides with f on V and is such that
|[F(z)|| <& for all z € R”. We then let F¢ be the usual
regularizations of F', defined—for { > 0—by letting

F@ = [ pWF@+chdn, (1)



where ¢ is a nonnegative real-valued function on R™ of
class C* such that [,, ¢ = 1 and ¢(h) = 0 whenever
[[R|| > 1. .

Then F¢ € C= for all positive ¢, |[F¢(z)]| < &
for all z € R™ and all positive ¢, and F¢ — F

uniformly on compact sets as ¢ | 0. The flow maps ® ‘
are then globally defined, single-valued, and smooth.

We construct maps AS, defined on W, exactly as we
constructed A, using F¢ instead of f. Then the AS are
single-valued and continuous. Moreover, the moduli of

continuity
def
W (pr, p2)= sup{[|[F¢(z) — FS ()] -
lo =2l < pr, o = aull < p2, [l2" — ]l < p2}
of the F¢ are related to the modulus of continuity w of
f by
w(p1, p2) < w(pr,p2+ Q). (8)

Let us show that AS 25 A. Let

a(¢) = sup{d(q,G) : ¢ € G°},
where
GS = {(z,t,M) : (x,t) € W,M € AS(x,t)}.

We want to prove that «(¢) — 0 as ¢ | 0. Suppose
this is not true. Then there exist a sequence {(;};en of
positive numbers and an & such that ¢; | 0, @ > 0, and
a(¢j) > 2a. Write G; = G%. Pick ¢; € G; such that
d(g;,G) > a. Write q; = (zj,t;, M;). We will reach a
contradiction by finding a subsequence of {g;};en such
that d(g;,G) — 0. For this purpose, we may assume,
after passing to a subsequence, that (xj,tj) converges
to a limit (z,t) € W.

Let J be the set of all indices j such that
(xj,t;) = (z4,0). If J is infinite, then M, = LF (xx)
for j S J, so limj_)ooﬂ-eJ MJ = Lf(l‘*>
Then lim; .o jerq; = (2,0, L (z,)) € G so
lim; o0 jesd(g;,G) = 0, showing the existence of
the desired subsequence.

Next, let us assume that J is finite. Then, by passing
to a subsequence, we may assume that J = (), i.e., that

(xj,t;) # (4,0) for all j. Let y; = PF (xj,t;). Then
- FCJ n+1,n
My = L7 () + E(xj—xmtj)w—ﬂfj—tjf“gj CHN 9)
For each j, find an integral curve §; : I, — R™ of FS
such that &;(0) = t; and &;(t;) = y;. Then ||&(s)] < &
for all j, so ¢ is entirely contained in V, and then
the sequence {&;}jen is bounded and equicontinuous.
By passing to a subsequence, we may assume that
& — & uniformly, for some curve § : I; — R™. Since
&;(0) = z; and &;(t;) = y;, it is clear that {(0) = = and
&(t) = y = lim;j_. y;. Moreover, £ is an integral curve
of f,s0y e ®f(x,t).
Now assume that (x,t) # (z.,0). Then, using the

facts that (a) the maps (v,w) — E}'f are continuous

on (R\{0}) x R* and (b) LF" (z,) — Lf(z.), we
can conclude from (9) that M; — M, where

M = L' (z,) +EZ:Z1;: Da—otf(z- Dut this tells us,
using the definition of A, that M € A(z,t). Therefore
qg = (x,t,M) € G. Since ¢; — ¢, we see that

d(g;,G) — 0, as desired.

Finally, we have to consider the case when
(z,t) = (z4,0). In that case, we use the estimate

S ~
1M = L7 (2.)[| < w (max(|lz — ., [t]), 5)

whenever (z,t) € W, M € AS(x,t), (10)
which is proved in the same way as (6). In view of (8),
we have

9] A~

1M = L7 ()| < w(max(||z; — ], [£5]), o+ 5) (11)

for sufficiently large j, if (G is a fixed positive
Therefore ||M; — LF (z)|| — 0.
Since L™ (z,) — Lf(x,), we can conclude that
M; — LS (). Now, by the definition of A,
Lf(z,)) € A(zs,t). So, if we let ¢ = (z.,0, L (z,)),
then ¢ € G. Since g; — ¢, we see that d(g;,G) — 0 in
this case as well, and our proof is complete.

number.

5. Lie brackets of locally Lipschitz vector fields

We assume throughout this section that (A) holds.
If f is a locally Lipschitz vector field on £, we let
DIFF(f) denote the set of points x € € such that
f is differentiable at . Then Rademacher’s theorem
implies that DIFF(f) is a subset of full measure of ).
If v € DIFF(f), then Df(x) will denote the differential
of f at x.

Now let f, g be two locally Lipschitz vector fields on
R™, and let « € Q. We define [f, g](x)—the Lie bracket
of f and g at x—to be the convex hull of the set of all
vectors

v=lim (Dg(e;)- flay) = Dfay) - glay)) . (12)
for all sequences {z,},en such that
1. w; € DIFF(f) N DIFF(g) for all j,
2. im0 2 ==,
3. the limit v of (12) exists.

It is clear that the set [f,g](x) is convex, compact,
and nonempty for every x € ). Moreover, the skew-
symmetry identity
[f, () = {0}

clearly holds for all x.

If f is a locally Lipschitz vector field, x € Q, and
t € R, we use z e/ to denote the value at time ¢ of the
integral curve ¢ of f such that £(0) = x. (That is, x et/

is the unique member of ®7(x,t).)
Given two locally Lipschitz vector fields, x € 2, and
t,s € R, we define

U9 (x t,s) =xetfes9e ™59
It is clear that if K is an arbitrary compact subset
of €, then there exists a positive time 7x such that
Uf9(x,t,5) is defined whenever z € K, |t| < 7 and
|8| S TK -
We now derive an integral formula for ¥/+9(z,t,s) —x
when f and g are smooth. Formally,

U9zt s) —x
= zefee e — 1

S
= / (az etfev9get em79 — xetfe”ge_tfge_ag) do
0



/ (x etfeo9etf (etfge_tf — g) e_”g) do
0
s t
/ / (x etlev9e=t/ (eTf[f, g]ein)ef‘W) dr do
o Jo
s t
= / / (gc etfe79e(T0I [}, g]e_Tfe_‘w) drdo.
o Jo

The above formula can be given a precise interpretation
and a rigorous proof, by regarding all the expressions
involved as distributions (cf. for example [1]).

For our purposes, what we need to know about the
integral formula for W/9(x t,5) — = is that the term
zetle?9eT=OI[f gle=™fe=99 is the vector determined
as follows: we compute the Lie bracket [f, g] of f and g
at the point

G(x,a,tm)défx etfet9e(T0F (13)
and transport this vector to the point
Uh9(x t0) = zetfe?9e o9
= O(z,0,t,7)e " fe9
by means of the differential at 6(z,o0,t,7) of the
diffeomorphism y — ye " e=9.
If X is a smooth vector field, then to transport a

tangent vector ¥ from a point § to the point 7e'X by

means of the differential of the map y — ye'X, one

solves the variational equation

o(t) = DX(ye™) - u(t)
with initial condition v(0) = v. The desired vector is
then v(f). If C is a constant such that |[DX(z)] < C
for all x, then Gronwall’s inequality implies the bound

C =
lo()] < Y],

from which it follows that |Jv(t) — 3| < C|t|e!I€]5].
Therefore o
lo(r) =3} < Clrle|7]].

apply this to the integrand
[f,gle""e=79, we conclude that
lz et 79I f, gle™™ =79 — [£, g)(O(x, 0,8, 7))
< Clsle”I€(1 + Cltlel1) [ f, g)(0(x, 0,2, 7)),
from which we get the estimate

||\Ilf9:rtsfx7// [f,9]

< 203|s|?|t]el*I¢ 1+O\t|e|t‘c) (14)

where C is an upper bound for | £(n)||, [Df ()], l9(v)]]
and || Dg(y)|| for all y.

Now suppose that f and g are just Lipschitz. Fix a
point z, € Q. Fix a positive number j such that the
compact ball

V={zeR: -] <)
is contained in €. Let C} be an upper bound for || f(z)||
and ||g(z)|| for all z € V, and let Cy be a Lipschitz
constant for f and g on V. Then let C' = max(C}, C).
For 0 < p < p, use v(p) to denote the supremum of
the distances d(Dg(w) - f(x) = Df(z)-g(x),[f, g](az*)),
for x € DIFF(f) N DIFF(g) such that ||z — z.| < p.

If we
€T etf egge(Tft)f

0(x, o, t,T))) dr do||

It is then easy to see that
lim =0.
lim (p)

Now let f¢, ¢° be the regularizations of f, ¢, defined
as before for positive (. Then, after replacing V' by
a smaller ball, and as long as ( is sufficiently small,
the constant C' is also an upper bound for || f¢(x)|| and

llg¢ ()| for all x and a Lipschitz constant for f and g.
Then we can apply (14) to the regularized vector fields,
and conclude that

H\Ilfc’gc(x t,s)—x

G

<20%|s|? \t|e| 91+ Clt|e®) (15)
if |5, [t| and ¢ are small enough, where 6¢ is defined as

n (13), using f¢ and g¢¢ instead of f and g
For any given y, we would like to estimate the distance

Ay, ) =d([f<, g1W). [f, gl(.)) -
We write
[£¢,9°1(y) = Dg(y) - f*(y) —

[ oDty -+ by - 5w

(6% (z, 0,t 7'))) deO’H

Df(y) - g°(y)

- [ eDs+ k) o) an

= L(t)+ LI2(y),
where

L(y) = /nw(h)w(y+<h)dh,
z)- f(2) = Df(2) - g(2),

Dyg(
) = [ e0Darch)- (5w Furch)dn

w(z) =

— | e Df(y+ch) - (9 w)—gly+Ch)) dh

R
The integral I;(y) is an average of vectors of the form

Dg(zﬁ - f(z) = Df(z) -gﬁz), for points z = y + Ch such
that ||z — x| < ||y — 2.[| + ¢. Therefore

d(Ii(y), [f, 9)(z:)) < v(lly — 2l +C) -
On the other hand, it is clear that || f¢(y) — f(y)|| < C¢
for every ¥, so
1£¢ () = F SIS () = F@)I+ILf (v) = F(y+<h)|

<20¢,
and then || I3(y)|| < 4C?C. Tt follows that
Ay, ¢) < (lly — @l +¢) +4C°¢C.

Now, if y = 6%(z,0,t,7), where, as before, o € I, and
T € I, then |ly — z|| < C(2[t] + |s]), so

ly — 2l < CJE + [s]) + llz — @),
and then the distance from [f¢, ¢%](y) to [f,g](z.) is

bounded by v(C(2[t] + |s|) + ||z — z.||) + ¢) + 4C?C.
If st > 0, it follows that

d((t) (0 @ t,5) — ), . g)(a))
< 20%)slel1°(1+ CJtle!"€)
+Y(C2Jt + |s]) + |z — =] + ¢) + 4C3C.



We can now let ¢ | 0, and conclude that
a((ts) (@9 (2,1, 5) — 2), £, )(a2))
< 2C%[s]el*l9(1 + COlt]el) + A (C(21¢] + Is])
< T(max([t], |s]), z) , (16)
where
D(r,x) = 203%™ (1 4 Cre™®) + y(3rC + ||z — 2.|) .
We now define a map (z,¢) — Z/9(z, ) by letting

:f,g(x £) = U9 (x,\/2, \/E) if >0,
=Y T v (e, e V/=E) if e <0.

Then =79 is continuous. (Notice that when ¢ = 0

the vectors W/9(z, \/z, \/€) and W/ ~9(x, \/—¢, /—¢) are

both equal to x.) Moreover, (16) implies the inequalities

d(=71EM(@,e) — ), [f )(@,) < T(VE), (17)
':fvg €T —x
d(“(’g), . —g](m))

IA

I'(V—e,x)(18)

—&

valid, respectively, when ¢ > 0 and ¢ < 0. Since

[fs —gl(zs) = —[f, g](z4), (18) is equivalent to
a7 EM (w,e) - @), [f9)()) ST(V=e,2). (19)

We have therefore proved that the inequality

d(=7HE (@ €) ~ @), [f.0)(@.)) STVl @) (20)

is valid for all sufficiently small e, positive or negative.
Equivalently, we have shown that

inf { |279(z,¢) — 2 — ool s 0 € [£g)(a) }
= o(e + lo — ) (21)
For a given w € R™, let Q" denote the linear map
R*"™™ ~R" xR 3 (v,7) v + rwdﬁwi(v,r) eR".
If W is a subset of R", write deéf{Qw cw e Wh.
Then (21) says—since Z59(z,,0) = z,—that

inf{ IE9(z,€) — E9(z,,0) — Q¥ (x — 4, )|

toelfigl@) b=ole+llz—wl),  (22)
i.e., that
inf { IE9(z,¢) — E19(x,,0) — M(z — @0, €))

M e QU L —ofe o —all).  (23)

The following result then follows from the general suffi-
cient condition given in [5] for a set to be a GDQ:

Theorem 5.1 Assume (A) holds. Let f, g be locally
Lipschitz vector fields on Q). Let x, € Q). Then the set

QUf-9l(=+) s q generalized differential quotient of the map
=59 at (x.,0) in the direction of R™. O

6. Proof of the main theorem
First, we make a slight change of notation, and write
ol (z) = ®f (x,6), BN (x) =219(x,¢).
Let S = {(i,j) €ZxZ:1<i<j<r}s="0Z1 g
card(S) = s. Fix a bijection {1,...,8} 2k — (i, jr) €S

from {1,...,s} onto S. Let X =R™T"T5 ~R™ x R" x R*.
Define a map © from a neighborhood of 0 in X to R",
by letting

@(51,.- -aaraﬁla"'7ﬁs):

(Egis 9isPs o o T9i1:951:01 ¢

3 Em, A1, -

PIr o o PIL o PImEm o o @fl’el)(x*).

Let V be the set of all indexed families V' = {vy }r=1,.._s
of vectors vr € [gi,95.)(x«). For each member
V = {vg}r=1,..s of V, let LV be the linear map from
X to R™ given by

EV(El,.. ~7047"a617~"a/68)

= Y eifiw) + ) aig(x) + ) Bk
i=1 j=1 k=1

Then ©(0) = z,, and Theorems 4.1 and 5.1, together
with the chain rule for GDQs (cf. [4], [5]) imply that the
set {L£Y : V € V} is a generalized differential quotient of
O at 0 in the direction of X. The hypothesis of Theorem
2.1 implies that all the maps £Y are surjective. The

desired conclusion then follows from the open mapping
property for GDQs (Theorem 3.5).

<5 Em, A1y - -
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