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State-Constrained Control  Problems  
with  nei ther  Coercivity nor L 1 B o u n d s  on the  Controls  (*). 

M. MOTTA- F. RAMPAZZO 

Summary. - A state-constrained, nonlinear, minimum problem is considered with dynamics de- 
pending sublinearly on a control which is not bounded in the L 1 norm. Because of the lack of 
coercivity, the value map "~ fails to be continuous, even in the unconstrained case. However, 
we prove that under suitable assumptions---which guarantee the continuity of the value 
maps of the problems with L 1-bounded controls--the value map ~ is upper semicontinuons 
and solves a Bellman equation with a continuous Hamiltonian. Moreover, the map ~ ob- 
tained by ~ by replacing its values at the horizon t = T with the values of the cost function 
turns out to be the maximal subsolution of the corresponding value problem. 

1 .  - I n t r o d u c t i o n .  

In dealing with control problems involving unbounded strategies, suitable growth 
conditions make it possible to define a continuous Hamiltonian. The regularity of the 
Hamiltonian has obvious consequences, e.g. in the dynamic programming approach, in 
existence questions, and in the derivation of necessary conditions. 

When a coercivity assumption is not in force--a situation which is motivated by sev- 
eral applications, see [10-13, 16,19,26, 31,40,42,48]--various kinds of discontinuous be- 
haviours may affect the problem. First of all, it may happen that no optimal trajectories 
exist among absolutely continuous maps, inasmuch as minimizing sequences often tend 
to trajectories containing jumps. We recall incidentally that optimal discontinuous tra- 
jectories appear naturally in some classical problems of the Calculus of Variations with 
a slow growth, e.g. in the problem of the minimal surface of revolution. Secondly, nei- 
ther the value function nor the usual Hamiltonian can be expected to be continuous. 
This situation is illustrated by the following simple example (see Example 5.1). 
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Let x[5, ~](.) denote the solution of the Cauchy problem 

{ & =  -Ixl  for a.e. t e [O,  1], 

x(O) = ~ ,  

where ~ is a control taking values in [0, + ~ [ and consider the problem of minimizing 
the functional 

J(5, ~) - I x [Z ,  ~]( i  ) + I [ 

over controls ~ e L l ( [ 0 ,  1],[0, + oo[). On one hand the ,,formal, Hamiltonian of this 
problem, say/7(x,  p) = inf { +p ix ie} ,  is discontinuous, equal to either 0 or - oo. 

~e[0, +oo[ 
On the other hand an easy computation shows that the value function ~ ( ~ ) -  i~f J(~, ~) 

is given by 

I 
1, 

v ( ~ ) =  0,  

V ~ > O ,  

V ~ [ - 1 ,  0[, 

V ~  < - 1 .  

Discontinuities of the value function may also arise from the imposition of state con- 
straints, as is well known in the case of bounded controls. Under the further hypothesis 
that the L 1 norms of the controls be equibounded, problems with slow growth and state 
constraints have been already studied from various viewpoints (see [5-7, 18, 27, 28, 32- 
39, 41, 46, 47]). In particular, it turns out that the corresponding value maps are contin- 
uous ([39]), when suitable conditions--see assumption (H1), (H2) in section 2--are as- 
sumed on the dynamics at the boundary of the constraint set. In the conventional 
case--i.e, when the controls take values in a bounded set--such conditions were pri- 
marily introduced by H. M. Soner [51]. Successive contributions in this direction are 
due to P. Loreti [29], I. Capuzzo-Dolcetta and P. L. Lions [14], P. Loreti and E. Tessi- 
tore [30], H. Ishii and S. Koike [25]. 

Obviously, even in the presence of an L 1 bound on the controls, the optimal trajec- 
tories have to be searched in a wider class than that of absolutely continuous maps. We 
remark that, unless commutativity hypotheses on the dynamics are satisfied (see [6, 8, 
20, 44, 45, 49, 50]), the class of maps with bounded variation is not sufficiently large to 
pose the problem well (the above example does not present this difficulty; yet the prob- 
lem arises as soon as the unbounded control is vector valued). Indeed, because of the 
slow growth assumption, minimizing sequences of trajectories graphs converge to- 
wards space-time trajectories. The latter are maps from a pseudo-time interval [ 0, 1 ] 
into space-time which possibly contain arcs of instantaneous evolution (see e.g. [38]). In 
general a space-time trajectory cannot be identified with the graph of a conventional 
(possibly discontinuous) trajectory. In order to overcome these difficulties one first em- 
beds the problem into a space-time setting (where t plays the role of a state variable) 
and then exploits suitable reparametrization techniques. This extended problem turns 
out to involve only bounded controls. Within this space-time setting one is able to for- 
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mulate a Maximum Principle ([33, 37, 43, 50, 54]) and to establish a Hamilton-Jacobi- 
Bellman boundary value problem [37, 89] enjoying uniqueness. 

In the present paper we remove even the hypothesis of equiboundedness of the L 1 
norm of the controls. This implies that a minimizing sequence converges towards ob- 
jects which are much more involved than space-time trajectories (see e.g. [9]). More- 
over, unlike the case with bounded L 1 norm, the value map happens to be discontinuous 
even in the case where no state constraints are imposed. The above example in fact il- 
lustrates such a phenomenon. 

Disregarding the problem of representing the limits of minimizing sequences 
(see [9]), we devote our attention to dynamic programming. The value map ~9 of the 
original problem can be approximated by the value maps ~/~ of the problems obtained 
by constraining the L 1 norm of the unbounded control to be less than or equal to K. In- 
deed, it is straightforward to show that the maps ~9 K decrease to ~9 as K tends to infini- 
ty. In particular, this implies that whenever the maps ~gK are continuous the map ~ is 
upper semicontinuous. We recall, incidentally, that the continuity of the maps ~K is 
strictly related to the directions of the dynamics on the boundary of the constraint set 
(see hypotheses (H1) and (H2) below). In particular ~9 K is continuous if there are no 
state constraints. This is the case of the example above, where, for K large enough, "~K 
coincides with ~9 outside a neighborhood of 5 = 0. 

Via a dynamic programming principle (see Proposition 5.1) stated for the equivalent 
space-time problem, we prove that ~9 solves the boundary value problem (BVP) below. 
The latter must be interpreted in a sense provided by the theory of (discontinuous) vis- 
cosity solutions. In the considered example (see Example 5.1) one finds that 

i) ~9 is a viscosity subsolution of 

in [0, T[ x R; 

- min { ~9  3~9 } 
[(Wo, W)]= l, wo>~O, w>~ 0 ---~ WO -- - ~  Ixlw = o  

ii) ~?(x) ~<]x+ 1], VxeR .  

Notice that here no state constraints are present (see Definition 5.2 for the general 
case). 

Of course, the question of uniqueness of the solution of the boundary value problem 
is crucial. In fact, the problem under consideration is quite degenerate: in particular, it 
does not satisfy a monotonicity hypothesis--the coefficient of ~xp/~t being possibly 
equal to 0--which is essential in several uniqueness results. 

In the general case, where %9 is merely upper semicontinuous, simple examples 
show that one does not haveuniqueness, even if ~ is continuous (see Example 6.1). 
However, if we define a map ~ by decreeing that ~ coincides with the cost function on 
the (finite) horizon and ~ = ~ elsewhere, then ~ is the maximal upper semicontinuous 
subsolution of the boundary value problem, This seems to be the best possible charac- 
terization of ~ by means of the notion of viscosity solution, since examples show that 
does not enjoy minimality properties as a supersolution (see Example 6.2). We remark 
that other concepts of discontinuous solutions introduced in the recent years are not 
adeguate to this problem (see Remark 5.1 and the therein quoted references). 
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The paper is organized as follows. In section 2 we introduce the problem with un- 
bounded controls and its space-time embedding. In section 3 we relate the value func- 
tion of the problem with the value functions ~K corresponding to subsets of control 
functions having L 1 norm less than or equal to K. In section 4 we prove that any space- 
time trajectory can be approximated by internal  space-time trajectories, where inter- 
nal means that the spatial component remains in the interior of the contraint set. This 
technical result is essential for proving the maximality properties of the value function. 
Section 5 is devoted to proving that the value function verifies the boundary value prob- 
lem (BVP) below. In section 6 we give some results which concern the characterization 
of the value map as the maximal element of the set of subsolutions of the boundary 
value problem. Finally, motivated by the results of section 6, in the Appendix we dis- 
cuss some questions related to the continuity of ~. 

2. - Slow growth control systems and space-time trajectories. 

We consider a control system of the form 

(2.1) ic = f ( t ,  x ,  v, ~) , x(~) = ~ , 

where 0 ~< t < T, t e [t, T], and the controls v and ~ take values in a compact set Vr R q, 
and in a closed cone Cr R ~, respectively. Moreover, the state x is subject to the state- 
constraint x e O,  where O is an open subset of R n and ~ denotes its closure. 

We assume f continuous and satisfying the following conditions: for every compact 
subset Q c R n there exists a positive L = LQ such that 

(2.2) I f( t ,  xl ,  v, ~) - f ( t ,  Xe, v, ~)1 ~<L(1 + I ~ l ) l x l - x e  I, 

for all (t, xl, v, ~), (t, x2, v, ~) e [0, T] x Q x V x  C; there exists a constant A > 0 such 
that 

(2.3) I f( t ,  x,  v, ~) I ~<A(1 + I~l)(1 + Ixl ) ,  

for every (t, x, v, ~) �9 [0, T] x R n x V x  C. 
Moreover we assume that 

there exists a continuous map  f ~ ,  called the recession function of f ,  such 
that 

(2.4) lim r - I f ( t ,  x ,  v, rw)  = f ~  (t, x,  v, w)  

uni formly  on compact subsets of  [ O, T] x R ~ x V x C. This is actually the main hypoth- 
esis on the dynamics. It can be regarded as a regular and slow growth assump- 
tion. 

By the hypotheses on f a unique (Carath~odory) solution to (2.1) exists on [t, T] for 
every control (v, ~ ) e W ( t ) - ~ ( [ t ,  T], V x  C), where ~([a,  b], E) denotes the set of 
Borel measurable maps from [a, b] into E which are Lebesgue integrable. Let  us de- 
note this solution by x[t, ~; v, ~], or, whenever the initial data are meant by the con- 
text, by x[v, ~]. 
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Let We(t, 7) r  W(t) be the subset of controls (v, ~) such that the corresponding 
solution agrees with the state constraint, i.e. x[t, 7; v, ~](t) �9 O for every t e It, T]. Let 
~ :  O---)R be a continuous, bounded map and let us consider the optimal control 
problem: 

( ~,) minimize ~(x[t,  ~; v, ~](T)). 
(v, ~)eWC(~, ~) 

(Of course all the results of the paper remain valid--up to obvious changes for a prob- 
lem involving a Bolza functional). Since neither boundedness assumptions on the con- 
trols nor growth assumptions on the vector field are made, in general no absolutely 
continuous optimal trajectories exist for problem (tD. 

In [38], in analogy with what had been previously done for the special case where f 
depended linearly on ~ ([36]), we embed the dynamics (2.1) into a space-time dynamics 
where time plays the role of a state variable which is nondecreasing with respect to the 
new parameter s. 

Let us briefly recall the main points concerning this embedding. 

DEFINITION 2.1. - For every (t, x) �9 [0, T] x R ~ and every triple (v, w0, w) e V x  
• [ O, + ~[ x C we set 

I( o) f ( t ,  x, v, Wo, w ) -  f t, x, v, "Wo, 

( f |  x,  v, w), 

i f  w o ~ O ,  

i f  Wo = O . 

In view of the assumptions on f ,  f is nothing but the continuous extension of 
f ( t ,  x, v, W/Wo)'Wo to the domain [0, T] x R " x V x  [0, + oo) x C. The transformation 
f - -*f  is the control-theoretical analogue of the transformation which changes a non- 
parametric integral of the Calculus of Variations into a parametric one--see e.g. [15, 
sect. 14.2]. Some examples of computation of f are provided in [38]. 

The control system 

(2.5) 

t '(s) = w0(s), 

x'(s) =ff(t(s), x(s), v(s), w0(s), w( s ) ) ,  

(t(0), x(0))  = (~, 7) ,  

where the parameter s belongs to the standard interval [0, 1] and the superscript de- 
notes differentiation with respect to s, is called the space-time control system corre- 
sponding to (2.1). 

PROPOSITION 2.1. - I f  (V, ~) �9 W(t) and s~( t ( s ) ,  u(s) ) is a Lipschitz continuous 
t 

parametrization of the graph of t ~ u ( t ) - l ~ ( v ) d v  such that t ' (s)  >0 a.e.---e.g. 

(t(s), u(s) ) is the arc-lenght parametrization of (t, u(t) )--, then~ setting Wo(S)- t '  (s), 
w(s) - u '  (s) and (v(s) - v  o t(s), one has that x(t) is the solution to (2.1) corresponding to 
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(v, ~) i f  and only i f  (t(s), x ot(s)) is the solution of (2.5) corresponding to the control 
(v(s), wo(s), w(s)). 

Proposition 2.1 gives nothing but the obvious relationship between the trajectories 
of (2.1) and their (possibly reparametrized) graphs. Yet we allow the control (v(s), 
Wo(S), w(s)) to be a mathematical object more general than a mere reparametrization 
of the control (v(t), ~(t)). More precisely the space-time control (v, Wo, w) is allowed to 
belong to the set 

{ s I } F ( t ) -  (V, Wo, W ) � 9 2 1 5  Wo(S) d s = T - t  . 
o 

A solution of (2.5) corresponding to a space-time control (v, Wo, w) �9 F(t) will be called 
a space-time trajectory and will be denoted by (t, x)[t, 7; v, wo, w] (or, whenever no 
confusion may arise, by (t, x)[v, w0, w]). We denote by FC(t, 7) the set of the space- 
time controls (v, w0, w)such  that x[t, 7; v, Wo, w ] ( s ) ~  for every s �9 [0, 1]. 

Notice that by allowing w0 --- 0 even when w ;~ 0 we obtain an actual extension of the 
set W(t) of the controls of the original system (2.1). Indeed, in view of Proposition 2.1 
and Proposition 2.2 below, W(t) can be identified in a obvious way with the subset 
F + (t) r F(t) defined by 

F § ( t ) -{ (v ,  w0, w) �9  satisfying: 

if wo(s) =0 for a.e. s � 9  82]c[0 , 1] then w(s) = 0  for a.e. 8 � 9  82] } . 

PROPOSITION 2.2. - I f  a: [0, 1]---) [0, 1] is an increasing, surjective map, continu- 
ous with its inverse, and (v, Wo, w) �9  then 

x[~, 7; v, w0, w] oa(S) = x[~, 7; Voa,(w0 o a ) - a ' , ( w  o a ) . a ' ] ( s )  

for every s �9 [ 0, 1 ]. 
Moreover let (v, w0, w ) � 9  + (t) and let (t, x)(s) denote the corresponding solution 

to (2.5). Then there exists a unique control (~), ~ ) � 9  W(t) such that 

for every s �9 [0, 1] such that Wo(S) ~ O, and the solution ~ of (2.1) corresponding to 
(~, ~) verifies 

o t(s) = x(s) 

for every s e [0, 1]. 

Since W(t) is identified with F + (t), the trajectories of (2.5) corresponding to con- 
trols in F + (t) will be called regular. 

In what follows we recall some properties of space-time trajectories and some facts 
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concerning the relationship between the original system (2.1) and its space-time exten- 
sion (2.5). 

PROPOSITION 2.3 [38]. - Let M > 0 and let Qr R ~ be a compact set. There are 
constants M ' ,  M " > 0 ,  such that all the space-time trajectories ( t ,x ) ( - )=  
= (t, x)[t, 5; v, w0, w](.) with (t, 5) �9 [0, T] • Q, (v, w0, w) E F(t), and Ilwoi]~ ~< M, 
IIw]l~ ~ M satisfy 

(2.6) I ]( t ,  x)(s), ] <~ M ' ,  Vs �9 [0, 1 ], 

[ I( t ,x)(s  ) - ( t , x ) ( s " ) l < . M " l s ' - s " l ,  Vs ' ,  s " � 9  

As pointed out in [38], in general space-time trajectories corresponding to controls 
in F~(Z, 5) cannot be approximated by regular trajectories corresponding to controls in 
F + (t) n Pc(t,  5). On the contrary, under conditions (H1), (H2) below--which are of the 
same type as a condition originally introduced by Soner [51] for state-constrained prob- 
lems--, the set of the regular trajectories corresponding to controls in F + (t) n F~(t, 5) 
is dense in the set of the space-time trajectories associated to F~(t, 5) in the C O topolo- 
gy (see Proposition 2.4). 

(H1) There exist a continuous function v~: [0, T] • O-->V and positive constants 
ql, rl such that for any (t, 5) �9 [0, T] • ~ one has 

Bn[5+hf ( t ,  5, v l ( t , ' 2 ) ,O) ;hr l ] ,  V h � 9  (0, ql], 

where Bt[Y; r] denotes the closed ball of R ~ with center y and radius r. 

(H2) There exist a continuous function 0'2, oJ):[0, T] • O---~V• (B~[0, 1] n C) 
and positive constants q2, r2 such that for any (t, 5) �9 [0, T] • ~ and any ~0e  [0, 1] 
one has 

B n [ 5 + h f ( t , ~ , v 2 ( t , ' 2 ) , ~ o , w ( t , ~ ) ) ; h r 2 ] ,  V h � 9  (0, q2]. 

We remark that for every (t, 5) �9 [0, T) • O the sets W~(t, 5) and F~(t, 5) are not 
empty. 

PROPOSITION 2.4 (Density) [38]. - Assume (H1), (H2) and f ix  (t, 5) e [0, T) x ~ .  
For any s > 0 and any control (v, Wo, w) �9 PC(t, 5) there is a regular space-time tra- 
jectowT (t ,  ~)(-) starting from (t, 5) and such that 

(2.7) { ~(s) e D ,  U s e [ 0 ,  1], 

II( , (t, x)ll  e ,  

where we have set (t, x ) - ( t ,  x)[t, 5; v, Wo, w] and II denotes the sup-norm. 

(~) 

A sharper density result, involving internal trajectories, will be proved in section 4. 
The minimum problem (~), once reformulated as 

minimize ~Y(x[v, Wo, w](1)) ,  
(v,  wo, w)  e r + (~) n r c(~, 7c) 
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can be extended to the following space-time problem: 

(5"~) minimize ~Y(x[v, Wo, w](1)) .  
(v, wo, w) e rC(~, 5) 

Thanks to the density result above we obtain that (5') and (5"~) have the same infi- 
mum value for every (t, 5) �9 [0, T) x ~ ,  i.e. the extension is proper: 

PROPOSITION 2.5. - Let ~ be a bounded and continuous real map. Under hypothe- 
ses (H1), (H2), for  every initial condition (t, 5) �9 [0, T) x ~ one has 

(2.8) inf 
(v, ~)~ W~(~, 5) 

r 
~(x[v, ~](T))/= inf 

L (v, wo, w) �9 r + (~) n F ~(~, 5) 
~(x[v, Wo, w](1))] = 

= inf ~(x[v, Wo, w](1)) .  
(v, Wo, w) e FC(~, Y~) 

3. - T h e  v a l u e  f u n c t i o n .  

The value functions of the original problem (5") and of the extended problem (5"~) 
are defined on [0, T) x ~ by 

~(t ,  5 ) -  inf ~(x[t, 5; v, ~](T)) 
(v, ~) �9 W~(~, 5) 

and 

~(t ,  5 ) -  inf ~Y(x[t, 5; v, w0, w](1)) ,  
(v, wo, w) e rc(~, 5) 

respectively. Moreover ~ is also defined for t = T. Since on the basis pf Proposition 2.5 
5:and ~ coincide on [0, T) x ~ ,  we shall refer to the value function to mean the map ~, 
without further specifications. 

The value function ~ turns out to be limit of the value functions ~K of problems (5"K) 
obtained by constraining the L i norm of ~ to be less than or equal to K. These problems 
have been investigated in [38, 39], and we refer to these papers for a deeper account on 
them. 

Let us just sketch some facts from [38,39]. For every K > 0 and (t, 5, k) e [0, T] x 
x O x [0, K] let us consider the subset of space-time controls 

{ / } F~_~(t ,  5 ) -  (v, Wo, w) e Fc(t, 5): Iw(s) I ds <~ K - - k  , 
o 

and, for every (t, 5, k) �9 [0, T] x ~ • [0, + oo[, let us define the value map 

r inf ~(x[t, 5; v, ~K(t, 5, ~)--~(v, w0, w)~r~_~(~,~) wo, w](1)) ,  if ~ < K ,  

l~K(t ,  5, K), if ~ > K.  
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Observe that the set F~_~(t ,  5) is the space-time extension of the subset 
W~_~(t, 5 ) c  W~(t, 5) formed by the controls (v, ~) such that ~ has L ~ norm less than 
or equal to K - k. Of course, even in this case one identifies W~_~(t, 5) with the subset 
F~_~(t ,  5) A F + (t). ~K is nothing but the value function of the corresponding mini- 
mum problem, here called (~PK). Actually, ~9 g would be defined only for k ~< K: for tech- 
nical reasons we extend it to the domain [0, T ] x  O x  [0, + oo[ by setting 
7{)K(t , X, k)--X~gK(t , 5 ,  K) for k > K .  

PROPOSITION 3.1 [39]. - Under hypotheses (HI), (H2) the map ~K is continuous for 
every K > O. 

The following properties are a straightforward consequence of the definition of XVK. 

PROPOSITION 3.2. - For every K >  0 and every (t, 5, k ) � 9  [0, T] x D x [0, K] one 
has 

vK(~, 5, ~) = vK-~(L 5, o). 

Moreover for every (t, ~, k) ~ [0, T] x ~ x [0, + cr the sequence ( ~ r ( t ,  5, k)}K~N is 
nonincreasing. 

In particular the limit lira XgK(t , 5, k) exists and is bounded below by the infimum 

of the cost function ~ .  Moreover we have: 

PROPOSITION 3.3. - For every (t, 5, -k) ~ [0, T] x D x [0, + :~[ one has 

~(t ,  5, ) = ~ (t, 5, k ) -  lim ~K(t, 5, }). 
K-"~ o0 

In  particular the limit ~| is independent of the variable k. Moreover ~9| ( = X?) is up- 
per semicontinuous as soon as the maps ~gK are continuous. 

PROOF. - Fix (t, 5, k) �9 [0, T] x ~ x [0, + oo[ and consider a sequence of space- 
time controls (vn, Won, Wn) �9 F~(t ,  5) such that, setting x~-x[ t ,  5; v~, Won, w~](1), one 
has that the sequence ~V(x~) decreases to X9(~, 5). Since kv(x~) I> X%+~(t, 5, k) >I 
t> ~(t ,  5) it follows that ~ §  5, k) converges to ~(t ,  5) as n goes to oo. Finally, if the 
maps XOg are continuous, ~ is upper semicontinuous because it is the pointwise limit of 
a nonincreasing sequence of continuous maps. 

4. - A p p r o x i m a t i o n s  w i t h  in terna l  trajector ies .  

For every (t, ~) e [0, T] x ~ let us denote by (F~t)g(t ,  5) and c - F mr(t, 5) the subsets 
of F~( t ,  5) and FC(t, 5), respectively, formed by those space-time controls whose cor- 
responding trajectories lie in O for all s �9 (0, 1]. Such trajectories will be called inter- 
nal. We now prove a refinement of Proposition 2.4 which will be essential to demon- 
strate a maximality property of the value function (see section 6). In fact, we show that 
any space-time trajectory starting from a point 5 �9 ~ at a time t < T may be approached 
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by means of internal, regular trajectories. Moreover, if the original trajectory corre- 
sponds to a control (v, To, w) such that IlWtll ~< K, then the controls (~), ~o, ~)  corre- 
sponding to the internal approximating trajectories can be chosen to satisfy II~II~<K. 

THEOREM 4.1. - A s s u m e  (H1), (H2) and let (t, ~ ) � 9  [0, T] x ~ ,  K > 0 .  For every 
> 0 and every control (v, To, w) �9 F~( t ,  ~) there is a space-time control (~, To, w) �9 
(FCnt)K(t, .~) 8uch that 

(4.1) IIx[v, To, w] - x[~), To, w]ll~ ~< e .  

Moreover, i f  t < T the control (~, w0, w) can be chosen in the subset ~ - ( F  in t )g( t ,  X) N 
�9 n r + ( ~ ) .  

REMARK 4.1. - It can be easily deduced by the proof of Theorem 4.1 that under the 
sole hypothesis (H2) an approximation with internal trajectories is still possible. How- 
ever, if only (H2) is in force, we must allow the approximating control ~ to have a 
greater L 1 norm than the L 1 norm of w. 

The proof of Theorem 4.1 is a direct consequence of Theorem 4.2 below and is 
sketched at the end of this section. In turn, the proof of Theorem 4.2 is similar to the 
proof of Theorem 4.2 of [38]. However the needed changes are quite technical. Hence, 
for the reader's convenience, we give the proof of Theorem 4.2 in full detail. 

Let us fix a compact set Q r R ~ and a constant M > 0 and let us consider the 
map 

~(w)--~-max { If(t, x, v, To, w) - f ( t ,  x, v, w0, 0)1: (t, x, v, w0) �9 [0, T] • Q x Vx [0, M]}.  

We shall make use of the following property of the superposition map w ~ r  oW. 

LEMMA 4.1 [38]. - Ifw�9 1 ] ,  Bin[0, M] (~ C) then qyoweLl([o, 1 ] ,  R ) ,  and 
for any e > 0 there exists a 5 > 0 such that for all w e L l ( [ 0 ,  1], Bin[0, M] n C) satis- 

1 

fying S IT(S) I ds <~ 5 one has 
o 

1 

S q~(w(s) )ds <. e . 
o 

THEOREM 4.2. - Assume (H1) and (H2) and let Q be a compact suset of-O, M > O. 
Then there exists a non negative function Q continuous and infinitesimal at 0 such 
that, for any ~ > 0, ~ - ( t ,  5) e [0, T] x Q and any space-time control (v, To, w) eF(t)  
with IlWoN~ ~< M and Ilwll~ <<-M, there is an admissible space-time control (~, To, w) �9 

I 1 

eF~nt(t, ~) such that Ilwoll~ ~<M, ]lwll~ <~M, S ] (v (s ) lds<'a-  S Iw(s)lds'  and 
o o 

(4.2) I ( t ,~c) (s ) - ( t ,x ) (s ) l<~Q(d+e) ,  Vs�9  [0, 1], 
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where ( t ,  ~c)- (t, x)[t, ~; v, Wo, w], (t, x) "-(t, x)[t, ~; v, Wo, w], and 

(4.3) d ' s u p { d ( x ( s ) ,  O): s � 9  [0, 1]}.  

Moreover, i f  Wo(S) > 0 for  a.e. s � 9  [0, 1] then (zo(s) > 0 as well for  a.e. s � 9  [0, 1]. 

PROOF.- In view of the bounds IIw011~ ~ M,  Ilwl]~ ~< M and by Proposition 2.3, the 
set  of the trajectories of (2.5) corresponding to the space-time controls of F(t) is equi- 
bounded and equilipschitzian; hence f can be replaced by a bounded and uniformly con- 
tinuous function, which coincides w i t h f  on a compact set  [0, T] • (O N B~[0, M ' ] )  • 
• V •  (BI+~[0 ,  2M] N ([0, + oo) • C)),  where M '  is defined as in Proposition 2.3. For  
simplicity we denote this function again by f .  Then, by (H2) it follows that if 
[(t, x, v, w0, w) - ( t ' ,  x ' ,  v ' ,  Wo', w ' )  [ ~<6~ for ~ > 0  sufficiently small, one has 

(4.4) 
[(v2, w)(t, x) - (v2, w)(t ' ,  x ' )  [ <~ r2/2 , 

I f( t ,  x,  v, Wo, w ) - f ( t ' ,  x ' ,  v ' ,  wd, w ' ) [  ~<r2/2,  

where (v2, w) and r2 are the same as in hypothesis (H2). Let  us consider a space-time 
control (v, Wo, w ) e F ( t )  such that IlWotl~ <~M, Ilwtl~ ~<M, and let us set y - ( t ,  X).  
�9 [t, 5; v, w0, w]. The second estimate in (2.6) implies 

(4.5) l y(s") - y(s ') I <~ ~ 

for every s ', s" �9 [ 0, 1 ] such that I s" - s '  I <~ ~ /M" ,  where M"  is defined as in Proposi- 
tion 2.3. 

For  e > 0 and an arbi trary s * �9 (0, ~/M"]  we set 

" ~ o - i n f { s � 9  e O  c} ('~o=S * i f x ( s ) � 9  V s e [ 0 ,  s * ) ) ;  

d - s u p { d i s t ( x ( s ) ,  O): s e  [0, s * ] } ,  

where  the superscript ,% means complementation. In case ~o < s*,  or So = s * and 
X(~o)e~O,  let us set  s o - m a X { ~ o - e / M " ,  0} and let us define the following con- 
trol 

" US[O, s o ) ~'- Y2 ( t ( s 0 ) ,  X(80))X[So, So+C(d+e)] + Vc(d+e)~(So+c(d+e), 1] , 

Wo -" WoZ[o, ~o) + (T - t(1 - c(d + e)))/c(d + e) Z[~o, ~o+ c(d + ~)] + Woc(d+~)Z(~o+c(d+~), 1], 

- wx [o, ~o) + Mw(t(so ), x(so ) ) 91 [~o. ~o + c(d + ~)] + Wc(d + ~) • (~o + c(d + ~), 1] (S). 

In the formulas above we have set  c - ra in  {4/Mr2,  (1 - s o ) / ( d + e ) }  and, for any map g 
and any constant a,  g ~ ( s ) - g ( s -  a). More precisely, by 0 < So < s * ~< 1 and (2.6), if we 
assume that e e ( 0 ,  Mr2/8], we have ( 1 -  So)/(d + e) >I ( 1 - s * ) / ( M " s *  + Mr2/8). 
Choosing s * <. Mr2/2(Mr2 + 4M"),  we obtain c = 4/Mr2. Furthermore,  since I wl <~ 1 

1 

and ( T - t ( 1 - c ( d + e ) ) ) / c ( d + e ) = c ( c ( d + s ) )  -1 f Wo(S) ds<~llWoll~, one has 
1 -c(d+e) 

IIw0 I1~ < M,  Ilwll~ ~< M.  Moreover Wo(S) > 0 a.e whenever  Wo(S) > 0 a.e. 
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Let us set f - (wo ,  f), y = ( t ,  ~) - 'y [ t ,  x; v, Wo, w], ~-v2(t(so), X(So)), 
Wo-'(T - t(1 - c(d + e)))/Mc(d + e) and ~'-(o(t(so), X(So)). The definition of (~, Wo, w) 
and the homogeneity o f f  with respect to (Wo, w) yield 

So + r + s) 

(4.6) (t, x)(so + c(d + s) ) = (t(so), x(so) ) + M ~ f(~t(s), v, wo, ~;) ds . 
so 

Hence, by (4.4)-(4.6) and hypothesis (H2), one obtains that 

(4.7) B(~,(So + c(d + e)), 2(d + e) )c O.  

Moreover, the same argument yields 5(s)~ O for every s e(so, so+ c(d + s)]. If  
So + c(d + e) < s *, let us consider s ~ (so + c(d + e), s * ]. Then 

(4.8) (t, ~)(s) = (t, x)(so § c(d + e) ) + ; f (Y,  Vc(d+~), Wo~(d+~), Wc(d+~))(S) ds = 
So+c(d+e)  

s - c ( d  + e) 

=(t ,~) (So+C(d+e))+ f f (~ ( s+c(d+e l ) , v ( s l ,  wo(sl, w(s l )ds= 
so 

= (t, ~)(So + c(d + ~))+ (t, x)c(d+~)- (t, x)(So)+ Xc(d+~), 

where 

X~d+As)- 
s - c ( d + ~ )  

[f(~(s + c(d + e)), v(s), Wo(S), w(s)) - f (y(s) ,  v(s), Wo(S), w(s))]ds.  
SO 

By (2.6) and the definition of X(.) one has that 

I~](So + c(d + e) ) - y(so) I <~ M"c(d + e), 

~(s + c(d + e)) - y ( s )  =X(s) + [~(So+ c(d+ e)) - y(so)]. 

Therefore, the hypothesis (2.2) on f together with the regular and slow growth assump- 
tion (2.4) imply 

IX~d+~)(S)I < L  
s - c(d + e) 

(Wo(S) + Iw(s) l) l~(s + c(d + e) ) - y(s) l ds < 
s0 

Thus by Gronwall's Lemma it follows that 

(4.9) 

<. 2LM 
s - c(d + E) 

[M" c(d + e) + lX(s) l]ds " 
SO 

IX~(d+~)(s) [ <. M"c(d + e ) ( e  2LM(s-8~  - 1) 
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for all s �9 (So + c(d + s), s * ]. If  

s * ~< (2LM)  -~ In (1 + M r 2 / 4 M " ) ,  

inequality (4.9) yelds 

(4.10) [X~(d+~)(s)l<<.d+s , V s e ( S o + c ( d + e ) , s *  ] . 

Let  us observe that  for any s �9 [0, s * ] there exists a point x~(s) �9 ~ 0  A Bn(5, 2~) such 
that d(x(s), O ) =  I x ( s ) -  x~(s) I . Since 

X~(d+~)(S) + X(So + c(d + ~) ) - X(So) = [X~(d + ~)(S) -- X~(~§ + 

+X~o(d+~)(S) + M 

s o - c ( d  + e)  

f (~(s) ,  v, Wo, ~ ) d s ,  
So 

(4.12) I~(s) - y(s)  [ <<. 2M"e2LMc(d + e), VS �9 [0, 1]. 

I f  S* = 1, the control (~, wo, w) is admissible and satisfies (4.2). Otherwise, let us 
observe that  s* and all the constants involved in the estimates above are depending 
only on L ,  (v2, w) and M.  Thus we can repeat  exactly the same construction with 
(v, wo, w) and the initial point 0 replaced by (~, wo, w) and s *, respectively. As a result  
we obtain a new control whose corresponding trajectory belongs to O for all s � 9  
�9 (0, 2 s * ]  and keeps a distance from (t(s), 5 (s ) )  which is less than or equal to 
2M"e2LMc(d '+  e), where d ' - s u p  {d(~(s), O): s � 9  [s*,  2s*]} .  Hence, if now we set 
d - s u p { d ( x ( s ) ,  O): s � 9  [0, 2s*]} ,  by (4.12) it follows that 

(4.13) d '  <~ d + 2 M "  e2LM c(d + ~). 

If  [ 1/S * ] denotes the integer part  of 1 / s  *, in at most N - [  1 / s  * ] + 1 steps we construct 
an admissible control, which will be still denoted by  (~, w0, w). Moreover, by  (4.12) and 
(4.13), for a suitable constant C > 0 the corresponding trajectory (t, 5) satisfies 

[ (t(s), ~(s)) - (t(s), x(s))[ ~< C(d + ~), Vs �9 [0, 1], 

where d is the same as in (4.3). 

on the basis of (4.4)-(4.6) it is not diffucult to check that 

(4.11) Bn (x(so + c(d + e) ) + Xc(d + ~)(S) -- X(So), d + e)r  O .  

Thus by (4.7), (4.8), (4.10) and (4.11) we can conclude that ~ ( s ) � 9  O for all s �9 (0, s*] 
and 

I ff(s) - y(s)  l <<. 

I M " ( s  - So), if s �9 [So, So + c(d + s)] ,  ~< 
[ M " c ( d + s ) + M " c ( d + e ) ( e 2 L M ( 8 - ~ ~  if s e [ s o + c ( d + e ) ,  1], 

i.e. 
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However the control ~ may fail to satisfy the L 1 constraint, i.e. it may happen 
that 

1 1 

f I~l ds > a'- f ds.  
0 0 

Hence we need a further modification of ~ to conclude the proof. For this purpose, ob- 
serve that 

1 1 

f ds -< f Iwl ds + NMc(d + e). 
0 0 

Set 

{ r } ~-sup  s � 9  {~{ds<<.a 
0 

1 

and assume that ~ < 1. Let us observe that f I~{ ds <~ NMc(d + e), and in [~, 1] let 

us replace the control (~, w0, w) with (~, w0, 0). The corresponding trajectory, say 
~ = (t, ~) ,  satisfies 

8 8 

(4.14) { ~ ( s ) - ~ ( s )  { <~LMf ]~t~(a)-~(a)ida+ fqs(w(a))do, 

where ~0 is the same as in Lemma 4.1. The latter implies that, for a suitable increasing 
1 

function r continuous at 0 and satisfying ~ 1 ( 0 ) = 0 ,  one as fcp(w(s))ds < . 
<~ 01 (NMc(d + e)). Thus by applying Gronwalrs Lemma we obtain o 

]~(s)  - ~(s) { ~< 01 (NMc(d + e))(e LM(s -~) - -  1). 

Hence, if ~(s ) �9  O, Ys�9 [~, 1], we conclude the proof by setting 

Q(d + s) -01  (NMc(d + e)) e T M  + C(d + e) ; 

( ~ , ~ o , ~ ; ) _ I ( ~ , ~ o , ~ ) ,  on [0,~] ,  

[(v, Wo, 0), on [~, 1], 

Alternatively, one has ~ - i n f { s  e[~,  1]: ~(s) e O c} < 1, t(~) < T, and one can regard 
the system (2.1) on the interval [t(~), T] as a control system driven by the only bounded 
control v. More precisely, since the function 3(.) is constant on any interval [s ', s"] r 
r [~, 1] where w o -  0, by setting e.g. 

s = ~ ( t ) - m i n t ~ ( t ) ,  ~(t ) -5(~( t ) ) ,  ~(t)-~(~(t)) ,  

one obtains a trajectory 2 = x[~, 0] of (2.1) such that 2(t(s)) = ~(s), Vs �9 [~, 1]. 
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Hence by using hypothesis (H1) in the t-interval [~, T], one can apply a procedure 
similar to the one followed above to modify the control ~), with ~ ~ instead of , ~. If  ~ de- 
notes the resulting control, then the space-time control 

[ (v, To, w), 

(~, ~o, ~)-1(+, ~o, 0), 
[(~,  ~o~ 0), 

on [O, ~], 

on [~, ~], 

on [~, 1], 

where ~l(s)-~)l(t(s)),  agrees with the thesis of the theorem. 

PROOF OF THEOREM 4.1. - Let e > 0, (t, 5) �9 [0, T) x ~ ,  y = y[t, 5; v, To, w] with 
1 

(v, To, w ) � 9  5) canonically parametrized and set M-II(Wo, w)ll~, a - f  Iw(s) lds. 
0 

By Proposition 3.5 in [38] for any r /> 0 there exists a regular control (v, To, w) ~ F + (t) 
with IlWolt| < M + 1, such that the corresponding trajectory ~ - [ t ,  5; v, To, w] satis- 
fies 

I~(s)- y(s) l ~< ~. 

Thus, in view of Theorem 4.2, one can construct a (regular) control (~, To, w ) � 9  
C -- + -- v , v v v 

E Cint( t  , X) I"1C (t), W 0 > 0, such that the corresponding trajectory y = y[t, 5; v, To, ~] 
satisfies 

I ~(s) - y (s )  I ~< I ~ ( s )  - ?~(s) I + 114(s) - y(s)  I ~< ~(Y) + Y, II ?~ II1 < a .  

In order to obtain (4.1) it suffices to choose ~/ so that Q(y) + ~ ~< e. Finally, if t = T, 
we can apply Theorem 4.2 directly to the control (v, To, w ) [ -  (v, 0, w)] to obtain a new 
space-time control (~, WOW)[-- (~, 0, ~) e F t ( t ,  5) with Ilwll~ ~< a and satisfying 
(4.1) �9 

Let us denote by (~int)K(t,  5 ,  k) and ~int(t ,  5) the value functions corresponding to 
the sets of controls c - ( F i n t ) g _ ~ ( t  , X) and c - f int ( t ,  5),  respectively: 

(~int)K(t, 5)-- inf ~(X[t, 5; V, To, W](1)), 
(v, To, w) �9 (F,cnt)K_~(~, T~) 

~int(t ,  X)~" inf ~ff(X[t, 5; V, To, W](1)). 
(V, W0, W) e FCmt(~, ~) 

As an obvious consequence of Theorem 4.1 we have that, under hypotheses (H1), 
(H2), 

(~gint)K(t , 5, k) = ~K(t, 5, k),  V(t, 5, k) e [0, T] x O x [0, K],  

"~int(t, 5) = ~ ( t ,  ,~, ) ,  V(t '  5) e [0,  T] x ~ ,  

the latter inequality holding true even under the sole hypothesis (H2). For the case 
with bounded controls a similar result has been already proved in [29]. 
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5. - Controls unbounded in the L 1 n o r m .  

Unlike the maps ~9K, in general ~9 fails to be continuous, as it is shown by 
Example 5.1 below. In fact, we prove that ~ is upper semicontinuous and solves a suit- 
able boundary value problem, in which an extended definition of viscosity solution in- 
troduced by H. Ishii [23], [24] is involved. In general ~9 is not the unique solution of this 
boundary value problem even if it is continuous (see the next section). 

Let us begin by recalling the notions of upper and lower semi-continuous envelope 
of a map. Let ~ be a map from a subset E of an Euclidean space R N into the extended 
real line R U { + ~ } U { - ~ }. The upper semicontinuous envelope q~* and the lower 
semicontinuous envelope q~, are defined on the closure E of E by 

* ( ~ ) - l i m  sup ~(e) ,  ~ , ( ~ ) - l i m  sup ~(e) ,  
r--~0 B(~, r) N E r--*0 B(~, r) N E 

respectively. By definition ep* is upper semicontinuous and ~ ,  is lower semicontinu- 
OUS. 

In order to state Theorem 5.1, which concerns the dynamic programming equation 
for problem (~), we need a concept of viscosity subsolution and supersolution valid for 
discontinuous maps as well--see [24] and [1]. 

DEFINITION 5.1. - Let E be a subset of  R N and let ~ be a continuous map f rom 
E • R N in R.  A funct ion g: E--> R is called a viscosity subsolution [resp. supersolu- 
tion] of the f irst  order differential equation 

(Eq) 5~(z, Vg(z)) = 0 

at a point ~ �9 E i f  for  any ~ ~ C ~ (R N) such that -2 is a strict local m a x i m u m  [resp. 
min imum]  on E for  g * - ~  [resp. g ,  - 4 ]  one has 

~(z, v~(~)) ~< 0 [resp. >I 0]. 

g: E-->R is called a viscosity solution of (Eq) at ~ i f  it is both a viscosity subsolution 
and a viscosity supersolution. 

REMARK 5.1. - There is a recent and rich literature on the extension of the concept 
of solution to discontinuous maps. Besides the notion used here [23], let us mentiopn 
the generalized minimax solutions [53], the envelope solutions [1] and the bilateral sol- 
utions [4]. Yet these concepts are not fit for the problems addressed in this paper. For 
an exaustive account on the question of discontinuous solutions we refer to [1] and to 
the bibliography therein. Finally, let us mention that another approach to problems 
with lower semicontinuous value function are provided in [21] and [22], where contin- 
gent derivatives are used. However, even that approach does not apply to our case, for 
our value function is not lower semicontinuous (actually, it is upper semicontinuous). 

Let us introduce the Hamiltonian function H for the general case where the L 1 
norm of ~ is not bounded. Let Ha be the Hamiltonian for the case with bounded L 1 
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norm (see [39]), i.e. 

H ~ ( t , x ,  pt, px, p k ) -  min { P t w o + P ~ . f ( t , x , v ,  wo, w ) + p k l w l } ,  
(v, wo, w ) ~ V x S ' 2  

where S ~ - { ( w 0 ,  w) �9 R 1 +~: I(Wo, . . . ,  w~) I = 1, wo t> 0, w = (wl . . . .  , w~) �9 C}. For  
every (t, x, Pt, Px) �9 [0, T] • O x R 1+" we set 

H(t,  x, Pt, p~ ) -H~( t ,  x, Pt, P~, 0). 

We shall consider the following dynamic programming equation 

(DPE) - H ( t ,  x, Vtu, V~u) = 0 .  

D E F I N I T I O N  5 . 2 .  - We shall say that a map gl: [ 0 ,  T] x O - - ) R  is a subsolution of 
the boundary value problem associated to (DPE)--briefly, gl is a subsolution of 
(BVP)-- if  

i) gl is a subsolution of (DPE) in [0, T] x O, 

ii) g~ <<. ~ on { T} x -0. 

We shall say that a map g2: [0, T] • 0 - - ) R  is a supersolution of the boundary 
value problem associated to (DPE)--briefly, g2 is a supersolution of (BVP)-- i f  

ffi) gz is a supersolution of (DPE) in [0, T] x O, 

iv) on {T} x ~ ,  either (gz). >I ~ or g2 is a supersolution of (DPE). 

A map g: [0, T] • O - - ) R  which is both a subsolution and a supersolution of 
(BVP), will be called a solution of (BVP). 

THEOREM 5.1. - The map ~: [0 ,  T] x ~ - - * R  is a solution of (BVP). 

The following example shows that  ~ is possibly discontinuous--actually, upper 
semicontinuous--even when no state constraints are in force. Moreover ~ is not the 
unique solution of (BVP). 

EXAMPLE 5.1. - Le t  us consider the problem of minimizing ~(x( 1 ) ) -  I x( 1 ) + 1 I over 
all terminal points of the trajectories x: [0, 1 ] - - )R  satisfying 

=-Ixl~, x(o)=5, ~(t)�9 +~). 

Clearly the value function is independent of t .  Le t  us write x instead of 5, and let us ob- 
serve that  from each x >I 0 one can reach every positive value arbitrarily close the ori- 
gin. On the other hand, the point x = - 1 can be reached from every x �9 [ - 1, 0[. Note 
incidentally that  the expenditure of ]]~]]1 which is necessary to steer x to - 1  tends to 



134 M. MOTTA - F. RAMPAZZO: State-constrained control problems, etc. 

+ ~ as x approaches the origin from the left. A straightforward computation gives: 

f 
l ,  

~(x)= O, 

x+ll ,  

Vx>~0, 

V x � 9  [ - 1 ,  0[, 

Vx ~< - 1.  

In fact, the dynamic programming equation (DPE) reduces to 

- min { 8 ~  ~ ?  [xlw} = 0 
(~o,~)~s~[0,+| ~ -~- w 0 -  ~ x  

and from the condition ~(x) < Ix + 1 I one easily checks taht ~ is a solution of the 
boundary value problem (BVP). Yet, it is not unique, in that  every map 

[a (x )  , 

W(x)  "-- ~0 , 

l l x+ l l ,  

Vx~>0, 

Yx�9  [ - 1 ,  0[, 

Vx~  < - 1 ,  , 

where a(x) is a smooth and nonincreasing map satisfying 0 ~< a(x) <. 1, is a solution of 
(BVP). Let us observe that the map ~(t ,  x ) - ~ ( x ) ,  V(t, x) �9 [0, T[ x ~ ,  ~(T,  x) - ~(x), 
Vx �9 ~ is an upper semicontinuous solution of (BVP). We shall prove that in fact V is 
the maximal upper semicontinuous subsolution of (BVP). 

The proof of Theorem 5.1 is based on the following Dynamic Programming Prin- 
ciple: 

PROPOSITION 5.1 (Dynamic Programming Principle). - For every (3, ~) �9 [0, T] x D 
the value map  ~ verifies 

~(t,  ~) = inf ~((t, x)[t, ~; v, Wo, w[(s)) 
(v, wo, w) mFC(~, ~) 

f o r  all s �9 [0, 1 ]. 

PROOF. - Up to a reparametrization argument the proof of this Dynamic Program- 
ming Principle is quite standard. However, for the reader convenience, we give a 
sketch of it. 

Fix ~ �9 [0, 1] and ~ > 0. For any control (~, Wo, w) �9 PC( ~, x) there is a control 
(v, wo, w) �9 ~) with (v, ~ ) - ( t ,  x)[t, ~; ~, Wo, w](s) such that 

~(x[v, ~; ~, Wo, ~](1))  ~< ~(v, ~) + e .  

Hence the control (v, Wo, w) defined by (v, Wo, w)(s)- (~,  Wo, ~)(s) for every s �9 [0, ~] 
and by (v, Wo, w ) ( s ) - ( ~ ,  Wo" (1 -~ ) -1  ) ( ( s -  ~)(1 - ~ ) - 1 )  for every s �9 1] belongs to 
FC(t, ~) and moreover x[t, ~; v, Wo, w](1) =x[r ,  ~; ~, Wo, ~](1). Since ~(t,  ~)~< 
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~< ~(x[t, 5, v, Wo, w](1)), it follows that 

v(~, 5) ~< ~(v, ~) + s .  

Now, taking the infimum over the controls (v, Wo, w) E Fc(t,  ~), by the arbitrariness of 
one obtains 

(5.1) ~9(~, 5) < inf ~((t, x)[t, ~; v, Wo, w](s)) 
(v, wo, w) �9 Fc(~, ~) 

for all s~[O, 1]. 
In order to prove the converse inequality, fLx ~ �9 [ O, 1 ] and s > 0 and consider a con- 

trol (v, Wo, w) �9 FC(t, ~) satisfying 

~(x[t, ~; v, Wo, w](1)) ~< ~(t ,  ~) + E. 

Setting (3, ~ ) - ( t ,  x)[t, 5; v, Wo, w](~), the control (~), wo, w) defined by 
(~), Wo, ~ ) ( s ) - (v ,  wo.(1 -~) ,  w-(1 - ~))(~ + s(1 - ~ ) )  for every SE [0, 1] is such that 
x[v, ~; ~, Wo, ~](1) =x[t ,  "~; v, Wo, w](1). Since ~(v, ~) <~ ~Y(x[v, ~; ~), Wo, ~](1)) ,  it 
follows that 

(5.2) ~(~, ~) ~< ~(~, ~) + ~. 

By the arbitrariness of s, (5.2) together with (5.1) yields the thesis. �9 

In view of the Dynamic Programming Principle above the proof of Theorem 5.1 is 
similar to the proof Theorem 4.1 in [39], where a similar problem with a bound on the L 1 
norm of w was considered. For this reason, we omit it. 

6. - C h a r a c t e r i z i n g  t h e  v a l u e  f u n c t i o n .  

As shown by Example 5.2, in general the value map is not the unique solution of 
(BVP). Neither uniqueness is achieved when ~ is continuous, as the following simplifi- 
cation of Example 5.1 shows. 

EXAMPLE 6.1. - Let us consider again the control system 

~ = - I x l ~ ,  x(O)=2, ~ C - ' [ o , + = [ .  

If we wish to minimize the cost function 

~(x(1) ) - Ix (1 )  I , 

we obtain the continuous value function 

{0_' x Vx~>0 ~(x) = 
, V x < O .  



136 M. MOTTA - F. RAMPAZZO: State-constrained control problems, etc. 

The corresponding Bellman equation is the same as in Example 5.1: 

- min { 8~ 8~ } nEo,+<2  -w0- Ixlw =0. 

is not the unique solution of the corresponding (BVP), for the map 

_ [ ~ ( x ) ,  t < T ,  
X) 

l ~ ( x ) ,  t = T 

is a solution of (BVP) as well. We remark that in general the value map is not unique 
even in the class of continuous solutions of (BVP)--see Example 6.2. However observe 
that ~ is maximal among the continuous subsolutions of (BVP), while ~(t ,  x) is maximal 
among the subsolutions of (BVP). Both this facts agree with the general results 
below. 

Subsolution-properties of ~. 

Let us set 

x) I v(t'x)' (t,x)�9 
~(t,  -- '[~(x),  (T, x ) � 9  {T} x ~ .  

Let us observe that ~ is upper semicontinuous, for V is upper semicontinuous and 
V(T, x) ~< ~(x). 

THEOREM 6.1. - The map ~ solves the (BVP). Moreover ~ is the maximal  subsolu- 
tion of (BVP) on [0, T] x ~ .  

COROLLARY 6.1. - The map ~ is maximal  on the set [0, T[ x ~  among the subsolu- 
tions of (BVP). 

COROLLARY 6.2. - I f  ~ is continuous then it is maximal  on [0, T] x ~ among the 
continuous subsolutions of (BVP). 

COROLLARY 6.3. - I f  ~(  T, x) = ~(  x ) for  every x �9 -0, then ~ is the maximal  subsolu- 
tions of (BVP) on [0, T] x ~ .  

The proof of Theorem 6.1 will be ~ven at the end of this section. Corollary 6.1 and 
6.3 follow from the same definition of ~, while Corollary 6.2 is a straightforward conse- 
quence of Corollary 6.1. For analogous results for a problem with unbounded controls 
without state costraints we refer to [3], where the formal Hamiltonian is used (see also 
the Appendix). 

REMARK 6.1. - The inequality ~(T,  x) < ~(x) means that for a t in a neighbourhood 
of T it is convenient to implement controls ~: [t, T] -~ C having L 1 norm grater than a 
certain positive constant. On the contrary, the equality ~(T, x) = ~(x) means that one 
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is not forced to use such controls. Then an obvious condition guaranteeing the equality 
~?(T, x) = ~(x) is the following non jumping condition at T, briefly (NJC): 

(NJC) V~(x). f(T,  x, v, O, w) >I O, V(x, v, w) e ~  x V x  C.  

Condition (NJC), which is a sort of compatibility condition (see e.g. [24] and [52]), has 
to be interpreted in the classical sense whenever ~ is continuously differentiable. If 
is just continuous (NJC) has to be regarded in the sense of the theory of viscosity sol- 
utions. This means that on the right-hand side one has to replace the gradient of ~ with 
any element of the subdifferential of ~ ,  D -  ~ ,  which is defined as follows: 

D ~g(x)-{peRn:liminf ~ ( y ) - ~ g ( x ) - p ' ( y - x )  } - > ~ 0  . 

Lack of uniqueness. 

Though Corollary 6.1 characterizes the value function on [0, T[ x Q in terms of its 
subsolution properties, a uniqueness result is far to hold true. In fact, since equation 
(DPE) is highly degenerate--the coefficient of ~t may happen to be zero--the superso- 
lution properties of ~ turn out to be too weak for singling it out among the solutions of 
(BVP). Even if at t = T ~ is continuous and coincides with the cost function, we do not 
have uniqueness. For example, if f -  0, then x~(t, x) coincides with ~(x) at any x e O. 
verifies the (DPE) which reduces to 

} - -  W0 ----- 0 
0~<W0~<I 

and it is straightforward to check that u(t, x)-~g(x) - ( T -  t) is a solution as well. The 
following example provides a less trivial case (which includes Example 6.1) of non 
uniqueness. 

EXAMPLE 6.2. - Consider any continuous bounded cost function with a dynamics of 
the form 

m 

ic = E gi(x) ~i. 
i = l  

The value function ~ is obviously independent of t and it is not difficult to verify that 
each map u(t, x ) - ~ ( x ) +  of(t) with ~ smooth, bounded, increasing, nonpositive, and 
such that ~0(T) = 0 is still a solution of the corresponding (BVP). 

In order to prove Theorem 6.1 we need the following lemma on the monotonicity of 
the viscosity subsolutions of (DPE) along internal trajectories. 

LEMMA 6.1. - Let Z: [0, T] x O- - )R  be a subsolution of (DPE) on [0, T[ x O. Then 
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for every (t, ~) �9 [0, T[ x ~  and every control (v, Wo, w) er .~ t ( t ,  5) N F § (t) the 
map 

s~Z(( t , x ) [ t ,  5;V, Wo, W](S)) for s e [0 ,1 ]  

is nondecreasing. 

This result is well known (see [1], [17]) in the case when Z is continuous. The proof 
of the general case ([2]) needs some more Calculus within the theory of viscosity 
solutions. 

PROOF OF THEOREM 6.1. - Since ~* --- ~--- "Q on [0, T[ x ~  and, as it easy to check, 
~ .  - ~ .  on [ 0, T] x ~ ,  the fact that ~ solves (BVP) is a straightforward consequence 
of Theorem 5.1. 

In order to prove that ~ is the maximal subsohtion of (BVP), let us beginby observ- 
ing that on the subset {T} x ~ the result is trivial, in that Z(T, 5) ~< ~(~) - ~(T, 5) for 
all Z and ~ �9 ~ .  Now let us assume by contradiction that there exist a subsolution Z of 
(BVP) and a constant ~/> 0 such that 

(6.1) Z(t, 5) - ~(t ,  5) = t] 

for some (t, 5 ) e  [0, T [ x O .  On the basis of Theorem 4.1 there exists a control 
r - 

(v, w0, w) �9 Fint(t, ~) N F § (~) such that 

(6.2) ~(t ,  5) i> ~Y(x(1)) - r]/2, 

where (t, x ) - ( t ,  x)[t, 5; v, w0, w]. By (6.1), (6.2) it follows that 

(6.3) Z(t, 5) I> ~(x(1))  + r//2. 

Now Lemma 6.1 yields the inequality Z(T, x(1))>-Z((t, x ) ( 0 ) ) = Z ( t ,  5) which, to- 
gether with (6.3), implies 

~(x(1))  I> Z(T, x(1)) I> Z(t, ~)/> ~Y(x(1)) + y / 2 ,  

a contradiction. Hence it is proved that for any subsolution Z of (BVP), Z <~ ~ on 
[0, T] x O. �9 

Appendix. 

When the value function ~ is continuous, Corollary 6.2 gives a characterization of 
on the whole domain [0, T] x O. When conditions (H1), (H2) are verified (or, alterna- 
tively, the continuity of the maps ~g is known a priori), discontinuities of ~ may only 
arise because of the occurence of minimizing sequences of controls ~ n whose L 1 norms 
tend to infinity (however, even in this case it may happen that ~ turns out to be continu- 
ous). In fact, if on each compact subset Q of ~ the minimizing controls can be chosen 
having L 1 norm uniformly bounded by a constant M, then one gets "~(t, x) = "VM(t, X) 
for every (t, x) �9 [0, T] x Q. Since the maps ~M are assumed continuous it follows that 
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is continuous as well. Let us remark that in this case we obtain the best possible ap- 
proximation of x? on compact sets, in that ~K -- ~ for a K sufficiently large. Incidentally 
this makes this approximation more adequate to the problem that the approximation 
(pursued e.g. in [3] for an infinite horizon problem) by the value functions ~L corre- 
sponding to the set of controls {~: I1~11 ~ ~< L}, which in general are strictly greater than 
~. Indeed consider the following simple example on [0, T] • R. 

EXAMPLE A.1. 

minimize x 2 (T), 

x = ~ ,  

X(~) = ~ ,  ~ e C--'R. 

Clearly one has ~(t ,  ~, 0) = 0 for each 5eB[0 ,  K], while ~K(t, X, 0) = (]5[_--K) 2 for 
every 5 outside B[0, K]. Since ~ is identically equal to zero then one has ~g(t ,  ~, O) = 
= ~(t,  7) in B[0, K]. On the other hand it is easy to check that 

~n(t ,  X) = max{0, ([xl - L ( T  - ~))2}. 

In particular there is no way of invading [ 0, T] • O with a sequence of compact sets CL 
on which the maps TO L coincide with ~0. 

Motivated by the above considerations let us observe that in at least two cases the 
bound on compact sets of the L 1 norm of the minimizing controls ~ is almost 
obvious. 

The first instance concerns a sort of weak coercitivity assumption. More precisely, 
we assume that there exist two positive constants Co, C1 such that 

(A.1) V ~ ( x ) . f ( t ,  x, v, > Co + C1 

for all (t, x, v, ~)e  [t, T] • O • V• C. This condition makes the exploitation of con- 
trols ~ with too large L 1 norm unconvenient. Of course condition (A.1) has a classical 
meaning only if ~ is regular enough. Otherwise it must be interpreted in the sense pro- 
vided by the theory of viscosity solutions. It is clear that for a functional of Bolza 
type 

T 

~ l(t, x[v, ~](t), v(t), ~(t) )dt  + y~(x(T) ) 

-- to which the result of the previous sections can be easly adapted--condition (A.1) is 
replaced by 

V~(x).f(t ,  x,  v, ~) + l(t, x ,  v,  ~) >I Co + C1 ]~[ 

for all (t, x, v, ~) �9 It, T] x ~ • V• C. In turn, as soon as f ( t ,  x ,  v, ~) - ~, C =  R ~, 
- 0, the above Bolza problem include several classical examples from the Calculus of 

Variations with slow growth (see e.g. [15]). 
A second instance where the L 1 norm of ~ is automatically bounded is represented 
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by the case when too large values of I1~111 take that  state x outside ~ .  A simple case 
where such a situation occurs is the following one. Consider m vector  fields g~, . . . ,  g~ 
different from zero at each point 5 e R ", and assume that  for each i = 1, . . . ,  m the sol- 
ution of the Cauchy problem 

= gi(x) ,  x(0) = 

is defined for every t I> 0. Moreover assume that  the norms of these solutions tend 
to infinity as t goes to + or Le t  r  R "--* R be a coercive map (i.e. I r  ] --~ + oo as 
Ixl - - ,  + oo) and let r be an increasing bounded map. Le t  us set kU-ro r and let us con- 
sider the problem 

minimize kU(x(T)), ~ = go(x) + ~ gi(x) ~i,  x(t) = 5 ,  
i=1 

with go any regular  vector field and the control ~ taking values in the cone [ 0, + oo [~. I t  
is easy to prove that  for any 5 lying in a compact subset Q c R ~, there  exists a constant 
KQ such that  for a suitable minimizing sequence ( ~ , ) ,  one has ]]~11~ ~< KQ. 

Finally let us observe that  the value function ~ may be continuous even if the mini- 
mizing controls ~ for some initial conditions have unbounded L 1 norm, as shown by 
the following example. 

EXAMPLE A.2. - Consider the problem 

(P~) minimize {a rc tanx(T)} ,  ~ = - ( I x l  + e ) ~ ,  x(t) = 5 ,  

where s is a nonnegative constant, and x e R, ~ e R.  I t  is s traightforward to verify that  
for each problem (P~) the minimizing sequences {~n } of controls satisfy II~n II1--* + ~ .  
However, whenever  e > 0 one has ~(x)  = - z / 2 .  In particular, ~ is continuous. On the 
contrary,  ~ has a discontinuity at x = 0 as soon as e = 0. 

R E F E R E N C E S  

[1] M. B~DI - I. CAPUZZO DOLCETTA, Optional control and viscosity solutions of Hamiltonian- 
Jacobi Bellman equations, Birkhiiuser, Boston (1997). 

[2] M. BARDI - P. SORAVIA, Personal communication. 
[3] G. BARLES, An approach of determinist control problems with unbounded data, Ann. Ist. 

Henri Poincar~, 7-4 (1990), pp. 235-258. 
[4] E. N. BARRON - R. JENSEN, Semicontinuous viscosity solutions of Hamiltonian-Jacobi 

equations with convex Hamiltonian, Comm. Partial Differential Equations, 15 (1990), pp. 
1713-1742. 

[5] E. N. BARRON - R. JENSEN - J. L. MENALDI, Optimal control and differential games with 
measures, Nonlinear Analysis, Theory, Methods & Applications, 21-4 (1993), pp. 214-268. 

[6] ALBERTO BRESS~, On differential systems with impulsive controls, Rend. Sem. Mat. Univ. 
Padova, 78 (1987), pp. 227-236. 

[7] ALBERTO BRESSAN - F. RAMP~ZZO, On differential systems with vector-valued impulsive con- 
trols, Boll. Un. Mat. Ital. (7), 2-B (1988), pp. 641-656. 



M. MOTTA - F. RAMPAZZO: State-constrained control problems, etc. 141 

[8] ALBERTO BRESSAN - F. RAMPAZZO, Impulsive control systems with commutative vector 
fields, Journal of Optimization Theory and Applications, 71 (1991), pp. 6%83. 

[9] ALBERTO BRESSAN - F. RhMPAZZO, Impulsive control systems without commutativity as- 
sumption, Journal of Optimization Theory and Applications, 81 (1991), pp. 435-457. 

[10]  ALDO BRESSAN, Hyperimpulsive motions and controllizable coordinates for Lagrangean 
systems, Atti Accad. Naz. Lincei, Mere. C1. Sc. FiN. Mat. Natur., 19 (1991). 

[11] ALDO BRESSAN, On some control problem concerning the ski and the swing, Atti Acad. Naz. 
Lincei, Mem. C1. Sc. FiN. Mat. Natur., Series IX, 1 (1991), pp. 149-196. 

[12] ALDO BRESSAN & M. MOTTA, Some optimization problems with a monotone impulsive char- 
acter. Approximation by means of structural discontinuities, Atti Accad. Naz. Lincei, Mem. 
C1. Sc. FiN. Mat. Natur., Series IX, 2 (1994), pp. 31-52. 

[13] F. CAMILLI - M. FALCONE, Approximation of control problems involving ordinary and im- 
pulsive controls, Preprint (1995). 

[14] I. CAPUZZO-DOLCETTA - P. L. LIONS,  Hamilton-Jacobi equations and state constrained prob- 
lems, Trans. Amer. Math. Sou., 318 (1990), pp. 643-668. 

[15] L. CESARI, Optimization-Theory and Applications, Springer-Verlag, New York, Heidel- 
berg, Berlin (1984). 

[16] C. W. CLARK - F. H. CLARKE - G. R. MUNRO, The optimal exploitation of renewable stocks, 
Econometrica, 48 (1979), pp. 25-47. 

[17] M. G. CRANDALL - P. L. LIONS,  Viscosity solutions of Hamilton-Jacobi equations, Trans. 
Amer. Math. Soc., 277 (1983), pp. 1-42. 

[18] G. DAL MASO - F. RAMPAZZO, On systems of ordinary differential equations with measures 
as controls, Differential and Integral Equations, 4 (1991), no. 4, pp. 739-765. 

[19] J. R. DORROH - G. FERREYRA, A multi-state, multi-control problem with unbounded controls, 
to appear on SIAM J. Control and Optimization. 

[20] V. A. DYKHTA, Impulse trajectory extension of degenerated optimal control problems, The 
Liapunovfunctions methods and applications, P. BORNE - V. MATROSOV (eds.), J. C. Baltzer 
AG, Scientific Publishing Co. (1990), pp. 103-109. 

[21] H. FRANKOWSKA, Optimal trajectories associated with a solution of the contingent Hamil- 
ton-Jacobi equation, J. Appl. Math. Optim., 19 (1989), pp. 291-311. 

[22] H. FRANKOWSKA, Lower semicontinuous solutions of Hamilton-Jacobi-BeUman equations, 
SIAM J. Control Optim., 31 (1993), pp. 257-272. 

[23] H. ISHII, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), pp. 
369-384. 

[24] H. ISHH, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations, 
Ann. So. Norm. Sup. Pisa (IV), 16 (1989), pp. 105-135. 

[25] H. ISHII - S. KOIKE, A new formulation of state constraints problems for first order PDEs, 
SIAM J. Control and Optimization, 365 (1996), pp. 554-576. 

[26] D. F. LAWDEN, Optimal Trajectories for Space Navigations, Butterworth, London 
(1963). 

[27] LIU - H. J. SUSSM)_NN, Limit of high oscillatory controls and the approximation of general 
paths by admissible trajectories, Proc. C.D.C. IEEE (1991). 

[28] LIU - H. J. SUSSMANN, A characterization of continuous dependence of trajectories with re- 
spect to the input for control-affine systems, Preprint. 

[29] P. LORETI, Some properties of constrained viscosity solutions of Hamiltonian-Jacobi-BeU- 
man equations, SIAM J. Control and Optimization, 25 (1987), pp. 1244-1252. 

[30] P. LORETI - E. TESSITORE, Approximation and regularity on constrained viscosity solutions 
of Hamilton-Jacobi-Bellman equations, Jour. of Mathematical Systems, Estimation and 
Control, 4 (1994), pp. 467-483. 

[31] J. P. MAREC, Optimal Space Trajectories, Elsevier, Amsterdam-Oxford (1979). 



142 M. MOTTA - F. RAMPAZZO: State-constrained control problems, etc. 

[32] B. M. MILLER, Optimization of dynamic systems with a generalized control, Automation 
and Remote Control, 50 (1989), pp. 733-742. 

[33] B. M. MILLER, Condition for the optimality in problems of generalized control. L Necessary 
conditions for optimality, Automation and Remote Control, 53 (1992), pp. 50-58. 

[34] B. M. MILLER, The generalized solutions of ordinary differential equations in the impulse 
control problems, Journal of Mathematical Systems, Estimation and Control, 4 (1994), pp. 
385-388. 

[35] B. M. MILLER, The generalized solutions of nonlinear optimization problems with impulse 
control, SIAM J. Control Optim, 34 (1996), pp. 1420-1440. 

[36] M. MOTTA - F. RAMPAZZO, Space-time trajectories of nonlinear systems driven by ordinary 
and impulsive controls, Differential and Integral Equations, 8, 2 (1995), pp. 269-288. 

[37] M. MOTTA - F. RAMPAZZO, Dynamic programming for nonlinear systems driven by ordinary 
and impulsive controls, SIAM J. Control and Optimization, 34 (1996), pp. 188-225. 

[38] M. MOTTA - F. RAMPAZZO, Nonlinear system with unbounded controls and state constraints: 
a problem of proper extension, NoDEA-Nonlinear Differential Equations and Applications, 3 
(1996), pp. 191-216. 

[39] M. MOTTA - F. RAMPAZZO, The value function of slow growth control problem with state con- 
straints, Journal of Mathematical Systems, Estimation and Control, 8 (1998). 

[40] L. W. NEUSTADT, A general theory of minimum-fuel trajectories, J. SIAM control, 3 (1965). 
[41] F. RAMPAZZO, Optimal impulsive controls with a constraint on the total variation, Progress 

in Systems and Control Theory, New trends in systems theory, G. CONTE, A. M. PERDON and 
B. F. WYMAN (eds.), Boston, Massachusetts (1990), pp. 606-613. 

[42] F. RAMPAZZO, On the Riemannian structure of a Lagrangian system and the problem of 
adding time-dependent costraints as controls, Eur. J. Mech., A/Solids, 16 (1991), Gauthier- 
Villars, pp. 405-431. 

[43] R. W. RISHEL, An extended Pontryagin principle for control systems whose control laws 
contain measures, J. SIAM Control, 3 (1965), pp. 191-205. 

[44] A. V. ShRYCHEV, Nonlinear systems with impulsive and generalized function controls, Proc. 
Conf. on Nonlinear Synthesis, Sopron, Hungary (1989). 

[45] W. W. SCHMAEDEKE, Optimal control theory for nonlinear differential equations containing 
measures, J. SIAM Control, 3 (1965), pp. 231-279. 

[46] A. N. SESEKIN, Nonlinear differential equations in the class of functions of bounded varia- 
tion, Automation and Remote Control (1990). 

[47] A. N. SESEKIN, Impulse extension in the problem of the optimization of the energy funetion- 
al, Automation and Remote Control (1993). 

[48] S. P. SETHI, Dynamic optimal control problems in advertising: a survey, SIAM Review, 19 
(1997), pp. 685-725. 

[49] G. N. SILVA - R. B. VINTER, Measure driven differential inclusions, J. Math. Anal. Appl., 202 
(1996), pp. 727-746. 

[50] G. N. SILVA - R. B. VINTER, Necessary conditions for optimal impulsive control problems, 
SIAM J. Control Optim, 35 (1997), pp. 1826-1846. 

[51] H. M. SONER, Optimal control with state-space constraints, SIAM J. Control and Optimiza- 
tion, 24 (1986), pp. 552-561. 

[52] P. SORAVIA, Optimality principles and representation formulas for viscosity solutions of 
H-J equations. II. Equations of control problems with state constraints, Advances in Differ- 
ential equations (to appear). 

[53] A. J. SUBBOTIN, Discontinuous solutions of a Dirchelet type boundary value problem for 
first order partial differential equations, Russian J. Numer. Anal. Math. Modelling, 8 (1993), 
pp. 145-164. 

[54] R. B. VINTER - M. F. L. PEREIRA, A maximum principle for optimal processes with discon- 
tinuous trajectories, SIAM J. Control Optimization, 26 (1988), no. 1, pp. 205-229. 


