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Abstract

The paper analyzes a Lagrangian system which is controlled by directly assign-
ing some of the coordinates as functions of time, by means of frictionless con-
straints. In a natural system of coordinates, the equations of motion contain terms
which are linear or quadratic with respect to time derivatives of the control functions.
After reviewing the basic equations, we explain the significance of the quadratic
terms related to geodesics orthogonal to a given foliation. We then study the prob-
lem of stabilization of the system to a given point by means of oscillating controls.
This problem is first reduced to the weak stability for a related convex-valued differ-
ential inclusion, then studied by Lyapunov functions methods. In the last sections,
we illustrate the results by means of various mechanical examples.

1. Introduction

A mechanical system can be controlled in two fundamentally different ways. In
a commonly adopted framework [5,17,27], the controller modifies the time evolu-
tion of the system by applying additional forces. This leads to a control problem in
standard form, where the time derivatives of the state variables depend continuously
on the control function.

In other situations, also physically realistic, the controller acts on the system by
directly assigning the values of some of the coordinates by means of time dependent
constraints. The evolution of the remaining coordinates can then be determined by
solving an “impulsive” control system, where the derivatives of the state variables
depend (linearly or quadratically) on the time derivative of the control function.
This alternative point of view was introduced independently in [13] and in [25].

Motivated by this second approach, in the present paper we study the following
problem of Classical Mechanics:

Consider a system where the state space is a product Q×U of finite-dimensional
manifolds Q and U . Assume that one can prescribe the motion t �→ u(t) ∈ U of
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Fig. 1. Left a pendulum with vertically moving pivot and fixed length. Right a pendulum
with fixed pivot and variable length

the second component by means of frictionless constraints. Given a point (q̄, ū),
can one stabilize the system at this point by an oscillatory motion of the control
u(·) around ū ?

A well known example where stability is obtained by vibration is provided
by a pendulum whose suspension point can oscillate on a vertical guide, as in
Fig. 1, left. Calling θ the angle and h the height of the pivot, in this case we have
(q, u) = (θ, h) ∈ S1 × I . Here S1 = [0, 2π ] with endpoints identified, and I is an
open interval. If we take q̄ = θ̄ = 0 as the (unstable) upper vertical position of the
pendulum, it is well-known (see for example [1,20,21] and references therein) that
this configuration can be made stable by rapidly oscillating the pivot around a given
value ū = h̄. More generally, we will show that this system can be asymptotically
stabilized at any angle θ̄ with −π/2 < θ̄ < π/2, by a suitable choice of the control
function t �→ h(t) = u(t).

On the other hand, consider a variable length pendulum, where the pivot is fixed
at the origin, but we can assign the radius of oscillation r as a function of time; see
Fig. 1, right. The system is again described by two coordinates (q, u) = (θ, r) ∈
S1 × I . However, in this case the upright equilibrium position is not stabilizable by
any oscillatory motion of the radius r(t) around a fixed value.

A major difference between these two systems is that the equation of motion
of the first one contains a quadratic term in the time derivative u̇ .= du/dt . On the
other hand, the equation for the variable-length pendulum is affine with respect to
the variable u̇. Actually, the explicit dependence on u̇ here can be entirely removed
by a suitable change of coordinates.

To understand the general problem, one has to consider two main issues. The
former is geometric, and involves the orthogonal curvature of the foliation

�
.=

{
Q × {u}, u ∈ U

}
. (1.1)

Orthogonality is defined here with respect to the Riemannian metric determined by
the kinetic energy. The orthogonal curvature is a measure of how a geodesic, which
is perpendicular to the leaf Q × {u} of the foliation at a given point (q, u), fails
to remain perpendicular to the other leaves it meets. If this curvature is non-zero,
then the dynamic equations for q and for the corresponding momentum p contain a
quadratic term in the time derivative u̇ of the control function. This will be analyzed
in detail in Part I, Sections 4, 5.
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The latter issue is analytical, namely: how to exploit this curvature, that is the
quadratic terms in u̇, in order to achieve stabilization. This will be discussed in
Part II of this paper. In particular, we study the set of solutions for a system with
quadratic, unbounded, controls, making essential use of reparametrization tech-
niques. These, in turn, are combined with arguments involving Lyapunov functions
for a convexified system.

Let us point out that there exists a rich literature addressing stabilization of
mechanical systems in the classical framework of force controlled systems—
namely, those mechanical systems where the controls have the physical meaning of
forces (see [5–7,17,27] and references therein). A link between that framework and
the approach adopted in the present work can be established by merely observing
that in the latter the actuating forces are nothing but constraint reactions generated
by imposing the kinematic control u. Actually, a viewpoint regarding u and its
(first and second) time derivatives as controls is already present in the study of the
so-called superarticulated systems (see in particular [3] and references therein).
Such control systems are called acceleration-controlled mechanical systems, as
opposed to force controlled ones (see also [4,16] for links between the two kinds
of systems). These works are based on the notion of averaging, which is in fact
strictly connected with the convexification methods adopted here. In particular, the
averaging approach for acceleration-controlled systems lead to stabilization results
akin to Theorem 9.2 below, which incidentally is valid for non-potential exogenous
forces as well—see also Remark 15.

This paper consists of three parts. In order to keep our exposition as self-
contained as possible, in Part I we first describe the mechanical model and recall
the basic dynamical equations. In Section 2 we consider a state space Y = Q × U
given by the product of two manifolds. The controls will be curves t �→ u(t) taking
values in the manifold U . The main physical assumption we are making is that
these controls u(·) are implemented by means of frictionless, time-dependent con-
straints. One can then derive the equations of motion on the reduced state space Q,
where the dynamics depend on u and on its time derivative u̇, the latter dependence
being a polynomial of degree two. In Section 3, we recall the local expression of
the control equations in a system of local coordinates adapted to the foliation �

in (1.1). Section 4 contains a survey of some geometrical and functional analytic
results concerning the input–output map and the kinetic metric. The main result of
Part I appears in Section 5, where we present a new interpretation of the quadratic
dependence of the equations of motion on the derivative of the control functions.
Our characterization of the quadratic coefficients is given in terms of the concate-
nation of two geodesics, the second returning to the same leaf of the foliation where
the first one started. This generalizes to higher dimensions a result in [22], where
the scalar control case is considered.

In Part II we consider a general nonlinear system where the right-hand side is
a quadratic polynomial with respect to the time derivatives of the control function.

ẋ = f (x) +
m∑

α=1

gα(x) u̇α +
m∑

α,β=1

hα,β(x) u̇α u̇β. (1.2)
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Using a re-parametrization technique, we show that the stabilization problem for
the impulsive control system (1.2) can be reduced to proving a weak stability prop-
erty for a related differential inclusion with a compact, convex-valued right-hand
side:

d

ds
x(s) ∈ F(x(s)), (1.3)

F(x)
.= co

⎧⎨
⎩ f (x) w2

0 +
m∑

α=1

gα(x) w0wα +
m∑

α,β=1

hα,β(x) wαwβ;

w0 ∈ [0, 1],
m∑

α=0

w2
α = 1

}
,

where co denotes a closed convex hull. Theorems 7.1 and 7.2 relate the weak
(asymptotic) stabilizability of the differential inclusion (1.3) with the (asymptotic)
stabilizability of the impulsive control system (1.2).

In practical cases, a direct analysis of the multifunction F may be difficult. In
Section 7, in addition to (1.3) we thus consider an auxiliary differential inclusion
of the form

d

ds
x(s) ∈ G(x(s)), (1.4)

where the multifunction G is derived from (1.2) by neglecting all linear terms, that
is, by formally setting gα ≡ 0. As shown by Theorem 6.1, trajectories of (1.3), as
well as (1.4), can be approximated by implementing smooth controls, possibly with
highly oscillatory behavior. We show that the weak stability of the differential inclu-
sion (1.4) still yields the relevant stabilization properties for the original control
system (1.2). Motivated by [35], in Section 8 we also show that the weak stability
of the differential inclusion can be established by looking at suitable selections.

In Part III we apply the previous analytic results to the problem of stabilization
of mechanical systems, controlled by moving holonomic constraints. Thanks to the
particular structure of the quadratic terms that appear in the equations of motion, we
show that in many cases one can construct a suitable Lyapunov function, and thus
establish the desired stability properties. The paper concludes with some examples,
presented in Section 10.

Throughout the paper, our focus is on systems in general form, where the equa-
tions of motion depend quadratically on the time derivatives u̇α . In the special
case where the dependence is only linear, that is hα,β ≡ 0 in (1.2), our results still
apply; however, controllability and stabilization are best studied by looking at Lie
brackets of the vector fields f, gα , using standard techniques of geometric control
theory [19,37,39].

In addition to [13,25], readers interested in the earlier developments of the the-
ory of control of mechanical systems by moving constraints are referred to [12,14,
15,18,28,29]. A concise survey, also outlining possible applications to swim-like
motion in fluids, has recently appeared in [8]. See also the lecture notes [31].
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Part I: Time-dependent holonomic constraints as controls

2. Time-dependent constraints as controls

In this section, we recall the general framework of a Lagrangian system subject
to additional time-dependent holonomic constraints, which are regarded as con-
trols. We refer to [31] for a fully intrinsic derivation of the control equations, which
will be presented here in coordinate form.

2.1. Structural assumptions

Let N , M be positive integers, and let Q and U be manifolds of class C2 and
dimension N and M , respectively [23,36]. When needed, we shall make the natural
identifications of T (Q × U), T ∗(Q × U), and T (T ∗(Q × U)) with the products
T (Q) × T (U), T ∗(Q) × T ∗(U), and T (T ∗(Q)) × T (T ∗(U)), respectively.

Let g be a Riemannian metric on the product manifold (Q × U). We shall refer
to the Riemannian manifold (Q×U , g) as the original Lagrangian system, meaning
that the whole state space is represented by the product manifold (Q × U), and the
kinetic energy T is the quadratic form defined by

T (q, u)[v, w] = 1

2
g(q, u)

(
(v, w), (v, w)

)
.

Q and U are called the reduced state space and the control space, respectively.1

(Regularity of the force). The external force F = F(t, q, u, P, ℘) is a
function measurable with respect to t and locally Lipschitz with respect to all other
variables.

2.2. Foliation structure and adapted coordinates

Let us consider the trivial foliation structure where the set of leaves is

� = {Q × {u} u ∈ U} . (2.1)

For every (q, u) ∈ Q × U , we denote by �(q, u)
.= Q × {u} the leaf through

(q, u).
We say that a (local) system of coordinates (q̃, ũ) is �-adapted if the sets

{ũ = constant} locally coincide with the leaves of the foliation. Of course, the local
product coordinates (q, u) are �-adapted. More generally, if (q̃, ũ) are �-adapted,
then every system of coordinates (q̂, û) obtained from (q̃, ũ) by means of a local
diffeomorphism of the form

q̂ = q̂(q̃, ũ) û = û(ũ). (2.2)

is �-adapted as well.

1 Following [25 and 18], one could consider a less trivial foliated structure.
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Let us consider the distribution2 � whose fibers are the tangent spaces to the
leaves of �. Namely, one has

�(q,u) = TqQ × {0}.
In our analysis, an important role will be played also by the orthogonal distri-

bution

�⊥
(q,u) =

{
Y ∈ TqQ × TuU | g(q, u)(Y, X) = 0 for all X ∈ �(q,u)

}
,

(2.3)

which will also be referred to as the orthogonal bundle, for short.

2.3. Admissible input–output pairs

Consider a control function t �→ u(t) ∈ U . In this section we define the cor-
responding output t �→ (q(t), p(t)) as the solution of a certain Cauchy problem.
In the following section, we then show that our definition is consistent with the
mechanical model, where the control is implemented in terms of frictionless con-
straints.

For every (u, w) ∈ T U , let us define the map T u,w : T Q �→ R by setting

T u,w(q, v)
.= T (q, u)[v, w], (2.4)

for all (q, v) ∈ T Q. This map can be regarded as the kinetic energy of the reduced
system when the control takes the value u, with u̇ = w.

Let I ⊂ R be an interval, and let u : I �→ U be an absolutely continuous
control function. The (time-dependent) kinetic energy of the reduced system on Q,
corresponding to the control u(·) is described, for all (q, v) ∈ T Q and for almost
everywhere t ∈ I , by

(t, q, v) �→ T u(t),u̇(t)(q, v
)
.

The corresponding (time-dependent) Hamiltonian on T ∗Q is

(t, q, p) �→ Hu(t),u̇(t)(q,P),

where

Hu,w(q, p)
.= sup

v∈TqQ

{
〈p, v〉 − T u,w(q, v)

}
. (2.5)

For every (q, u) ∈ Q × U , consider the linear map defined by

(p, ℘) �→ (v, w)(p, ℘)
.= argmin

{
〈(v, w), (p, ℘)〉 − T (q, u)[v, w]

}
.

2 In our context, the term “distribution” is meant in the sense of differential geometry,
namely, a fiber sub-bundle of the tangent bundle T (Q × U).
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In coordinates, this is nothing but the usual map that transforms momenta into
velocities by taking partial derivatives of the Hamiltonian corresponding to the
kinetic energy.

Since g is positive definite, for every (q, u) ∈ Q × U and every p ∈ T ∗
q Q, the

affine function

℘ �→ (v, w)(p, ℘)

is invertible. Its inverse will be denoted by

w �→ ℘(q,u,p)(w).

Let (q, u) be �-adapted coordinates, and let (q, u, p, π) be the corresponding
bundle coordinates. Let (Fi , FN+α) be the components of the force F, so that

F = Fi
∂

∂pi
+ FN+α

∂

∂πα

. (2.6)

Recalling the dimensions of the manifolds Q and U , we here have i = 1, . . . , N
and α = 1, . . . , M . The Einstein convention of summing over repeated indices is
always used. In addition, we define

Fu,w
i (t, q, p)

.= Fi
(
t, q, u, p, ℘(q,u,p)(w)

)
(2.7)

and

Fu,w(t, q, p)
.= Fu,w

i (t, q, p)
∂

∂pi
. (2.8)

Remark 1. Despite (2.4), in general one has

Hu,w (q, p) 
= H
(
q, u, p, ℘(q,u,p)(w)

)
.

The relation between these two functions is explained in more detail in [31].

Definition 1. Let I ⊂ R be a time interval. Let

u : I �→ U , (q, p) : I �→ T ∗Q,

be absolutely continuous maps. We say that
(

u(·), (q, p)(·)
)

is an admissible

input–output pair if (q, p) is a Carathéodory solution of the control equation of
motion

d

dt

(
q(t), p(t)

)
= XHu(t),u̇(t)

(
q(t), p(t)

)
+ Fu(t),u̇(t)

(
q(t), p(t)

)
. (2.9)

Here XHu,u̇ denotes the Hamiltonian vector field corresponding to Hu,u̇ with respect
to the symplectic structure on T ∗Q.3

3 With reference to 	-adapted coordinates (qi , uα) and the corresponding bundle coordi-

nates (qi , pi , uα, pα), one has XHu,u̇ = ∂Hu,u̇

∂pi
dqi − ∂Hu,u̇

∂qi
dpi .
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We recall that a Carathéodory solutions of an ODE ẋ = f (t, x) is an
absolutely continuous function t �→ x(t) that satisfies the differential equation
at almost everywhere time t . Given an initial data

(
q(t̄), p(t̄)

) = (q̄, p̄), (2.10)

and an absolutely continuous control function t �→ u(t), the existence and unique-
ness of a corresponding admissible output (q(·), p(·)) can be obtained from standard
ODE theory.

Depending on the geometrical properties of the metric g, the regularity assump-
tions on the input u and the output (q, p) can be considerably weakened.

2.4. Realization of controls as frictionless constraints

The previous notion of input–output pair is motivated by the fact that we are
assuming that the control u(·) is realized by means of frictionless constraints. This
is explained by the equivalence of conditions (i) and (iii) in Theorem 2.1 below.

Let us recall the notion of frictionless constraint reaction in the Hamiltonian
framework.

For every ((q, p), (u, ℘)) ∈ T ∗(Q) × T ∗(U), consider the subspace

RQ
(q,p),(u,℘) = {0} × V(u,℘)(T

∗U) ⊂ T(q,p)(T
∗(Q)) × T(u,℘)(T

∗(U))

where V(u,℘)(T ∗U) denotes the vertical subspace of T(u,℘)(T ∗U), namely, for given
bundle coordinates (qi , pi , uα, pα),

V(u,℘)(T
∗U)

.=
{

∂

∂℘α

α = 1, . . . , M

}
.

Definition 2. The subspace RQ
(q,p),(u,℘) will be called the subspace of Q-frictionless

reactions at ((q, p), (u, ℘)). The corresponding vector bundle based on T ∗Q×T ∗U
will be called the vector bundle of Q-frictionless reactions.

Remark 2. Here we are regarding the constraint reactions as a set-valued force,
described by the multifunction

(q, p), (u, ℘) �→ R(q,p),(u,℘).

To check that this definition coincides with the usual one it is sufficient to notice
that if 
 ∈ RQ

q,p,u,℘ and 
 = ∑N+M
r=1 
r

∂
∂ Pr

is its local expression, then one has

〈
(
1, . . . , 
N ,
N+1, . . . , 
N+M ) , (v1, . . . , vN , 0, . . . , 0)

〉
= 0,

for all v1, . . . , vN ∈ R.

Of course, this holds if and only if 
i = 0 for all i = 1, . . . , N .

Definition 1 is justified by Theorem 2.1 below. Let Pr1 : T ∗Q × T ∗U → T ∗Q
be the projection on the first factor space, and let D(Pr1) be its tangent map.
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Theorem 2.1. [31] Consider a time interval I ⊂ R and let the maps u : I �→ U ,
(q, p) : I �→ T ∗Q be twice continuously differentiable. Then the following condi-
tions are equivalent:

(i) (u(·), (q(·), p(·))) is an admissible input–output pair, that is, (q, p) verifies

d

dt

(
q(t), p(t)

)
= XHu(t),u̇(t)

(
q(t), p(t)

)
+ Fu(t),u̇(t)

(
q(t), p(t)

)
.

(2.11)

(ii) The path
(

q(·), p(·)
)

is an integral curve of the control system

d

dt

(
q(t), p(t)

)
= D(Pr1) ·

[
XQ

H(t, q(t), u(t), p(t), ℘)

+ Fu(t),u̇(t)
(

q(t), p(t)
)]

|℘=℘(q(t),u(t),p(t))(u̇(t))
. (2.12)

(iii) There exist selections

t �→ ℘(t) ∈ T ∗
u(t)(U) t �→ r(t) ∈ RQ

q(t),p(t),u(t),℘ (t)

such that, for all t ∈ I , one has

d

dt

(
q(t), u(t), p(t), ℘ (t)

)
= XH + F + r(t). (2.13)

The map r(·) in (2.13) is called the constraint reaction corresponding to the motion
(q, p, u, ℘)(·).

3. The control equation in local coordinates

Consider a �-adapted coordinate chart (q, u) defined on an open set U , and let
((q, u), (p, w)) be the corresponding coordinates on the fiber bundle

⋃
(q,u)∈U

{(q, u)} × (T ∗
q Q × TuU).

Let G = (gr,s)r,s=1,...,N+M be the matrix representing the kinetic metric g, and
let G−1 = (gr,r )r,s=1,...,N+M denote its inverse. In the following, we consider the
sub-matrices

G1
.= (gi, j ), G2

.= (
gN+α,N+β

)
, (G−1)2

.= (
gN+α,N+β

)
,

G12
.= (

gi,N+α

)
, (G−1)12

.= (
gi,N+α

)
,

with the convention that the Latin indices i, j run from 1 to N , while the Greek
indices α, β run from 1 to M . For convenience, we also define

A = (ai, j )
.= (G1)

−1, E = (eα,β)
.= ((G−1)2)

−1,

K = (ki
N+α)

.= (G−1)12 E . (3.1)
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Proposition 3.1. [31] Let u(·) : I �→ U be twice continuously differentiable, and
let (q, p) : I �→ T ∗Q be a curve such that (u(·), (q, p)(·)) is an admissible input–
output pair for the control equation of motion.4

Then the the corresponding coordinate maps t �→
(

u(t),

(
q(t)
p(t)

))
satisfy the

differential equation
⎛
⎝

q̇

ṗ

⎞
⎠ =

⎛
⎝

Ap

− 1
2 p† ∂ A

∂q p

⎞
⎠ +

⎛
⎝

K u̇

−p† ∂K
∂q u̇

⎞
⎠ +

⎛
⎝

0

1
2 u̇† ∂ E

∂q u̇

⎞
⎠ +

⎛
⎝

0

Fu(·),u̇(·)

⎞
⎠ ,

(3.2)

where, recalling (2.8),

Fu(·),u̇(·) .=
(

Fu(·),u̇(·)
1 , . . . , Fu(·),u̇(·)

N

)
. (3.3)

For convenience, in (3.2) we write all vectors as column vectors, while the
superscript † denotes transposition. Componentwise, (3.2) reads:

{
q̇i = ai, j p j + ki

N+α u̇α,

ṗi = − 1
2

∂a�, j

∂qi p� p j − ∂k j
α

∂qi p j u̇α + 1
2

∂eα,β

∂qi u̇α u̇β + Fu(·),u̇(·)
i .

(3.4)

(where i, j , and � run from 1 to N ).

4. The Riemannian structure and and the input–output map

The coefficients ∂ E
∂q of the quadratic terms in the dynamic equations (3.2) depend

on the interplay between the Riemannian metric g defining the kinetic energy and
the foliation � at (2.1). In this section we review the main results in this direc-
tion. To simplify the discussion, throughout this section we shall assume that the
additional forces F vanish identically, so that in (3.3) one has

Fu(·),u̇(·)
Q ≡ 0.

The following definitions were introduced in [13].

Definition 3. A local, �-adapted, system of coordinates (q, u) on Q × U is called
N-fit for hyperimpulses if in (3.4) one has ∂ E/∂q ≡ 0. This means that the right-
hand side of the corresponding equation of motion is affine with respect to the time
derivative u̇

A local, �-adapted, system of coordinates (q, u) on Q × U is called strongly
N-fit for hyperimpulses if in (3.4) one has ∂ E/∂q ≡ 0 and K ≡ 0. This means
that the right-hand side of equation of motion does not explicitly depend on the
variable u̇.

Moreover, we shall call generic any local, �-adapted, system of coordinates
(q, u) which is not N -fit for hyperimpulses.

4 By possibly restricting the size of the interval I , we can assume that (q(t), u(t)) remains
inside the domain of the single chart (q, u) for every t ∈ I .
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Remark 3. The denomination “N-fit for hyperimpulses” for a system of
coordinates (q, u) refers to the fact that, if the dependence on u̇ is only linear,
one can then construct solutions (q(·), p(·)) also for discontinuous controls u(·).
In general, a jump in u(·) will produce a discontinuity in both components q(·)
and p(·). For this reason we call it a hyperimpulse, distinguished from an impulse,
which can cause a discontinuity in the component p(·) only.

A first characterization of N -fit coordinates was derived in [13]. It is impor-
tant to observe that the property of being N -fit depends only on the metric g and
on the foliation �, while it is independent of the particular system of �-adapted
coordinates. This allows one to give the following definitions.

Definition 4. [29] The foliation � is called N-fit for hyperimpulses if there exists
an atlas of �-adapted charts that are also N -fit for hyperimpulses. In this case, all
�-adapted charts are N -fit for hyperimpulses.

The foliation � is called strongly N-fit for hyperimpulses if there exists an atlas
of �-adapted charts which are strongly N -fit for hyperimpulses.

Moreover, the foliation � will be called generic if it is not N -fit for hyperim-
pulses.

The paper [29] established the connection between the N -fitness of the foliation
� and the bundle-like property of the metric, introduced in [33,34]. We recall here
the main definitions and results.

Definition 5. The metric g is bundle-like with respect to the foliation � if, for one
(hence for every) �-adapted chart, it has a local representation of the form

N∑
i, j=1

gi, j (q, u)ωi ⊗ ω j +
M∑

α,β=1

gN+α,N+β(u)dcα ⊗ dcβ,

where ω1, . . . , ωN are linearly independent 1-forms such that, for each (q, u) ∈
Q × U in the domain of the chart, one has

(i) (ω1(q, u), . . . , ωN (q, u), dc1(u), . . . , dcM (u)) is a basis of the cotangent
space T ∗

q Q × T ∗
u U ;

(ii) 〈ωi (q, u), Y 〉 = 0, for every Y ∈ �⊥
(q,u).

We recall that �⊥
(q,u) is the orthogonal bundle, defined at (2.3). If g is bundle-

like with respect to the foliation �, the latter is also called a Riemannian foliation,
because in this case a Riemannian structure can be well defined also on the quo-
tient space. In order to state the next theorem, we recall the notion of completely
integrable distribution.

Definition 6. Let Y be a manifold of dimension d, and let 	 be a distribution on
Y of dimension N � d. (For every y ∈ Y , 	(y) is thus an N-dimensional sub-
space of TyY .) We say that the distribution 	 is completely integrable if, for every
y ∈ Y , there exists a neighborhood U of y and a local system of coordinates
(x, z) = (x1, . . . , x N , zN+1, . . . , zd) such that at each point y ∈ U one has

	(y) = span

{
∂

∂xi
i = 1, . . . , N

}
.



108 Alberto Bressan & Franco Rampazzo

Theorem 4.1. On the product space Y = Q × U , consider the natural foliation �

as in (2.1). The following statements are equivalent:

(i) The foliation � is N-fit for hyperimpulses.
(ii) The metric g is bundle-like with respect to the foliation �, that is, the foliation

� is Riemannian.
(iii) For any u, ū ∈ U the map du,ū(·) : Q �→ R defined by

du(q)
.= dist

(
(q, u),Q × {ū}

)

is constant. In other words, given two leaves, the points of one of the two are
all at the same distance from the other leaf (this allows one to define a metric
on the set of leaves).

(iv) If t �→ (q(t), u(t)) is any geodesic curve with respect to the metric g, and
if (q̇(τ ), u̇(τ )) ∈ �⊥

(q(τ ),u(τ )) at some time τ , then (q̇(t), u̇(t)) ∈ �⊥
(q(t),u(t))

for all t . In other words, if a geodesic crosses one of the leaves perpendicularly,
then it also crosses perpendicularly every other leaf which it meets.

(v) If (q, u) is a �-adapted system of coordinates, then

∂gN+α,N+β

∂qi
= 0 i = 1, . . . , N , α, β = 1, . . . , M, (4.1)

where G−1 = (gr,s) denotes the inverse of the matrix G = (gr,s) representing
the metric g in the coordinates (q, u).

Proof. The equivalence of (i) and (ii) is a trivial consequence of the definitions
of bundle-like metric and of N -fit system of coordinates. The equivalence of (ii),
(iii), and (iv), is a classical result on bundle-like metrics [33]. Moreover, by (3.4),
the foliation is fit for jumps if and only if ∂eα,β/∂qi ≡ 0. Recalling that the matrix
(eα,β) is the inverse of (G−1)2 = (gN+α,N+β), we conclude that (i) is equivalent
to (v). �

Theorem 4.2. The following statements are equivalent:

(i) The foliation � is strongly N-fit for hyperimpulses.
(ii) The foliation � is N-fit for hyperimpulses and the orthogonal bundle �⊥

(q,u)

in (2.3) is integrable.
(iii) There is an atlas such that, for every chart (q, u), one has

∂gN+α,N+β

∂qi
= 0, gi,N+α = 0 for all i = 1, . . . , N , α, β = 1, . . . , M.

Indeed the equivalence of (i) and (ii), formulated in terms of Riemannian foliations,
was proved in [33]. The equivalence between (i) and (iii) follows from (3.4). Again,
see [33 and 29] for details.
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5. The quadratic term in the control equation and the orthogonal
curvature of the foliation �

As we have seen in the previous section, the N -fitness for hyperimpulses of a
coordinate system (q, u) can be characterized in terms of geodesics. Indeed, the
quadratic terms in the control equation of motion (3.4) are identically zero if and
only if any geodesic which perpendicularly crosses one leaf of the foliation � also
has perpendicular intersection with every other leaf it meets.

In the general case, however, the quadratic terms in (3.4) do not vanish. We wish
to give here a geometric interpretation of these terms. This will again be achieved
by looking at geodesics whose tangent vector initially lies in the orthogonal distri-
bution �⊥.

5.1. U-orthonormal coordinates

We shall make an essential use of Proposition 5.1 below, which establishes
the existence of a special kind of �-adapted charts. To state it, let us set
(x1, . . . , x N+M )

.= (q1, . . . , q N , u1, . . . , uM ), and, for every h, k, r, s = 1,

. . . , N + M , let us consider the functions

	h,r,s
.= 1

2

(
∂gh,r

∂xs
+ ∂gh,s

∂xr
− ∂gr,s

∂xh

)
, 	k

r,s
.= gkh

(
∂gh,r

∂xs
+ ∂gh,s

∂xr
− ∂gr,s

∂xh

)

The 	k
r,s are the well-known Christoffel symbols.

Proposition 5.1. Consider a point (q̄, ū) ∈ Q × U and an orthonormal basis
{J1, . . . , JM } of �⊥(q̄, ū). Then there exist �-adapted coordinates (q, u), defined
on a neighborhood of (q̄, ū), such that calling G = (gr,s)r,s=1,...,N+M the corre-
sponding kinetic matrix, one has

(i) the point (q̄, ū) has coordinates (0, 0);
(ii) gr,s(0, 0) = gr,s(0, 0) = δr,s (the Kronecker symbol) for all

r, s = 1, . . . , N + M;
(iii) for every w = (w1, . . . , wM ) ∈ R

M , the geodesic (q, u)w(·) issuing
from (q, u) with velocity equal to w1 J1 + . . . wM JM has local representation
(q, u)w(t) = (0, . . . , 0, tw1, . . . , twM ).

Moreover, for all indices i = 1, . . . , N and α, β, γ = 1, . . . , M, we have

	i,N+α,N+β(0, 0) = 	i
N+α,N+β(0, 0) = 0,

	N+γ,N+α,N+β(0, 0) = 	
N+γ

N+α,N+β(0, 0) = 0. (5.1)

In turn, this implies

∂gN+β,N+γ

∂qi (0, 0) = ∂gi,N+β

∂uγ (0, 0) + ∂gi,N+γ

∂uβ (0, 0), (5.2)

∂gN+α,N+β

∂uγ (0, 0) = ∂gN+α,N+β

∂uγ (0, 0) = 0. (5.3)

A chart with the above properties will be called U-orthonormal at (q̄, ū).
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Proof. We start by considering �-adapted coordinates (q̂, û), defined on a
neighborhood of the point (q̄, ū), such that at the point (q̄, ū) one has (q̂, û) = (0, 0)

and

∂

∂ ûα
= Jα, α = 1, . . . , M,

while
{

∂

∂q̂i
; i = 1, . . . , N

}

is an orthonormal basis of the tangent space T Q at (q̄, ū), with respect to the
metric g.

To achieve the further property (iii), we need to modify these coordinates using
the exponential map. In the following, given a tangent vector V ∈ T(q̄,ū)(Q × U),
we denote by τ �→ γV(τ ) the geodesic curve starting from (q̄, ū) with velocity V.
In other words,

γV(0) = (q̄, ū),
dγV

dτ
(0) = V.

The exponential map is then defined by setting

Exp(q̄,ū)(V)
.= γV(1).

This is well defined for all vectors V in a neighborhood of the origin.
Denote by (q̂, û)(q, u) the coordinates of a point (q, u) via the chart (q̂, û). We

now define (q, u) to be the new coordinates of a point (q, u) provided that

(
q̂, û

)
(q, u) =

(
q̂, û

) (
Exp(q̄,ū)

( M∑
α=1

uα Jα

))
+

(
q1, . . . , q N , 0, . . . , 0

)
.

(5.4)

Notice that this is well defined, for all (q, u) in a neighborhood of (q̄, ū). Indeed,
the map ρ : R

N+M �→ R
N+M defined by

ρ(q1, . . . , q N , u1, . . . , uM )

=
(

q̂, û
) (

Exp(q̄,ū)

( M∑
α=1

uα Jα

))
+

(
q1, . . . , q N , 0, . . . , 0

)
. (5.5)

maps the origin into itself. Moreover, by the properties of the chart (q̂, û), the Jaco-
bian matrix ∂ρ/∂(q1, . . . , q N , u1, . . . , uM ) at the origin coincides with the identity
matrix. This already establishes the properties (i) and (ii).

By construction, (q, u)(q, u) = (0, . . . , 0, u1, . . . , uM ) if and only if

(q, u) = Exp(q̄,ū)

(
M∑

α=1

uα Jα

)
.

This establishes (iii).
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In order to prove (5.2) and (5.3), we observe that the geodesic curves correspond
to solutions of the second order equations

{
q̈i = 	i

j,�q̇ j q̇� + 2	i
j,N+α q̇ j u̇α + 	i

N+α,N+β u̇α u̇β i = 1, . . . , N
üγ = 	

γ

j,�q̇ j q̇� + 2	
γ

j,N+α q̇ j u̇α + 	
γ

N+α,N+β u̇α u̇β γ = 1, . . . , M

(5.6)

By the previous construction, for any given w ∈ R
M the solution of (5.6) with

initial data

(q, u, q̇, u̇)(0) = (0, 0, 0, w) (5.7)

satisfies

q(t) ≡ 0, u(t) = tw. (5.8)

By (5.6) we obtain

0 = q̈i (0) = 	i
N+α,N+β(0, 0)wαwβ

0 = üγ (0) = 	
γ

N+α,N+β(0, 0)wαwβ

Since these equalities hold for all initial data w ∈ R
M in (5.7), this and property

(ii) yield (5.1).
Next, by

0 = 	i,N+α,N+β(0, 0) = ∂gi,N+β

∂uγ
(0, 0) + ∂gi,N+γ

∂uβ
(0, 0) − ∂gN+β,N+γ

∂qi
(0, 0)

we obtain (5.2), since, by property (ii), one has

∂gi,N+β

∂uγ
(0, 0) = −∂gi,N+β

∂uγ
(0, 0),

∂gN+β,N+γ

∂qi
(0, 0) = −∂gN+β,N+γ

∂qi
(0, 0)

for all i = 1, . . . , N and α, β = 1, . . . , M .
Moreover, for every α, β, γ = 1, . . . , M , one has

∂gN+α,N+β

∂uγ
= 	N+α,N+γ,N+β + 	N+β,N+γ,N+α = 0.

Therefore, by the property (ii), (5.3) is proved as well. �
Remark 4. As in (3.1), let (eα,β)α,β=1,...,M be the inverse of the sub-matrix
(gN+α,N+β)α,β=1,...,M . Then, since at (q, u) = (0, 0) we have gr,s = gr,s = δr,s ,
it follows

∂eα,β

∂qi
(0, 0) = ∂gN+α,N+β

∂qi
(0, 0), for all i = 1, . . . , N , α, β = 1, . . . , M.

(5.9)
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5.2. The orthogonal curvature of the foliation

For any (q, u) in the range of a �-adapted chart, consider the quantity

∂eα,β

∂qi
dcα ⊗ dcβ ⊗ dqi (5.10)

Definition 7. We shall refer to the function (5.10) as the orthogonal curvature ten-
sor of the foliation. Although the quantity in (5.10) is not a tensor in the strict sense
of the word, by (5.11) it still transforms like a tensor with respect to to changes of
�-adapted coordinates—see Lemma 5.1 below. Hence, it is intrinsically defined
once the foliation � is given.

Lemma 5.1. The function in (5.10) is intrinsically defined with respect to the foli-
ation �. This means that if (q̃, ũ) is a �-adapted chart then

∂ ẽα,β

∂q̃i
= ∂uγ

∂ ũα

∂uδ

∂ ũβ

∂q j

∂q̃i

∂eγ,δ

∂q j
. (5.11)

Proof. Since(q, u) and (q̃, ũ) are �-adapted, the coordinate transformation
(q, u) �→ (q̃, ũ) satisfies ∂ ũ

∂q = 0. Therefore,

g̃N+α,N+β = ∂ ũα

∂uγ

∂ ũβ

∂uδ
gN+γ,N+δ.

By inverting the matrices on both sides of the above identity one obtains

ẽα,β = ∂uγ

∂ ũα

∂uδ

∂ ũβ
eγ,δ,

which implies (5.11), because u = u(ũ) is independent of q̃ . �
According to Theorem 4.1, the foliation � is N -fit for hyperimpulses if and

only if the the corresponding orthogonal curvature is identically equal to zero. We
now give a geometric construction which clarifies the meaning of the coefficients
∂eα,β/∂qi in (5.10), in the general case (see Fig. 2).

Fix any point (q, u) ∈ Q × U and consider any non-zero vector v ∈ �⊥
(q,u).

Construct the geodesic curve that originates at (q, u) with speed v, namely

s �→ γv(s)
.= Exp(q,u)(sv). (5.12)

∆
(q,u)

(q  ,u)s

(q  , u  )ss

Fig. 2. The geodesics involved in the computation of the orthogonal curvature of �
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Next, for each s 
= 0, consider the orthogonal space �⊥
(qs ,us )

at the point (qs, us) =
γv(s). Assuming that s is sufficiently small, a transversality argument yields the
existence of a unique vector w ∈ �⊥

(qs ,us )
such that

Exp(qs ,ps )
w = (q̂s, u) ∈ Q × {u}. (5.13)

In other words, we are moving back to a point (q̂s, u) on the original leaf Q × {u},
following a second geodesic curve. In general, q̂s 
= q. We claim that, setting
σ

.= s2, the map

σ �→ (q̂√
σ , u)

defines a unique tangent vector z(v) ∈ T(q,u). Moreover, the map v �→ z(v)

is a homogeneous quadratic map from �⊥
(q,u) into the tangent space T(q,u)Q ⊂

T(q,u)(Q × U). In turn, this determines a unique symmetric bilinear mapping
B : �⊥

(q,u) ⊗ �⊥
(q,u) �→ T(q,u)Q such that B(v, v) = z(v), namely

B(v1, v2)
.= 1

4
z(v1 + v2) − 1

4
z(v1 − v2). (5.14)

The relation between the bilinear mapping (5.14) and the curvature tensor
(5.10) can be best analyzed by using coordinates. Consider an orthonormal basis
(J1, . . . , JM ) of �⊥(q, u), together with local U-orthonormal coordinates (q, u),
constructed as in Proposition 5.1. If v = w1 J1 + · · · + wM JM , then by construc-
tion the point (qs, us) has coordinates (0, sw) = (0, . . . , 0, sw1, . . . , swM ). Let
(q̂w(s), 0) be the coordinates of the point (q̂s, u), constructed as in (5.13). We now
have:

Theorem 5.1. The curve s �→ qw(s) ∈ R
N is continuous and satisfies

lim
s→0

q̂i
w(s)

s2 = 1

2

M∑
α,β=1

∂eα,β

∂qi
wαwβ i = 1, . . . , N . (5.15)

Proof. It is understood that the coefficients ∂eα,β/∂qi in (5.15) are computed at
(q, u) = (0, 0), corresponding to the point (q, u). In view of (5.9), it suffices to
prove that

lim
s→0

q̂i
w(s)

s2 = 1

2

M∑
α,β=1

∂gN+α,N+β

∂qi
wαwβ. (5.16)

In coordinates, the geodesic σ �→ γw(σ ) = Exp(qs ,us )(σw) is given by a
map σ �→ (q̂(σ ), û(σ )) which, for suitable adjoint variables p = (p1, . . . , pN ),
π = (π1, . . . , πM ), satisfies the Hamiltonian system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q̇i = gi, j p j + gi,N+βπβ

u̇α = gN+α, j p j + gN+α,N+βπβ

ṗi = − 1
2

∂g j,k

∂qi p j pk − ∂g j,N+β

∂qi p jπβ − 1
2

∂gN+β,N+γ

∂qi πβπγ

π̇α = − 1
2

∂g j,k

∂uα p j pk − ∂g j,N+β

∂uα p jπβ − 1
2

∂gN+β,N+γ

∂uα πβπγ .

(5.17)
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The conditions γw(0) = (qs, us), γw(1) ∈ Q × {u}, and the fact that w ∈ �⊥
(qs ,us )

imply
⎧⎨
⎩

qi (0) = 0,

uα(0) = swα,

uα(1) = 0.

pi (0) = 0. (5.18)

For s sufficiently small, the existence and uniqueness of the solution to the two-
point boundary value problem (5.17) and (5.18) follows from the implicit function
theorem. We now seek an expansion of this solution in powers of s.

Call π̄ = π(0), and consider the Cauchy problem for (5.17), with initial data
{

q(0) = 0,

u(0) = sw,

{
p(0) = 0,

π(0) = π̄ .
(5.19)

Using the Landau order symbols, our computations can be simplified by observing
that {

q(σ ) = O(s2),

p(σ ) = O(s2),

{
u(σ ) = O(s),
π(σ ) = O(s),

for all σ ∈ [0, 1]. (5.20)

For all σ ∈ [0, 1], the solution of the Cauchy problem (5.17), (5.19) thus satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

qi (σ ) = ∫ σ

0 pi (t) dt + ∫ σ

0 gi,N+βπβ(t) dt + o(s2),

uα(σ ) = sw + ∫ σ

0 πα(t) dt + o(s2),

pi (σ ) = − 1
2

∂gN+β,N+γ

∂qi (0, 0) · ∫ σ

0 πβ(t)πγ (t) dt + o(s2),

πα(σ ) = π̄ + o(s2).

(5.21)

From the second and fourth estimates in (5.21) we deduce

uα(σ ) = swα + σ π̄α + o(s2).

Since uα(1) = 0, this implies

π̄α = −swα + o(s2).

Using this additional information in the third estimate, we obtain

pi (σ ) = −1

2

∂gN+β,N+γ

∂qi
(0, 0) · σ s2wβwγ + o(s2),

In turn, the first estimate now yields

qi (1) = − s2

4

∂gN+β,N+γ

∂qi
(0, 0)wβwγ − s2

2

∂gi,N+β

∂uγ
(0, 0)wβwγ + o(s2).

Recalling the identity (5.2), we thus obtain

q̂i (s)
.= qi (1) = − s2

2

∂gN+β,N+γ

∂qi
(0, 0)wβwγ + o(s2).

In view of property (ii), this establishes (5.16). �
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Part II: Stabilization of control systems with quadratic impulses

6. Trajectories of controlled systems with quadratic impulses

We now investigate general control systems of the form:

ẋ = f (x) +
m∑

α=1

gα(x)u̇α +
m∑

α,β=1

hαβ(x)u̇α u̇β. (6.1)

Here the state variable x and the control variable u take values in R
n and in R

m ,
respectively. We remark that no a priori bounds are imposed on the derivative u̇.
Our main goal is to understand under which conditions the system can be stabilized
to a given point x̄ . In particular, relying on the quadratic dependence on u̇ of the
right-hand side of (6.1), in Section 8 we shall investigate vibrational stabilization,
achieved by means of small periodic oscillations of the control function. In Part III,
these results will be applied to the stabilization of the mechanical systems discussed
in Part I.

Throughout the following we assume that the functions f , gα , and hαβ = hβ,α

are at least twice continuously differentiable. We remark that the more general
system

ẋ = f̃ (t, x, u) +
m∑

α=1

g̃α(t, x, u)u̇α +
m∑

α,β=1

h̃αβ(t, x, u)u̇α u̇β,

where the vector fields depend also on time and on the control u, can be easily
rewritten in the form (6.1). Indeed, it suffices to work in the extended state space
x ∈ R

1+n+m , introducing the additional state variables x0 = t and xn+α = uα ,
with equations

ẋ0 = 1, ẋn+α = u̇α α = 1, . . . , m.

Given the initial condition

x(0) = x̌, (6.2)

for every smooth control function u : [0, T ] �→ R
m one obtains a unique solution

t �→ x(t; u) of the Cauchy problem (6.1) and (6.2). More generally, since the
equation (6.1) is quadratic with respect to the derivative u̇, it is natural to consider
admissible controls in a set of absolutely continuous functions u(·) with derivatives
in L2. For example, for a given M > 0, one could allow the controls to belong to

{
u : [0, T ] �→ R

m ;
∫ T

0

∣∣u̇(t)
∣∣2 dt � M

}
. (6.3)

The main goal of the following analysis is to provide a characterization of the
closure of this set of trajectories in terms of an auxiliary differential inclusion. Let
us notice that the system (6.1) is naturally connected with the differential inclusion

ẋ ∈ F(x), (6.4)
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where, for every x ∈ R
n ,

F(x)
.= co

⎧⎨
⎩ f (x) +

m∑
α=1

gα(x)wα +
m∑

α,β=1

hαβ(x)wαwβ ; (w1, . . . , wm) ∈ R
m

⎫⎬
⎭ .

(6.5)

Here and in the sequel, for any given subset A of a topological vector space, coA
denotes the closed convex hull of A.

In addition, it will be convenient to work also in an extended state space, using

the variable x̂ =
(

x0

x

)
∈ R

1+n . For a given x̂ , consider the set

F(x̂)
.= co

⎧⎨
⎩

(
1

f (x)

)
(a0)2 +

m∑
α=1

(
0

gα(x)

)
a0aα +

m∑
α,β=1

(
0

hαβ(x)

)
aαaβ;

a0 ∈ [0, 1],
m∑

α=0

(aα)2 = 1

}
. (6.6)

Notice that F is a convex, compact valued multifunction on R
1+n , Lipschitz con-

tinuous with respect to the Hausdorff metric [2].
For a given interval [0, S], the set of trajectories of the graph differential inclu-

sion

d

ds
x̂(s) ∈ F(x̂(s)), x̂(0) =

(
0
x�

)
(6.7)

is a non-empty, closed, bounded subset of C
([0, S]; R

1+n
)
. Consider one partic-

ular solution, say s �→ x̂(s) =
(

x0(s)
x(s)

)
, defined for s ∈ [0, S]. Assume that

T
.= x0(S) > 0. Since the map s �→ x0(s) is non-decreasing, it admits a generalized

inverse

s = s(t) iff x0(s) = t. (6.8)

Indeed, for all but countably many times t ∈ [0, T ] there exists a unique value of
the parameter s such that the identity on the right of (6.8) holds. We can thus define
a corresponding trajectory

t �→ x(t) = x
(
s(t)

) ∈ R
n . (6.9)

This map is well defined for almost all times t ∈ [0, T ].
To establish a connection between the original control system (6.1) and the dif-

ferential inclusion (6.7), consider first a smooth control function u(·). As in [32],
we define a re-parameterized time variable by setting

s(t)
.=

∫ t

0

(
1 +

m∑
α=1

(u̇α)2(τ )

)
dτ. (6.10)
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Notice that the map t �→ s(t) is strictly increasing. The inverse map s �→ t (s) is
uniformly Lipschitz continuous and satisfies

dt

ds
=

(
1 +

m∑
α=1

(u̇α)2(t)

)−1

.

Now let x : [0, T ] �→ R
n be a solution of (6.1) corresponding to the smooth control

u : [0, T ] �→ R
m . We claim that the map s �→ x̂(s)

.=
(

t (s)
x(t (s))

)
is a solution to

the differential inclusion (6.7). Indeed, setting

a0(s)
.= 1√

1 + ∑m
β=1(u̇

β)2
(
t (s)

) , aα(s)
.= u̇α

(
t (s)

)
√

1 + ∑m
β=1(u̇

β)2
(
t (s)

)

(6.11)

(α = 1, . . . , m), one has
⎧⎪⎪⎨
⎪⎪⎩

dt
ds = (a0)2(s)
dx
ds = f

(
x(s)

)
(a0)2(s) + ∑m

α=1 gα

(
x(s)

)
a0(s)aα(s)

+ ∑m
α,β=1 hαβ

(
x(s)

)
aα(s)aβ(s).

(6.12)

Hence x̂(·) = (t (·), x(·)) verifies (6.7), because, by (6.11),

a0(s) ∈ [0, 1],
m∑

α=0

(aα)2(s) ≡ 1.

Notice that the derivatives u̇α can now be recovered as

u̇α(t) = aα(s(t))

a0(s(t))
α = 1, . . . , m. (6.13)

The following theorem shows that every solution of the differential inclusion
(6.7) can be approximated by smooth solutions of the original control system (6.1).

Theorem 6.1. Let x̂ = (x0, x) : [0, S] �→ R
1+n be a solution to the multivalued

Cauchy problem (6.7) such that x0(S) = T > 0. Then there exists a sequence of
smooth control functions uν : [0, T ] �→ R

M such that the corresponding solutions

s �→ x̂ν(s) =
(

tν(s)
xν(s)

)

of the equations (6.11) and (6.12) converge to the map s �→ x̂(s) uniformly on
[0, S]. Moreover, defining the function x(t) = x(s(t)) as in (6.9), we have

lim
ν→∞

∫ T

0

∣∣x(t) − xν(t)
∣∣ dt = 0. (6.14)
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Proof. By the assumption, the extended vector fields

f̂ =
(

1
f

)
, ĝα =

(
0
gα

)
, ĥαβ =

(
0

hαβ

)

are Lipschitz continuous. Consider the set of trajectories of the control system

d

ds
x̂ = f̂ · (a0)2 +

m∑
α=1

ĝαa0aα +
m∑

α,β=1

ĥ j i a
αaβ, x̂(0) =

(
0
x�

)
, (6.15)

where the controls a = (a0, a1, . . . , am) satisfy the pointwise constraints

a0(s) ∈ [0, 1],
m∑

α=0

(aα)2(s) = 1 s ∈ [0, S]. (6.16)

In the above setting, it is well known [2] that the set of trajectories

s �→ x̂(s) =
(

x0, x1, . . . , xn
)

(s)

of (6.15) and (6.16) is dense on the set of solutions to the differential inclusion (6.7).
Hence there exists a sequence of control functions s �→ aν(s) = (

a0
ν , . . . , am

ν

)
(s),

ν � 1, such that the corresponding solutions s �→ x̂ν(s) of (6.15) converge to x̂(·)
uniformly for s ∈ [0, S]. In particular, this implies the convergence of the first
components:

x0
ν (S) =

∫ S

0

[
a0
ν (s)

]2 ds → x0(S) = T . (6.17)

We now observe that the “input–output map” a(·) �→ x̂(·, a) from controls to tra-
jectories is uniformly continuous as a map from L1

([0, S] ; R
1+m

)
into C

([0, S] ;
R

1+n
)
. By slightly modifying the controls aν in L1, we can replace the sequence

aν by a new sequence of smooth control functions ãν : [0, S] �→ R
1+m with the

following properties:

ã0
ν (s) > 0 for all s ∈ [0, S], ν � 1. (6.18)∫ S

0

[
ã0
ν (s)

]2 ds = T for all ν � 1, (6.19)

lim
ν→∞

∫ S

0

∣∣ãν(s) − aν(s)
∣∣ ds = 0. (6.20)

This implies the uniform convergence

lim
ν→∞

∥∥x̂(·, ãν) − x̂(·)∥∥C([0,S]; R1+n)
= 0. (6.21)

By (6.18), for each ν � 1 the map

s �→ x0
ν (s)

.=
∫ s

0

[
ã0
ν (s)

]2 ds
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is strictly increasing. Therefore it has a smooth inverse s = sν(t). Recalling (6.13),
we now define the sequence of smooth control functions uν : [0, T ] �→ R

m by
setting uν(t) = (

u1
ν, . . . , um

ν )(t), with

uα
ν (t) =

∫ t

0

ãα
ν (sν(τ ))

ã0
ν (sν(τ ))

dτ. (6.22)

By construction, the solutions t �→ xν(t; uν) of the original system (6.1) corre-
sponding to the controls uν coincide with the maps t �→ (x1

ν , . . . , xn
ν )(sν(t)), where

x̂ν = (x0
ν , x1

ν , . . . , xn
ν ) is the solution of (6.15) with control ãν = (ã0

ν , . . . , ãm
ν ).

To prove the last statement in the theorem, define the increasing functions

t (s) =
∫ s

0

[
ã0(r)

]2 dr, tν(s) =
∫ s

0

[
ã0
ν (r)

]2 dr,

and let t �→ s(t), t �→ sν(t) be their inverses, respectively. Notice that each sν(·)
is smooth. Moreover,

∣∣∣∣
d

ds
t (s)

∣∣∣∣ � 1,

∣∣∣∣
d

ds
tν(s)

∣∣∣∣ � 1, (6.23)

lim
ν→∞

∫ T

0

∣∣s(t) − sν(t)
∣∣ dt = lim

ν→∞

∫ S

0

∣∣t (s) − tν(s)
∣∣ ds = 0. (6.24)

Using (6.23), we obtain the estimate
∫ T

0

∣∣x(t) − xν(t)
∣∣ dt =

∫ T

0

∣∣∣x(s(t)) − xν(s(t))
∣∣∣ dt +

∫ T

0

∣∣∣xν(s(t)) − xν(sν(t))
∣∣∣ dt

�
∫ S

0

∣∣x(s) − xν(s)
∣∣ ds + C ·

∫ T

0

∣∣s(t) − sν(t)
∣∣ dt. (6.25)

Here the constant C denotes an upper bound for the derivative with respect to s,
for example

C
.= sup

x

⎧⎨
⎩

∣∣ f (x)
∣∣ +

∑
i

∣∣gα(x)
∣∣ +

∑
α,β

∣∣hαβ(x)
∣∣
⎫⎬
⎭ , (6.26)

where the supremum is taken over a compact set containing the graphs of all func-
tions xν(·). By (6.21) and (6.24), the right-hand side of (6.25) vanishes in the limit
ν → ∞. This completes the proof of the theorem. �
Remark 5. For a given time interval [0, T ], we are considering controls u(·) in
the Sobolev space W 1,2. The corresponding solutions are absolutely continuous
maps; they belong to W 1,1. Now consider a sequence of control functions uν ,
whose derivatives are uniformly bounded in L2. Assume that the corresponding
re-parameterized trajectories s �→ (tν(s), xν(s)), constructed as in (6.11) and
(6.12), converge to a path s �→ (t (s), x(s)), providing a solution to (6.7). We
wish to point out that, in general, the projection on the state space t �→ x(s(t)) will
have bounded total variation, but it may well be discontinuous. Notice that, on the
contrary, the uniform limit of the controls t �→ uν(t) must be Hölder continuous,
because of the uniform L2 bound on the derivatives.
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Remark 6. A completely different situation arises when all the vector fields hαβ

vanish identically, so that (6.1) reduces to

ẋ = f (x) +
m∑

α=1

gα(x)u̇α (6.27)

Systems of this form have been extensively studied; see [10,11,24,26,38], or the
surveys [8,30] and the references therein. In this case, solutions also can be well
defined for general control functions u(·) with bounded variation but possibly dis-
continuous. We recall that, unless the Lie brackets [gα, gβ ] vanish identically, one
needs to assign a “graph completion” of the control u(·) in order to uniquely deter-
mine the trajectory. Indeed, at each time τ where u has a jump, one should also
specify a continuous path joining the left state u(τ−) with the right state u(τ+).
See [10] for details.

7. Stabilization

In this section we examine various concepts of stability for the impulsive sys-
tem (6.1) and relate them to the weak stability of the differential inclusion (6.6)
and (6.7).

Definition 8. We say that the control system (6.1) is stabilizable at the point x̄ ∈ R
n

if, for every ε > 0 there exists δ > 0 such that the following holds. For every initial
state x� with |x� − x̄ | � δ there exists a smooth control function t �→ u(t) =
(u1, . . . , um)(t) such that the corresponding trajectory of (6.1) and (6.2) satisfies

|x(t, u) − x̄ | � ε for all t � 0. (7.1)

We say that the system (6.1) is asymptotically stabilizable at the point x̄ if a
control u(·) can be found such that, in addition to (7.1), there holds

lim
t→∞ x(t, u) = x̄ . (7.2)

Remark 7. Notice that the point x̄ needs not to be an equilibrium point for the
vector field f .

Remark 8. We require here that the stabilizing controls be smooth. As it will
become apparent in the sequel, this is hardly a restriction. Indeed, in all cases
under consideration, if a stabilizing control u ∈ W 1,2 is found, by approximation
one one can construct a smooth control ũ which is still stabilizing.

Remark 9. In the above definitions we are not putting any constraints on the con-
trol function u : [0,∞[ �→ R

m . In principle, one may well have |u(t)| → ∞ as
t → ∞. If one wishes to stabilize the system (6.1) and at the same time keep
the control values within a small neighborhood of a given value ū, it suffices to
consider the stabilization problem for an augmented system, adding the variables
xn+1, . . . , xn+m together with the equations

ẋn+α = u̇α α = 1, . . . , m.
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Similar stability concepts can be also defined for a differential inclusion

ẋ ∈ K (x), (7.3)

see for example [35]. We recall that a trajectory of (7.3) is an absolutely continuous
function t �→ x(t) which satisfies the differential inclusion at almost everywhere
time t .

Definition 9. The point x̄ is weakly stable for the differential inclusion (7.3) if, for
every ε > 0 there exists δ > 0 such that the following holds. For every initial state
x� with |x� − x̄ | � δ there exists a trajectory x(·) of (7.3) such that

x(0) = x�, |x(t) − x̄ | � ε for all t � 0. (7.4)

Moreover, x̄ is weakly asymptotically stable if, there exists a trajectory which, in
addition to (7.4), satisfies

lim
t→∞ x(t) = x̄ . (7.5)

In connection with the multifunction F defined at (6.6), we consider a second
multifunction F♦ obtained by projecting the sets F(x̂) ⊂ R

1+n into the subspace
R

n . More precisely, we set

F♦(x)
.= co

{
f (x) (a0)2 + ∑m

α=1 gα(x) a0aα + ∑m
α,β=1 hαβ(x) aαaβ ;

w0 ∈ [0, 1], ∑m
α=0(w

α)2 = 1

}
.

(7.6)

Observe that, if the vector fields f, gα , and hαβ are Lipschitz continuous, then the
multifunction F♦ is Lipschitz continuous with compact, convex values. Our first
result in this section is:

Theorem 7.1. The impulsive system (6.1) is asymptotically stabilizable at the point
x̄ if and only if x̄ is weakly asymptotically stable for the projected graph differential
inclusion

d

ds
x(s) ∈ F♦(x(s)). (7.7)

Proof. Let x̄ be weakly asymptotically stable for (7.7). Without loss of generality,
we can assume x̄ = 0.

Given ε > 0, choose δ > 0 such that, if |x�| � δ, then there exists a trajectory
t �→ x(s) of the differential inclusion (7.7) such that x(0) = x�, |x(s)| � ε/2 for
all t � 0 and x(s) → 0 as t → ∞. Using the basic approximation property stated
in Theorem 6.1, we will construct a smooth control t �→ u(t) = (u1, . . . , um)(t)
such that the corresponding trajectory x(·; u) of (6.1) and (6.2) satisfies

|x(t)| � ε for all t � 0, lim
t→∞ x(t) = 0. (7.8)
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Define the decreasing sequence of positive numbers εk
.= ε 2−k . For each k � 0,

choose δk > 0 so that, whenever |x�| � δk , there exists a solution to (7.7) with

x(0) = x�, lim
s→∞ x(s) = 0, |x(s)| <

εk

2
for all s � 0. (7.9)

Choose a sequence of strictly positive integers k(1) � k(2) � · · · , such that

lim
j→∞ k( j) = ∞,

∞∑
j=1

δk( j) = ∞. (7.10)

Note that the second condition in (7.10) is certainly satisfied if the numbers k( j)
grow at a sufficiently slow rate.

Assume |x�| � δ0. A smooth control u steering the system (6.1) from x� asymp-
totically toward the origin will be constructed by induction on j . For j = 1, let
x : [0, s1] �→ R

n be a trajectory of the differential inclusion (7.7) such that

x(0) = x�, |x(s1)| <
δk(1)

3
, |x(s)| <

ε0

2
for all s ∈ [0, s1].

By the definition of F♦, there exists a trajectory of the differential inclusion (6.7)
having the form s �→ x̂(s) = (x0(s), x(s)). Notice that, in order to apply Theorem
6.1 and approximate x(·) with a smooth solution of the control system (6.1) we
would need x0(s1) > 0. This is not yet guaranteed by the above construction. To
take care of this problem, we define s′

1
.= s1 + δk(1)/3C , where C provides a local

upper bound for the magnitude of the vector field f , as in (6.26). We then prolong
the trajectory x̂(·) to the larger interval [0, s′

1], by setting

d

ds

(
x0(s)
x(s)

)
=

(
1

f (x)

)
s ∈]s1, s′

1].

This construction achieves the inequalities

x0(s′
1) � s′

1 − s1 � δk(1)

3C
, |x(s′

1)| <
2

3
δk(1).

Set τ 1 .= x0(s′
1). By Theorem 6.1, there exists a smooth control u : [0, τ 1] �→

R
m such that the corresponding solution s �→ (x0(s, u), x(s, u)) of (6.11) and

(6.12) differs from the above trajectory by less than δk(1)/3, namely

|x0(s, u) − x0(s)| <
δk(1)

3
, |x(s; u) − x(s)| <

δk(1)

3
for all s ∈ [0, s′

1].

In particular, setting x(t, u)
.= x(s(t), u) as in (6.9), this implies

|x(τ1, u)| < δk(1), |x(t, u)| <
ε0

2
+ δk(1)

3
� ε0 for all t ∈ [0, τ1].

The construction now proceeds by induction on j . Assume that a smooth control
u(·) has been constructed on the time interval [0, τ j ], in such a way that

|x(τ j , u)| < δk( j), |x(t, u)| < εk( j−1) for all t ∈ [τ j−1, τ j ]. (7.11)
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By assumptions, there exists a trajectory s �→ x(s) of the differential inclusion
(7.7) such that

x(0) = x(τ j , u), x(s j )| <
δk( j+1)

3
, |x(s)| <

εk( j)

2
(7.12)

for all s ∈ [0, s j ]. This trajectory is extended to the slightly larger interval [0, s′
j ],

with s′
j = s j + δk( j)/3C , by setting

d

ds

(
x0(s)
x(s)

)
=

(
1

f (x)

)
s ∈ ]s j , s′

j ]. (7.13)

Notice that, by (7.12), (7.13), and (6.26), we have

x0(s′
j ) � s′

j − s j � δk( j)

3C
, |x(s′

j )| <
2

3
δk( j+1). (7.14)

Set τ j+1
.= τ j + x0(s′

j ). Using again Theorem 6.1, we can extend the control

u : [0, τ j ] �→ R
M to a continuous, piecewise smooth control defined on the larger

interval [0, τ j+1], such that the corresponding solution s �→ x(s, u) of (6.1) and
(6.2) satisfies

|x(τ j+1, u)| < δk( j+1), |x(t, u)| < εk( j) for all t ∈ [τ j , τ j+1]. (7.15)

Notice that, at this stage, the control u is obtained by piecing together two smooth
control functions, defined on the intervals [0, τ j ] and [τ j , τ j+1] respectively. This
makes u continuous but possibly not C1 in a neighborhood of the point τ j . To fix
this problem, we slightly modify the values of u in a small neighborhood of τ j , so
that u becomes smooth also at this point, while the strict inequalities (7.15) still
hold.

Having completed the inductive steps for all j � 1 we observe that

lim
j→∞ τ j =

∑
j

δk( j)

3C
= ∞

because of (7.10). As t → ∞, by (7.15) we have x(t, u) → 0. This shows that the
impulsive system (6.1) is asymptotically stabilizable at the origin, proving one of
the implications stated in the theorem.

The converse implication is obvious, because every solution of the system (6.1)
corresponding to a smooth control yields a solution to the differential inclusion
(7.7), after a suitable time rescaling.

Corollary 7.1. Let a point x̄ be weakly asymptotically stable for the differential
inclusion (6.4), namely ẋ ∈ F(x). Then the system (6.1) is asymptotically stabiliz-
able at x̄ .

Proof. Since the point x̄ is weakly asymptotically stable for (6.4), then it is asymp-
totically stable for the differential inclusion (7.7), which, in turn, implies that the
impulsive system (6.1) can be stabilized at x̄ .



124 Alberto Bressan & Franco Rampazzo

7.1. Lyapunov functions

There is extensive literature, in the context of ODEs and of control systems or
differential inclusions, relating the stability of an equilibrium state to the existence
of a Lyapunov function. We recall below the basic definition, in a form suitable
for our applications. For simplicity, we henceforth consider the case x̄ = 0 ∈ R

n ,
which of course is not restrictive.

Definition 10. A scalar function V defined on a neighborhood N of the origin is a
weak Lyapunov function for the differential inclusion

ẋ ∈ F(x)

if the following holds.

(i) V is continuous on N , and continuously differentiable on N \ {0}.
(ii) V (0) = 0 while V (x) > 0 for all x 
= 0,

(iii) For each δ > 0 sufficiently small, the sublevel set {x ; V (x) � δ} is compact.
(iv) At each x 
= 0 one has

inf
y∈F(x)

∇V (x) · y � 0. (7.16)

The following theorem relates the stability of the impulsive control system (6.1)
to the existence of a Lyapunov function for the differential inclusion (6.4).

Theorem 7.2. Consider the multifunction F defined at (6.5). Assume that the dif-
ferential inclusion (6.4) admits a Lyapunov function V = V (x) defined on a neigh-
borhood N of the origin. Then the control system (6.1) can be stabilized at the
origin.

Remark 10. Notice that the multifunction F in (6.5) has unbounded values. Yet
we can rephrase condition (iv) in the Definition 10 with the following equivalent
condition, which is formulated in terms of the bounded multifunction F governing
(6.6):
(iv′) For every x ∈ N \ {0}, there exists ŷ = (y0, y) ∈ F(x) such that

∇V (x) · y � 0 y0 > 0. (7.17)

Remark 11. The set of conditions (i)–(iii) and (iv’) represents a slight strength-
ening of the notion of the weak Lyapunov function when this is applied to the
projected graph differential equation (7.7). Yet, let us point out that the weak sta-
bility of (7.7) is not enough to guarantee the stabilizability of the control system
(6.1), so the condition y0 > 0 in (7.17) plays a crucial role. For example, on
R

2, consider the constant vector fields f = (1, 0), h11 = (0, 1), h22 = (0,−1),
g1 = g2 = h12 = h21 = (0, 0). Then, choosing a0 = 0, a1 = a2 = 1/

√
2 we see

that (0, 0, 0) ∈ F(x) for every x ∈ R
2. Hence condition

inf
y∈F(x)

∇V · y � 0

is trivially satisfied by any function V . However, it is clear that in this case the
system (6.1) is not stabilizable at the origin.
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Remark 12. Theorem 7.2 is somewhat weaker than its counterpart, Theorem 7.1,
dealing with asymptotic stability. Indeed, to prove that the impulsive control system
(6.1) is stabilizable, we need to assume not only that the differential inclusion (7.7)
is weakly stable, but also that there exists a Lyapunov function.

Proof of Theorem 7.2. Given ε > 0, choose δ > 0 such that

V (x) � 2δ implies |x | � ε.

Let an initial state x� be given, with V (x�) � δ.
According to Remark 10, for every x 
= 0 there exists (y0, y) ∈ F(x) such that

(7.17) holds. We recall that the multifunction F in (6.6) is Lipschitz continuous,
with compact, convex values. Since the set �

.= {x ; δ � V (x) � 3δ} is compact,
by the continuity of ∇V we can find κ > 0 such that, for every x ∈ �, there exists
ŷ = (y0, y) ∈ F(x) with

∇V (x) · y � 0, y0 � κ.

The control u will be defined inductively on a sequence of the time intervals
[τ j−1, τ j ], with τ j � jκ . Set τ0 = 0. Consider the differential inclusion

d

ds
x̂(s) ∈

{
F(x(s)) ∩ {(y0, y); ∇V (x) · y � 0, y0 � κ} if δ < V (x) < 2δ,

F(x(s)) if V (x) � δ or V (x) � 2δ,

(7.18)

with initial data x̂(0) = (0, x�). The right-hand side of (7.18) is an upper semi-
continuous multifunction, with nonempty compact convex values. Therefore (see
for example [2]), the Cauchy problem admits at least one solution s �→ x̂(s) =
(x0(s), x(s)), defined for s ∈ [0, 1]. We observe that this solution satisfies

x0(1) � κ, V (x(s)) � δ for all s ∈ [0, 1].
Hence, by Theorem 6.1 there exists a smooth control u : [0, τ1] �→ R

m , with
τ1 = x0(1) � κ , such that the corresponding trajectory of (6.1) and (6.2) satisfies

V (x(t, u)) <
3

2
δ = 2δ − 2−1δ for all t ∈ [0, τ1].

By induction, assume now that a smooth control u(·) has been constructed on
the interval [0, τ j ] with τ j � κ j , and that the corresponding trajectory t �→ x(t, u)

of the impulsive system (6.1) and (6.2) satisfies

V (x(t, u)) � 2δ − 2− jδ t ∈ [0, τ j ]. (7.19)

We then construct a solution s �→ x̂(s) = (x0(s), x(s)) of the differential inclu-
sion (7.18) for s ∈ [0, 1], with initial data x̂(0) = (0, x(τ j , u)). This function will
satisfy

x0(1) � κ, V (x(s)) < 2δ − 2− jδ for all s ∈ [0, 1].
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Using Theorem 6.1 again, we can prolong the control u to a larger time interval
[0, τ j+1], with τ j+1 − τ j = x0(1) � κ , in such a way that

V (x(t, u)) < 2δ − 2− j−1δ t ∈ [0, τ j+1]. (7.20)

At a first stage, this control u will be piecewise smooth, continuous but not C1 in a
neighborhood of the point τ j . By a local approximation, we can change its values
slightly in a small neighborhood of the point τ j , making it smooth also at the point
τ j , and preserving the strict inequalities (7.20).

Since τ j � k j for all j � 1, as j → ∞ the induction procedure generates a
smooth control function u(·), defined for all t � 0, whose corresponding trajectory
satisfies V (x(t, u)) < 2δ for all t � 0. This completes the proof of the theorem.

�
Let us consider the 2-homogeneous term of F :

F2
.= f (x) + co

⎧⎨
⎩

m∑
α,β=1

hαβ(x) wαwβ ; (w1, . . . , wm) ∈ R
m

⎫⎬
⎭

In Remark 13 in the next section we will show that f (x) + F2 ⊂ F . Therefore,
from Theorem 7.2 we obtain the following result.

Corollary 7.2. Assume that the reduced differential inclusion

ẋ ∈ f (x) + F2 (7.21)

admits a Lyapunov function V = V (x) defined on a neighborhood N of the origin.
Then the control system (6.1) can be stabilized at the origin.

8. A selection technique

In the previous section we proved two general results, relating the stability of
the control system (6.1) to the weak stability of the differential inclusion (6.4). A
complete description of the sets F(x) in (6.5) may often be very difficult. However,
as shown in [35], to establish a stability property it suffices to construct a suitable
family of smooth selections. We shall briefly describe this approach.

Let a point x̄ ∈ R
n be given, and assume that there exists a C1 selection

γ (x, ξ) ∈ F1(x)

.= co

⎧⎨
⎩

m∑
α=1

gα(x) wα +
m∑

α,β=1

hαβ(x) wαwβ ; (w1, . . . , wm) ∈ R
m

⎫⎬
⎭

depending on an additional parameter ξ ∈ R
d , such that

f (x̄) + γ (x̄, ξ̄ ) = 0. (8.1)



Moving Constraints as Stabilizing Controls in Classical Mechanics 127

for some ξ̄ ∈ R
d . Assuming that γ is defined on an entire neighborhood of (x̄, ξ̄ ),

consider the Jacobian matrices of partial derivatives computed at (x̄, ξ̄ ):

A
.= ∂ f

∂x
+ ∂γ

∂x
, B

.= ∂γ

∂ξ
.

Theorem 8.1. In the above setting, if the linear system with constant coefficients

ẋ = Ax + Bξ (8.2)

is completely controllable, then the differential inclusion (6.4) and (6.5) is weakly
asymptotically stable at the point x̄ .

We recall that the system (8.2) is completely controllable if and only if the
matrices A, B satisfy the algebraic relation Rank[B, AB, . . . , An−1 B] = n. This
guarantees that the system can be steered from any initial state to any final state,
within any given time interval [9,37].

To prove the theorem, consider the control system

ẋ = f (x) + γ (x, ξ). (8.3)

By a classical result in control theory, the above assumptions imply that, for every
point x� sufficiently close to x̄ , there exists a trajectory starting from x� reaching
x̄ in finite time. In particular, in view of (8.1), the system (8.3) is asymptotically
stabilizable at the point x̄ . Since all trajectories of (8.3) are also trajectories of the
differential inclusion (6.4), the result follows. �
Remark 13. Toward the construction of smooth selections from the multifunction
F we observe that each closed convex set F(x) can be equivalently written as

F(x)
.= f (x) + F1(x) + F2(x)

= f (x) + co

⎧⎨
⎩

m∑
α=1

gα(x)wα +
m∑

α,β=1

hαβ(x)wαwβ ; (w1, . . . , wm) ∈ R
m

⎫⎬
⎭

+co

⎧⎨
⎩

m∑
α,β=1

hαβ(x)wαwβ ; (w1, . . . , wm) ∈ R
m

⎫⎬
⎭ . (8.4)

Indeed, by definition we have F(x) = f (x)+F1(x). To establish the identity (8.4)
it thus suffices to prove that

F1 + F2 ⊆ F1. (8.5)

Since the set F1(x) is convex and contains the origin, for every (w1, . . . , wm) ∈ R
m

and ε ∈ [0, 1] we have

yε
.= ε

⎛
⎝

m∑
α=1

gα(x)
wα

√
ε

+
m∑

α,β=1

hαβ(x)
wαwβ

ε

⎞
⎠ ∈ F1.
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Letting ε → 0 we find

lim
ε→0+ yε =

m∑
α,β=1

hαβ(x) wαwβ. (8.6)

Since F1(x) is closed, it must contain the right-hand side of (8.6). This proves the
inclusion F2 ⊆ F1. Next, observing that F2 is a cone, for every y2 ∈ F2 and ε > 0
we have ε−1 y2 ∈ F2 ⊆ F1. Therefore, if y1 ∈ F1 we can write

y1 + y2 = lim
ε→0+(1 − ε)y1 + ε(ε−1 y2) ∈ F1

because F1 is closed and convex. This proves (8.5).

Remark 14. By Theorem 8.1 and the above remark, one may establish a stability
result by constructing suitable selections γ (x, ξ) ∈ F2(x) from the cone F2.

Part III: Stabilization of mechanical systems

In this part we address the question of how to use some time-dependent holo-
nomic constraints as controls in order to stabilize a mechanical system to a given
state.

9. Stabilization with vibrating controls

For the reader’s convenience, we summarize the results in Section 3. Let
G = (gr,s)r,s=1,...,N+M be the matrix that represents the covariant inertial ten-
sor in a given coordinate chart (q, u). In particular, the kinetic energy of the whole
system at a state (q, u) with velocity (v,w) ∈ R

N+M is given by

T = 1

2
gi, j (q, u)viv j + gi,N+α(q, u)viwα + 1

2
gN+α,N+β(q, u)wαwβ.

Here and in the sequel, i, j = 1, . . . , N while α, β = 1, . . . , M . By
G−1 = (gr,s)r,s=1,...,N+M we denote the inverse of G. Moreover, we consider
the sub-matrices G1

.= (gi, j ), (G−1)2
.= (gN+α,N+β), and (G−1)12

.= (gi,N+α).
Finally, we introduce the matrices

A=
(

ai, j
)

.= (G1)
−1, E = (

eα,β

) .= ((G−1)2)
−1, K =

(
ki
α

)
.= (G−1)12 E .

(9.1)

We recall that all the above matrices depend on the variables q, u. Concerning the
external force, our main assumption will be

Hypothesis (A). The force Fu,w acting on the whole system does not explicitly
depend on time, and is affine with respect to the time derivative of the control.
Namely

Fu,w = Fu,w(q, p) = Fu
0 (q, p, u) + Fu

1 (q, p, u) · w. (9.2)
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In particular, any positional force (not necessarily conservative) satisfies this
hypothesis. Because of (A), the control equations take the form

⎛
⎝

q̇
ṗ
u̇

⎞
⎠ =

⎛
⎝

Ap
1
2 p† ∂ A

∂q p + Fu
0

0

⎞
⎠ +

⎛
⎝

K
−p† ∂K

∂q + Fu
1

1M

⎞
⎠ u̇ + u̇†

⎛
⎝

0
1
2

∂ E
∂q
0

⎞
⎠ u̇.

(9.3)

Our main goal is to find conditions which imply that the system (9.3) is sta-
bilizable at a point (q̄, 0, ū). Two results will be described here. The first one
relies on suitable smooth selections from the corresponding set-valued maps, as in
Theorem 8.1. The second one is based on the use of Lyapunov functions.

For each q, u, consider the cone

	(q, u)
.= co

{
w† ∂ E(q, u)

∂q
w; w ∈ R

M
}
. (9.4)

Let ξ ∈ R
d be an auxiliary control variable, ranging on a neighborhood of a

point ξ̄ ∈ R
d . Aiming to apply Theorem 8.1, let us consider a control system of

the form
{

q̇ = Ap,

ṗ = Fū
0 (q, p) + γ (q, p, ū, ξ),

(9.5)

where γ is a suitable selection from the cone 	. It will be convenient to write (9.5)
in the more compact form

(q̇, ṗ) = 
(q, p, ū, ξ), (9.6)

regarding (q, p) ∈ R
N+N as state variables and ξ ∈ R

d as control variable. Assume
that

Fū
1 (q̄, 0) + γ (q̄, 0, ū, ξ̄ ) = 0. (9.7)

By (9.5) this implies 
(q̄, 0, ū, ξ̄ ) = 0 ∈ R
2N . To test the local controllability

of (9.5) at the equilibrium point (q̄, 0, ū, ξ̄ ) we look at the linearized system with
constant coefficients

(
ṗ
q̇

)
= �

(
p
q

)
+ Bξ, (9.8)

where

� = ∂


∂(q, p)
B = ∂


∂ξ

with all partial derivatives being computed at the point (q̄, 0, ū, ξ̄ ). We can now
state
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Theorem 9.1. Assume that a smooth map

(q, p, u, ξ) �→ γ (q, p, u, ξ) ∈ 	(q, u) (9.9)

can be chosen in such a way that (9.7) holds and so that the linear system (9.8) is
completely controllable. Then the system (9.3) is asymptotically stabilizable at the
point (q̄, 0, ū).

Proof. According to Theorem 8.1 and Remark 13, it suffices to show that the
control system

⎛
⎝

q̇
ṗ
u̇

⎞
⎠ =

⎛
⎝

Ap
1
2 p† ∂ A

∂q p + Fu
0

0

⎞
⎠ +

⎛
⎝

K
−p† ∂K

∂q + Fu
1

1M

⎞
⎠ w

+w†

⎛
⎝

0
1
2

∂ E
∂q
0

⎞
⎠ w +

⎛
⎝

0
γ (q, p, u, ξ)

0

⎞
⎠ (9.10)

is locally controllable at (q̄, 0, ū). Notice that in (9.10) the state variables are
q, p, u, while w, ξ are the controls. Computing the Jacobian matrices of partial
derivatives at the point (q, p, u;w, ξ) = (q̄, 0, ū, 0, ξ̄ ), we obtain a linear system
with constant coefficients, of the form

⎛
⎝

q̇
ṗ
u̇

⎞
⎠ =

⎛
⎝

�11 0 0
�21 �22 �23

0 0 0

⎞
⎠

⎛
⎝

q
p
u

⎞
⎠ +

⎛
⎝

0 B12
B21 B22
0 1M

⎞
⎠

(
ξ

w

)

.= �̃

⎛
⎝

q
p
u

⎞
⎠ +

(
B̃1B̃2

) (
ξ

w

)
(9.11)

By assumption, the linear system (9.8) is completely controllable. Therefore

Rank
[
B, �B, . . . , �2N−1B

]
= 2N . (9.12)

We now observe that the matrices �,B at (9.8) correspond to the submatrices

� =
(

�11 0
�21 �22

)
, B =

(
0

B21

)
. (9.13)

Hence from (9.12) it follows

span
[
B̃1, �̃B̃1, . . . , �̃

2N−1B̃1

]
=

⎧⎨
⎩

⎛
⎝

q
p
0

⎞
⎠ ; q ∈ R

N , p ∈ R
N

⎫⎬
⎭ .

(9.14)

Adding to this subspace the subspace generated by the columns of the matrix B̃2,
we obtain the entire space R

2N+M . We thus conclude that the linear system (9.11)
is completely controllable. In turn, this implies that the nonlinear system (9.10) is
asymptotically stabilizable at (q̄, 0, ū), completing the proof. �
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By choosing a special kind of selection and relying on the particular structure
of (9.5), we can deduce Corollary 9.1 below. To state it, if k is a positive integer
such that k M � N and W = (w1, . . . , wk) ∈ R

M×k , let us consider the N × k M
matrix

M(u, q, W )
.=

⎛
⎜⎝

∂e1,β

∂q1 w
β
1 , . . . ,

∂eM,β

∂q1 w
β
1 , . . . . . . . . . ,

∂e1,β

∂q1 w
β
k , . . . ,

∂eM,β

∂q1 w
β
k

· · · · · ·
∂e1,β

∂q N w
β
1 , . . . ,

∂eM,β

∂q N w
β
1 , . . . . . . . . . ,

∂e1,β

∂q1 w
β
k , . . . ,

∂eM,β

∂q N w
β
k

⎞
⎟⎠ .

(9.15)

Corollary 9.1. Let k be a positive integer and assume that for a given state (q̄, ū)

there exists a k-tuple W̄ = (w̄1, . . . , w̄k) ∈ (RM )k such that

Rank
(

M(ū, q̄, W̄ )
)

= N (9.16)

and
⎧⎪⎨
⎪⎩

(Fu
0 )1 + ∑M

α,β=1
∂eα,β

∂q1

∑k
r=1 w̄α

r w̄
β
r = 0

· · ·
(Fu

0 )N + ∑M
α,β=1

∂eα,β

∂q N

∑k
r=1 w̄α

r w̄
β
r = 0,

(9.17)

where the involved functions are computed at (q, p, u) = (q̄, 0, ū). Then the system
(9.3) is asymptotically stabilizable at the point (q̄, 0, ū).

Proof. Let us observe that the matrices � and B in (9.13) have the following form:

B =
(

0N×d

∂γ
∂ξ

)
� =

(
0N×N A

∂(F+γ )
∂q

∂(F+γ )
∂p

)
(9.18)

so that, in particular,

�B =
⎛
⎝ A · ∂γ

∂ξ

∂(F+γ )
∂p · ∂γ

∂ξ

⎞
⎠ (9.19)

Let us set d = k M , ξ = W = (w1, . . . , wk), and

γi (q, u, W )
.= 1

2

k∑
�=1

∂eα,β

∂qi
wα

� w
β
� i = 1, . . . , N

Notice that, by 2-homogeneity γ = (γ 1, . . . , γ N ), is in fact a selection of the
set-valued map 	 defined in (9.4). In view of Theorem 9.1, to prove asymptotic
stability it is sufficient find

ξ̄ = W̄

such (9.17) holds and, moreover,

Rank [B,�B] (q̄, 0, ū, W̄ ) = 2N .
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Since A is a non-singular matrix, by (9.19) the latter condition is equivalent to

Rank

(
∂γ

∂W

)
(q̄, 0, ū, W̄ ) = N . (9.20)

In turn, this coincides with (9.16), so the proof is concluded. �

We now describe a second approach, based on Corollary 7.2 and on the con-
struction of a suitable, energy-like, Lyapunov function. Throughout the following
we assume that the external force F in (9.2) admits the representation

F = F(q, p, u, w) = − ∂U

∂(q, u)
+ F1(q, p, u) · w. (9.21)

in terms of a potential function U = U (q, u).

Definition 11. Given a k-tuple of vectors W
.= {w1, . . . , wk} ⊂ R

M , the corre-
sponding asymptotic effective potential (q, u) �→ UW (q, u) is defined as

UW (q, u)
.= U (q, u) − 1

2

k∑
�=1

w
†
� E(q, u)w�

(
= U (q, u) − 1

2

∑k
�=1

∑M
α,β=1 eα,β(q, u)wα

� w
β
�

)
.

Theorem 9.2. Let the external force F have the form (9.21). For a given state (q̄, ū),
assume that there exist a neighborhood N of (q̄, ū) and a k-tuple
W

.= {w1, . . . , wk} ⊂ R
M , as in Definition 11 which, in addition, satisfy the

following property:

There exists a continuously differentiable map u �→ β(u) defined on a neigh-
borhood of ū such that the function

(q, u) �→ UW (q, u) + β(u)

has a strict local minimum at (q, u) = (q̄, ū).

Then the system (9.3) is stabilizable at (q̄, 0, ū).

Remark 15. This theorem, while being valid for non-conservative forces as
well, is similar to stabilization results obtained in the framework of the so-called
acceleration-controlled mechanical systems [3]. The main difference between that
framework and ours relies on the fact that here we assume that the control variables
are actuated by constraint reactions, whereas in [3] the actuating forces are exoge-
nous. Moreover, the averaging methods exploited acceleration-controlled mechan-
ical systems are here subsumed by convexification and selection procedures.
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Proof. As in Section 8, consider the symmetrized differential inclusion
corresponding to (9.3), namely

⎛
⎝

q̇
ṗ
ż

⎞
⎠ ∈ co

⎧⎨
⎩

⎛
⎝

Ap
1
2 p† ∂ A

∂q p − ∂U
∂q

0

⎞
⎠ + w†

⎛
⎝

0
1
2

∂ E
∂q
0

⎞
⎠ w, w ∈ R

M

⎫⎬
⎭ .

(9.22)

To prove the theorem, it suffices to show that the point (q̄, 0, ū) is a stable
equilibrium for the differential equation

⎛
⎝

q̇
ṗ
u̇

⎞
⎠ =

⎛
⎝

Ap
− 1

2 p† ∂ A
∂q p − ∂UW

∂q
0

⎞
⎠ . (9.23)

Indeed, by the definition of UW , the right-hand side of (9.23) is a selection of the
right-hand side of (9.22). Introducing the Hamiltonian function

HW
.= 1

2
p Ap† + UW ,

the equation (9.23) can be written in the following Hamiltonian form:

(
q̇, ṗ, u̇

)† =
(

∂ HW

∂p
,−∂ HW

∂q
, 0

)
. (9.24)

Therefore the map

V (q, p, u)
.= HW (q, p, u) + β(u) (9.25)

is a Lyapunov function for (9.23), from which it follows that (q̄, 0, z̄) is a stable
equilibrium for (9.23). �

10. Examples

Example 1 (Pendulum with oscillating pivot). Let us consider a pendulum with
fixed length r = 1, whose pivot is moving on the vertical y-axis, as shown in Fig. 3,
left. Its position is described by two variables: the clockwise angle θ formed by the
pendulum with the y-axis, and the height h of the pivot. We now consider h = u(t)
to be our control variable, while the evolution of the other variable θ = q(t) will
be determined by the equations of motion. We assume that the control function
t �→ u(t) can be assigned as a function of time, ranging over a neighborhood of
the origin. We assume that both the pendulum and its pivot have unit mass, so that
the kinetic matrix G and the matrices in (9.1) take the form

G =
(

1 − sin q
−sinq 2

)
A = (1), E = (1 + cos2 q), K = (sin q).
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Fig. 3. A pendulum whose pivot oscillates vertically (on the left) and horizontally (center).
On the right: a bead sliding without friction along a rotating axis

Remark 16. To be consistent with the general theory we need to put a mass on the
pivot as well. This is needed in order that the matrix G be invertible. On the other
hand it is easy to show that the resulting control equations are independent of the
mass of the pivot. Actually this should expected, since the motion of the pivot is
here considered as a control. Of course, what is not independent of the mass of the
pivot is the constraint reaction necessary to produce a given motion of u.

Notice that orthogonal curvature of the constraint foliation �, corresponding to
the coefficient of u̇2 (see Section 5), is different from zero: dE

dq = −2 sin q cos q.
In the presence of gravity acceleration g, the control equations for q and the

corresponding momentum p are given by

{
q̇ = p + (sin q)u̇
ṗ = − ∂U

∂q − p(cos q)u̇ − (sin q)(cos q)u̇2 ,
(10.1)

where U (q, u)
.= g cos q is the gravitational potential.

Using Theorem 9.2, it is easy to check that this system is stabilizable at the
upward equilibrium point (q̄, p̄, ū) = (0, 0, 0). Indeed, choosing W = {w} with
w > g, the corresponding effective potential

UW = g cos q − 1

2
(1 + cos2 q)w2.

has a strict local minimum at q = 0.
To illustrate an application of Theorem 9.1, we now show that the above system

is asymptotically stabilizable at every position (q̄, 0, 0) with 0 < |q̄| < π/2. To
fix the ideas, assume q̄ > 0, the other case being entirely similar. For ξ > 0, the
map γ (q, p, ξ) = −ξ provides a smooth selection from the cone

	(q, u)
.= co

{
∂ E(q, u)

∂q
w2; w ∈ R

}
= {−ξ ; ξ � 0}.

The corresponding system (9.5), with ξ as control variable, now takes the form
{

q̇ = p
ṗ = g sin q − ξ.

(10.2)
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It is easy to check that (q̄, p̄, ξ̄ ) = (q̄, 0, g sin q̄) is an equilibrium position and the
system is locally controllable at this point. Indeed, the linearized control system
with constant coefficients is

(
q̇
ṗ

)
=

(
0 1

−g cos q̄ 0

) (
q
p

)
+

(
0

−1

)
ξ.

By Theorem 9.1, the system (10.1) is asymptotically stabilizable at (q̄, 0, 0).
By similar arguments one can show that, by means of horizontal oscillations

of the pivot, one can stabilize the system at any position of the form (q̄, 0, 0), with
π
2 � |q̄| � π .

Example 2 (Sliding bead). Consider the mechanical system represented in Fig. 3
(right), consisting of a bead sliding without friction along a bar, and subject to
gravity. The bar can be rotated around the origin, in a vertical plane. Calling q the
distance of the bead from the origin, while u is the angle formed by the bar with the
vertical line. Regarding u as the controlled variable, in this case the kinetic matrix
G and the matrices in (9.1) take the form

G =
(

1 0
0 q2

)
, A = (1), E = (q2), K = (0).

Again, the orthogonal curvature of the constraint foliation � does not vanish:
dE
dq = 2q. The control equations for q and the corresponding momentum p are

{
q̇ = p,

ṗ = −g cos u + qu̇2.
(10.3)

This case is easy to understand: by vibrating the angle u one generates a
centrifugal force which can contrast the gravitational force. More precisely, the
system can be asymptotically stabilized at each (q̄, p̄, ū) ∈ ]0,+∞[ ×{0}× ] −
π/2, π/2[ . Indeed, for q > 0 we trivially have 	(q, u) = {qw2 ; w ∈ R} = {ξ �
0}. Hence, if cos ū > 0, then the control system

{
q̇ = p,

ṗ = −g cos ū + ξ,
(10.4)

admits the equilibrium point (q̄, 0, ξ̄ ), with ξ̄ = g cos ū > 0. Moreover, this sys-
tem is completely controllable around this equilibrium point, using {ξ � 0} as set
of controls. An application of Theorem 9.1 yields the asymptotic stability property.

We remark that here the stabilizing controls cannot be independent of the
position q and the velocity p. In particular, the approach in Theorem 9.2, based on
effective potential, cannot be implemented in this case, because a constant control
w cannot stabilize the system

{
q̇ = p,

ṗ = −g cos u + qw2.
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Fig. 4. Controlling a double pendulum by moving the pivot at P0

Example 3 (Double pendulum with moving pivot). We now consider a case where
the control u is two-dimensional, hence the cone (9.4) is also two-dimensional.
Consider a double pendulum consisting of three point masses P0, P1, P2, such that
the distances |P0 P1|, |P1 P2| are fixed, say both equal to 1. Let these points be sub-
ject to the gravitational force and constrained without friction on a vertical plane.
Let (u1, u2) be the Cartesian coordinates of the pivot P0 , and let q1, q2 the clock-
wise angles formed by P0 P1 and P1 P2 with the upper vertical half lines centered in
P0 and P1, respectively; see Fig. 4. Because of the constraints, the state of the sys-
tem {P0, P1, P2} is thus entirely described by the four coordinates (q1, q2, u1, u2).
The reduced system, obtained by regarding the variables (u1, u2) as controls and
(q1, q2) as state-variables, is two-dimensional. For simplicity we assume that the
all three points have unit mass, so that the matrix G = (grs) representing the kinetic
energy is given by

G =

⎛
⎜⎜⎝

2 cos(q1 − q2) 2 cos q1 −2 sin q1

cos(q1 − q2) 1 cos q2 − sin q2

2 cos q1 cos q2 3 0
−2 sin q1 − sin q2 0 3

⎞
⎟⎟⎠ .

Moreover, recalling (9.1), we have

E =

⎛
⎜⎜⎝

1 − 4(sin q1)2

−3+cos 3(q1−q2)
− 2 sin 2q1

−3+cos 3(q1−q2)

− 2 sin 2q1

−3+cos 3(q1−q2)
1 − 4(sin q1)2

−3+cos 3(q1−q2)

⎞
⎟⎟⎠ ,

(Fu
0 )1 = 2g sin q1, (Fu

0 )2 = g sin q2.

Let us observe, as in Remark 16, that the matrix E and the corresponding control
equations are independent of the pivot’s mass.

Proposition 10.1. For every q̄1 ∈]0, π/4[ (respectively q̄1 ∈] − π/4, 0[ ) there
exists δ > 0 such that for all q̄2 ∈] − δ, 0[ (respectively q̄2 ∈] − δ, 0[ ) the system
is stabilizable at (q1, q2, p1, p2, u1, u2) = (q̄1, q̄2, 0, 0, 0, 0).
Moreover, the system is stabilizable at (q1, q2, p1, p2, u1, u2) = (0, 0, 0, 0, 0, 0).

Remark 17. By translational invariance, the result remains true if we replace
(u1, u2) = (0, 0) with any other value (ū1, ū2) ∈ R

2.
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Proof of Proposition 10.1. Using Corollary 9.1 with N = M = 2 and k = 1, we
deduce that the system can be stabilized at (q̄1, q̄2, ū1, ū2) provided there exist
w̄ ∈ R

2 such that
{

2g sin q̄1 + ∑2
α,β=1

∂eα,β

∂q̄1 w̄αw̄β = 0

g sin q̄2 + ∑2
α,β=1

∂eα,β

∂q̄2 w̄αw̄β = 0
(10.5)

and

det

(
∂e1,1

∂q1 w̄1 + ∂e1,2

∂q1 w̄2 ∂e2,1

∂q1 w̄1 + ∂e2,2

∂q1 w̄2

∂e1,1

∂q2 w̄1 + ∂e1,2

∂q2 w̄2 ∂e2,1

∂q2 w̄1 + ∂e2,2

∂q2 w̄2

)

= 0 (10.6)

Notice that the latter relation can be written as

Qα,βw̄αw̄β 
= 0 (10.7)

where the matrix Q =
(

Qα,β

)
is defined by

Q
.= ∂ E

∂q1 ·
(

0 −1
1 0

)
· ∂ E

∂q2 . (10.8)

We recall that E denotes the matrix (eα,β). Moreover, all functions in (10.5)–(10.8)
are computed at (q̄1, q̄2).

Let us fix q̄1 ∈]0, π/4[. In order to establish the existence of a δ > 0 such that
for every q̄2 ∈] − δ, 0[ there is a w̄ verifying the relations (10.5), (10.6), we need
to study the intersections of the level sets of the quadratic forms Q, ∂ E

∂q1 , ∂ E
∂q2 . An

explicit computation yields

∂ E
∂q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 sin q1
(

−3 cos q1+cos(q1−2q2)

)
(

−3+cos(2(q1−q2))

)2 −
4

(
−3 cos 2q1+cos 2q2

)
(

−3+cos(2(q1−q2))

)2

−
4

(
−3 cos 2q1+cos 2q2

)
(

−3+cos(2(q1−q2))

)2 −
8 cos q1

(
3 sin q1+sin(q1−2q2)

)
(

−3+cos(2(q1−q2))

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∂ E
∂q2 =

⎛
⎜⎜⎜⎜⎝

8 sin2 q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2
4 sin 2q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2

4 sin 2q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2
8 cos2 q1 sin(2(q1−q2))(
−3+cos(2(q1−q2))

)2

⎞
⎟⎟⎟⎟⎠

In particular, for all q1, q2 one has

det
(

∂ E
∂q1 (q1, q2)

)
= − 16(

−3+cos(2q1−2q2)

)2 < 0,

det
(

∂ E
∂q2 (q1, q2)

)
= 0.

From the above computations it follows
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(i) The quadratic form w �→ w† ∂ E
∂q1 w is indefinite, hence it can be factored as

the product of two linear, independent forms. Assume that q̄2 ∈ ] − q̄1, 0[, so
that ∂e2,2

∂q1 < 0. Hence, for suitable functions a = a(q1, q2), b = b(q1, q2)

such that a(q1, q2) 
= b(q1, q2) for all q1, q2, one has

∂eα,β

∂q1 wαwβ = ∂e2,2

∂q1

(
w2 − aw1

) (
w2 − bw1

)
.

(ii) If q̄2 ∈] − q̄1, 0[, the quadratic form w �→ w† ∂ E
∂q2 w is positive semi-definite.

It can be expressed as the product of the positive scalar function ∂e2,2

∂q1 and the
square of a linear function. Moreover this linear function coincides with one
of the two linear factors of the quadratic form w �→ w† ∂ E

∂q1 w. This is a trivial
consequence of the identity

(
∂e1,2

∂q2

∂e2,2

∂q1

)2
− 2

∂e2,1

∂q1

∂e2,2

∂q1

∂e1,2

∂q2

∂e2,2

∂q1

∂e2,2

∂q2 + ∂e1,1

∂q1

∂e2,2

∂q1

(
∂e2,2

∂q2

)2
= 0,

which can be verified by direct computation. Letting (w2 − aw1) be the
common factor of the two quadratic forms, we obtain

∂eα,β

∂q2 wαwβ = ∂e2,2

∂q2

(
w2 − aw1

)2
.

(iii) The quadratic form w �→ w† Qw is semi-definite and, at each (q1, q2), it is
proportional to the form w† ∂ E

∂q2 w. More precisely, one has

Qα,βwαwβ =
(

∂e2,2

∂q1 · a − b

2

)
∂eα,β

∂q2 wαwβ

=
(

∂e2,2

∂q1 · ∂e2,2

∂q2 · a − b

2

)
(w2 − aw1)2.

This is easily deduced by (10.8). Notice that the form Qα,βwαwβ is never
equal to the null form, because a(q1, q2) 
= b(q1, q2) for all q1, q2.

If S is a 2 × 2 matrix and ρ ∈ R, we shall use the notation {w†Sw = ρ} .=
{w ∈ R

2 ; w†Sw = ρ}. Since w† ∂ E
∂q2 w is positive definite and sin q2 < 0, there

exists a real number η > 0 such that

{
w† ∂ E

∂q2 w = − sin q̄2v
}

=
{
w ∈ R

2 : (w2 − aw1) = η
}

∪
{
w ∈ R

2 : (w2 − aw1) = −η
}

.

Hence, in particular,

{
w† ∂ E

∂q2 w = −g sin q̄2
}

∩
{
w ∈ R

2 : (w2 − aw1) = 0
}

= ∅.
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By (iii) this implies

{
w† ∂ E

∂q2 w = −g sin q̄2
}

∩ {w† Qw = 0} = ∅. (10.9)

Moreover, by (i) the line {w ∈ R
2 : (w2 − aw1) = 0} is an asymptote of the

hyperbola {w† ∂ E
∂q1 w = −2g sin q̄1}. Therefore

{
w† ∂ E

∂q1 w = −2g sin q̄1
}

∩
{
w† ∂ E

∂q2 w = −g sin q̄2
}


= ∅. (10.10)

Putting (10.9) and (10.10) together, we establish first statement in Proposition 10.1.
On the other hand, the second statement will be proved by an application of

Theorem 9.2. Since U (q) = g(2 cos q1 + cos q2) is a potential, by setting
W = {(0, η)} and β(u)

.= (u1)2 + (u2)2, the effective potential

UW (q, u)
.= U (q) + η2e2,2(q) + β(u)

has a strict minimum at (q, u) = (0, 0, 0, 0), provided that |η| is large enough. In
view of Theorem 9.2, this implies the that the system is stabilizable at (q1, q2, p1,

p2, u1, u2) = (0, 0, 0, 0, 0, 0). �
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