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Abstract. In 1985 H. Ishii [Is85] proposed a generalization of the notion
of (continuous) viscosity solution for an Hamilton-Jacobi equation with a
t-measurable Hamiltonian---that is, a Hamiltonian which is measurable in
time and continuous in the other variables. This notion turned out to agree
with natural applications, like Control and Differential Games Theory. Since
then, several improvements have been achieved for the standard situation
when the Hamiltonian is continuous. It is someway an accepted general idea
that parallel improvements are likely for t-measurable Hamiltonians as well,
though such a job might appear a bit tedious because of the necessarily
involved technicalities.

In this paper we show that Ishii’s definition of viscosity solution coin-
cides with the one which would arise by extending by density the standard
definition. Namely, we regard a t-measurable Hamiltonian H as an element
of the closure (for suitable topologies) of a class of continuous Hamiltonians.
On the other hand, we show that the set of Ishii’s (sub-, super-) solutions for
H is nothing but the limit set of the (sub-, super-) solutions corresponding
to continuous Hamiltonians approaching H. This put us in the condition of
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establishing comparison, existence, and regularity results by deriving them
from the analogous results for the case of continuous Hamiltonians.
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1 Introduction

After the introduction of the concept of continuous viscosity solution for a first
order partial differential equation, the problem of giving a notion of viscosity solu-
tion in the “discontinuous case”—meaning a situation where both the Hamiltonian
and the solution are allowed to be discontinuous—was systematically investigated
since the publication of H. Ishii’s papers [Is85] in 1985 and [Is87] in 1987 (see e.g.
[Ba92] and [BCD97] for introductory material on the subject).

In the present paper we consider the particular case when the equation has
the form

∂u

∂t
+H(t, x, u,∇u) = 0 in ]0, T [×R

N , (1.1)

with the HamiltonianH measurable in t and continuous in the remaining variables.
We shall refer to this situation as the t-measurable case. Since the pioneering paper
by H. Ishii it was clear that, due to the special position of the t-derivative in the
equation, this case deserves an ad hoc treatment. In fact, H. Ishii himself studied
this case separately from other situations involving discontinuities. Incidentally,
let us notice that it is natural to assume that solutions to (1.1) are continuous
(in both variables), for, roughly speaking, one has to integrate H in time.

Despite its complicated appearance, the definition proposed by H. Ishii has
been shown to be quite satisfactory. To begin with, it is rapidly seen that when H
is continuous this definition reduces to the standard one. Moreover, it agrees with
some classical applications: for example, the upper and lower value of a zero-sum
differential game involving a dynamics and a Lagrangian measurable in time are
solutions (according to Ishii’s definition) of the associated Isaac’s equations.

What is perhaps lacking is a set of results showing that Ishii’s solution is
the natural extension of the usual one (in a sense that will be clarified below).
Actually, this is among the aims of the present paper.

Let us remark that H. Ishii’s paper [Is85] contained results which at the
time were almost as general as those devoted to the “continuous case”. In 1987,
P.L. Lions and B. Perthame ([LP87]) provided three equivalent formulations of
the notion of solution given by H. Ishii. More or less at the same time, relying
on the so-called blow up method, N. Barron and R. Jensen (see [BJ87]) intro-
duced a new concept of (Lipschitz continuous) solution. However, the question
of the equivalence with H. Ishii’s definitions was left open by the authors. More
recently, a definition of solution for t-measurable Hamiltonians for a special class of
Hamilton-Jacobi equations has been proposed by P. Cardaliaguet and S. Plaskacz
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([CP00]). Under some regularity assumptions this definition turns out to be equiv-
alent to Ishii’s one, the equivalence being a result of uniqueness and representation
properties.

After the quoted papers, (to our knowledge) not much attention has been
paid to the question, at least in the case of first order equations (see e.g. [Nu90],
[Nu92] for extensions to second order equations). In the meantime results con-
cerning the continuous case have been more and more sharpened, and no exten-
sions to the t-measurable case of such improvements have been provided. Notice
that, on one hand, the task of actually performing such extensions would require
a quite tedious technical effort. On the other hand, these extensions would be
quite reasonable from a theoretical point of view—notice, for instance, that in
the trivial case when H is independent of x and ∇u, (1.1) reduces to an o.d.e.
with Caratheodory type conditions. Furthermore, the concern about t-measurable
Hamiltonians is motivated by quite natural applications (e.g. to optimal control
and differential game theories).

These arguments have pushed us to look for rigorous contents to a general
principle which, in a vague form, reads as follows:

If a (comparison, existence, regularity, . . . ) result holds true when the Hamil-
tonian is continuous, it is still valid when one weakens the hypothesis of continuity
in t to mere measurability.

Such a fact would allow one to avoid the direct exploitation of the involved
notion of solution for the t-measurable case: indeed it would be enough to establish
a certain result in the continuous case, in that the extension to the general case
would be guaranteed by the criterion stated above. It must be noticed that this
would be quite similar to what happens in the theory of Caratheodory solutions
of ordinary differential equations.

Our leading idea consists in proving semi-continuity properties for the two
(multivalued) maps S− and S+ which, to each Hamiltonian, associate the corres-
ponding set of subsolutions and supersolutions, respectively (see Section 3).
Eventually we wish to exploit these properties by regarding a given t-measurable
Hamiltonian as an element in the L1-closure of a suitable class of continuous
Hamiltonians. Let us remark that the so-called stability results establish nothing
but upper semicontinuity properties for these maps. However, for our purposes
it is essential to establish also lower semicontinuity properties of the multivalued
maps S− and S+. Here these properties are referred to as approximability prop-
erties. This means that if u is a subsolution [resp. supersolution] corresponding
to H and Hn is a sequence of Hamiltonians converging to H, then there exists a
sequence of corresponding subsolutions [resp. supersolutions] un which converge
to u. Actually, these are the contents of Theorem 3.3 below.

Relying on such properties of S− and S+, in Section 4 we derive a com-
parison result (in particular, a uniqueness result) for t-measurable Hamiltonians
which, loosely speaking, holds as soon as the analogous result is valid for the
approximating continuous Hamiltonians (see Theorem 4.1). Successively, the
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exploitation of a local comparison result for continuous Hamiltonians allows us
to deal with cases which require weaker assumptions in the approximation of the
given HamiltonianH. Moreover, in Subsection 4.1 we prove a result on the approx-
imation of t-measurable Hamiltonians. In turn, this implies a comparison result
(see Theorem 4.10) which does not involve an explicit assumption on how the
Hamiltonian has to be approximated.

In Section 5, we prove uniform continuity properties for the Solution Map,
namely the univalued map that to each element H in a suitable class of con-
tinuous Hamiltonians associates the (unique) viscosity solution (for f ixed initial
data). This allows us to extend (by density) the Solution Map to t-measurable
Hamiltonians. Notice that, in view of the stability property, the images of these
Hamiltonians via the (so extended) Solution Map coincide with the Ishii’s type
solutions. In particular, this is a way to prove existence results starting by anal-
ogous results for Hamiltonians approaching a given (t-measurable) one.

Notation. For a given normed space, we will denote the open ball of center x and
radius δ by B(x, δ). L1(0, T ) will denote the usual Lebesgue space, while, for every
compact subset K in an Euclidean space R

q, L1(0, T ;C(K)) will be the set of L1

functions from [0, T ] into the complete space C(K). Moreover, for every natural
number q, L1(0, T ;C(Rq)) will denote the family of L1 functions t → H(t, ·, ·, ·)
that take values in the set of real continuous functions on R

q.

2 The Cauchy problem

Let us consider the Hamilton-Jacobi equation

∂u

∂t
+H(t, x, u,∇u) = 0 in ]0, T [×R

N (2.1)

with the initial condition

u(0, x) = ϕ(x) in R
N . (2.2)

Throughout this paper we shall assume the following:

(1) The function ϕ is continuous on R
N , and 0 < T < ∞.

(2) The Hamiltonian H(t, x, u, p) : [0, T ] × R
N × R × R

N → R is measurable in
t and continuous in (x, u, p). Moreover, H(t, 0, 0, 0) ∈ L1(0, T ).

(3) For any R > 0, there exists a map ωR(t, k), continuous, nonnegative, non-
decreasing, subadditive in k and measurable in t, such that ωR(t, 0) = 0
and

|H(t, x, s, p) −H(t, y, r, q)| ≤ ωR(t, |x− y| + |s− r| + |p− q|)
for all |x|, |y|, |s|, |r|, |p|, |q| ≤ R.
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(4) For each (t, x, p) ∈ [0, T ] × R
N × R

N the function u → H(t, x, u, p) is
monotone increasing.

The definition of viscosity solution in this framework was given by H. Ishii in
[Is85]. We do not recall H. Ishii’s definition, for we prefer to exploit the following,
equivalent, definition, provided by P.L. Lions and B. Perthame in [LP87]:

Definition 2.1 Let O ⊂ R
N be an open subset and let u(t, x) be a continuous

function on Q .= [0, T ] ×O.
u(t, x) is a viscosity subsolution of (2.1) at (t0, x0) ∈ Q if for every φ ∈ C1(O)

and b ∈ L1(0, T ) such that (t0, x0) is a local maximum for

u(t, x) +
∫ t

0
b(s)ds− φ(x)

one has

lim
δ↓0+

ess inf
|t−t0|<δ

inf {H(t, x, s, p) − b(t) : |x− x0| ≤ δ, |p− ∇φ(x0)| ≤ δ,

|s− u(t0, x0)| ≤ δ} ≤ 0.

u(t, x) is a viscosity supersolution of (2.1) at (t0, x0) ∈ Q if for every φ ∈
C1(O) and b ∈ L1(0, T ) such that (t0, x0) is a local minimum for

u(t, x) +
∫ t

0
b(s)ds− φ(x)

one has

lim
δ↓0+

ess sup
|t−t0|<δ

sup {H(t, x, s, p) − b(t) : |x− x0| ≤ δ, |p− ∇φ(x0)| ≤ δ,

|s− u(t0, x0)| ≤ δ} ≥ 0.

u(t, x) is a viscosity solution of (2.1) at (t0, x0) ∈ Q if it is both a viscosity
subsolution and a viscosity supersolution of (2.1) at (t0, x0).

Remark 2.2 It is easy to see that when H is continuous these notions coincide
with the standard ones, for which we refer to the monographs [Ba94] and [BCD97].

3 Stability and approximability of solutions

If one considers the set-valued function that maps a given Hamiltonian H into
the set of the corresponding subsolutions [resp. supersolutions], two kinds of
continuity issues defined below arise quite naturally.
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The “stability” issue. The first continuity question is usually refereed to
as the stability issue. It can be roughly expressed as follows:

if (Hn) is a sequence of Hamiltonians converging to H, and un is a sequence
of subsolutions [resp. supersolutions] corresponding to the Hn which converge to
a map u, is that true that u is a subsolution [resp. supersolution] corresponding
to H?

The “approximability” issue. The second continuity question we are
going to consider will be here referred to as the approximability issue. It can be
roughly expressed as follows:

if (Hn) is a sequence of Hamiltonians converging to H, and u is a subsolution
[resp. supersolution] corresponding to H, does a sequence un of subsolutions [resp.
supersolutions] corresponding to the Hn exist such that the maps un converge to u?

Remark 3.1 In the language of set-valued analysis stability and approximabi-
lity are, respectively, upper and lower semicontinuity properties of the functions
which map a Hamiltonian H in the corresponding set of subsolutions [resp.
supersolutions].

A result addressing the stability issue was proved by Ishii in [Is85]
(Proposition 7.1). Let us recall it.

Theorem 3.2 (Stability) Let O be an open subset of R
N and let Q .=]0, T [×O.

Let H and Hn be functions on Q × R × R
N for all n ∈ N . Let un ∈ C(Q) be

a viscosity subsolution [resp. supersolution] of (2.1) in Q for all n ∈ N . Assume
that Hn − H → 0 in L1(0, T ;C(K)) for any compact K ⊂ R

N × R × R
N and

un(t, x) → u(t, x) uniformly for any compact subset K of Q for some u ∈ C(Q)
as n → ∞. Then, u(t, x) is a viscosity subsolution [resp. supersolution] of (2.1)
in Q.

On the other hand, Theorem 3.3 below states some approximability results.
It concerns subsolutions, but the obvious counterpart about supersolutions is also
valid.

Theorem 3.3 (Approximability) Let (Hn)n∈N, H : [0, T ] × R
N × R × R

N → R

be Hamiltonians satisfying hypotheses (2)-(3)-(4). The following hold.

i) If u is a subsolution of (2.1) in ]0, T [×R
N , and

lim
n→∞

∫ T

0
sup

(x,u,p)∈(RN ×R×RN )
|Hn(t, x, u, p) −H(t, x, u, p)|dt = 0,
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then the functions

un(t, x) .= u(t, x) −
∫ t

0
sup

(x,u,p)∈(RN ×R×RN )
|Hn(s, x, u, p) −H(s, x, u, p)|ds

are viscosity subsolutions in ]0, T [×R
N of

∂u

∂t
(t, x) +Hn(t, x, u,∇u) = 0, (3.1)

and verify

lim
n→∞ sup

(t,x)∈[0,T ]×RN

|un(t, x) − u(t, x)| = 0. (3.2)

ii) Let O be an open bounded subset in R
N , and let u : [0, T ] × O → R be a

subsolution of (2.1) in ]0, T [×O, and let Λ ≥ 0 be a Lipschitz constant and
a bound for the function x �→ u(t, x), for any t ∈ [0, T ]. Moreover, let us
assume that

lim
n→∞

∫ T

0
sup

(x,u,p)∈K

|Hn(t, x, u, p) −H(t, x, u, p)|dt = 0

for every compact subset K ⊂ (O × R × R
N ). If

E
.= {(x, u, p) ∈ O × R × R

N : (x, |u|, |p|) ∈ O × [0,Λ + 1]2}

then, for n sufficiently large, the functions

un(t, x) .= u(t, x) −
∫ t

0
sup

(x,u,p)∈E

|Hn(s, x, u, p) −H(s, x, u, p)|ds

are viscosity subsolutions of (3.1) in ]0, T [×O and verify

lim
n→∞ sup

(t,x)∈[0,T ]×O

|un(t, x) − u(t, x)| = 0. (3.3)

Remark 3.4 We omit the analogous statement for supersolutions, which can
be obtained from Theorem 3.3 just by adding the integrals instead of subtracting
them in the definitions of the maps un. Accordingly, the proof of such a statement
would be completely similar to Theorem 3.3’s proof.

Proof of Theorem 3.3 The proofs of the two cases are akin, so we limit
ourselves to provide the details for i) only.

Proof of i). Let us set

kn(t) .= sup
(x,u,p)∈(RN ×R×RN )

|Hn(t, x, u, p) −H(t, x, u, p)|.
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By definition of un(t, x) we have

sup
(t,x)∈[0,T ]×RN

|un(t, x) − u(t, x)| ≤
∫ T

0
kn(s)ds,

which, by hypothesis i), implies (3.2).
Let us prove now that, for every fixed n ∈ N, un(t, x) is a viscosity subsolu-

tion of (3.1) in ]0, T [×R
N . Let φ ∈ C1(RN ), b ∈ L1(0, T ), and (t0, x0) be a local

maximum of

un(t, x) +
∫ t

0
b(s) ds− φ(x).

By the definition of un(t, x), the point (t0, x0) is a local maximum of

u(t, x) +
∫ t

0
(b(s) − kn(s)) ds− φ(x).

Since u is a subsolution of (2.1), this implies

lim
δ↓0+

ess inf
|t−t0|<δ

inf
Aδ

{H(t, x, s, p) − (b(t) − kn(t))} ≤ 0, (3.4)

where Aδ
.= {(x, s, p) ∈ R

N ×R×R
N : |x−x0| ≤ δ, |s−u(t0, x0)| ≤ δ, |p−∇φ(x0)|

≤ δ}. By the definition of kn and the monotonicity of u, one has

Hn(t, x, s, p) − b(t)
= H(t, x, s+ u(t0, x0) − un(t0, x0), p) − (b(t) − kn(t))

− kn(t) + (Hn(t, x, s, p) −H(t, x, s, p))
+H(t, x, s, p)) −H(t, x, s+ u(t0, x0) − un(t0, x0), p)

≤ H(t, x, s+ u(t0, x0) − un(t0, x0), p) − (b(t) − kn(t)). (3.5)

For each n ∈ N let us set

An
δ
.= {(x, s, p) ∈ R

N ×R×R
N : |x−x0| ≤ δ, |s−un(t0, x0)| ≤ δ, |p−∇φ(x0)| ≤ δ}.

Since (x, s, p) ∈ An
δ if and only if (x, q, p) ∈ Aδ, with q .= s+u(t0, x0)−un(t0, x0),

we obtain

inf
An

δ

{Hn(t, x, s, p) − b(t)} ≤ inf
Aδ

{H(t, x, q, p) − (b(t) − kn(t))}.

Then, by (3.4),

lim
δ↓0+

ess inf
|t−t0|<δ

inf
An

δ

{Hn(t, x, s, p) − b(t)}
≤ lim

δ↓0+
ess inf
|t−t0|<δ

inf
Aδ

{H(t, x, q, p) − (b(t) − kn(t))} ≤ 0,

that is, un is a subsolution.
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Remark 3.5 With almost unchanged proof one can easily obtain the following
similar approximability results.

Let (Hn)n∈N, H : [0, T ] × R
N × R × R

N → R be Hamiltonians satisfying
hypotheses (2)-(3)-(4). The following hold.

iii) Let O be an open bounded subset in R
N , and let u : [0, T ] × O → R be a

subsolution of (2.1) in ]0, T [×O. Moreover, let us assume that

lim
n→∞

∫ T

0
sup

(x,u,p)∈K1×RN

|Hn(t, x, u, p) −H(t, x, u, p)|dt = 0

for every compact K1 ⊂ R
N × R. Let us set

E
.= {(x, u, p) ∈ O × [m− 1,M + 1] × R

N},
where M .= max{(t,x)∈[0,T ]×O} u(t, x), and m .= min{(t,x)∈[0,T ]×O} u(t, x).

Then, for n sufficiently large, the functions

un(t, x) .= u(t, x) −
∫ t

0
sup

(x,u,p)∈E

|Hn(s, x, u, p) −H(s, x, u, p)|ds

are viscosity subsolutions of (3.1) in ]0, T [×O and verify

lim
n→∞ sup

(t,x)∈[0,T ]×O

|un(t, x) − u(t, x)| = 0. (3.6)

iv) Let u be a subsolution of (2.1) in ]0, T [×R
N , and let Λ ≥ 0 be a Lipschitz

constant and a bound for the function x �→ u(t, x), for any t ∈ [0, T ].
Moreover, let us assume

lim
n→∞

∫ T

0
sup

(x,u,p)∈(RN ×R×K2)
|Hn(t, x, u, p) −H(t, x, u, p)|dt = 0

for every compact K2 ⊂ R
N . Let us set

E
.= {(x, s, p) ∈ R

N × R × R
N : (x, s, |p|) ∈ R

N × R × [0,Λ + 1]}.
Then, the functions

un(t, x) .= u(t, x) −
∫ t

0
sup

(x,u,p)∈E

|Hn(s, x, u, p) −H(s, x, u, p)|ds

are viscosity subsolutions of (3.1) in ]0, T [×R
N and verify

lim
n→∞ sup

(t,x)∈[0,T ]×RN

|un(t, x) − u(t, x)| = 0. (3.7)
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4 Comparison via approximation

In the present section we address the main object of the paper, that is, we exploit
Theorem 3.3 (and the analogous result for supersolutions) for deducing comparison
results from akin results concerning continuous Hamiltonians.

The first result in this direction is Theorem 4.1 below, where one assumes
the same hypotheses as in Theorem 3.3 (or Remark 3.5).

Theorem 4.1 (and its proof) is more an instance on how to exploit the
approximability results of the previous section than a result to be utilized in
concrete situations. As a matter of fact, in order to cover some actual appli-
cations (in particular, some control and differential games problems), we present
a comparison result, namely Theorem 4.7, which holds under a set of hypotheses
which is not contained in the hypotheses of Theorem 4.1. Moreover this theorem
covers several situations where the analogous result in [Is85] cannot be applied
(see Remark 4.9). Theorem 4.7 can be proved thanks to a localization argument,
which in turn relies on the crucial exploitation of a local comparison result for
continuous Hamiltonians (see Theorem 4.6 below and [Is84], [Le01]).

One can naturally object that both Theorem 4.1 and Theorem 4.7 assume
the existence of suitable continuous Hamiltonians converging to the given one,
which might be a serious drawback for the actual exploitation of such results.
For this reason, in Subsection 4.1 we address the question of the existence of
such approximating Hamiltonians. This leads to a comparison result involving
(besides hypotheses (A)) just a weak assumption on the regularity of the given
Hamiltonian (see Definition 4.4 below).

In what follows, by saying that a “comparison result holds for the equation

∂u

∂t
(t, x) +H(t, x, u,∇u) = 0 in ]0, T [×O” (4.1)

(where O ⊆ R
N is an open set), we mean that the following holds true:

If u1 is a subsolution of (4.1) and u2 is a supersolution of (4.1) (in a class
of continuous maps to be specified) verifying

u1(t, x) ≤ u2(t, x) on ([0, T ] × ∂O) ∪ ({0} ×O),

then
u1(t, x) ≤ u2(t, x) for all (t, x) ∈ [0, T ] ×O.

Theorem 4.1 Let O be an open subset of R
N . Select one among the hypotheses

i)-iv) of Theorem 3.3 or Remark 3.5. Let H be an Hamiltonian verifying the basic
hypotheses (2)-(4) and let u, v, and (Hn)n∈N be a subsolution of (2.1), a super-
solution of (2.1) and a sequence of Hamiltonians, respectively, verifying the selected
hypothesis among i)-iv). Moreover let u, v satisfy

u(t, x) ≤ v(t, x) on ([0, T ] × ∂O) ∪ ({0} ×O).
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Finally for each Hn, let a comparison result hold for the equation

∂u

∂t
(t, x) +Hn(t, x, u,∇u) = 0 in ]0, T [×O, (4.2)

(in the class of maps singled out by the selected hypothesis among i)-iv)).
Then,

u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] ×O.

Proof. By contradiction let us assume that there exists a (t0, x0) ∈]0, T [×O such
that

u(t0, x0) > v(t0, x0).

By Theorem 3.3 (or Remark 3.5) there exists a sequence (un)n∈N of subsolution
of (4.2) defined on [0, T ] ×O such that

lim
n→∞un(t, x) = u(t, x)

uniformly on [0, T ]×O, and un(t, x) ≤ u(t, x) for every (t, x) ∈ [0, T ]×O. Analo-
gously, there exists a sequence of supersolutions (vn)n∈N of (4.2), (vn)n∈N defined
on [0, T ] ×O such that

lim
n→∞ vn(t, x) = v(t, x)

uniformly on [0, T ] ×O, and vn(t, x) ≥ v(t, x) for every (t, x) ∈ [0, T ] ×O. Hence,
there exists a sufficiently large n ∈ R such that

un(t0, x0) > vn(t0, x0),

against the fact that a comparison result holds for the equation (4.2). �

Remark 4.2 With an almost unchanged proof one could easily prove a
comparison result for the so-called state-constraint boundary conditions. By that,
one means that

i) u : [0, T ] ×O → R is a viscosity solution on ]0, T ] ×O.

ii) u(x, 0) = ϕ(x) for all x ∈ O.

iii) u is a supersolution of (2.1) on ]0, T [×∂O.

Remark 4.3 The uniqueness of the solution of the Cauchy problem (2.1)-(2.2) is
a straightforward consequence of the previous theorem, at least in the cases where
the approximation of H is as in i) and iv) (where O = R

N ). Notice, however,
that this comparison result can be naturally exploited for problems in ]0, T [×O
as well, where O is an open subset of R

N .
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4.1 On approximating Hamiltonians

First, we wish to focus the actual possibility of approximating H in a way as
prescribed in the hypotheses of Theorem 4.7. This will allows us to state
Theorem 4.10 and Corollary 4.11 below, whose hypotheses can be certainly easily
checked.

Let us begin by considering a general hypothesis which later will be assumed
on our Hamiltonians.

Definition 4.4 Let F : [0, T ] × R
q be a map. We say that F verifies the approx-

imation hypothesis (AP) if the following holds: for every compact subset Q ⊂ R
q

there exist a L∞ map v : [0, T ] → R and a t-integrable modulus ω such that

|F (t, x) − F (s, y)| ≤ |v(t) − v(s)| + ω(t, |x− y|) + ω(s, |x− y|)

where, by saying that ω is a t-integrable modulus we mean that:

i) for every t ∈ [0, T ] the map ω(t, ·) : [0,+∞[→ [0,+∞[, is a modulus, i.e.
an increasing map vanishing and continuous at zero,

and

ii)

lim
δ→0

∫ T

0
ω(t, δ)dt = 0.

Let α : R → [0,+∞[, β : R
q → [0,+∞[ be non-negative C∞ maps having

L1-norms equal to 1 and supported in the balls B1 = {h ∈ R : |h| ≤ 1}, Bq = {k ∈
R

q : |k| ≤ 1}, respectively.
Let us extend F to R

q+1 by setting F (t, x) = 0 whenever t ∈ R\[0, T ]. For
every natural number ν, let us consider the mollification

Fν(t, x) .=
∫

Rq+1
F

(
t+

h

ν
, x+

k

ν

)
α(h)β(k)dhdk.

Proposition 4.5 Let us assume that the function F verifies hypothesis (AP).
Then, for all compact subsets Q ⊂ R

q one has

lim
ν→∞

∫ T

0
sup
x∈Q

|Fν(t, x) − F (t, x)|dt = 0.

Proof. Let Q ⊂ R
q be a compact subset, and let us extend the corresponding

maps v and ω in hypothesis (AP) to R and R × [0,+∞[ by setting

v(s) = ω(s, δ) = 0 ∀(s, δ) ∈ (R\[0, T ]) × [0,+∞[.
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Set M .= max{‖α‖∞, ‖β‖∞}. Then, by applying Fubini-Tonelli’s theorem one
obtains,∫ T

0
sup
x∈Q

|Fν(t, x) − F (t, x)|dt

=
∫ T

0
sup
x∈Q

|
∫

Rq+1

(
F

(
t+

h

ν
, x+

k

ν

)
− F (t, x)

)
α(h)β(k)dh dk|dt

≤
∫ T

0

[∫
R

M2
(
ω

(
t+

h

ν
,
1
ν

)
+ ω

(
t,

1
ν

))
+M |v

(
t+

h

ν

)
− v(t)|α(h)dh

]
dt

= 2M2
∫

B1

[∫ T

0
ω

(
t,

1
ν

)
dt

]
dh+

∫ T

0
M

[∫
B1

α(h)|v
(
t+

1
ν

)
− v(t)|dh

]
dt

≤ 2M2
∫

B1

[∫ T

0
ω

(
t,

1
ν

)
dt

]
dh+

∫ T

0
M2

[
ν

∫ 1/ν

−1/ν

|v(t+ s) − v(t)|ds
]
dt

and the last row converges to zero by the hypotheses on ω and by the fact that
the maps

t �→ ν

(∫ 1/ν

−1/ν

|v(t+ s) − v(t)|ds
)

are pointwise bounded by ‖v‖∞ and tend to zero at all Lebesgue points t of v
(i.e. almost everywhere). �

4.2 Weaker hypotheses

The approximation considered in i) and iv) of Theorem 3.3, Remark 3.5 respec-
tively, do not cover some natural applications, e.g. in control theory. As a possible
answer to such an objection, let us show how the ideas underlying Theorem 4.1
can be adjusted in order to prove a comparison result (Theorem 4.7) under the
hypotheses (A) below (which, on one hand, in general do not allow for an as strong
approximation as the one prescribed in i) and iv), and, on the other hand, are
quite common in the case of continuous Hamiltonians).

Hypotheses (A).

(1A) The Hamiltonian H(t, x, u, p) is measurable in t and continuous in (x, u, p).
Moreover, H(t, 0, 0, 0) ∈ L1(0, T ).

(2A) For each (t, x, p) ∈ [0, T ] × R
N × R

N the function u → H(t, x, u, p) is
monotone increasing.

(3A) The Hamiltonian H(t, x, u, p) is Lipschitz continuous w.r.t. x and there
exist C > 0 and β ≥ 0 such that∣∣∣∣∂H∂x (t, x, u, p)

∣∣∣∣ ≤ C(β + |p|)

for a.e. (t, x, u, p) ∈ [0, T ] × R
N × R × R

N .
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(4A) The Hamiltonian H(t, x, u, p) is Lipschitz continuous w.r.t. p and there
exist A,B > 0 such that∣∣∣∣∂H∂p (t, x, u, p)

∣∣∣∣ ≤ A|x| +B

for a.e. (t, x, u, p) ∈ [0, T ] × R
N × R × R

N .

First, we recall the local comparison theorem Theorem A.1 in [Le01].

Theorem 4.6 (Theorem A.1 in [Le01]) Let H be a continuous Hamiltonian on
[0, T ] × R

N × R × R
N . Assume (3A) and (4A) and let f, g ∈ C([0, T ] × R

N ). Let
x0 ∈ R

N and r > 0 and define L = B +A(1 + |x0|).
If u ∈ C([0, T ] ×B(x0, r)) is a viscosity subsolution of

∂w

∂t
+H(t, x, w,∇w) = f in ]0, T [×B(x0, r) and w(0, x) = u0(x) in B(x0, r)

and v is a viscosity supersolution of

∂w

∂t
+H(t, x, w,∇w)= g in ]0, T [×B(x0, r) and u(0, x) = v0(x) in B(x0, r)

then

u(t, x) − v(t, x)

≤ sup
y∈B(x0,r)

{u0(y) − v0(y)} +
∫ t

0
sup

y∈B(x0,r)
{f(y, s) − g(y, s)} ds (4.3)

for every (x, t) ∈ D(x0, r) where

D(xo, r) = {(t, x) ∈ (0, T ) ×B(x0, r) : eLT (1 + |x− x0|) − 1 ≤ r}.
In particular, if r ≥ 2eLT then (4.3) holds in [0, T ] ×B(x0, e

−LT r
2 ).

Theorem 4.7 Let H verify hypotheses (A), and assume that there exists a sequence
of continuous Hamiltonians (Hn)n∈N verifying (A) and

lim
n→∞

∫ T

0
sup

(x,u,p)∈K

|Hn(t, x, u, p) −H(t, x, u, p)|dt = 0 (4.4)

for every compact K ⊂ (RN × R × R
N ).

Let u and v be a subsolution and a supersolution of (2.1), respectively. Let us
assume that they are locally Lipschitz continuous in x, uniformly w.r.t. t ∈ [0, T ],
and that

u(0, x) ≤ v(0, x) ∀x ∈ R
N .

Then,
u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] × R

N .
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Proof of Theorem 4.7 Let us fix (t0, x0) ∈]0, T [×R
N and r > 2eLT where

L = B + A(1 + |x0|), and let us consider the bounded set O = B(x0, r). Let un

and vn be the maps constructed in ii) of Theorem 3.3. Hence the un and the vn

are subsolutions ad supersolutions of (3.1), respectively, and satisfy

lim
n→∞ sup

(t,x)∈[0,T ]×O

|un(t, x) − u(t, x)| = 0,

lim
n→∞ sup

(t,x)∈[0,T ]×O

|vn(t, x) − v(t, x)| = 0.

Moreover one has

vn(0, x) = v(0, x) and un(0, x) = u(0, x).

Hence by the comparison Theorem A.1 in [Le01] (Theorem 4.6), we have that

un(t, x) ≤ vn(t, x)

for all (t, x) ∈ [0, T ] ×B(x0, e
−LT r

2
). Hence one has

u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] ×B
(
x0, e

−LT r

2

)
as well. One achieves the conclusion by arguing as in the proof of Theorem 4.1.

�

As a straightforward consequence, one obtains the following uniqueness
result.

Corollary 4.8 Let us assume the same hypotheses as in Theorem 4.7. Among
the maps that are locally Lipschitz continuous in x uniformly w.r.t. t there exists
at most one viscosity solution of

∂u

∂t
(t, x) +H(t, x, u,∇u) = 0 in ]0, T [×R

N (4.5)

u(0, x) = ϕ(x) in R
N . (4.6)

Remark 4.9 With Theorem 4.7 we aim to give just an instance of application of
Theorem 3.3. As a simple example which is covered by Theorem 4.7 while is not
covered by the comparison theorem in [Is85], let us consider a Hamiltonian of the
form

H(t, x, u, p) = α(t)(p · x)
where α is a bounded measurable map defined on [0, T ]. If αn is a sequence of
continuous maps approaching α in the L1-norm, then the Hamiltonians

Hn(t, x, u, p) = αn(t)(p · x)
agree with the hypotheses of Theorem 4.7.
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Finally we are in the position of giving more exploitable versions of both
Theorem 4.7 and Corollary 4.8. They follow from the elementary fact that once
H verifies hypotheses (A) and hypothesis (AP) then the mollifications provided
by Proposition 4.5 are continuous in t and verify hypotheses (A) as well.

Theorem 4.10 Let H verify hypotheses (A), and assume further that H verifies
hypothesis (AP), with q = 2N+1. Let u and v be a subsolution and a supersolution
of (2.1), respectively. Let us assume that they are locally Lipschitz continuous in
x, uniformly w.r.t. t ∈ [0, T ], and that

u(0, x) ≤ v(0, x) ∀x ∈ R
N .

Then,
u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ] × R

N .

Corollary 4.11 Let us assume the same hypotheses as in Theorem 4.10. Among
the maps that are locally Lipschitz continuous in x uniformly w.r.t. t there exists
at most one viscosity solution of

∂u

∂t
(t, x) +H(t, x, u,∇u) = 0 in ]0, T [×R

N (4.7)

u(0, x) = ϕ(x) in R
N . (4.8)

5 Uniform continuity for the Solution
Map and the existence question

Let us fix the initial data ϕ in (2.2). We will prove here a uniform continuity
property (see Theorem 5.1 below) for the map that associates the unique solution
of (2.1)-(2.2) to each continuous Hamiltonian verifying hypotheses (1A)-(4A) and
hypothesis (5A) below. We shall refer to this map as to the Solution Map.
In particular, the Solution Map can be extended to t−measurable Hamiltonians.
In view of the stability theorem (Theorem 3.2), such an extension will map a given
(t-measurable) Hamiltonian into the corresponding solution of (2.1)-(2.2). Hence,
in particular, this is a way to establish existence results (see Corollary 5.2). As
in the previous section we shall assume hypothesis (AP) (see Definition 4.4) to
obtain a result (Corollary 5.3) with no explicit approximation assumptions on H.

Together with (1A)-(4A) we will assume the following hypothesis:

(5A) For any R > 0, there exists modulus mR such that

|H(t, x, s, p) −H(t, y, r, q)| ≤ mR(|x− y| + |s− r| + |p− q|)
for each (t, x, s, p), (t, y, r, q) ∈ [0, T ] × R

N × R ×B(0, R).
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Here is the result concerning a uniform continuity property of the Solution
Map.

Theorem 5.1 Let us assume that the initial data ϕ is Lipschitz continuous on
R

N . Let H̃1 and H̃2 be continuous Hamiltonians verifying hypotheses (1A)–(5A).
If ũ1 and ũ2 are the (unique) corresponding viscosity solutions of (2.1)–(2.2), then,
fix R > 0, one has

sup
(t,x)∈[0,T ]×B(0,R)

|ũ1(t, x) − ũ2(t, x)|

≤
∫ T

0
sup

(x,u,p)∈B(0,M̄)
|H̃1(t, x, u, p) − H̃2(t, x, u, p)|dt, (5.1)

where M̄ = max{R,MR}, MR being the constant appearing in Lemma 5.5 below.

Corollary 5.2 Let us assume that the initial data ϕ is Lipschitz continuous
on R

N . Let H verify hypotheses (1A)–(5A) and assume that there exists a sequence
(H̃n)n∈N of continuous Hamiltonians satisfying hypothesis (1A)–(5A) and such
that

lim
n→∞

∫ T

0
sup

(x,u,p)∈K

|H̃n(t, x, u, p) −H(t, x, u, p)|dt = 0

for every compact K ⊂ (RN × R × R
N ).

Then, the Cauchy problem (2.1) − (2.2) admits a (unique) solution. More-
over, this solution is locally Lipschitz continuous in the x-variable, uniformly w.r.t.
t ∈ [0, T ].

In view of Proposition 4.5 we easily get the following more concrete result:

Corollary 5.3 Let us assume that the initial data ϕ is Lipschitz continuous
on R

N . Let H verify hypotheses (1A)-(5A) and hypothesis (AP). Then, the Cauchy
problem (2.1)-(2.2) admits a (unique) solution. Moreover, this solution is locally
Lipschitz continuous in the x-variable, uniformly w.r.t. t ∈ [0, T ].

Remark 5.4 Let us observe that as a byproduct of the approach considered
here, one gets a regularity result having the same strength as the one valid for the
continuous case.

5.1 Proofs of Theorem 5.1 and Corollary 5.2

Proof of Theorem 5.1 Fix R > 0, for every (t, x) ∈ [0, T ] × R
N , let us set

u2(t, x)
.= ũ1(t, x) −

∫ t

0
ψ(s)ds, (5.2)
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and

u2(t, x)
.= ũ1(t, x) +

∫ t

0
ψ(s)ds, (5.3)

where ψ(t) .= supB(0,M̄) |H̃1(t, x, u, p) − H̃2(t, x, u, p)|. Let us show that u2 is a
viscosity subsolution of (2.1) when H = H̃2. (Again, let us recall that it is trivial
to show that for a continuous Hamiltonian the concept of viscosity solution pro-
vided in Definition 2.1 reduces to the standard one.)

Let φ ∈ C1(]0, T [×R
N ), and let (t0, x0) ∈]0, T [×B(0, R) be a local maximum

of
u2(t, x) − φ(t, x),

which implies that (t0, x0) is a local maximum of

ũ1(t, x) −
∫ t

0
ψ(s)ds− φ(t, x).

Since ũ1 is a subsolution of (2.1) when H = H̃1, this implies

∂

∂t
φ(t0, x0) + ψ(t0) + H̃1(t0, x0, ũ1(t0, x0),∇φ(t0, x0)) ≤ 0. (5.4)

Moreover, in view of Lemma 5.5 below, one has

|∇φ(t0, x0)|, |ũ1(t0, x0)| ≤ R.

Hence,

∂

∂t
φ(t0, x0) + H̃2(t0, x0, u2(t0, x0),∇φ(t0, x0))

=
∂

∂t
φ(t0, x0) + H̃1(t0, x0, ũ1(t0, x0),∇φ(t0, x0)) + ψ(t0)

−ψ(t0) + H̃2(t0, x0, ũ1(t0, x0),∇φ(t0, x0)) − H̃1(t0, x0, ũ1(t0, x0),∇φ(t0, x0))
+ H̃2(t0, x0, u2(t0, x0),∇φ(t0, x0)) − H̃2(t0, x0, ũ1(t0, x0),∇φ(t0, x0)) ≤ 0.

This implies that u2 is a subsolution. Similarly, one can prove that u2 is a
viscosity supersolution of (2.1) with H = H̃2.

Let us consider now the solution ũ2(t, x) of (2.1) corresponding to the
Hamiltonian H̃2. By Theorem VI.1 in [CL87], we know that

u2(t, x) ≤ ũ2(t, x) ≤ u2(t, x) ∀(t, x) ∈ [0, T ] × R
N . (5.5)

Moreover, by construction,

sup
(t,x)∈[0,T ]×B(0,R)

|ũ1(t, x) − u2(t, x)|

≤
∫ T

0
sup

(x,u,p)∈B(0,M̄)
|H̃1(t, x, u, p) − H̃2(t, x, u, p)|dt, (5.6)
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and

sup
(t,x)∈[0,T ]×B(0,R)

|ũ1(t, x) − u2(t, x)|

≤
∫ T

0
sup

(x,u,p)∈B(0,M̄)
|H̃1(t, x, u, p) − H̃2(t, x, u, p)|dt. (5.7)

Then (5.1) follows from (5.5), (5.6), and (5.7). �

Proof of Corollary 5.2 By Lemma 5.5 below, for each n ∈ N and R > 0, there
exists a unique ũn(t, x) viscosity solution of (2.1)-(2.2) (when H = H̃n). Moreover

max{|ũn(t, x)|, |∇ũn(t, x)|} ≤ MR a.e. (t, x) ∈ [0, T ] ×B(0, R). (5.8)

In view of Theorem 5.1 one has

sup
(t,x)∈[0,T ]×B(0,R)

|ũn+p(t, x) − ũn(t, x)|

≤
∫ T

0
sup

(x,u,p)∈B(0,M̄)
|H̃n+p(t, x, u, p) − H̃n(t, x, u, p)|dt

for all natural numbers n, p. This implies that there exists a continuous map
u : [0, T ] × R

N → R such that

lim
n→∞ ũn(t, x) = u(t, x) (5.9)

uniformly on compact subsets of [0, T ]×R
N . Hence, by Theorem 3.2, u(t, x) is the

viscosity solution of (2.1) in ]0, T [×R
N . Moreover, by (5.8) and (5.9) we obtain

that u is Lipschitz continuous in the x-variable uniformly w.r.t. t ∈ [0, T ], which
completes the proof. �

Lemma 5.5 Let us assume that the initial data ϕ is Lipschitz continuous on R
N .

If H(t, x, u, p) is continuous and satisfies assumptions (1A)–(4A) then:

(i) there exists at most one viscosity solution û of (2.1)–(2.2), and for every
R > 0 one has

max{|û(t, x)|, |∇û(t, x)|} ≤ MR a.e. (t, x) ∈ [0, T ] ×B(0, R), (5.10)

for a suitable constant MR. In particular û is Lipschitz continuous in the
x-variable (uniformly w.r.t. t ∈ [0, T ]), with constant MR on each ball
B(0, R).

(ii) If hypothesis (5A) is verified as well, then there exists a (unique) viscosity
solution of (2.1)–(2.2).
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The proof of the existence assertion can be found e.g. in [CL87], where
uniqueness and regularity results are proved as well (see Theorem VI.1 and
Theorem VII.1). The regularity claim and the estimate (5.10) are proved in [Le01]
(Theorem 4.1).

Remark 5.6 Actually, the result in [Le01] concerns Hamiltonians that are inde-
pendent of u. However, in view of the monotonicity assumption (2A), the proof
of the more general version stated above can be obtained straightforwardly by the
original one.
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