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Abstract—We trace the roots of abstract interpretation and its role as a foundational principle to
understand and design static program analysis and verification methods. Starting from the
historical roots of formal methods and static program analysis, we show how abstract
interpretation evolved and influenced the way we reason about program correctness in different
programming languages and how this method shaped the literature and the practice in program
analysis in the last 45 years.

INTRODUCTION Abstract interpretation pro-
vides a universal principled method for design-
ing static program analyzers. In this article we
trace the mathematical and computational roots
of abstract interpretation, from its origins as a
theory for generalizing program analysis and ver-
ification methods to the following developments
and applications, with a focus on the influence
that abstract interpretation had in programming
languages (PL).

As a major achievement in programming lan-
guages, abstract interpretation established a pre-
cise bridge between program semantic models
and program analysis algorithms. The funda-
mental idea that analyzing programs corresponds
precisely to approximate their semantics was in
the air in the mid-late 1970s, but was lacking
of a rigorous mathematical foundation. In this
context, the fundamental early works delineat-
ing a mathematical theory of computation by

Turing, von Neumann, McCarthy and the initial
conceptualisations of the logical correctness of
programs by Floyd, Hoare and Naur in the 1960-
70s, set up an ideal background for the irruption
of abstract interpretation as a breakthrough in
program analysis and verification.

In this historical perspective, we describe how
Patrick and Radhia Cousot envisaged the funda-
mental concepts of abstract interpretation starting
from the very first embryonic ideas dating back
to 1972 and culminating in the landmark POPL
1977 paper, that is widely acknowledged as the
origin of abstract interpretation. We then discuss
how these ideas influenced the way we analyze
and, more in general, reason about programs. We
show how abstract interpretation culminated in
many successful industrializations in the 2000s,
disseminating this methodology in a rich spec-
trum of fields in computer science, and making it
a mature and lively research discipline.
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Up to 1970: HISTORICAL ROOTS

The Many Computational Roots
Two main complications characterized the ori-

gins of programming languages as a distinctive
discipline in computer science: (1) The call for
program verification — i.e., methods and tools for
verifying the logical correctness of programs —
and (2) the need of efficient compile-time and
run-time support to optimize code in order to
overcome the inherent limitations of early com-
puter architectures. The objective of designing
computer programs by combining suitable anno-
tations that express the intended semantics of pro-
gram components can be rooted back to Charles
Babbage’s idea of mechanical notation as his
grammar of a symbolic language [1]. This was
meant to be a system of signs describing the
semantic properties of composable mechanical
entities in such a way that the resulting machine
is correct by construction. A striking quote of
Babbage about the importance of using a suitable
notation in the analytical engine [2] is: “By the aid
of the Mechanical Notation, the Analytical Engine
became a reality, for it became susceptible of
demonstration”. Although the analytical machine
can be considered a very first instance of a univer-
sal Turing Machine, a precise notion of program
correctness appeared about a century later with
the development of the first computers in the
1940s. Abstract flow diagrams describing the con-
trol and data flow of programs emerged from the
pioneering visions of both Herman Goldstine and
John von Neumann in their 1947 report [3], [4]
and Alan Mathison Turing in his 1949 paper for
the inaugural conference of the EDSAC computer
at the Mathematical Laboratory of Cambridge [5].
It is worth remarking that, although not essential
for its general formulation, flow diagrams played
a notational role to model program semantics in
the early stages of abstract interpretation.

Proving program correctness is way harder
than syntactically composing denotations and
signs [6]. It requires more advanced levels of
abstraction to cope with both the linguistic com-
plications of modern programming languages [7]
and the inherent undecidability of semantic prop-
erties of programs. It is within this scope that
abstract interpretation gave the most of its contri-
bution. The 1960s saw the emergence of software

bugs as harbingers of possible disastrous events,
e.g., the Mariner I destruction [8]. As observed
by Matti Tedre [8]: “the 1960s were character-
ized by public disillusionment with computing
technology. The larger the software project, the
more certainly it was late, over budget, and
bug ridden”. The vision of programs as math-
ematical models has been put forward by John
McCarthy in his fundamental papers for the 1962
IFIP Congress [9] and the 1961 Western Joint
Computer Conference [10]. A recent article [4]
provides an extensive and thoughtful exploration
of those fundamental years for the development of
modern programming languages. As recognized
by Patrick Cousot in his PhD thesis [11], the idea
of formally proving the validity of some correct-
ness specifications for programs is essentially due
to Peter Naur [12], whose general snapshots are
defined to be “static conditions existing whenever
the execution of the algorithm reaches particular
points”. A widely attributed ancestor of abstract
interpretation is indeed Naur’s static checking of
operand types for Algol programs [13], where
“the basic method is a pseudo-evaluation of the
expressions of the program that proceeds like a
run-time evaluation, but works with descriptions
of the types and kinds of the operands instead of
with values”.

The field of program semantics was estab-
lished in 1967-1971 by several influential ad-
vances. On the one hand, we have the approaches
based on logical semantics for proving pro-
grams correct, pioneered by Robert W. Floyd in
1967 [14], Sir Charles Antony Richard Hoare in
1969 [15] and Rodney Martineau “Rod” Burstall
in 1969 [16], that are now commonly referred
to as the Hoare (or Floyd-Hoare) program logic.
On the other hand, a range of mathematical
approaches based on algebraic ordered structures
and fixed points that model the input/output pro-
gram behaviour, initiated by Dana Stewart Scott
and Christopher S. Strachey [17], [18], and after-
wards by Zohar Manna, Stephen Ness and Jean
Etienne Vuillemin [19], eventually called à la
Scott (or Scott-Strachey) program semantics. In
general, a fixed point is a solution to a recursive
equation of the form x = f(x). Whenever f(x)
represents the possible states (memory, registers,
etc.) of a computational device after the exe-
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cution of a finite sequence of instructions of a
given program with input x, then a fixed point
x = f(x) represents a program invariant, namely
a property of program states that is stable with
respect to further applications of the same in-
structions. As observed by Floyd [14], invariants
represent properties of recursive definitions as
well as of iterative commands and, as pointed
out by Edsger Wybe Dijkstra [20], finding strong
enough invariants is the main challenge in prov-
ing program correctness, due to the undecidability
of program termination. In their very essence,
program analysis and program verification corre-
spond precisely to automatically derive — i.e.,
through an algorithm — an invariant which is
strong enough to let us prove statically — i.e.,
at compile-time or anyway before program exe-
cution — that some expected or desired property
holds at run-time [21]. Major examples of pro-
gram properties that can be statically inferred by
automatically deriving program invariants are the
absence of bugs — the so-called safety program
properties — and the information on program
variables used for code optimization in program
compilation, such as liveness and constancy of
variables as derived by classical data-flow analy-
sis. This view that automatic program verification
is feasible and practically useful, although only
approximate information can be derived, is in line
with the thesis supported by [22], that argued how
the famous claim made in 1979 by De Millo,
Lipton and Perlis [23] that “formal verifications of
programs, no matter how obtained, will not play
the same key role in the development of computer
science and software engineering as proofs do
in mathematics” has been largely refuted by the
scientific achievements that showed how “formal
verification is at present a concrete reality, per-
mitting correctness proofs of complex software
applications” [22].

In program compilers, the origins of a theory
for code optimization — and, in this perspective,
of program analysis — can be rooted back to the
works of Frances Elizabeth Allen [24], [25], and
John Cocke and Raymond E. Miller [26], [27],
although empirical ad hoc methods were in use
long before then. Before the 1970s, automatic
coding was highly machine-specific [7], [28],
hence justifying the idea that optimizing code

is mostly a machine-dependent task. The rise of
so-called universal programming languages put
forward the need of more abstract, yet automatic,
methods for optimizing code. The necessity of
statically extracting properties of the run-time
behavior of programs was justified to simplify nu-
merical expressions or to move invariant code out
of program loops for optimization purposes [7],
[29]. In this context, program analysis originally
had a mostly algorithmic flavor, i.e., it was based
on particular algorithmic solutions to specific
optimization problems, as in the directed acyclic
graph (DAG) representation of basic blocks in
flow diagrams by Alfred Vaino Aho and Jef-
frey David Ullman [30], or in program opti-
mizations based on reducible graph properties
by Allen [25]. These algorithms, although effi-
cient, strongly relied on the intermediate code
representations used in program compilation. For
example, a basic control-flow analysis such as
reaching definitions — devoted to detect which
variable definitions (that is, left-hand sides of
assignments) reach a given program point before
this same variable is reassigned — was already
conceived as an iterative fixed point solution of
a system of equations derived from the program
syntax [30], although no explicit relation between
the intended semantics of the program and the
program property to infer was mentioned. The
lack of a clearly stated universal correspondence
between a rigorous model of program semantics,
e.g. the operational one given by a program
interpreter, and the program property to infer
or verify, reduced the possibility of bridging
program analysis and program verification, as
well as constrained the chances of systematically
designing new analysis algorithms, beyond the
specifics of some program optimization of in-
terest. Monotone data flow frameworks appeared
later in the mid 1970s [31], simultaneously with
the publication of the first paper [32] introducing
abstract interpretation to a major international
research venue: The 1977 ACM Symposium on
Principles of Programming Languages (POPL).
Monotone data flow frameworks were conceived
with the same purpose of abstract interpretation,
namely to provide a generalization of the ad hoc
nature of the program analysis methods intro-
duced in the early 1970s. As recognized in the
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aforementioned POPL 1977 paper [32], that cited
a 1975 technical report on monotone data flow
frameworks [33], this latter approach appeared to
be an instance of the more general idea of abstract
interpretation, for the specific case of bounded
lattices, namely, when the fixed point solution of
a system of equations can be obtained within a
given bounded time which is known a priori.

The Mathematical Roots
The oldest papers cited by the PhD thesis [11]

of Patrick Cousot are a number of mathematical
articles of the 1940s on topological closure op-
erators by António Aniceto Monteiro and Hugo
Ribeiro [34], Oystein Ore [35], [36] and Mor-
gan Ward [37], and on the celebrated 1928 and
1955 fixed point theorems in lattice theory by
Bronislaw Knaster and Alfred Tarski [38], [39].
Moreover, Cousot cited a long array of articles on
closure operators by the Portuguese mathemati-
cian José Morgado [40], very active from 1960
to 1966 in the algebraic study of this class of op-
erators, most of them published in the Portugaliæ
Mathematica journal [41]. A major achievement
of abstract interpretation was to recognize that
closure operators formalize in a simple and ele-
gant way the notion of approximation, also called
abstraction, of program properties. Interpreted on
an ordered algebraic structure of properties of
program states, a closure operator is:

1) monotone, i.e., the abstraction must pre-
serve the relative precision of the input
properties;

2) extensive, i.e., approximate properties are
weaker (namely, larger for the ordering)
than their input;

3) idempotent, i.e., all the loss of informa-
tion in approximating an input property is
achieved at once.

The result of applying a closure operator to all
the properties of interest on the program behavior
was called abstract domain and laid its founda-
tions into this theory of closure operators and
its mathematically equivalent notion provided by
Galois connections [42]. This formal model of the
notion of approximation on top of a mathematical
formalization of the semantics of programs in
terms of fixed point equations, provided the very
first general model for approximating program

properties, such as the range of variation of a nu-
merical program variable and the (linear or non-
linear) relationships between different program
variables. This type of information was, and still
is, crucial for optimizing program compilation
and detecting software bugs. Closure operators,
Galois connections and fixed points historically
played the role of mathematical backstage of ab-
stract interpretation, conceiving its very essential
idea that:

program analysis is approximating a fixed point
model of program semantics.

1972-76: THE ORIGINS
In the historical context of early 1970s de-

scribed above, in 1972 Radhia Cousot — born
Rezig and later married to Patrick Cousot —
worked on precedence parsing for the Algol 68
programming language. Radhia Rezig’s approach
to parsing relied on a program pre-processing
by static analysis and a grammar transformation
before building the actual bottom-up parser. This
work was presented in 1972 as Radhia Rezig’s
master thesis [43] at the Université Scientifique et
Medicale Joseph Fourier of Grenoble, France. In
1972, at the same University in Grenoble, Patrick
Cousot worked on context-free grammar parsing
based on a pre-processing of the grammar by
static analysis and transformation before defining
a top-down parser, as described by his very first
scientific paper [44], written and presented at the
French AFCET conference, held in November
1972, while he was an undergraduate student in
Grenoble.

In 1973 Patrick Cousot started to elaborate the
vision that a formal definition of a programming
language semantics could be used to derive a cor-
rect implementation of the language. In particular,
Cousot studied some automatic optimizations of
language definitions, that included the elimination
of useless transformations, and a program pre-
evaluation, which can be viewed as a forebear
of the modern “partial evaluation” techniques.
This work was done for his Thèse de Docteur
Ingénieur en Informatique, submitted in 1973 to
the Université Scientifique et Medicale Joseph
Fourier of Grenoble and defended, after his mil-
itary service [45], on December 14th, 1974 [46].

In 1974 Radhia Rezig showed her sketches of
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Figure 1. 1974 handwritten notes of Radhia Rezig
on forward iteration from □ = ⊥ (forward least
fixed point) versus backward iteration from [−∞,+∞]

(backward greatest fixed point) on a flow diagram.

examples of interval analysis of numerical vari-
ables occurring in programs to Patrick Cousot.
Intervals express properties of programs concern-
ing the lower and upper bounds of numerical
variables, and this class of properties is particu-
larly useful for statically detecting run-time inte-
ger overflows. Patrick was critical on performing
this analysis backwards from end program points
towards the start point(s), and using an initial in-
terval x ∈ [−∞,+∞] that carries no information
on a program variable x. Patrick claimed that a
forward analysis would have been more effective
and was also skeptical on achieving termination
for programs with loops. Then, Radhia bounced
back to him with the idea of extrapolating bounds
of intervals to ±∞ when computing the forward
analysis of the program [47]. This was an early
discovery of the key notion of widening, which
further extrapolates fixed point solutions when the
abstract domain contains infinite ascending chains

of larger and larger objects, as in the case of
intervals [1, 1] ⊆ [1, 3] ⊆ [1, 5] ⊆ · · · [1, i] ⊆
[1, i+2] ⊆ · · · . The handwritten notes by Radhia
displayed in Fig. 1 provide a sketch of a forward
vs. backward analysis using the interval domain
for the following program:

i := 1;

while i < 5 do
if i < 3 then i := i+ 2 else i := i− 1 endif

endwhile

where we can already recognize the present-day
notation for widening, denoted by ∇̄, that is able
to extrapolate unstable bounds to stability, i.e. to
+∞, in

[1, 1]∇̄[1, 3] = [1,+∞].

The intuition here was that since the analysis
infers that the upper (i.e., right) bound of the
variable i is increasing, then, to avoid to follow
the infinite chain of intervals

[1, 1] ⊆ [1, 3] ⊆ [1, 5] ⊆ · · ·

that ineluctably leads to a nonterminating analy-
sis, a widening operation should infer the “correct
worst case” for the upper bound of i already at
the first increment from i ∈ [1, 1] to i ∈ [1, 3]
through the assignment i := i+2, i.e., the correct
interval of variation for i should be widened
to [1, 1]∇̄[1, 3] = [1,+∞]. This was an easy
but nevertheless acute and influential observation,
because it opened up the chance of performing
a terminating static program analysis on infinite
domains of program properties, which was not
possible at that time for the aforementioned sim-
ple analyses used for optimizing program compi-
lation.

Under the French IRIA-SESORI contract
No. 75-035, Patrick and Radhia Cousot wrote
in French a first research internal report of the
“Grenoble Laboratoire IMAG associè au CNRS
no. 7”, dated back September 23th 1975 [48]
with title “Vérification statique de la cohéren-
ce dynamique des programmes”. This document
described in detail the original idea of abstract
interpretation and already included an explicit
full specification of an abstract interpreter with
widening called “interpétation abstraite”. As il-
lustrative example, Cousot and Cousot considered
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an interval analysis of the following program in
PASCAL:

var j : integer;
j := 1;

while j ≤ 10 do j := j + 1;

and showed how their “interpétation abstraite”
procedure was able to infer the loop invari-
ant j ∈ [1,+∞] by relying on the widening
step [1, 1]∇̄[1, 2] = [1,+∞], and the invariant
j ∈ [11,+∞] at the exit point obtained by
logically combining the inferred loop invariant
j ∈ [1,+∞] with the exit condition. All the
key ideas of abstract interpretation were clearly
elucidated already in this research report [48],
describing all the concepts outlined above added
with the join operation between abstract values
at the junction nodes of the program graph for
branching and loop constructs. With all its own
rights, historically speaking, this was the very
first publication introducing the abstract interpre-
tation methodology with all its foundational con-
stituents, so we can reasonably argue that abstract
interpretation was born on September 23th, 1975
in Grenoble, France. This publication was soon
followed in November 1975 by an internal re-
search report written in English [49] devoted to a
static type analysis of program variables designed
as an abstract program evaluation that computes,
by successive approximations, an abstract context
at every program point.

The first formal and widely disseminated re-
search publication authored by Patrick and Rad-
hia Cousot was “Static determination of dynamic
properties of programs”, appeared in the Pro-
ceedings of the 2nd International Symposium
on Programming, held in Paris, April 13th-15th,
1976 [50]. This was a follow-up written in En-
glish of the aforementioned first research re-
port [48] and its introduction clearly identified
the goals of abstract interpretation: “The static
analysis of programs we do consists of an ab-
stract evaluation of these programs, similar to
those used by Peter Naur for verifying the type
of expressions in Algol 60, by Michel Sintzoff
for verifying that a module corresponds to its
logical specification, by Gary Kildall for global
program optimisation, by Ben Wegbreit for ex-
tracting properties of programs, by Michael Karr
for finding affine relationships among variables

of a program, by Jacob T. Schwartz for automatic
data structure choice in SETL, etc.”. This article
contained a consolidation of the ideas of the first
research report [48] and presented a so-called
“abstract interpretor” for the static analysis of
imperative programs with widenings. The correct-
ness of the program analysis was explicitly stated
with respect to a collecting program semantics —
while for the proof of correctness they cited the
first research report [48] — and the applications
were interval and pointer analyses.

1977-79: ACM POPL Conferences
For the 4th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages,
POPL 1977, Patrick and Radhia submitted on
August 12, 1976 the hard copies of a four-
hands written manuscript of about 100 pages
[45]. The suggestion to submit their work to
the ACM POPL conference came from Stephen
Warshall [45], already well-known for his tran-
sitive closure algorithm and visiting Grenoble
in 1976. The POPL 1977 manuscript contained
all the building blocks of the abstract interpre-
tation method in their full maturity: concrete
and abstract semantic transformers; backward and
forward reachability; iterative fixed point compu-
tation; chaotic and asynchronous fixed point itera-
tions; fixed point abstraction under commutativity
with abstraction; widening and narrowing; con-
jugate and inversion of least with greatest fixed
points [32]. The paper was eventually accepted
(25 accepted papers out of 107 submissions) and
presented in Los Angeles, CA, 17-19th January
1977, and it is still nowadays one of the most
cited papers in PL and, according to data from the
ACM Digital Library, the most cited POPL paper
ever. It is worth remarking that this landmark
paper was never published in an archival journal.

We claim that the abstract interpretation
method relies on precisely four key principles that
maturated from the first two papers [48], [50]
discussed above and have been clearly elucidated
in the POPL 1977 paper [32]:

1) Program analysis means approximating
program semantics, as illustrated by the
abstract model of program semantics in
Section 4 that ignores the sequencing of
control flow;
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2) Approximation is encoded by abstract do-
mains, that formalized the approximation
process of program semantics and were
defined and studied in Sections 5-6-7;

3) Abstract interpreters are compositionally
designed, as described by the abstract eval-
uation of programs in Section 8 that com-
poses elementary abstract interpreters for
atomic commands such as variable assign-
ments and Boolean tests;

4) Static program analysis boils down to ex-
ecuting the abstract interpreter, and, as
shown in Section 9, this corresponds to ap-
proximating fixed point solutions of recur-
sive equations in abstract domains by ex-
ploiting the widening operations discussed
above.

In this perspective, abstract interpretation can be
seen from its very beginning as a constructive
method [28] for assisting (and to help mechaniz-
ing) the proof of correctness of programs.

In those years 1977-1978, Patrick and Rad-
hia Cousot also published some companion ar-
ticles describing more technical results on the
mathematical structures used in the POPL 1977
paper: a constructive version of Tarski’s fixed
point theorem [51], published in 1979 on the
Pacific Journal of Mathematics (and submitted in
December 1977), the same journal where Alfred
Tarski published his celebrated fixed point the-
orem; a characterization of topological closure
operators [52], published in 1979 on Portugaliæ
Mathematica, the same journal where José Mor-
gado published most of his papers on closure
operators. These works represented the transposi-
tion of the ideas of abstract interpretation into
mathematical lattice theory, and produced new
results in the fields of fixed points and closure
operators. Moreover, on March 21st 1978, Patrick
Cousot defended his PhD thesis [11] (the French
academic degree was “Docteur d’Etat ès Sciences
Mathematiques”) at the Université Scientifique et
Médicale de Grenoble, that included an expanded
version of the results in the POPL 1977 paper.

Cousot and Cousot’s POPL 1977 paper has
been followed by two fundamental papers at
the end of the 1970s, appeared respectively in
POPL 1978 and POPL 1979. In POPL 1978 [53],
abstract interpretation was applied to the con-

vex polyhedra abstract domain. This allows to
automatically infer complex linear inequalities
between program variables such as ax+ by ≤ k,
namely, the most helpful relations for finding pro-
gram bugs. Since then, convex polyhedra proba-
bly achieved the status of chief abstract domain
used in static program analysis, which has been
implemented in several libraries and APIs. In
POPL 1979 [54] abstract interpretation is viewed
from a more theoretical perspective: abstract do-
mains can be specified by closure operators;
existence of the best correct approximations of
semantic transformers; notion of precision (also
known as completeness) in abstract interpretation;
how abstractions can be built and enriched by
combining simpler abstractions.

THE INFLUENCE IN PROGRAMMING
LANGUAGES

1980-90s
Abstract interpretation had an initial diffi-

culty in spreading within the PL community,
in particular in the decades 1980-90s. We sin-
gle out some reasons behind this trouble. In
imperative programming, the prevalence of the
early frameworks for data-flow static analysis (à
la Kildall [55] and Kam-Ullman [31]) firmly
oriented to be used in compile-time program
optimizations, limited the use of abstract inter-
pretation in compilers. The structure of the in-
termediate code commonly used in compilers in
those years and the efficiency of already known
and used algorithms based on data-flow analysis,
constrained the use of abstract interpretation to
specific optimization problems in program par-
allelization [56]. In concurrency, the scientific
debate was mainly focussed on finding the “right”
model and calculus to be used for modeling
concurrent processes, and its static analysis saw
a dominance of type inference systems com-
ing from the functional programming paradigm,
while synchronization properties were considered
too hard to be a subject of some static analysis. In
functional programming, the dominance of type-
based verification à la Milner [57], [58] with
his well-known claim that “well-typed programs
cannot go wrong”, and binding-time analysis à
la Jones-Muchnick [59], reduced program veri-
fication to type-checking. Strictness analysis —
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i.e., statically determining whether a functional
program preserves undefinedness or not — was
basically the only genuinely true example of
abstract interpretation of functional programs, as
pioneered by Alan Mycroft in 1980 [60].

On the other hand, abstract interpretation
was quite successful in the logic programming
paradigm, in particular for Prolog, and had a large
community of researchers and practitioners in
the 1980s, boosted by the Association for Logic
Programming that was founded in 1986. In 1986-
87 some early articles of abstract interpretation of
logic programs include the works by Chris Mel-
lish [61], Harald Søndergaard [62] and Maurice
Bruynooghe et al. [63]. We isolate some reasons
for the success of abstract interpretation in the
1980s for analyzing logic programs:

1) Logic programs had since the beginning a
clean and simple fixed point semantics [64];

2) À la Milner type systems for logic programs
were difficult to design and assess due to
the nature of logical relations, where an
unspecified input/output structure in pred-
icates appears disruptive if compared to
the clean and elegant notion of type in
functional programming;

3) The synchronization mechanism was sim-
ple, just based on unification of terms, and
no type system was used;

4) The complicated control posed heavy prob-
lems in optimization and the need of
AND/OR parallelism strongly called for
new static program analyses beyond types.

Abstract interpretation was therefore for logic
programming the right theory at the right time,
providing effective solutions for optimization [65]
and parallelism [66]. For about a decade in the
1990s, the largest amount of papers published in
abstract interpretation were indeed in the field of
logic programming.

The XXI Century
The true widespread success of abstract inter-

pretation in PL arrived at the beginning of the
XXI century. We identify two main reasons for
this seeming rediscovery:

1) The inclination and ability of scientists
and researchers to design programming
language semantics and compilers from

a mathematical description of their be-
haviour, even for complex programming
constructs and features. This ability is
rooted in the early work on formal program
semantics by Peter David Mosses [67] in
the mid 1970s, but reached a full maturity
just in the mid-late 1990s. These efforts
gave to an arbitrary programming language,
even including low-level languages [68],
the full mathematical structure to make
abstract interpretation naturally applicable,
thus going beyond the simplicity of logic
programming.

2) The successful industrialization of abstract
interpretation tools, that proved that this
theory can lead to effective and practical
applications, in particular of large industrial
size. The need for an industrial use-case
was felt already in the 1990s with the
emergence of model checking. The model
checking technique is born in 1983 [69],
but it became popular — beyond the initial
verification of digital circuits — in the
1990s [70], where it has been viewed as
an actual verification method alternative to
abstract interpretation for proving program
correctness. Abstract model checking [71]
is an example of the scientific debate of
those years on model checking vs. abstract
interpretation [72], [73]. This discussion
was a quest for the community of abstract
interpretation of an industrial use-case char-
acterized by a complexity and size which
were not affordable by model checking
methods and, at the same time, of large
practical impact.

Having correctness proofs for real-life pro-
grams, beyond small code fragments and tiny
examples, was always considered crucial and
shaped the debate between enthusiasts and skep-
tics of formal methods from the 1970s to the end
of the XX century [28]. The complexity of a proof
of correctness, often way beyond the length of
the code which is supposed to prove correct, is
at the heart of this debate, that raised the belief
that, although fundamental for the progress of
computer science as a discipline, formal program
verification was essentially unpractical [6], [8].
Andrew Stuart Tanenbaum [74] wrote: “Imagine
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[...] a fully automated air traffic control system
whose software was all shown to be correct by
formal proof, but never tested even once. Would
you be willing to be a passenger on the first
actual flight using the system?”. Having a killer
application successfully working on real software
systems, in particular in safety-critical situations,
was indeed the holy grail of formal methods until
the end of the XX century. Abstract interpretation
broke in this debate, providing effective solutions
for proving the correctness of large programs
employed in safety- and life-critical systems.

Historically, the earliest industrial application
of abstract interpretation was the interval analysis
implemented in the AdaWorld compiler for IBM
PC 80286 by J.D. Ichbiah and his French Alsys
SA company team in 1980-87 [75]. In the 1990s,
Alain Deutsch was a PhD student of Christian
Quiennec at the former Université Paris VI, ad-
vised by Patrick Cousot. In 1992, Deutsch’s PhD
thesis introduced abstract interpretation for dy-
namic data structures with pointers [76]. In 1996,
after the crash of the Ariane 5 flight 501 due to a
software failure [77], Deutsch was a member of
the French INRIA team in charge of understand-
ing this code bug, and used a prototype of static
analyzer, called IABC, for Ada source code based
on abstract interpretation, developed by Deutsch
after his PhD thesis [78]. This tool demonstrated
the effectiveness of static program analysis on
industrial size and safety-critical applications.
After this success, French INRIA, CNES and
Aerospatiale pushed towards the creation of a
company in charge of the industrialization of this
prototype static analyzer IABC. Eventually, in
1999 Alain Deutsch and Daniel Pilaud founded
PolySpace Technologies in Grenoble, which had
an impetuous and continuous growth in 1999-
2006 and in 2007 was eventually acquired by The
MathWorks software corporation.

A key step forward was the development of
Astrée (Analyseur Statique de logiciels Temps-
RÉel Embarqués, namely, real-time embedded
software static analyzer) representing an authen-
tic progress in the industrialization of abstract
interpretation. Started from scratch in November
2001 as an initiative of Patrick and Radhia Cousot
at the Laboratoire d’Informatique of the École
Normale Supérieure in Paris, the Astrée project
was initially supported by the French CNRS and

INRIA [79]. The first development of Astrée took
two years of work for a team of about ten people
including PhD students and software engineers.
The main applications of Astrée appeared two
years later with Airbus Industries [80] and since
then Astrée achieved unprecedented results on the
static analysis of C programs, notably for: array
index out of bounds, integer divisions by zero,
invalid pointer dereferences, arithmetic overflows
and wrap-arounds, floating point overflows and
invalid operations, IEEE floating values Inf and
NaN, user-defined assertions, unreachable code,
uninitialised variables, elimination of false alarms
by local refinements. In December 2009, Astrée
was acquired and soon later commercialized by
the German company AbsInt Angewandte Infor-
matik, extending the tool to dynamic memory
allocation, recursion and C++ [81]. From this suc-
cess story, a number of program analysis and ver-
ification systems have been developed, all having
abstract interpretation in their technological heart.
These include the most recent and widely known
Infer and Zoncolan tools, developed by Facebook
in the 2015-17 [82]: Infer detects memory safety
and concurrency bugs in Java/C/C++/Objective-
C code; Zoncolan finds security and privacy
violations in Facebook’s Hack codebase. Both
Infer and Zoncolan are fully based on abstract
interpretation and are routinely used by Facebook
software engineers on millions of lines of C++
and Hack code.

CONCLUSION
We traced the origins and the evolution of

the abstract interpretation method in computer
science, from the historical computational and
mathematical background where the earliest re-
search documents of the 1970s introduced its
embryonic ideas, passing through an analysis
of the difficulties of the 1980-90s in spreading
within the programming languages research com-
munity, and culminating to its expansion in the
software industry of the 2000s. The way abstract
interpretation emerged and spread in computer
science and industry is one more example of
how beneficial is to find the right abstraction
level in a formal description of computations.
Stop and go alternated in correspondence with,
respectively, the inability and ability to describe
the semantics of programs in a simple and con-
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cise way. In this perspective, the advance of
abstract interpretation has grown in parallel with
the success and practice of formally specifying
programming languages and their tools. We are
convinced that this condensed history of abstract
interpretation provides yet another example that
scientific successes of groundbreaking research
ideas pave the way for impactful innovation in
industry and, ultimately, in human progress.
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