
Genetic Adversarial Training of Decision Trees
Francesco Ranzato

Dipartimento di Matematica, University of Padova

Padova, Italy

ranzato@math.unipd.it

Marco Zanella

Dipartimento di Matematica, University of Padova

Padova, Italy

mzanella@math.unipd.it

ABSTRACT
We put forward a novel learning methodology for ensembles of

decision trees based on a genetic algorithm that is able to train a

decision tree for maximizing both its accuracy and its robustness

to adversarial perturbations. This learning algorithm internally

leverages a complete formal verification technique for robustness

properties of decision trees based on abstract interpretation, a well-

known static program analysis technique. We implemented this

genetic adversarial training algorithm in a tool called MetaSilvae

and we experimentally evaluated it on some standard reference

datasets used in adversarial training. The experimental results show

that MetaSilvae is able to train robust models that compete with and

often improve on the current state-of-the-art of adversarial training

of decision trees while being much more compact and therefore

interpretable and efficient tree models.

CCS CONCEPTS
• Computing methodologies → Classification and regression
trees;Machine learning algorithms; Genetic algorithms.

KEYWORDS
Genetic Algorithm, Adversarial Machine Learning, Decision Trees,

Abstract Interpretation

ACM Reference Format:
Francesco Ranzato andMarco Zanella. 2021. Genetic Adversarial Training of

Decision Trees. In Proceedings of 2021 Genetic and Evolutionary Computation
Conference (GECCO ’21). ACM, New York, NY, USA, 10 pages. https://doi.

org/10.1145/3449639.3459286

1 INTRODUCTION
Adversarial machine learning [27, 34] is a hot topic studying vulner-

abilities of machine learning (ML) models in adversarial scenarios.

Adversarial examples have been found in diverse application fields

of ML, ranging from image classification to malware detection, and

the current defense techniques include adversarial model training,

input validation, testing and automatic verification of learning al-

gorithms. A ML classifier is defined to be robust for a (typically

very small) perturbation of its input samples, which represents an

adversarial attack, when it assigns the same correct class to all the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8350-9/21/07. . . $15.00

https://doi.org/10.1145/3449639.3459286

samples within that perturbation, so that unnoticeable malicious

alterations of input objects should not deceive a robust classifier.

This work focuses on the robustness of ML classifiers consisting

of decision tree ensembles, such as random forests and gradient

boosted decision trees, which are well known for being both accu-

rate and interpretable MLmodels and are widely used in adversarial

scenarios. It has been amply shown that decision trees can be very

non-robust [30, Section 8.1.4], although it is only recently that ro-

bustness verification and adversarial training of tree models started

to be an active subject of investigation [2, 12, 14, 15, 21, 44, 51, 52].

Main Contributions. Genetic algorithms (GAs) [28, 50] pro-

vide a widespread effective search technique which computes the

next set of hypotheses by repeatedly mutating and then combin-

ing parts of the best currently known hypotheses. A number of

successful ML methodologies for decision trees are based on GAs

[4, 22, 25, 31, 40, 53]. Recently, some GAs have also been investi-

gated for adversarial training of neural networks [17, 54]. To the

best of our knowledge, the use of GAs for adversarial training of

ensembles of decision trees is still an unexplored topic. In this work

we design and experimentally evaluate an adversarial training algo-

rithm for decision tree ensembles based on a genetic algorithm, that

we calledMetaSilvae
1
and aims at maximizing both accuracy and ro-

bustness of decision trees. MetaSilvae (MS) relies on an open source

verification method of the robustness of ensembles of decision trees

called Silva [44]. This robustness verification algorithm Silva per-

forms an abstract interpretation-based static analysis [19, 46] of a

decision tree classifier which is able to abstractly compute the exact

set of leaves of a decision tree which are reachable from an adver-

sarial region. By exploiting this robustness information provided

by Silva, MS is designed as a genetic algorithm that maximizes an

objective performance function which is a linear combination of

accuracy and robustness. MS is based on well established design

choices of GAs: (1) elitist selection strategy; (2) roulette wheel selec-

tion; (3) single-point crossover; (4) offspring mutation. MS has been

implemented in C and experimentally evaluated on the reference

datasets for adversarial training of decision tree ensembles. MS

has been compared with random forests [8] and with the current

state-of-the-art of adversarially trained gradient boosted decision

trees [2, 14]. Overall, the experimental results show that MS trained

models significantly increase their robustness over natural random

forests on average of, resp., 3.4× (with an average absolute gain

of +54.3%) while at the same time preserving a comparable accu-

racy with an expected slight drop (on average −1.8%). Moreover,

MS models compete with and often improve on the state-of-the-

art of adversarially trained gradient boosted decision trees while

1
Latin for beyond forests and acronym of Magister Efficiens Temperat Arbore Silvae,
translating to “the efficient master mixes the trees of the forest”.

https://doi.org/10.1145/3449639.3459286
https://doi.org/10.1145/3449639.3459286
https://doi.org/10.1145/3449639.3459286

GECCO ’21, July 10–14, 2021, Lille, France F. Ranzato and M. Zanella

Figure 1: Classifiers trained with scikit-learn (left) and
MetaSilvae (right) on the same dataset.

being much more compact and therefore interpretable (as advo-

cated by [38] for all ML models) and efficient (as advocated by [1,

Section 3.1] for ensemble models) tree models.

Illustrative Example. Fig. 1 depicts an example of an artificial

dataset consisting of 100 2-dimensional uniformly distributed sam-

ples (𝑥1, 𝑥2) ∈ [0, 1]2 labeled as a blue cross when 𝑥2
1
+ 𝑥2

2
< 0.5

holds and as a red bullet otherwise. The left diagram represents a

decision tree classifier which has been trained by scikit-learn, while

the right diagram has been trained by MetaSilvae using as objective

performance function 𝜑 (accuracy, robustness) = 90% accuracy +

10% robustness. The two diagrams in Fig. 1 show that both classi-

fiers achieve 100% accuracy. The scikit-learn tree introduces two

blue regions cutting the red area in order to achieve an accurate clas-

sification of two blue cross samples, thus making the classification

on samples too close to the borders not robust for a 2% square per-

turbation surrounding each input sample. The MetaSilvae training

algorithm is able to avoid this lack of robustness since it searches

for cut hyperplanes which preserve robustness whenever possible.

As displayed by the two diagrams, robustness with respect to the

2% square perturbation turns out be, resp., 87% and 94% for the left

and right decision trees, thus showing a significant increase while

still preserving the same 100% accuracy.

Related Work. While adversarial training of neural networks

has been widely studied, few works addressed how to train decision

trees which are robust to adversarial attacks [2, 11, 12, 14]. In partic-

ular, we compared our experimental results with the robust gradient

boosted decision trees of [2, 14]. Abstract interpretation [19, 46]

techniques have been fruitfully applied for designing precise and

scalable robustness verification algorithms and adversarial training

techniques for a range of ML models [10, 26, 36, 37, 43, 44, 47–49].

In particular, to our knowledge, [36] is the only work using an

abstract interpretation technique for adversarial training of ML

models, notably deep neural networks.

2 BACKGROUND
Classifiers and Metrics. Given an input space 𝑋 ⊆ R𝑑 of nu-

merical vectors and a finite set of labels/classes L = {𝑦1, . . . , 𝑦𝑚},
a classifier is a function 𝐶 : 𝑋 → ℘

+
(L), where ℘

+
(L) denotes

the set of nonempty subsets of L. 𝐶 associates at least one label to

every input in 𝑋 and multiple output labels can be used to model

ties in output classification (e.g. ties in voting schemes). Training

algorithms take a ground truth dataset 𝐷 ⊆ 𝑋 × L as input and

output a classifier 𝐶 : 𝑋 → ℘
+
(L) which minimizes/maximizes

criteria such as a loss function for neural networks or information

gain for decision trees.

Classifiers can be evaluated and compared according to several

performance metrics. Accuracy on a test set is a standard metric for

assessing a classification model: given a test set 𝑇 ⊆ 𝑋 × L of cor-

rectly labeled samples, the accuracy of a classifier 𝐶 : 𝑋 → ℘
+
(L)

on 𝑇 is acc𝑇 (𝐶) ≜ |{(𝒙, 𝑦) ∈ 𝑇 | 𝐶 (𝒙) = {𝑦}}|/|𝑇 |. One typically
aims at training classifiers having a nearly perfect accuracy on suit-

ably crafted test sets. However, according to a growing belief [27],

accuracy is not enough in ML, because the robustness properties of

a classifier may affect its safety and generalization. Given a pertur-

bation function 𝑃 : 𝑋 → ℘(𝑋) modeling a notion of closeness for

input samples, the robustness of𝐶 w.r.t. 𝑃 for a test set𝑇 is defined

by rob𝑇,𝑃 (𝐶) ≜ |{(𝒙, 𝑦) ∈ 𝑇 | 𝐶 (𝒙) = {𝑦}, ∀𝒙 ′ ∈ 𝑃 (𝒙) : 𝐶 (𝒙 ′) =

𝐶 (𝒙)}|/|𝑇 |. Perturbation regions 𝑃 (𝒙) ⊆ 𝑋 are used to model adver-

sarial attacks to input samples 𝒙 , i.e., negligible alterations of input
vectors aimed at deceiving a classifier. Widely studied perturba-

tions are those induced by ℓ𝑝 norms, in particular the ℓ∞ maximum

norm [13], which, given an alteration threshold 𝜖 > 0, defines a per-

turbation as follows: 𝑃∞,𝜖 (𝒙) ≜ {𝒙 ′ ∈ 𝑋 | ∥𝒙 − 𝒙 ′∥∞ ≤ 𝜖}, where
∥(𝒙1, . . . , 𝒙𝑑)∥∞ = max{𝒙1, . . . , 𝒙𝑑 }. We also consider a more gen-

eral notion of robustness called stability which encodes the ability

of a classifier 𝐶 of producing the same output on every sample

within a perturbation region, therefore including the cases where𝐶

is inaccurate on some input: this is defined as st𝑇,𝑃 (𝐶) ≜ |{(𝒙, 𝑦) ∈
𝑇 | ∀𝒙 ′ ∈ 𝑃 (𝒙) : 𝐶 (𝒙 ′) = 𝐶 (𝒙)}|/|𝑇 |. We will mostly use stabil-

ity rather than robustness since we deem stability to be a more

comprehensive metric to use in adversarial training.

Decision Trees and Tree Ensembles. Decision trees are well

established ML models used for both classification and regression

tasks. In this work we consider standard classification trees com-

monly known as CART (Classification And Regression Trees) [9].

A classification decision tree 𝑡 : 𝑋 → ℘
+
(L) is inductively defined

as follows. (1) A base tree 𝑡 is a leaf 𝜆 storing a frequency distri-

bution of labels for the samples of the training set which some

algorithmic rule (canonically the maximum frequency) converts to

one or more predicted labels; thus, we simply consider 𝜆 ∈ ℘
+
(L)

and therefore, for all 𝒙 ∈ 𝑋 , 𝑡 (𝒙) ≜ 𝜆. (2) A composite tree 𝑡 is

𝛾 (split, 𝑡𝑙 , 𝑡𝑟) where split : 𝑋 → {t, f} is a Boolean split criterion

for the internal parent node of its left and right subtrees 𝑡𝑙 and 𝑡𝑟 ;

thus, for all 𝒙 ∈ 𝑋 , 𝑡 (𝒙) ≜ if split (𝒙) then 𝑡𝑙 (𝒙) else 𝑡𝑟 (𝒙). A tree

stump is of the form 𝛾 (split, 𝜆𝑙 , 𝜆𝑟), i.e., it has a single internal node
and two leaves. The training of a decision tree 𝑡 guarantees that

every leaf of 𝑡 is reachable from at least one sample in the training

set. Although split rules in general could be of any type, the most

common decision trees employ univariate hard splits of the form

split (𝒙) ≜ 𝒙𝑖 ≤ 𝑘 for some feature 𝑖 ∈ [1, 𝑑] and threshold 𝑘 ∈ R.
Tree ensembles, also known as forests, are sets of decision trees

which together contribute to formulate a unique classification out-

put. Training algorithms as well as methods for computing the final

output class(es) vary among different tree ensemble models. Ran-

dom forests (RFs) [8] are a major instance of tree ensemble where

each tree of the ensemble is trained independently from the other

Genetic Adversarial Training of Decision Trees GECCO ’21, July 10–14, 2021, Lille, France

trees on a random subset of the features. Gradient boosted decision

trees (GBDTs) [24] represent a different training algorithm where

an ensemble of trees is incrementally build by training each new

tree on the basis of the data samples which are mis-classified by the

previous trees. For RFs, the final classification output is typically

obtained through a voting mechanism (e.g., majority voting), while

GBDTs are usually trained for binary classification problems and

use a binary reduction scheme, such as one-vs-all or one-vs-one,

for multi-class classification.

Our MetaSilvae trees are standard CARTs and we will use the

random forest model for training an ensemble of MetaSilvae trees.

In our experimental evaluation, on the one hand we will compare

MetaSilvae with natural RFs in order to show that MetaSilvae train-

ing is able to make RFs robust, and, on the other hand, MetaSilvae

models will be also compared with the state-of-the-art of robust

GBDTs, that is, the adversarially trained models by [2] and [14].

3 TRAINING AS COMBINATORIAL
OPTIMIZATION

Given a training dataset 𝐷 = {(𝒙1, 𝑦1), . . . , (𝒙𝑁 , 𝑦𝑁)} ⊆ 𝑋 × L, a

training algorithm explores a hypothesis spaceH ⊆ 𝑋 → ℘
+
(L)

searching for a classification model inH which maximizes some

performance function 𝑓 : (𝑋 → ℘
+
(L)) → R. Training set, perfor-

mance function and search strategy will determine how the output

classification model is computed. In the case of CART decision trees,

the training process first builds a tree stump consisting of a single

internal node labeled by a univariate hard split 𝑆𝑖,𝑘 ≜ 𝑥𝑖 ≤ 𝑘 , where

the attribute 𝑖 and the threshold 𝑘 are selected among all possible

𝑖 ∈ [1, 𝑑] and 𝑘 ∈ R. Each split candidate 𝑆𝑖,𝑘 yields two new leaves

𝜆𝑙 and 𝜆𝑟 which store a distribution frequency of training samples

(#𝑦1, . . . , #𝑦𝑚) ∈ N𝑚 grouped by labels 𝑦𝑖 ∈ L, i.e., equivalently, a

probability distribution (𝑝1, . . . , 𝑝𝑚) ∈ R𝑚 for labels which is used

to compute either the entropy ℎ or Gini 𝑔 indexes which encode

the information gain for a leaf 𝜆 = (𝑝1, . . . , 𝑝𝑚) as follows:

ℎ(𝜆) ≜ −∑𝑚
𝑖=1 𝑝𝑖 · 𝑙𝑜𝑔𝑚 (𝑝𝑖) 𝑔(𝜆) ≜ 1 −∑𝑚

𝑖=1 𝑝
2

𝑖

These indexes are used to estimate the purity of a split 𝑆𝑖,𝑘 by

averaging their values on its leaves 𝜆𝑙 and 𝜆𝑟 as follows:

𝐻 (𝑆𝑖,𝑘) ≜ (|𝜆𝑙 |ℎ(𝜆𝑙) + |𝜆𝑟 |ℎ(𝜆𝑟))/(|𝜆𝑙 | + |𝜆𝑟 |)
𝐺 (𝑆𝑖,𝑘) ≜ (|𝜆𝑙 |𝑔(𝜆𝑙) + |𝜆𝑟 |𝑔(𝜆𝑟)) (|𝜆𝑙 | + |𝜆𝑟 |)

where |𝜆 | denotes the number of samples reaching the leaf 𝜆 for

the split 𝑆𝑖,𝑘 . The training algorithm selects a split candidate 𝑆𝑖,𝑘
which minimizes 𝐻 or 𝐺 , and the process will be repeated until no

more splits are possible, i.e. every leaf contains only samples with a

same label, or other custom criteria are met such as maximum tree

depth, maximum number of leaves or minimum number of samples

per leaf (these are tunable parameters, e.g., with scikit-learn).

This training process therefore corresponds to a greedy search

algorithm which tries to find a globally optimal tree by looking

at local split information only. This approach exhibits two major

drawbacks:

(A) it does not take robustness (or stability) into account;

(B) it is limited by information from local splits only.

These limitations may often lead to overfitting, which is a well-

known phenomenonwith decision trees [7, 29]. Pruning techniques,

𝑥1 ≤ 0

𝜆1
1
= {𝑎} 𝑥2 ≤ 0

𝜆2
1
= {𝑏} 𝜆3

1
= {𝑎}

𝑡1

𝑥2 ≤ 0

𝑥3 ≤ 0

𝜆1
2

𝑥1 ≤ 0

𝜆2
2

𝜆3
2

𝜆4
2

𝑡2

Figure 2: Two decision trees 𝑡1 (left) and 𝑡2 (right).

e.g. [6, 32, 33], can be used to counteract overfitting by reducing

the size of the tree in order to simplify the model, although this

may often lead to a loss of accuracy and may be applied just as a

post-training step.

Of course, local properties of decision trees, in general, cannot

be lifted globally to the whole tree, as it is the case of stability in

this simple example.

Example 3.1. Consider the tree 𝑡1 in Fig. 2 and its right subtree

𝑡𝑟 rooted at the split node 𝑥2 ≤ 0. Consider an input region 𝑌 =

{(𝑥1, 𝑥2) ∈ R2 | − 1 ≤ 𝑥1 ≤ 1, −1 ≤ 𝑥2 ≤ 0}. Then, the set of

reachable leaves from 𝑌 in 𝑡𝑟 is labeled as {𝑏}, hence ensuring

stability of 𝑡𝑟 in 𝑌 , while the set of reachable leaves from 𝑌 in 𝑡1 is

labeled as {𝑎, 𝑏}, thus making the classification of the tree 𝑡1 not

stable in 𝑌 . □

We will design a global tree training algorithm which takes sta-

bility into account. Given a (finite) set𝑀 of performance metrics

𝑚 of type H → R, such as accuracy on a given test set and sta-

bility on a given test set w.r.t. a perturbation, we combine them

through a comprehensive performance function 𝜑𝑀 : H → R
that will be maximized during the training process. For exam-

ple, this performance function can be a simple linear combination

𝜑𝑀 (𝐶) = ∑ |𝑀 |
𝑖=1

𝑤𝑖𝑚𝑖 (𝐶). If 𝜑𝑀 is differentiable and, for some met-

ric 𝑚𝑘 ∈ 𝑀 ,
𝜕𝜑𝑀

𝜕𝑚𝑘
≥ 0, then a classifier 𝐶opt which is computed

by an ideal trainer by maximizing 𝜑𝑀 will be optimal for the per-

formance metric 𝑚𝑘 , meaning that for any classifier 𝐶 ∈ H , if

𝑚 𝑗 (𝐶opt) =𝑚 𝑗 (𝐶) for all 𝑗 ≠ 𝑘 , then𝑚𝑘 (𝐶opt) ≥ 𝑚𝑘 (𝐶).
Of course, metrics such as accuracy and stability can only be

estimated on a finite test subset of the input space 𝑋 , meaning

that global optima cannot be computed precisely, so that training

algorithms effectively will find classifiers which are locally optimal

for a finite test subset 𝑇 of 𝑋 . Finding a locally optimal classifier

for 𝑇 is not necessary in practice, as local optimality is unlikely

to be an appropriate measure of global optimality and could even

lead to overfitting. We argue that heuristic search strategies such

as genetic algorithms may provide a viable and effective training

procedure of tree classifiers which closely approximate the ideal

optimal solutions and may improve the state-of-the-art in practice.

4 METASILVAE
A significant number of training procedures for decision trees based

on evolutionary algorithms have been investigated, as surveyed

by [4]. The underlying basic idea is that evolutionary algorithms

perform a robust global, as opposed to local, search in the hypothesis

space and tend to cope better with relationships between different

features than greedy methods [23]. To the best of our knowledge,

we put forward the first adversarial training procedure for decision

GECCO ’21, July 10–14, 2021, Lille, France F. Ranzato and M. Zanella

tree (or tree ensemble) classifiers based on a genetic algorithm,

called MetaSilvae, which targets to maximize both accuracy and

stability metrics. MetaSilvae crucially relies on a complete formal

verification method of the stability (or robustness) of ensembles of

decision trees.

Complete Verification of Stability. We design and implement

a decision tree adversarial training method based on a genetic algo-

rithm, that we call MetaSilvae (MS). This genetic learning algorithm

internally relies on Silva [44], an open source tool based on abstract

interpretation [19, 46] for the formal verification of stability prop-

erties of decision tree ensembles. Silva performs a static analysis

of ensembles of decision trees in an abstract domain 𝐴 ⊆ ℘(R𝑑)
which represents properties of interests of real vectors, such as

hyperrectangles of intervals providing lower and upper bounds to

vector components or a domain of linear relations between vec-

tor components. Silva first approximates in the abstract domain

𝐴 an adversarial region 𝑃 (𝒙) ∈ ℘(R𝑑) of an input vector 𝒙 ∈ R𝑑
and then abstractly computes a sound overapproximation of the

set of leaves of a decision tree (or an ensemble of trees) which are

reachable from the adversarial samples ranging in 𝑃 (𝒙). This static
analysis is based on the soundness principle of abstract interpre-
tation meaning that no leaf reachable from some sample in 𝑃 (𝒙)
can be missed. When adversarial attacks are modeled by the max-

imum norm perturbation 𝑃∞,𝜖 (𝒙) and the analysis is performed

on the abstract domain of hyperrectangles the output returned by

Silva turns out to be complete, meaning that each leaf computed

by Silva is actually reached by some adversarial input ranging in

𝑃∞,𝜖 (𝒙), namely, no false positive (i.e., a false reachable leaf) may

happen. Silva therefore provides a complete certification algorithm

for the stability (or robustness) of an input sample 𝒙 under adver-

sarial attacks in 𝑃∞,𝜖 (𝒙) and, in turn, this verification tool allows

us to derive precisely (thanks to completeness) the stability st𝑇,𝑃∞,𝜖

and robustness rob𝑇,𝑃∞,𝜖
metrics, as defined in Section 2, for a tree

ensemble classifier on a test set 𝑇 .

To conclude this brief outline of Silva, let us recall that the ab-

stract domain of hyperrectangles HR𝑑 consists of 𝑑-dimensional

vectors of intervals [𝑙, 𝑢], where the bounds 𝑙, 𝑢 ∈ R∪{−∞, +∞} are
such that 𝑙 ≤ 𝑢, for example ([0.1, 0.9], [−∞, 0], [0.5, +∞]) ∈ HR3.

Thus, a hyperrectangle [𝒍, 𝒖] = ([𝒍1, 𝒖1], ..., [𝒍𝑑 , 𝒖𝑑]) ∈ HR𝑑 rep-

resents all the real vectors 𝒙 ∈ R𝑑 such that, for all 𝑗 ∈ [1, 𝑑],
𝒍 𝑗 ≤ 𝒙 𝑗 ≤ 𝒖 𝑗 , i.e., such that lower/upper bounds of their compo-

nents are correctly approximated by [𝒍, 𝒖].

MetaSilvae. By exploiting the stability information provided

by Silva, for training on a dataset 𝑇 a decision tree in a hypothe-

sis space H , we consider as objective performance function 𝜑𝑇 :

H → R a linear combination of accuracy and stability, i.e., 𝜑𝑇 (𝑡) ≜
𝑤𝑎acc𝑇 (𝑡) +𝑤𝑠 st𝑇,𝑃 (𝑡) for a given perturbation 𝑃 and for weights

𝑤𝑎,𝑤𝑠 ∈ R. Since accuracy and stability are independent of each

other, for nonnegative weights𝑤𝑎,𝑤𝑠 ≥ 0, 𝜑𝑇 is differentiable and

such that
𝜕𝜑𝑇
𝜕acc𝑇 = 𝑤𝑎 ≥ 0,

𝜕𝜑𝑇
𝜕st𝑇 ,𝑃

= 𝑤𝑠 ≥ 0, so that an ideal training

algorithm which maximizes 𝜑𝑇 will output optimal decision trees.

For instance, in the training example depicted in Fig. 1 we used as

objective function 𝜑 (𝑡) ≜ 0.9acc(𝑡) + 0.1st±2% (𝑡).
Our suboptimal solution is computed by the genetic Algorithm 1

called MetaSilvae (MS). At line 1, a set of trees is generated and

Algorithm 1: MetaSilvae

1 population = generateInitialTrees();

2 nextPopulation = ∅;
3 while ¬ stopCriterion() do

// Elitist Selection

4 nextPopulation.push(population.selectBest(𝜑𝑇));
5 while ¬ nextPopulation.isFull() do

// Roulette Wheel Selection

6 parentA = population.select(𝜑𝑇);
7 parentB = population.select(𝜑𝑇);

// Single-Point Crossover

8 offspring = crossover(parentA, parentB);
// Mutation With Probability 𝑝

9 if 𝑟𝑎𝑛𝑑 () < 𝑝 then
// Grow or Grow-Or-Prune

10 offspring.mutate();

11 nextPopulation.push(offspring);

12 population = nextPopulation;
13 nextPopulation = ∅
14 return population.selectBest(𝜑𝑇)

stored as initial population, where MS can either start with a set of

base trees consisting of a single leaf only (which is our choice in the

experimental evaluation) or by any set of pre-trained decision trees.

Then, the while-loop at lines 3-13 generates the nextPopulation
and iterates until a stop criterion, such as a timeout or a bound

on the population size, is met. At each iteration, the best tree w.r.t.

our performance function 𝜑𝑇 will be first selected at line 4 from

the current population to carry over to the next one unchanged.

This therefore implements an elitist selection strategy for GAs [3]

which ensures that the performance function will not decrease from

the current population to the next. The new individuals will be

generated by the while-loop at lines 5-11, where two trees parentA
and parentB are first selected from the current population, then

combined in an offspring by a crossover operation, which can finally

be mutated for enhancing genetic diversity.

Selection. A fitness proportional selection scheme [39] is em-

ployed at lines 6-7, also known as roulette wheel, which selects

an individual 𝑡𝑖 from a current population 𝑌 with a probability 𝑝𝑖
which is proportional to its fitness as determined by the objective

function 𝜑𝑇 as follows: 𝑝𝑖 ≜
𝜑𝑇 (𝑡𝑖)∑
𝑡∈𝑌 𝜑𝑇 (𝑡) . It should be remarked that

in this selection MetaSilvae exploits crucially the stability value

st𝑇,𝑃 (𝑡) given by the verification tool Silva which is used by 𝜑𝑇 (𝑡).

Crossover. The information of the two selected trees parentA
and parentB is combined at line 8 by the following variation of the

standard single-point crossover procedure [41]:

1. a subtree 𝑡𝐴 is randomly selected and pruned from parentA;
2. a subtree 𝑡𝐵 is randomly selected from parentB;
3. 𝑡𝐵 is inserted as subtree of parentA in place of the pruned subtree

𝑡𝐴;

Genetic Adversarial Training of Decision Trees GECCO ’21, July 10–14, 2021, Lille, France

(𝑥1 ≤ 0)𝐴

𝜆1
1

(𝑥3 ≤ 0)𝐵

𝜆1
2

(𝑥1 ≤ 0)𝐵

𝜆2
2

𝜆3
2

𝑡3 (𝑥1 ≤ 0)𝐴

𝜆1
1

(𝑥3 ≤ 0)𝐵

𝜆1
2

𝜆3
2

𝑡
pr

3

Figure 3: Decision tree before (left) and after pruning (right).

4. consistency of the new tree is enforced by pruning those nodes

which do not contain information and then by reshaping the

tree as needed.

Let us illustrate this crossover function by a simple example.

Example 4.1. Consider as parent trees 𝑡1 and 𝑡2 in Fig. 2, and

assume that the nodes labeled with splits 𝑥2 ≤ 0 and 𝑥3 ≤ 0 are

selected, resp., as subtrees 𝑡𝐴 of 𝑡1 and 𝑡𝐵 of 𝑡2. The tree 𝑡𝐵 is inserted

in 𝑡1 in place of 𝑡𝐴 , as depicted by the left tree 𝑡3 in Fig. 3. However,

after this insertion, the path (𝑥1 ≤ 0)𝐵 → 𝜆2
2
becomes unfeasible

due to the parent constraint (𝑥1 > 0)𝐴 at the root, so that the

subtree of 𝑡3 rooted at (𝑥1 ≤ 0)𝐵 must be pruned of the left path

(𝑥1 ≤ 0)𝐵 → 𝜆2
2
, thus yielding the output tree 𝑡

pr

3
depicted on the

right of Fig. 3. □

Mutation. After crossover, mutation of the offspring happens

at lines 9-10 with probability 𝑝 and can either prune a randomly

selected subtree or transform a leaf into a single split. In the lat-

ter case, consistency of splits must be preserved so that logically

inconsistent trees are never generated. The mutation probability

𝑝 is specified as a tunable parameter of MetaSilvae, as well as the

adopted mutation strategy which can be chosen between grow only

and grow-or-prune. In both cases the selection is made on a stochas-

tic basis by considering the entropy ℎ of each node (or, alternatively,

the Gini index 𝑔). We describe this mutation procedure more in

detail through an example.

Example 4.2. Consider the decision tree 𝑡4 on the left of Fig. 4

whose nodes are decorated as superscripts with their entropy values.

A grow mutation starts from the root node 𝑥1 ≤ 0, computes the

entropy ℎ of its left and right children, and move toward one of

them with a probability which is proportional to their respective

entropies, in our example the node (𝑥3 ≤ 0)0.9 is chosen. Once a
leaf is reached, in our example (...)0.8, the samples associated to

that leaf are used to generate a set of features 𝑖 and thresholds 𝑘

which defines a set of split candidates 𝑥𝑖 ≤ 𝑘 . The split candidate

maximizing the objective function 𝜑𝑇 is then selected by applying

the split and evaluating accuracy and stability of the corresponding

tree. For example, the split 𝑥2 ≤ 2.5 is selected for growing the leaf

(...)0.8 and this yields the tree 𝑡gr
4

depicted on the right of Fig. 4. □

It should be remarked that while the standard learning method

for CART trees is a greedy algorithm which incrementally builds a

decision tree by locally computing new split nodes or new leaves [9],

in MetaSilvae the selection of a candidate split relies on a stability

test (performed by Silva) on the whole corresponding candidate

tree, thus meaning that the MS learning process is inherently not

incremental and consequently could be computationally burden-

some. We therefore introduced in MS an optimization parameter,

𝑥1 ≤ 0

(...)0.0 (𝑥3 ≤ 0)0.9

(...)0.8 (...)0.6

𝑡4

𝑥1 ≤ 0

(...)0.0 (𝑥3 ≤ 0)0.9

(𝑥2 ≤ 2.5)0.6

(...)0.5 (...)0.3

(...)0.6

𝑡
gr

4

Figure 4: An example of tree mutation.

called “aggressiveness” in the implementation of MS, which allows

us to set up a threshold on the number of split candidates which

are immediately evaluated during the mutation phase, while those

exceeding this threshold are delayed. It turns out that this opti-

mization is effective in reducing the computational burden without

sacrificing the overall generalization, because the evaluation of split

candidates which are ruled out by this threshold is delayed to later

iterations of MetaSilvae.

For the grow-or-prune mutation, a similar strategy is applied.

Starting from the root node, the mutation algorithm iteratively

moves either to the right of left children with a probability which

is proportional to their entropy ℎ and, at any point, the current

node has a probability 1 − ℎ of being pruned. By doing so, splits

with low entropies are likely to be pruned, thus enhancing the

tree compactness and stability at the bearable cost of losing some

accuracy. If no pruning happens then the mutation proceeds as in

the grow case.

Output. At the end of the whole evolutionary process, the best

tree classifier of the final population, which is also the best tree

encountered during the whole process due to elitism, is returned

as output decision tree. As an example, the diagrams in Fig. 1 have

been generated by the following two decision trees, where the first

one has been trained by the standard algorithm of scikit-learn and

the second one by MetaSilvae. In both trees, a leaf 𝜆 = (𝑛•,𝑚+)
denotes that 𝜆 stores 𝑛 red bullet samples and𝑚 blue cross samples.

𝑥1 ≤ 0.555

𝑥2 ≤ 0.665

𝑥2 ≤ 0.555

(0•, 25+) 𝑥1 ≤ 0.335

(0•, 5+) (3•, 0+)

(22•, 0+)

𝑥2 ≤ 0.105

𝑥2 ≤ 0.050

(1•, 0+) (0•, 1+)

𝑥1 ≤ 0.625

𝑥1 ≤ 0.605

(4•, 0+) (0•, 1+)

(38•, 0+)

scikit-learn

𝑥2 ≤ 0.412

𝑥1 ≤ 0.685

(0•, 23+) 𝑥1 ≤ 0.765

(2•, 0+) (10•, 0+)

𝑥1 ≤ 0.478

𝑥2 ≤ 0.664

𝑥1 ≤ 0.365

(0•, 7+) 𝑥2 ≤ 0.525

(0•, 2+) (1•, 0+)

(19•, 0+)

(36•, 0+)

MetaSilvae

GECCO ’21, July 10–14, 2021, Lille, France F. Ranzato and M. Zanella

Tree Ensembles. Multiple instances of MetaSilvae can be run

(also in parallel: this chance was exploited in our experimental eval-

uation on a cluster) in order to generate a tree ensemble, which in

our experiments is a random forest. When training a random forest,

we need to achieve a significant random diversification among its

trees, typically obtained by a random sampling of the set of features

which each tree can explore when searching for a new split. MS

allows to specify the number 𝑁 of features which can be inspected

for training a tree. A subset of features of size ≤ 𝑁 ∈ [1, 𝑑] is
randomly extracted, where each feature has the same probability of

being selected. This feature selection happens only once before the

training, and it is therefore applied tree-wise by MS. The resulting

set of trees can be used as a single classifier by applying standard

voting mechanisms (such as a simple majority vote) used for natural

random forests.

5 EXPERIMENTAL EVALUATION
We implemented MetaSilvae as a self-contained C program whose

source code (about 3K LOC) together with datasets, classification

models and scripts is publicly available on GitHub [45]. Our experi-

ments were run on a cluster of 15 computing nodes, each equipped

with two Intel Xeon CPU E5520 at 2.27GHz with 8 cores and 32GB

RAM. In our experiments we considered the collection of stan-

dard datasets with numerical features summarized in Tab.1: these

datasets are used in [2, 14, 52], while wine is a UCI dataset [20].

Dataset #classes #features values #train #test
breast-cancer 2 10 [1,10] 546 137

cod-rna 2 8 [0,1] 59535 271617

collision-detection 2 6 [0,1] 30000 3000

diabetes 2 8 [0,1] 614 154

fashion-mnist 10 784 [0,255] 60000 10000

ionosphere 2 34 [-1,1] 260 90

mnist 10 784 [0,255] 60000 10000

mnist-1-5 2 784 [0,255] 12162 2026

mnist-2-6 2 784 [0,255] 11875 1989

sensorless 11 48 [0,1] 48509 10000

wine 2 13 [0,1] 128 50

Table 1: Summary of datasets

Setup. MS does not require a specific tuning of hyperparameters

for training decision trees, although the choice of the objective

function 𝜑 plays a fundamental role. As described in Section 4, we

adopted a weighted linear combination of accuracy and stability

given by 𝜑𝑇 (𝑡) = 𝑤accacc𝑇 (𝑡) +𝑤stab
st𝑇,𝑃 (𝑡), for a given training

dataset 𝑇 , perturbation 𝑃 and weights𝑤acc,𝑤stab
∈ [0, 1] such that

𝑤acc + 𝑤
stab

= 1. Fig. 5 shows the impact of selecting different

weights (𝑤 = 0.1𝑘 for 𝑘 ∈ {0, ..., 10}) on the final tree classifier in

terms of accuracy and stability on the whole training set 𝑇 .

As expected, higher values of𝑤acc tend to yield more accurate

models, where we observed a converging behavior when accuracy

exceeds 70%. On the other hand, stability increases with higher

𝑤
stab

weights, it is above 45% and often above 60% already with

𝑤
stab

= 0.1, although stability generally may display amore varying

behavior than accuracy. These experiments hint that an effective

and well balanced choice of weights can be obtained with𝑤acc =

0.9,𝑤
stab

= 0.1. It is worth remarking that by setting 𝑤
stab

= 1

(and therefore 𝑤acc = 0), as expected, MS will always produce

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

A
cc

u
ra

cy
 %

wacc

Objective Function - Accuracy

breast cancer
cod RNA

collision detection
diabetes

ionosphere
MNIST 1-5
MNIST 2-6
sensorless

wine

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

S
ta

b
ili

ty
 %

wstab

Objective Function - Stability

breast cancer
cod RNA

collision detection
diabetes

ionosphere
MNIST 1-5
MNIST 2-6
sensorless

wine

Figure 5: Impact of Different Weights.

perfectly stable models corresponding to a constant function, which

is generally (but not always) inaccurate.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

fi
tn

e
ss

iteration

Convergence Speed

breast cancer
cod-rna

collision detection
diabetes

ionosphere
MNIST 1-5
MNIST 2-6
sensorless

wine

Figure 6: Convergence Speed.

We analysed the rate of convergence of the fitness function 𝜑𝑇
along iterations of MS training. Fig. 6 displays the fitness of the best

individual of population after each iteration of MS, where the num-

ber of iterations is shown on a logarithmic scale. We observe that

the best gains in fitness are achieved during the first iterations and

MS tends to converge within 50-70 iterations, with the exception of

the dataset diabetes which needs about 500 iterations to converge.

Hence, the maximum number of iterations has been set to 500 for

Genetic Adversarial Training of Decision Trees GECCO ’21, July 10–14, 2021, Lille, France

diabetes and to 100 for the other datasets. This same method is used

to decide between grow and grow-or-prune mutations as well as

their “aggressiveness” threshold, as described in Section 4.

Results. Tab. 2 summarizes the main data of our MetaSilvae

models together with their accuracy and stability metrics. MS

models have been trained for the objective performance function

𝜑𝑇 (𝑡) = 0.9acc𝑇 (𝑡) + 0.1st𝑇,𝑃∞,𝜖
(𝑡) where stability is w.r.t. a maxi-

mum norm perturbation 𝑃∞,𝜖 whose magnitudes 𝜖 are displayed as

absolute and percentage values. These magnitudes 𝜖 are the same

used by [2, 14] for their adversarial training on 6 common datasets:

breast-cancer, cod-rna, diabetes, fashion-mnist, mnist-1-5, mnist-

2-6. It is worth remarking that some of these perturbations are

quite challenging, since they peak to ±30.2% for mnist-1-5/2-6 and

±33.3% for breast-cancer. For fashion-mnist and mnist we trained

a random forest of 50 MS-robust trees adopting a standard major-

ity voting for output classification. For the remaining datasets it

was enough to train a single robust decision tree since in these

cases random forests do not bring practical benefits in accuracy or

stability, thus making these single tree models efficient and easily in-

terpretable. It is worth observing that MS training times are modest

and acceptable even for the more demanding datasets fashion-mnist

and mnist. The stability metrics w.r.t. 𝑃∞,𝜖 have all been computed

with no imprecision by Silva on the whole test sets.

Dataset
MS training MS metrics

of max

𝑃∞,𝜖 (%)

time(s)

acc% st%
trees depth per tree

breast-cancer 1 6 3 (±33.3%) 0.2 100.0 89.1

cod-rna 1 12 0.025 (±2.5%) 20.0 95.6 89.9

collision-det. 1 12 0.1 (±10%) 28.8 87.5 45.4

diabetes 1 15 0.05 (±5%) 2.1 76.0 68.8

fashion-mnist 50 22 25 (±10%) 3593.1 86.4 46.9

ionosphere 1 10 0.2 (±10%) 0.2 97.8 84.4

mnist 50 20 30 (±11.8%) 3376.4 95.6 81.7

mnist-1-5 1 11 77 (±30.2%) 14.4 97.9 94.0

mnist-2-6 1 10 77 (±30.2%) 11.7 98.1 88.7

sensorless 1 15 0.01 (±1%) 133.0 94.7 57.4

wine 1 5 0.1 (±10%) 0.1 92.0 68.0

Table 2: Performance of MetaSilvae

Since MetaSilvae utilizes a seed provided by a random number

generator, in order to analyse the impact of randomness on the

output models, the MS training has been repeated 1000 times for

each dataset by selecting distinct values of the seed. It turns out

that accuracy of most models is within ±5% (and often ±2.5%) of the
median, with the sole exception of wine. The results for stability are

similar, where the stability of the models turns out to be within ±5%
of the median, with the exception of ionosphere, where unstable

(meaning stability < 30%) models can be produced, although 75% of

these 1000 trees has a stability ≥ 30%, and ≥ 65% for half of them.

MetaSilvae vs RF.. We compared our robust models trained by

MetaSilvae with natural random forests trained by scikit-learn [42].

Hyperparameters for training random forests have been selected

by a randomized grid search on the number of trees ranging in the

interval [5, 100], maximum depth in [5, 100], and either Gini 𝐺 or

entropy 𝐻 for split purity. By relying on the stability verification

by Silva [44], we selected the hyperparameters which maximize

the same objective function 𝜑𝑇 used in MS training. Tab. 3 shows

the accuracy and stability metrics on the whole test sets for RF as

compared to MS models, where, for the sake of fair comparison, in

the average of the relative stability gains of MS models we excluded

the RFs with 0% stability.

Dataset RF MetaSilvae Stability Gain
acc% st% acc% st% abs. rel.

breast-cancer 100.0 10.2 100.0 89.1 +78.9% 8.7×
cod-rna 97.9 62.3 95.6 89.9 +27.6% 1.4×
collision-det. 94.8 21.0 87.5 45.4 +24.4% 2.2×
diabetes 78.6 20.8 76.0 68.8 +48.1% 3.3×
fashion-mnist 86.4 0.0 86.4 46.9 +46.9% ∞
ionosphere 96.7 0.0 97.8 84.4 +84.4% ∞
mnist 94.9 0.0 95.6 81.7 +81.7% ∞
mnist-1-5 99.8 19.0 97.9 94.0 +75.0% 4.9×
mnist-2-6 99.2 0.0 98.1 88.7 +88.7% ∞
sensorless 99.9 22.2 94.7 57.4 +35.2% 2.6×
wine 94.0 62.0 92.0 68.0 +6.0% 1.1×
Average 94.7 19.8 92.9 74.0 +54.3% 3.4×
Table 3: Comparison Random Forests vs MetaSilvae

It turns out that all the MS models are significantly more sta-

ble than RFs (+54.3% on average). On the other hand, the average

accuracy slightly decreased (−1.8%) w.r.t. natural RFs. We also em-

phasize that every single MS tree outperforms the corresponding

Random Forest in terms of stability on every dataset but wine

whose RF model already features a significant stability > 60%. With

a very significant rise in stability at least a slight drop in accuracy

is generally expected, although it is worth observing that in some

notable cases the accuracy increased (mnist) or remained the same

(fashion-mnist).

We considered the distribution of accuracy and stability among

trees in RF and MS forests for the mnist dataset under a 𝑃∞,1 per-

turbation, where every forest consists in 50 trees. RF trees exhibit a

median accuracy of ≈ 79.5%, with a minimum of 78.0% and a max-

imum of 81.5%, while for MS trees we observed a higher median

accuracy of ≈ 86.5%, ranging from 86.0% to 87.5%. We observed

a similar but stronger effect for stability, where RF trees show a

median of ≈ 25%, ranging from 5% to 55%, whereas MS trees exhibit

a stable median of 95% and range between 90% and 99%, thus re-

vealing that each MS tree is significantly more accurate and stable

than each RF tree.

We also compare an efficiency metric for RFs and MetaSilvae,

where the efficiency of a classifier 𝐶 w.r.t. a metric 𝑚 measures

which size of 𝐶 is required to achieve a given value of𝑚. Here, we

define an efficiency metric for a tree ensemble 𝐶 which takes into

account how many leaves of 𝐶 are needed to reach a given perfor-

mance of accuracy and stability: if𝑚(𝐶) ∈ [0, 1] is the performance

of𝐶 for a metric𝑚 then the corresponding efficiency of𝐶 is defined

by Eff𝑚 (𝐶) ≜ 𝑚(𝐶)/leaves(𝐶), where leaves(𝐶) ≜ ∑
𝑡 ∈𝐶 leaves(𝑡)

is the total number of leaves of trees in𝐶 . Thus, the higher Eff𝑚 (𝐶)
the better is the efficiency of 𝐶 for𝑚. Tab. 4 compares the number

of leaves and efficiency for accuracy and stability (w.r.t. 𝑃∞,𝜖) for

RFs and MetaSilvae. It turns out that MetaSilvae is much more effi-

cient than RFs: the average of the ratios
leaves(𝑀𝑆)
leaves(RF) is 51.4% while

the average relative efficiency gains of MS w.r.t. RFs (i.e., the ratio

GECCO ’21, July 10–14, 2021, Lille, France F. Ranzato and M. Zanella

Eff𝑚 (𝑀𝑆)/Eff𝑚 (RF)) are, resp., 174× for accuracy, and 1825× for

stability (by excluding in this average 4 datasets whose Effst for

RFs is close to 0).

Dataset leaves(𝐶) Effacc (𝐶) Effst (𝐶)
RF MS RF MS RF MS

breast-cancer 641 4 1.56·10−3 2.50·10−1 1.59·10−4 2.21·10−1
cod-rna 89757 85 1.09·10−5 1.13·10−2 6.94·10−6 1.06·10−2
collision-det. 39678 96 2.39·10−5 9.11·10−3 5.29·10−6 4.73·10−3
diabetes 2583 83 3.04·10−4 9.15·10−3 8.04·10−5 8.29·10−3
fashion-mnist 47549 119986 1.81·10−3 7.20·10−4 0.00·10+0 3.90·10−4
ionosphere 493 17 1.96·10−3 5.75·10−2 0.00·10+0 4.97·10−2
mnist 45268 133652 2.09·10−3 7.15·10−4 0.00·10+0 6.11·10−4
mnist-1-5 3231 30 3.08·10−2 3.26·10+0 5.88·10−3 3.13·10+0
mnist-2-6 4881 76 2.03·10−2 1.29·10+0 0.00·10+0 1.17·10+0
sensorless 15704 150 6.36·10−5 6.31·10−3 1.41·10−5 3.83·10−3
wine 220 15 4.27·10−3 6.13·10−2 2.82·10−3 4.53·10−2

Table 4: Efficiency of Random Forests and MetaSilvae

MetaSilvae vs Robust Gradient Boosted Trees. Finally, in
Tab. 5 we compare our MS robust models with the adversarially

trained tree models of [2], denoted by AH19, and [14], denoted by

CZBH19. These are gradient boosted decision trees of the same

type of XGBoost trees [16], which, to the best of our knowledge,

represent the state-of-the-art of adversarially trained GBDTs. Al-

though our MetaSilvae robust training generates tree ensembles

which are random forests, and RFs and GBDTs are tree ensemble

models with unrelated training principles, we nevertheless compare

these different models since these robust GBDTs were the only ad-

versarially trained decision trees found in literature. We considered

6 common datasets and, as already recalled, the perturbation 𝑃∞,𝜖

is exactly the same used in [2] and [14]. Let us remark that the

accuracy and robustness metrics of AH19 and CZBH19 models are

taken from Table 7 of the supplemental of [2], because Silva cannot

be used to compute the robustness of GBDTs. We also compare the

objective performance function 𝜑𝑇 used for training MetaSilvae,

where accuracy and robustness weigh, resp., 90% and 10%.

Dataset
CZBH19 MetaSilvae

acc% rob% obj. 𝜑𝑇 acc% rob% obj. 𝜑𝑇
breast-cancer 99.3 86.9 0.98 100.0 89.1 0.99
cod-rna 89.8 75.8 0.88 95.6 88.3 0.95
diabetes 77.9 59.7 0.76 76.0 59.1 0.74

fashion-mnist 85.6 34.9 0.80 86.4 44.8 0.82
mnist-1-5 99.7 97.1 0.99 97.9 93.1 0.97

mnist-2-6 99.5 93.1 0.99 98.1 88.1 0.97

Average 91.9 74.6 0.90 92.3 77.1 0.91

Dataset AH19 MetaSilvae
acc% rob% obj. 𝜑𝑇 acc% rob% obj. 𝜑𝑇

breast-cancer 99.3 93.4 0.99 100.0 89.1 0.99
cod-rna 93.1 78.7 0.92 95.6 88.3 0.95
diabetes 72.7 64.3 0.72 76.0 59.1 0.74
fashion-mnist 85.8 76.8 0.85 86.4 44.8 0.82

mnist-1-5 99.8 98.7 0.99 97.9 93.1 0.97

mnist-2-6 99.3 96.2 0.99 98.1 88.1 0.97

Average 91.7 84.7 0.91 92.3 77.1 0.91
Table 5: Comparison with CZBH19 (top) and AH19 (bottom)

For AH19 models, we also compare their size, i.e. total number

of leaves, and their efficiency with MS models. Tab. 6 displays the

relative efficiency gains of MS w.r.t. AH19 models, which are, resp.,

the ratios
leaves(𝑀𝑆)
leaves(AH19) ,

Effacc (𝑀𝑆)
Effacc (AH19) and

Effrob (𝑀𝑆)
Effrob (AH19) .

Dataset AH19 MS Efficiency Gain
MS/AH19

leaves # leaves leaves acc rob
breast-cancer 80 4 5.0% 20.1× 18.9×
cod-rna 913 85 9.3% 11.0× 12.1×
diabetes 79 83 105.0% 1.0× 0.9×
fashion-mnist 97279 119986 123.3% 0.8× 0.5×
mnist-1-5 3258 30 0.9% 106.5× 102.4×
mnist-2-6 3777 76 2.0% 49.1× 45.5×

Table 6: Efficiency of AH19 and MetaSilvae

On average, it turns out that: (i) AH19 models are moderately

more robust (+7.6%) than MS; (ii) MS are slightly more robust

(+2.5%) than CZBH19 models; (iii) MS models are slightly more

accurate of both AH19 (+0.6%) and CZBH19 (+0.4%) models; (iv) all

three models exhibit the same average performance according to

the objective function 𝜑𝑇 ; (v) MS models are significantly more

efficient than AH19 models both for size (average 40.9%), accuracy

(average 31.4×) and robustness (average 30.1×). Our MS models

compete with and often improve on the robust GBDTs of [2, 14]

while being more compact and therefore interpretable and efficient

tree models.

6 CONCLUSION
We believe that this work contributes to push forward the use

of formal verification methods in machine learning, in particular

a very well known program analysis technique such as abstract

interpretation has been proved successful for training decision tree

classifiers which are both accurate and robust and compete with

and often improve on the state-of-the-art of adversarial training of

gradient boosted decision trees while being much more compact

and therefore interpretable and efficient treemodels. As futurework,

we plan to investigate the problem of fairness verification [18, 35]

for ensembles of decision trees by leveraging abstract interpretation

techniques along the lines of this paper. The final goal will be to

design a fairness-aware learning algorithm for decision trees, for

both notions of individual and group fairness [5].

ACKNOWLEDGMENTS
The doctoral fellowship of Marco Zanella was funded by Fondazione
Bruno Kessler (FBK), Trento, Italy. This work has been partially

funded by the University of Padova, under the SID2018 project

“Analysis of STatic Analyses (ASTA)”, by the Italian Ministry of Re-
search MIUR, under the PRIN2017 project no. 201784YSZ5 “AnalysiS
of PRogram Analyses (ASPRA)”, and by Facebook Research, under a
“Probability and Programming Research Award”.

REFERENCES
[1] Omar Y. Al-Jarrah, Paul D. Yoo, Sami Muhaidat, George K. Karagiannidis, and

Kamal Taha. 2015. Efficient Machine Learning for Big Data: A Review. Big Data
Research 2, 3 (2015), 87 – 93. https://doi.org/10.1016/j.bdr.2015.04.001 Big Data,

Analytics, and High-Performance Computing.

https://doi.org/10.1016/j.bdr.2015.04.001

Genetic Adversarial Training of Decision Trees GECCO ’21, July 10–14, 2021, Lille, France

[2] Maksym Andriushchenko and Matthias Hein. 2019. Provably robust boosted

decision stumps and trees against adversarial attacks. In Proc. 33rd Annual Conf.
on Neural Information Processing Systems (NeurIPS 2019). 12997–13008.

[3] Shumeet Baluja and Rich Caruana. 1995. Removing the Genetics from the

Standard Genetic Algorithm. In Proceedings of the Twelfth International Con-
ference on Machine Learning (ICML 1995). Morgan Kaufmann, 38–46. https:

//doi.org/10.1016/b978-1-55860-377-6.50014-1

[4] Rodrigo Coelho Barros, Márcio Porto Basgalupp, André Carlos Ponce de Leon

Ferreira de Carvalho, and Alex Alves Freitas. 2012. A Survey of Evolutionary

Algorithms for Decision-Tree Induction. IEEE Trans. Syst. Man Cybern. Part C 42,

3 (2012), 291–312. https://doi.org/10.1109/TSMCC.2011.2157494

[5] Reuben Binns. 2020. On the Apparent Conflict between Individual and Group

Fairness. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency (Barcelona, Spain) (FAT* 2020). ACM, New York, NY, USA, 514–524.

https://doi.org/10.1145/3351095.3372864

[6] Jeffrey P Bradford, Clayton Kunz, Ron Kohavi, Cliff Brunk, and Carla E Brodley.

1998. Pruning decision trees with misclassification costs. In European Conference
on Machine Learning. Springer, 131–136.

[7] Max Bramer. 2013. Avoiding Overfitting of Decision Trees. Springer, 121–136.

https://doi.org/10.1007/978-1-4471-4884-5_9

[8] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. https:

//doi.org/10.1023/A:1010933404324

[9] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification
and Regression Trees. Wadsworth.

[10] Stefano Calzavara, Pietro Ferrara, and Claudio Lucchese. 2020. Certifying Deci-

sion Trees Against Evasion Attacks by Program Analysis. In Computer Security
- ESORICS 2020 - 25th European Symposium on Research in Computer Security
(LNCS). Springer.

[11] Stefano Calzavara, Claudio Lucchese, and Gabriele Tolomei. 2019. Adversarial

Training of Gradient-Boosted Decision Trees. In Proc. 28th ACM Int. Conf. on
Information and Knowledge Management (CIKM 2019) (Beijing, China). 2429–2432.
https://doi.org/10.1145/3357384.3358149

[12] Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei, Seyum Assefa Abebe,

and Salvatore Orlando. 2020. TREANT: training evasion-aware decision trees.

Data Mining and Knowledge Discovery (2020). https://doi.org/10.1007/s10618-

020-00694-9

[13] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness

of Neural Networks. In Proc. of 2017 IEEE Symposium on Security and Privacy.
39–57. https://doi.org/10.1109/SP.2017.49

[14] Hongge Chen, Huan Zhang, Duane S. Boning, and Cho-Jui Hsieh. 2019. Robust

Decision Trees Against Adversarial Examples. In Proc. 36th Int. Conf. on Machine
Learning, (ICML 2019). 1122–1131. http://proceedings.mlr.press/v97/chen19m.

html

[15] Hongge Chen, Huan Zhang, Si Si, Yang Li, Duane S. Boning, and Cho-Jui Hsieh.

2019. Robustness Verification of Tree-based Models. In Proc. 33rd Annual Conf.
on Neural Information Processing Systems (NeurIPS 2019). 12317–12328. http:

//papers.nips.cc/paper/9399-robustness-verification-of-tree-based-models

[16] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2016). ACM, 785–794. https://doi.

org/10.1145/2939672.2939785

[17] Hwi-Yeon Cho and Yong-Hyuk Kim. 2019. Stabilized training of generative

adversarial networks by a genetic algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, (GECCO 2019). ACM, 51–52.

https://doi.org/10.1145/3319619.3326774

[18] Alexandra Chouldechova and Aaron Roth. 2020. A Snapshot of the Frontiers

of Fairness in Machine Learning. Commun. ACM 63, 5 (April 2020), 82–89.

https://doi.org/10.1145/3376898

[19] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or approximation of

fixpoints. In Proc. 4th ACM Symp. on Principles of Programming Languages (POPL
1977). ACM, 238–252. https://doi.org/10.1145/512950.512973

[20] Dheeru Dua and Casey Graff. 2019. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[21] Gil Einziger, Maayan Goldstein, Yaniv Sa’ar, and Itai Segall. 2019. Verifying

Robustness of Gradient Boosted Models. In Proc. 33rd AAAI Conf. on Artificial
Intelligence. 2446–2453. https://aaai.org/ojs/index.php/AAAI/article/view/4089

[22] Elif Ersoy, Erinç Albey, and Enis Kayis. 2020. A CART-based Genetic Algorithm

for Constructing Higher Accuracy Decision Trees. In Proceedings of the 9th
International Conference on Data Science, Technology and Applications (DATA
2020). SciTePress, 328–338. https://doi.org/10.5220/0009893903280338

[23] Alex A. Freitas. 2002. Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer.

[24] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting

machine. Annals of Statistics (2001), 1189–1232.
[25] Zhiwei Fu, Bruce L. Golden, Shreevardhan Lele, S. Raghavan, and EdwardA.Wasil.

2003. A Genetic Algorithm-Based Approach for Building Accurate Decision Trees.

INFORMS J. Comput. 15, 1 (2003), 3–22. https://doi.org/10.1287/ijoc.15.1.3.15152

[26] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat

Chaudhuri, and Martin T. Vechev. 2018. AI2: Safety and Robustness Certification

of Neural Networks with Abstract Interpretation. In Proc. 2018 IEEE Symposium
on Security and Privacy. 3–18. https://doi.org/10.1109/SP.2018.00058

[27] Ian Goodfellow, Patrick McDaniel, and Nicolas Papernot. 2018. Making Machine

Learning Robust Against Adversarial Inputs. Commun. ACM 61, 7 (2018), 56–66.

https://doi.org/10.1145/3134599

[28] John H Holland. 1984. Genetic algorithms and adaptation. In Adaptive Control of
Ill-Defined Systems. Springer, 317–333.

[29] Ned Horning. 2013. Introduction to decision trees and random forests. Am. Mus.
Nat. Hist 2 (2013), 1–27.

[30] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
Introduction to Statistical Learning: with Applications in R. Springer.

[31] Dariusz Jankowski and Konrad Jackowski. 2014. Evolutionary Algorithm for Deci-

sion Tree Induction. In Computer Information Systems and Industrial Management.
Springer, 23–32.

[32] Michael J Kearns and Yishay Mansour. 1998. A Fast, Bottom-Up Decision Tree

Pruning Algorithm with Near-Optimal Generalization. In Proceedings of the
Fifteenth International Conference on Machine Learning (ICML 1998). 269–277.

[33] Boonserm Kijsirikul and Kongsak Chongkasemwongse. 2001. Decision tree prun-

ing using backpropagation neural networks. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN’01), Vol. 3. IEEE, 1876–1880.

[34] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial Machine

Learning at Scale. In Proc. 5th Int. Conf. on Learning Representations (ICLR 2017).
https://openreview.net/forum?id=BJm4T4Kgx

[35] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram

Galstyan. 2019. A Survey on Bias and Fairness in Machine Learning. CoRR
abs/1908.09635 (2019). http://arxiv.org/abs/1908.09635

[36] Matthew Mirman, Timon Gehr, and Martin T. Vechev. 2018. Differentiable

Abstract Interpretation for Provably Robust Neural Networks. In Proceedings of
the 35th International Conference on Machine Learning (ICML 2018). 3575–3583.
http://proceedings.mlr.press/v80/mirman18b.html

[37] Christoph Müller, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2020.

Neural Network Robustness Verification on GPUs. CoRR abs/2007.10868 (2020).

arXiv:2007.10868 https://arxiv.org/abs/2007.10868

[38] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu.

2019. Definitions, methods, and applications in interpretable machine learning.

Proceedings of the National Academy of Sciences 116, 44 (2019), 22071–22080.

https://doi.org/10.1073/pnas.1900654116

[39] Frank Neumann, Pietro Simone Oliveto, and Carsten Witt. 2009. Theoreti-

cal Analysis of Fitness-Proportional Selection: Landscapes and Efficiency. In

Proceedings of the 11th Annual Conference on Genetic and Evolutionary Com-
putation (GECCO 2009) (Montreal, Québec, Canada). ACM, 835–842. https:

//doi.org/10.1145/1569901.1570016

[40] A. Papagelis and D. Kalles. 2000. GA Tree: genetically evolved decision trees. In

Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence
(ICTAI 2000). 203–206.

[41] G. Pavai and T. V. Geetha. 2016. A Survey on Crossover Operators. ACM Comput.
Surv. 49, 4, Article 72 (Dec. 2016), 43 pages. https://doi.org/10.1145/3009966

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[43] Francesco Ranzato and Marco Zanella. 2019. Robustness Verification of Support

Vector Machines. In Proceedings of the 26th International Static Analysis Sympo-
sium (SAS 2019) (LNCS vol. 11822). Springer, 271–295. https://doi.org/10.1007/978-
3-030-32304-2_14

[44] Francesco Ranzato and Marco Zanella. 2020. Abstract Interpretation of Decision

Tree Ensemble Classifiers. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI 2020). 5478–5486. https://aaai.org/ojs/index.php/

AAAI/article/view/5998

[45] Francesco Ranzato and Marco Zanella. 2021. MetaSilvae GitHub Repository.

https://github.com/abstract-machine-learning/meta-silvae.

[46] Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis: An Abstract
Interpretation Perspective. The MIT Press.

[47] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T.

Vechev. 2018. Fast and Effective Robustness Certification. In Proc. Annual Conf.
on Neural Information Processing Systems 2018 (NeurIPS 2018). 10825–10836. http:

//papers.nips.cc/paper/8278-fast-and-effective-robustness-certification

[48] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An

Abstract Domain for Certifying Neural Networks. Proc. ACM Program. Lang. 3,
POPL 2019, Article 41 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290354

[49] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. 2019.

Boosting Robustness Certification of Neural Networks. In Proceedings of the 7th
International Conference on Learning Representations (ICLR 2019). OpenReview.net.
https://openreview.net/forum?id=HJgeEh09KQ

[50] M. Srinivas and L. M. Patnaik. 1994. Genetic algorithms: a survey. Computer 27,
6 (1994), 17–26.

https://doi.org/10.1016/b978-1-55860-377-6.50014-1
https://doi.org/10.1016/b978-1-55860-377-6.50014-1
https://doi.org/10.1109/TSMCC.2011.2157494
https://doi.org/10.1145/3351095.3372864
https://doi.org/10.1007/978-1-4471-4884-5_9
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3357384.3358149
https://doi.org/10.1007/s10618-020-00694-9
https://doi.org/10.1007/s10618-020-00694-9
https://doi.org/10.1109/SP.2017.49
http://proceedings.mlr.press/v97/chen19m.html
http://proceedings.mlr.press/v97/chen19m.html
http://papers.nips.cc/paper/9399-robustness-verification-of-tree-based-models
http://papers.nips.cc/paper/9399-robustness-verification-of-tree-based-models
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/3319619.3326774
https://doi.org/10.1145/3376898
https://doi.org/10.1145/512950.512973
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://aaai.org/ojs/index.php/AAAI/article/view/4089
https://doi.org/10.5220/0009893903280338
https://doi.org/10.1287/ijoc.15.1.3.15152
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3134599
https://openreview.net/forum?id=BJm4T4Kgx
http://arxiv.org/abs/1908.09635
http://proceedings.mlr.press/v80/mirman18b.html
https://arxiv.org/abs/2007.10868
https://arxiv.org/abs/2007.10868
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.1145/1569901.1570016
https://doi.org/10.1145/1569901.1570016
https://doi.org/10.1145/3009966
https://doi.org/10.1007/978-3-030-32304-2_14
https://doi.org/10.1007/978-3-030-32304-2_14
https://aaai.org/ojs/index.php/AAAI/article/view/5998
https://aaai.org/ojs/index.php/AAAI/article/view/5998
https://github.com/abstract-machine-learning/meta-silvae
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
https://doi.org/10.1145/3290354
https://openreview.net/forum?id=HJgeEh09KQ

GECCO ’21, July 10–14, 2021, Lille, France F. Ranzato and M. Zanella

[51] John Törnblom and Simin Nadjm-Tehrani. 2019. An Abstraction-Refinement

Approach to Formal Verification of Tree Ensembles. In Proc. 2nd Int. Workshop
on Artificial Intelligence Safety Engineering, held with SAFECOMP. Springer.

[52] John Törnblom and Simin Nadjm-Tehrani. 2020. Formal verification of input-

output mappings of tree ensembles. Sci. Comput. Program. 194 (2020), 102450.
https://doi.org/10.1016/j.scico.2020.102450

[53] Peter D. Turney. 1995. Cost-Sensitive Classification: Empirical Evaluation of a

Hybrid Genetic Decision Tree Induction Algorithm. J. Artif. Int. Res. 2, 1 (April
1995), 369–409.

[54] Petra Vidnerová and Roman Neruda. 2020. Vulnerability of classifiers to evolu-

tionary generated adversarial examples. Neural Networks 127 (2020), 168–181.
https://doi.org/10.1016/j.neunet.2020.04.015

https://doi.org/10.1016/j.scico.2020.102450
https://doi.org/10.1016/j.neunet.2020.04.015

	Abstract
	1 Introduction
	2 Background
	3 Training as Combinatorial Optimization
	4 MetaSilvae
	5 Experimental Evaluation
	6 Conclusion
	Acknowledgments
	References

